Science.gov

Sample records for average friction coefficient

  1. The Application of Vibration Accelerations in the Assessment of Average Friction Coefficient of a Railway Brake Disc

    NASA Astrophysics Data System (ADS)

    Sawczuk, Wojciech

    2017-06-01

    Due to their wide range of friction characteristics resulting from the application of different friction materials and good heat dissipation conditions, railway disc brakes have long replaced block brakes in many rail vehicles. A block brake still remains in use, however, in low speed cargo trains. The paper presents the assessment of the braking process through the analysis of vibrations generated by the components of the brake system during braking. It presents a possibility of a wider application of vibroacoustic diagnostics (VA), which aside from the assessment of technical conditions (wear of brake pads) also enables the determination of the changes of the average friction coefficient as a function of the braking onset speed. Vibration signals of XYZ were measured and analyzed. The analysis of the results has shown that there is a relation between the values of the point measures and the wear of the brake pads.

  2. Average Skin-Friction Drag Coefficients from Tank Tests of a Parabolic Body of Revolution (NACA RM-10)

    NASA Technical Reports Server (NTRS)

    Mottard, Elmo J; Loposer, J Dan

    1954-01-01

    Average skin-friction drag coefficients were obtained from boundary-layer total-pressure measurements on a parabolic body of revolution (NACA rm-10, basic fineness ratio 15) in water at Reynolds numbers from 4.4 x 10(6) to 70 x 10(6). The tests were made in the Langley tank no. 1 with the body sting-mounted at a depth of two maximum body diameters. The arithmetic mean of three drag measurements taken around the body was in good agreement with flat-plate results, but, apparently because of the slight surface wave caused by the body, the distribution of the boundary layer around the body was not uniform over part of the Reynolds number range.

  3. Apparatus for measurement of coefficient of friction

    NASA Technical Reports Server (NTRS)

    Slifka, A. J.; Siegwarth, J. D.; Sparks, L. L.; Chaudhuri, Dilip K.

    1990-01-01

    An apparatus designed to measure the coefficient of friction in certain controlled atmospheres is described. The coefficient of friction observed during high-load tests was nearly constant, with an average value of 0.56. This value is in general agreement with that found in the literature and also with the initial friction coefficient value of 0.67 measured during self-mated friction of 440C steel in an oxygen environment.

  4. Apparatus for measurement of coefficient of friction

    NASA Astrophysics Data System (ADS)

    Slifka, A. J.; Siegwarth, J. D.; Sparks, L. L.; Chaudhuri, Dilip K.

    An apparatus designed to measure the coefficient of friction in certain controlled atmospheres is described. The coefficient of friction observed during high-load tests was nearly constant, with an average value of 0.56. This value is in general agreement with that found in the literature and also with the initial friction coefficient value of 0.67 measured during self-mated friction of 440C steel in an oxygen environment.

  5. Influence of tube-entrance configuration on average heat-transfer coefficients and friction factors for air flowing in an Inconel tube

    NASA Technical Reports Server (NTRS)

    Lowdermilk, Warren H; Grele, Milton D

    1950-01-01

    A heat-transfer investigation was conducted with air flowing through an electrically heated Inconel tube having either a long-approach or a right-angle-edge entrance, an inside diameter of 0.402 inch, and a length of 24 inches over a range of Reynolds numbers up to 375,000 and average inside-tube-wall temperatures up to 2000 degrees R. Good correlation of heat-transfer data was obtained for both entrances, which substantiates work previously reported. A fair correlation of friction data was obtained for both entrances. The entrance configuration had little effect on the average heat-transfer and friction coefficients.

  6. Experimental Investigation of Average Heat-Transfer and Friction Coefficients for Air Flowing in Circular Tubes Having Square-Thread-Type Roughness

    NASA Technical Reports Server (NTRS)

    Sams, E. W.

    1952-01-01

    An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through electrically heated Inconel tubes having various degrees of square-thread-type roughness, an inside diameter of 1/2 inch, and a length of 24 inches. were obtained for tubes having conventional roughness ratios (height of thread/radius of tube) of 0 (smooth tube), 0.016, 0.025, and 0.037 over ranges of bulk Reynolds numbers up to 350,000, average inside-tube-wall temperatures up to 1950deg R, and heat-flux densities up to 115,000 Btu per hour per square foot. Data The experimental data showed that both heat transfer and friction increased with increase in surface roughness, becoming more pronounced with increase in Reynolds number; for a given roughness, both heat transfer and friction were also influenced by the tube wall-to-bulk temperature ratio. Good correlation of the heat-transfer data for all the tubes investigated was obtained by use of a modification of the conventional Nusselt correlation parameters wherein the mass velocity in the Reynolds number was replaced by the product of air density evaluated at the average film temperature and the so-called friction velocity; in addition, the physical properties of air were evaluated at the average film temperature. The isothermal friction data for the rough tubes, when plotted in the conventional manner, resulted in curves similar to those obtained by other investigators; that is, the curve for a given roughness breaks away from the Blasius line (representing turbulent flow in smooth tubes) at some value of Reynolds number, which decreases with increase in surface roughness, and then becomes a horizontal line (friction coefficient independent of Reynolds number). A comparison of the friction data for the rough tubes used herein indicated that the conventional roughness ratio is not an adequate measure of relative roughness for tubes having a square-thread-type element. The present data, as well

  7. Flight Measurements of Average Skin-Friction Coefficients on a Parabolic Body of Revolution (NACA RM-10) at Mach Numbers from 1.0 to 3.7

    NASA Technical Reports Server (NTRS)

    Loposer, J. Dan; Rumsey, Charles B.

    1954-01-01

    Measurement of average skin-friction coefficients have been made on six rocket-powered free-flight models by using the boundary-layer rake technique. The model configuration was the NACA RM-10, a 12.2-fineness-ratio parabolic body of revolution with a flat base. Measurements were made over a Mach number range from 1 to 3.7, a Reynolds number range 40 x 10(exp 6) to 170 x 10(exp 6) based on length to the measurement station, and with aerodynamic heating conditions varying from strong skin heating to strong skin cooling. The measurements show the same trends over the test ranges as Van Driest's theory for turbulent boundary layer on a flat plate. The measured values are approximately 7 percent higher than the values of the flat-plate theory. A comparison which takes into account the differences in Reynolds number is made between the present results and skin-friction measurements obtained on NACA RM-10 scale models in the Langley 4- by 4-foot supersonic pressure tunnel, the Lewis 8- by 6-foot supersonic tunnel, and the Langley 9-inch supersonic tunnel. Good agreement is shown at all but the lowest tunnel Reynolds number conditions. A simple empirical equation is developed which represents the measurements over the range of the tests.

  8. Friction Coefficients of Synthetic Ropes

    DTIC Science & Technology

    1977-02-01

    vertical segments of the steel cable. "**Arithmetic averagL of test data . + Data disregarded in averaging process because of concern for validity. From the...gauge W •’ T1 "• ~ steel Ui=U floor •Figure 12 . Modified apparatus for high-tension rope tests (or bitts). ! { From equations 25 and 26, the friction... data . Example A 12 -inch-perimeter nylon line is wrapped several turns around a bitt barrel (figure 19). The high tension acting on the line varies

  9. Friction coefficient dependence on electrostatic tribocharging.

    PubMed

    Burgo, Thiago A L; Silva, Cristiane A; Balestrin, Lia B S; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers.

  10. Friction coefficient dependence on electrostatic tribocharging

    PubMed Central

    Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers. PMID:23934227

  11. Friction coefficient dependence on electrostatic tribocharging

    NASA Astrophysics Data System (ADS)

    Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando

    2013-08-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers.

  12. Prediction of friction coefficients for gases

    NASA Technical Reports Server (NTRS)

    Taylor, M. F.

    1969-01-01

    Empirical relations are used for correlating laminar and turbulent friction coefficients for gases, with large variations in the physical properties, flowing through smooth tubes. These relations have been used to correlate friction coefficients for hydrogen, helium, nitrogen, carbon dioxide and air.

  13. Kinetic Friction Coefficient of Ice,

    DTIC Science & Technology

    1985-03-01

    For the hardest ice tested (xi = 0.33 described by Rabinowicz (1965), where To is inter- mm, H, = 1525 kPa), the calculated values of a preted as...material with a low elastic pressures. The frictional force was measured at modulus ( Rabinowicz 1965). It has been observed the application point of...tion 10, pp. 8-16. Barnes, P. and D. Tabor (1966) Plastic flow and Rabinowicz , E. (1965) Friction and Wear of Mate- pressure melting in the deformation

  14. A technique for measuring dynamic friction coefficient under impact loading.

    PubMed

    Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  15. A technique for measuring dynamic friction coefficient under impact loading

    NASA Astrophysics Data System (ADS)

    Lin, Y. L.; Qin, J. G.; Chen, R.; Zhao, P. D.; Lu, F. Y.

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m2/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  16. High speed friction microscopy and nanoscale friction coefficient mapping

    NASA Astrophysics Data System (ADS)

    Bosse, James L.; Lee, Sungjun; Andersen, Andreas Sø; Sutherland, Duncan S.; Huey, Bryan D.

    2014-11-01

    As mechanical devices in the nano/micro length scale are increasingly employed, it is crucial to understand nanoscale friction and wear especially at technically relevant sliding velocities. Accordingly, a novel technique has been developed for friction coefficient mapping (FCM), leveraging recent advances in high speed AFM. The technique efficiently acquires friction versus force curves based on a sequence of images at a single location, each with incrementally lower loads. As a result, true maps of the coefficient of friction can be uniquely calculated for heterogeneous surfaces. These parameters are determined at a scan velocity as fast as 2 mm s-1 for microfabricated SiO2 mesas and Au coated pits, yielding results that are identical to traditional speed measurements despite being ~1000 times faster. To demonstrate the upper limit of sliding velocity for the custom setup, the friction properties of mica are reported from 200 µm s-1 up to 2 cm s-1. While FCM is applicable to any AFM and scanning speed, quantitative nanotribology investigations of heterogeneous sliding or rolling components are therefore uniquely possible, even at realistic velocities for devices such as MEMS, biological implants, or data storage systems.

  17. Modeling and data analysis of the NASA-WSTF frictional heating apparatus - Effects of test parameters on friction coefficient

    NASA Technical Reports Server (NTRS)

    Zhu, Sheng-Hu; Stoltzfus, Joel M.; Benz, Frank J.; Yuen, Walter W.

    1988-01-01

    A theoretical model is being developed jointly by the NASA White Sands Test Facility (WSTF) and the University of California at Santa Barbara (UCSB) to analyze data generated from the WSTF frictional heating test facility. Analyses of the data generated in the first seconds of the frictional heating test are shown to be effective in determining the friction coefficient between the rubbing interfaces. Different friction coefficients for carobn steel and Monel K-500 are observed. The initial condition of the surface is shown to affect only the initial value of the friction coefficient but to have no significant influence on the average steady-state friction coefficient. Rotational speed and the formation of oxide film on the rotating surfaces are shown to have a significant effect on the friction coefficient.

  18. Modeling and data analysis of the NASA-WSTF frictional heating apparatus - Effects of test parameters on friction coefficient

    NASA Technical Reports Server (NTRS)

    Zhu, Sheng-Hu; Stoltzfus, Joel M.; Benz, Frank J.; Yuen, Walter W.

    1988-01-01

    A theoretical model is being developed jointly by the NASA White Sands Test Facility (WSTF) and the University of California at Santa Barbara (UCSB) to analyze data generated from the WSTF frictional heating test facility. Analyses of the data generated in the first seconds of the frictional heating test are shown to be effective in determining the friction coefficient between the rubbing interfaces. Different friction coefficients for carobn steel and Monel K-500 are observed. The initial condition of the surface is shown to affect only the initial value of the friction coefficient but to have no significant influence on the average steady-state friction coefficient. Rotational speed and the formation of oxide film on the rotating surfaces are shown to have a significant effect on the friction coefficient.

  19. Friction coefficient estimation using an unscented Kalman filter

    NASA Astrophysics Data System (ADS)

    Zhao, Yunshi; Liang, Bo; Iwnicki, Simon

    2014-05-01

    The friction coefficient between a railway wheel and rail surface is a crucial factor in maintaining high acceleration and braking performance of railway vehicles; therefore, monitoring this friction coefficient is important. Due to the difficulty in directly measuring the friction coefficient, the creep force or creepage, indirect methods using state observers are used more frequently. This paper presents an approach using an unscented kalman filter to estimate the creep force and creepage and the friction coefficient from traction motor behaviours. A scaled roller rig is designed and a series of experiments is carried out to evaluate the estimator performance.

  20. Methods of Calculation of a Friction Coefficient: Application to Nanotubes

    NASA Astrophysics Data System (ADS)

    Servantie, J.; Gaspard, P.

    2003-10-01

    In this Letter we develop theoretical and numerical methods to calculate the dynamic friction coefficient. The theoretical method is based on an adiabatic approximation which allows us to express the dynamic friction coefficient in terms of the time integral of the autocorrelation function of the force between both sliding objects. The motion of the objects and the autocorrelation function can be numerically calculated by molecular-dynamics simulations. We have successfully applied these methods to the evaluation of the dynamic friction coefficient of the relative motion of two concentric carbon nanotubes. The dynamic friction coefficient is shown to increase with the temperature.

  1. Micro- and macroscale coefficients of friction of cementitious materials

    SciTech Connect

    Lomboy, Gilson; Sundararajan, Sriram; Wang, Kejin

    2013-12-15

    Millions of metric tons of cementitious materials are produced, transported and used in construction each year. The ease or difficulty of handling cementitious materials is greatly influenced by the material friction properties. In the present study, the coefficients of friction of cementitious materials were measured at the microscale and macroscale. The materials tested were commercially-available Portland cement, Class C fly ash, and ground granulated blast furnace slag. At the microscale, the coefficient of friction was determined from the interaction forces between cementitious particles using an Atomic Force Microscope. At the macroscale, the coefficient of friction was determined from stresses on bulk cementitious materials under direct shear. The study indicated that the microscale coefficient of friction ranged from 0.020 to 0.059, and the macroscale coefficient of friction ranged from 0.56 to 0.75. The fly ash studied had the highest microscale coefficient of friction and the lowest macroscale coefficient of friction. -- Highlights: •Microscale (interparticle) coefficient of friction (COF) was determined with AFM. •Macroscale (bulk) COF was measured under direct shear. •Fly ash had the highest microscale COF and the lowest macroscale COF. •Portland cement against GGBFS had the lowest microscale COF. •Portland cement against Portland cement had the highest macroscale COF.

  2. Comparative study regarding friction coefficient for three epoxy resins

    NASA Astrophysics Data System (ADS)

    Mihu, G.; Mihalache, I.; Graur, I.; Ungureanu, C.; Bria, V.

    2017-02-01

    Three commercial epoxy diglycidylether of bisphenol-A (DGEBA) were used in this study namely Epiphen RE4020-DE 4020 (Bostik), Epoxy Resin C (R&G Gmbh Waldenbuch), and Epoxy Resin HT-2 (R&G Gmbh Waldenbuch). Epoxy resins are often used for the friction purpose but their friction resistance is quite low and it is thus necessary to enhance their friction resistance. In this paper it is shown how load, sliding velocity, and distance affect friction coefficient of epoxy resins.

  3. Asymmetrical slip propensity: required coefficient of friction.

    PubMed

    Seo, Jung-suk; Kim, Sukwon

    2013-07-31

    Most studies in performing slips and falls research reported their results after the ipsilateral leg of subjects (either right foot or left foot) was guided to contact the contaminated floor surface although many studies indicated concerns for asymmetries of legs in kinematic or kinetic variables. Thus, the present study evaluated if dominant leg's slip tendency would be different from non-dominant leg's slip tendency by comparing the Required Coefficient of Friction (RCOF) of the two lower limbs. Forty seven health adults participated in the present study. RCOF was measured when left or right foot of subjects contacted the force platforms respectively. Paired t-test was performed to test if RCOF and heel velocity (HCV) of dominant legs was different from that of non-dominant legs. It was suggested that the asymmetry in RCOFs and HCV between the two lower limbs existed. The RCOFs of non-dominant legs were higher than that of dominant legs. The results indicated that asymmetry in slip propensity, RCOF, was existed in lower extremity. The results from the study suggested that it would be benefit to include a variable, such as asymmetry, in slips and falls research.

  4. Coefficient of Friction of Human Corneal Tissue.

    PubMed

    Wilson, Tawnya; Aeschlimann, Rudolf; Tosatti, Samuele; Toubouti, Youssef; Kakkassery, Joseph; Osborn Lorenz, Katherine

    2015-09-01

    A novel property evaluation methodology was used to determine the elusive value for the human corneal coefficient of friction (CoF). Using a microtribometer on 28 fresh human donor corneas with intact epithelia, the CoF was determined in 4 test solutions (≥5 corneas/solution): tear-mimicking solution (TMS) in borate-buffered saline (TMS-PS), TMS in phosphate-buffered saline (TMS-PBS), TMS with HEPES-buffered saline (TMS-HEPES), and tear-like fluid in PBS (TLF-PBS). Mean (SD) CoF values ranged from 0.006 to 0.015 and were 0.013 (0.010) in TMS-PS, 0.006 (0.003) in TMS-PBS, 0.014 (0.005) in TMS-HEPES, and 0.015 (0.009) in TLF-PBS. Statistically significant differences were shown for TMS-PBS versus TLF (P = 0.0424) and TMS-PBS versus TMS-HEPES (P = 0.0179), but not for TMS-PBS versus TMS-PS (P = 0.2389). Successful measurement of the fresh human corneal tissue CoF was demonstrated, with values differing in the evaluated buffer solutions, within this limited sample size.

  5. A Simple Measurement of the Sliding Friction Coefficient

    ERIC Educational Resources Information Center

    Gratton, Luigi M.; Defrancesco, Silvia

    2006-01-01

    We present a simple computer-aided experiment for investigating Coulomb's law of sliding friction in a classroom. It provides a way of testing the possible dependence of the friction coefficient on various parameters, such as types of materials, normal force, apparent area of contact and sliding velocity.

  6. Using Plasticine (TM) to Measure the Rolling Friction Coefficient.

    ERIC Educational Resources Information Center

    Castellvi, Francesc; And Others

    1995-01-01

    Presents an experiment that makes manifest the energy lost to friction of an iron ball moving along an inclined iron rail, which allows students to compute the rolling friction coefficient. Uses a method based on measurement of deformation produced in a piece of Plasticine by an inelastic collision with the ball and combines mechanical concepts…

  7. A Simple Measurement of the Sliding Friction Coefficient

    ERIC Educational Resources Information Center

    Gratton, Luigi M.; Defrancesco, Silvia

    2006-01-01

    We present a simple computer-aided experiment for investigating Coulomb's law of sliding friction in a classroom. It provides a way of testing the possible dependence of the friction coefficient on various parameters, such as types of materials, normal force, apparent area of contact and sliding velocity.

  8. Chondroitin sulfate reduces the friction coefficient of articular cartilage.

    PubMed

    Basalo, Ines M; Chahine, Nadeen O; Kaplun, Michael; Chen, Faye H; Hung, Clark T; Ateshian, Gerard A

    2007-01-01

    The objective of this study was to investigate the effect of chondroitin sulfate (CS)-C on the frictional response of bovine articular cartilage. The main hypothesis is that CS decreases the friction coefficient of articular cartilage. Corollary hypotheses are that viscosity and osmotic pressure are not the mechanisms that mediate the reduction in the friction coefficient by CS. In Experiment 1, bovine articular cartilage samples (n=29) were tested in either phosphate buffered saline (PBS) or in PBS containing 100mg/ml of CS following 48h incubation in PBS or in PBS+100mg/ml CS (control specimens were not subjected to any incubation). In Experiment 2, samples (n=23) were tested in four different solutions: PBS, PBS+100mg/ml CS, and PBS+polyethylene glycol (PEG) (133 or 170mg/ml). In Experiment 3, samples (n=18) were tested in three solutions of CS (0, 10 and 100mg/ml). Frictional tests (cartilage-on-glass) were performed under constant stress (0.5MPa) for 3600s and the time-dependent friction coefficient was measured. Samples incubated or tested in a 100mg/ml CS solution exhibited a significantly lower equilibrium friction coefficient than the respective PBS control. PEG solutions delayed the rise in the friction coefficient relative to the PBS control, but did not reduce the equilibrium value. Testing in PBS+10mg/ml of CS did not cause any significant decrease in the friction coefficient. In conclusion, CS at a concentration of 100mg/ml significantly reduces the friction coefficient of bovine articular cartilage and this mechanism is neither mediated by viscosity nor osmolarity. These results suggest that direct injection of CS into the joint may provide beneficial tribological effects.

  9. Friction coefficients of PTFE bearing liner

    NASA Technical Reports Server (NTRS)

    Daniels, C. M.

    1979-01-01

    Data discusses frictional characteristics of PTFE (polytetrafluoroethylene) under temperature extremes and in vacuum environment. Tests were also run on reduced scale hardware to determine effects of vacuum. Data is used as reference by designers of aircraft-control system rod-end bearings and for bearings used in polar regions.

  10. Kinetics of the coefficient of friction of elastomers

    PubMed Central

    Li, Qiang; Dimaki, Andrey; Popov, Mikhail; Psakhie, Sergey G.; Popov, Valentin L.

    2014-01-01

    We study theoretically and numerically the kinetics of the coefficient of friction of an elastomer due to abrupt changes of sliding velocity. Numerical simulations reveal the same qualitative behavior which has been observed experimentally on different classes of materials: the coefficient of friction first jumps and then relaxes to a new stationary value. The elastomer is modeled as a simple Kelvin body and the surface as a self-affine fractal with a Hurst exponent in the range from 0 to 1. Parameters of the jump of the coefficient of friction and the relaxation time are determined as functions of material and loading parameters. Depending on velocity and the Hurst exponent, relaxation of friction with characteristic length or characteristic time is observed. PMID:25069020

  11. Kinetics of the coefficient of friction of elastomers

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Dimaki, Andrey; Popov, Mikhail; Psakhie, Sergey G.; Popov, Valentin L.

    2014-07-01

    We study theoretically and numerically the kinetics of the coefficient of friction of an elastomer due to abrupt changes of sliding velocity. Numerical simulations reveal the same qualitative behavior which has been observed experimentally on different classes of materials: the coefficient of friction first jumps and then relaxes to a new stationary value. The elastomer is modeled as a simple Kelvin body and the surface as a self-affine fractal with a Hurst exponent in the range from 0 to 1. Parameters of the jump of the coefficient of friction and the relaxation time are determined as functions of material and loading parameters. Depending on velocity and the Hurst exponent, relaxation of friction with characteristic length or characteristic time is observed.

  12. A methodology to quantify the stochastic distribution of friction coefficient required for level walking.

    PubMed

    Chang, Wen-Ruey; Chang, Chien-Chi; Matz, Simon; Lesch, Mary F

    2008-11-01

    The required friction coefficient is defined as the minimum friction needed at the shoe and floor interface to support human locomotion. The available friction is the maximum friction coefficient that can be supported without a slip at the shoe and floor interface. A statistical model was recently introduced to estimate the probability of slip and fall incidents by comparing the available friction with the required friction, assuming that both the available and required friction coefficients have stochastic distributions. This paper presents a methodology to investigate the stochastic distributions of the required friction coefficient for level walking. In this experiment, a walkway with a layout of three force plates was specially designed in order to capture a large number of successful strikes without causing fatigue in participants. The required coefficient of friction data of one participant, who repeatedly walked on this walkway under four different walking conditions, is presented as an example of the readiness of the methodology examined in this paper. The results of the Kolmogorov-Smirnov goodness-of-fit test indicated that the required friction coefficient generated from each foot and walking condition by this participant appears to fit the normal, log-normal or Weibull distributions with few exceptions. Among these three distributions, the normal distribution appears to fit all the data generated with this participant. The average of successful strikes for each walk achieved with three force plates in this experiment was 2.49, ranging from 2.14 to 2.95 for each walking condition. The methodology and layout of the experimental apparatus presented in this paper are suitable for being applied to a full-scale study.

  13. Nanotribology fundamentals: Predicting the viscous coefficient of friction

    NASA Astrophysics Data System (ADS)

    Coffey, Tonya S.

    In this work, I have used the Quartz Crystal Microbalance (QCM) to study nanoscale friction of monolayer adsorbates on (111) metals. The friction of these systems is viscous friction, defined as Ff = etanu = ( mt )nu. Here, eta is the viscous coefficient of friction, nu is the velocity of the adsorbate, m is adsorbate mass, and tau is the slip time, which is the time required for the film's speed to fall to 1/e of its original value. The main focus of this dissertation is to determine the factors that control eta, the viscous coefficient of friction. I have examined three different parameters in order to determine their effect on eta. An equation for predicting the viscous coefficient of friction has been proposed: eta = etasubs + aU2o . Here, etasubs is the damping of adsorbate sliding energy within the substrate, a is a constant depending on mainly temperature and adsorbate film coverage, and Uo is the atomic-scale surface corrugation. I have examined the sliding friction of n-octane on Cu(111) vs. Pb(11I) surfaces, which have gamma = 0.45 meV and gamma = 0.26 meV, respectively. I have observed that the slip time for a monolayer of n-octane/Cu(111) is 0.94 ns +/- 0.36 ns, and the slip time of noctane/Pb(111) is 0.59 ns +/- 0.13 ns. I therefore observe no direct evidence of a link between the damping of perpendicular FT modes and sliding friction. It is still possible, however, that the damping of the parallel FT phonon mode affects sliding friction. Finally, I studied the slippage of monolayer methanol films at room temperature on rotating, rigid, and slowly ratcheting C60 substrates, to examine the effect that the molecular rotation of the substrate surface has on the sliding friction of an adsorbate. I found that at all coverages, the slip time for methanol on rigid and slowly ratcheting C60 was longer (hence lower friction) than the slip time for methanol on rotating C 60, defying the ball bearing analogy. (Abstract shortened by UMI.)

  14. Determination of the Static Friction Coefficient from Circular Motion

    ERIC Educational Resources Information Center

    Molina-Bolívar, J. A.; Cabrerizo-Vílchez, M. A.

    2014-01-01

    This paper describes a physics laboratory exercise for determining the coefficient of static friction between two surfaces. The circular motion of a coin placed on the surface of a rotating turntable has been studied. For this purpose, the motion is recorded with a high-speed digital video camera recording at 240 frames s[superscript-1], and the…

  15. Determination of the Static Friction Coefficient from Circular Motion

    ERIC Educational Resources Information Center

    Molina-Bolívar, J. A.; Cabrerizo-Vílchez, M. A.

    2014-01-01

    This paper describes a physics laboratory exercise for determining the coefficient of static friction between two surfaces. The circular motion of a coin placed on the surface of a rotating turntable has been studied. For this purpose, the motion is recorded with a high-speed digital video camera recording at 240 frames s[superscript-1], and the…

  16. Friction coefficients in a longitudinal direction between the finger pad and selected materials for different normal forces and curvatures.

    PubMed

    Seo, Na Jin; Armstrong, Thomas J

    2009-05-01

    This study investigated the effect of object curvature, normal force and material on skin friction coefficient. Twelve subjects slid their middle fingertip pad against a test object with small (11 mm), medium (18, 21 mm) or large (flat object) radii of curvature, while maintaining a normal force of 1, 10 or 20 N. Tested materials were aluminium and four rubber hoses. The average friction coefficient was 0.6 for aluminium and 0.9 for the rubber hoses. As normal force increased from 1 to 20 N, the average friction coefficient decreased 46%. Friction coefficient did not vary significantly with object curvature. The citation of friction coefficient data requires careful attention to normal force levels with which they are measured, but not so much to object curvature between 11 mm and infinity. This study provides skin friction coefficient data that are needed for design of objects that are manipulated with the hands. The investigation of the effect of object curvature on skin friction coefficient has important implications to ergonomics practices as many objects handled in everyday activities have curved surfaces.

  17. Verification of the friction coefficients determining method for Froude pendulum self-excited vibrations

    NASA Astrophysics Data System (ADS)

    Piatkowski, Tomasz; Wolski, Miroslaw

    2017-03-01

    The article presents the numerical verification of the method for the static and kinetic coefficients determination of dry friction for kinematic pairs in the conditions of self-excited vibrations occurring in the Froude pendulum. In this method, the kinetic friction coefficient should be determined first, and used later when calculating the coefficient of static friction. The friction coefficients are determined by measuring the amplitude of self-excited vibrations of the pendulum. The amplitude measurement for calculation of the kinetic friction coefficient should be carried out when the sliding friction conditions exists, and the static one - when the stick-slip phenomenon appears. The proposed method was verified in the Adams environment.

  18. [Determination of a Friction Coefficient for THA Bearing Couples].

    PubMed

    Vrbka, M; Nečas, D; Bartošík, J; Hartl, M; Křupka, I; Galandáková, A; Gallo, J

    2015-01-01

    The wear of articular surfaces is considered one of the most important factors limiting the life of total hip arthroplasty (THA). It is assumed that the particles released from the surface of a softer material induce a complex inflammatory response, which will eventually result in osteolysis and aseptic loosening. Implant wear is related to a friction coefficient which depends on combination of the materials used, roughness of the articulating surfaces, internal clearance, and dimensions of the prosthesis. The selected parameters of the bearing couples tested were studied using an experimental device based on the principle of a pendulum. Bovine serum was used as a lubricant and the load corresponded to a human body mass of 75 kg. The friction coefficient was derived from a curve of slowdown of pendulum oscillations. Roughness was measured with a device working on the principle of interferometry. Clearance was assessed by measuring diameters of the acetabular and femoral heads with a 3D optical scanner. The specimens tested included unused metal-on-highly cross-linked polyethylene, ceramic-on-highly cross-linked polyethylene and ceramic-on-ceramic bearing couples with the diameters of 28 mm and 36 mm. For each measured parameter, an arithmetic mean was calculated from 10 measurements. 1) The roughness of polyethylene surfaces was higher by about one order of magnitude than the roughness of metal and ceramic components. The Protasul metal head had the least rough surface (0.003 μm). 2) The ceramic-on-ceramic couples had the lowest clearance. Bearing couples with polyethylene acetabular liners had markedly higher clearances ranging from 150 μm to 545 μm. A clearance increased with large femoral heads (up to 4-fold in one of the couple tested). 3) The friction coefficient was related to the combination of materials; it was lowest in ceramic-on-ceramic surfaces (0.11 to 0.12) and then in ceramic-on-polyethylene implants (0.13 to 0.14). The friction coefficient is

  19. Enhanced surface friction coefficient and hydrophobicity of TPE substrates using an APPJ system

    NASA Astrophysics Data System (ADS)

    Sainz-García, Elisa; Alba-Elías, Fernando; Múgica-Vidal, Rodolfo; González-Marcos, Ana

    2015-02-01

    An APPJ system was used to deposit a coating that combines a low friction coefficient with a high water contact angle (WCA) on a thermoplastic elastomer substrate (TPE) that is used in automotive profiling. The main drawback of this research is that groups that improve the hydrophobicity of the surface worsen its tribological properties. To overcome this, this study explored the use of various mixtures of differing proportions of two precursors. They were a siloxane, aminopropyltriethoxysilane (APTES) that was used to reduce the friction coefficient by its content of SiOx and a fluorinated compound, (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane (FLUSI) that was used to improve the water-repellency characteristics, due to the presence of CF2 long chains. The coatings were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray Photoelectron Spectroscopy (XPS), dynamic Water Contact Angle (WCA), stability tests and tribological tests. It was found that an increase of the absorbance area under the SiOSi peak and inorganic groups is related to lower friction coefficients. On the other hand, the higher the CF2 percentage is, the higher the WCA is. The sample that was coated with 25% of FLUSI and 75% of APTES combined the improvements of both functional properties, the friction coefficient and the WCA. It has an average friction coefficient that is (0.530 ± 0.050) 51.5% lower and a WCA that is (θadv = 119.8° ± 4.75) 4.4% higher than the uncoated TPE sample. A satisfactory stability in humid ambient for twelve months showed a slight decrease of WCA (4.4%) for this sample. The results of this study permit one to realize the effectiveness of using fluorinated precursors to avoid a significant decrease in the WCA when applying a precursor to anti-friction improvement.

  20. Sedimentation Coefficient, Frictional Coefficient, and Molecular Weight: A Preparative Ultracentrifuge Experiment for the Advanced Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Halsall, H. B.; Wermeling, J. R.

    1982-01-01

    Describes an experiment using a high-speed preparative centrifuge and calculator to demonstrate effects of the frictional coefficient of a macromolecule on its rate of transport in a force field and to estimate molecular weight of the macromolecule using an empirical relationship. Background information, procedures, and discussion of results are…

  1. Sedimentation Coefficient, Frictional Coefficient, and Molecular Weight: A Preparative Ultracentrifuge Experiment for the Advanced Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Halsall, H. B.; Wermeling, J. R.

    1982-01-01

    Describes an experiment using a high-speed preparative centrifuge and calculator to demonstrate effects of the frictional coefficient of a macromolecule on its rate of transport in a force field and to estimate molecular weight of the macromolecule using an empirical relationship. Background information, procedures, and discussion of results are…

  2. Use of a Correlation Coefficient for Conditional Averaging.

    DTIC Science & Technology

    1997-04-01

    data. Selection of the sine function period and a correlation coefficient threshold are discussed. Also examined are the effects of the period and...threshold level on the number of ensembles captured for inclusion for conditional averaging. Both the selection of threshold correlation coefficient and the...A method of collecting ensembles for conditional averaging is presented that uses data collected from a plane mixing layer. The correlation

  3. Determination of friction coefficient in unconfined compression of brain tissue.

    PubMed

    Rashid, Badar; Destrade, Michel; Gilchrist, Michael D

    2012-10-01

    Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approximate value of the friction coefficient in order to predict a possible overestimation of stresses during unconfined compression tests. In this study, a combined experimental-computational approach was adopted to estimate the dynamic friction coefficient μ of porcine brain matter against metal platens in compressive tests. Cylindrical samples of porcine brain tissue were tested up to 30% strain at variable strain rates, both under bonded and lubricated conditions in the same controlled environment. It was established that μ was equal to 0.09±0.03, 0.18±0.04, 0.18±0.04 and 0.20±0.02 at strain rates of 1, 30, 60 and 90/s, respectively. Additional tests were also performed to analyze brain tissue under lubricated and bonded conditions, with and without initial contact of the top platen with the brain tissue, with different specimen aspect ratios and with different lubricants (Phosphate Buffer Saline (PBS), Polytetrafluoroethylene (PTFE) and Silicone). The test conditions (lubricant used, biological tissue, loading velocity) adopted in this study were similar to the studies conducted by other research groups. This study will help to understand the amount of friction generated during unconfined compression of brain tissue for strain rates of up to 90/s. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Influence of the pressure dependent coefficient of friction on deep drawing springback predictions

    NASA Astrophysics Data System (ADS)

    Gil, Imanol; Galdos, Lander; Mendiguren, Joseba; Mugarra, Endika; Sáenz de Argandoña, Eneko

    2016-10-01

    This research studies the effect of considering an advanced variable friction coefficient on the springback prediction of stamping processes. Traditional constant coefficient of friction considerations are being replaced by more advanced friction coefficient definitions. The aim of this work is to show the influence of defining a pressure dependent friction coefficient on numerical springback predictions of a DX54D mild steel, a HSLA380 and a DP780 high strength steel. The pressure dependent friction model of each material was fitted to the experimental data obtained by Strip Drawing tests. Then, these friction models were implemented in a numerical simulation of a drawing process of an industrial automotive part. The results showed important differences between defining a pressure dependent friction coefficient or a constant friction coefficient.

  5. Measuring Coefficients of Friction for Materials Commonly Used in Theatre

    NASA Astrophysics Data System (ADS)

    Mentzer, Robert; Martell, Eric

    2008-04-01

    While designing a stage setup for a theatrical presentation, designers must consider equipment, materials, cost and manpower, and we can use physics to simplify and enhance the process. Unfortunately, there is a lack of information about the properties of materials commonly used in theatre. The objective of this research was to determine the coefficients of static and kinetic friction for several materials commonly used in theatrical scene construction and the coefficients of rolling friction for a series of commonly used casters. Materials of known coefficients were tested to confirm the accuracy of the experimental process. Data was collected using a sled style apparatus and LabVIEW software. Data was analyzed in mass volumes using Microsoft Excel spreadsheets and macros. This research was performed as a part of the Physics of Theatre project, a joint collaboration between Millikin University and the University of Illinois at Urbana-Champaign, and was supported in part by Millikin, UIUC, and the United States Institute for Theatre Technology.

  6. The coefficient of friction of chrysotile gouge at seismogenic depths

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, D.A.; Tanaka, H.; Iwata, K.

    2004-01-01

    We report new strength data for the serpentine mineral chrysotile at effective normal stresses, ??sn between 40 and 200 MPa in the temperature range 25??-280??C. Overall, the coefficient of friction, ?? (= shear stress/effective normal stress) of water-saturated chrysotile gouge increases both with increasing temperature and ??sn, but the rates vary and the temperature-related increases begin at ???100??C. As a result, a frictional strength minimum (?? = 0.1) occurs at low ??sn at about 100??C. Maximum strength (?? = 0.55) results from a combination of high normal stress and high temperature. The low-strength region is characterized by velocity strengthening and the high-strength region by velocity-weakening behavior. Thoroughly dried chrysotile has ?? = 0.7 and is velocity-weakening. The frictional properties of chrysolite can be explained in its tendency to adsorb large amounts of water that acts as a lubricant during shear. The water is progressively driven off the fiber surfaces with increasing temperature and pressure, causing chrysotile to approach its dry strength. Depth profiles for a chrysotile-lined fault constructed from these data would pass through a strength minimum at ???3 km depth, where sliding should be stable. Below that depth, strength increases rapidly as does the tendency for unstable (seismic) slip. Such a trend would not have been predicted from the room-temperature data. These results therefore illustrate the potential hazards of extrapolating room-temperature friction data to predict fault zone behavior at depth. This depth profile for chrysotile is consistent with the pattern of slip on the Hayward fault, which creeps aseismically at shallow depths but which may be locked below 5 km depth. ?? 2004 by V. H. Winston and Son, Inc. All rights reserved.

  7. Pendulum mass affects the measurement of articular friction coefficient.

    PubMed

    Akelman, Matthew R; Teeple, Erin; Machan, Jason T; Crisco, Joseph J; Jay, Gregory D; Fleming, Braden C

    2013-02-01

    Friction measurements of articular cartilage are important to determine the relative tribologic contributions made by synovial fluid or cartilage, and to assess the efficacy of therapies for preventing the development of post-traumatic osteoarthritis. Stanton's equation is the most frequently used formula for estimating the whole joint friction coefficient (μ) of an articular pendulum, and assumes pendulum energy loss through a mass-independent mechanism. This study examines if articular pendulum energy loss is indeed mass independent, and compares Stanton's model to an alternative model, which incorporates viscous damping, for calculating μ. Ten loads (25-100% body weight) were applied in a random order to an articular pendulum using the knees of adult male Hartley guinea pigs (n=4) as the fulcrum. Motion of the decaying pendulum was recorded and μ was estimated using two models: Stanton's equation, and an exponential decay function incorporating a viscous damping coefficient. μ estimates decreased as mass increased for both models. Exponential decay model fit error values were 82% less than the Stanton model. These results indicate that μ decreases with increasing mass, and that an exponential decay model provides a better fit for articular pendulum data at all mass values. In conclusion, inter-study comparisons of articular pendulum μ values should not be made without recognizing the loads used, as μ values are mass dependent.

  8. Pendulum Mass Affects the Measurement of Articular Friction Coefficient

    PubMed Central

    Akelman, Matthew R.; Teeple, Erin; Machan, Jason T.; Crisco, Joseph J.; Jay, Gregory D.; Fleming, Braden C.

    2012-01-01

    Friction measurements of articular cartilage are important to determine the relative tribologic contributions made by synovial fluid or cartilage, and to assess the efficacy of therapies for preventing the development of post-traumatic osteoarthritis. Stanton’s equation is the most frequently used formula for estimating the whole joint friction coefficient (μ) of an articular pendulum, and assumes pendulum energy loss through a mass-independent mechanism. This study examines if articular pendulum energy loss is indeed mass independent, and compares Stanton’s model to an alternative model, which incorporates viscous damping, for calculating μ. Ten loads (25-100% body weight) were applied in a random order to an articular pendulum using the knees of adult male Hartley guinea pigs (n = 4) as the fulcrum. Motion of the decaying pendulum was recorded and μ was estimated using two models: Stanton’s equation, and an exponential decay function incorporating a viscous damping coefficient. μ estimates decreased as mass increased for both models. Exponential decay model fit error values were 82% less than the Stanton model. These results indicate that μ decreases with increasing mass, and that an exponential decay model provides a better fit for articular pendulum data at all mass values. In conclusion, inter-study comparisons of articular pendulum μ values should not be made without recognizing the loads used, as μ values are mass dependent. PMID:23122223

  9. Accurately measuring dynamic coefficient of friction in ultraform finishing

    NASA Astrophysics Data System (ADS)

    Briggs, Dennis; Echaves, Samantha; Pidgeon, Brendan; Travis, Nathan; Ellis, Jonathan D.

    2013-09-01

    UltraForm Finishing (UFF) is a deterministic sub-aperture computer numerically controlled grinding and polishing platform designed by OptiPro Systems. UFF is used to grind and polish a variety of optics from simple spherical to fully freeform, and numerous materials from glasses to optical ceramics. The UFF system consists of an abrasive belt around a compliant wheel that rotates and contacts the part to remove material. This work aims to accurately measure the dynamic coefficient of friction (μ), how it changes as a function of belt wear, and how this ultimately affects material removal rates. The coefficient of friction has been examined in terms of contact mechanics and Preston's equation to determine accurate material removal rates. By accurately predicting changes in μ, polishing iterations can be more accurately predicted, reducing the total number of iterations required to meet specifications. We have established an experimental apparatus that can accurately measure μ by measuring triaxial forces during translating loading conditions or while manufacturing the removal spots used to calculate material removal rates. Using this system, we will demonstrate μ measurements for UFF belts during different states of their lifecycle and assess the material removal function from spot diagrams as a function of wear. Ultimately, we will use this system for qualifying belt-wheel-material combinations to develop a spot-morphing model to better predict instantaneous material removal functions.

  10. Required coefficient of friction during turning at self-selected slow, normal, and fast walking speeds.

    PubMed

    Fino, Peter; Lockhart, Thurmon E

    2014-04-11

    This study investigated the relationship of required coefficient of friction to gait speed, obstacle height, and turning strategy as participants walked around obstacles of various heights. Ten healthy, young adults performed 90° turns around corner pylons of four different heights at their self selected normal, slow, and fast walking speeds using both step and spin turning strategies. Kinetic data was captured using force plates. Results showed peak required coefficient of friction (RCOF) at push off increased with increased speed (slow μ=0.38, normal μ=0.45, and fast μ=0.54). Obstacle height had no effect on RCOF values. The average peak RCOF for fast turning exceeded the OSHA safety guideline for static COF of μ>0.50, suggesting further research is needed into the minimum static COF to prevent slips and falls, especially around corners. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Calculation of equivalent friction coefficient for castor seed by single screw press

    NASA Astrophysics Data System (ADS)

    Liu, R.; Xiao, Z.; Li, C.; Zhang, L.; Li, P.; Li, H.; Zhang, A.; Tang, S.; Sun, F.

    2017-08-01

    Based on the traction angle and transportation rate equation, castor beans were pressed by application of single screw under different cake diameter and different screw speed. The results showed that the greater the cake diameter and screw rotation speed, the greater the actual transmission rate was. The equivalent friction coefficient was defined and calculated as 0.4136, and the friction coefficients between press material and screw, bar cage were less than the equivalent friction coefficient value.

  12. Influence of surface modification on friction coefficient of the titanium-elastomer couple.

    PubMed

    Chladek, Wiesław; Hadasik, Eugeniusz; Chladek, Grzegorz

    2007-01-01

    This paper presents the results of a study of the friction coefficient of titanium-elastomer couple. The study was carried out with a view to potential future utilization of its results for constructing retentive elements of implanted prostheses. Changes in the friction force were recorded while removing titanium specimens placed between two silicone counter specimens made of Ufi Gel. The influence of the titanium specimen movement speed in relation that of to the counter specimens and the influence of clamping force on the friction force were assessed. Additionally, the surface roughness of titanium specimens differed; in one case, titanium was coated with polyethylene. The effect of introducing artificial saliva between the cooperating surfaces on the friction force and friction coefficient was analyzed as well. Based on the characteristics recorded, the possibilities of shaping the friction coefficient have been assessed, since it is the friction coefficient that determines effective operation of a friction couple through increasing the titanium specimen roughness. The artificial saliva being introduced between the specimens reduces considerably the friction coefficient through a change of the phenomenon model. An increase in the pressure force for the specimens of high roughness entails a reduction of the friction coefficient. The study carried out allows us to identify the roughness parameters, which in turn will enable obtaining the prescribed retention force for friction/membrane couplings.

  13. An eight-legged tactile sensor to estimate coefficient of static friction.

    PubMed

    Wei Chen; Rodpongpun, Sura; Luo, William; Isaacson, Nathan; Kark, Lauren; Khamis, Heba; Redmond, Stephen J

    2015-08-01

    It is well known that a tangential force larger than the maximum static friction force is required to initiate the sliding motion between two objects, which is governed by a material constant called the coefficient of static friction. Therefore, knowing the coefficient of static friction is of great importance for robot grippers which wish to maintain a stable and precise grip on an object during various manipulation tasks. Importantly, it is most useful if grippers can estimate the coefficient of static friction without having to explicitly explore the object first, such as lifting the object and reducing the grip force until it slips. A novel eight-legged sensor, based on simplified theoretical principles of friction is presented here to estimate the coefficient of static friction between a planar surface and the prototype sensor. Each of the sensor's eight legs are straight and rigid, and oriented at a specified angle with respect to the vertical, allowing it to estimate one of five ranges (5 = 8/2 + 1) that the coefficient of static friction can occupy. The coefficient of friction can be estimated by determining whether the legs have slipped or not when pressed against a surface. The coefficients of static friction between the sensor and five different materials were estimated and compared to a measurement from traditional methods. A least-squares linear fit of the sensor estimated coefficient showed good correlation with the reference coefficient with a gradient close to one and an r(2) value greater than 0.9.

  14. Experimental rig to estimate the coefficient of friction between tire and surface in airplane touchdown simulations.

    PubMed

    Li, Chengwei; Zhan, Liwei

    2015-08-01

    To estimate the coefficient of friction between tire and runway surface during airplane touchdowns, we designed an experimental rig to simulate such events and to record the impact and friction forces being executed. Because of noise in the measured signals, we developed a filtering method that is based on the ensemble empirical mode decomposition and the bandwidth of probability density function of each intrinsic mode function to extract friction and impact force signals. We can quantify the coefficient of friction by calculating the maximum values of the filtered force signals. Signal measurements are recorded for different drop heights and tire rotational speeds, and the corresponding coefficient of friction is calculated. The result shows that the values of the coefficient of friction change only slightly. The random noise and experimental artifact are the major reason of the change.

  15. Static coefficient of friction between stainless steel and PMMA used in cemented hip and knee implants.

    PubMed

    Nuño, N; Groppetti, R; Senin, N

    2006-11-01

    Design of cemented hip and knee implants, oriented to improve the longevity of artificial joints, is largely based on numerical models. The static coefficient of friction between the implant and the bone cement is necessary to characterize the interface conditions in these models and must be accurately provided. The measurement of this coefficient using a repeatable and reproducible methodology for materials used in total hip arthroplasty is missing from the literature. A micro-topographic surface analysis characterized the surfaces of the specimens used in the experiments. The coefficient of friction between stainless steel and bone cement in dry and wet conditions using bovine serum was determined using a prototype computerized sliding friction tester. The effects of surface roughness (polished versus matt) and of contact pressure on the coefficient of friction have also been investigated. The serum influences little the coefficient of friction for the matt steel surface, where the mechanical interactions due to higher roughness are still the most relevant factor. However, for polished steel surfaces, the restraining effect of proteins plays a very relevant role in increasing the coefficient of friction. When the coefficient of friction is used in finite element analysis, it is used for the debonded stem-cement situation. It can thus be assumed that serum will propagate between the stem and the cement mantle. The authors believe that the use of a static coefficient of friction of 0.3-0.4, measured in the present study, is appropriate in finite element models.

  16. Estimation of Road Friction Coefficient in Different Road Conditions Based on Vehicle Braking Dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, You-Qun; Li, Hai-Qing; Lin, Fen; Wang, Jian; Ji, Xue-Wu

    2017-07-01

    The accurate estimation of road friction coefficient in the active safety control system has become increasingly prominent. Most previous studies on road friction estimation have only used vehicle longitudinal or lateral dynamics and often ignored the load transfer, which tends to cause inaccurate of the actual road friction coefficient. A novel method considering load transfer of front and rear axles is proposed to estimate road friction coefficient based on braking dynamic model of two-wheeled vehicle. Sliding mode control technique is used to build the ideal braking torque controller, which control target is to control the actual wheel slip ratio of front and rear wheels tracking the ideal wheel slip ratio. In order to eliminate the chattering problem of the sliding mode controller, integral switching surface is used to design the sliding mode surface. A second order linear extended state observer is designed to observe road friction coefficient based on wheel speed and braking torque of front and rear wheels. The proposed road friction coefficient estimation schemes are evaluated by simulation in ADAMS/Car. The results show that the estimated values can well agree with the actual values in different road conditions. The observer can estimate road friction coefficient exactly in real-time and resist external disturbance. The proposed research provides a novel method to estimate road friction coefficient with strong robustness and more accurate.

  17. The friction coefficient of shoulder joints remains remarkably low over 24 h of loading.

    PubMed

    Jones, Brian K; Durney, Krista M; Hung, Clark T; Ateshian, Gerard A

    2015-11-05

    The frictional response of whole human joints over durations spanning activities of daily living has not been reported previously. This study measured the friction of human glenohumeral joints during 24 h of reciprocal loading in a pendulum testing device, at moderate (0.2 mm/s, 4320 cycles) and low (0.02 mm/s, 432 cycles) sliding speeds, under a 200 N load. The effect of joint congruence was also investigated by testing human humeral heads against significantly larger mature bovine glenoids. Eight human joints and six bovine joints were tested in four combinations: human joints tested at moderate (hHCMS, n=6) and low speed (hHCLS, n=3), human humeral heads tested against bovine glenoids at moderate speed (LCMS, n=3), and bovine joints tested at moderate speed (bHCMS, n=3). In the first half hour the mean±standard deviation of the friction coefficient was hHCMS: 0.0016±0.0011, hHCLS: 0.0012±0.0002, LCMS: 0.0008±0.0002 and bHCMS: 0.0024±0.0008; in the last four hours it was hHCMS: 0.0057±0.0025, hHCLS: 0.0047±0.0017, LCMS: 0.0012±0.0003 and bHCMS: 0.0056±0.0016. The initial value was lower than the final value (p<0.0001). The value in LCMS was significantly lower than in hHCMS and bHCMS (p<0.01). No visual damage was observed in any of the specimens. These are the first results to demonstrate that the friction coefficient of natural human shoulders remains remarkably low (averaging as little as 0.0015 and no greater than 0.006) for up to 24 h of continuous loading. The sustained low friction coefficients observed in incongruent joints (~0.001) likely represent rolling rather than sliding friction. Copyright © 2015. Published by Elsevier Ltd.

  18. The effect of chalk on the finger-hold friction coefficient in rock climbing.

    PubMed

    Amca, Arif Mithat; Vigouroux, Laurent; Aritan, Serdar; Berton, Eric

    2012-11-01

    The main purpose of this study was to examine the effect of chalk on the friction coefficient between climber's fingers and two different rock types (sandstone and limestone). The secondary purpose was to investigate the effects of humidity and temperature on the friction coefficient and on the influence of chalk. Eleven experienced climbers took part in this study and 42 test sessions were performed. Participants hung from holds which were fixed on a specially designed hang board. The inclination of the hang board was progressively increased until the climber's hand slipped from the holds. The angle of the hang board was simultaneously recorded by using a gyroscopic sensor and the friction coefficient was calculated at the moment of slip. The results showed that there was a significant positive effect of chalk on the coefficient of friction (+18.7% on limestone and +21.6% on sandstone). Moreover sandstone had a higher coefficient of friction than limestone (+15.6% without chalk, +18.4% with chalk). These results confirmed climbers' belief that chalk enhances friction. However, no correlation with humidity/temperature and friction coefficient was noted which suggested that additional parameters should be considered in order to understand the effects of climate on finger friction in rock climbing.

  19. Adhesion energy between mica surfaces: Implications for the frictional coefficient under dry and wet conditions

    NASA Astrophysics Data System (ADS)

    Sakuma, Hiroshi

    2013-12-01

    frictional strength of faults is a critical factor that contributes to continuous fault slip and earthquake occurrence. Frictional strength can be reduced by the presence of sheet-structured clay minerals. In this study, two important factors influencing the frictional coefficient of minerals were quantitatively analyzed by a newly developed computational method based on a combination of first-principles study and thermodynamics. One factor that helps reduce the frictional coefficient is the low adhesion energy between the layers under dry conditions. Potassium ions on mica surfaces are easily exchanged with sodium ions when brought into contact with highly concentrated sodium-halide solutions. We found that the surface ion exchange with sodium ions reduces the adhesion energy, indicating that the frictional coefficient can be reduced under dry conditions. Another factor is the lubrication caused by adsorbed water films on mineral surfaces under wet conditions. Potassium and sodium ions on mica surfaces have a strong affinity for water molecules. In order to remove the adsorbed water molecules confined between mica surfaces, a differential compressive stress of the order of tens of gigapascals was necessary at room temperature. These water molecules inhibit direct contact between mineral surfaces and reduce the frictional coefficient. Our results imply that the frictional coefficient can be modified through contact with fluids depending on their salt composition. The low adhesion energy between fault-forming minerals and the presence of an adsorbed water film is a possible reason for the low frictional coefficient observed at continuous fault slip zones.

  20. Coefficient of Friction at the Fingertips in Type II Diabetics Compared to Healthy Adults.

    PubMed

    Thames, Beatriz H; Gorniak, Stacey L

    2017-07-01

    Clinical observations suggest that type II diabetes patients are more susceptible to skin changes, which may be associated with reduced coefficient of friction at the fingertips. Reduced coefficient of friction may explain recent reports of fine motor dysfunction in diabetic patients. Coefficient of friction was evaluated using slip force evaluation in a cross-sectional cohort of diabetic patients and age- and sex-matched healthy controls. Covariates of tactile sensation, disease duration, glycated hemoglobin, and clinical diagnosis of peripheral neuropathy were also assessed. A significant decrease in fingertip coefficient of friction in the diabetic group was found as compared to controls. Health state covariates did not alter the strength of between-group differences in statistical analyses. This finding of between-group differences for fingertip frictional properties suggests that causative factors of reported manual motor dysfunction lie in both the distal and proximal portions of the nervous system.

  1. The coefficient of friction in Parkinson's disease gait.

    PubMed

    Kleiner, Ana; Galli, M; Franceschini, M; De Pandis, M F; Stocchi, F; Albertini, G; de Barros, Ricardo Machado Leite

    This study aimed to characterize the coefficient of friction (COF) curves of patients with Parkinson's disease (PD) during barefoot gait and to evaluate the relationships between this variable and functional scales. Twenty-two subjects with PD (ON phase of levodopa) and 22 healthy subjects participated in this study. The participants walked barefoot along a pathway that went over two force plates embedded in the floor of the data collection room. The instantaneous COF was calculated as the ratio between the horizontal and vertical components of the ground reaction forces. Two-sample t-tests applied to every 1% of the support phase of the COF curve were used to compare the groups and to identify the phases in which the two groups were different. Specifically, three COF areas were computed: Area 1 (for the loading response phase), Area 2 (for the midstance phase) and Area 3 (for the terminal stance phase). Pearson's tests were applied to assess the associations between the COF curve areas and the clinical scales. The subjects with PD exhibited lower COF values during the loading response and terminal stance phases and higher COF values during the mid-stance phase compared with the control group. A strong positive correlation was observed between Area 1 and the Timed Up and Go Test (90.3%). In conclusion, the patients' COFs exhibited patterns that were different from those of the control group. Moreover, during the loading response phase, these differences were well-correlated with the Timed Up and Go Test scale data; Timed Up and Go Test data can be used to identify the risk of falls among PD patients.

  2. A coefficient average approximation towards Gutzwiller wavefunction formalism.

    PubMed

    Liu, Jun; Yao, Yongxin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-06-24

    Gutzwiller wavefunction is a physically well-motivated trial wavefunction for describing correlated electron systems. In this work, a new approximation is introduced to facilitate the evaluation of the expectation value of any operator within the Gutzwiller wavefunction formalism. The basic idea is to make use of a specially designed average over Gutzwiller wavefunction coefficients expanded in the many-body Fock space to approximate the ratio of expectation values between a Gutzwiller wavefunction and its underlying noninteracting wavefunction. To check with the standard Gutzwiller approximation (GA), we test its performance on single band systems and find quite interesting properties. On finite systems, we noticed that it gives superior performance over GA, while on infinite systems it asymptotically approaches GA. Analytic analysis together with numerical tests are provided to support this claimed asymptotical behavior. Finally, possible improvements on the approximation and its generalization towards multiband systems are illustrated and discussed.

  3. Friction coefficient and effective interference at the implant-bone interface.

    PubMed

    Damm, Niklas B; Morlock, Michael M; Bishop, Nicholas E

    2015-09-18

    Although the contact pressure increases during implantation of a wedge-shaped implant, friction coefficients tend to be measured under constant contact pressure, as endorsed in standard procedures. Abrasion and plastic deformation of the bone during implantation are rarely reported, although they define the effective interference, by reducing the nominal interference between implant and bone cavity. In this study radial forces were analysed during simulated implantation and explantation of angled porous and polished implant surfaces against trabecular bone specimens, to determine the corresponding friction coefficients. Permanent deformation was also analysed to determine the effective interference after implantation. For the most porous surface tested, the friction coefficient initially increased with increasing normal contact stress during implantation and then decreased at higher contact stresses. For a less porous surface, the friction coefficient increased continually with normal contact stress during implantation but did not reach the peak magnitude measured for the rougher surface. Friction coefficients for the polished surface were independent of normal contact stress and much lower than for the porous surfaces. Friction coefficients were slightly lower for pull-out than for push-in for the porous surfaces but not for the polished surface. The effective interference was as little as 30% of the nominal interference for the porous surfaces. The determined variation in friction coefficient with radial contact force, as well as the loss of interference during implantation will enable a more accurate representation of implant press-fitting for simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Characterization of skin friction coefficient, and relationship to stratum corneum hydration in a normal Chinese population.

    PubMed

    Zhu, Y H; Song, S P; Luo, W; Elias, P M; Man, M Q

    2011-01-01

    Studies have demonstrated that some cutaneous biophysical properties vary with age, gender and body sites. However, the characteristics of the skin friction coefficient in different genders and age groups have not yet been well established. In the present study, we assess the skin friction coefficient in a larger Chinese population. A total of 633 subjects (300 males and 333 females) aged 0.15-79 years were enrolled. A Frictiometer FR 770 and Corneometer CM 825 (C&K MPA 5) were used to measure the skin friction coefficient and stratum corneum hydration, respectively, on the dorsal surface of the hand, the forehead and the canthus. In the females, the maximum skin friction coefficients on both the canthus and the dorsal hand skin were observed around the age of 40 years. In the males, the skin friction coefficient on the dorsal hand skin gradually increased from 0 to 40 years of age, and changed little afterward. Skin friction coefficients on some body sites were higher in females than in age-matched males in some age groups. On the canthus and the dorsal hand skin of females, a positive correlation was found between skin friction coefficient and stratum corneum hydration (p < 0.001 and p < 0.0001, respectively). In contrast, in males, the skin friction coefficient was positively correlated with stratum corneum hydration on the forehead and the dorsal hand skin (p < 0.05 and p < 0.0001, respectively). The skin friction coefficient varies with age, gender and body site, and positively correlates with stratum corneum hydration on some body sites. Copyright © 2010 S. Karger AG, Basel.

  5. Characterization of Skin Friction Coefficient, and Relationship to Stratum Corneum Hydration in a Normal Chinese Population

    PubMed Central

    Zhu, Y.H.; Song, S.P.; Luo, W.; Elias, P.M.; Man, M.Q.

    2011-01-01

    Background and Objectives Studies have demonstrated that some cutaneous biophysical properties vary with age, gender and body sites. However, the characteristics of the skin friction coefficient in different genders and age groups have not yet been well established. In the present study, we assess the skin friction coefficient in a larger Chinese population. Methods A total of 633 subjects (300 males and 333 females) aged 0.15–79 years were enrolled. A Frictiometer® FR 770 and Corneometer® CM 825 (C&K MPA 5) were used to measure the skin friction coefficient and stratum corneum hydration, respectively, on the dorsal surface of the hand, the forehead and the canthus. Results In the females, the maximum skin friction coefficients on both the canthus and the dorsal hand skin were observed around the age of 40 years. In the males, the skin friction coefficient on the dorsal hand skin gradually increased from 0 to 40 years of age, and changed little afterward. Skin friction coefficients on some body sites were higher in females than in age-matched males in some age groups. On the canthus and the dorsal hand skin of females, a positive correlation was found between skin friction coefficient and stratum corneum hydration (p < 0.001 and p < 0.0001, respectively). In contrast, in males, the skin friction coefficient was positively correlated with stratum corneum hydration on the forehead and the dorsal hand skin (p < 0.05 and p < 0.0001, respectively). Conclusion The skin friction coefficient varies with age, gender and body site, and positively correlates with stratum corneum hydration on some body sites. PMID:21088455

  6. The frictional coefficient of the temporomandibular joint and its dependency on the magnitude and duration of joint loading.

    PubMed

    Tanaka, E; Kawai, N; Tanaka, M; Todoh, M; van Eijden, T; Hanaoka, K; Dalla-Bona, D A; Takata, T; Tanne, K

    2004-05-01

    In synovial joints, friction between articular surfaces leads to shear stress within the cartilaginous tissue, which might result in tissue rupture and failure. Joint friction depends on synovial lubrication of the articular surfaces, which can be altered due to compressive loading. Therefore, we hypothesized that the frictional coefficient of the temporomandibular joint (TMJ) is affected by the magnitude and duration of loading. We tested this by measuring the frictional coefficient in 20 intact porcine TMJs using a pendulum-type friction tester. The mean frictional coefficient was 0.0145 (SD 0.0027) after a constant loading of 50 N during 5 sec. The frictional coefficient increased with the length of the preceding loading duration and exceeded 0.0220 (SD 0.0014) after 1 hr. Application of larger loading (80 N) resulted in significantly larger frictional coefficients. In conclusion, the frictional coefficient in the TMJ was proportional to the magnitude and duration of joint loading.

  7. Surface roughness and friction coefficient in peened friction stir welded 2195 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Hatamleh, Omar; Smith, James; Cohen, Donald; Bradley, Robert

    2009-05-01

    The tribological properties of friction stir welded 2195 aluminum alloy joints were investigated for several laser- and shot-peened specimens. The first portion of this study assessed the surface roughness changes at different regions of the weld resulting from the various peening processes and included an atomic force microscopy (AFM) study to reveal fine structures. The second portion investigated the friction characteristics for various conditions when slid against a 440C ball slider. Shot peening resulted in significant surface roughness when compared to the unpeened and laser-peened samples. The initial friction for all types of specimens was highly variable. However, long-term friction was shown to be lowest for samples with no peening treatment. Laser peening caused the friction to increase slightly. The shot peening process on the other hand resulted in an increase of the long-term friction effects on both sides of the weld.

  8. Friction coefficient of spruce pine on steel -- a note on lubricants

    Treesearch

    Charles W. McMillin; Truett J. Lemoine; Floyd G. Manwiller

    1970-01-01

    Generally, the introduction of water and ethanol increased the friction coefficient for ovendry samples but decreased the coeffecient when the samples were saturated. Octanoic acid decreased the coefficient when samples were wet. In the entire experiment, coefficients ranged from 0.14 to 0.78.

  9. Rouse-Bueche Theory and The Calculation of The Monomeric Friction Coefficient in a Filled System

    NASA Astrophysics Data System (ADS)

    Martinetti, Luca; Macosko, Christopher; Bates, Frank

    According to flexible chain theories of viscoelasticity, all relaxation and retardation times of a polymer melt (hence, any dynamic property such as the diffusion coefficient) depend on the monomeric friction coefficient, ζ0, i.e. the average drag force per monomer per unit velocity encountered by a Gaussian submolecule moving through its free-draining surroundings. Direct experimental access to ζ0 relies on the availability of a suitable polymer dynamics model. Thus far, no method has been suggested that is applicable to filled systems, such as filled rubbers or microphase-segregated A-B-A thermoplastic elastomers at temperatures where one of the blocks is glassy. Building upon the procedure proposed by Ferry for entangled and unfilled polymer melts, the Rouse-Bueche theory is applied to an undiluted triblock copolymer to extract ζ0 from the linear viscoelastic behavior in the rubber-glass transition region, and to estimate the size of Gaussian submolecules. At iso-free volume conditions, the so-obtained matrix monomeric friction factor is consistent with the corresponding value for the homopolymer melt. In addition, the characteristic Rouse dimensions are in good agreement with independent estimates based on the Kratky-Porod worm-like chain model. These results seem to validate the proposed approach for estimating ζ0 in a filled system. Although preliminary tested on a thermoplastic elastomer of the A-B-A type, the method may be extended and applied to filled homopolymers as well.

  10. Hair-on-hair static friction coefficient can be determined by tying a knot.

    PubMed

    Chevalier, Nicolas R

    2017-09-04

    Characterizing the tribological properties of the hair-hair interface is important to quantify the manageability of hair and to assess the performance of hair care products. Audoly et al. (Phys. Rev. Lett. 99, 164301, 2007) derived an equation relating the self-friction coefficient of an elastic fiber to the dimensions of a simple, relaxed overhand knot made from this fiber. I experimentally tested and validated their equation using nylon thread and an independent measurement of its self-friction coefficient. I show that this methodology can be applied to provide high-throughput data on the static self-friction coefficient of single hair fibers in various conditions and to quantitatively assess how hair care treatments (conditioner, relaxant) alter frictional properties. I find that treatment of hair with 1M sodium hydroxide leads to a quick, irreversible self-friction coefficient increase; the resulting fine frictional fibers can be used to form very small knots for microsurgical vessel and organ ligature in medicine or embryology. The relaxed overhand knot method can more generally be used to measure the self-friction coefficients of a wide range of elastic fibers from the nano- (e.g. proteins, nanotubes) to the macro-scale (e.g. textile fiber, fiberglass). Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A comparison of roughness parameters and friction coefficients of aesthetic archwires.

    PubMed

    Rudge, Philippa; Sherriff, Martyn; Bister, Dirk

    2015-02-01

    Compare surface roughness of 'aesthetic' nickel-titanium (NiTi) archwires with their dynamic frictional properties. Archwires investigated were: four fully coated tooth coloured [Forestadent: Biocosmetic (FB) and Titanol Cosmetic (FT); TOC Tooth Tone (TT); and Hawley Russell Coated Superelastic NiTi (HRC)]; two partially coated tooth coloured [DB Euroline Microcoated (DB) and TP Aesthetic NiTi (TP)]; two rhodium coated [TOC Sentalloy (TS) and Hawley Russell Rhodium Coated Superelastic NiTi (HRR)]; and two controls: stainless steel [Forestadent Steel (FS)] and NiTi archwire [Forestadent Titanol Superelastic (FN)]. Surface roughness [profilometry (Rugosurf)] was compared with frictional coefficients for archwire/bracket/ligature combinations (n = 10). Analysis of variance, Sidak's multiple comparison of means, and Spearman's correlation coefficient were used for analysis. Roughness coefficients were from low to high: FB; FN; TT; FS; TS; HRR; FT; DB; TP; HRC. Friction coefficients were from low to high: TP; FS; FN; HRR; FT; DB; FB; HRC; TS; TT. Coated archwires generally exhibited higher friction than uncoated controls. TP had the lowest friction but this was not statistically significant (P < 0.05). Friction of tooth coloured coated archwires were significantly different for some wires. Spearman's correlation did not demonstrate consistency between surface roughness (R a) and dynamic friction. Aesthetic archwires investigated had either low surface roughness or low frictional resistance but not both properties simultaneously. Causes for friction are likely to be multifactorial and do not appear to be solely determined by surface roughness (measured by profilometry). For selecting the most appropriate aligning archwire, both surface roughness and frictional resistance need to be considered. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. The effect of elastic modulus and friction coefficient on rubber tube sealing performance

    NASA Astrophysics Data System (ADS)

    Li, Zhimiao; Xu, Siyuan; Ren, Fushen; Liu, Jubao

    2015-03-01

    The packer is the key element in separating geosphere layers of water injection, water plugging and fracturing operations in the oilfield. The sealing ability of the packer is depending on the contact pressure between rubber tube and the casing. The circumferential strain of casing wall was tested by the strain gauge to get the contact pressure distribution along axial direction of the tube. The friction force between the casing and the rubber tube was taken by the pressure sensor in compression process. Under the 20,60 and 100 degrees Celsius conditions, the friction forces and the contact pressure distribution were taken in work condition of single rubber tube, double rubber tubes and combination rubber tubes after oil immersion .The result shows that elastic modulus of rubber tube has little effect on the friction force and contact pressure. With elastic modulus decreasing, the friction forces has gradually decreasing trend; The friction coefficient has much impact on friction force: the friction forces under the condition of dry friction and wet friction are respectively equivalent to 48.27% and 5.38% axial compression forces. At wet friction condition, the contact pressure distribution is more uniform and the sealing effect is better.

  13. A hierarchical estimator development for estimation of tire-road friction coefficient

    PubMed Central

    Zhang, Xudong; Göhlich, Dietmar

    2017-01-01

    The effect of vehicle active safety systems is subject to the friction force arising from the contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road friction coefficient is of great importance to achieve a good performance of these control systems. This paper presents a tire-road friction coefficient estimation method for an advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longitudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed estimation design. An upper estimator is developed based on unscented Kalman filter to estimate vehicle state information, while a hybrid estimation method is applied as the lower estimator to identify the tire-road friction coefficient using general regression neural network (GRNN) and Bayes' theorem. GRNN aims at detecting road friction coefficient under small excitations, which are the most common situations in daily driving. GRNN is able to accurately create a mapping from input parameters to the friction coefficient, avoiding storing an entire complex tire model. As for large excitations, the estimation algorithm is based on Bayes' theorem and a simplified “magic formula” tire model. The integrated estimation method is established by the combination of the above-mentioned estimators. Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on different road surfaces and driving maneuvers to verify the effectiveness of the proposed estimation method. PMID:28178332

  14. A hierarchical estimator development for estimation of tire-road friction coefficient.

    PubMed

    Zhang, Xudong; Göhlich, Dietmar

    2017-01-01

    The effect of vehicle active safety systems is subject to the friction force arising from the contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road friction coefficient is of great importance to achieve a good performance of these control systems. This paper presents a tire-road friction coefficient estimation method for an advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longitudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed estimation design. An upper estimator is developed based on unscented Kalman filter to estimate vehicle state information, while a hybrid estimation method is applied as the lower estimator to identify the tire-road friction coefficient using general regression neural network (GRNN) and Bayes' theorem. GRNN aims at detecting road friction coefficient under small excitations, which are the most common situations in daily driving. GRNN is able to accurately create a mapping from input parameters to the friction coefficient, avoiding storing an entire complex tire model. As for large excitations, the estimation algorithm is based on Bayes' theorem and a simplified "magic formula" tire model. The integrated estimation method is established by the combination of the above-mentioned estimators. Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on different road surfaces and driving maneuvers to verify the effectiveness of the proposed estimation method.

  15. Development and assessment of atomistic models for predicting static friction coefficients

    NASA Astrophysics Data System (ADS)

    Jahangiri, Soran; Heverly-Coulson, Gavin S.; Mosey, Nicholas J.

    2016-08-01

    The friction coefficient relates friction forces to normal loads and plays a key role in fundamental and applied areas of science and technology. Despite its importance, the relationship between the friction coefficient and the properties of the materials forming a sliding contact is poorly understood. We illustrate how simple relationships regarding the changes in energy that occur during slip can be used to develop a quantitative model relating the friction coefficient to atomic-level features of the contact. The slip event is considered as an activated process and the load dependence of the slip energy barrier is approximated with a Taylor series expansion of the corresponding energies with respect to load. The resulting expression for the load-dependent slip energy barrier is incorporated in the Prandtl-Tomlinson (PT) model and a shear-based model to obtain expressions for friction coefficient. The results indicate that the shear-based model reproduces the static friction coefficients μs obtained from first-principles molecular dynamics simulations more accurately than the PT model. The ability of the model to provide atomistic explanations for differences in μs amongst different contacts is also illustrated. As a whole, the model is able to account for fundamental atomic-level features of μs, explain the differences in μs for different materials based on their properties, and might be also used in guiding the development of contacts with desired values of μs.

  16. A computerized method to estimate friction coefficient from orientation distribution of meso-scale faults

    NASA Astrophysics Data System (ADS)

    Sato, Katsushi

    2016-08-01

    The friction coefficient controls the brittle strength of the Earth's crust for deformation recorded by faults. This study proposes a computerized method to determine the friction coefficient of meso-scale faults. The method is based on the analysis of orientation distribution of faults, and the principal stress axes and the stress ratio calculated by a stress tensor inversion technique. The method assumes that faults are activated according to the cohesionless Coulomb's failure criterion, where the fluctuations of fluid pressure and the magnitude of differential stress are assumed to induce faulting. In this case, the orientation distribution of fault planes is described by a probability density function that is visualized as linear contours on a Mohr diagram. The parametric optimization of the function for an observed fault population yields the friction coefficient. A test using an artificial fault-slip dataset successfully determines the internal friction angle (the arctangent of the friction coefficient) with its confidence interval of several degrees estimated by the bootstrap resampling technique. An application to natural faults cutting a Pleistocene forearc basin fill yields a friction coefficient around 0.7 which is experimentally predicted by the Byerlee's law.

  17. Evaluation of the friction coefficient, the radial stress, and the damage work during needle insertions into agarose gels.

    PubMed

    Urrea, Fabián A; Casanova, Fernando; Orozco, Gustavo A; García, José J

    2016-03-01

    Agarose hydrogels have been extensively used as a phantom material to mimic the mechanical behavior of soft biological tissues, e.g. in studies aimed to analyze needle insertions into the organs producing tissue damage. To better predict the radial stress and damage during needle insertions, this study was aimed to determine the friction coefficient between the material of commercial catheters and hydrogels. The friction coefficient, the tissue damage and the radial stress were evaluated at 0.2, 1.8, and 10mm/s velocities for 28, 30, and 32 gauge needles of outer diameters equal to 0.36, 0.31, and 0.23mm, respectively. Force measurements during needle insertions and retractions on agarose gel samples were used to analyze damage and radial stress. The static friction coefficient (0.295±0.056) was significantly higher than the dynamic (0.255±0.086). The static and dynamic friction coefficients were significantly smaller for the 0.2mm/s velocity compared to those for the other two velocities, and there was no significant difference between the friction coefficients for 1.8 and 10mm/s. Radial stress averages were 131.2±54.1, 248.3±64.2, and 804.9±164.3Pa for the insertion velocity of 0.2, 1.8, and 10mm/s, respectively. The radial stress presented a tendency to increase at higher insertion velocities and needle size, which is consistent with other studies. However, the damage work did not show to be a good predictor of tissue damage, which appears to be due to simplifications in the analytical model. Differently to other approaches, the method proposed here based on radial stress may be extended in future studies to quantity tissue damage in vivo along the entire needle track.

  18. Clinical assessment of dynamic coefficient of friction effects in shoe-sole trituration of patients with drop foot.

    PubMed

    Nima, Jamshidi; Firooz, Salami

    2012-06-01

    The aim of this study was examining the effect of human factors such as plantar friction, contact period time, and impulse on shoe-sole trituration of drop foot patients. Twenty-five patients with drop foot and twenty normal subjects were recruited in the study. The force plate and its related software's recorded human factor (coefficient of friction, ground reaction force, time of stance phase) as time dependent parameters. Dynamic coefficient of friction patterns were categorized based on their magnitude versus time when the longitudinal axis of the sole was plotted as the Y-axis and the transverse axis of the sole as X-axis during stance phase. The result of this research indicated that the average coefficient of friction among drop foot patients is 77.53 % (p value <0.05) lower than the normal subjects. Also the time of stance phase among drop foot patients is 7.56 % (p value <0.05) greater than normal subjects. There is no difference in the peaks, of vertical ground reaction force between normal and control group. The findings of this research revealed that the time of stance phase has a key role in shoe-sole trituration of patients with drop foot.

  19. Calculating the rotational friction coefficient of fractal aerosol particles in the transition regime using extended Kirkwood-Riseman theory

    NASA Astrophysics Data System (ADS)

    Corson, James; Mulholland, George W.; Zachariah, Michael R.

    2017-07-01

    We apply our extended Kirkwood-Riseman theory to compute the translation, rotation, and coupling friction tensors and the scalar rotational friction coefficient for an aerosol fractal aggregate in the transition flow regime. The method can be used for particles consisting of spheres in contact. Our approach considers only the linear velocity of the primary spheres in a rotating aggregate and ignores rotational and coupling interactions between spheres. We show that this simplified approach is within approximately 40% of the true value for any particle for Knudsen numbers between 0.01 and 100. The method is especially accurate (i.e., within about 5%) near the free-molecule regime, where there is little interaction between the particle and the flow field, and for particles with low fractal dimension (≲2 ) consisting of many spheres, where the average distance between spheres is large and translational interaction effects dominate. Our results suggest that there is a universal relationship between the rotational friction coefficient and an aggregate Knudsen number, defined as the ratio of continuum to free-molecule rotational friction coefficients.

  20. Indirect Estimations of Frictional Coefficients of Fractures in Sandstones for Analysis of Injection Induced Microseismicity

    NASA Astrophysics Data System (ADS)

    Jo, Y.; Chang, C.; Koh, H. J.

    2014-12-01

    The frictional coefficient of fractures, a fundamental parameter needed to analyze a variety of geomechanical problems for microseismicity, is normally determined from laboratory shear tests. However, recovered rock cores are rarely available because of difficulties and high cost in getting undisturbed core samples. In that case, the frictional coefficient should be either assumed or estimated indirectly. We investigate the frictional property of fractures of various sandstones in laboratory tests and attempt to correlate that with other properties measureable relatively readily even without cores. We use various sandstones obtained from different depths of a 1 km deep borehole drilled for coal bed methane development in a Paleozoic sedimentary basin, South Korea. The sandstones have various physical properties (e.g. P-wave velocity (VP) of 2253-5038 m/s) and chemical compositions in terms of clay content (5-31%). We conduct direct shear tests in an artificial saw-cut fracture in the sandstones and determined frictional coefficients in a range of 0.36-0.57. The frictional coefficients have an inverse-linear correlation with clay contents measured from XRD analysis. These results are also quite consistent with those from previous clay gouge experiments (Takahashi et al., 2007; Tembe et al., 2010; Kohli & Zoback, 2013). They also have a linear correlation with VP. Our study demonstrates that frictional coefficients can be estimated empirically from such properties. To check feasibility of such an approach, we apply the obtained empirical relation to the borehole where cores were recovered. The clay contents in sandstone formations are estimated from the borehole gamma ray log calibrated using the XRD clay content data. Clay content estimated from gamma ray varies significantly with depth in a range of 0-45%. This range of clay content corresponds to frictional coefficients of 0.25-0.58. Comparison between estimated and measured frictional coefficients shows a

  1. The development of the friction coefficient inspection equipment for skin using a load cell.

    PubMed

    Song, Han Wook; Park, Yon Kyu; Lee, Sung Jun; Woo, Sam Yong; Kim, Sun Hyung; Kim, Dal Rae

    2008-01-01

    The skin is an indispensible organ for human because it contributes to the metabolism using its own biochemical functions as well as it protects the human body from the exterior stimuli. Recently, the friction coefficient have been used as the decision index of the progress for the bacterial aliments in the field of the skin physiology and the importance of friction coefficient have been increased in the skin care market because of the needs of the well being times. In addition, the usage of friction coefficient is known to have the big discrimination ability in classification of human constitutions, which is utilized in the alternative medicine. In this study, we designed a system which used the multi axes load cell and hemi-circular probe and tried to measure the friction coefficient of hand skins repeatedly. Using this system, the relative repeatability error for the measurement of the friction coefficient was below 4 %. The coefficient is not concerned in curvatures of tips. Using this system, we will try to establish the standard for classification of constitutions.

  2. Measuring the Coefficient of Friction of a Small Floating Liquid Marble

    NASA Astrophysics Data System (ADS)

    Ooi, Chin Hong; Nguyen, Anh Van; Evans, Geoffrey M.; Dao, Dzung Viet; Nguyen, Nam-Trung

    2016-12-01

    This paper investigates the friction coefficient of a moving liquid marble, a small liquid droplet coated with hydrophobic powder and floating on another liquid surface. A floating marble can easily move across water surface due to the low friction, allowing for the transport of aqueous solutions with minimal energy input. However, the motion of a floating marble has yet to be systematically characterised due to the lack of insight into key parameters such as the coefficient of friction between the floating marble and the carrier liquid. We measured the coefficient of friction of a small floating marble using a novel experimental setup that exploits the non-wetting properties of a liquid marble. A floating liquid marble pair containing a minute amount magnetite particles were immobilised and then released in a controlled manner using permanent magnets. The capillarity-driven motion was analysed to determine the coefficient of friction of the liquid marbles. The “capillary charge” model was used to fit the experimental results. We varied the marble content and carrier liquid to establish a relationship between the friction correction factor and the meniscus angle.

  3. Measuring the Coefficient of Friction of a Small Floating Liquid Marble

    PubMed Central

    Ooi, Chin Hong; Nguyen, Anh Van; Evans, Geoffrey M.; Dao, Dzung Viet; Nguyen, Nam-Trung

    2016-01-01

    This paper investigates the friction coefficient of a moving liquid marble, a small liquid droplet coated with hydrophobic powder and floating on another liquid surface. A floating marble can easily move across water surface due to the low friction, allowing for the transport of aqueous solutions with minimal energy input. However, the motion of a floating marble has yet to be systematically characterised due to the lack of insight into key parameters such as the coefficient of friction between the floating marble and the carrier liquid. We measured the coefficient of friction of a small floating marble using a novel experimental setup that exploits the non-wetting properties of a liquid marble. A floating liquid marble pair containing a minute amount magnetite particles were immobilised and then released in a controlled manner using permanent magnets. The capillarity-driven motion was analysed to determine the coefficient of friction of the liquid marbles. The “capillary charge” model was used to fit the experimental results. We varied the marble content and carrier liquid to establish a relationship between the friction correction factor and the meniscus angle. PMID:27910916

  4. Valuation of coefficient of rolling friction by the inclined plane method

    NASA Astrophysics Data System (ADS)

    Ciornei, F. C.; Alaci, S.; Ciogole, V. I.; Ciornei, M. C.

    2017-05-01

    A major objective of tribological researches is characterisation of rolling friction, due to various cases encountered in classical engineering applications, like gear transmissions and cam mechanisms or more recent examples met in bioengineering and biomedical devices. A characteristic of these examples consists in reduced dimensions of the contact zones, theoretically zero, the relative motion occurring between the contact points being either sliding or rolling. A characteristic parameter for the rolling motion is the coefficient of rolling friction. The paper proposes a method for estimation of coefficient of rolling friction by studying the motion of a body of revolution on an inclined plane. Assuming the hypothesis that moment of rolling friction is proportional to the normal reaction force, the law of motion for the body on the inclined plane is found under the premise of pure rolling. It is reached the conclusion that there is an uniformly accelerated motion, and thus for a known plane slope, it is sufficient to find the time during which the body runs a certain distance, starting from motionless situation. To obtain accurate results assumes finding precisely the time of motion. The coefficient of rolling friction was estimated for several slopes of the inclined plane and it is concluded that with increased slope, the values of coefficient of rolling friction increase, fact that suggest that the proportionality between the rolling torque and normal load is valid only for domains of limited variations of normal load.

  5. Measuring the Coefficient of Friction of a Small Floating Liquid Marble.

    PubMed

    Ooi, Chin Hong; Nguyen, Anh Van; Evans, Geoffrey M; Dao, Dzung Viet; Nguyen, Nam-Trung

    2016-12-02

    This paper investigates the friction coefficient of a moving liquid marble, a small liquid droplet coated with hydrophobic powder and floating on another liquid surface. A floating marble can easily move across water surface due to the low friction, allowing for the transport of aqueous solutions with minimal energy input. However, the motion of a floating marble has yet to be systematically characterised due to the lack of insight into key parameters such as the coefficient of friction between the floating marble and the carrier liquid. We measured the coefficient of friction of a small floating marble using a novel experimental setup that exploits the non-wetting properties of a liquid marble. A floating liquid marble pair containing a minute amount magnetite particles were immobilised and then released in a controlled manner using permanent magnets. The capillarity-driven motion was analysed to determine the coefficient of friction of the liquid marbles. The "capillary charge" model was used to fit the experimental results. We varied the marble content and carrier liquid to establish a relationship between the friction correction factor and the meniscus angle.

  6. Interpreting Bivariate Regression Coefficients: Going beyond the Average

    ERIC Educational Resources Information Center

    Halcoussis, Dennis; Phillips, G. Michael

    2010-01-01

    Statistics, econometrics, investment analysis, and data analysis classes often review the calculation of several types of averages, including the arithmetic mean, geometric mean, harmonic mean, and various weighted averages. This note shows how each of these can be computed using a basic regression framework. By recognizing when a regression model…

  7. Tuning apparent friction coefficient by controlled patterning bulk metallic glasses surfaces

    PubMed Central

    Li, Ning; Xu, Erjiang; Liu, Ze; Wang, Xinyun; Liu, Lin

    2016-01-01

    Micro-honeycomb structures with various pitches between adjacent cells were hot-embossed on Zr35Ti30Cu8.25Be26.75 bulk metallic glass surface. The effect of pitch geometry on the frictional behavior of metallic glass surface was systematically investigated. The results revealed that all textured metallic glass surfaces show a reduction in friction coefficient compared to smooth surface. More intriguingly, the friction coefficient first decreased and then increased gradually with increasing pitches. Such unique behavior can be understood fundamentally from the perspective of competing effects between contact area and local stress level with increasing pitches. This finding not only enhance the in-depth understanding of the mechanism of the significant role of surface topography on the frictional behavior of metallic glass surface, but also opens a new route towards other functional applications for bulk metallic glasses. PMID:27991571

  8. Tuning apparent friction coefficient by controlled patterning bulk metallic glasses surfaces

    NASA Astrophysics Data System (ADS)

    Li, Ning; Xu, Erjiang; Liu, Ze; Wang, Xinyun; Liu, Lin

    2016-12-01

    Micro-honeycomb structures with various pitches between adjacent cells were hot-embossed on Zr35Ti30Cu8.25Be26.75 bulk metallic glass surface. The effect of pitch geometry on the frictional behavior of metallic glass surface was systematically investigated. The results revealed that all textured metallic glass surfaces show a reduction in friction coefficient compared to smooth surface. More intriguingly, the friction coefficient first decreased and then increased gradually with increasing pitches. Such unique behavior can be understood fundamentally from the perspective of competing effects between contact area and local stress level with increasing pitches. This finding not only enhance the in-depth understanding of the mechanism of the significant role of surface topography on the frictional behavior of metallic glass surface, but also opens a new route towards other functional applications for bulk metallic glasses.

  9. Tuning apparent friction coefficient by controlled patterning bulk metallic glasses surfaces.

    PubMed

    Li, Ning; Xu, Erjiang; Liu, Ze; Wang, Xinyun; Liu, Lin

    2016-12-19

    Micro-honeycomb structures with various pitches between adjacent cells were hot-embossed on Zr35Ti30Cu8.25Be26.75 bulk metallic glass surface. The effect of pitch geometry on the frictional behavior of metallic glass surface was systematically investigated. The results revealed that all textured metallic glass surfaces show a reduction in friction coefficient compared to smooth surface. More intriguingly, the friction coefficient first decreased and then increased gradually with increasing pitches. Such unique behavior can be understood fundamentally from the perspective of competing effects between contact area and local stress level with increasing pitches. This finding not only enhance the in-depth understanding of the mechanism of the significant role of surface topography on the frictional behavior of metallic glass surface, but also opens a new route towards other functional applications for bulk metallic glasses.

  10. A Tactile Sensor Using Piezoresistive Beams for Detection of the Coefficient of Static Friction.

    PubMed

    Okatani, Taiyu; Takahashi, Hidetoshi; Noda, Kentaro; Takahata, Tomoyuki; Matsumoto, Kiyoshi; Shimoyama, Isao

    2016-05-18

    This paper reports on a tactile sensor using piezoresistive beams for detection of the coefficient of static friction merely by pressing the sensor against an object. The sensor chip is composed of three pairs of piezoresistive beams arranged in parallel and embedded in an elastomer; this sensor is able to measure the vertical and lateral strains of the elastomer. The coefficient of static friction is estimated from the ratio of the fractional resistance changes corresponding to the sensing elements of vertical and lateral strains when the sensor is in contact with an object surface. We applied a normal force on the sensor surface through objects with coefficients of static friction ranging from 0.2 to 1.1. The fractional resistance changes corresponding to vertical and lateral strains were proportional to the applied force. Furthermore, the relationship between these responses changed according to the coefficients of static friction. The experimental result indicated the proposed sensor could determine the coefficient of static friction before a global slip occurs.

  11. Effect of matrix on the dry friction coefficient of unidirectional fiber-reinforced composite

    NASA Astrophysics Data System (ADS)

    Vettegren, V. I.; Savitskii, A. V.; Lyashkov, A. I.; Mamalimov, R. I.

    2008-10-01

    The coefficients of dry rest (μ0) and sliding (μ s ) friction on a polished disk made of quenched steel have been measured for various polymer matrices and fibers and for a composite unidirectionally reinforced with poly(amidobenzimidazole) (PABI) fibers. It is established that μ0 > μ s for matrices and fibers with glass transition temperatures T g below room temperature T R , otherwise μ0 ≈ μ s . This effect is explained by a sharp growth in the plasticity of polymers at T g , which leads to an increase in the polymer-steel contact area. For a composite with T g > T R , the dry friction coefficients obey the relation μ0 ≈ μ s ≈ μ e / C, where μ e is the coefficients of sliding friction of PABI fibers and C is their concentration. For T g < T R (plastic matrix), the friction coefficients of the composite and matrix are close because the latter cannot hold the fiber ends during friction. As a result, they are bent and aligned along the matrix surface or embedded in the surface layer.

  12. Measurements of Heat-Transfer and Friction Coefficients for Helium Flowing in a Tube at Surface Temperatures up to 5900 Deg R

    NASA Technical Reports Server (NTRS)

    Taylor, Maynard F.; Kirchgessner, Thomas A.

    1959-01-01

    Measurements of average heat transfer and friction coefficients and local heat transfer coefficients were made with helium flowing through electrically heated smooth tubes with length-diameter ratios of 60 and 92 for the following range of conditions: Average surface temperature from 1457 to 4533 R, Reynolds numbe r from 3230 to 60,000, heat flux up to 583,200 Btu per hr per ft2 of heat transfer area, and exit Mach numbe r up to 1.0. The results indicate that, in the turbulent range of Reynolds number, good correlation of the local heat transfer coefficients is obtained when the physical properties and density of helium are evaluated at the surface temperature. The average heat transfer coefficients are best correlated on the basis that the coefficient varies with [1 + (L/D))(sup -0,7)] and that the physical properties and density are evaluated at the surface temperature. The average friction coefficients for the tests with no heat addition are in complete agreement with the Karman-Nikuradse line. The average friction coefficients for heat addition are in poor agreement with the accepted line.

  13. Tire-to-Surface Friction-Coefficient Measurements with a C-123B Airplane on Various Runway Surfaces

    NASA Technical Reports Server (NTRS)

    Sawyer, Richard H.; Kolnick, Joseph J.

    1959-01-01

    An investigation was conducted to obtain information on the tire-to-surface friction coefficients available in aircraft braking during the landing run. The tests were made with a C-123B airplane on both wet and dry concrete and bituminous pavements and on snow-covered and ice surfaces at speeds from 12 to 115 knots. Measurements were made of the maximum (incipient skidding) friction coefficient, the full-skidding (locked wheel) friction coefficient, and the wheel slip ratio during braking.

  14. Coefficient of friction effects of polymers, silicone oil, and mini-rollers in cable pulling

    SciTech Connect

    Fee, J.M.; Solheid, D.P.

    1994-12-31

    Cable pulling friction coefficients are determined for several control pulling compounds, and those same compounds supplemented with a silicone polymer (dimethyl polysiloxane) and/or mini-rollers (small plastic spheres). The data are developed for fiber optic cable in polyethylene duct and electrical cable in PVC duct by pulling cables through a multi-bend conduit system and calculating the effective coefficient of friction. The data should provide a quantitative means to evaluate the effect of cable pulling lubricants supplemented with these components.

  15. A comparison of two methods of measuring static coefficient of friction at low normal forces: a pilot study.

    PubMed

    Seo, Na Jin; Armstrong, Thomas J; Drinkaus, Philip

    2009-01-01

    This study compares two methods for estimating static friction coefficients for skin. In the first method, referred to as the 'tilt method', a hand supporting a flat object is tilted until the object slides. The friction coefficient is estimated as the tangent of the angle of the object at the slip. The second method estimates the friction coefficient as the pull force required to begin moving a flat object over the surface of the hand, divided by object weight. Both methods were used to estimate friction coefficients for 12 subjects and three materials (cardboard, aluminium, rubber) against a flat hand and against fingertips. No differences in static friction coefficients were found between the two methods, except for that of rubber, where friction coefficient was 11% greater for the tilt method. As with previous studies, the friction coefficients varied with contact force and contact area. Static friction coefficient data are needed for analysis and design of objects that are grasped or manipulated with the hand. The tilt method described in this study can easily be used by ergonomic practitioners to estimate static friction coefficients in the field in a timely manner.

  16. Comprehensive tire-road friction coefficient estimation based on signal fusion method under complex maneuvering operations

    NASA Astrophysics Data System (ADS)

    Li, L.; Yang, K.; Jia, G.; Ran, X.; Song, J.; Han, Z.-Q.

    2015-05-01

    The accurate estimation of the tire-road friction coefficient plays a significant role in the vehicle dynamics control. The estimation method should be timely and reliable for the controlling requirements, which means the contact friction characteristics between the tire and the road should be recognized before the interference to ensure the safety of the driver and passengers from drifting and losing control. In addition, the estimation method should be stable and feasible for complex maneuvering operations to guarantee the control performance as well. A signal fusion method combining the available signals to estimate the road friction is suggested in this paper on the basis of the estimated ones of braking, driving and steering conditions individually. Through the input characteristics and the states of the vehicle and tires from sensors the maneuvering condition may be recognized, by which the certainty factors of the friction of the three conditions mentioned above may be obtained correspondingly, and then the comprehensive road friction may be calculated. Experimental vehicle tests validate the effectiveness of the proposed method through complex maneuvering operations; the estimated road friction coefficient based on the signal fusion method is relatively timely and accurate to satisfy the control demands.

  17. Effective assessment of tyre-road friction coefficient using a hybrid estimator

    NASA Astrophysics Data System (ADS)

    Ren, Hongbin; Chen, Sizhong; Shim, Taehyun; Wu, Zhicheng

    2014-08-01

    Vehicle stability and active safety control depend heavily on tyre forces available on each wheel of a vehicle. Since tyre forces are strongly affected by the tyre-road friction coefficient, it is crucial to optimise the use of the adhesion limits of the tyres. This study presents a hybrid method to identify the road friction limitation; it contributes significantly to active vehicle safety. A hybrid estimator is developed based on the three degrees-of-freedom vehicle model, which considers longitudinal, lateral and yaw motions. The proposed hybrid estimator includes two sub-estimators: one is the vehicle state information estimator using the unscented Kalman filter and another is the integrated road friction estimator. By connecting two sub-estimators simultaneously, the proposed algorithm can effectively estimate the road friction coefficient. The performance of the proposed estimation algorithm is validated in CarSim/Matlab co-simulation environment under three different road conditions (high-μ, low-μ and mixed-μ). Simulation results show that the proposed estimator can assess vehicle states and road friction coefficient with good accuracy.

  18. Effect of friction coefficients on the dynamic response of gear systems

    NASA Astrophysics Data System (ADS)

    Jiang, Lingli; Deng, Zhenyong; Gu, Fengshou; Ball, Andrew D.; Li, Xuejun

    2017-01-01

    The inevitable deterioration of the lubrication conditions in a gearbox in service can change the tribological properties of the meshing teeth. In turn, such changes can significantly affect the dynamic responses and running status of gear systems. This paper investigates such an effect by utilizing virtual prototype technology to model and simulate the dynamics of a wind turbine gearbox system. The change in the lubrication conditions is modeled by the changes in the friction coefficients, thereby indicating that poor lubrication causes not only increased frictional losses but also significant changes in the dynamic responses. These results are further demonstrated by the mean and root mean square values calculated by the simulated responses under different friction coefficients. In addition, the spectrum exhibits significant changes in the first, second, and third harmonics of the meshing components. The findings and simulation method of this study provide theoretical bases for the development of accurate diagnostic techniques.

  19. Effect of friction coefficients on the dynamic response of gear systems

    NASA Astrophysics Data System (ADS)

    Jiang, Lingli; Deng, Zhenyong; Gu, Fengshou; Ball, Andrew D.; Li, Xuejun

    2017-09-01

    The inevitable deterioration of the lubrication conditions in a gearbox in service can change the tribological properties of the meshing teeth. In turn, such changes can significantly affect the dynamic responses and running status of gear systems. This paper investigates such an effect by utilizing virtual prototype technology to model and simulate the dynamics of a wind turbine gearbox system. The change in the lubrication conditions is modeled by the changes in the friction coefficients, thereby indicating that poor lubrication causes not only increased frictional losses but also significant changes in the dynamic responses. These results are further demonstrated by the mean and root mean square values calculated by the simulated responses under different friction coefficients. In addition, the spectrum exhibits significant changes in the first, second, and third harmonics of the meshing components. The findings and simulation method of this study provide theoretical bases for the development of accurate diagnostic techniques.

  20. Temperature and water vapor pressure effects on the friction coefficient of hydrogenated diamondlike carbon films.

    SciTech Connect

    Dickrell, P. L.; Sawyer, W. G.; Eryilmaz, O. L.; Erdemir, A.; Energy Technology; Univ. of Florida

    2009-07-01

    Microtribological measurements of a hydrogenated diamondlike carbon film in controlled gaseous environments show that water vapor plays a significant role in the friction coefficient. These experiments reveal an initial high friction transient behavior that does not reoccur even after extended periods of exposure to low partial pressures of H{sub 2}O and O{sub 2}. Experiments varying both water vapor pressure and sample temperature show trends of a decreasing friction coefficient as a function of both the decreasing water vapor pressure and the increasing substrate temperature. Theses trends are examined with regard to first order gas-surface interactions. Model fits give activation energies on the order of 40 kJ/mol, which is consistent with water vapor desorption.

  1. Estimation of tire-road friction coefficient based on combined APF-IEKF and iteration algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Y.-H.; Li, T.; Yang, Y.-Y.; Ji, X.-W.; Wu, J.

    2017-05-01

    Tire-road friction coefficient is an important parameter for vehicle stability and active safety systems. However, precise measurement of tire-road friction coefficient is hard to achieve without expensive equipment. Considering easy availability and good economy, this paper proposes a method which first combines auxiliary particle filter and the iterated extended kalman filter (APF-IEKF), and then processes the results of the first step using iteration algorithm. APF-IEKF is used to estimate the slip angle of the front tires with strong nonlinearity and non-Gaussian noise, in which APF filters non-Gaussian noise and reach a preliminary estimation of sideslip angle, then IEKF is used to optimize the result, making the estimation of the sideslip angle more accurate. The iteration algorithm is used to estimate the tire-road friction coefficient based on self-aligning torque, which is more sensitive to tire slip angle and provides faster estimation. In this way, this method can estimate tire road friction coefficient more accurately and in real time. Both numerical simulation in Carsim/Simulink and actual off-vehicle tests in winter are provided to demonstrate the efficiency of the proposed algorithm.

  2. The stochastic distribution of available coefficient of friction on quarry tiles for human locomotion.

    PubMed

    Chang, Wen-Ruey; Matz, Simon; Chang, Chien-Chi

    2012-01-01

    The available coefficient of friction (ACOF) for human locomotion is the maximum coefficient of friction that can be supported without a slip at the shoe and floor interface. A statistical model was introduced to estimate the probability of slip by comparing the ACOF with the required coefficient of friction, assuming that both coefficients have stochastic distributions. This paper presents an investigation of the stochastic distributions of the ACOF of quarry tiles under dry, water and glycerol conditions. One hundred friction measurements were performed on a walkway under the surface conditions of dry, water and 45% glycerol concentration. The Kolmogorov-Smirnov goodness-of-fit test was used to determine if the distribution of the ACOF was a good fit with the normal, log-normal and Weibull distributions. The results indicated that the ACOF appears to fit the normal and log-normal distributions better than the Weibull distribution for the water and glycerol conditions. However, no match was found between the distribution of ACOF under the dry condition and any of the three continuous distributions evaluated. Based on limited data, a normal distribution might be more appropriate due to its simplicity, practicality and familiarity among the three distributions evaluated.

  3. Wood variables affecting the friction coefficient of spruce pine on steel

    Treesearch

    Truett J. Lemoine; Charles W. McMillin; Floyd G. Manwiller

    1970-01-01

    Wood of spruce pine, Pinus glabra Walk., was factorially segregated by moisture content (0, 10, and 18 percent), specific gravity (less than 0.45 and more than 0.45), and extractive content (unextracted and extractive-freE), and the kinetic coefficient of friction on steel (having surface roughness of 9 microinches RMS) determined for tangential...

  4. Effect of particle-fiber friction coefficient on ultrafine aerosol particles clogging in nanofiber based filter

    NASA Astrophysics Data System (ADS)

    Sambaer, Wannes; Zatloukal, Martin; Kimmer, Dusan

    2013-04-01

    Realistic SEM image based 3D filter model considering transition/free molecular flow regime, Brownian diffusion, aerodynamic slip, particle-fiber and particle-particle interactions together with a novel Euclidian distance map based methodology for the pressure drop calculation has been utilized for a polyurethane nanofiber based filter prepared via electrospinning process in order to more deeply understand the effect of particle-fiber friction coefficient on filter clogging and basic filter characteristics. Based on the performed theoretical analysis, it has been revealed that the increase in the fiber-particle friction coefficient causes, firstly, more weaker particle penetration in the filter, creation of dense top layers and generation of higher pressure drop (surface filtration) in comparison with lower particle-fiber friction coefficient filter for which deeper particle penetration takes place (depth filtration), secondly, higher filtration efficiency, thirdly, higher quality factor and finally, higher quality factor sensitivity to the increased collected particle mass. Moreover, it has been revealed that even if the particle-fiber friction coefficient is different, the cake morphology is very similar.

  5. Concentration dependent translational friction coefficient of cyclic polymers in dilute solutions

    NASA Astrophysics Data System (ADS)

    Alessandrini, Jose Luis; Fatur, Alejandro

    1988-10-01

    The leading concentration dependence of the translational friction coefficient of long cyclic polymers is evaluated in the framework of the cluster expansion method. It is found that excellent agreement is achieved with recent quasielastic light scattering experiments on linear and cyclic polystyrene macromolecules.

  6. A method for the determination of the coefficient of rolling friction using cycloidal pendulum

    NASA Astrophysics Data System (ADS)

    Ciornei, M. C.; Alaci, S.; Ciornei, F. C.; Romanu, I. C.

    2017-08-01

    The paper presents a method for experimental finding of coefficient of rolling friction appropriate for biomedical applications based on the theory of cycloidal pendulum. When a mobile circle rolls over a fixed straight line, the points from the circle describe trajectories called normal cycloids. To materialize this model, it is sufficient that a small region from boundary surfaces of a moving rigid body is spherical. Assuming pure rolling motion, the equation of motion of the cycloidal pendulum is obtained - an ordinary nonlinear differential equation. The experimental device is composed by two interconnected balls rolling over the material to be studied. The inertial characteristics of the pendulum can be adjusted via weights placed on a rod. A laser spot oscillates together to the pendulum and provides the amplitude of oscillations. After finding the experimental parameters necessary in differential equation of motion, it can be integrated using the Runge-Kutta of fourth order method. The equation was integrated for several materials and found values of rolling friction coefficients. Two main conclusions are drawn: the coefficient of rolling friction influenced significantly the amplitude of oscillation but the effect upon the period of oscillation is practically imperceptible. A methodology is proposed for finding the rolling friction coefficient and the pure rolling condition is verified.

  7. An experimental investigation of the rib surface-averaged heat transfer coefficient in a rib-roughened square passage

    SciTech Connect

    Taslim, M.E.; Wadsworth, C.M.

    1997-04-01

    Turbine blade cooling is accomplished, among other methods, by passing the cooling air through an often serpentine passage in the core of the blade. Furthermore, to enhance the heat transfer coefficient, these passages are roughened with rib-shaped turbulence promoters. Considerable data are available on the heat transfer coefficient on the passage surface between the ribs. However, the heat transfer coefficients on the surface of the ribs themselves have not been investigated to the same extent. Therefore, an accurate account of the heat transfer coefficient on the rib surfaces is critical in the overall design of the blade cooling system. The objective of this experimental investigation was to conduct a series of 13 tests to measure the rib surface-averaged heat transfer coefficient, h{sub rib} in a square duct roughened with staggered 90 deg ribs. To investigate the effects that blockage ratio, e/D{sub h}, and pitch-to-height ratio, S/e, have on h{sub rib} and passage friction factor, three rib geometries corresponding to blockage ratios of 0.133, 0.167, and 0.25 were tested for pitch-to-height ratios of 5, 7, 8.5, and 10. Comparisons were made between the rib average heat transfer coefficient and that on the wall surface between two ribs, h{sub floor}, reported previously. It is concluded that: The rib average heat transfer coefficient is much higher than that for the area between the ribs; similar to the heat transfer coefficient on the surface between the ribs, the average rib heat transfer coefficient increases with the blockage ratio; a pitch-to-height ratios of 8.5 consistently produced the highest rib average heat transfer coefficients amongst all tested; under otherwise identical conditions, ribs in upstream-most position produced lower heat transfer coefficients than the midchannel positions; the upstream-most rib average heat transfer coefficients decreased with the blockage ratio; and thermal performance decreased with increased blockage ratio.

  8. Wear Potential of Dental Ceramics and its Relationship with Microhardness and Coefficient of Friction.

    PubMed

    Freddo, Rafael Augusto; Kapczinski, Myriam Pereira; Kinast, Eder Julio; de Souza Junior, Oswaldo Baptista; Rivaldo, Elken Gomes; da Fontoura Frasca, Luis Carlos

    2016-10-01

    To evaluate, by means of pin-on-disk testing, the wear potential of different dental ceramic systems as it relates to friction parameters, surface finish, and microhardness. Three groups of different ceramic systems (Noritake EX3, Eris, Empress II) with 20 disks each (10 glazed, 10 polished) were used. Vickers microhardness (Hv) was determined with a 200-g load for 30 seconds. Friction coefficients (μ) were determined by pin-on-disk testing (5 N load, 600 seconds, and 120 rpm). Wear patterns were assessed by scanning electron microscopy (SEM). The results were analyzed using one-way ANOVA and Tukey's test, with the significance level set at α = 0.05. The coefficients of friction were as follows: Noritake EX3 0.28 ± 0.12 (polished), 0.33 ± 0.08 (glazed); Empress II 0.38 ± 0.08 (polished), 0.45 ± 0.05 (glazed); Eris 0.49 ± 0.05 (polished), 0.49 ± 0.06 (glazed). Microhardness measurements were as follows: Noritake EX3 530.7 ± 8.7 (polished), 525.9 ± 6.2 (glazed); Empress II 534.1 ± 8 (polished), 534.7 ± 4.5 (glazed); Eris, 511.7 ± 6.5 (polished), 519.5 ± 4.1 (glazed). The polished and glazed Noritake EX3 and polished and glazed Eris specimens showed statistically different friction coefficients. SEM image analysis revealed more surface changes, such as small cracks and grains peeling off, in glazed ceramics. Wear potential may be related to the coefficient of friction in Noritake ceramics, which had a lower coefficient than Eris ceramics. Within-group analysis showed no differences in polished or glazed specimens. The differences observed were not associated with microhardness. © 2015 by the American College of Prosthodontists.

  9. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale

    NASA Astrophysics Data System (ADS)

    Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J.

    2012-12-01

    From the early tribological studies of Leonardo da Vinci to Amontons’ law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models.

  10. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale.

    PubMed

    Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J

    2012-12-01

    From the early tribological studies of Leonardo da Vinci to Amontons' law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models.

  11. Local convective heat transfer coefficient and friction factor of CuO/water nanofluid in a microchannel heat sink

    NASA Astrophysics Data System (ADS)

    Chabi, A. R.; Zarrinabadi, S.; Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Salimi, M.

    2017-02-01

    Forced convective heat transfer in a microchannel heat sink (MCHS) using CuO/water nanofluids with 0.1 and 0.2 vol% as coolant was investigated. The experiments were focused on the heat transfer enhancement in the channel entrance region at Re < 1800. Hydraulic performance of the MCHS was also estimated by measuring friction factor and pressure drop. Results showed that higher convective heat transfer coefficient was obtained at the microchannel entrance. Maximum enhancement of the average heat transfer coefficient compared with deionized water was about 40 % for 0.2 vol% nanofluid at Re = 1150. Enhancement of the convective heat transfer coefficient of nanofluid decreased with further increasing of Reynolds number.

  12. A pulling tension calculation program which allows coefficient of friction to vary continuously with cable sidewall pressure

    SciTech Connect

    Fee, J.M.

    1994-12-31

    A cable pulling tension calculation software program is developed which draws friction coefficients from a curve input by the user. Examples show how predicted tension and sidewall pressure vary with a coefficient of friction dependence on cable normal pressure. The software is intended as a ``what-if`` tool to help insulation planners develop better approximations of cable pulling tension.

  13. Dense versus dilute fluidization of cohesive particles: Reverse sensitivity to friction and restitution coefficient

    NASA Astrophysics Data System (ADS)

    Liu, Peiyuan; LaMarche, Casey Q.; Kellogg, Kevin M.; Hrenya, Christine M.

    2017-05-01

    Numerical simulations based on DEM-CFD were conducted to study the behavior of gas-solid flows of cohesive particles under various values of particle friction and restitution coefficient, which dictate the energy dissipation in the tangential and normal directions of particle relative motion. Fluidized beds and riser flows were selected as typical systems for dense and dilute flows, respectively. Based on the defluidization curves and agglomerate properties in respective systems, a reverse dependence on friction and restitution coefficient was identified: defluidization curves were dominated by friction while agglomerates in riser flow were governed by the restitution coefficient. The reverse sensitivity is ascribed to the difference in particle interactions for the two systems. In the fluidized bed, particles primarily interact via enduring multiple-particle contacts, in which the dynamics in the tangential directions dominates. In riser flows, the instantaneous binary collisions are more common and the relative motion of particles in the normal direction becomes important. A nonmonotonic response of defluidization curves to varying sliding friction was observed, which is explained by the competing effects of increased sliding and enhanced spin of particles on bed porosity. This study highlights the importance of correct experimental measurement of solid properties for numerical simulations. The results are also useful for driving the development of continuum modeling of gas-solid flows of cohesive particles.

  14. Increased friction coefficient and superficial zone protein expression in patients with advanced osteoarthritis.

    PubMed

    Neu, C P; Reddi, A H; Komvopoulos, K; Schmid, T M; Di Cesare, P E

    2010-09-01

    To quantify the concentration of superficial zone protein (SZP) in the articular cartilage and synovial fluid of patients with advanced osteoarthritis (OA) and to further correlate the SZP content with the friction coefficient, OA severity, and levels of proinflammatory cytokines. Samples of articular cartilage and synovial fluid were obtained from patients undergoing elective total knee replacement surgery. Additional normal samples were obtained from donated body program and tissue bank sources. Regional SZP expression in cartilage obtained from the femoral condyles was quantified by enzyme-linked immunosorbent assay (ELISA) and visualized by immunohistochemistry. Friction coefficient measurements of cartilage plugs slid in the boundary lubrication system were obtained. OA severity was graded using histochemical analyses. The concentrations of SZP and proinflammatory cytokines in synovial fluid were determined by ELISA. A pattern of SZP localization in knee cartilage was identified, with load-bearing regions exhibiting high SZP expression. SZP expression patterns were correlated with friction coefficient and OA severity; however, SZP expression was observed in all samples at the articular surface, regardless of OA severity. SZP expression and aspirate volume of synovial fluid were higher in OA patients than in normal controls. Expression of cytokines was elevated in the synovial fluid of some patients. Our findings indicate a mechanochemical coupling in which physical forces regulate OA severity and joint lubrication. The findings of this study also suggest that SZP may be ineffective in reducing joint friction in the boundary lubrication mode at an advanced stage of OA, where other mechanisms may dominate the observed tribological behavior.

  15. Study on friction coefficient of soft soil based on particle flow code

    NASA Astrophysics Data System (ADS)

    Lei, Xiaohong; Zhang, Zhongwei

    2017-04-01

    There has no uniform method for determining the micro parameters in particle flow code, and the corresponding formulas obtained by each scholar can only be applied to similar situations. In this paper, the relationship between the micro parameters friction coefficient and macro parameters friction angle is established by using the two axis servo compression as the calibration experiment, and the corresponding formula is fitted to solve the difficulties of determining the PFC micro parameters which provide a reference for determination of the micro parameters of soft soil.

  16. The effect of transverse shear force on the required coefficient of friction for level walking.

    PubMed

    Chang, Wen-Ruey; Chang, Chien-Chi; Matz, Simon

    2011-10-01

    An enhanced methodology to extract the required coefficient of friction (RCOF) value was used to investigate the effects of the transverse shear component of the ground reaction force (GRF) on the RCOF. The RCOF is an important indicator for slip incidents. However,the extraction of the RCOF from GRF is not standardized. The transverse shear force is usually ignored in calculating the RCOF value. For this study, 40 participants performed four walking conditions. The RCOF values both with (RCOF2) and without (RCOF1) the transverse shear force were identified from each strike by the use of an enhanced method and were compared. A total of 24,851 strikes were collected. The transverse component increased the RCOF value by more than 10% in 7.2% of the strikes. In 10.4% of the strikes, the RCOF2 occurred at least 20 ms earlier and the RCOF value was on average 8.9% larger than RCOF1. With this method, we were able to successfully identify the RCOF in a significantly large number of strikes across 40 participants. In a portion of the strikes, the transverse shear force increased the RCOF significantly. In a significant portion of the strikes, the RCOF2 occurred much earlier than RCOF1. Better estimates of the RCOF magnitude and instant of occurrence could potentially improve risk assessment and identification of critical instants in gait.

  17. The Effect of a Variable Disc Pad Friction Coefficient for the Mechanical Brake System of a Railway Vehicle

    PubMed Central

    Lee, Nam-Jin; Kang, Chul-Goo

    2015-01-01

    A brake hardware-in-the-loop simulation (HILS) system for a railway vehicle is widely applied to estimate and validate braking performance in research studies and field tests. When we develop a simulation model for a full vehicle system, the characteristics of all components are generally properly simplified based on the understanding of each component’s purpose and interaction with other components. The friction coefficient between the brake disc and the pad used in simulations has been conventionally considered constant, and the effect of a variable friction coefficient is ignored with the assumption that the variability affects the performance of the vehicle braking very little. However, the friction coefficient of a disc pad changes significantly within a range due to environmental conditions, and thus, the friction coefficient can affect the performance of the brakes considerably, especially on the wheel slide. In this paper, we apply a variable friction coefficient and analyzed the effects of the variable friction coefficient on a mechanical brake system of a railway vehicle. We introduce a mathematical formula for the variable friction coefficient in which the variable friction is represented by two variables and five parameters. The proposed formula is applied to real-time simulations using a brake HILS system, and the effectiveness of the formula is verified experimentally by testing the mechanical braking performance of the brake HILS system. PMID:26267883

  18. The Effect of a Variable Disc Pad Friction Coefficient for the Mechanical Brake System of a Railway Vehicle.

    PubMed

    Lee, Nam-Jin; Kang, Chul-Goo

    2015-01-01

    A brake hardware-in-the-loop simulation (HILS) system for a railway vehicle is widely applied to estimate and validate braking performance in research studies and field tests. When we develop a simulation model for a full vehicle system, the characteristics of all components are generally properly simplified based on the understanding of each component's purpose and interaction with other components. The friction coefficient between the brake disc and the pad used in simulations has been conventionally considered constant, and the effect of a variable friction coefficient is ignored with the assumption that the variability affects the performance of the vehicle braking very little. However, the friction coefficient of a disc pad changes significantly within a range due to environmental conditions, and thus, the friction coefficient can affect the performance of the brakes considerably, especially on the wheel slide. In this paper, we apply a variable friction coefficient and analyzed the effects of the variable friction coefficient on a mechanical brake system of a railway vehicle. We introduce a mathematical formula for the variable friction coefficient in which the variable friction is represented by two variables and five parameters. The proposed formula is applied to real-time simulations using a brake HILS system, and the effectiveness of the formula is verified experimentally by testing the mechanical braking performance of the brake HILS system.

  19. The role of center of mass kinematics in predicting peak utilized coefficient of friction during walking.

    PubMed

    Burnfield, Judith M; Powers, Christopher M

    2007-11-01

    Slips frequently occur when the friction required between the foot and floor exceeds available surface slip resistance. To date, the ability to identify variables that predict an individual's friction needs during walking, or utilized coefficient of friction (COFU), remains limited. Understanding COFU in the context of pedestrian/walkway accidents is important as individuals who demonstrate higher COFU are at a greater risk of slipping. This study determined if whole body center of mass (CM) kinematics were predictive of peak COFU during walking. Ground reaction forces and kinematic data were recorded simultaneously as subjects walked. Stepwise regression analysis determined that the combination of the subject's CM-to-center-of-pressure angle and CM anterior (i.e., forward) velocity predicted 62% of the variance in peak COFU during weight acceptance (p < 0.001). The identified relationships between CM kinematics and peak COFU provide insight into how gait and individual anthropometric characteristics may increase risk for slip initiation.

  20. Prediction of static friction coefficient in rough contacts based on the junction growth theory

    NASA Astrophysics Data System (ADS)

    Spinu, S.; Cerlinca, D.

    2017-08-01

    The classic approach to the slip-stick contact is based on the framework advanced by Mindlin, in which localized slip occurs on the contact area when the local shear traction exceeds the product between the local pressure and the static friction coefficient. This assumption may be too conservative in the case of high tractions arising at the asperities tips in the contact of rough surfaces, because the shear traction may be allowed to exceed the shear strength of the softer material. Consequently, the classic frictional contact model is modified in this paper so that gross sliding occurs when the junctions formed between all contacting asperities are independently sheared. In this framework, when the contact tractions, normal and shear, exceed the hardness of the softer material on the entire contact area, the material of the asperities yields and the junction growth process ends in all contact regions, leading to gross sliding inception. This friction mechanism is implemented in a previously proposed numerical model for the Cattaneo-Mindlin slip-stick contact problem, which is modified to accommodate the junction growth theory. The frictionless normal contact problem is solved first, then the tangential force is gradually increased, until gross sliding inception. The contact problems in the normal and in the tangential direction are successively solved, until one is stabilized in relation to the other. The maximum tangential force leading to a non-vanishing stick area is the static friction force that can be sustained by the rough contact. The static friction coefficient is eventually derived as the ratio between the latter friction force and the normal force.

  1. Synthesis and characterization of a zwitterionic hydrogel blend with low coefficient of friction.

    PubMed

    Osaheni, Allen O; Finkelstein, Eric B; Mather, Patrick T; Blum, Michelle M

    2016-12-01

    Hydrogels display a great deal of potential for a wide variety of biomedical applications. Often times the performance of these biomimetic materials is limited due to inferior friction and wear properties. This manuscript presents a method inspired by the tribological phenomena observed in nature for enhancing the lubricious properties of poly(vinyl alcohol) (PVA) hydrogels. This was achieved by blending PVA with various amounts of zwitterionic polymer, poly([2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide) (pMEDSAH). Our results indicate that pMEDSAH acts as an effective boundary lubricant, allowing for reduction in coefficient of friction by more than 80%. This reduction in friction coefficient was achieved while maintaining comparable mechanical and physical properties to that of the neat material. Also, these zwitterionic blends were found to be cytocompatible. Analysis of the structure to property relationships within this system indicate that the zwitterionic polymer served as a boundary lubricant and promoted a reduction in friction through hydration lubrication. This novel approach provides a promising platform for further investigations enhancing the tribological properties of hydrogels for biomedical applications.

  2. Anomalous Velocity Dependence of the Friction Coefficient of an Air Supported Pulley

    NASA Astrophysics Data System (ADS)

    Crismani, Matteo; Nauenberg, Michael

    2009-11-01

    A standard undergraduate lab exercise to verify Newton's law, F = ma, is to measure the acceleration a of a glider of mass m suspended on an air track. In our experiment the glider is accelerated by a thin tape attached to the glider at one end, and to a weight of mass M at the other end. The weight hangs vertically via a pulley over which the tape is suspended by air pressure. In the absence of friction, the force pulling the glider is F = (M m/(M + m)g, where g is the acceleration of gravity. To the accuracy provided by the fast electronic timers (accurate to 1/10000 second) used in our experiment to measure the velocity and the acceleration of the glider, we verified that the friction due to the air track can be neglected. But we found that this is not the case for the friction due to the air pulley which adds a component -v/T to the force F on the glider, where T is the friction coefficient. We have measured the dependence of this coefficient on v, and found an excellent analytic fit to our data. This fit deviates considerable from the conventional assumption that 1/T is a constant and/or depends linearly on v.

  3. Unrealistic statistics: how average constitutive coefficients can produce non-physical results.

    PubMed

    Robertson, Daniel; Cook, Douglas

    2014-12-01

    The coefficients of constitutive models are frequently averaged in order to concisely summarize the complex, nonlinear, material properties of biomedical materials. However, when dealing with nonlinear systems, average inputs (e.g. average constitutive coefficients) often fail to generate average behavior. This raises an important issue because average nonlinear constitutive coefficients of biomedical materials are commonly reported in the literature. This paper provides examples which demonstrate that average constitutive coefficients applied to nonlinear constitutive laws in the field of biomedical material characterization can fail to produce average stress-strain responses and in some cases produce non-physical responses. Results are presented from a literature survey which indicates that approximately 90% of tissue measurement studies that employ a nonlinear constitutive model report average nonlinear constitutive coefficients. We suggest that reviewers and editors of future measurement studies discourage the reporting of average nonlinear constitutive coefficients. Reporting of individual coefficient sets for each test sample should be considered and discussed as designation for a "best practice" in the field of biomedical material characterization.

  4. Friction coefficients and wear rates of different orthodontic archwires in artificial saliva.

    PubMed

    Alfonso, M V; Espinar, E; Llamas, J M; Rupérez, E; Manero, J M; Barrera, J M; Solano, E; Gil, F J

    2013-05-01

    The aim of this paper is to analyze the influence of the nature of the orthodontic archwires on the friction coefficient and wear rate against materials used commonly as brackets (Ti-6Al-4V and 316L Stainless Steel). The materials selected as orthodontic archwires were ASI304 stainless steel, NiTi, Ti, TiMo and NiTiCu. The array archwire's materials selected presented very similar roughness but different hardness. Materials were chosen from lower and higher hardness degrees than that of the brackets. Wear tests were carried out at in artificial saliva at 37 °C. Results show a linear relationship between the hardness of the materials and the friction coefficients. The material that showed lower wear rate was the ASI304 stainless steel. To prevent wear, the wire and the brackets have high hardness values and in the same order of magnitude.

  5. Contribution of gait parameters and available coefficient of friction to perceptions of slipperiness.

    PubMed

    Chang, Wen-Ruey; Lesch, Mary F; Chang, Chien-Chi; Matz, Simon

    2015-01-01

    Perceived slipperiness rating (PSR) has been widely used to assess walkway safety. In this experiment, 29 participants were exposed to 5 floor types under dry, wet and glycerol conditions. The relationship between their PSR and objective measurements, including utilized coefficient of friction (UCOF), gait kinematics and available coefficient of friction (ACOF), was explored with a regression analysis using step-wise backward elimination. The results showed that UCOF and ACOF, as well as their difference, were the major predictors of the PSR under wet and glycerol conditions. Under wet conditions, the participants appeared to rely on the potential for foot slip to form their PSR. Under glycerol conditions, some kinematic variables also became major predictors of PSR. The results show how different proprioceptive responses and ACOF contributed to the prediction of PSR under different surface conditions. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Pleural liquid and kinetic friction coefficient of mesothelium after mechanical ventilation.

    PubMed

    Bodega, Francesca; Sironi, Chiara; Porta, Cristina; Zocchi, Luciano; Agostoni, Emilio

    2015-01-15

    Volume and protein concentration of pleural liquid in anesthetized rabbits after 1 or 3h of mechanical ventilation, with alveolar pressure equal to atmospheric at end expiration, were compared to those occurring after spontaneous breathing. Moreover, coefficient of kinetic friction between samples of visceral and parietal pleura, obtained after spontaneous or mechanical ventilation, sliding in vitro at physiological velocity under physiological load, was determined. Volume of pleural liquid after mechanical ventilation was similar to that previously found during spontaneous ventilation. This finding is contrary to expectation of Moriondo et al. (2005), based on measurement of lymphatic and interstitial pressure. Protein concentration of pleural liquid after mechanical ventilation was also similar to that occurring after spontaneous ventilation. Coefficient of kinetic friction after mechanical ventilation was 0.023±0.001, similar to that obtained after spontaneous breathing.

  7. The stochastic distribution of available coefficient of friction for human locomotion of five different floor surfaces.

    PubMed

    Chang, Wen-Ruey; Matz, Simon; Chang, Chien-Chi

    2014-05-01

    The maximum coefficient of friction that can be supported at the shoe and floor interface without a slip is usually called the available coefficient of friction (ACOF) for human locomotion. The probability of a slip could be estimated using a statistical model by comparing the ACOF with the required coefficient of friction (RCOF), assuming that both coefficients have stochastic distributions. An investigation of the stochastic distributions of the ACOF of five different floor surfaces under dry, water and glycerol conditions is presented in this paper. One hundred friction measurements were performed on each floor surface under each surface condition. The Kolmogorov-Smirnov goodness-of-fit test was used to determine if the distribution of the ACOF was a good fit with the normal, log-normal and Weibull distributions. The results indicated that the ACOF distributions had a slightly better match with the normal and log-normal distributions than with the Weibull in only three out of 15 cases with a statistical significance. The results are far more complex than what had heretofore been published and different scenarios could emerge. Since the ACOF is compared with the RCOF for the estimate of slip probability, the distribution of the ACOF in seven cases could be considered a constant for this purpose when the ACOF is much lower or higher than the RCOF. A few cases could be represented by a normal distribution for practical reasons based on their skewness and kurtosis values without a statistical significance. No representation could be found in three cases out of 15. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  8. Comparison of different methods to extract the required coefficient of friction for level walking.

    PubMed

    Chang, Wen-Ruey; Chang, Chien-Chi; Matz, Simon

    2012-01-01

    The required coefficient of friction (RCOF) is an important predictor for slip incidents. Despite the wide use of the RCOF there is no standardised method for identifying the RCOF from ground reaction forces. This article presents a comparison of the outcomes from seven different methods, derived from those reported in the literature, for identifying the RCOF from the same data. While commonly used methods are based on a normal force threshold, percentage of stance phase or time from heel contact, a newly introduced hybrid method is based on a combination of normal force, time and direction of increase in coefficient of friction. Although no major differences were found with these methods in more than half the strikes, significant differences were found in a significant portion of strikes. Potential problems with some of these methods were identified and discussed and they appear to be overcome by the hybrid method. No standard method exists for determining the required coefficient of friction (RCOF), an important predictor for slipping. In this study, RCOF values from a single data set, using various methods from the literature, differed considerably for a significant portion of strikes. A hybrid method may yield improved results.

  9. Effects of self-affine surface roughness on the friction coefficient of rubbers in the presence of a liquid interlayer

    NASA Astrophysics Data System (ADS)

    Palasantzas, G.; De Hosson, J. Th. M.

    2004-01-01

    In this article, we investigate how the friction coefficient is affected by the presence of a liquid layer in between a self-affine rough surface and a sliding rubber surface. The liquid layer will reduce energy dissipation from the small surface asperities and cavities of lateral sizes smaller than the healing length ζ and, therefore, will reduce the coefficient of friction. Significant coefficients of friction are attained for small healing lengths ζ (≪ξ with ξ the in-plane roughness correlation length). Finally, it is shown that the effect of the substrate roughness exponent H becomes less important especially for large healing lengths (ζ⩾ξ).

  10. Modelling the stochastic nature of the available coefficient of friction at footwear-floor interfaces.

    PubMed

    Gragg, Jared; Klose, Ellison; Yang, James

    2017-07-01

    The available coefficient of friction (ACOF) is a measure of the friction available between two surfaces, which for human gait would be the footwear-floor interface. It is often compared to the required coefficient of friction (RCOF) to determine the likelihood of a slip in gait. Both the ACOF and RCOF are stochastic by nature meaning that neither should be represented by a deterministic value, such as the sample mean. Previous research has determined that the RCOF can be modelled well by either the normal or lognormal distributions, but previous research aimed at determining an appropriate distribution for the ACOF was inconclusive. This study focuses on modelling the stochastic nature of the ACOF by fitting eight continuous probability distributions to ACOF data for six scenarios. In addition, the data were used to study the effect that a simple housekeeping action such as sweeping could have on the ACOF. Practitioner Summary: Previous research aimed at determining an appropriate distribution for the ACOF was inconclusive. The study addresses this issue as well as looking at the effect that an act such as sweeping has on the ACOF.

  11. Required coefficient of friction during level walking is predictive of slipping.

    PubMed

    Beschorner, Kurt E; Albert, Devon L; Redfern, Mark S

    2016-07-01

    The required coefficient of friction (RCOF) is frequently reported in the literature as an indicator of slip propensity. This study aimed to further develop slip prediction models based on RCOF by examining slips under moderately slippery conditions where the RCOF was approximately equal to the available coefficient of friction. Baseline RCOFs were found for normal walking trials and then an unexpected slip was introduced with a moderately slippery boot-floor contaminant combination for thirty-one subjects. Slip outcomes (i.e., whether a subject experienced a slip) were assessed based on the displacement of a marker placed on the heel. A logistic regression analysis was used to model the impact of RCOF on slipping. Results showed that subjects who walked with a greater RCOF were found to have a higher probability of slipping. The predicted probability of a slip across the RCOF ranged from 3% to 95% and an increase of 0.01 in RCOF was associated with a slipping odds ratio of 1.7. Thus, modest differences in RCOF can have a dramatic impact on slip propensity. This study shows that RCOF can be a sensitive and valid predictor of slipping in realistic frictional environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Low biofouling chitosan-hyaluronic acid multilayers with ultra-low friction coefficients.

    PubMed

    Bongaerts, Jeroen H H; Cooper-White, Justin J; Stokes, Jason R

    2009-05-11

    Resistance to biofouling is an advantageous material property in a variety of biomedical and biofluid processing applications. Protein-resisting surface coatings must also be resistant to wear and degradation and in certain applications good aqueous lubricating properties are required. We show that cross-linked polyelectrolyte multilayers, consisting of chitosan and hyaluronan on polydimethylsiloxane (PDMS) surfaces, form a highly lubricating film that is resistant to wear and protein adsorption. The multilayer film shows much stronger resistance to protein adsorption from human whole saliva than both hydrophobic and hydrophilic PDMS surfaces; the latter two showed identical adsorbed salivary film thicknesses. The boundary friction coefficient under aqueous conditions was extremely low (mu approximately 0.01) between multilayer-coated PDMS substrates and the film is robust against dry rubbing and many hours of tribological experiments in a range of aqueous lubricants. The origins of the assembly's low friction coefficients and robustness are discussed. In addition, we found that the addition of negative phosphate ions to water lowers the boundary lubricating properties of negatively charged hydrophilic PDMS surfaces by 1 order of magnitude to mu approximately 0.01. We consider this to arise from the large hydration sheaths and resulting "ball-bearing" properties of the hydrated phosphate ions, which form a lubricating barrier against asperity contact. These findings offer new insights toward biolubrication processes and suggest that chitosan-hyaluronan polyelectrolyte multilayer films have the potential to be used in (bio-) applications requiring low friction as well as resistance to biofouling and wear.

  13. Surface morphology and friction coefficient of various types of Foley catheter.

    PubMed

    Graiver, D; Durall, R L; Okada, T

    1993-05-01

    Urinary catheters are commonly used in chronic care facilities and geriatric homes. Problems associated with the catheters include encrustation, infection, physical trauma and inflammation. Many of these problems can be correlated to the catheter surface. Previous studies have dealt with problems associated with surface morphology and catheter composition and numerous catheter coatings have been developed to alter the surface including siliconized, Teflon and polyurethane hydrogel coatings. The hydrogel coating appears best, as it imparts a smooth, soft surface layer with lubricating properties. The paper describes a new poly(vinyl alcohol) hydrogel coating and compares its surface morphology and lubricity with other catheter coatings. Each catheter coating-type was examined by scanning electron microscopy for surface morphology. The new hydrogel coating was found to be smooth with no evidence of cracking. The apparent friction coefficient was used as an indication of surface lubricity. Friction measurement tests of the new hydrogen coating were run underwater and the friction coefficient was determined between the hydrated catheter surface and the hydrogel surface. The new hydrogel coating was found to have a high degree of lubricity in its hydrated state.

  14. Determination of electrolyte friction from measurements of the tracer diffusion coefficients, mutual diffusion coefficients, and electrophoretic mobilities of charged spheres

    NASA Astrophysics Data System (ADS)

    Gorti, Sridhar; Plank, Lindsay; Ware, B. R.

    1984-07-01

    The technique of fluorescence recovery after photobleaching has been used to measure the tracer diffusion coefficient of fluorescein-labeled charged polystyrene spheres in dilute solutions as a function of solution ionic strength. As the ratio of the particle radius (a) to the Debye-Hückel screening length (κ-1) was varied from 13 to 0.6, a 20% reduction in tracer diffusion coefficient was observed. The mutual diffusion coefficient, measured by quasielastic light scattering, increased as κa was reduced, demonstrating the dominant effect of thermodynamic factors on this parameter. The tracer data have been compared with theoretical predictions of other workers describing the influence of small-ion interactions with a charge sphere on its translational friction. The theoretical results of Schurr, and Booth, involve an explicit dependence on the electrokinetic charge of the sphere and yield estimates of this parameter (by least squares) which are significantly smaller than those obtained from laser Doppler electrophoretic light scattering results for the electrophoretic mobility of the labeled spheres. Approximations in the theoretical analyses are expected to account for these discrepancies.

  15. Simulation of bond strength between matrix and filler of aligned continuous fiber composite in term of friction coefficient

    NASA Astrophysics Data System (ADS)

    Aditya, Irfan Dwi; Widayani, Viridi, Sparisoma; Khotimah, Siti Nurul

    2015-09-01

    This work presents a new approach which demonstrates that the degree of fiber-matrix bonding can be quantified by means of the friction coefficient, rather than by using a adhesion parameter. ABAQUS finite element analysis software is used to simulate bonding behavior in term of friction coefficient between fiber and matrix of aligned continuous fiber composite. Simulation result shows that Young modulus of the composite increases linearly with the increase of friction coefficient between matrix and fiber. This shows that if the value of Young's modulus of the fiber is far greater than the Young's modulus of the matrix, then the value of Young's modulus of the resulting composite will tend to get closer to the value of Young's modulus of the fiber. It means that the influence of coefficient of friction between the fiber and the matrix is getting insignificant.

  16. The impact of surface and geometry on coefficient of friction of artificial hip joints.

    PubMed

    Choudhury, Dipankar; Vrbka, Martin; Mamat, Azuddin Bin; Stavness, Ian; Roy, Chanchal K; Mootanah, Rajshree; Krupka, Ivan

    2017-08-01

    Coefficient of friction (COF) tests were conducted on 28-mm and 36-mm-diameter hip joint prostheses for four different material combinations, with or without the presence of Ultra High Molecular Weight Polyethylene (UHMWPE) particles using a novel pendulum hip simulator. The effects of three micro dimpled arrays on femoral head against a polyethylene and a metallic cup were also investigated. Clearance played a vital role in the COF of ceramic on polyethylene and ceramic on ceramic artificial hip joints. Micro dimpled metallic femoral heads yielded higher COF against a polyethylene cup; however, with metal on metal prostheses the dimpled arrays significantly reduced the COF. In situ images revealed evidence that the dimple arrays enhanced film formation, which was the main mechanism that contributed to reduced friction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Differences in concentration lengths computed using band-averaged mass extinction coefficients and band-averaged transmittance

    NASA Astrophysics Data System (ADS)

    Farmer, W. Michael

    1990-09-01

    An understanding of how broad-band transmittance is affected by the atmosphere is crucial to accurately predicting how broad-band sensors such as FLIRs will perform. This is particularly true for sensors required to function in an environment where countermeasures such as smokes/obscurants have been used to limit sensor performance. A common method of estimating the attenuation capabilities of smokes/obscurants released in the atmosphere to defeat broad-band sensors is to use a band averaged extinction coefficient with concentration length values in the Beer-Bouguer transmission law. This approach ignores the effects of source spectra, sensor response, and normal atmospheric attenuation, and can lead to results for band averages of the relative transmittance that are significantly different from those obtained using the source spectra, sensor response, and normal atmospheric transmission. In this paper we discuss the differences that occur in predicting relative transmittance as a function of concentration length using band-averaged mass extinction coefficients or computing the band-averaged transmittance as a function of source spectra. Two examples are provided to illustrate the differences in results. The first example is applicable to 8- to l4-um band transmission through natural fogs. The second example considers 3- to 5-um transmission through phosphorus smoke produced at 17% and 90% relative humidity. The results show major differences in the prediction of concentration length values by the two methods when the relative transmittance falls below about 20%.

  18. Measurements of heat transfer coefficients and friction factors in passages rib-roughened on all walls

    SciTech Connect

    Taslim, M.E.; Li, T.; Spring, S.D.

    1998-07-01

    A liquid crystal technique was used to measure heat transfer coefficients in twelve test sections with square and trapezoidal cross-sectional areas representing blade midchord cooling cavities in a modern gas turbine. Full-length ribs were configured on suction side as well as pressure side walls while half-length ribs were mounted on partition walls between adjacent cooling cavities. Ribs were in staggered arrangements with a nominal blockage ratio of 22% and an angle of attack to the mainstream flow, {alpha}, of 90 deg. Heat transfer measurements were performed on the roughened walls with full-length as well as half-length ribs. Nusselt numbers, friction factors, and thermal performances of all geometries are compared. The most important conclusion of this study is that the roughening of the partition walls enhances the heat transfer coefficients on those walls but, more importantly, enhances heat transfer coefficients on the primary walls considerably.

  19. An Experimental Study on Normal Stress and Shear Rate Dependency of Basic Friction Coefficient in Dry and Wet Limestone Joints

    NASA Astrophysics Data System (ADS)

    Mehrishal, Seyedahmad; Sharifzadeh, Mostafa; Shahriar, Korosh; Song, Jae-Jon

    2016-12-01

    Among all parameters that affect the friction of rocks, variable normal stress and slip rate are the most important second-order parameters. The shear-rate- and normal-stress-dependent friction behavior of rock discontinuities may significantly influence the dynamic responses of rock mass. In this research, two limestone rock types, which were travertine and onyx marble with slickenside and grinded #80 surfaces, were prepared and CNL direct shear tests were performed on the joints under various shear conditions. The shearing rate varied from 0.1 to 50 mm/min under different normal stresses (from 2 to 30 % of UCS) in both dry and wet conditions. Experiments showed that the friction coefficient of slickensided and ground #80 surfaces of limestone increased with the increasing shear velocity and decreased with the increasing normal stress. Micro-asperity interlocking between ground #80 surfaces showed higher wear and an increase in friction coefficient ( µ) compared to slickensided surfaces. Slickensided samples with moist surfaces showed an increase in the coefficient of friction compared to dry surfaces; however, on ground #80 surfaces, the moisture decreased the coefficient of friction to a smaller value. Slickenside of limestone typically slides stably in a dry condition and by stick-slip on moist surfaces. The observed shear-rate- and normal-stress-dependent friction behavior can be explained by a similar framework to that of the adhesion theory of friction and a friction mechanism that involves the competition between microscopic dilatant slip and surface asperity deformation. The results have important implications for understanding the behavior of basic and residual friction coefficients of limestone rock surfaces.

  20. Description of new dry granular materials of variable cohesion and friction coefficient: Implications for laboratory modeling of the brittle crust

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M. M.; Bulois, C.; Mourgues, R.; Galland, O.; Legland, J.-B.; Gruber, C.

    2016-08-01

    Cohesion and friction coefficient are fundamental parameters for scaling brittle deformation in laboratory models of geological processes. However, they are commonly not experimental variable, whereas (1) rocks range from cohesion-less to strongly cohesive and from low friction to high friction and (2) strata exhibit substantial cohesion and friction contrasts. This brittle paradox implies that the effects of brittle properties on processes involving brittle deformation cannot be tested in laboratory models. Solving this paradox requires the use of dry granular materials of tunable and controllable brittle properties. In this paper, we describe dry mixtures of fine-grained cohesive, high friction silica powder (SP) and low-cohesion, low friction glass microspheres (GM) that fulfill this requirement. We systematically estimated the cohesions and friction coefficients of mixtures of variable proportions using two independent methods: (1) a classic Hubbert-type shear box to determine the extrapolated cohesion (C) and friction coefficient (μ), and (2) direct measurements of the tensile strength (T0) and the height (H) of open fractures to calculate the true cohesion (C0). The measured values of cohesion increase from 100 Pa for pure GM to 600 Pa for pure SP, with a sub-linear trend of the cohesion with the mixture GM content. The two independent cohesion measurement methods, from shear tests and tension/extensional tests, yield very similar results of extrapolated cohesion (C) and show that both are robust and can be used independently. The measured values of friction coefficients increase from 0.5 for pure GM to 1.05 for pure SP. The use of these granular material mixtures now allows testing (1) the effects of cohesion and friction coefficient in homogeneous laboratory models and (2) testing the effect of brittle layering on brittle deformation, as demonstrated by preliminary experiments. Therefore, the brittle properties become, at last, experimental variables.

  1. Experimental friction coefficients for bovine cartilage measured with a pin-on-disk tribometer: testing configuration and lubricant effects.

    PubMed

    Shi, Liu; Sikavitsas, Vassilios I; Striolo, Alberto

    2011-01-01

    The friction coefficient between wet articular cartilage surfaces was measured using a pin-on-disk tribometer adopting different testing configurations: cartilage-on-pin vs. alumina-on-disk (CA); cartilage-on-pin vs. cartilage-on-disk (CC); and alumina-on-pin vs. cartilage-on-disk (AC). Several substances were dissolved in the phosphate buffered saline (PBS) solution to act as lubricants: 10,000 molecular weight (MW) polyethylene glycol (PEG), 100,000 MW PEG, and chondroitin sulfate (CS), all at 100 mg/mL concentration. Scanning electron microscopy photographs of the cartilage specimens revealed limited wear due to the experiment. Conducting the experiments in PBS solutions we provide evidence according to which a commercial pin-on-disk tribometer allows us to assess different lubrication mechanisms active in cartilage. Specifically, we find that the measured friction coefficient strongly depends on the testing configuration. Our results show that the friction coefficient measured under CC and AC testing configurations remains very low as the sliding distance increases, probably because during the pin displacement the pores present in the cartilage replenish with PBS solution. Under such conditions the fluid phase supports a large load fraction for long times. By systematically altering the composition of the PBS solution we demonstrate the importance of solution viscosity in determining the measured friction coefficient. Although the friction coefficient remains low under the AC testing configuration in PBS, 100 mg/mL solutions of both CS and 100,000 MW PEG in PBS further reduce the friction coefficient by ~40%. Relating the measured friction coefficient to the Hersey number, our results are consistent with a Stribeck curve, confirming that the friction coefficient of cartilage under the AC testing configuration depends on a combination of hydrodynamic, boundary, and weep bearing lubrication mechanisms.

  2. Determination of coefficient of friction for self-expanding stent-grafts.

    PubMed

    Vad, Siddharth; Eskinazi, Amanda; Corbett, Timothy; McGloughlin, Tim; Vande Geest, Jonathan P

    2010-12-01

    Migration of stent-grafts (SGs) after endovascular aneurysm repair of abdominal aortic aneurysms is a serious complication that may require secondary intervention. Experimental, analytical, and computational studies have been carried out in the past to understand the factors responsible for migration. In an experimental setting, it can be very challenging to correctly capture and understand the interaction between a SG and an artery. Quantities such as coefficient of friction (COF) and contact pressures that characterize this interaction are difficult to measure using an experimental approach. This behavior can be investigated with good accuracy using finite element modeling. Although finite element models are able to incorporate frictional behavior of SGs, the absence of reliable values of coefficient of friction make these simulations unreliable. The aim of this paper is to demonstrate a method for determining the coefficients of friction of a self-expanding endovascular stent-graft. The methodology is demonstrated by considering three commercially available self-expanding SGs, labeled as A, B, and C. The SGs were compressed, expanded, and pulled out of polymeric cylinders of varying diameters and the pullout force was recorded in each case. The SG geometries were recreated using computer-aided design modeling and the entire experiment was simulated in ABAQUS 6.8/STANDARD. An optimization procedure was carried out for each SG oversize configuration to determine the COF that generated a frictional force corresponding to that measured in the experiment. The experimental pullout force and analytically determined COF for SGs A, B, and C were in the range of 6-9 N, 3-12 N, and 3-9 N and 0.08-0.16, 0.22-0.46, and 0.012-0.018, respectively. The computational model predicted COFs in the range of 0.00025-0.0055, 0.025-0.07, and 0.00025-0.006 for SGs A, B, and C, respectively. Our results suggest that for SGs A and B, which are exoskeleton based devices, the pullout forces

  3. Experimental Measurement of the Static Coefficient of Friction at the Ti-Ti Taper Connection in Total Hip Arthroplasty.

    PubMed

    Bitter, T; Khan, I; Marriott, T; Schreurs, B W; Verdonschot, N; Janssen, D

    2016-03-01

    The modular taper junction in total hip replacements has been implicated as a possible source of wear. The finite-element (FE) method can be used to study the wear potential at the taper junction. For such simulations it is important to implement representative contact parameters, in order to achieve accurate results. One of the main parameters in FE simulations is the coefficient of friction. However, in current literature, there is quite a wide spread in coefficient of friction values (0.15 - 0.8), which has a significant effect on the outcome of the FE simulations. Therefore, to obtain more accurate results, one should use a coefficient of friction that is determined for the specific material couple being analyzed. In this study, the static coefficient of friction was determined for two types of titanium-on-titanium stem-adaptor couples, using actual cut-outs of the final implants, to ensure that the coefficient of friction was determined consistently for the actual implant material and surface finish characteristics. Two types of tapers were examined, Biomet type-1 and 12/14, where type-1 has a polished surface finish and the 12/14 is a microgrooved system. We found static coefficients of friction of 0.19 and 0.29 for the 12/14 and type-1 stem-adaptor couples, respectively.

  4. Electromechanical imitator of antilock braking modes of wheels with pneumatic tire and its application for the runways friction coefficient measurement

    NASA Astrophysics Data System (ADS)

    Putov, A. V.; Kopichev, M. M.; Ignatiev, K. V.; Putov, V. V.; Stotckaia, A. D.

    2017-01-01

    In this paper it is considered a discussion of the technique that realizes a brand new method of runway friction coefficient measurement based upon the proposed principle of measuring wheel braking control for the imitation of antilock braking modes that are close to the real braking modes of the aircraft chassis while landing that are realized by the aircraft anti-skid systems. Also here is the description of the model of towed measuring device that realizes a new technique of runway friction coefficient measuring, based upon the measuring wheel braking control principle. For increasing the repeatability accuracy of electromechanical braking imitation system the sideslip (brake) adaptive control system is proposed. Based upon the Burkhard model and additive random processes several mathematical models were created that describes the friction coefficient arrangement along the airstrip with different qualitative adjectives. Computer models of friction coefficient measuring were designed and first in the world the research of correlation between the friction coefficient measuring results and shape variations, intensity and cycle frequency of the measuring wheel antilock braking modes. The sketch engineering documentation was designed and prototype of the latest generation measuring device is ready to use. The measuring device was tested on the autonomous electromechanical examination laboratory treadmill bench. The experiments approved effectiveness of method of imitation the antilock braking modes for solving the problem of correlation of the runway friction coefficient measuring.

  5. A new symmetric form of the bounce-averaged quasilinear diffusion coefficient in toroidal geometry

    NASA Astrophysics Data System (ADS)

    Lee, Jungpyo; Smithe, David; Berry, Lee; Jaeger, Erwin; Wright, John; Bonoli, Paul

    2016-10-01

    Kennel-Engelmann (K-E) quasilinear diffusion coefficients are used in many RF wave codes to couple the Maxwell equation solver with a Fokker-Plank calculation. The diagonal component of the coefficient tensor in the speed direction should be positive in the quasi-linear assumption for the H-theorem. However, in the application to toroidal geometry, the bounce-average of the K-E coefficients does not guarantee positive values for an arbitrary wave spectrum due to the interference between the spectral modes. The negative bounce-averaged diffusion coefficients unexpectedly occur because the K-E coefficient is derived in a cylindrical limit, in which the resonance kernel (gyrofrequency, wave vector and parallel velocity) in the phase integral do not vary along the phase trajectory, while the bounce-average is computed in a toroidal geometry. To guarantee the positiveness, we derive a new form of the diffusion coefficient that keeps the symmetric form between the bounce-integral and the trajectory integral. The new coefficients are implemented in a code for ion cyclotron waves in a tokamak (TORIC). Using the new form, the error of quasilinear diffusion coefficients due to the negative values is reduced significantly, and the toroidal effects are well captured. Work supported by US Department of Energy Contract No. DE-FC02-01ER54648.

  6. NGA-West 2 GMPE average site coefficients for use in earthquake-resistant design

    USGS Publications Warehouse

    Borcherdt, Roger D.

    2015-01-01

    Site coefficients corresponding to those in tables 11.4–1 and 11.4–2 of Minimum Design Loads for Buildings and Other Structures published by the American Society of Civil Engineers (Standard ASCE/SEI 7-10) are derived from four of the Next Generation Attenuation West2 (NGA-W2) Ground-Motion Prediction Equations (GMPEs). The resulting coefficients are compared with those derived by other researchers and those derived from the NGA-West1 database. The derivation of the NGA-W2 average site coefficients provides a simple procedure to update site coefficients with each update in the Maximum Considered Earthquake Response MCER maps. The simple procedure yields average site coefficients consistent with those derived for site-specific design purposes. The NGA-W2 GMPEs provide simple scale factors to reduce conservatism in current simplified design procedures.

  7. Prediction of broadband attenuation computed using band-averaged mass extinction coefficients and band-averaged transmittance

    NASA Astrophysics Data System (ADS)

    Farmer, W. M.

    1991-09-01

    A common method of estimating the attenuation capabilities of military smokes/obscurants is to use a band-averaged mass-extinction coefficient with concentration-length values in the Beer-Bouguer transmission law. This approach ignores the effects of source spectra, sensor response, and normal atmospheric attenuation on broadband transmittance characteristics, which can significantly affect broadband transmittance. The differences that can occur in predicting relative transmittance as a function of concentration length by using band-averaged mass-extinction coefficients as opposed to more properly computing the band-averaged transmittance are discussed in this paper. Two examples are provided to illustrate the differences in results. The first example considers 3- to 5-micron and 8- to 14-micron band transmission through natural fogs. The second example considers 3- to 5-micron and 8- to 12-micron transmission through phosphorus-derived smoke (a common military obscurant) produced at 17 percent and at 90 percent relative humidity. Major differences are found in the values of concentration lengths predicted by the two methods when the transmittance relative to an unobscured atmosphere falls below about 20 percent. These results can affect conclusions concerning the detection of targets in smokes screens, smoke concentration lengths required to obscure a target, and radiative transport through polluted atmospheres.

  8. Method for producing ceramic composition having low friction coefficient at high operating temperatures

    DOEpatents

    Lankford, Jr., James

    1988-01-01

    A method for producing a stable ceramic composition having a surface with a low friction coefficient and high wear resistance at high operating temperatures. A first deposition of a thin film of a metal ion is made upon the surface of the ceramic composition and then a first ion implantation of at least a portion of the metal ion is made into the near surface region of the composition. The implantation mixes the metal ion and the ceramic composition to form a near surface composite. The near surface composite is then oxidized sufficiently at high oxidizing temperatures to form an oxide gradient layer in the surface of the ceramic composition.

  9. Optimization of method a load cell calibration for the measurement of coefficient of friction

    NASA Astrophysics Data System (ADS)

    Castro, R. M.; Pereira, M.; Sousa, A. R.; Curi, E. I. M.; Izidoro, C. L.; Correa, L. C.

    2016-07-01

    The instrumentation of equipment for mechanical testing is used to optimize the time to deliver a result, besides minimizing errors associated with manual measurements. Given this context, this work aims to present a calibration method for a load cell to determine the measurement results of force and friction coefficient, developed from on rotary pin-on-disk tribometer. The results indicate that the procedure provides measurements reliable for the tribological phenomena, resulting in with proximity the values provided by the ASTM G99-04.

  10. Increased shoe sole hardness results in compensatory changes in the utilized coefficient of friction during walking.

    PubMed

    Tsai, Yi-Ju; Powers, Christopher M

    2009-10-01

    Based on mechanical testing, harder soled shoes have been shown to provide less available friction than soft soled shoes. Whether or not humans adjust their utilized coefficient of friction (COFu) and gait kinematics to accommodate the decrease in available friction while wearing hard soled shoes is not known. Fifty-six young adults participated in this study. Ground reaction forces, full body kinematics, stride characteristics and subjective perception of footwear slipperiness were recorded under both hard and soft soled shoe conditions. Paired t-tests were used to identify the differences between two shoes conditions. Results indicated that the peak COFu was significantly less when wearing the hard soled shoes compared to when wearing the soft soled shoes (0.23 vs. 0.26, P<0.001). The decrease in peak COFu was the result of a decrease in the resultant shear forces at the time of peak COFu as no difference in the vertical ground reaction forces was observed. When wearing hard soled shoes, subjects demonstrated decreased total body center of mass (COM) acceleration prior to and immediately following initial contact, decreased walking velocity, shortened stride length, and reduced ankle dorsiflexion angle at initial contact. Taken together, we believe that these gait modifications represent behavioral adaptations to wearing shoes that are perceived to be more slippery.

  11. Regulation of the friction coefficient of articular cartilage by TGF-beta1 and IL-1beta.

    PubMed

    DuRaine, Grayson; Neu, Corey P; Chan, Stephanie M T; Komvopoulos, Kyriakos; June, Ronald K; Reddi, A Hari

    2009-02-01

    Articular cartilage functions to provide a low-friction surface for joint movement for many decades of life. Superficial zone protein (SZP) is a glycoprotein secreted by chondrocytes in the superficial layer of articular cartilage that contributes to effective boundary lubrication. In both cell and explant cultures, TGF-beta1 and IL-1beta have been demonstrated to, respectively, upregulate and downregulate SZP protein levels. It was hypothesized that the friction coefficient of articular cartilage could also be modulated by these cytokines through SZP regulation. The friction coefficient between cartilage explants (both untreated and treated with TGF-beta1 or IL-1beta) and a smooth glass surface due to sliding in the boundary lubrication regime was measured with a pin-on-disk tribometer. SZP was quantified using an enzyme-linked immunosorbant assay and localized by immunohistochemistry. Both TGF-beta1 and IL-1beta treatments resulted in the decrease of the friction coefficient of articular cartilage in a location- and time-dependent manner. Changes in the friction coefficient due to the TGF-beta1 treatment corresponded to increased depth of SZP staining within the superficial zone, while friction coefficient changes due to the IL-1beta treatment were independent of SZP depth of staining. However, the changes induced by the IL-1beta treatment corresponded to changes in surface roughness, determined from the analysis of surface images obtained with an atomic force microscope. These findings demonstrate that the low friction of articular cartilage can be modified by TGF-beta1 and IL-1beta treatment and that the friction coefficient depends on multiple factors, including SZP localization and surface roughness.

  12. Changes in condylar coefficient of friction after osteochondral graft transplantation and modulation with hyaluronan.

    PubMed

    Lane, John; Healey, Robert; Amiel, David

    2009-12-01

    To better understand the changes in the cartilage coefficient of friction (COF) after an osteochondral repair, an assessment of dynamic loads has been developed using a goat knee model. The application of hyaluronan (HA) was also assessed for its lubricative properties and the resulting COF of the knee after osteochondral repair. A total of 18 caprine knees were dissected and mounted into an Instron load frame (Instron, Norwood, MA) for testing. The COF was measured in 10 knees relative to the normal, unaltered joint and then calibrated to account for friction of the system. These experimental knees were tested in 5 modes: normal; empty 4.5-mm defect; and osteochondral repairs that were elevated, flush, or depressed relative to the cartilage surface. Saline solution lavage kept the knees moist during testing. The effect of HA was evaluated after mechanical testing. Eight knees were used to study the effect of lavage on the joints because of the significant increase in the COF that it produced. Whereas all modes increased the COF from normal levels, the most significant changes occurred when there was proud placement. Increases of 4 times the normal friction levels were measured. Increases in the COF were also associated with saline solution lavage (0.006 to 0.046). There was a significant reduction in friction after HA injection, which reduced the COF to near-normal levels. There is a significant increase in the COF associated with saline solution lavage and an osteochondral plug being left proud, which can be temporarily reduced with a lubricative material such as HA. Dramatic increases in the COF can potentially damage chondrocytes when the patient begins articulating the joint after surgery. Such injuries may affect the ability of the cartilage to heal fully. Reducing the elevated COF with lubricating materials, such as HA, is recommended based on the results of this study.

  13. Estimation of sediment friction coefficient from heating upon APC penetration during the IODP NanTroSEIZE

    NASA Astrophysics Data System (ADS)

    Kinoshita, M.; Kawamura, K.; Lin, W.

    2015-12-01

    During the Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE) of the Integrated Ocean Drilling Program (IODP), the advanced piston corer temperature (APC-T) tool was used to determine in situ formation temperatures while piston coring down to ~200 m below sea floor. When the corer is fired into the formation, temperature around the shoe abruptly increases due to the frictional heating. The temperature rise due to the frictional heat at the time of penetration is 10 K or larger. We found that the frictional temperature rise (=maximum temperature) increases with increasing depth, and that its intersection at the seafloor seems non-zero. Frictional heat energy is proportional to the maximum temperature rise, which is confirmed by a FEM numerical simulation of 2D cylindrical system. Here we use the result of numerical simulation to convert the observed temperature rise into the frictional heat energy. The frictional heat energy is represented as the product of the shooting length D and the shear stress (τ) between the pipe and the sediment. Assuming a coulomb slip regime, the shear stress is shows as: τ= τ0 + μ*(Sv-Pp), where τ0 is the cohesive stress, μ the dynamic frictional coefficient between the pipe and the sediment, Sv the normal stress at the pipe, and Pp the pore pressure. This can explain the non-zero intersection as well as depth-dependent increase for the frictional heating observed in the APC-T data. Assuming a hydrostatic state and by using the downhole bulk density data, we estimated the friction coefficient for each APC-T measurement. For comparison, we used the vane-shear strength measured on core samples to estimate the friction coefficients. The frictional coefficients μ were estimated as ranging 0.01 - 0.06, anomalously lower than expected for shallow marine sediments. They were lower than those estimated from vane-shear data, which range 0.05 to 0.2. Still, both estimates exhibit a significant increase in the friction coefficient at

  14. Changes in the surface roughness and friction coefficient of orthodontic bracket slots before and after treatment.

    PubMed

    Liu, Xiaomo; Lin, Jiuxiang; Ding, Peng

    2013-01-01

    In this study, we tested the surface roughness of bracket slots and the friction coefficient between the bracket and the stainless steel archwire before and after orthodontic treatment. There were four experimental groups: groups 1 and 2 were 3M new and retrieved brackets, respectively, and groups 3 and 4 were BioQuick new and retrieved brackets, respectively. All retrieved brackets were taken from patients with the first premolar extraction and using sliding mechanics to close the extraction space. The surface roughness of specimens was evaluated using an optical interferometry profilometer, which is faster and nondestructive compared with a stylus profilometer, and provided a larger field, needing no sample preparation, compared with atomic force microscopy. Orthodontic treatment resulted in significant increases in surface roughness and coefficient of friction for both brands of brackets. However, there was no significant difference by brand for new or retrieved brackets. These retrieval analysis results highlight the necessity of reevaluating the properties and clinical behavior of brackets during treatment to make appropriate treatment decisions. © Wiley Periodicals, Inc.

  15. Estimation of coefficient of rolling friction by the evolvent pendulum method

    NASA Astrophysics Data System (ADS)

    Alaci, S.; Ciornei, F. C.; Ciogole, A.; Ciornei, M. C.

    2017-05-01

    The paper presents a method for finding the coefficient of rolling friction using an evolvent pendulum. The pendulum consists in a fixed cylindrical body and a mobile body presenting a plane surface in contact with a cylindrical surface. The mobile body is placed over the fixed one in an equilibrium state; after applying a small impulse, the mobile body oscillates. The motion of the body is video recorded and afterwards the movie is analyzed by frames and the decrease with time of angular amplitude of the pendulum is found. The equation of motion is established for oscillations of the mobile body. The equation of motion, differential nonlinear, is integrated by Runge-Kutta method. Imposing the same damping both to model’s solution and to theoretical model, the value of coefficient of rolling friction is obtained. The last part of the paper presents results for actual pairs of materials. The main advantage of the method is the fact that the dimensions of contact regions are small, of order a few millimeters, and thus is substantially reduced the possibility of variation of mechanical characteristic for the two surfaces.

  16. A hybrid PSO-SVM-based method for predicting the friction coefficient between aircraft tire and coating

    NASA Astrophysics Data System (ADS)

    Zhan, Liwei; Li, Chengwei

    2017-02-01

    A hybrid PSO-SVM-based model is proposed to predict the friction coefficient between aircraft tire and coating. The presented hybrid model combines a support vector machine (SVM) with particle swarm optimization (PSO) technique. SVM has been adopted to solve regression problems successfully. Its regression accuracy is greatly related to optimizing parameters such as the regularization constant C , the parameter gamma γ corresponding to RBF kernel and the epsilon parameter \\varepsilon in the SVM training procedure. However, the friction coefficient which is predicted based on SVM has yet to be explored between aircraft tire and coating. The experiment reveals that drop height and tire rotational speed are the factors affecting friction coefficient. Bearing in mind, the friction coefficient can been predicted using the hybrid PSO-SVM-based model by the measured friction coefficient between aircraft tire and coating. To compare regression accuracy, a grid search (GS) method and a genetic algorithm (GA) are used to optimize the relevant parameters (C , γ and \\varepsilon ), respectively. The regression accuracy could be reflected by the coefficient of determination ({{R}2} ). The result shows that the hybrid PSO-RBF-SVM-based model has better accuracy compared with the GS-RBF-SVM- and GA-RBF-SVM-based models. The agreement of this model (PSO-RBF-SVM) with experiment data confirms its good performance.

  17. Effect of the coefficient of friction of a running surface on sprint time in a sled-towing exercise.

    PubMed

    Linthorne, Nicholas P; Cooper, James E

    2013-06-01

    This study investigated the effect of the coefficient of friction of a running surface on an athlete's sprint time in a sled-towing exercise. The coefficients of friction of four common sports surfaces (a synthetic athletics track, a natural grass rugby pitch, a 3G football pitch, and an artificial grass hockey pitch) were determined from the force required to tow a weighted sled across the surface. Timing gates were then used to measure the 30-m sprint time for six rugby players when towing a sled of varied weight across the surfaces. There were substantial differences between the coefficients of friction for the four surfaces (micro = 0.21-0.58), and in the sled-towing exercise the athlete's 30-m sprint time increased linearly with increasing sled weight. The hockey pitch (which had the lowest coefficient of friction) produced a substantially lower rate of increase in 30-m sprint time, but there were no significant differences between the other surfaces. The results indicate that although an athlete's sprint time in a sled-towing exercise is affected by the coefficient offriction of the surface, the relationship relationship between the athlete's rate of increase in 30-m sprint time and the coefficient of friction is more complex than expected.

  18. Coefficient of Friction Patterns Can Identify Damage in Native and Engineered Cartilage Subjected to Frictional-Shear Stress

    PubMed Central

    Whitney, G. A.; Mansour, J. M.; Dennis, J. E.

    2015-01-01

    The mechanical loading environment encountered by articular cartilage in situ makes frictional-shear testing an invaluable technique for assessing engineered cartilage. Despite the important information that is gained from this testing, it remains under-utilized, especially for determining damage behavior. Currently, extensive visual inspection is required to assess damage; this is cumbersome and subjective. Tools to simplify, automate, and remove subjectivity from the analysis may increase the accessibility and usefulness of frictional-shear testing as an evaluation method. The objective of this study was to determine if the friction signal could be used to detect damage that occurred during the testing. This study proceeded in two phases: first, a simplified model of biphasic lubrication that does not require knowledge of interstitial fluid pressure was developed. In the second phase, frictional-shear tests were performed on 74 cartilage samples, and the simplified model was used to extract characteristic features from the friction signals. Using support vector machine classifiers, the extracted features were able to detect damage with a median accuracy of approximately 90%. The accuracy remained high even in samples with minimal damage. In conclusion, the friction signal acquired during frictional-shear testing can be used to detect resultant damage to a high level of accuracy. PMID:25691395

  19. Coefficient of Friction Patterns Can Identify Damage in Native and Engineered Cartilage Subjected to Frictional-Shear Stress.

    PubMed

    Whitney, G A; Mansour, J M; Dennis, J E

    2015-09-01

    The mechanical loading environment encountered by articular cartilage in situ makes frictional-shear testing an invaluable technique for assessing engineered cartilage. Despite the important information that is gained from this testing, it remains under-utilized, especially for determining damage behavior. Currently, extensive visual inspection is required to assess damage; this is cumbersome and subjective. Tools to simplify, automate, and remove subjectivity from the analysis may increase the accessibility and usefulness of frictional-shear testing as an evaluation method. The objective of this study was to determine if the friction signal could be used to detect damage that occurred during the testing. This study proceeded in two phases: first, a simplified model of biphasic lubrication that does not require knowledge of interstitial fluid pressure was developed. In the second phase, frictional-shear tests were performed on 74 cartilage samples, and the simplified model was used to extract characteristic features from the friction signals. Using support vector machine classifiers, the extracted features were able to detect damage with a median accuracy of approximately 90%. The accuracy remained high even in samples with minimal damage. In conclusion, the friction signal acquired during frictional-shear testing can be used to detect resultant damage to a high level of accuracy.

  20. [Tribological assessment of articular cartilage. A system for the analysis of the friction coefficient of cartilage, regenerates and tissue engineering constructs; initial results].

    PubMed

    Schwarz, M L R; Schneider-Wald, B; Krase, A; Richter, W; Reisig, G; Kreinest, M; Heute, S; Pott, P P; Brade, J; Schütte, A

    2012-10-01

    Values for the friction coefficient of articular cartilage are given in ranges of percentage and lower and are calculated as a quotient of the friction force and the perpendicular loading force acting on it. Thus, a sophisticated system has to be provided for analysing the friction coefficient under different conditions in particular when cartilage should be coupled as friction partner. It is possible to deep-freeze articular cartilage before measuring the friction coefficient as the procedure has no influence on the results. The presented tribological system was able to distinguish between altered and native cartilage. Furthermore, tissue engineered constructs for cartilage repair were differentiated from native cartilage probes by their friction coefficient. In conclusion a tribological equipment is presented to analyze the friction coefficient of articular cartilage, in vivo generated cartilage regenerates and in vitro tissue engineered constructs regarding their biomechanical properties for quality assessment.

  1. Sliding motion modulates stiffness and friction coefficient at the surface of tissue engineered cartilage.

    PubMed

    Grad, S; Loparic, M; Peter, R; Stolz, M; Aebi, U; Alini, M

    2012-04-01

    Functional cartilage tissue engineering aims to generate grafts with a functional surface, similar to that of authentic cartilage. Bioreactors that stimulate cell-scaffold constructs by simulating natural joint movements hold great potential to generate cartilage with adequate surface properties. In this study two methods based on atomic force microscopy (AFM) were applied to obtain information about the quality of engineered graft surfaces. For better understanding of the molecule-function relationships, AFM was complemented with immunohistochemistry. Bovine chondrocytes were seeded into polyurethane scaffolds and subjected to dynamic compression, applied by a ceramic ball, for 1h daily [loading group 1 (LG1)]. In loading group 2 (LG2), the ball additionally oscillated over the scaffold, generating sliding surface motion. After 3 weeks, the surfaces of the engineered constructs were analyzed by friction force and indentation-type AFM (IT-AFM). Results were complemented and compared to immunohistochemical analyses. The loading type significantly influenced the mechanical and histological outcomes. Constructs of LG2 exhibited lowest friction coefficient and highest micro- and nanostiffness. Collagen type II and aggrecan staining were readily observed in all constructs and appeared to reach deeper areas in loaded (LG1, LG2) compared to unloaded scaffolds. Lubricin was specifically detected at the top surface of LG2. This study proposes a quantitative AFM-based functional analysis at the micrometer- and nanometer scale to evaluate the quality of cartilage surfaces. Mechanical testing (load-bearing) combined with friction analysis (gliding) can provide important information. Notably, sliding-type biomechanical stimuli may favor (re-)generation and maintenance of functional articular surfaces and support the development of mechanically competent engineered cartilage. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights

  2. Evaluation of soft x-ray average recombination coefficient and average charge for metallic impurities in beam-heated plasmas

    SciTech Connect

    Sesnic, S.S.; Bitter, M.; Hill, K.W.; Hiroe, S.; Hulse, R.; Shimada, M.; Stratton, B.; von Goeler, S.

    1986-05-01

    The soft x-ray continuum radiation in TFTR low density neutral beam discharges can be much lower than its theoretical value obtained by assuming a corona equilibrium. This reduced continuum radiation is caused by an ionization equilibrium shift toward lower states, which strongly changes the value of the average recombination coefficient of metallic impurities anti ..gamma.., even for only slight changes in the average charge, anti Z. The primary agent for this shift is the charge exchange between the highly ionized impurity ions and the neutral hydrogen, rather than impurity transport, because the central density of the neutral hydrogen is strongly enhanced at lower plasma densities with intense beam injection. In the extreme case of low density, high neutral beam power TFTR operation (energetic ion mode) the reduction in anti ..gamma.. can be as much as one-half to two-thirds. We calculate the parametric dependence of anti ..gamma.. and anti Z for Ti, Cr, Fe, and Ni impurities on neutral density (equivalent to beam power), electron temperature, and electron density. These values are obtained by using either a one-dimensional impurity transport code (MIST) or a zero-dimensional code with a finite particle confinement time. As an example, we show the variation of anti ..gamma.. and anti Z in different TFTR discharges.

  3. Lowering coefficient of friction in Cu alloys with stable gradient nanostructures

    PubMed Central

    Chen, Xiang; Han, Zhong; Li, Xiuyan; Lu, K.

    2016-01-01

    The coefficient of friction (COF) of metals is usually high, primarily because frictional contacts induce plastic deformation underneath the wear surface, resulting in surface roughening and formation of delaminating tribolayers. Lowering the COF of metals is crucial for improving the reliability and efficiency of metal contacts in engineering applications but is technically challenging. Refining the metals’ grains to nanoscale cannot reduce dry-sliding COFs, although their hardness may be elevated many times. We report that a submillimeter-thick stable gradient nanograined surface layer enables a significant reduction in the COF of a Cu alloy under high-load dry sliding, from 0.64 (coarse-grained samples) to 0.29, which is smaller than the COFs of many ceramics. The unprecedented stable low COF stems from effective suppression of sliding-induced surface roughening and formation of delaminating tribolayer, owing to the stable gradient nanostructures that can accommodate large plastic strains under repeated sliding for more than 30,000 cycles. PMID:27957545

  4. Simple and Reliable Method to Estimate the Fingertip Static Coefficient of Friction in Precision Grip.

    PubMed

    Barrea, Allan; Bulens, David Cordova; Lefevre, Philippe; Thonnard, Jean-Louis

    2016-01-01

    The static coefficient of friction (µstatic) plays an important role in dexterous object manipulation. Minimal normal force (i.e., grip force) needed to avoid dropping an object is determined by the tangential force at the fingertip-object contact and the frictional properties of the skin-object contact. Although frequently assumed to be constant for all levels of normal force (NF, the force normal to the contact), µ static actually varies nonlinearly with NF and increases at low NF levels. No method is currently available to measure the relationship between µstatic and NF easily. Therefore, we propose a new method allowing the simple and reliable measurement of the fingertip µstatic at different NF levels, as well as an algorithm for determining µstatic from measured forces and torques. Our method is based on active, back-and-forth movements of a subject's finger on the surface of a fixed six-axis force and torque sensor. µstatic is computed as the ratio of the tangential to the normal force at slip onset. A negative power law captures the relationship between µstatic and NF. Our method allows the continuous estimation of µstatic as a function of NF during dexterous manipulation, based on the relationship between µstatic and NF measured before manipulation.

  5. Shear-­induced segregation of granular particles with different friction coefficients

    NASA Astrophysics Data System (ADS)

    Gillemot, Katalin; Somfai, Ellák; Börzsönyi, Tamás

    2016-04-01

    Segregation plays a major role in a large number of geological mechanisms, including sediment transport, bedsurface and bedload dynamics. Segregation induced by size or density difference of the particles was widely studied, but less attention has been given to the effects of surface friction of the particles. In the current study we address both experimentally and numerically the question of shear-induced segregation of a two component granular mixture, when the friction coefficients of the particles differ. For a system under gravity, we found both in the experiments and with the help of discreet element simulations that particles having a smoother surface tend to sink downwards. This is similar to the well described kinetic sieving of smaller or denser particles. In our case the smooth particles are more likely to fall into holes created by the shearing then the rough ones. Removing the gravitational field (simulations only) segregation persists and can be related to the distribution of the granular temperature in the system. Understanding the driving mechanisms may help us to better describe the more complex segregation patterns found in real life.

  6. PROPERTIES OF CP: COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS, AND REACTION TO SPARK, FRICTION AND IMPACT

    SciTech Connect

    Weese, R K; Burnham, A K

    2005-09-28

    The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear and isothermal heating, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Differential scanning calorimetry, DSC, was used to monitor CP decomposition at linear heating rates of 1-7 C min{sup -1} in perforated pans and of 0.1-1.0 C min{sup -1} in sealed pans. The kinetic triplet was calculated using the LLNL code Kinetics05, and predictions for 210 and 240 C are compared to isothermal thermogravimetric analysis (TGA) experiments. Values are also reported for spark, friction, and impact sensitivity.

  7. Measurements of friction coefficients and cohesion for faulting and fault reactivation in laboratory models using sand and sand mixtures

    NASA Astrophysics Data System (ADS)

    Krantz, Robert W.

    1991-03-01

    Simple laboratory tests have been made on dry quartz sand and on mixtures of sand and clay and sand and cement. Tests were made on both low- and high-density specimens of each mixture, as determined by physical handling techniques. The tests included measurements of density, estimates of the coefficient of internal friction based on fault orientation, and estimates of the friction coefficients and cohesion values for fault initiation and reactivation in a shear frame apparatus, which was also used to test artificial fault zones made from pure clay, glass microspheres, and wheat flour. The results suggest that density is determined more by handling technique than by composition, and that friction coefficients and perhaps cohesion both increase with increasing density. The shear testing revealed a consistent drop in cohesion for fault reactivation in all densely packed mixtures tested. Although small, this drop may be significant for some types of laboratory models.

  8. Shear-driven segregation of dry granular materials with different friction coefficients.

    PubMed

    Gillemot, Katalin A; Somfai, Ellák; Börzsönyi, Tamás

    2017-01-04

    We report the first experimental demonstration of bulk segregation in a shear-driven dry granular mixture, where the particles only differ in their surface friction coefficients. We found that the smoother particles tend to sink to the bottom of the shear zone, while rough particles migrate to the top of the sample. This phenomenon is similar to the well known kinetic sieving in particle mixtures with size heterogeneity. In the present case the smooth particles have a higher probability to penetrate into voids created by the shearing than the rough ones. Discrete element simulations were carried out and reproduced the experimentally observed segregation patterns. Moreover, simulations performed in the absence of gravity revealed that rough particles tend to remain in the shear zone, while the smooth particles are being expelled from it. We propose a mechanism in which the smooth particles are driven towards regions of lower shear rate.

  9. Velocity dependence of coefficient of friction of diamond like carbon coatings

    NASA Astrophysics Data System (ADS)

    Sharma, Neha; Kumar, Niranjan; Dash, S.; Tyagi, A. K.

    2012-06-01

    The velocity dependence of coefficient of friction (CoF) of hydrogen-free and hydrogenated Diamond Like Carbon (DLC) coatings was studied on sliding. In low velocity regime, CoF of hydrogen-free DLC was found to increase which may be linked to a thermally activated pre-mature breaking of the surface asperities. However, CoF of hydrogenated DLC was found to decrease due to formation of graphite like lubricious layer and sustainability of cross-linked network of H-bonded atoms. In high velocity regime, CoF of hydrogen free DLC increases marginally due to an inefficient transfer of thermal energy while that of hydrogenated DLC increases due to rapid formation and rupture of atomic bonds.

  10. Thermal Stability and Coefficient of Friction of the Diamond Composites with the Titanium Compound Bonding Phase

    NASA Astrophysics Data System (ADS)

    Cygan, S.; Jaworska, L.; Putyra, P.; Ratuszek, W.; Cyboron, J.; Klimczyk, P.

    2017-05-01

    In this paper, processes occurring during heat treatment of the diamond-Ti compound composites without Co addition were investigated and compared with commercial PCD. Three types of materials were prepared. The first material was sintered using the mixture containing diamond and 10 mass% of TiC, the second material was prepared using diamond powder and 10 mass% of Ti-Si-C, and the third composite was sintered using the addition of 10 mass% of TiB2. During the research, it was proved that TiO2 formation contributes to material swelling and WO3 (W is present from the milling process) causes a significant increase in coefficient of friction. TiC and Ti-Si-C bonded materials are very susceptible to this process of oxidation; their hardness drops absolutely after wear test at 600 °C. The diamond composite with TiB2 is the most resistant to oxidation from investigated materials.

  11. Influence of the tool temperature increment on the coefficient of friction behavior on the deep drawing process of HSS

    NASA Astrophysics Data System (ADS)

    Gil, I.; Galdos, L.; Mugarra, E.; Mendiguren, J.; Saenz de Argandoña, E.

    2016-11-01

    The use of High Strength Steels (HSS) in the deep drawing processes has an impact on the temperature that is achieved on the die surfaces. Due to the heat that is created through the deformation of the material and the friction itself, the tools temperature increase considerably up to approximately 100°C. This temperature increment has an effect on both the wear of the surface and also the coefficient of friction (COF). In this work the influence of the tool temperature on the coefficient of friction is studied. For that, Strip Drawing Tests have been carried out at different tool temperatures with a DP780, High Strength Steel. Moreover, different contact pressures have been considered in the study to analyse the combined effect of the contact pressure with the temperature increment. It has been proved that the temperature increment has to be taken into account to predict accurately the behavior of the coefficient of friction between the sheet and the tool. This change in the coefficient of friction has a high impact on the prediction of the deep drawing process.

  12. Choosing the best index for the average score intraclass correlation coefficient.

    PubMed

    Shieh, Gwowen

    2016-09-01

    The intraclass correlation coefficient (ICC)(2) index from a one-way random effects model is widely used to describe the reliability of mean ratings in behavioral, educational, and psychological research. Despite its apparent utility, the essential property of ICC(2) as a point estimator of the average score intraclass correlation coefficient is seldom mentioned. This article considers several potential measures and compares their performance with ICC(2). Analytical derivations and numerical examinations are presented to assess the bias and mean square error of the alternative estimators. The results suggest that more advantageous indices can be recommended over ICC(2) for their theoretical implication and computational ease.

  13. The influence of heel height on utilized coefficient of friction during walking.

    PubMed

    Blanchette, Mark G; Brault, John R; Powers, Christopher M

    2011-05-01

    Wearing high heel shoes has been associated with an increased potential for slips and falls. The association between wearing high heels and the increased potential for slipping suggests that the friction demand while wearing high heels may be greater when compared to wearing low heel shoes. The purpose of this study was to determine if heel height affects utilized friction (uCOF) during walking. A secondary purpose of this study was to compare kinematics at the ankle, knee, and hip that may explain uCOF differences among shoes with varied heel heights. Fifteen healthy women (mean age 24.5±2.5yrs) participated. Subjects walked at self-selected velocity under 3 different shoe conditions that varied in heel height (low: 1.27cm, medium: 6.35cm, and high: 9.53cm). Ground reaction forces (GRFs) were recorded using a force platform (1560Hz). Kinematic data were obtained using an 8 camera motion analysis system (120Hz). Utilized friction was calculated as the ratio of resultant shear force to vertical force. One-way repeated measures ANOVAs were performed to test for differences in peak uCOF, GRFs at peak uCOF and lower extremity joint angles at peak uCOF. On average, peak uCOF was found to increase with heel height. The increased uCOF observed in high heel shoes was related to an increase in the resultant shear force and decrease in the vertical force. Our results signify the need for proper public education and increased footwear industry awareness of how high heel shoes affect slip risk. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Surface contact and design of fibrillar ‘friction pads’ in stick insects (Carausius morosus): mechanisms for large friction coefficients and negligible adhesion

    PubMed Central

    Labonte, David; Williams, John A.; Federle, Walter

    2014-01-01

    Many stick insects and mantophasmids possess tarsal ‘heel pads’ (euplantulae) covered by arrays of conical, micrometre-sized hairs (acanthae). These pads are used mainly under compression; they respond to load with increasing shear resistance, and show negligible adhesion. Reflected-light microscopy in stick insects (Carausius morosus) revealed that the contact area of ‘heel pads’ changes with normal load on three hierarchical levels. First, loading brought larger areas of the convex pads into contact. Second, loading increased the density of acanthae in contact. Third, higher loads changed the shape of individual hair contacts gradually from circular (tip contact) to elongated (side contact). The resulting increase in real contact area can explain the load dependence of friction, indicating a constant shear stress between acanthae and substrate. As the euplantula contact area is negligible for small loads (similar to hard materials), but increases sharply with load (resembling soft materials), these pads show high friction coefficients despite little adhesion. This property appears essential for the pads’ use in locomotion. Several morphological characteristics of hairy friction pads are in apparent contrast to hairy pads used for adhesion, highlighting key adaptations for both pad types. Our results are relevant for the design of fibrillar structures with high friction coefficients but small adhesion. PMID:24554580

  15. Friction

    NASA Astrophysics Data System (ADS)

    Matsuo, Yoshihiro; Clarke, Daryl D.; Ozeki, Shinichi

    Friction materials such as disk pads, brake linings, and clutch facings are widely used for automotive applications. Friction materials function during braking due to frictional resistance that transforms kinetic energy into thermal energy. There has been a rudimentary evolution, from materials like leather or wood to asbestos fabric or asbestos fabric saturated with various resins such as asphalt or resin combined with pitch. These efforts were further developed by the use of woven asbestos material saturated by either rubber solution or liquid resin binder and functioned as an internal expanding brake, similar to brake lining system. The role of asbestos continued through the use of chopped asbestos saturated by rubber, but none was entirely successful due to the poor rubber heat resistance required for increased speeds and heavy gearing demands of the automobile industry. The use of phenolic resins as binder for asbestos friction materials provided the necessary thermal resistance and performance characteristics. Thus, the utility of asbestos as the main friction component, for over 100 years, has been significantly reduced in friction materials due to asbestos identity as a carcinogen. Steel and other fibrous components have displaced asbestos in disk pads. Currently, non-asbestos organics are the predominate friction material. Phenolic resins continue to be the preferred binder, and increased amounts are necessary to meet the requirements of highly functional asbestos-free disk pads for the automotive industry. With annual automobile production exceeding 70 million vehicles and additional automobile production occurring in developing countries worldwide and increasing yearly, the amount of phenolic resin for friction material is also increasing (Fig. 14.1). Fig. 14.1 Worldwide commercial vehicle production The Required Coefficient of Friction for evaluating gait alterations in people with Multiple Sclerosis during gait.

    PubMed

    Pacifici, Ilaria; Galli, Manuela; Kleiner, Ana Francisca Rozin; Corona, Federica; Coghe, Giancarlo; Marongiu, Elisabetta; Loi, Andrea; Crisafulli, Antonio; Cocco, Eleonora; Marrosu, Maria Giovanna; Pau, Massimiliano

    2016-11-01

    Required Coefficient of Friction (RCOF) is one of the most critical gait parameters associated to the occurrence of slipping in individuals affected by neurological disorders characterized by balance impairments. This study aims to calculate RCOF in people with Multiple Sclerosis (MS) on the basis of three-dimensional Gait Analysis (GA) data. This study enrolls 22 people with MS (pwMS) who were characterized by an Expanded Disability Status Score in the range 1.5-6 and 10 healthy controls (HC). All participants underwent to three-dimensional GA from which we extracted kinematic and kinetic data (i.e. the Ground Reaction Forces, GRF, and joint moments and powers in the sagittal plane). RCOF was calculated as the ratio of the shear to normal GRF components during the stance phase of gait cycle, and normalized by the walking velocity. Thus, the following variables were extracted: first peak (named P1COF), valley (named V1COF), and second peak (named P2COF) in RCOF curve; also computating the maximum ankle dorsi-plantarflexion moment (MOMmax) and the maximum ankle joint power (PWRmax). Our data revealed that P2COF results are significantly lower in pwMS when compared to HC (p=0.043; Z=-2.025). In pwMS, the study found a moderate, positive correlation between V1COF and MOMmax (r=0.558; p<0.001) and a moderate, positive correlation between EDSS score and MOMmax (rho=0.622; p=0.001). While, in HC group, the study detected a moderate positive correlation between P1COF and MOM max (r=0.636; p=0.008). Friction during mid stance and push off phases is critically important to determine whether the frictional capabilities of foot/floor interface are sufficient to prevent slips in pwMS. The impaired ankle moment in MS group causes increased P2COF in comparison to HC, increasing the risk of slipping in the critical phase of transmission of the developed forces to kinematic chain. Also, the correlation analysis among RCOF values and kinetic variables describe the interplay between

  16. Coefficient of friction of dry slash pine and southern red oak on three tension-grip facings

    Treesearch

    T.J. Lemoine; P. Koch

    1975-01-01

    A urethane material proved to have nine times higher static friction coefficient (0.9) than smooth steel (0.1) on radial and tangential wood surfaces pulled parallel to the grain. It is probably superior to 22O-grit garnet paper or sand coatings for tension-grip facings in lumber testing machines.

  17. Coefficient of friction of dry slash pine and southern red oak on three tension-grip facings

    Treesearch

    Truett J. Lemoine; Peter Koch

    1974-01-01

    A urethane material proved to have nine times higher static friction coefficient (0.9) than smooth steel (0.1) on radial and tangential wood surfaces pulled parallel to the grain. It is probably superior to 220-grit garnet paper or sand coatings for tension-grip facings in lumber testing machines.

  18. Study of the average heat transfer coefficient at different distances between wind tunnel models

    NASA Astrophysics Data System (ADS)

    Gnyrya, A.; Korobkov, S.; Mokshin, D.; Koshin, A.

    2015-01-01

    The paper presents investigations of physical and climatic factors with regard to design and process variables having effect on heat transfer in the building model system at different distances between them in the airflow direction. The aim of this work is to improve energy efficiency of exterior walls of buildings. A method of physical simulation was used in experiments. Experimental results on the average values of the heat transfer coefficient in the building model system are presented herein. A series of experiments was carried out on a specific aerodynamic test bench including a subsonic wind tunnel, heat models and devices for giving thermal boundary conditions, transducers, and the record system equipment. The paper contains diagrams of the average heat transfer distribution at fixed Reynolds number and the airflow angle of attack; the average values of the heat transfer coefficient for each face and wind tunnel models as a whole at maximum, medium, and large distances between them. Intensification of the average heat transfer was observed on the downstream model faces depending on the distance between models.

  19. Calculations of the time-averaged local heat transfer coefficients in circulating fluidized bed

    SciTech Connect

    Dai, T.H.; Qian, R.Z.; Ai, Y.F.

    1999-04-01

    The great potential to burn a wide variety of fuels and the reduced emission of pollutant gases mainly SO{sub x} and NO{sub x} have inspired the investigators to conduct research at a brisk pace all around the world on circulating fluidized bed (CFB) technology. An accurate understanding of heat transfer to bed walls is required for proper design of CFB boilers. To develop an optimum economic design of the boiler, it is also necessary to know how the heat transfer coefficient depends on different design and operating parameters. It is impossible to do the experiments under all operating conditions. Thus, the mathematical model prediction is a valuable method instead. Based on the cluster renewal theory of heat transfer in circulating fluidized beds, a mathematical model for predicting the time-averaged local bed-to-wall heat transfer coefficients is developed. The effects of the axial distribution of the bed density on the time-average local heat transfer coefficients are taken into account via dividing the bed into a series of sections along its height. The assumptions are made about the formation and falling process of clusters on the wall. The model predictions are in an acceptable agreement with the published data.

  1. Efficiencies and coefficients of performance of heat engines, refrigerators, and heat pumps with friction: a universal limiting behavior.

    PubMed

    Bizarro, João P S; Rodrigues, Paulo

    2012-11-01

    For work-producing heat engines, or work-consuming refrigerators and heat pumps, the percentage decrease caused by friction in their efficiencies, or coefficients of performance (COP's), is approximately given by the ratio W(fric)/W between the work spent against friction forces and the work performed by, or delivered to, the working fluid. This universal scaling, which applies in the limit of small friction (W(fric)/W friction losses can have on the FOM's of thermal engines and plants, or of the level of those losses from the observed and predicted FOM's. In the case of refrigerators and heat pumps, if W(fric)/W friction approaches asymptotically (W(fric)/W)/(1+W(fric)/W) instead of W(fric)/W. Estimates for the level of frictional losses using the Carnot (or, for heat engines and power plants only, the Curzon-Ahlborn) predictions and observed FOM's of real power plants, heat engines, refrigerators, and heat pumps show that they usually operate in domains where these behaviors are valid.

  2. Efficiencies and coefficients of performance of heat engines, refrigerators, and heat pumps with friction: A universal limiting behavior

    NASA Astrophysics Data System (ADS)

    Bizarro, João P. S.; Rodrigues, Paulo

    2012-11-01

    For work-producing heat engines, or work-consuming refrigerators and heat pumps, the percentage decrease caused by friction in their efficiencies, or coefficients of performance (COP's), is approximately given by the ratio Wfric/W between the work spent against friction forces and the work performed by, or delivered to, the working fluid. This universal scaling, which applies in the limit of small friction (Wfric/W≲20%) and when the engine's figures of merit (FOM's, either efficiencies or COP's) do not come too close to unity (no higher than, say, 0.5 in the case of heat-engine efficiencies), allows a simple and quick estimate of the impact that friction losses can have on the FOM's of thermal engines and plants, or of the level of those losses from the observed and predicted FOM's. In the case of refrigerators and heat pumps, if Wfric/W≲20% is not ensured (actually a condition that can be largely relaxed for heat engines), the COP percentage decrease due to friction approaches asymptotically (Wfric/W)/(1+Wfric/W) instead of Wfric/W. Estimates for the level of frictional losses using the Carnot (or, for heat engines and power plants only, the Curzon-Ahlborn) predictions and observed FOM's of real power plants, heat engines, refrigerators, and heat pumps show that they usually operate in domains where these behaviors are valid.

  3. Use of the quartz crystal microbalance to determine the monomeric friction coefficient of polyimides

    NASA Technical Reports Server (NTRS)

    Bechtold, Mary M.

    1995-01-01

    When a thin film of polymer is coated on to a quartz crystal microbalance (QCM), the QCM can be used to detect the rate of increase in weight of the polymer film as the volatile penetrant diffuses into the polymer. From this rate information the diffusion coefficient of the penetrant into the polymer can be computed. Calculations requiring this diffusion coefficient lead to values which approximate the monomeric friction coefficient of the polymer. This project has been concerned with the trial of crystal oscillating circuits suitable for driving polymer coated crystals in an atmosphere of penetrant. For these studies done at room temperature, natural rubber was used as an easily applied polymer that is readily penetrated by toluene vapors, qualities anticipated with polyimides when they are tested at T(g) in the presence of toluene. Three quartz crystal oscillator circuits were tested. The simplest circuit used +/- 5 volt dc and had a transistor to transistor logic (TTL) inverter chip that provides a 180 deg phase shift via a feed back loop. This oscillator circuit was stable but would not drive the crystal when the crystal was coated with polymer and subjected to toluene vapors. Removal of a variable resistor from this circuit increased stability but did not otherwise increase performance. Another driver circuit tested contained a two stage differential input, differential output, wide band video amplifier and also contain a feed back loop. The circuit voltage could not be varied and operated at +/- 5 volts dc; this circuit was also stable but failed to oscillate the polymer coated crystal in an atmosphere saturated with toluene vapors. The third oscillator circuit was of similar construction and relied on the same video amplifier but allowed operation with variable voltage. This circuit would drive the crystal when the crystal was submerged in liquid toluene and when the crystal was coated with polymer and immersed in toluene vapors. The frequency readings

  4. Use of the quartz crystal microbalance to determine the monomeric friction coefficient of polyimides

    NASA Technical Reports Server (NTRS)

    Bechtold, Mary M.

    1995-01-01

    When a thin film of polymer is coated on to a quartz crystal microbalance (QCM), the QCM can be used to detect the rate of increase in weight of the polymer film as the volatile penetrant diffuses into the polymer. From this rate information the diffusion coefficient of the penetrant into the polymer can be computed. Calculations requiring this diffusion coefficient lead to values which approximate the monomeric friction coefficient of the polymer. This project has been concerned with the trial of crystal oscillating circuits suitable for driving polymer coated crystals in an atmosphere of penetrant. For these studies done at room temperature, natural rubber was used as an easily applied polymer that is readily penetrated by toluene vapors, qualities anticipated with polyimides when they are tested at T(g) in the presence of toluene. Three quartz crystal oscillator circuits were tested. The simplest circuit used +/- 5 volt dc and had a transistor to transistor logic (TTL) inverter chip that provides a 180 deg phase shift via a feed back loop. This oscillator circuit was stable but would not drive the crystal when the crystal was coated with polymer and subjected to toluene vapors. Removal of a variable resistor from this circuit increased stability but did not otherwise increase performance. Another driver circuit tested contained a two stage differential input, differential output, wide band video amplifier and also contain a feed back loop. The circuit voltage could not be varied and operated at +/- 5 volts dc; this circuit was also stable but failed to oscillate the polymer coated crystal in an atmosphere saturated with toluene vapors. The third oscillator circuit was of similar construction and relied on the same video amplifier but allowed operation with variable voltage. This circuit would drive the crystal when the crystal was submerged in liquid toluene and when the crystal was coated with polymer and immersed in toluene vapors. The frequency readings

  5. Estimation of tire-road friction coefficient based on frequency domain data fusion

    NASA Astrophysics Data System (ADS)

    Chen, Long; Luo, Yugong; Bian, Mingyuan; Qin, Zhaobo; Luo, Jian; Li, Keqiang

    2017-02-01

    Due to the noise of sensing equipment, the tire states, such as the sideslip angle and the slip ratio, cannot be accurately observed under the conditions with small acceleration, which results in the inapplicability of the time domain data based tire-road friction coefficient (TRFC) estimation method. In order to overcome this shortcoming, frequency domain data fusion is proposed to estimate the TRFC based on the natural frequencies of the steering system and the in-wheel motor driving system. Firstly, a relationship between TRFC and the steering system natural frequency is deduced by investigating its frequency response function (FRF). Then the lateral TRFC is determined by the steering natural frequency which is only identified using the information of the assist motor current and the steering speed of the column. With spectral comparison between the steering and driving systems, the data fusion is carried out to get a comprehensive TRFC result, using the different frequency information of the longitudinal and lateral value. Finally, simulations and experiments on different road surfaces validated the correctness of the steering system FRF and the effectiveness of the proposed approach.

  6. Required coefficient of friction in the anteroposterior and mediolateral direction during turning at different walking speeds.

    PubMed

    Yamaguchi, Takeshi; Suzuki, Akito; Hokkirigawa, Kazuo

    2017-01-01

    This study investigated the required coefficient of friction (RCOF) and the tangent of center of mass (COM)-center of pressure (COP) angle in the mediolateral (ML) and anteroposterior (AP) directions during turning at different walking speeds. Sixteen healthy young adults (8 males and 8 females) participated in this study. The participants were instructed to conduct trials of straight walking and 90° step and spin turns to the right at each of three self-selected speeds (slow, normal, and fast). The ML and AP directions during turning gait were defined using the orientation of the pelvis to construct a body-fixed reference frame. The RCOF values and COM-COP angle tangent in the ML direction during turning at weight acceptance phase were higher than those during straight walking, and those values increased with increasing walking speed. The ML component of the RCOF and COM-COP tangent values during weight acceptance for step turns were higher than those for spin turns. The mean centripetal force during turning tended to increase with an increase in walking speed and had a strong positive correlation with the RCOF values in the ML direction (R = 0.97 during the weight acceptance phase; R = 0.95 during the push-off phase). Therefore, turning, particularly step turn, is likely to cause lateral slip at weight acceptance because of the increased centripetal force compared with straight walking. Future work should test at-risk population and compare with the present results.

  7. Dressed diffusion and friction coefficients in inhomogeneous multicomponent self-gravitating systems

    NASA Astrophysics Data System (ADS)

    Heyvaerts, Jean; Fouvry, Jean-Baptiste; Chavanis, Pierre-Henri; Pichon, Christophe

    2017-08-01

    General self-consistent expressions for the coefficients of diffusion and dynamical friction in a stable, bound, multicomponent self-gravitating, and inhomogeneous system are derived. They account for the detailed dynamics of the colliding particles and their self-consistent dressing by collective gravitational interactions. The associated Fokker-Planck equation is shown to be fully consistent with the corresponding inhomogeneous Balescu-Lenard equation and, in the weak self-gravitating limit, to the inhomogeneous Landau equation. Hence, it provides an alternative derivation to both and demonstrates their equivalence. The corresponding stochastic Langevin equations are presented: they can be a practical alternative to numerically solving the inhomogeneous Fokker-Planck and Balescu-Lenard equations. The present formalism allows for a self-consistent description of the secular evolution of different populations covering a spectrum of masses, with a proper accounting of the induced secular mass segregation, which should be of interest to various astrophysical contexts, from galactic centres to protostellar discs.

  8. Laser texturing of Hastelloy C276 alloy surface for improved hydrophobicity and friction coefficient

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.

    2016-03-01

    Laser treatment of Hastelloy C276 alloy is carried out under the high pressure nitrogen assisting gas environment. Morphological and metallurgical changes in the laser treated layer are examined using the analytical tools including, scanning electron and atomic force microscopes, X-ray diffraction, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. Microhardness is measured and the residual stress formed in the laser treated surface is determined from the X-ray data. The hydrophibicity of the laser treated surface is assessed using the sessile drop method. Friction coefficient of the laser treated layer is obtained incorporating the micro-tribometer. It is found that closely spaced laser canning tracks create a self-annealing effect in the laser treated layer and lowers the thermal stress levels through modifying the cooling rates at the surface. A dense structure, consisting of fine size grains, enhances the microhardness of the surface. The residual stress formed at the surface is compressive and it is in the order of -800 MPa. Laser treatment improves the surface hydrophobicity significantly because of the formation of surface texture composing of micro/nano-pillars.

  9. Nongeostrophic theory of zonally averaged circulation. II - Eliassen-Palm flux divergence and isentropic mixing coefficient

    NASA Technical Reports Server (NTRS)

    Yang, H.; Tung, K. K.; Olaguer, E.

    1990-01-01

    A diagnostic study of Eliassen-Palm flux divergence and isentropic mixing coefficient (Kyy) in the stratosphere is performed for different seasons and for both hemispheres, based on the nongeostrophic theory of zonally averaged circulation of Tung (1986). An easily implementable procedure is described which yields a Kyy field that is consistent with advective transport. It is shown that the resultant time- and space-varying structure of Kyy leads to improved simulation of stratospheric species whose distributions are affected by dynamical transport. In particular, it is shown that the simulation of nitric acid is more satisfactory than previous model calculations.

  10. Cationic agent contrast-enhanced computed tomography imaging of cartilage correlates with the compressive modulus and coefficient of friction.

    PubMed

    Lakin, B A; Grasso, D J; Shah, S S; Stewart, R C; Bansal, P N; Freedman, J D; Grinstaff, M W; Snyder, B D

    2013-01-01

    The aim of this study is to evaluate whether contrast-enhanced computed tomography (CECT) attenuation, using a cationic contrast agent (CA4+), correlates with the equilibrium compressive modulus (E) and coefficient of friction (μ) of ex vivo bovine articular cartilage. Correlations between CECT attenuation and E (Group 1, n = 12) and μ (Group 2, n = 10) were determined using 7 mm diameter bovine osteochondral plugs from the stifle joints of six freshly slaughtered, skeletally mature cows. The equilibrium compressive modulus was measured using a four-step, unconfined, compressive stress-relaxation test, and the coefficients of friction were determined from a torsional friction test. Following mechanical testing, samples were immersed in CA4+, imaged using μCT, rinsed, and analyzed for glycosaminoglycan (GAG) content using the 1,9-dimethylmethylene blue (DMMB) assay. The CECT attenuation was positively correlated with the GAG content of bovine cartilage (R(2) = 0.87, P < 0.0001 for Group 1 and R(2) = 0.74, P = 0.001 for Group 2). Strong and significant positive correlations were observed between E and GAG content (R(2) = 0.90, P < 0.0001) as well as CECT attenuation and E (R(2) = 0.90, P < 0.0001). The CECT attenuation was negatively correlated with the three coefficients of friction: CECT vs μ(static) (R(2) = 0.71, P = 0.002), CECT vs μ(static_equilibrium) (R(2) = 0.79, P < 0.001), and CECT vs μ(kinetic) (R(2) = 0.69, P = 0.003). CECT with CA4+ is a useful tool for determining the mechanical properties of ex vivo cartilage tissue as the attenuation significantly correlates with the compressive modulus and coefficient of friction. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  11. On the nature of the coefficient of friction of diamond-like carbon films deposited on rubber

    NASA Astrophysics Data System (ADS)

    Martinez-Martinez, D.; van der Pal, J. P.; Schenkel, M.; Shaha, K. P.; Pei, Y. T.; De Hosson, J. Th. M.

    2012-06-01

    In this paper, the nature of the coefficient of friction (CoF) of diamond-like carbon (DLC)-protected rubbers is studied. The relative importance of the viscoelastic and adhesive contributions to the overall friction is evaluated experimentally by modifying the contact load and the adhesive strength between the surface and the counterpart. The results indicate that the increase of CoF during the tribotests under non-lubricated conditions is caused by the increase of the adhesive contribution to friction motivated by the growth of the contact area during the test. In the case of oil lubricating condition, the adhesive force is minimized and the CoF is observed to decrease during the tribotest. This is caused by the reduction of the viscoelastic contribution due to the variation of the shape of the contact area. The role of the microstructure of the DLC film on the efficiency of the oil lubrication is also discussed.

  12. Shear Model Development of Limestone Joints with Incorporating Variations of Basic Friction Coefficient and Roughness Components During Shearing

    NASA Astrophysics Data System (ADS)

    Mehrishal, Seyedahmad; Sharifzadeh, Mostafa; Shahriar, Korosh; Song, Jae-Jon

    2017-04-01

    In relation to the shearing of rock joints, the precise and continuous evaluation of asperity interlocking, dilation, and basic friction properties has been the most important task in the modeling of shear strength. In this paper, in order to investigate these controlling factors, two types of limestone joint samples were prepared and CNL direct shear tests were performed on these joints under various shear conditions. One set of samples were travertine and another were onyx marble with slickensided surfaces, surfaces ground to #80, and rough surfaces were tested. Direct shear experiments conducted on slickensided and ground surfaces of limestone indicated that by increasing the applied normal stress, under different shearing rates, the basic friction coefficient decreased. Moreover, in the shear tests under constant normal stress and shearing rate, the basic friction coefficient remained constant for the different contact sizes. The second series of direct shear experiments in this research was conducted on tension joint samples to evaluate the effect of surface roughness on the shear behavior of the rough joints. This paper deals with the dilation and roughness interlocking using a method that characterizes the surface roughness of the joint based on a fundamental combined surface roughness concept. The application of stress-dependent basic friction and quantitative roughness parameters in the continuous modeling of the shear behavior of rock joints is an important aspect of this research.

  13. Practical determination of friction coefficient of Al 3003 for forming of backward extruded part using simple tip test and inverse finite element analysis

    NASA Astrophysics Data System (ADS)

    Bong, H. J.; Leem, D.; Kim, J. H.; Im, Y. T.; Lee, M. G.

    2016-05-01

    The friction coefficient for aluminum alloy 3003 was determined from a specially designed tip test and finite element (FE) simulations. Measured radial tip distance after the tip test was compared to the FE simulations by iteratively changing friction coefficient and the best fitting friction coefficient was determined. To consider strain rate effect on flow stress response during large plastic deformation, a new combined Hollomon- Voce hardening law was proposed. The friction under three different surface conditions was considered by the proposed inverse FE analysis. The results showed that there was obvious strain rate effect on the predicted punch load in the tip test. Moreover, the different friction coefficients were numerically determined for punch/workpiece and die/workpiece interfaces. Two possible causes of this difference were discussed by the analysis on contact normal pressure and slip velocity distributions of the two interfaces.

  14. Does Increased Coefficient of Friction of Highly Porous Metal Increase Initial Stability at the Acetabular Interface?

    PubMed

    Goldman, Ashton H; Armstrong, Lucas C; Owen, John R; Wayne, Jennifer S; Jiranek, William A

    2016-03-01

    Highly porous metal acetabular components illustrate a decreased rate of aseptic loosening in short-term follow-up compared with previous registry data. This study compared the effect of component surface roughness at the bone-implant interface and the quality of the bone on initial pressfit stability. The null hypothesis is that a standard porous coated acetabular cup would show no difference in initial stability as compared with a highly porous acetabular cup when subjected to a bending moment. Second, would bone mineral density (BMD) be a significant variable under these test conditions. In a cadaveric model, acetabular cup micromotion was measured during a 1-time cantilever bending moment applied to 2 generations of pressfit acetabular components. BMD data were also obtained from the femoral necks available for associated specimen. The mean bending moment at 150 μm was not found to be significantly different for Gription (24.6 ± 14.0 N m) cups vs Porocoat (25 ± 10.2 N m; P > .84). The peak bending moment tolerated by Gription cups (33.9 ± 20.3 N m) was not found to be significantly different from Porocoat (33.5 ± 12.2 N m; P > .92). No correlation between BMD and bending moment at 150 μm of displacement could be identified. The coefficient of friction provided by highly porous metal acetabular shells used in this study did not provide better resistance to migration under bending load when compared with a standard porous coated component. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Physical properties of elongated magnetic particles: magnetization and friction coefficient anisotropies.

    PubMed

    Vereda, Fernando; de Vicente, Juan; Hidalgo-Alvarez, Roque

    2009-06-02

    Anisotropy counts: A brief review of the main physical properties of elongated magnetic particles (EMPs) is presented. The most important characteristic of an EMP is the additional contribution of shape anisotropy to the total anisotropy energy of the particle, when compared to spherical magnetic particles. The electron micrograph shows Ni-ferrite microrods fabricated by the authors.We present an overview of the main physical properties of elongated magnetic particles (EMPs), including some of their more relevant properties in suspension. When compared to a spherical magnetic particle, the most important characteristic of an EMP is an additional contribution of shape anisotropy to the total anisotropy energy of the particle. Increasing aspect ratios also lead to an increase in both the critical single-domain size of a magnetic particle and its resistance to thermally activated spontaneous reversal of the magnetization. For single-domain EMPs, magnetization reversal occurs primarily by one of two modes, coherent rotation or curling, the latter being facilitated by larger aspect ratios. When EMPs are used to prepare colloidal suspensions, other physical properties come into play, such as their anisotropic friction coefficient and the consequent enhanced torque they experience in a shear flow, their tendency to align in the direction of an external field, to form less dense sediments and to entangle into more intricate aggregates. From a more practical point of view, EMPs are discussed in connection with two interesting types of magnetic colloids: magnetorheological fluids and suspensions for magnetic hyperthermia. Advances reported in the literature regarding the use of EMPs in these two systems are included. In the final section, we present a summary of the most relevant methods documented in the literature for the fabrication of EMPs, together with a list of the most common ferromagnetic materials that have been synthesized in the form of EMPs.

  16. Experimental Heat Transfer Coefficients and Friction Factors in a Rib-Roughened Leading-Edge Cooling Cavity of a Gas Turbine Airfoil

    NASA Astrophysics Data System (ADS)

    Hagan, Peter

    A gas turbine airfoil contains multiple coolant passageways. These passages usually have rib roughened wall surfaces in order to increase the heat transfer from the blade to the cooling air. Auxiliary power and compressed air is very valuable in a gas turbine, therefore low pumping power requirements are crucial. The thermal performance of three different coolant channel geometries with three different rib sizes was investigated. Heat transfer calculations were performed for Reynolds numbers ranging from 6,000 to 40,000. The performance characteristics were calculated through the use of the convective heat transfer coefficient and the friction factor. In this study, the most desirable characteristics are a high heat transfer coefficient and minimal pumping power requirements. The thermal performance of each case was determined by comparing the average Nusselt numbers to the friction factor ratio. The resulting value was then plotted against the Reynolds number for each case. The trending data indicated thermal efficiency decreases with an increasing Reynolds number for all cases. The picture data shows increased thermal efficiency at larger distances from the nose portion of the cavity. In addition, thermal efficiency was higher at the half distance of the rib pitch while areas close to the ribs saw a lower thermal efficiency. The following experimental data will show that Rig 2 and 3 are the most thermally efficient geometries, with Rig 2 requiring lower pumping power and Rig 3 having a higher average Nusselt number.

  17. Portable instrument to measure the average luminance coefficient of a road surface

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Zheng, Xiaodong; Wu, Chunhai

    2014-03-01

    We describe a portable instrument that measures the average luminance coefficient of a road surface, Q0, in the field. The design employs a modified integrating hemisphere with light-emitting diode lamps as light sources and a calibrated charge-coupled device luminance meter with an observation angle of 1° as the detector. The diameter and weight of the hemisphere are 50 cm and approximately 8 kg, respectively. After first demonstrating proof of concept of the instrument, we calibrated the prototype with two methods and evaluated the performance by comparing its measurement results with those obtained by a gonioreflectometer for a series of samples. The performance characteristics of the instrument are appropriate for in situ Q0 measurement.

  18. A parameterization of eddy transfer coefficients for two-level seasonal statistical dynamical zonally averaged models

    NASA Technical Reports Server (NTRS)

    Neeman, Binyamin U.; Ohring, George; Joseph, Joachim H.

    1989-01-01

    This paper examines a parameterization of a quasi-geostrophic eddy transport that takes into account the time variation of eddy transfer coefficients according to Green's (1970) theory. It was found that, in the original eddy transfer relationship of Green, connecting the integral of the northward eddy entropy flux through midlatitudes with the second power of the difference in 500-mb entropy across the region of baroclinic activity, a value of 4 for the exponent is obtained when the temperature gradients at 500 mb are used. When the gradients at 1000 mb are used, an exponent of 1.5 is obtained. The differences in the powers in the eddy transfer relation were explored in a two-level zonally averaged model. It was found that an appropriate choice of power may be of special importance if the model is devised to simulate the seasonal climate cycle or to test astronomical changes inducing different seasonalities.

  19. Determination of oral mucosal Poisson's ratio and coefficient of friction from in-vivo contact pressure measurements.

    PubMed

    Chen, Junning; Suenaga, Hanako; Hogg, Michael; Li, Wei; Swain, Michael; Li, Qing

    2016-01-01

    Despite their considerable importance to biomechanics, there are no existing methods available to directly measure apparent Poisson's ratio and friction coefficient of oral mucosa. This study aimed to develop an inverse procedure to determine these two biomechanical parameters by utilizing in vivo experiment of contact pressure between partial denture and beneath mucosa through nonlinear finite element (FE) analysis and surrogate response surface (RS) modelling technique. First, the in vivo denture-mucosa contact pressure was measured by a tactile electronic sensing sheet. Second, a 3D FE model was constructed based on the patient CT images. Third, a range of apparent Poisson's ratios and the coefficients of friction from literature was considered as the design variables in a series of FE runs for constructing a RS surrogate model. Finally, the discrepancy between computed in silico and measured in vivo results was minimized to identify the best matching Poisson's ratio and coefficient of friction. The established non-invasive methodology was demonstrated effective to identify such biomechanical parameters of oral mucosa and can be potentially used for determining the biomaterial properties of other soft biological tissues.

  20. Minimizing of the boundary friction coefficient in automotive engines using Al2O3 and TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed Kamal Ahmed; Xianjun, Hou; Elagouz, Ahmed; Essa, F. A.; Abdelkareem, Mohamed A. A.

    2016-12-01

    Minimizing of the boundary friction coefficient is critical for engine efficiency improvement. It is known that the tribological behavior has a major role in controlling the performance of automotive engines in terms of the fuel consumption. The purpose of this research is an experimental study to minimize the boundary friction coefficient via nano-lubricant additives. The tribological characteristics of Al2O3 and TiO2 nano-lubricants were evaluated under reciprocating test conditions to simulate a piston ring/cylinder liner interface in automotive engines. The nanoparticles were suspended in a commercially available lubricant in a concentration of 0.25 wt.% to formulate the nano-lubricants. The Al2O3 and TiO2 nanoparticles had sizes of 8-12 and 10 nm, respectively. The experimental results have shown that the boundary friction coefficient reduced by 35-51% near the top and bottom dead center of the stroke (TDC and BDC) for the Al2O3 and TiO2 nano-lubricants, respectively. The anti-wear mechanism was generated via the formation of protective films on the worn surfaces of the ring and liner. These results will be a promising approach for improving fuel economy in automotive.

  1. Correlation between Mechanical Properties with Specific Wear Rate and the Coefficient of Friction of Graphite/Epoxy Composites.

    PubMed

    Alajmi, Mahdi; Shalwan, Abdullah

    2015-07-08

    The correlation between the mechanical properties of Fillers/Epoxy composites and their tribological behavior was investigated. Tensile, hardness, wear, and friction tests were conducted for Neat Epoxy (NE), Graphite/Epoxy composites (GE), and Data Palm Fiber/Epoxy with or without Graphite composites (GFE and FE). The correlation was made between the tensile strength, the modulus of elasticity, elongation at the break, and the hardness, as an individual or a combined factor, with the specific wear rate (SWR) and coefficient of friction (COF) of composites. In general, graphite as an additive to polymeric composite has had an eclectic effect on mechanical properties, whereas it has led to a positive effect on tribological properties, whilst date palm fibers (DPFs), as reinforcement for polymeric composite, promoted a mechanical performance with a slight improvement to the tribological performance. Statistically, this study reveals that there is no strong confirmation of any marked correlation between the mechanical and the specific wear rate of filler/Epoxy composites. There is, however, a remarkable correlation between the mechanical properties and the friction coefficient of filler/Epoxy composites.

  2. Correlation between Mechanical Properties with Specific Wear Rate and the Coefficient of Friction of Graphite/Epoxy Composites

    PubMed Central

    Alajmi, Mahdi; Shalwan, Abdullah

    2015-01-01

    The correlation between the mechanical properties of Fillers/Epoxy composites and their tribological behavior was investigated. Tensile, hardness, wear, and friction tests were conducted for Neat Epoxy (NE), Graphite/Epoxy composites (GE), and Data Palm Fiber/Epoxy with or without Graphite composites (GFE and FE). The correlation was made between the tensile strength, the modulus of elasticity, elongation at the break, and the hardness, as an individual or a combined factor, with the specific wear rate (SWR) and coefficient of friction (COF) of composites. In general, graphite as an additive to polymeric composite has had an eclectic effect on mechanical properties, whereas it has led to a positive effect on tribological properties, whilst date palm fibers (DPFs), as reinforcement for polymeric composite, promoted a mechanical performance with a slight improvement to the tribological performance. Statistically, this study reveals that there is no strong confirmation of any marked correlation between the mechanical and the specific wear rate of filler/Epoxy composites. There is, however, a remarkable correlation between the mechanical properties and the friction coefficient of filler/Epoxy composites. PMID:28793431

  3. Effect of the coefficient of friction and tightening speed on the preload induced at the dental implant complex with the finite element method.

    PubMed

    Bulaqi, Haddad Arabi; Mousavi Mashhadi, Mahmoud; Geramipanah, Farideh; Safari, Hamed; Paknejad, Mojgan

    2015-05-01

    To prevent screw loosening, a clear understanding of the factors influencing secure preload is necessary. The purpose of this study was to investigate the effect of coefficient of friction and tightening speed on screw tightening based on energy distribution method with exact geometric modeling and finite element analysis. To simulate the proper boundary conditions of the screw tightening process, the supporting bone of an implant was considered. The exact geometry of the implant complex, including the Straumann dental implant, direct crown attachment, and abutment screw were modeled with Solidworks software. Abutment screw/implant and implant/bone interfaces were designed as spiral thread helixes. The screw-tightening process was simulated with Abaqus software, and to achieve the target torque, an angular displacement was applied to the abutment screw head at different coefficients of friction and tightening speeds. The values of torque, preload, energy distribution, elastic energy, and efficiency were obtained at the target torque of 35 Ncm. Additionally, the torque distribution ratio and preload simulated values were compared to theoretically predicted values. Upon reducing the coefficient of friction and enhancing the tightening speed, the angle of turn increased at the target torque. As the angle of turn increased, the elastic energy and preload also increased. Additionally, by increasing the coefficient of friction, the frictional dissipation energy increased but the efficiency decreased, whereas the increase in tightening speed insignificantly affected efficiency. The results of this study indicate that the coefficient of friction is the most influential factor on efficiency. Increasing the tightening speed lowered the response rate to the frictional resistance, thus diminishing the coefficient of friction and slightly increasing the preload. Increasing the tightening speed has the same result as reducing the coefficient of friction. Copyright © 2015

  4. Impact of higher-order flows in the moment equations on Pfirsch-Schlüter friction coefficients

    SciTech Connect

    Honda, M.

    2014-09-15

    The impact of the higher-order flows in the moment approach on an estimate of the friction coefficients is numerically examined. The higher-order flows are described by the lower-order hydrodynamic flows using the collisional plasma assumption. Their effects have not been consistently taken into account thus far in the widely used neoclassical transport codes based on the moment equations in terms of the Pfirsch-Schlüter flux. Due to numerically solving the friction-flow matrix without using the small-mass ratio expansion, it is clearly revealed that incorporating the higher-order flow effects is of importance especially for plasmas including multiple hydrogenic ions and other lighter species with similar masses.

  5. A STUDY OF THE PROPERTIES OF CP: COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS AND REACTION TO SPARK, FRICTION AND IMPACT

    SciTech Connect

    Weese, R K; Burnham, A K; Fontes, A T

    2005-03-30

    The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear heating rates, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Using differential scanning calorimetry, DSC, CP was decomposed at linear heating rates of 1, 3, and 7 C/min and the kinetic triplet calculated using the LLNL code Kinetics05. Values are also reported for spark, friction, and impact sensitivity.

  6. Adsorption Behavior of Heat Modified Soybean Oil via Boundary Lubrication Coefficient of Friction Measurements

    USDA-ARS?s Scientific Manuscript database

    The frictional behaviors of soybean oil and heat modified soybean oils with different Gardner scale viscosities as additives in hexadecane have been examined in a boundary lubrication test regime (steel contacts) using Langmuir adsorption model. The free energy of adsorption (delta-Gads) of various...

  7. Relationship between age-related gait adaptations and required coefficient of friction

    PubMed Central

    Kim, Sukwon; Lockhart, Thurmon; Yoon, Hoon-Yong

    2010-01-01

    A laboratory study was conducted to evaluate if age-related gait adaptations in walking velocity, step length and heel contact velocity could adversely influence friction demand characteristics (i.e. RCOF) and the likelihood of slip initiation. Additionally, relationship between transitional acceleration of the whole body center-of-mass (COM) and friction demand was assessed between young and older participants. Fourteen younger (7 females and 7 males, 18–30 years old) and 14 older (7 females and 7 males, over 65 years old) adults participated in the study. While wearing a safety harness, all participants walked at their preferred gait speed for approximately 20 min on the linear walking track, and synchronized ground reaction forces and posture data were captured using the force plates and six infrared cameras, respectively. The results indicated that older adults walked slower with slower heel contact velocity, and produced lower friction demand (i.e. RCOF) in comparison to younger adults. However, ANCOVA indicated that the differences in heel contact velocity between the two age groups were due to effects of walking velocity. The multiple regression and bivariate regression analyses suggested that, for older adults, heel contact velocity was a predictor for the RCOF, whereas, for younger adults, walking velocity, step length and transitional acceleration of the whole body COM were the factors contributing to the RCOF. In conclusion, the present study suggested that gait adaptations among the elderly must be considered when predicting the likelihood of slip initiation. PMID:20582254

  8. Stochastic distribution of the required coefficient of friction for level walking--an in-depth study.

    PubMed

    Chang, Wen-Ruey; Matz, Simon; Chang, Chien-Chi

    2012-01-01

    This study investigated the stochastic distribution of the required coefficient of friction (RCOF) which is a critical element for estimating slip probability. Fifty participants walked under four walking conditions. The results of the Kolmogorov-Smirnov two-sample test indicate that 76% of the RCOF data showed a difference in distribution between both feet for the same participant under each walking condition; the data from both feet were kept separate. The results of the Kolmogorov-Smirnov goodness-of-fit test indicate that most of the distribution of the RCOF appears to have a good match with the normal (85.5%), log-normal (84.5%) and Weibull distributions (81.5%). However, approximately 7.75% of the cases did not have a match with any of these distributions. It is reasonable to use the normal distribution for representation of the RCOF distribution due to its simplicity and familiarity, but each foot had a different distribution from the other foot in 76% of cases. The stochastic distribution of the required coefficient of friction (RCOF) was investigated for use in a statistical model to improve the estimate of slip probability in risk assessment. The results indicate that 85.5% of the distribution of the RCOF appears to have a good match with the normal distribution.

  9. Is internal friction friction?

    USGS Publications Warehouse

    Savage, J.C.; Byerlee, J.D.; Lockner, D.A.

    1996-01-01

    Mogi [1974] proposed a simple model of the incipient rupture surface to explain the Coulomb failure criterion. We show here that this model can plausibly be extended to explain the Mohr failure criterion. In Mogi's model the incipient rupture surface immediately before fracture consists of areas across which material integrity is maintained (intact areas) and areas across which it is not (cracks). The strength of the incipient rupture surface is made up of the inherent strength of the intact areas plus the frictional resistance to sliding offered by the cracked areas. Although the coefficient of internal friction (slope of the strength versus normal stress curve) depends upon both the frictional and inherent strengths, the phenomenon of internal friction can be identified with the frictional part. The curvature of the Mohr failure envelope is interpreted as a consequence of differences in damage (cracking) accumulated in prefailure loading at different confining pressures.

  10. The Small-Mass Limit for Langevin Dynamics with Unbounded Coefficients and Positive Friction

    NASA Astrophysics Data System (ADS)

    Herzog, David P.; Hottovy, Scott; Volpe, Giovanni

    2016-05-01

    A class of Langevin stochastic differential equations is shown to converge in the small-mass limit under very weak assumptions on the coefficients defining the equation. The convergence result is applied to three physically realizable examples where the coefficients defining the Langevin equation for these examples grow unboundedly either at a boundary, such as a wall, and/or at the point at infinity. This unboundedness violates the assumptions of previous limit theorems in the literature. The main result of this paper proves convergence for such examples.

  11. Effects of flooring on required coefficient of friction: Elderly adult vs. middle-aged adult barefoot gait.

    PubMed

    Rozin Kleiner, Ana Francisca; Galli, Manuela; Araujo do Carmo, Aline; Barros, Ricardo M L

    2015-09-01

    The aim of this study was to investigate the effect of flooring on barefoot gait according to age and gender. Two groups of healthy subjects were analyzed: the elderly adult group (EA; 10 healthy subjects) and the middle-aged group (MA; 10 healthy subjects). Each participant was asked to walk at his or her preferred speed over two force plates on the following surfaces: 1) homogeneous vinyl (HOV), 2) carpet, 3) heterogeneous vinyl (HTV) and 4) mixed (in which the first half of the pathway was covered by HOV and the second by HTV). Two force plates (Kistler 9286BA) embedded in the data collection room floor measured the ground reaction forces and friction. The required coefficient of friction (RCOF) was analyzed. For the statistical analysis, a linear mixed-effects model for repeated measures was performed. During barefoot gait, there were differences in the RCOF among the flooring types during the heel contact and toe-off phases. Due to better plantar proprioception during barefoot gait, the EA and MA subjects were able to distinguish differences among the flooring types. Moreover, when the EA were compared with the MA subjects, differences could be observed in the RCOF during the toe-off phase, and gender differences in the RCOF could also be observed during the heel contact phase in barefoot gait. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. Mechanical device for determining the stiffness and the viscous friction coefficient of shock absorber elements modelled by bond graph

    NASA Astrophysics Data System (ADS)

    Ibănescu, R.; Ibănescu, M.

    2016-11-01

    The present paper presents a mechanical device for the assessment of the fundamental parameters of a shock absorber: the spring stiffness and the viscous friction coefficient, without disassembling the absorber. The device produces an oscillatory motion of the shock absorber and can measure its amplitude and angular velocities. The dynamic model of the system, consisting of the mechanical device and the shock absorber, is performed by using the bond- graph method. Based on this model, the motion equations are obtained, which by integration lead to the motion law. The two previously mentioned parameters are determined by using this law and the measured values of two amplitudes and of their corresponding angular velocities. They result as solutions of a system of two non-linear algebraic equations.

  13. Integrated optimal dynamics control of 4WD4WS electric ground vehicle with tire-road frictional coefficient estimation

    NASA Astrophysics Data System (ADS)

    Wang, Rongrong; Hu, Chuan; Wang, Zejiang; Yan, Fengjun; Chen, Nan

    2015-08-01

    This paper presents an integrated optimal dynamics control of four-wheel driving and four-wheel steering (4WD4WS) electric ground vehicles via hierarchical control methodology. In the higher-level design, an LQR controller is proposed to obtain the integrated lateral force and yaw moment, according to their respective reference values. The lower-level controller is designed to ensure all the tires work in the stable region while realizing the tracking control of the vehicle dynamics. The tire-road friction coefficient is estimated through the integrated longitudinal force and lateral force, respectively, using a brush tire model. To reduce the estimation error, a novel data fusion function is employed to generate the final estimation value. Finally, the effectiveness of the proposed control and estimation strategies is validated via CarSim-Simulink joint simulation.

  14. Tire-road friction coefficient estimation based on the resonance frequency of in-wheel motor drive system

    NASA Astrophysics Data System (ADS)

    Chen, Long; Bian, Mingyuan; Luo, Yugong; Qin, Zhaobo; Li, Keqiang

    2016-01-01

    In this paper, a resonance frequency-based tire-road friction coefficient (TRFC) estimation method is proposed by considering the dynamics performance of the in-wheel motor drive system under small slip ratio conditions. A frequency response function (FRF) is deduced for the drive system that is composed of a dynamic tire model and a simplified motor model. A linear relationship between the squared system resonance frequency and the TFRC is described with the FRF. Furthermore, the resonance frequency is identified by the Auto-Regressive eXogenous model using the information of the motor torque and the wheel speed, and the TRFC is estimated thereafter by a recursive least squares filter with the identified resonance frequency. Finally, the effectiveness of the proposed approach is demonstrated through simulations and experimental tests on different road surfaces.

  15. A Comparative Study of the Harmonic and Arithmetic Averaging of Diffusion Coefficients for Non-linear Heat Conduction Problems

    SciTech Connect

    Samet Y. Kadioglu; Robert R. Nourgaliev; Vincent A. Mousseau

    2008-03-01

    We perform a comparative study for the harmonic versus arithmetic averaging of the heat conduction coefficient when solving non-linear heat transfer problems. In literature, the harmonic average is the method of choice, because it is widely believed that the harmonic average is more accurate model. However, our analysis reveals that this is not necessarily true. For instance, we show a case in which the harmonic average is less accurate when a coarser mesh is used. More importantly, we demonstrated that if the boundary layers are finely resolved, then the harmonic and arithmetic averaging techniques are identical in the truncation error sense. Our analysis further reveals that the accuracy of these two techniques depends on how the physical problem is modeled.

  16. Experimental determination of average turbulent heat transfer and friction factor in stator internal rib-roughened cooling channels.

    PubMed

    Battisti, L; Baggio, P

    2001-05-01

    In gas turbine cooling design, techniques for heat extraction from the surfaces exposed to the hot stream are based on the increase of the inner heat transfer areas and on the promotion of the turbulence of the cooling flow. This is currently obtained by casting periodic ribs on one or more sides of the serpentine passages into the core of the blade. Fluid dynamic and thermal behaviour of the cooling flow have been extensively investigated by means of experimental facilities and many papers dealing with this subject have appeared in the latest years. The evaluation of the average value of the heat transfer coefficient most of the time is inferred from local measurements obtained by various experimental techniques. Moreover the great majority of these studies are not concerned with the overall average heat transfer coefficient for the combined ribs and region between them, but do focus just on one of them. This paper presents an attempt to collect information about the average Nusselt number inside a straight ribbed duct. Series of measurements have been performed in steady state eliminating the error sources inherently connected with transient methods. A low speed wind tunnel, operating in steady state flow, has been built to simulate the actual flow condition occurring in a rectilinear blade cooling channel. A straight square channel with 20 transverse ribs on two sides has been tested for Re of about 3 x 10(4), 4.5 x 10(4) and 6 x 10(4). The ribbed wall test section is electrically heated and the heat removed by a stationary flow of known thermal and fluid dynamic characteristics.

  17. Investigation of the Maximum Spin-Up Coefficients of Friction Obtained During Tests of a Landing Gear Having a Static-Load Rating of 20,000 Pounds

    NASA Technical Reports Server (NTRS)

    Batterson, Sidney A.

    1959-01-01

    An experimental investigation was made at the Langley landing loads track to obtain data on the maximum spin-up coefficients of friction developed by a landing gear having a static-load rating of 20,000 pounds. The forward speeds ranged from 0 to approximately 180 feet per second and the sinking speeds, from 2.7 feet per second to 9.4 feet per second. The results indicated the variation of the maximum spin-up coefficient of friction with forward speed and vertical load. Data obtained during this investigation are also compared with some results previously obtained for nonrolling tires to show the effect of forward speed.

  18. Analysis of the estimators of the average coefficient of dominance of deleterious mutations.

    PubMed

    Fernández, B; García-Dorado, A; Caballero, A

    2004-10-01

    We investigate the sources of bias that affect the most commonly used methods of estimation of the average degree of dominance (h) of deleterious mutations, focusing on estimates from segregating populations. The main emphasis is on the effect of the finite size of the populations, but other sources of bias are also considered. Using diffusion approximations to the distribution of gene frequencies in finite populations as well as stochastic simulations, we assess the behavior of the estimators obtained from populations at mutation-selection-drift balance under different mutational scenarios and compare averages of h for newly arisen and segregating mutations. Because of genetic drift, the inferences concerning newly arisen mutations based on the mutation-selection balance theory can have substantial upward bias depending upon the distribution of h. In addition, estimates usually refer to h weighted by the homozygous deleterious effect in different ways, so that inferences are complicated when these two variables are negatively correlated. Due to both sources of bias, the widely used regression of heterozygous on homozygous means underestimates the arithmetic mean of h for segregating mutations, in contrast to their repeatedly assumed equality in the literature. We conclude that none of the estimators from segregating populations provides, under general conditions, a useful tool to ascertain the properties of the degree of dominance, either for segregating or for newly arisen deleterious mutations. Direct estimates of the average h from mutation-accumulation experiments are shown to suffer some bias caused by purging selection but, because they do not require assumptions on the causes maintaining segregating variation, they appear to give a more reliable average dominance for newly arisen mutations.

  19. Analysis of the Estimators of the Average Coefficient of Dominance of Deleterious Mutations

    PubMed Central

    Fernández, B.; García-Dorado, A.; Caballero, A.

    2004-01-01

    We investigate the sources of bias that affect the most commonly used methods of estimation of the average degree of dominance (h) of deleterious mutations, focusing on estimates from segregating populations. The main emphasis is on the effect of the finite size of the populations, but other sources of bias are also considered. Using diffusion approximations to the distribution of gene frequencies in finite populations as well as stochastic simulations, we assess the behavior of the estimators obtained from populations at mutation-selection-drift balance under different mutational scenarios and compare averages of h for newly arisen and segregating mutations. Because of genetic drift, the inferences concerning newly arisen mutations based on the mutation-selection balance theory can have substantial upward bias depending upon the distribution of h. In addition, estimates usually refer to h weighted by the homozygous deleterious effect in different ways, so that inferences are complicated when these two variables are negatively correlated. Due to both sources of bias, the widely used regression of heterozygous on homozygous means underestimates the arithmetic mean of h for segregating mutations, in contrast to their repeatedly assumed equality in the literature. We conclude that none of the estimators from segregating populations provides, under general conditions, a useful tool to ascertain the properties of the degree of dominance, either for segregating or for newly arisen deleterious mutations. Direct estimates of the average h from mutation-accumulation experiments are shown to suffer some bias caused by purging selection but, because they do not require assumptions on the causes maintaining segregating variation, they appear to give a more reliable average dominance for newly arisen mutations. PMID:15514075

  20. A vehicle ABS adaptive sliding-mode control algorithm based on the vehicle velocity estimation and tyre/road friction coefficient estimations

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangwen; Xu, Yong; Pan, Ming; Ren, Fenghua

    2014-04-01

    A sliding-mode observer is designed to estimate the vehicle velocity with the measured vehicle acceleration, the wheel speeds and the braking torques. Based on the Burckhardt tyre model, the extended Kalman filter is designed to estimate the parameters of the Burckhardt model with the estimated vehicle velocity, the measured wheel speeds and the vehicle acceleration. According to the estimated parameters of the Burckhardt tyre model, the tyre/road friction coefficients and the optimal slip ratios are calculated. A vehicle adaptive sliding-mode control (SMC) algorithm is presented with the estimated vehicle velocity, the tyre/road friction coefficients and the optimal slip ratios. And the adjustment method of the sliding-mode gain factors is discussed. Based on the adaptive SMC algorithm, a vehicle's antilock braking system (ABS) control system model is built with the Simulink Toolbox. Under the single-road condition as well as the different road conditions, the performance of the vehicle ABS system is simulated with the vehicle velocity observer, the tyre/road friction coefficient estimator and the adaptive SMC algorithm. The results indicate that the estimated errors of the vehicle velocity and the tyre/road friction coefficients are acceptable and the vehicle ABS adaptive SMC algorithm is effective. So the proposed adaptive SMC algorithm can be used to control the vehicle ABS without the information of the vehicle velocity and the road conditions.

  1. Relationship between the Averaged Deposition Rate Coefficients for Colloids in a Single Pore and Various Pore-scale Parameters

    NASA Astrophysics Data System (ADS)

    Narayanan, S.; Mohan Kumar, M.; Hassanizadeh, S. M.; Raoof, A.

    2014-12-01

    The colloid deposition behavior observed at the Darcy scale represents an average of the processes occurring at the pore scale. Hence, a better understanding of the processes occurring at the Darcy scale can be obtained by studying colloid transport at the pore-scale and then upscaling the results. In this study, we have developed a mathematical model to simulate the transport of colloids in a cylindrical pore by considering various processes such as advection, diffusion, colloid-soil surface interactions and hydrodynamic wall effects. The pore space is divided into three different regions, namely, the bulk, diffusion and potential regions, based on the dominant processes acting in each of these regions. In the bulk region, colloid transport is governed by advection and diffusion; whereas in the diffusion region, colloid mobility due to diffusion is retarded by hydrodynamic wall effects. Colloid-solid interaction forces dominate the transport in the potential region where colloid deposition occurs and are calculated using DLVO theory. The expressions for mass transfer rate coefficients between the diffusion and potential regions have been derived for different DLVO energy profiles. These are incorporated in the pore-scale equations in the form of a boundary condition at the diffusion-potential region interface. The model results are used to obtain the colloid breakthrough curve at the end of a long pore, and then it is fitted with 1D advection-dispersion-adsorption model so as to determine the averaged attachment and detachment rate coefficients at the scale of a single pore. A sensitivity analysis of the model to six pore-scale parameters (colloid and wall surface potentials, solution ionic strength, average pore-water velocity, colloid radius, and pore radius) is carried out so as to find the relation between the averaged deposition rate coefficients at pore scale vs the pore-scale parameters. We found an hyper exponential relation between the colloid attachment

  2. Local skin friction coefficients and boundary layer profiles obtained in flight from the XB-70-1 airplane at Mach numbers up to 2.5

    NASA Technical Reports Server (NTRS)

    Fisher, D. F.; Saltzman, E. J.

    1973-01-01

    Boundary-layer and local friction data for Mach numbers up to 2.5 and Reynolds numbers up to 3.6 x 10 to the 8th power were obtained in flight at three locations on the XB-70-1 airplane: the lower forward fuselage centerline (nose), the upper rear fuselage centerline, and the upper surface of the right wing. Local skin friction coefficients were derived at each location by using (1) a skin friction force balance, (2) a Preston probe, and (3) an adaptation of Clauser's method which derives skin friction from the rake velocity profile. These three techniques provided consistent results that agreed well with the von Karman-Schoenherr relationship for flow conditions that are quasi-two-dimensional. At the lower angles of attack, the nose-boom and flow-direction vanes are believed to have caused the momentum thickness at the nose to be larger than at the higher angles of attack. The boundary-layer data and local skin friction coefficients are tabulated. The wind-tunnel-model surface-pressure distribution ahead of the three locations and the flight surface-pressure distribution ahead of the wing location are included.

  3. Assuming exponential decay by incorporating viscous damping improves the prediction of the coefficient of friction in pendulum tests of whole articular joints.

    PubMed

    Crisco, J J; Blume, J; Teeple, E; Fleming, B C; Jay, G D

    2007-04-01

    A pendulum test with a whole articular joint serving as the fulcrum is commonly used to measure the bulk coefficient of friction (COF). In such tests it is universally assumed that energy loss is due to frictional damping only, and accordingly the decay of pendulum amplitude is linear with time. The purpose of this work was to determine whether the measurement of the COF is improved when viscous damping and exponential decay of pendulum amplitude are incorporated into a lumped-parameter model. Various pendulum models with a range of values for COF and for viscous damping were constructed. The resulting decay was fitted with an exponential function (including both frictional and viscous damping) and with a linear decay function (frictional damping only). The values predicted from the fit of each function were then compared to the known values. It was found that the exponential decay function was able to predict the COF values within 2 per cent error. This error increased for models in which the damping coefficient was relatively small and the COF was relatively large. On the other hand, the linear decay function resulted in large errors in the prediction of the COF, even for small values of viscous damping. The exponential decay function including both frictional and constant viscous damping presented herein dramatically increased the accuracy of measuring the COF in a pendulum test of modelled whole articular joints.

  4. Comparing the effects of interparticle friction coefficient and intermediate stress ratio on critical-state DEM simulations using Delaunay triangulations

    NASA Astrophysics Data System (ADS)

    Hanley, Kevin J.; Huang, Xin; O'Sullivan, Catherine

    2017-06-01

    Strong force chains form when any granular material is subjected to load. A prior study used Delaunay triangulations to investigate the role of interparticle friction coefficient, μ, in stabilising the strong force chains [1]. In this follow-on paper, the effects of μ and the intermediate stress ratio, b, are compared. Numerical samples were sheared triaxially until critical state was attained. The contact networks and Delaunay triangulations of the particle centroids were both obtained at the end of each simulation. As μ is increased, the numbers of contacts in the contact networks decrease consistently. The numbers of edges, faces or tetrahedra in the Delaunay triangulations all increase with increasing μ up to 0.25 and become approximately constant thereafter. Changing b has no significant effect. The percentage of faces in the triangulation comprising three contacts shows a linearly-decreasing trend with increasing angle of shearing resistance. This is because only orthogonal loads are applied. Triangular structures require larger lateral supporting forces to maintain their stability than columnar structures when subjected to an axial load; hence, σ3' is expected to be larger relative to σ1' when triangular motifs are more prevalent. An increased proportion of triangular structures therefore leads to a lower ϕcv'.

  5. Investigation of the running-in process and friction coefficient under the lubrication of ionic liquid/water mixture

    NASA Astrophysics Data System (ADS)

    Xie, Guoxin; Liu, Shuhai; Guo, Dan; Wang, Quan; Luo, Jianbin

    2009-04-01

    The tribological properties of three different films commonly used in microelectromechanical systems (MEMS) under the lubrication of ionic liquid (IL)/water mixtures with various concentrations in the running-in process have been investigated. Results show that coefficients of friction (COFs) and wear rates for low temperature silicon oxide (LTO)/Si 3N 4 vary in a similar way to the ones for poly-Si/Si 3N 4 under the lubrications of different IL/water mixtures. In contrast, the differences in COFs and wear rates are more significant in that the COFs and wear rates increase dramatically with the decrease in IL/water concentration in the case of self-mated Si 3N 4, while the differences in COFs and wear rates for the two other tribopairs are relatively small when the concentration is changed. The period of the running-in process reduces with the increase in IL/water concentration for all the tribopairs. Effective hydrodynamic lubrication can be found in the case of Si 3N 4/Si 3N 4 tribopair at higher IL/water concentrations without an evident running-in process, however, such a phenomenon cannot be observed for the other two tribopairs. Different wear mechanisms will also be analyzed in this paper.

  6. Coefficients of Friction, Lubricin, and Cartilage Damage in the Anterior Cruciate Ligament-Deficient Guinea Pig Knee

    PubMed Central

    Teeple, Erin; Elsaid, Khaled A.; Fleming, Braden C.; Jay, Gregory D.; Aslani, Koosha; Crisco, Joseph J.; Mechrefe, Anthony P.

    2009-01-01

    The coefficient of friction (COF) of articular cartilage is thought to increase with osteoarthritis (OA) progression, and this increase may occur due to a decrease in lubricin concentration. The objectives of this study were to measure the COF of guinea pig tibiofemoral joints with different stages of OA, and to establish relationships between COF, lubricin concentrations in synovial fluid, and degradation status using the Hartley guinea pig model. Both hind limbs from 24 animals were harvested: seven 3-month-old (no OA), seven 12-month-old (mild OA), and ten that were euthanized at 12-months of age after undergoing unilateral anterior cruciate ligament (ACL) transection at 3-months of age (moderate OA). Contralateral knees served as age matched controls. COFs of the tibiofemoral joints were measured using a pendulum apparatus. Synovial fluid lavages were analyzed to determine the concentration and integrity of lubricin using ELISA and western blot, and the overall articular cartilage status was evaluated by histology. The results showed that the mean COF in the ACL-deficient knees was significantly greater than that of the 3-month knees (p<0.01) and the 12-month knees (p<0.01). Lubricin concentrations in the ACL-deficient knees were significantly lower than that of the 3-month knees (p<0.01) and 12-month knees (p<0.01). No significant differences in COF or lubricin concentration were found between the 3-month and the 12-month knees. Histology verified the extent of cartilage damage in each group. Conclusion COF values increased and lubricin levels decreased with cartilage damage following ACL transection. PMID:17868097

  7. Calculation of skin-friction coefficients for low Reynolds number turbulent boundary layer flows. M.S. Thesis - California Univ. at Davis

    NASA Technical Reports Server (NTRS)

    Barr, P. K.

    1980-01-01

    An analysis is presented of the reliability of various generally accepted empirical expressions for the prediction of the skin-friction coefficient C/sub f/ of turbulent boundary layers at low Reynolds numbers in zero-pressure-gradient flows on a smooth flat plate. The skin-friction coefficients predicted from these expressions were compared to the skin-friction coefficients of experimental profiles that were determined from a graphical method formulated from the law of the wall. These expressions are found to predict values that are consistently different than those obtained from the graphical method over the range 600 Re/sub theta 2000. A curve-fitted empirical relationship was developed from the present data and yields a better estimated value of C/sub f/ in this range. The data, covering the range 200 Re/sub theta 7000, provide insight into the nature of transitional flows. They show that fully developed turbulent boundary layers occur at Reynolds numbers Re/sub theta/ down to 425. Below this level there appears to be a well-ordered evolutionary process from the laminar to the turbulent profiles. These profiles clearly display the development of the turbulent core region and the shrinking of the laminar sublayer with increasing values of Re/sub theta/.

  8. Effect of laceration and trimming of a tendon on the coefficient of friction along the A2 pulley: an in vitro study on turkey tendon.

    PubMed

    Hajipour, L; Gulihar, A; Dias, J

    2010-08-01

    We carried out lacerations of 50%, followed by trimming, in ten turkey flexor tendons in vitro and measured the coefficient of friction at the tendon-pulley interface with loads of 200 g and 400 g and in 10 degrees , 30 degrees, 50 degrees and 70 degrees of flexion. Laceration increased the coefficient of friction from 0.12 for the intact tendon to 0.3 at both the test loads. Trimming the laceration reduced the coefficient of friction to 0.2. An exponential increase in the gliding resistance was found at 50 degrees and 70 degrees of flexion (p = 0.02 and p = 0.003, respectively) following trimming compared to that of the intact tendon. We concluded that trimming partially lacerated flexor tendons will reduce the gliding resistance at the tendon-pulley interface, but will lead to fragmentation and triggering of the tendon at higher degrees of flexion and loading. We recommend that higher degrees of flexion be avoided during early post-operative rehabilitation following trimming of a flexor tendon.

  9. Modelling of ELM-averaged power exhaust on JET using the EDGE2D code with variable transport coefficients

    NASA Astrophysics Data System (ADS)

    Kirnev, G.; Fundamenski, W.; Corrigan, G.

    2007-06-01

    The scrape-off layer (SOL) of the JET tokamak has been modelled using a two-dimensional plasma/neutral code, EDGE2D/NIMBUS, with variable transport coefficients, chosen according to nine candidate theories for radial heat transport in the SOL. Comparison of the radial power width on the outer divertor plates, λq, predicted by modelling and measured experimentally in L-mode and ELM-averaged H-mode at JET is presented. Transport coefficients based on classical and neo-classical ion conduction are found to offer the best agreement with experimentally measured λq magnitude and scaling with target power, upstream density and toroidal field. These results reinforce the findings of an earlier study, based on a simplified model of the SOL (Chankin 1997 Plasma Phys. Control. Fusion 39 1059), and support the earlier estimate of the power width at the entrance of the outer divertor volume in ITER, λq ap 4 mm mapped to the outer mid-plane (Fundamenski et al 2004 Nucl. Fusion 44 20).

  10. Charts Adapted from Van Driest's Turbulent Flat-plate Theory for Determining Values of Turbulent Aerodynamic Friction and Heat-transfer Coefficients

    NASA Technical Reports Server (NTRS)

    Lee, Dorothy B; Faget, Maxime A

    1956-01-01

    A modified method of Van Driest's flat-plate theory for turbulent boundary layer has been found to simplify the calculation of local skin-friction coefficients which, in turn, have made it possible to obtain through Reynolds analogy theoretical turbulent heat-transfer coefficients in the form of Stanton number. A general formula is given and charts are presented from which the modified method can be solved for Mach numbers 1.0 to 12.0, temperature ratios 0.2 to 6.0, and Reynolds numbers 0.2 times 10 to the 6th power to 200 times 10 to the 6th power.

  11. Edge detection in potential filed using the correlation coefficients between the average and standard deviation of vertical derivatives

    NASA Astrophysics Data System (ADS)

    Du, Wei; Wu, Yangang; Guan, Yanwu; Hao, Mengcheng

    2017-08-01

    Edge detection is an essential task in the interpretation of potential field data. Many existing edge detection methods are the functions composed by the horizontal derivative and vertical derivative of potential field data. The edges recognized by those methods are bigger than the true edges and when the depths of the geological bodies are different, the edges will be detected fuzzy and difficult to identify the edges accurately. In this paper, we present a new method to delineate the edges of the sources, which is based on the correlation coefficients between the average and standard deviation of vertical derivatives in a sliding window. The algorithm of this method is very simple. The zero value of the correlation coefficients is used to delineate the geological edges. It's clear to see the edges with the zero contours which will lead to continuous and clear detected edges and the method shows the edges more precisely. Moreover, the anomalies in different depths can be detected in the same degree and are insensitive to noise. The measure is initially applied on the synthetic gravity and magnetic data. The tests of theoretical models indicate that the new method could detect the edges of models in different depths and the position is in good accordance with the models' edges. Finally, this method is applied to gravity data from a portion of Vientiane Basin, Laos. As a result, the method is helpful in recognizing geologic fractures clearly. Moreover, it shows more geologic details with smaller window size and gives superior results with higher quality data.

  12. Experience-based learning on determining the frictional coefficients of thermoset polymers incorporated with silicon carbide whiskers and chopped carbon fibers at different temperatures

    NASA Astrophysics Data System (ADS)

    Harrison, Edward; Alamir, Mohammed; Alzahrani, Naif; Asmatulu, Ramazan

    2017-04-01

    High temperature applications of materials have been increasing for various industrial applications, such as automobile brakes, clutches and thrust pads. The big portion of these materials are made out of the polymeric materials with various reinforcements. In the present study, high temperature polymeric materials were incorporated with SiC whiskers and chopped carbon fibers at 0, 5, 10 and 20wt.% and molded into desired size and shape prior to the curing process. These inclusions were selected because of their high mechanical strengths and thermal conductivity values to easily dissipate the frictional heat energy and sustain more external loads. The method of testing involves a metal ramp with an adjustable incline to find the coefficients of static and kinetic frictions by recording time and the angle of movement at various temperatures (e.g., -10°C and 50°C). The test results indicated that increasing the inclusions made drastic improvements on the coefficients of static and kinetic frictions. The undergraduate students were involved in the project and observed all the details of the process during the laboratory studies, as well as data collection, analysis and presentation. This study will be useful for the future trainings of the undergraduate engineering students on the composite, automobile and other manufacturing industries.

  13. Experimental assessment of blade tip immersion depth from free surface on average power and thrust coefficients of marine current turbine

    NASA Astrophysics Data System (ADS)

    Lust, Ethan; Flack, Karen; Luznik, Luksa

    2014-11-01

    Results from an experimental study on the effects of marine current turbine immersion depth from the free surface are presented. Measurements are performed with a 1/25 scale (diameter D = 0.8m) two bladed horizontal axis turbine towed in the large towing tank at the U.S. Naval Academy. Thrust and torque are measured using a dynamometer, mounted in line with the turbine shaft. Shaft rotation speed and blade position are measured using a shaft position indexing system. The tip speed ratio (TSR) is adjusted using a hysteresis brake which is attached to the output shaft. Two optical wave height sensors are used to measure the free surface elevation. The turbine is towed at 1.68 m/s, resulting in a 70% chord based Rec = 4 × 105. An Acoustic Doppler Velocimeter (ADV) is installed one turbine diameter upstream of the turbine rotation plane to characterize the inflow turbulence. Measurements are obtained at four relative blade tip immersion depths of z/D = 0.5, 0.4, 0.3, and 0.2 at a TSR value of 7 to identify the depth where free surface effects impact overall turbine performance. The overall average power and thrust coefficient are presented and compared to previously conducted baseline tests. The influence of wake expansion blockage on the turbine performance due to presence of the free surface at these immersion depths will also be discussed.

  14. Microscale friction investigation of polysilicon surface using scanning force microscopy

    NASA Astrophysics Data System (ADS)

    Flueraru, C.; Cobianu, C.; Dascalu, D.; Flueraru, M.

    1998-07-01

    Microscale phenomena between the surface of chemically vapour deposited silicon films and a silicon nitride tip was investigated using Scanning Force Microscopy. An analysis of friction forces for different scan directions is presented. For different applied forces, the friction forces were measured and consequently the friction coefficient was calculated. We found that the average friction force linearly increases with the applied force and is reversible when unloading. Connection between the surface roughness and the friction coefficient was experimentally demonstrated. On a étudié par Microscopie à Force Atomique des phénomènes à échelle microscopique au niveau de la jonction pointe de nitrure de silicium et surface de films de silicium, obtenus par déposition chimique en phase vapeur. Dans cet article, nous présentons une analyse des forces de friction pour différentes directions de balayage. On a déterminé les forces de friction et, en conséquence, nous avons calculé le coefficient de friction pour différentes forces appliquées. Les résultats montrent que la force moyenne de friction augmente en fonction de la force appliquée, et qu'elle est reversible lorsque la charge diminue. Une dépendance entre la rugosité de la surface et le coefficient de friction est déduite.

  15. Synthetic modeling of a fluid injection-induced fault rupture with slip-rate dependent friction coefficient

    NASA Astrophysics Data System (ADS)

    Urpi, Luca; Rinaldi, Antonio Pio; Rutqvist, Jonny; Cappa, Frédéric; Spiers, Christopher J.

    2016-04-01

    Poro-elastic stress and effective stress reduction associated with deep underground fluid injection can potentially trigger shear rupture along pre-existing faults. We modeled an idealized CO2 injection scenario, to assess the effects on faults of the first phase of a generic CO2 aquifer storage operation. We used coupled multiphase fluid flow and geomechanical numerical modeling to evaluate the stress and pressure perturbations induced by fluid injection and the response of a nearby normal fault. Slip-rate dependent friction and inertial effects have been aken into account during rupture. Contact elements have been used to take into account the frictional behavior of the rupture plane. We investigated different scenarios of injection rate to induce rupture on the fault, employing various fault rheologies. Published laboratory data on CO2-saturated intact and crushed rock samples, representative of a potential target aquifer, sealing formation and fault gouge, have been used to define a scenario where different fault rheologies apply at different depths. Nucleation of fault rupture takes place at the bottom of the reservoir, in agreement with analytical poro-elastic stress calculations, considering injection-induced reservoir inflation and the tectonic scenario. For the stress state here considered, the first triggered rupture always produces the largest rupture length and slip magnitude, correlated with the fault rheology. Velocity weakening produces larger ruptures and generates larger magnitude seismic events. Heterogeneous faults have been considered including velocity-weakening or velocity strengthening sections inside and below the aquifer, while upper sections being velocity-neutral. Nucleation of rupture in a velocity strengthening section results in a limited rupture extension, both in terms of maximum slip and rupture length. For a heterogeneous fault with nucleation in a velocity-weakening section, the rupture may propagate into the overlying velocity

  16. Earthquake friction

    NASA Astrophysics Data System (ADS)

    Mulargia, Francesco; Bizzarri, Andrea

    2016-12-01

    Laboratory friction slip experiments on rocks provide firm evidence that the static friction coefficient μ has values ∼0.7. This would imply large amounts of heat produced by seismically active faults, but no heat flow anomaly is observed, and mineralogic evidence of frictional heating is virtually absent. This stands for lower μ values ∼0.2, as also required by the observed orientation of faults with respect to the maximum compressive stress. We show that accounting for the thermal and mechanical energy balance of the system removes this inconsistence, implying a multi-stage strain release process. The first stage consists of a small and slow aseismic slip at high friction on pre-existent stress concentrators within the fault volume but angled with the main fault as Riedel cracks. This introduces a second stage dominated by frictional temperature increase inducing local pressurization of pore fluids around the slip patches, which is in turn followed by a third stage in which thermal diffusion extends the frictionally heated zones making them coalesce into a connected pressurized region oriented as the fault plane. Then, the system enters a state of equivalent low static friction in which it can undergo the fast elastic radiation slip prescribed by dislocation earthquake models.

  17. Measurements of heat transfer coefficients and friction factors in rib-roughened channels simulating leading-edge cavities of a modern turbine blade

    SciTech Connect

    Taslim, M.E.; Li, T.; Spring, S.D.

    1997-07-01

    Leading edge cooling cavities in modern gas turbine blades play an important role in maintaining the leading edge temperature at levels consistent with air foil design life. These cavities often have a complex cross-sectional shape to be compatible with the external contour of the blade at the leading edge. A survey of many existing geometries shows that, for analytical as well as experimental analyses, such cavities can be simplified in shape by a four-sided polygon with one curved side similar to the leading edge curvature, a rectangle with one semicircular side (often the smaller side) or a trapezoid, the smaller base of which is replaced by a semicircle. Furthermore, to enhance the heat transfer coefficient in these cavities, they are mostly roughened on three sides with ribs of different geometries. Experimental data on friction factors and heat transfer coefficients in such cavities are rare if not nonexistent. A liquid crystal technique was used in this experimental investigation to measure heat transfer coefficients in six test sections representing the leading-edge cooling cavities. Both straight and tapered ribs were configured on the two opposite sidewalls in a staggered arrangement with angles of attack to the mainstream flow, {alpha}, of 60 and 90 deg. The ribs on the curved surface were of constant cross section with an angle of attack 90 deg to the flow. Heat transfer measurements were performed on the straight sidewalls, as well as on the round surface adjacent to the blade leading edge. Effects such as rib angle of attack to the mainstream flow and constant versus tapered rib cross-sectional areas were also investigated. Nusselt numbers, friction factors, and thermal performances are reported for nine rib geometries in six test sections.

  18. Friction phenomena and their impact on the shear behaviour of granular material

    NASA Astrophysics Data System (ADS)

    Suhr, Bettina; Six, Klaus

    2017-01-01

    In the discrete element simulation of granular materials, the modelling of contacts is crucial for the prediction of the macroscopic material behaviour. From the tribological point of view, friction at contacts needs to be modelled carefully, as it depends on several factors, e.g. contact normal load or temperature to name only two. In discrete element method (DEM) simulations the usage of Coulomb's law of friction is state of the art in modelling particle-particle contacts. Usually in Coulomb's law, for all contacts only one constant coefficient of friction is used, which needs to reflect all tribological effects. Thus, whenever one of the influence factors of friction varies over a wide range, it can be expected that the usage of only one constant coefficient of friction in Coulomb's law is an oversimplification of reality. For certain materials, e.g. steel, it is known that a dependency of the coefficient of friction on the contact normal load exists. A more tribological tangential contact law is implemented in DEM, where the interparticle friction coefficient depends on the averaged normal stress in the contact. Simulations of direct shear tests are conducted, using steel spheres of different size distributions. The strong influence of interparticle friction on the bulk friction is shown via a variation of the constant interparticle friction coefficient. Simulations with constant and stress-dependent interparticle friction are compared. For the stress-dependent interparticle friction, a normal stress dependency of the bulk friction is seen. In the literature, measurements of different granular materials and small normal loads also show a stress dependency of the bulk friction coefficient. With increasing applied normal stress, the bulk friction coefficient reduces both in the experiments and in the simulations.

  19. Friction phenomena and their impact on the shear behaviour of granular material.

    PubMed

    Suhr, Bettina; Six, Klaus

    2017-01-01

    In the discrete element simulation of granular materials, the modelling of contacts is crucial for the prediction of the macroscopic material behaviour. From the tribological point of view, friction at contacts needs to be modelled carefully, as it depends on several factors, e.g. contact normal load or temperature to name only two. In discrete element method (DEM) simulations the usage of Coulomb's law of friction is state of the art in modelling particle-particle contacts. Usually in Coulomb's law, for all contacts only one constant coefficient of friction is used, which needs to reflect all tribological effects. Thus, whenever one of the influence factors of friction varies over a wide range, it can be expected that the usage of only one constant coefficient of friction in Coulomb's law is an oversimplification of reality. For certain materials, e.g. steel, it is known that a dependency of the coefficient of friction on the contact normal load exists. A more tribological tangential contact law is implemented in DEM, where the interparticle friction coefficient depends on the averaged normal stress in the contact. Simulations of direct shear tests are conducted, using steel spheres of different size distributions. The strong influence of interparticle friction on the bulk friction is shown via a variation of the constant interparticle friction coefficient. Simulations with constant and stress-dependent interparticle friction are compared. For the stress-dependent interparticle friction, a normal stress dependency of the bulk friction is seen. In the literature, measurements of different granular materials and small normal loads also show a stress dependency of the bulk friction coefficient. With increasing applied normal stress, the bulk friction coefficient reduces both in the experiments and in the simulations.

  20. Experimental Validation of Strategy for the Inverse Estimation of Mechanical Properties and Coefficient of Friction in Flat Rolling

    NASA Astrophysics Data System (ADS)

    Yadav, Vinod; Singh, Arbind Kumar; Dixit, Uday Shanker

    2017-08-01

    Flat rolling is one of the most widely used metal forming processes. For proper control and optimization of the process, modelling of the process is essential. Modelling of the process requires input data about material properties and friction. In batch production mode of rolling with newer materials, it may be difficult to determine the input parameters offline. In view of it, in the present work, a methodology to determine these parameters online by the measurement of exit temperature and slip is verified experimentally. It is observed that the inverse prediction of input parameters could be done with a reasonable accuracy. It was also assessed experimentally that there is a correlation between micro-hardness and flow stress of the material; however the correlation between surface roughness and reduction is not that obvious.

  1. Experimental Validation of Strategy for the Inverse Estimation of Mechanical Properties and Coefficient of Friction in Flat Rolling

    NASA Astrophysics Data System (ADS)

    Yadav, Vinod; Singh, Arbind Kumar; Dixit, Uday Shanker

    2016-06-01

    Flat rolling is one of the most widely used metal forming processes. For proper control and optimization of the process, modelling of the process is essential. Modelling of the process requires input data about material properties and friction. In batch production mode of rolling with newer materials, it may be difficult to determine the input parameters offline. In view of it, in the present work, a methodology to determine these parameters online by the measurement of exit temperature and slip is verified experimentally. It is observed that the inverse prediction of input parameters could be done with a reasonable accuracy. It was also assessed experimentally that there is a correlation between micro-hardness and flow stress of the material; however the correlation between surface roughness and reduction is not that obvious.

  2. Length scale effects of friction in particle compaction using atomistic simulations and a friction scaling model

    NASA Astrophysics Data System (ADS)

    Stone, T. W.; Horstemeyer, M. F.

    2012-09-01

    The objective of this study is to illustrate and quantify the length scale effects related to interparticle friction under compaction. Previous studies have shown as the length scale of a specimen decreases, the strength of a single crystal metal or ceramic increases. The question underlying this research effort continues the thought—If there is a length scale parameter related to the strength of a material, is there a length scale parameter related to friction? To explore the length scale effects of friction, molecular dynamics (MD) simulations using an embedded atom method potential were performed to analyze the compression of two spherical FCC nickel nanoparticles at different contact angles. In the MD model study, we applied a macroscopic plastic contact formulation to determine the normal plastic contact force at the particle interfaces and used the average shear stress from the MD simulations to determine the tangential contact forces. Combining this information with the Coulomb friction law, we quantified the MD interparticle coefficient of friction and showed good agreement with experimental studies and a Discrete Element Method prediction as a function of contact angle. Lastly, we compared our MD simulation friction values to the tribological predictions of Bhushan and Nosonovsky (BN), who developed a friction scaling model based on strain gradient plasticity and dislocation-assisted sliding that included a length scale parameter. The comparison revealed that the BN elastic friction scaling model did a much better job than the BN plastic scaling model of predicting the coefficient of friction values obtained from the MD simulations.

  3. Surface structure and frictional properties of the skin of the Amazon tree boa Corallus hortulanus (Squamata, Boidae).

    PubMed

    Berthé, R A; Westhoff, G; Bleckmann, H; Gorb, S N

    2009-03-01

    The legless locomotion of snakes requires specific adaptations of their ventral scales to maintain friction force in different directions. The skin microornamentation of the snake Corallus hortulanus was studied by means of scanning electron microscopy and the friction properties of the skin were tested on substrates of different roughness. Skin samples from various parts of the body (dorsal, lateral, ventral) were compared. Dorsal and lateral scales showed similar, net-like microornamentation and similar friction coefficients. Average friction coefficients for dorsal and lateral scales on the epoxy resin surfaces were 0.331 and 0.323, respectively. In contrast, ventral scales possess ridges running parallel to the longitudinal body axis. They demonstrated a significantly lower friction coefficient compared to both dorsal and lateral scales (0.191 on average). In addition, ventral scales showed frictional anisotropy comparing longitudinal and perpendicular direction of the ridges. This study clearly demonstrates that different skin microstructure is responsible for different frictional properties in different body regions.

  4. Evaluation of existing EPRI and INEL test data to determine the worm to worm gear coefficient of friction in Limitorque actuators

    SciTech Connect

    Garza, I.A.

    1996-12-01

    About the last sizing parameter for motor operated valves which has not been determined by utility or NRC sponsored testing is actuator efficiency. A by-product of EPRI testing for valve factors is the measurement of the actuator efficiencies. Motor sizing in this testing provides efficiency testing for motors running near synchronous speed. INEL testing, sponsored by the NRC, for stem factors and rate of loading provides complimentary data for motors loaded down to zero speed. This paper analyzes the data from these two test programs to determine the coefficient of friction for the worm to worm gear interface. This allowed the development of an algorithm for determining the efficiency of actuators which have not been tested. This paper compares the results of this algorithm to the test data to provide a measure of the accuracy of this method for calculating actuator efficiency.

  5. Friction in Total Hip Joint Prosthesis Measured In Vivo during Walking

    PubMed Central

    Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg

    2013-01-01

    Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load. PMID:24260114

  6. Friction in total hip joint prosthesis measured in vivo during walking.

    PubMed

    Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg

    2013-01-01

    Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load.

  7. Internal friction between fluid particles of MHD tangent hyperbolic fluid with heat generation: Using coefficients improved by Cash and Karp

    NASA Astrophysics Data System (ADS)

    Salahuddin, T.; Khan, Imad; Malik, M. Y.; Khan, Mair; Hussain, Arif; Awais, Muhammad

    2017-05-01

    The present work examines the internal resistance between fluid particles of tangent hyperbolic fluid flow due to a non-linear stretching sheet with heat generation. Using similarity transformations, the governing system of partial differential equations is transformed into a coupled non-linear ordinary differential system with variable coefficients. Unlike the current analytical works on the flow problems in the literature, the main concern here is to numerically work out and find the solution by using Runge-Kutta-Fehlberg coefficients improved by Cash and Karp (Naseer et al., Alexandria Eng. J. 53, 747 (2014)). To determine the relevant physical features of numerous mechanisms acting on the deliberated problem, it is sufficient to have the velocity profile and temperature field and also the drag force and heat transfer rate all as given in the current paper.

  8. Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the March 17 2013 storm

    DOE PAGES

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; ...

    2015-04-01

    Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less

  9. Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the March 17 2013 storm

    SciTech Connect

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania K.

    2015-04-01

    Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field. By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.

  10. Average boiling and condensation heat transfer coefficients of the zeotropic refrigerant mixture R22/R142b in a coaxial tube-in-tube heat exchanger

    SciTech Connect

    Meyer, J.P.; Bukasa, J.M.; Kebonte, S.A.

    2000-02-01

    Average boiling and condensation heat transfer coefficients were determined experimentally for a coaxial tube-in-tube heat exchanger used in hot water heat pumps. During manufacturing, the heat exchanger geometry used for the experiments changed from round tubes to elliptical tubes as no spacers were used to keep the inner tube from touching the outer tube. The refrigerant used was two different mixtures of R22 with R142b in mass ratios of 80%/20% and 60%/40%. The results were compared to theoretical results for straight tubes. It was concluded that the theoretical modes do not predict the heat transfer coefficients very well in coaxial tube-in-tube heat exchangers where the annulus touches the inside of the outer tube.

  11. Age differences in the required coefficient of friction during level walking do not exist when experimentally-controlling speed and step length.

    PubMed

    Anderson, Dennis E; Franck, Christopher T; Madigan, Michael L

    2014-08-01

    The effects of gait speed and step length on the required coefficient of friction (COF) confound the investigation of age-related differences in required COF. The goals of this study were to investigate whether age differences in required COF during self-selected gait persist when experimentally-controlling speed and step length, and to determine the independent effects of speed and step length on required COF. Ten young and 10 older healthy adults performed gait trials under five gait conditions: self-selected, slow and fast speeds without controlling step length, and slow and fast speeds while controlling step length. During self-selected gait, older adults walked with shorter step lengths and exhibited a lower required COF. Older adults also exhibited a lower required COF when walking at a controlled speed without controlling step length. When both age groups walked with the same speed and step length, no age difference in required COF was found. Thus, speed and step length can have a large influence on studies investigating age-related differences in required COF. It was also found that speed and step length have independent and opposite effects on required COF, with step length having a strong positive effect on required COF, and speed having a weaker negative effect.

  12. Measurements of average heat-transfer and friction coefficients for subsonic flow of air in smooth tubes at high surface and fluid temperatures

    NASA Technical Reports Server (NTRS)

    Humble, Leroy V; Lowdermilk, Warren H; Desmon, Leland G

    1951-01-01

    An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through smooth tubes for an over-all range of surface temperature from 535 degrees to 3050 degrees r, inlet-air temperature from 535 degrees to 1500 degrees r, Reynolds number up to 500,000, exit Mach number up to 1, heat flux up to 150,000 btu per hour per square foot, length-diameter ratio from 30 to 120, and three entrance configurations. Most of the data are for heat addition to the air; a few results are included for cooling of the air. The over-all range of surface-to-air temperature ratio was from 0.46 to 3.5.

  13. Friction and oxidative wear of 440C ball bearing steels under high load and extreme bulk temperatures

    NASA Technical Reports Server (NTRS)

    Chaudhuri, Dilip K.; Slifka, Andrew J.; Siegwarth, James D.

    1993-01-01

    Unlubricated sliding friction and wear of 440C steels in an oxygen environment have been studied under a variety of load, speed, and temperature ranging from approximately -185 to 675 deg C. A specially designed test apparatus with a ball-on-flat geometry has been used for this purpose. The observed dependencies of the initial coefficient of friction, the average dynamic coefficient of friction, and the wear rate on load, speed, and test temperatures have been examined from the standpoint of existing theories of friction and wear. High contact temperatures are generated during the sliding friction, causing rapid oxidation and localized surface melting. A combination of fatigue, delamination, and loss of hardness due to tempering of the martensitic structure is responsible for the high wear rate observed and the coefficient of friction.

  14. Friction and oxidative wear of 440C ball bearing steels under high load and extreme bulk temperatures

    NASA Technical Reports Server (NTRS)

    Chaudhuri, Dilip K.; Slifka, Andrew J.; Siegwarth, James D.

    1993-01-01

    Unlubricated sliding friction and wear of 440C steels in an oxygen environment have been studied under a variety of load, speed, and temperature ranging from approximately -185 to 675 deg C. A specially designed test apparatus with a ball-on-flat geometry has been used for this purpose. The observed dependencies of the initial coefficient of friction, the average dynamic coefficient of friction, and the wear rate on load, speed, and test temperatures have been examined from the standpoint of existing theories of friction and wear. High contact temperatures are generated during the sliding friction, causing rapid oxidation and localized surface melting. A combination of fatigue, delamination, and loss of hardness due to tempering of the martensitic structure is responsible for the high wear rate observed and the coefficient of friction.

  15. Research on the Mechanism of In-Plane Vibration on Friction Reduction.

    PubMed

    Wang, Peng; Ni, Hongjian; Wang, Ruihe; Liu, Weili; Lu, Shuangfang

    2017-09-01

    A modified model for predicting the friction force between drill-string and borehole wall under in-plane vibrations was developed. It was found that the frictional coefficient in sliding direction decreased significantly after applying in-plane vibration on the bottom specimen. The friction reduction is due to the direction change of friction force, elastic deformation of surface asperities and the change of frictional coefficient. Normal load, surface topography, vibration direction, velocity ratio and interfacial shear factor are the main influence factors of friction force in sliding direction. Lower driving force can be realized for a pair of determinate rubbing surfaces under constant normal load by setting the driving direction along the minimum arithmetic average attack angle direction, and applying intense longitudinal vibration on the rubbing pair. The modified model can significantly improve the accuracy in predicting frictional coefficient under vibrating conditions, especially under the condition of lower velocity ratio. The results provide a theoretical gist for friction reduction technology by vibrating drill-string, and provide a reference for determination of frictional coefficient during petroleum drilling process, which has great significance for realizing digitized and intelligent drilling.

  16. Research on the Mechanism of In-Plane Vibration on Friction Reduction

    PubMed Central

    Wang, Peng; Ni, Hongjian; Wang, Ruihe; Liu, Weili; Lu, Shuangfang

    2017-01-01

    A modified model for predicting the friction force between drill-string and borehole wall under in-plane vibrations was developed. It was found that the frictional coefficient in sliding direction decreased significantly after applying in-plane vibration on the bottom specimen. The friction reduction is due to the direction change of friction force, elastic deformation of surface asperities and the change of frictional coefficient. Normal load, surface topography, vibration direction, velocity ratio and interfacial shear factor are the main influence factors of friction force in sliding direction. Lower driving force can be realized for a pair of determinate rubbing surfaces under constant normal load by setting the driving direction along the minimum arithmetic average attack angle direction, and applying intense longitudinal vibration on the rubbing pair. The modified model can significantly improve the accuracy in predicting frictional coefficient under vibrating conditions, especially under the condition of lower velocity ratio. The results provide a theoretical gist for friction reduction technology by vibrating drill-string, and provide a reference for determination of frictional coefficient during petroleum drilling process, which has great significance for realizing digitized and intelligent drilling. PMID:28862679

  17. Frictional anisotropy under boundary lubrication: effect of surface texture.

    SciTech Connect

    Ajayi, O. O.; Erck, R. A.; Lorenzo-Martin, C.; Fenske, G. R.; Energy Systems

    2009-06-15

    The friction coefficient was measured under boundary lubrication with a ball-on-flat contact configuration in unidirectional sliding. The ball was smooth and hardened 52100 steel. Discs were made from case-carburized and hardened 4620, annealed 1080, and 1018 steels with directionally ground surfaces. A synthetic lubricant of stock polyalphaolefin was used for testing. During testing with each material, a frictional spike was observed whenever the ball slid parallel to the grinding ridge on the disc surface. The average friction coefficient for all tests was about 0.1, which is typical for the boundary lubrication regime. The magnitude of the frictional spikes, which reached as high as a friction coefficient of 0.25, and their persistence depended on the hardness of the disc surface. On the basis of elastohydrodynamic theory, coupled with the observation of severe plastic deformation on the ridges parallel to the sliding direction, the frictional spike could be due to localized plastic deformation on the disc surface at locations of minimal thickness for the lubricant fluid film. This hypothesis was further supported by lack of frictional spikes in tests using discs coated with a thin film of diamond-like carbon, in which plastic deformation is minimal.

  18. Single- and Two-Phase Diversion Cross-Flows Between Triangle Tight Lattice Rod Bundle Subchannels - Data on Flow Resistance and Interfacial Friction Coefficients for the Cross-Flow

    SciTech Connect

    Tatsuya Higuchi; Akimaro Kawahara; Michio Sadatomi; Hiroyuki Kudo

    2006-07-01

    Single- and two-phase diversion cross-flows arising from the pressure difference between tight lattice subchannels are our concern in this study. In order to obtain a correlation of the diversion cross-flow, we conducted adiabatic experiments using a vertical multiple-channel with two subchannels simplifying the triangle tight lattice rod bundle for air-water flows at room temperature and atmospheric pressure. In the experiments, data were obtained on the axial variations in the pressure difference between the subchannels, the ratio of flow rate in one subchannel to the whole channel, the void fraction in each subchannel for slug-churn and annular flows in two-phase flow case. These data were analyzed by use of a lateral momentum equation based on a two-fluid model to determine both the cross-flow resistance coefficient between liquid phase and channel wall and the gas-liquid interfacial friction coefficient. The resulting coefficients have been correlated in a way similar to that developed for square lattice subchannel case by Kano et al. (2002); the cross-flow resistance coefficient data can be well correlated with a ratio of the lateral velocity due to the cross-flow to the axial one irrespective of single- and two-phase flows; the interfacial friction coefficient data were well correlated with a Reynolds number, which is based on the relative velocity between gas and liquid cross-flows as the characteristic velocity. (authors)

  19. The microphysics of phyllosilicate friction

    NASA Astrophysics Data System (ADS)

    den Hartog, Sabine A. M.; Faulkner, Daniel R.; Spiers, Christopher J.

    2017-04-01

    Phyllosilicate-rich foliations in fault rocks are often thought to reduce overall fault strength and promote fault stability when forming an interconnected network. Indeed, laboratory measurements have shown that the average friction coefficient of dry phyllosilicates of 0.5 is reduced to 0.3 when wet or even 0.1 for smectite. A widely accepted interpretation of these observations is that the strength of phyllosilicates is controlled by breaking of interlayer bonds to form new cleavage surfaces when dry and by the low strength of surface-bound water films when wet. However, the correlation between phyllosilicate shear strength and interlayer bond strength, which formed the basis for this interpretation, was not reproduced in recent experiments (Behnsen and Faulkner, 2012) and is not supported by the latest calculations of the interlayer bond energies (Sakuma and Suehara, 2015). The accepted explanation for phyllosilicate friction also fails to account for the velocity dependence or (a-b) values, which decrease with temperature, reaching a minimum at intermediate temperatures, before increasing again at higher temperatures (Den Hartog et al., 2013, 2014). In this study, we developed a microphysical model for phyllosilicate friction, involving frictional sliding along atomically flat phyllosilicate grain interfaces, with overlapping grain edges forming barriers to sliding. Assuming that the amount of overlap is controlled by crystal plastic bending of grains into pores, together with rate-dependent edge-site cleavage, our model predicts most of the experimentally observed trends in frictional behaviour and provides a basis for extrapolation of laboratory friction data on phyllosilicates to natural conditions.

  20. Micromachine friction test apparatus

    DOEpatents

    deBoer, Maarten P.; Redmond, James M.; Michalske, Terry A.

    2002-01-01

    A microelectromechanical (MEM) friction test apparatus is disclosed for determining static or dynamic friction in MEM devices. The friction test apparatus, formed by surface micromachining, is based on a friction pad supported at one end of a cantilevered beam, with the friction pad overlying a contact pad formed on the substrate. A first electrostatic actuator can be used to bring a lower surface of the friction pad into contact with an upper surface of the contact pad with a controlled and adjustable force of contact. A second electrostatic actuator can then be used to bend the cantilevered beam, thereby shortening its length and generating a relative motion between the two contacting surfaces. The displacement of the cantilevered beam can be measured optically and used to determine the static or dynamic friction, including frictional losses and the coefficient of friction between the surfaces. The test apparatus can also be used to assess the reliability of rubbing surfaces in MEM devices by producing and measuring wear of those surfaces. Finally, the friction test apparatus, which is small in size, can be used as an in situ process quality tool for improving the fabrication of MEM devices.

  1. The Friction of Piston Rings

    NASA Technical Reports Server (NTRS)

    Tischbein, Hans W

    1945-01-01

    The coefficient of friction between piston ring and cylinder liner was measured in relation to gliding acceleration, pressure, temperature, quantity of oil and quality of oil. Comparing former lubrication-technical tests, conclusions were drawn as to the state of friction. The coefficients of friction as figured out according to the hydrodynamic theory were compared with those measured by tests. Special tests were made on "oiliness." The highest permissible pressure was measured and the ratio of pressure discussed.

  2. Friction in a Moving Car

    ERIC Educational Resources Information Center

    Goldberg, Fred M.

    1975-01-01

    Describes an out-of-doors, partially unstructured experiment to determine the coefficient of friction for a moving car. Presents the equation which relates the coefficient of friction to initial velocity, distance, and time and gives sample computed values as a function of initial speed and tire pressure. (GS)

  3. Showing Area Matters: A Work of Friction

    ERIC Educational Resources Information Center

    Van Domelen, David

    2010-01-01

    Typically, we teach the simplified friction equation of the form F[subscript s] = [mu][subscript s]N for static friction, where F[subscript s] is the maximum static friction, [mu][subscript s] is the coefficient of static friction, and "N" is the normal force pressing the surfaces together. However, this is a bit too simplified, and…

  4. Showing Area Matters: A Work of Friction

    ERIC Educational Resources Information Center

    Van Domelen, David

    2010-01-01

    Typically, we teach the simplified friction equation of the form F[subscript s] = [mu][subscript s]N for static friction, where F[subscript s] is the maximum static friction, [mu][subscript s] is the coefficient of static friction, and "N" is the normal force pressing the surfaces together. However, this is a bit too simplified, and…

  5. Phalanx force magnitude and trajectory deviation increased during power grip with an increased coefficient of friction at the hand-object interface.

    PubMed

    Enders, Leah R; Seo, Na Jin

    2011-05-17

    This study examined the effect of friction between the hand and grip surface on a person's grip strategy and force generation capacity. Twelve young healthy adults performed power grip exertions on an instrumented vertical cylinder with the maximum and 50% of maximum efforts (far above the grip force required to hold the cylinder), while normal and shear forces at each phalanx of all five fingers in the direction orthogonal to the gravity were recorded. The cylinder surface was varied for high-friction rubber and low-friction paper coverings. An increase in surface friction by replacing the paper covering with the rubber covering resulted in 4% greater mean phalanx normal force (perpendicular to the cylinder surface) and 22% greater mean phalanx shear force in either the proximal or distal direction of the digits (p<0.05; for both 50% and maximum grip efforts). Consequently, increased friction with the rubber surface compared to the paper surface was associated with a 20% increase in the angular deviation of the phalanx force from the direction normal to the cylinder surface (p<0.05). This study demonstrates that people significantly changed the magnitude and direction of phalanx forces depending on the surface they gripped. Such change in the grip strategy appears to help increase grip force generation capacity. This finding suggests that a seemingly simple power grip exertion involves sensory feedback-based motor control, and that people's power grip capacity may be reduced in cases of numbness, glove use, or injuries resulting in reduced sensation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Influence of snow properties on dense avalanche friction parameters

    NASA Astrophysics Data System (ADS)

    Mohamed, Naaim

    2013-04-01

    The values of the Voellmy friction parameters of 735 historical avalanches that occurred along 26 paths in the Chamonix valley since 1958 are back-analysed with a depth-averaged hydraulic model including sub models for erosion, entrainment and deposition. For each path, the longitudinal and crosswise topographic profiles were derived from a high resolution digital elevation model acquired by laser scanning. The initial snow depth and snow cohesion, as well as various physical properties of snow, were computed from numerical simulations of the detailed snowpack model Crocus fed by the SAFRAN meteorological analysis. For each event, the full ranges of the two friction parameters were scanned and the pairs of friction parameters for which the run-out altitude is found close enough to the observed one (with an uncertainty of 5m), were retained. Statistical class analysis was used to investigate the correlation between the obtained friction coefficients and the snow physical properties. Concerning the inertial friction coefficient, no evident trend with the snow parameters was found. For the static friction coefficient, an increasing trend with the temperature and the density was observed, as well as a decreasing trend with the liquid water content and the initial snow depth.

  7. Steady and transient sliding under rate-and-state friction

    NASA Astrophysics Data System (ADS)

    Putelat, Thibaut; Dawes, Jonathan H. P.

    2015-05-01

    eventually stopping, while in the second basin of attraction the sliding motion continues indefinitely. We show that a second definition of μs is possible, compatible with the first one, as the weighted average of the rate-and-state friction coefficient over the time the block is in motion.

  8. Three-dimensional finite-element models on the deformation of forearcs caused by aseismic ridge subduction: The role of ridge shape, friction coefficient of the plate interface and mechanical properties of the forearc

    NASA Astrophysics Data System (ADS)

    Zeumann, Stefanie; Hampel, Andrea

    2016-08-01

    Geological and geophysical data show that the forearc of subduction zones experiences strong deformation during the subduction of aseismic oceanic ridges. In order to better understand ridge-related forearc deformation patterns, we performed a series of three-dimensional finite-element models, in which we varied the ridge shape, the friction coefficient of the plate interface and the mechanical strength of the forearc. Experiments were carried out for migrating/non-migrating ridges and accretive/erosive margins, respectively. Our results show that the subducting ridge uplifts the forearc and induces horizontal displacements that alter the strain regime of both erosive and accretive forearcs. Generally, shortening prevails in front of the ridge, while domains of shortening and extension exist above the ridge. Models with stationary ridges show high uplift rates only above the ridge tip, whereas the forearc above migrating ridges experiences uplift above the leading ridge flank and subsequent subsidence above the trailing flank. The height and width of the ridge as well as the friction coefficient of the plate interface have the largest effect on the forearc deformation patterns, whereas the mechanical strength of the forearc plays a lesser role. Forearc indentation at the trench is largest for high and broad ridges, high friction coefficients and/or weak forearc material. Shortening and extension of the forearc above the ridge are more intense for high and narrow ridges. Our model results provide information about the distribution of ridge-induced displacements and strain fields and hence help to identify deformation patterns caused by subducting aseismic ridges in nature.

  9. The Relation of the Surface Properties of the Teflons to Frictional Electrification by Polystyrene.

    DTIC Science & Technology

    The friction and frictional electrification properties of Teflon TFE (polytetrafluoroethylene), Teflon PFA (tetrafluoroethylene-perfluoro-(alkyl...constitution of the fluorocarbon surfaces to kinetic coefficient of friction and frictional electrification properties was investigated by using the

  10. PEBBLES Simulation of Static Friction and New Static Friction Benchmark

    SciTech Connect

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2010-05-01

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. This paper documents the PEBBLES static friction model. This model uses a three dimensional differential static friction approximation extended from the two dimensional Cundall and Strack model. The derivation of determining the rotational transformation of pebble to pebble static friction force is provided. A new implementation for a differential rotation method for pebble to container static friction force has been created. Previous published methods are insufficient for pebble bed reactor geometries. A new analytical static friction benchmark is documented that can be used to verify key static friction simulation parameters. This benchmark is based on determining the exact pebble to pebble and pebble to container static friction coefficients required to maintain a stable five sphere pyramid.

  11. Friction behavior of a microstructured polymer surface inspired by snake skin.

    PubMed

    Baum, Martina J; Heepe, Lars; Gorb, Stanislav N

    2014-01-01

    The aim of this study was to understand the influence of microstructures found on ventral scales of the biological model, Lampropeltis getula californiae, the California King Snake, on the friction behavior. For this purpose, we compared snake-inspired anisotropic microstructured surfaces to other microstructured surfaces with isotropic and anisotropic geometry. To exclude that the friction measurements were influenced by physico-chemical variations, all friction measurements were performed on the same epoxy polymer. For frictional measurements a microtribometer was used. Original data were processed by fast Fourier transformation (FFT) with a zero frequency related to the average friction and other peaks resulting from periodic stick-slip behavior. The data showed that the specific ventral surface ornamentation of snakes does not only reduce the frictional coefficient and generate anisotropic frictional properties, but also reduces stick-slip vibrations during sliding, which might be an adaptation to reduce wear. Based on this extensive comparative study of different microstructured polymer samples, it was experimentally demonstrated that the friction-induced stick-slip behavior does not solely depend on the frictional coefficient of the contact pair.

  12. Frictional and morphological characteristics of ion plated soft, metallic films

    NASA Technical Reports Server (NTRS)

    Spalvins, T.; Buzek, B.

    1981-01-01

    Ion plated metallic films in contrast to films applied by other deposition techniques offer a lower friction coefficient, longer endurance lives and exhibit a gradual increase in friction coefficient after the film has been worn off. The friction coefficients of metallic films are affected by the degree of adherence, thickness and nucleation and growth characteristics during ion plating lead to a fine, continuous crystalline structure, which contributes to a lower friction coefficient.

  13. Friction and fracture.

    PubMed

    Gerde, E; Marder, M

    2001-09-20

    Consider a block placed on a table and pushed sideways until it begins to slide. Amontons and Coulomb found that the force required to initiate sliding is proportional to the weight of the block (the constant of proportionality being the static coefficient of friction), but independent of the area of contact. This is commonly explained by asserting that, owing to the presence of asperities on the two surfaces, the actual area in physical contact is much smaller than it seems, and grows in proportion to the applied compressive force. Here we present an alternative picture of the static friction coefficient, which starts with an atomic description of surfaces in contact and then employs a multiscale analysis technique to describe how sliding occurs for large objects. We demonstrate the existence of self-healing cracks that have been postulated to solve geophysical paradoxes about heat generated by earthquakes, and we show that, when such cracks are present at the atomic scale, they result in solids that slip in accord with Coulomb's law of friction. We expect that this mechanism for friction will be found to operate at many length scales, and that our approach for connecting atomic and continuum descriptions will enable more realistic first-principles calculations of friction coefficients.

  14. Analytical solution for the normal emission portion of the averaged Yarkovsky-O'Keefe-Radzvieskii-Paddack coefficient for a single facet

    NASA Astrophysics Data System (ADS)

    Albuja, Antonella A.; Scheeres, Daniel J.

    2015-02-01

    The Yarkovsky-O'Keefe-Radzvieskii-Paddack (YORP) effect has been well studied for asteroids. This paper develops an analytic solution to find the normal emission YORP component for a single facet. The solution presented here does not account for self-shadowing or self-heating. The YORP coefficient for all facets can be summed together to find the total coefficient of the asteroid. The normal emission component of YORP has been shown to be the most important for asteroids and it directly affects the rate of change of the asteroid's spin period. The analytical solution found is a sole function of the facet's geometry and the obliquity of the asteroid. This solution is universal for any facet and its orientation. The behaviour of the coefficient is analysed with this analytical solution. The closed-form solution is used to find the total YORP coefficient for the asteroids Apollo and 1998 ML14 whose shape models are composed of different numbers of facets. The results are then compared to published results and those obtained through numerical quadrature for validation.

  15. A Data-Driven Approach to Develop Physically Sound Predictors: Application to Depth-Averaged Velocities and Drag Coefficients on Vegetated Flows

    NASA Astrophysics Data System (ADS)

    Tinoco, R. O.; Goldstein, E. B.; Coco, G.

    2016-12-01

    We use a machine learning approach to seek accurate, physically sound predictors, to estimate two relevant flow parameters for open-channel vegetated flows: mean velocities and drag coefficients. A genetic programming algorithm is used to find a robust relationship between properties of the vegetation and flow parameters. We use data published from several laboratory experiments covering a broad range of conditions to obtain: a) in the case of mean flow, an equation that matches the accuracy of other predictors from recent literature while showing a less complex structure, and b) for drag coefficients, a predictor that relies on both single element and array parameters. We investigate different criteria for dataset size and data selection to evaluate their impact on the resulting predictor, as well as simple strategies to obtain only dimensionally consistent equations, and avoid the need for dimensional coefficients. The results show that a proper methodology can deliver physically sound models representative of the processes involved, such that genetic programming and machine learning techniques can be used as powerful tools to study complicated phenomena and develop not only purely empirical, but "hybrid" models, coupling results from machine learning methodologies into physics-based models.

  16. Friction in surface micromachined microengines

    SciTech Connect

    Miller, S.L.; Sniegowski, J.J.; LaVigne, G.; McWhorter, P.J.

    1996-03-01

    Understanding the frictional properties of advanced Micro-Electro- Mechanical Systems (MEMS) is essential in order to develop optimized designs and fabrication processes, as well as to qualify devices for commercial applications. We develop and demonstrate a method to experimentally measure the forces associated with sliding friction of devices rotating on a hub. The method is demonstrated on the rotating output gear of the microengine recently developed at Sandia National Laboratories. In-situ measurements of an engine running at 18300 rpm give a coefficient of friction of 0.5 for radial (normal) forces less than 4 {mu}N. For larger forces the effective coefficient of friction abruptly increases, suggesting a fundamental change in the basic nature of the interaction between the gear and hub. The experimental approach we have developed to measure the frictional forces associated with the microengine is generically applicable to other MEMS devices.

  17. Transition Path Time Distribution, Tunneling Times, Friction, and Uncertainty

    NASA Astrophysics Data System (ADS)

    Pollak, Eli

    2017-02-01

    A quantum mechanical transition path time probability distribution is formulated and its properties are studied using a parabolic barrier potential model. The average transit time is well defined and readily calculated. It is smaller than the analogous classical mechanical average transit time, vanishing at the crossover temperature. It provides a direct route for determining tunneling times. The average time may be also used to define a coarse grained momentum of the system for the passage from one side of the barrier to the other. The product of the uncertainty in this coarse grained momentum with the uncertainty in the location of the particle is shown under certain conditions to be smaller than the ℏ/2 formal uncertainty limit. The model is generalized to include friction in the form of a bilinear interaction with a harmonic bath. Using an Ohmic friction model one finds that increasing the friction, increases the transition time. Only moderate values of the reduced friction coefficient are needed for the quantum transition time and coarse grained uncertainty to approach the classical limit which is smaller than ℏ/2 when the friction is not too small. These results show how one obtains classical dynamics from a pure quantum system without invoking any further assumptions, approximations, or postulates.

  18. Transition Path Time Distribution, Tunneling Times, Friction, and Uncertainty.

    PubMed

    Pollak, Eli

    2017-02-17

    A quantum mechanical transition path time probability distribution is formulated and its properties are studied using a parabolic barrier potential model. The average transit time is well defined and readily calculated. It is smaller than the analogous classical mechanical average transit time, vanishing at the crossover temperature. It provides a direct route for determining tunneling times. The average time may be also used to define a coarse grained momentum of the system for the passage from one side of the barrier to the other. The product of the uncertainty in this coarse grained momentum with the uncertainty in the location of the particle is shown under certain conditions to be smaller than the ℏ/2 formal uncertainty limit. The model is generalized to include friction in the form of a bilinear interaction with a harmonic bath. Using an Ohmic friction model one finds that increasing the friction, increases the transition time. Only moderate values of the reduced friction coefficient are needed for the quantum transition time and coarse grained uncertainty to approach the classical limit which is smaller than ℏ/2 when the friction is not too small. These results show how one obtains classical dynamics from a pure quantum system without invoking any further assumptions, approximations, or postulates.

  19. Postoperative changes in in vivo measured friction in total hip joint prosthesis during walking.

    PubMed

    Damm, Philipp; Bender, Alwina; Bergmann, Georg

    2015-01-01

    Loosening of the artificial cup and inlay is the most common reasons for total hip replacement failures. Polyethylene wear and aseptic loosening are frequent reasons. Furthermore, over the past few decades, the population of patients receiving total hip replacements has become younger and more active. Hence, a higher level of activity may include an increased risk of implant loosening as a result of friction-induced wear. In this study, an instrumented hip implant was used to measure the contact forces and friction moments in vivo during walking. Subsequently, the three-dimensional coefficient of friction in vivo was calculated over the whole gait cycle. Measurements were collected from ten subjects at several time points between three and twelve months postoperative. No significant change in the average resultant contact force was observed between three and twelve months postoperative. In contrast, a significant decrease of up to 47% was observed in the friction moment. The coefficient of friction also decreased over postoperative time on average. These changes may be caused by 'running-in' effects of the gliding components or by the improved lubricating properties of the synovia. Because the walking velocity and contact forces were found to be nearly constant during the observed period, the decrease in friction moment suggests an increase in fluid viscosity. The peak values of the contact force individually varied by 32%-44%. The friction moment individually differed much more, by 110%-129% at three and up to 451% at twelve months postoperative. The maximum coefficient of friction showed the highest individual variability, about 100% at three and up to 914% at twelve months after surgery. These individual variations in the friction parameters were most likely due to different 'running-in' effects that were influenced by the individual activity levels and synovia properties.

  20. Postoperative Changes in In Vivo Measured Friction in Total Hip Joint Prosthesis during Walking

    PubMed Central

    Damm, Philipp; Bender, Alwina; Bergmann, Georg

    2015-01-01

    Loosening of the artificial cup and inlay is the most common reasons for total hip replacement failures. Polyethylene wear and aseptic loosening are frequent reasons. Furthermore, over the past few decades, the population of patients receiving total hip replacements has become younger and more active. Hence, a higher level of activity may include an increased risk of implant loosening as a result of friction-induced wear. In this study, an instrumented hip implant was used to measure the contact forces and friction moments in vivo during walking. Subsequently, the three-dimensional coefficient of friction in vivo was calculated over the whole gait cycle. Measurements were collected from ten subjects at several time points between three and twelve months postoperative. No significant change in the average resultant contact force was observed between three and twelve months postoperative. In contrast, a significant decrease of up to 47% was observed in the friction moment. The coefficient of friction also decreased over postoperative time on average. These changes may be caused by ‘running-in’ effects of the gliding components or by the improved lubricating properties of the synovia. Because the walking velocity and contact forces were found to be nearly constant during the observed period, the decrease in friction moment suggests an increase in fluid viscosity. The peak values of the contact force individually varied by 32%-44%. The friction moment individually differed much more, by 110%-129% at three and up to 451% at twelve months postoperative. The maximum coefficient of friction showed the highest individual variability, about 100% at three and up to 914% at twelve months after surgery. These individual variations in the friction parameters were most likely due to different ‘running-in’ effects that were influenced by the individual activity levels and synovia properties. PMID:25806805

  1. Scale effects in sliding friction: An experimental study

    SciTech Connect

    Blau, P.J.

    1991-07-24

    Solid friction is considered by some to be a fundamental property of two contacting materials, while others consider it to be a property of the larger tribosystem in which the materials are contained. A set of sliding friction experiments were designed to investigate the hypothesis that the unlubricated sliding friction between two materials is indeed a tribosystems-related property and that the relative influence of the materials properties or those of the machine on friction varies from one situation to another. Three tribometers were used: a friction microprobe (FMP), a typical laboratory-scale reciprocating pin-on-flat device, and a heavy-duty commercial wear tester. The slider material was stainless steel (AISI 440C) and the flat specimen material was an ordered alloy of Ni{sub 3}Al (IC-50). Sphere-on-flat geometry was used at ambient conditions and at normal forces ranging from 0.01 N to 100 N and average sliding velocities of 0.01 to 100.0 mm/s. The nominal, steady-state sliding friction coefficient tended to decrease with increases in normal force for each of the three tribometers, and the steady state value of sliding friction tended to increase as the mass of the machine increased. The variation of the friction force during sliding was also a characteristic of the test system. These studies provide further support to the idea that the friction of both laboratory-scale and engineering tribosystems should be treated as a parameter which may take on a range of characteristic values and not conceived as having a single, unique value for each material pair.

  2. Measurement of Gear Tooth Dynamic Friction

    NASA Technical Reports Server (NTRS)

    Rebbechi, Brian; Oswald, Fred B.; Townsend, Dennis P.

    1996-01-01

    Measurements of dynamic friction forces at the gear tooth contact were undertaken using strain gages at the root fillets of two successive teeth. Results are presented from two gear sets over a range of speeds and loads. The results demonstrate that the friction coefficient does not appear to be significantly influenced by the sliding reversal at the pitch point, and that the friction coefficient values found are in accord with those in general use. The friction coefficient was found to increase at low sliding speeds. This agrees with the results of disc machine testing.

  3. Measurement of Gear Tooth Dynamic Friction

    NASA Technical Reports Server (NTRS)

    Rebbechi, Brian; Oswald, Fred B.; Townsend, Dennis P.

    1996-01-01

    Measurements of dynamic friction forces at the gear tooth contact were undertaken using strain gages at the root fillets of two successive teeth. Results are presented from two gear sets over a range of speeds and loads. The results demonstrate that the friction coefficient does not appear to be significantly influenced by the sliding reversal at the pitch point, and that the friction coefficient values found are in accord with those in general use. The friction coefficient was found to increase at low sliding speeds. This agrees with the results of disc machine testing.

  4. FACTORS INFLUENCING FRICTION OF PHOSPHATE COATINGS,

    DTIC Science & Technology

    surface roughness, crystalline structure , and velocity. The coefficients of friction for manganese phosphate coatings did not differ to any practical...The coefficient of friction was independent of the applied load. Velocity during dynamic testing, surface finish, and crystalline structure influenced

  5. Granular self-organization by autotuning of friction.

    PubMed

    Kumar, Deepak; Nitsure, Nitin; Bhattacharya, S; Ghosh, Shankar

    2015-09-15

    A monolayer of granular spheres in a cylindrical vial, driven continuously by an orbital shaker and subjected to a symmetric confining centrifugal potential, self-organizes to form a distinctively asymmetric structure which occupies only the rear half-space. It is marked by a sharp leading edge at the potential minimum and a curved rear. The area of the structure obeys a power-law scaling with the number of spheres. Imaging shows that the regulation of motion of individual spheres occurs via toggling between two types of motion, namely, rolling and sliding. A low density of weakly frictional rollers congregates near the sharp leading edge whereas a denser rear comprises highly frictional sliders. Experiments further suggest that because the rolling and sliding friction coefficients differ substantially, the spheres acquire a local time-averaged coefficient of friction within a large range of intermediate values in the system. The various sets of spatial and temporal configurations of the rollers and sliders constitute the internal states of the system. Experiments demonstrate and simulations confirm that the global features of the structure are maintained robustly by autotuning of friction through these internal states, providing a previously unidentified route to self-organization of a many-body system.

  6. Granular self-organization by autotuning of friction

    PubMed Central

    Kumar, Deepak; Nitsure, Nitin; Bhattacharya, S.; Ghosh, Shankar

    2015-01-01

    A monolayer of granular spheres in a cylindrical vial, driven continuously by an orbital shaker and subjected to a symmetric confining centrifugal potential, self-organizes to form a distinctively asymmetric structure which occupies only the rear half-space. It is marked by a sharp leading edge at the potential minimum and a curved rear. The area of the structure obeys a power-law scaling with the number of spheres. Imaging shows that the regulation of motion of individual spheres occurs via toggling between two types of motion, namely, rolling and sliding. A low density of weakly frictional rollers congregates near the sharp leading edge whereas a denser rear comprises highly frictional sliders. Experiments further suggest that because the rolling and sliding friction coefficients differ substantially, the spheres acquire a local time-averaged coefficient of friction within a large range of intermediate values in the system. The various sets of spatial and temporal configurations of the rollers and sliders constitute the internal states of the system. Experiments demonstrate and simulations confirm that the global features of the structure are maintained robustly by autotuning of friction through these internal states, providing a previously unidentified route to self-organization of a many-body system. PMID:26324918

  7. Most suitable mother wavelet for the analysis of fractal properties of stride interval time series via the average wavelet coefficient method.

    PubMed

    Zhang, Zhenwei; VanSwearingen, Jessie; Brach, Jennifer S; Perera, Subashan; Sejdić, Ervin

    2017-01-01

    Human gait is a complex interaction of many nonlinear systems and stride intervals exhibiting self-similarity over long time scales that can be modeled as a fractal process. The scaling exponent represents the fractal degree and can be interpreted as a "biomarker" of relative diseases. The previous study showed that the average wavelet method provides the most accurate results to estimate this scaling exponent when applied to stride interval time series. The purpose of this paper is to determine the most suitable mother wavelet for the average wavelet method. This paper presents a comparative numerical analysis of 16 mother wavelets using simulated and real fractal signals. Simulated fractal signals were generated under varying signal lengths and scaling exponents that indicate a range of physiologically conceivable fractal signals. The five candidates were chosen due to their good performance on the mean square error test for both short and long signals. Next, we comparatively analyzed these five mother wavelets for physiologically relevant stride time series lengths. Our analysis showed that the symlet 2 mother wavelet provides a low mean square error and low variance for long time intervals and relatively low errors for short signal lengths. It can be considered as the most suitable mother function without the burden of considering the signal length. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Friction on a single MoS2 nanotube

    PubMed Central

    2012-01-01

    Friction was measured on a single molybdenum disulfide (MoS2) nanotube and on a single MoS2 nano-onion for the first time. We used atomic force microscopy (AFM) operating in ultra-high vacuum at room temperature. The average coefficient of friction between the AFM tip and MoS2 nanotubes was found considerably below the corresponding values obtained from an air-cleaved MoS2 single crystal or graphite. We revealed a nontrivial dependency of friction on interaction strength between the nanotube and the underlying substrate. Friction on detached or weakly supported nanotubes by the substrate was several times smaller (0.023 ± 0.005) than that on well-supported nanotubes (0.08 ± 0.02). We propose an explanation of a quarter of a century old phenomena of higher friction found for intracrystalline (0.06) than for intercrystalline slip (0.025) in MoS2. Friction test on a single MoS2 nano-onion revealed a combined gliding-rolling process. PACS, 62.20, 61.46.Fg, 68.37 Ps PMID:22490562

  9. Mass energy-absorption coefficients and average atomic energy-absorption cross-sections for amino acids in the energy range 0.122-1.330 MeV

    SciTech Connect

    More, Chaitali V. Lokhande, Rajkumar M.; Pawar, Pravina P.

    2016-05-06

    Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σ{sub a,en}) and average atomic energy-absorption cross sections (μ{sub en}/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.

  10. Tactile friction of topical formulations.

    PubMed

    Skedung, L; Buraczewska-Norin, I; Dawood, N; Rutland, M W; Ringstad, L

    2016-02-01

    The tactile perception is essential for all types of topical formulations (cosmetic, pharmaceutical, medical device) and the possibility to predict the sensorial response by using instrumental methods instead of sensory testing would save time and cost at an early stage product development. Here, we report on an instrumental evaluation method using tactile friction measurements to estimate perceptual attributes of topical formulations. Friction was measured between an index finger and an artificial skin substrate after application of formulations using a force sensor. Both model formulations of liquid crystalline phase structures with significantly different tactile properties, as well as commercial pharmaceutical moisturizing creams being more tactile-similar, were investigated. Friction coefficients were calculated as the ratio of the friction force to the applied load. The structures of the model formulations and phase transitions as a result of water evaporation were identified using optical microscopy. The friction device could distinguish friction coefficients between the phase structures, as well as the commercial creams after spreading and absorption into the substrate. In addition, phase transitions resulting in alterations in the feel of the formulations could be detected. A correlation was established between skin hydration and friction coefficient, where hydrated skin gave rise to higher friction. Also a link between skin smoothening and finger friction was established for the commercial moisturizing creams, although further investigations are needed to analyse this and correlations with other sensorial attributes in more detail. The present investigation shows that tactile friction measurements have potential as an alternative or complement in the evaluation of perception of topical formulations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Local friction in polyolefin blends

    NASA Astrophysics Data System (ADS)

    Luettmer-Strathmann, Jutta

    2005-07-01

    Processes on different length scales affect the dynamics of chain molecules. The friction experienced by a short chain segment depends on both small-scale chain properties and on the local environment of the segment. As a consequence, the (monomeric) friction coefficients of the two components of a binary polymer blend will, in general, differ from each other and from the friction coefficients of the corresponding melts. In this work, we investigate local friction in polyolefin blends with the aid of a small-scale simulation approach. The polymer chains, in united atom representation, are assumed to occupy the sites of a partially filled simple cubic lattice. The simulation focuses on short chain sections with straight backbones and enumerates all possible binary contacts and relative movements of such sections. By evaluating the exact enumeration results in conjunction with equations of state for the blends, we are able to make predictions about the variation of the friction coefficients with local chain architecture and thermodynamic state (temperature, pressure, and composition). We calculate relative values of friction coefficients at temperatures well above the glass transition for blends of PEP, an alternating copolymer of polyethylene and polypropylene, with polyethylene and polyisobutylene and for blends of polyethylene and atactic polypropylene. We also investigate a blend of PEP with head-to-head polypropylene and compare our results with experimental data.

  12. Internal rotor friction instability

    NASA Technical Reports Server (NTRS)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  13. Friction between Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Sokoloff, Jeffrey

    2006-03-01

    A polymer brush consists of a surface with a fairly concentrated coating of polymer chains, each one of which has one of its ends tightly bound to the surface. They serve as extremely effective lubricant, producing friction coefficients as low as 0.001 or less! Polymer brushes are a promising way to reduce friction to extremely low values. They have the disadvantage, however, that they must be immersed in a liquid solvent in order to function as a lubricant. The presence of a solvent is believed to result in osmotic pressure which partially supports the load. The density profile of a polymer brush (i.e., the density of monomers as a function of distance from the surface to which the polymers are attached) is well established. What is not understood is how the interaction of polymer brush coated surfaces in contact with each other is able to account for the details of the observed low friction. For example, molecular dynamics studies generally do not predict static friction, whereas surface force apparatus measurements due to Tadmor, et. al., find that there is static friction. This is the topic of the present presentation.

  14. Switching friction with thermal- responsive gels.

    PubMed

    Wu, Yang; Cai, Meirong; Pei, Xiaowei; Liang, Yongmin; Zhou, Feng

    2013-11-01

    The thermosensitive graphene oxide (GO)/poly(N-isopropyl acrylamide) (pNIPAM) composite hydrogels are prepared, and their tribological properties in response to external stimuli are evaluated. The frictional coefficient of the hydrogels is closely related to the gel composition and ambient temperature. When the gel is in swelling state below the low critical solution temperature (LCST), it shows ultra-low friction and exhibits high friction at a shrunk state above the LCST. The huge difference of frictional coefficient under two states can be reversibly switched many times by altering the temperature. The incorporation of a nonthermal sensitive monomer into pNIPAM could change the LCST and thus the transformation point of frictional coefficient can be altered. These reversible and tunable frictional hydrogels have potential application in the design of intelligent control equipment. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Increasing ‘ease of sliding’ also increases friction: when is a lubricant effective?

    NASA Astrophysics Data System (ADS)

    Annunziata, M. A.; Baldassarri, A.; Dalton, F.; Petri, A.; Pontuale, G.

    2016-04-01

    We investigate experimentally the effective Coulomb friction exerted by a granular medium on a shearing plate, varying the medium depth. The plate is driven by a spring connected to a motor turning at a constant speed and, depending on the system configuration, performs continuous sliding or stick and slip in different proportions. We introduce an order parameter which discriminates between the different regimes expressing the fraction of time spent in slipping. At low driving speed, starting from zero layers of interstitial granular material, the average friction coefficient decreases when a few layers are added, while the order parameter stays close to zero. By further increasing the granular depth, the friction undergoes a sudden increase but the order parameter does not change notably. At an intermediate driving speed, however, both the friction and the order parameter undergo a sudden increase, which for the order parameter amounts to several orders of magnitude, indicating that the plate is more braked but nevertheless keeps sliding more easily. For medium-high driving speeds, full sliding is obtained for only one layer of interstitial matter, where friction has a minimum, and is maintained for all increasing depths while friction increases. These observations show that the ease of slipping is not determined by friction alone, rather by the highly complex interplay between driving velocity, friction, and the depth of the medium.

  16. High friction and low wear properties of laser-textured ceramic surface under dry friction

    NASA Astrophysics Data System (ADS)

    Xing, Youqiang; Deng, Jianxin; Wu, Ze; Wu, Fengfang

    2017-08-01

    Two kinds of grooved textures with different spacing were fabricated on Al2O3/TiC ceramic surface by an Nd:YAG laser. The dry tribological properties of the textured samples were investigated by carrying out unidirectional rotary sliding friction and wear tests using a ball-on-disk tribometer. Results show that the laser textured samples exhibit higher friction coefficient and excellent wear resistance compared with the smooth sample under dry friction conditions. Furthermore, the texture morphology and spacing have a significant influence on the tribological properties. The sample with small texture spacing may be beneficial to increasing the friction coefficient, and the wavy-grooved sample exhibits the highest friction coefficient and shallowest wear depth. The increasing friction coefficient and anti-wear properties are attributed to the combined effects of the increased surface roughness, reduced real contact area, micro-cutting effect by the texture edges and entrapment of wear debris.

  17. A Microphysical Model for Phyllosilicate Friction

    NASA Astrophysics Data System (ADS)

    Den Hartog, S. A. M.; Faulkner, D.; Spiers, C. J.

    2016-12-01

    Phyllosilicate-rich foliations in fault rocks are often thought to reduce overall fault strength and promote fault stability when forming an interconnected network. Indeed, laboratory measurements have shown that the average friction coefficient of dry phyllosilicates of 0.5 is reduced to 0.3 when wet or even 0.1 for smectite. A widely accepted interpretation of these observations is that the strength of phyllosilicates is controlled by breaking of interlayer bonds to form new cleavage surfaces when dry and by the low strength of surface-bound water films when wet. However, the correlation between phyllosilicate shear strength and interlayer bond strength, which formed the basis for this interpretation, was not reproduced in recent experiments (Behnsen and Faulkner, 2012) and is not supported by the latest calculations of the interlayer bond energies (Sakuma and Suehara, 2015). The accepted explanation for phyllosilicate friction also fails to account for the velocity dependence or (a-b) values, which decrease with temperature, reaching a minimum at intermediate temperatures, before increasing again at higher temperatures (Den Hartog et al., 2013, 2014). In this study, we developed a microphysical model for phyllosilicate friction, involving frictional sliding along atomically flat phyllosilicate grain interfaces, with overlapping grain edges forming barriers to sliding. Assuming that the amount of overlap is controlled by crystal plastic bending of grains into pores, together with rate-dependent edge-site cleavage, our model predicts the experimentally observed temperature dependence of (a-b) and provides a basis for extrapolation of laboratory friction data on phyllosilicates to natural conditions.

  18. Friction and friction-generated temperature at a polymer-metal interface

    NASA Technical Reports Server (NTRS)

    Price, H. L.; Burks, H. D.

    1974-01-01

    Results of friction and thermal tests of molded polyimide and pyrrone polymers are presented. The coefficient of sliding friction up to surface velocities of 2 m/sec and the coefficient of thermal expansion from 300 to 500 K were measured. An apparatus was constructed to measure simultaneously the coefficient of sliding friction and the friction-generated temperature. Measurements were made at a nominal pressure-velocity product of 0.25 MN/msec and at temperatures between 300 and 500 K.

  19. General theory of frictional heating with application to rubber friction

    NASA Astrophysics Data System (ADS)

    Fortunato, G.; Ciaravola, V.; Furno, A.; Lorenz, B.; Persson, B. N. J.

    2015-05-01

    The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s-1. We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci ‘laws’ of friction.

  20. Frictional Strength of Hayward Fault Gouge

    NASA Astrophysics Data System (ADS)

    Morrow, C.; Moore, D.; Lockner, D.

    2007-12-01

    A recent 3-D geologic model of the Hayward fault in the San Francisco Bay Region shows that a number of different rock units are juxtaposed across the fault surface as a result of lateral displacement. The fault gouge formed therein is likely a mixture of these various rock types. To better model the mechanical behavior of the Hayward fault, which is known to both creep and have large earthquakes, frictional properties of mixtures of the principal rock types were determined in the laboratory. Room temperature triaxial shearing tests were conducted on binary and ternary mixtures of Great Valley Sequence graywacke, Franciscan jadeite-bearing metagraywacke, Franciscan pumpellyite-bearing metasandstone, Franciscan melange matrix, serpentinite and two-pyroxene gabbro. The gouge samples were crushed and sieved (<150 μm grains), then applied in a 1-mm layer between saw-cut sliding blocks. Each sample assemblage was saturated and sheared at constant pore water pressure of 1 MPa and normal stress of 51 MPa. Coefficients of friction, μ, ranged from a low of 0.38 for the serpentinite to a maximum of 0.85 for the gabbro. While the serpentinite and the Franciscan melange matrix were relatively weak, all other rock types obeyed Byerlee's Law. The friction coefficient of mixtures could be reliably predicted by a simple average based on dry weight percent of the end member strengths. This behavior is in contrast to some mixtures of common gouge materials such as montmorillonite+quartz, which exhibit non- linear frictional strength trends with varying weight percent of constituents. All materials tested except serpentinite were velocity strengthening, therefore promoting creeping behavior. The addition of serpentinite decreased a-b values of the gouge and increased the characteristic displacement, dc, of strength evolution. Because temperature strongly influences the mechanical properties of fault gouge as well as speeding chemical reactions between the constituents, elevated

  1. The coefficient of friction of UHMWPE along an entire walking cycle using a ball-on-disc tribometer under arthrokinematics and loading conditions prescribed by ISO 14243-3:2014.

    PubMed

    Barceinas-Sanchez, J D O; Alvarez-Vera, M; Montoya-Santiyanes, L A; Dominguez-Lopez, I; Garcia-Garcia, A L

    2017-01-01

    The observation of tribological phenomena occurring in total knee replacement (TKR) simulators may be obscured by the intrinsic complexity of their operation: the dynamics and kinematics prescribed by the ISO 14243-3:2014 standard, and the geometry of the surfaces involved. On the other hand, evaluating the individual performance of the tribosystem elements may be carried out in simpler apparatuses. An experimental method is presented here, by means of which the arthrokinematics and loading conditions prescribed by the said standard are adapted to a ball-on-disc configuration in order to observe the behavior of the coefficient of friction along an entire walking cycle, using the contact point of an AISI 316L stainless steel ball rolling/sliding on an ultra-high molecular weight polyethylene (UHMWPE) disc, lubricated by a solution of fetal bovine serum, at 37°C. The method was tried on two different testing fluids prepared with protein concentrations of 20g/L, according to the said standard, and 36g/L, as received. The statistical model obtained for the behavior of the COF during the entire walking cycle may be used in numerical simulations of UHMWPE wear, under the conditions established by ISO 14243-3:2014.

  2. The effect of friction in coulombian damper

    NASA Astrophysics Data System (ADS)

    Wahad, H. S.; Tudor, A.; Vlase, M.; Cerbu, N.; Subhi, K. A.

    2017-02-01

    The study aimed to analyze the damping phenomenon in a system with variable friction, Stribeck type. Shock absorbers with limit and dry friction, is called coulombian shock-absorbers. The physical damping vibration phenomenon, in equipment, is based on friction between the cushioning gasket and the output regulator of the shock-absorber. Friction between them can be dry, limit, mixture or fluid. The friction is depending on the contact pressure and lubricant presence. It is defined dimensionless form for the Striebeck curve (µ friction coefficient - sliding speed v). The friction may damp a vibratory movement or can maintain it (self-vibration), depending on the µ with v (it can increase / decrease or it can be relative constant). The solutions of differential equation of movement are obtained for some work condition of one damper for automatic washing machine. The friction force can transfer partial or total energy or generates excitation energy in damper. The damping efficiency is defined and is determined analytical for the constant friction coefficient and for the parabolic friction coefficient.

  3. Dramatic High-Speed Velocity Dependence of Quartz Friction Without Melting

    NASA Astrophysics Data System (ADS)

    Di Toro, G.; Di Toro, G.; Goldsby, D. L.; Tullis, T. E.

    2001-12-01

    A series of large displacement, ambient pressure friction experiments on a monominerallic quartz rock has been conducted to supplement our previous experiments at high confining pressure. Ambient pressure tests are conducted at higher sliding velocities, up to 100 mm/s, than presently can be obtained at high pressure, ~3 mm/s. The 1-atm. rotary shear apparatus allows only ~40 mm of unidirectional sliding displacement; large displacements of many meters are accumulated by repeatedly reversing the sliding direction. Time-dependent finite-element heat-flow analyses were performed to estimate temperatures generated by sliding. These FEM results were verified with temperature measurements made below the slip surface. Results obtained at ambient pressure are consistent with those obtained at high pressure at 3 mm/s. Both tests reveal an extraordinary reduction in friction coefficient with increasing sliding displacement and velocity, from initial values of 0.6 to 0.8 down to a relatively steady-state value of 0.2 to 0.4. Once the friction coefficient has decreased to a relatively steady-state low level, a pause in sliding or an interval of slow sliding results in an increase in the friction coefficient to values of 0.6 to 0.8. A return to high velocity causes a decrease in friction over ~0.5 m of slip back to the quasi-steady-state level. The velocity dependence of friction revealed by these experiments is striking. On a plot of friction coefficient versus log slip velocity, friction decreases only slightly with increasing slip velocity below 1 mm/s, as for typical rate and state friction data. Between ~3 and 100 mm/s, however, the linear trend of friction versus log velocity extrapolates to zero at 300 mm/s. The observed frictional weakening cannot be caused by melting; average fault surface temperatures are < 150° C, and flash temperatures at asperity contacts are < 900° C. Weakening may be due to a lubricating layer of hydrated amorphous silica produced on the

  4. Study on friction behaviour of brake shoe materials for mining hoist

    NASA Astrophysics Data System (ADS)

    Ungureanu, M.; Ungureanu, N. S.; Crăciun, I.

    2017-02-01

    The friction coefficient in the brake linkages has an important influence on the braking efficiency and safety of machines. The paper presents a method for the study of the friction coefficient of the friction couple brake shoe-drum for mining hoist. In this context, it is interesting to define the friction coefficient, not just according to the materials in contact, but according to the entire ensemble of tribological factors of the friction couple.

  5. Friction Anisotropy with Respect to Topographic Orientation

    PubMed Central

    Yu, Chengjiao; Wang, Q. Jane

    2012-01-01

    Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties. PMID:23248751

  6. Friction anisotropy with respect to topographic orientation.

    PubMed

    Yu, Chengjiao; Wang, Q Jane

    2012-01-01

    Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties.

  7. Assessing slipperiness in fast-food restaurants in the USA using friction variation, friction level and perception rating.

    PubMed

    Chang, Wen-Ruey; Huang, Yueng-Hsiang; Way Li, Kai; Filiaggi, Alfred; Courtney, Theodore K

    2008-05-01

    Although friction variation is speculated to be a significant contributor to slip and fall incidents, it has not been related to a measurement of slipperiness in the literature. This field study investigated the relationship among multiple friction variations, friction levels and the perception ratings of slipperiness in six major working areas of 10 fast-food restaurants in the USA. The mean perception rating score for each working area was correlated with various friction reduction variables across all the restaurants in comparison with its correlation with the mean friction coefficient of each working area. The results indicated that the absolute and relative reductions in friction over the whole working area, among 12 friction reduction variables evaluated, could have a slightly better correlation with the perception rating score (r=0.34 and 0.37, respectively) than the mean friction coefficient of each working area (0.33). However, in friction measurements, more effort and time are needed to quantify friction variations than to obtain the mean friction coefficient. The results of the multiple regression model on the perception rating indicated that adding friction reduction variables into the regression model, in addition to the mean friction coefficient, did not make a significant impact on the outcomes. The results further indicated a statistically significant correlation between the mean friction coefficient and the maximum relative friction reduction over the whole area in each working area across all the restaurants evaluated (r=0.80). Despite a slightly lower correlation with perception rating than the friction variation, the mean friction coefficient of an area is still a reasonably good indicator of slipperiness.

  8. Diffusion coefficients in leaflets of bilayer membranes.

    PubMed

    Seki, Kazuhiko; Mogre, Saurabh; Komura, Shigeyuki

    2014-02-01

    We study diffusion coefficients of liquid domains by explicitly taking into account the two-layered structure called leaflets of the bilayer membrane. In general, the velocity fields associated with each leaflet are different and the layers sliding past each other cause frictional coupling. We obtain analytical results of diffusion coefficients for a circular liquid domain in a leaflet, and quantitatively study their dependence on the interleaflet friction. We also show that the diffusion coefficients diverge in the absence of coupling between the bilayer and solvents, even when the interleaflet friction is taken into account. In order to corroborate our theory, the effect of the interleaflet friction on the correlated diffusion is examined.

  9. Low friction wear resistant graphene films

    DOEpatents

    Sumant, Anirudha V.; Berman, Diana; Erdemir, Ali

    2017-02-07

    A low friction wear surface with a coefficient of friction in the superlubric regime including graphene and nanoparticles on the wear surface is provided, and methods of producing the low friction wear surface are also provided. A long lifetime wear resistant surface including graphene exposed to hydrogen is provided, including methods of increasing the lifetime of graphene containing wear surfaces by providing hydrogen to the wear surface.

  10. Fracture and Friction

    NASA Astrophysics Data System (ADS)

    Gerde, Eric; Marder, Michael

    2001-03-01

    We present an atomic scale description of a self-healing crack steadily traveling along a compressed interface between dissimilar solids. The motion is similar to the wrinkle-like Weertman pulse observed by Anooshehpoor in recent foam-rubber sliding experiments. In contrast to the theoretical models of Weertman and Adams, and the numerical calculations of Andrews and Ben-Zion, we do not employ a frictional constitutive law on the interface. Yet the restrictive conditions under which these cracks can propagate make the interface appear to have a static coefficient of friction. By analytically linking atomic and continuum fields, we are able to efficiently and exhaustively explore the conditions under which self-healing cracks can propagate. To a good approximation, they are sustainable only when the interfacial shear stresses are 0.4 times the compressive stresses.

  11. Rolling Friction on a Wheeled Laboratory Cart

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2012-01-01

    A simple model is developed that predicts the coefficient of rolling friction for an undriven laboratory cart on a track that is approximately independent of the mass loaded onto the cart and of the angle of inclination of the track. The model includes both deformation of the wheels/track and frictional torque at the axles/bearings. The concept of…

  12. Rolling Friction on a Wheeled Laboratory Cart

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2012-01-01

    A simple model is developed that predicts the coefficient of rolling friction for an undriven laboratory cart on a track that is approximately independent of the mass loaded onto the cart and of the angle of inclination of the track. The model includes both deformation of the wheels/track and frictional torque at the axles/bearings. The concept of…

  13. Friction and wear characteristics of polymer-matrix friction materials reinforced by brass fibers

    NASA Astrophysics Data System (ADS)

    Xian, Jia; Xiaomei, Ling

    2004-10-01

    This study is an investigation of friction materials reinforced by brass fibers, and the influence of the organic adhesion agent, cast-iron debris, brass fiber, and graphite powder on the friction-wear characteristics. Friction and wear testing was performed on a block-on-ring tribometer (MM200). The friction pair consisted of the friction materials and gray cast iron (HT200). The worn surface layers formed by sliding dry friction were examined using scanning electron microscopy (SEM), x-ray energy-dispersive analysis (EDX), and differential thermal analysis-thermogravimetric analysis (DTA-TAG). The experimental results showed that the friction coefficient and the wear loss of the friction materials increased with the increase of cast-iron debris, but decreased with the increase of graphite powder content. The friction coefficient and wear loss also increased slightly when the mass fraction of brass fibers was over 19%. When the mass fraction of organic adhesion agent was about 10 11%, the friction materials had excellent friction-wear performance. Surface heating from friction pyrolyzes the organic ingredient in the worn surface layer of the friction materials, with the pyrolysis depth being about 0.5 mm. The surface layers were rich in iron but poor in copper, and they were formed on the worn surface of the friction material. When the mass fraction of brass fibers was about 16 20%, the friction materials possessed better wear resistance and a copper transfer film formed on the friction surface of counterpart. Fatigue cracks were also found in the worn surface of the gray cast-iron counterpart, with fatigue wear being the prevailing wear mechanism.

  14. Direct Measurements of Skin Friction

    NASA Technical Reports Server (NTRS)

    Dhawan, Satish

    1953-01-01

    A device has been developed to measure local skin friction on a flat plate by measuring the force exerted upon a very small movable part of the surface of the flat plate. These forces, which range from about 1 milligram to about 100 milligrams, are measured by means of a reactance device. The apparatus was first applied to measurements in the low-speed range, both for laminar and turbulent boundary layers. The measured skin-friction coefficients show excellent agreement with Blasius' and Von Karman's results. The device was then applied to high-speed subsonic flow and the turbulent-skin-friction coefficients were determined up to a Mach number of about 0.8. A few measurements in supersonic flow were also made. This paper describes the design and construction of the device and the results of the measurements.

  15. Computational Methods for Nonlinear Dynamic Problems in Solid and Structural Mechanics: Progress in the Theory and Modeling of Friction and in the Control of Dynamical Systems with Frictional Forces

    DTIC Science & Technology

    1989-03-31

    Background ....... ........................ 8 2.2 Time Dependence or Rate Dependence of the Coefficient of Static Friction ............................ 13...2.3 The Steady-State Coefficient of Kinetic Friction ............... 16 2.4 The Coefficient of Kinetic Firction During the Slip Phase of Stick-Slip...the Coefficient of Friction ................ 130 2.6 Dynamic Interlocking of Imperfections ..... ................ 130 3. General Presentation and

  16. THE FRICTION OF QUARTZ IN HIGH VACUUM

    DTIC Science & Technology

    the effects of surface cleanliness . Ultra-high vacuums (to 10 to the minus 10th power torr) and high temperatures (to 350 deg C) were combined with...chemical cleaning and careful handling techniques to produce the maximum surface cleanliness . The coefficient of static friction under varying...on 30-40 mesh glass balls. The coefficient of friction of smooth quartz was found to vary from 0.1 to 1.0 depending on the surface cleanliness . The

  17. Numerical investigation of fault zone roughness: Interplay between fault geometry and friction

    NASA Astrophysics Data System (ADS)

    Rathbun, A.; Renard, F.

    2012-04-01

    The influence of roughness is central in understanding the behavior of various types of shear zones including faults, landslides and deformation in glacial till. All of these zones contain a non-planar wall, which interacts with either a gouge zone, or another wall. Laboratory friction experiments have traditionally attempted to isolate the role of boundary roughness focusing on shear within the gouge. We use the 3D Discrete Element Method (DEM) and the ESyS-Particle code to investigate both the effect of boundary roughness and friction. The DEM allows us to investigate the micromechanics of the shear zone by directly visualizing force chain magnitude and orientation, and also the distributed or localized nature of shear in the numerical experiment. We use two end-member shear zones: 1) fault gouge is sandwiched between two rough walls and 2) fault gouge is contained inside of two smooth walls. For rough fault models, grooves are 0.8mm in height and have a regular spacing of 1mm, equivalent to standard laboratory friction experiments. In all models the gouge particles range from 100 to 200 micron in diameter in a 3 mm thick layer, the normal stress is held constant at 15 MPa with a constant shear velocity applied to one wall while the other is held stationary. We vary the coefficient of friction between the particles and wall and monitor the shear strength, distribution of forces between particles, force chain orientation, localization of shear, and porosity distribution in the shear zone. We find that when wall friction is equal to gouge friction, large values of interparticle friction promote localization near the shear zone boundary due to the inefficiency of shearing many high friction contacts in the granular zone. A rough fault zone balances this effect by necessitating that shear occurs within the gouge zone and not strictly at the gouge-wall interface; however, variations in the shearing layer are still observed depending on the particle friction. For rough

  18. The effect of strain rate sensitivity on dynamic friction of metals

    SciTech Connect

    Brechet, Y. . Lab. de Thermodynamique et Physico-Chimie Metallurgique); Estrin, Y. . Dept. of Mechanical and Materials Engineering)

    1994-06-01

    A simple model relating the plastic constitutive equation to the static and the dynamic coefficient of friction has been developed. It can describe the time dependent effects in static solid friction, as well as predict some special features of the dynamic friction coefficient which may be of relevance for stick-slip phenomena in solid friction. In particular, the model highlights the effect of the intrinsic material characteristic, viz. the strain rate sensitivity of the flow stress, on the friction properties.

  19. Measurements of Skin Friction of the Compressible Turbulent Boundary Layer on a Cone with Foreign Gas Injection

    NASA Technical Reports Server (NTRS)

    Pappas, Constantine C.; Ukuno, Arthur F.

    1960-01-01

    Measurements of average skin friction of the turbulent boundary layer have been made on a 15deg total included angle cone with foreign gas injection. Measurements of total skin-friction drag were obtained at free-stream Mach numbers of 0.3, 0.7, 3.5, and 4.7 and within a Reynolds number range from 0.9 x 10(exp 6) to 5.9 x 10(exp 6) with injection of helium, air, and Freon-12 (CCl2F2) through the porous wall. Substantial reductions in skin friction are realized with gas injection within the range of Mach numbers of this test. The relative reduction in skin friction is in accordance with theory-that is, the light gases are most effective when compared on a mass flow basis. There is a marked effect of Mach number on the reduction of average skin friction; this effect is not shown by the available theories. Limited transition location measurements indicate that the boundary layer does not fully trip with gas injection but that the transition point approaches a forward limit with increasing injection. The variation of the skin-friction coefficient, for the lower injection rates with natural transition, is dependent on the flow Reynolds number and type of injected gas; and at the high injection rates the skin friction is in fair agreement with the turbulent boundary layer results.

  20. Measurements of Skin Friction of the Compressible Turbulent Boundary Layer on a Cone with Foreign Gas Injection

    NASA Technical Reports Server (NTRS)

    Pappas, Constantine C.; Ukuno, Arthur F.

    1960-01-01

    Measurements of average skin friction of the turbulent boundary layer have been made on a 15deg total included angle cone with foreign gas injection. Measurements of total skin-friction drag were obtained at free-stream Mach numbers of 0.3, 0.7, 3.5, and 4.7 and within a Reynolds number range from 0.9 x 10(exp 6) to 5.9 x 10(exp 6) with injection of helium, air, and Freon-12 (CCl2F2) through the porous wall. Substantial reductions in skin friction are realized with gas injection within the range of Mach numbers of this test. The relative reduction in skin friction is in accordance with theory-that is, the light gases are most effective when compared on a mass flow basis. There is a marked effect of Mach number on the reduction of average skin friction; this effect is not shown by the available theories. Limited transition location measurements indicate that the boundary layer does not fully trip with gas injection but that the transition point approaches a forward limit with increasing injection. The variation of the skin-friction coefficient, for the lower injection rates with natural transition, is dependent on the flow Reynolds number and type of injected gas; and at the high injection rates the skin friction is in fair agreement with the turbulent boundary layer results.

  1. Frictional properties of jointed welded tuff

    SciTech Connect

    Teufel, L.W.

    1981-07-01

    The results of the experiments on simulated joints in welded tuff from the Grouse Canyon Member of the Belted Range Tuff warrant the following conclusions: (1) The coefficient of friction of the joints is independent of normal stress at a given sliding velocity. (2) The coefficient of friction increases with both increasing time of stationary contact and decreasing sliding velocity. (3) Time and velocity dependence of friction is due to an increase in the real area of contact on the sliding surface, caused by asperity creep. (4) Joints in water-saturated tuff show a greater time and velocity dependence of friction than those in dehydrated tuff. (5) The enhanced time and velocity dependence of friction with water saturation is a result of increased creep at asperity contacts, which is in turn due to a reduction in the surface indentation hardness by hydrolytic weakening and/or stress corrosion cracking.

  2. High Speed Ice Friction

    NASA Astrophysics Data System (ADS)

    Seymour-Pierce, Alexandra; Sammonds, Peter; Lishman, Ben

    2014-05-01

    Many different tribological experiments have been run to determine the frictional behaviour of ice at high speeds, ostensibly with the intention of applying results to everyday fields such as winter tyres and sports. However, experiments have only been conducted up to linear speeds of several metres a second, with few additional subject specific studies reaching speeds comparable to these applications. Experiments were conducted in the cold rooms of the Rock and Ice Physics Laboratory, UCL, on a custom built rotational tribometer based on previous literature designs. Preliminary results from experiments run at 2m/s for ice temperatures of 271 and 263K indicate that colder ice has a higher coefficient of friction, in accordance with the literature. These results will be presented, along with data from further experiments conducted at temperatures between 259-273K (in order to cover a wide range of the temperature dependent behaviour of ice) and speeds of 2-15m/s to produce a temperature-velocity-friction map for ice. The effect of temperature, speed and slider geometry on the deformation of ice will also be investigated. These speeds are approaching those exhibited by sports such as the luge (where athletes slide downhill on an icy track), placing the tribological work in context.

  3. Friction Tests in Magnesium Tube Hydroforming at Elevated Temperatures

    SciTech Connect

    Hwang, Yeong-Maw; Wang, Kuo-Hsing; Kuo, Tsung-Yu

    2011-05-04

    In metal forming, lubricants have a variety of functions. The top priority is usually reduction of friction in order to increase the formability of the materials and reduce tool wear. Because magnesium alloys have very poor formability at room temperature, it is essential to manufacture a part from Magnesium alloys at elevated temperatures. The aim of this paper is to present a friction test method to evaluate the performance of different kinds of lubricants and determine their coefficients of friction at elevated temperatures in tube hydroforming of magnesium alloys. A self-designed experimental apparatus is used to carry out the experiments of friction tests. The coefficient of friction between the tube and die at guiding zone is determined. The effects of the internal pressure, the axial feeding velocity and temperatures on the friction forces and coefficients of friction for different lubricants are discussed.

  4. Friction at Interfaces of Metals and Alloys

    NASA Astrophysics Data System (ADS)

    Cheng, Shengfeng

    2014-03-01

    Pure metals such as gold that are frequently used in electrical contacts usually exhibit high adhesion and friction. However, nanocrystalline gold alloyed with minute amounts of Ni or Co can have low friction while still possessing low contact resistance. We used large-scale molecular dynamics simulations with validated EAM potentials to study the atomistic origin of friction reduction in metallic alloys. Three systems will be focused on in this talk: pure Ag, Ag-Cu alloy, and Ag-Au alloy. Our results reveal that different friction coefficients of metals and alloys are due to different sliding mechanisms. Dislocation-mediated plasticity dominates in pure metals or lattice-matched alloys and leads to high friction, while grain-boundary sliding mainly occurs in lattice-mismatched alloys that leads to low friction.

  5. Novel friction law for the static friction force based on local precursor slipping.

    PubMed

    Katano, Yu; Nakano, Ken; Otsuki, Michio; Matsukawa, Hiroshi

    2014-09-10

    The sliding of a solid object on a solid substrate requires a shear force that is larger than the maximum static friction force. It is commonly believed that the maximum static friction force is proportional to the loading force and does not depend on the apparent contact area. The ratio of the maximum static friction force to the loading force is called the static friction coefficient µM, which is considered to be a constant. Here, we conduct experiments demonstrating that the static friction force of a slider on a substrate follows a novel friction law under certain conditions. The magnitude of µM decreases as the loading force increases or as the apparent contact area decreases. This behavior is caused by the slip of local precursors before the onset of bulk sliding and is consistent with recent theory. The results of this study will develop novel methods for static friction control.

  6. Friction and wear behaviour of self lubricating bearing liners

    NASA Astrophysics Data System (ADS)

    Gay, Russell

    The thesis describes a numerical model for evaluating the variation of friction and wear of a self lubricating bearing liner over its useful wear life. Self-lubricating bearings have been in widespread use since the mid-1950s, particularly in the aerospace industry where they have the advantage of being low maintenance components. They are commonly used in relatively low speed, reciprocating applications such as control surface actuators, and usually consist of a spherical bearing with the inner and outer elements separated by a composite textile resin-bonded liner. A finite element model has been developed to predict the local stiffness of a particular liner at different states of wear. Results obtained using the model were used to predict the overall friction coefficient as it evolves due to wear, which is a novel approach. Experimental testing was performed on a bespoke flat-on-flat wear test rig with a reciprocating motion to validate the results of the friction model.. These tests were carried out on a commercially-available bearing liner, predominantly at a high contact pressure and an average sliding speed of 0.2 ms-1. Good agreement between predicted and experimentally measured wear was obtained when appropriate coefficients of friction were used in the friction model, and when the reciprocating sliding distance was above a critical value. A numerical wear model was also developed to predict the trend of backlash development in real bearing geometries using a novel approach. Results from the wear model were validated against full-scale bearing tests carried out elsewhere by the sponsoring company. Good agreement was obtained between the model predictions and the experimental results for the first 80% of the bearing wear life, and explanations for the discrepancy during the last 20% of the wear life have been proposed..

  7. Sea Ice Friction: The Effect of Ice Rubble

    NASA Astrophysics Data System (ADS)

    Scourfield, S.; Sammonds, P. R.; Lishman, B.; Riska, K.; Marchenko, A. V.

    2015-12-01

    Ice deformation processes in the Arctic often generate ice rubble, and situations arise where ice fragments of varying size separate sea ice floes. While the shear forces between sea ice floes in direct contact with each other are controlled by ice-ice friction, what is not known is how the slip of the floes is affected by the presence of rubble between the sliding surfaces. We present the result of field experiments undertaken on fjord ice in Svea, Svalbard, which investigated the velocity and hold time dependence of sea ice friction involving ice gouge. Average air temperature for the duration of time in which experiments were run was -12.4°C, and the thickness of the level fjord ice was 70 cm. A double-direct-shear experiment was done on floating sea ice in the field, with the addition of rubble ice between the sliding surfaces. This was achieved by moving a floating ice block through a channel of open water whilst subjected to normal loading, which was transferred through regions of ice rubble on both sides of the mobile block. The ice rubble regions were 30 cm deep and 50 cm wide. The displacement of the block and the force needed to move the block were measured. The rate dependence of friction was investigated for speeds of 10-3 to 10-2 ms-1. To investigate the state dependence of friction, slide-hold-slide (SHS) tests were conducted for hold times ranging from 1 second to 18 hours. When comparing the results from these experiments with a model for ice friction presented by Schulson and Fortt (2013), similar behaviour is seen at low hold times, where the peak coefficient of friction has a linear relationship with the logarithm of hold time. This is not the case for long hold times, however, and we attribute this to thermal consolidation of the ice rubble region.

  8. Design of new frictional testing machine for shallow fault materials

    NASA Astrophysics Data System (ADS)

    Tadai, O.; Tanikawa, W.; Hirose, T.; Sakaguchi, M.; Lin, W.

    2009-12-01

    Subduction thrust faults at shallow depth mainly consist of granular and clay-rich materials which strengths are influenced by the presence of pore water. Dilatation and pore pressure generation of fault zones by the dynamic friction will increase the volumetric water content in fault zone, which can assist the fault weakening by acoustic fluidization or hydrodynamic lubrication mechanism. Therefore the evaluation of rheology for clay minerals rich in pore water is critical for understanding of seismic behaviors at shallow depth. Here, we introduce a new testing apparatus for the purpose of accurate evaluation of friction behavior for incohesive fault rock materials. Our machine can shear granular materials up to 80 mm of outer diameter and maximum thickness of 40 mm. The capacities of axial load, torque, and motor are 100kN, 500Nm and 30kW, respectively, and pore pressure is increased up to 50 MPa. Maximum rotation speed is 660 rpm, which is equivalent to 1 m/s of the average slip velocity when sample diameter is 60 mm. We can monitor the dynamic changes of pore pressure and temperature at sliding surface during the friction tests. We can also control the pore pressure, axial load, pore pressure and temperature independently. All parameters can be held at targeted values and be generated at constant incremental velocity. We can control the rotation more sensitively to program the complicated rotation history that slip velocity and acceleration change during the rotation. We used powdered smectite and illite in our friction tests. We measured normal stress dependence on shear stress at normal stress up to 25 MPa with a constant rotation speed from 0.01 to 1 rpm. Normal stress is proportional to shear stress for dry clay minerals, and the friction coefficients are from 0.3 to 0.5. On the other hand, very low friction is observed in clay minerals saturated by water, and shear strength is nearly constant at various normal stresses. Our results suggest that clay

  9. Quaternion Averaging

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Cheng, Yang; Crassidis, John L.; Oshman, Yaakov

    2007-01-01

    Many applications require an algorithm that averages quaternions in an optimal manner. For example, when combining the quaternion outputs of multiple star trackers having this output capability, it is desirable to properly average the quaternions without recomputing the attitude from the the raw star tracker data. Other applications requiring some sort of optimal quaternion averaging include particle filtering and multiple-model adaptive estimation, where weighted quaternions are used to determine the quaternion estimate. For spacecraft attitude estimation applications, derives an optimal averaging scheme to compute the average of a set of weighted attitude matrices using the singular value decomposition method. Focusing on a 4-dimensional quaternion Gaussian distribution on the unit hypersphere, provides an approach to computing the average quaternion by minimizing a quaternion cost function that is equivalent to the attitude matrix cost function Motivated by and extending its results, this Note derives an algorithm that deterniines an optimal average quaternion from a set of scalar- or matrix-weighted quaternions. Rirthermore, a sufficient condition for the uniqueness of the average quaternion, and the equivalence of the mininiization problem, stated herein, to maximum likelihood estimation, are shown.

  10. Elastomeric friction

    NASA Astrophysics Data System (ADS)

    Vorvolakos, Katherine

    This dissertation examines the tribology of PDMS (polydimethylsiloxane) elastomers from a practical and a fundamental perspective. We examine the adhesive, energetic, and tribological properties of several commercial biofouling release coatings, and show that adhesive (and bioadhesive) release from an elastomer depends on the friction of its surface. Having shown that friction is an obstacle to release, we lubricate a model PDMS network by incorporating linear unreactive PDMS oils varying in molecular weight (0.8--423 kg/mol). Surface segregation upon curing depends on molecular weight and mass percentage. Atomic Force Microscopy (AFM) is used to detect the thickness of the lubricant layer. Surprisingly, high-viscosity oils lubricate better than low-viscosity oils, indicating a non-hydrodynamic lubrication. Applying this technology to a commercial elastomer, we see an improvement in bioadhesive release capabilities, as evidenced by a reduced tenacity of mussel adhesive protein. In comparing entangled polymer melts to crosslinked elastomers, we encountered an opportunity to study the tribology of the latter. We studied the effects of molecular weight, velocity, and temperature on the friction of crosslinked PDMS elastomers sliding against two model surfaces: a self-assembled monolayer (SAM) of n-hexadecylsilane, and a thin (˜100mum) film of polystyrene (PS). The change from smooth to stick-slip (unstable) interfacial sliding occurs at a distinct velocity on each surface, implying that it's not necessarily attributable to a bulk glass transition of the PDMS, as popularly believed. The peak shear stress attained immediately before stick-slip sliding is found to be linear with the shear modulus raised to an exponent n of ¾, in contrast with the predictions of Chernyak and Leonov ( n = 1). Low-velocity behavior differs greatly between the SAM and the PS, implying a mechanistic difference. Whereas on the SAM, sliding likely proceeds purely by stochastic adsorption and

  11. Structure and friction-reducing property of the sulfide layer produced by ion sulfuration

    SciTech Connect

    Ning, Z.; Da-Ming, Z.; Yan-Hua, W.; Jia-Jun, L.; Xiao-Dong, F.; Ming-Xi, G.

    2000-04-01

    Sulfide layers with a certain thickness were made on the surface of 1045 and 52100 steels by means of the low-temperature ion sulfuration technique. Metallography, scanning electron microscope (SEM) + energy-dispersive x-ray analysis (EDX), and x-ray diffraction (XRD) were adopted to analyze the structure of sulfide layers; the tribological properties of the layers lubricated by paraffin oil were also investigated on a reciprocating tester. The results showed that sulfide layer is porous, and its structure is mainly composed of FeS, FeS{sub 2}, and substrate phases. The sulfide layer possessed a remarkable friction-reducing effect; its friction coefficient was lower on average, by about 50%, than that of the surface without layer. With the increase of layer thickness, its friction coefficient was unchanged, and under low load conditions, its operational period was prolonged. Under the same experimental conditions, the operational period of sulfide layer on 52100 steel was longer than that on 1045 steel, and its friction coefficient was lower as well.

  12. Theoretical studies on the role of transition in determining friction and heat transfer in smooth and rough passages

    SciTech Connect

    Obot, N.T.; Esen, E.B. . Fluid Mechanics, Heat and Mass Transfer Lab.); Rabas, T.J. )

    1990-04-01

    It has been established that transition determines the attainable friction and heat transfer in smooth and rough passages. According to the proposed law of corresponding states for friction, different types of roughness exhibit the same general behavior for friction at the same reduced conditions. This is also true of different types of smooth passages. It has been fully demonstrated that, in rough passages, the marked increases in friction factor are intimately associated with early transition and that, under reduced similarity conditions, the friction factors are considerably lower than those deduced from the familiar f vs. Re plots. For all smooth or rough passages, the simple rule for heat transfer amounts to this: the lower the critical Reynolds number for transition, the greater the value for the average heat transfer coefficient. Consequently, for a given Reynolds number based on the hydraulic diameter, triangular passages can be expected to give heat transfer coefficients that are significantly higher than for circular, rectangular or annular tubes. For smooth and enhanced passages of complex shapes, it appears that heat transfer coefficients can be calculated accurately from the smooth circular tube relations, provided the critical Reynolds number is known. 61 refs., 25 figs., 1 tab.

  13. Mesh Size Control of Friction

    NASA Astrophysics Data System (ADS)

    Pitenis, Angela; Uruena, Juan Manuel; Schulze, Kyle D.; Cooper, Andrew C.; Angelini, Thomas E.; Sawyer, W. Gregory

    Soft, permeable sliding interfaces in aqueous environments are ubiquitous in nature but their ability to maintain high lubricity in a poor lubricant (water) has not been well understood. Hydrogels are excellent materials for fundamental soft matter and biotribology studies due to their high water content. While mesh size controls the material and transport properties of a hydrogel, its effects on friction were only recently explored. Polyacrylamide hydrogels slid in a Gemini (self-mated) interface produced low friction under low speeds, low pressures, macroscopic contact areas, and room temperature aqueous environments. The friction coefficients at these interfaces are lowest at low speeds and are speed-independent. This behavior is due to thermal fluctuations at the interface separating the surfaces, with water shearing in this region being the main source of dissipation. We found that mesh size had an inverse correlation with friction. We further investigated a transition from this behavior at higher speeds, and found that the transition speed correlated with the mesh size and relaxation time of the polymer network. Very soft and correspondingly large mesh size Gemini hydrogels show superlubricity under specific conditions with friction being less than 0.005.

  14. A Real-Time Method for Estimating Viscous Forebody Drag Coefficients

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Hurtado, Marco; Rivera, Jose; Naughton, Jonathan W.

    2000-01-01

    This paper develops a real-time method based on the law of the wake for estimating forebody skin-friction coefficients. The incompressible law-of-the-wake equations are numerically integrated across the boundary layer depth to develop an engineering model that relates longitudinally averaged skin-friction coefficients to local boundary layer thickness. Solutions applicable to smooth surfaces with pressure gradients and rough surfaces with negligible pressure gradients are presented. Model accuracy is evaluated by comparing model predictions with previously measured flight data. This integral law procedure is beneficial in that skin-friction coefficients can be indirectly evaluated in real-time using a single boundary layer height measurement. In this concept a reference pitot probe is inserted into the flow, well above the anticipated maximum thickness of the local boundary layer. Another probe is servomechanism-driven and floats within the boundary layer. A controller regulates the position of the floating probe. The measured servomechanism position of this second probe provides an indirect measurement of both local and longitudinally averaged skin friction. Simulation results showing the performance of the control law for a noisy boundary layer are then presented.

  15. Status of Stellite 6 friction testing

    SciTech Connect

    Watkins, J.C.; DeWall, K.G.; Weidenhamer, G.H.

    1998-06-01

    For the past several years, researchers at the Idaho National Engineering and Environmental Laboratory, under the sponsorship of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, have been investigating the performance of motor-operated valves subjected to design basis flow and pressure loads. Part of this research addresses the friction that occurs at the interface between the valve disc and the valve body seats during operation of a gate valve. In most gate valves, these surfaces are hardfaced with Stellite 6, a cobalt-based alloy. Analytical methods exist for predicting the thrust needed to operate these valves at specific pressure conditions. To produce accurate valve thrust predictions, the analyst must have a reasonably accurate, though conservative, estimate of the coefficient of friction at the disc-to-seat interface. One of the questions that remains to be answered is whether, and to what extent, aging of the disc and seat surfaces effects the disc-to-seat coefficient of friction. Specifically, does the environment in a nuclear plants piping system cause the accumulation of an oxide film on these surfaces that increases the coefficient of friction; and if so, how great is the increase? This paper presents results of specimen tests addressing this issue, with emphasis on the following: (1) the characteristics and thickness of the oxide film that develops on Stellite 6 as it ages; (2) the change in the friction coefficient of Stellite 6 as it ages, including the question of whether the friction coefficient eventually reaches a plateau; and (3) the effect in-service cycling has on the characteristics and thickness of the oxide film and on the friction coefficient.

  16. Friction forces on phase transition fronts

    SciTech Connect

    Mégevand, Ariel

    2013-07-01

    In cosmological first-order phase transitions, the microscopic interaction of the phase transition fronts with non-equilibrium plasma particles manifests itself macroscopically as friction forces. In general, it is a nontrivial problem to compute these forces, and only two limits have been studied, namely, that of very slow walls and, more recently, ultra-relativistic walls which run away. In this paper we consider ultra-relativistic velocities and show that stationary solutions still exist when the parameters allow the existence of runaway walls. Hence, we discuss the necessary and sufficient conditions for the fronts to actually run away. We also propose a phenomenological model for the friction, which interpolates between the non-relativistic and ultra-relativistic values. Thus, the friction depends on two friction coefficients which can be calculated for specific models. We then study the velocity of phase transition fronts as a function of the friction parameters, the thermodynamic parameters, and the amount of supercooling.

  17. Frequency-dependent friction in pipelines

    NASA Astrophysics Data System (ADS)

    Jiang, Dan; Li, Song-Jing; Yang, Ping; Zhao, Tian-Yang

    2015-03-01

    A comprehensive study of modeling the frequency-dependent friction in a pipeline during pressure transients following a sudden cut-off of the flow is presented. A new method using genetic algorithms (GAs) for parameter identification of the weighting function coefficients of the frequency-dependent friction model is described. The number of weighting terms required in the friction model is obtained. Comparisons between simulation results and experimental data of transient pressure pulsations close to the valve in horizontal upstream and downstream pipelines are carried out respectively. The validity of the parameter identification method for weighting function coefficients and the calculation method for the number of weighting terms in the friction model is confirmed. Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 51205045) and the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2011J083).

  18. Rheological effects on friction in elastohydrodynamic lubrication

    NASA Technical Reports Server (NTRS)

    Trachman, E. G.; Cheng, H. S.

    1973-01-01

    An analytical and experimental investigation is presented of the friction in a rolling and sliding elastohydrodynamic lubricated contact. The rheological behavior of the lubricant is described in terms of two viscoelastic models. These models represent the separate effects of non-Newtonian behavior and the transient response of the fluid. A unified description of the non-Newtonian shear rate dependence of the viscosity is presented as a new hyperbolic liquid model. The transient response of viscosity, following the rapid pressure rise encountered in the contact, is described by a compressional viscoelastic model of the volume response of a liquid to an applied pressure step. The resulting momentum and energy equations are solved by an iterative numerical technique, and a friction coefficient is calculated. The experimental study was performed, with two synthetic paraffinic lubricants, to verify the friction predictions of the analysis. The values of friction coefficient from theory and experiment are in close agreement.

  19. Solvent friction effects propagate over the entire protein molecule through low-frequency collective modes.

    PubMed

    Moritsugu, Kei; Kidera, Akinori; Smith, Jeremy C

    2014-07-24

    Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagates into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor-Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Therefore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.

  20. Solvent friction effects propagate over the entire protein molecule through low-frequency collective modes

    SciTech Connect

    Moritsugu, Kei; Kidera, Akinori; Smith, Jeremy C.

    2014-06-25

    Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagates into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Furthermore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.

  1. Tactile texture and friction of soft sponge surfaces.

    PubMed

    Takahashi, Akira; Suzuki, Makoto; Imai, Yumi; Nonomura, Yoshimune

    2015-06-01

    We evaluated the tactile texture and frictional properties of five soft sponges with various cell sizes. The frictional forces were measured by a friction meter containing a contact probe with human-finger-like geometry and mechanical properties. When the subjects touched these sponges with their fingers, hard-textured sponges were deemed unpleasant. This tactile feeling changed with friction factors including friction coefficients, their temporal patterns, as well as mechanical and shape factors. These findings provide useful information on how to control the tactile textures of various sponges. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Friction and plasticity between self-affine surfaces

    NASA Astrophysics Data System (ADS)

    Luan, Binquan; Robbins, Mark; Harrison, Judith

    2006-03-01

    Simulations are used to study the contact area and adhesion between two amorphous solids with self-affine fractal surfaces, and the results are compared to continuum calculations. The friction between non-adhesive surfaces is proportional to load, but the coefficient of friction increases with roughness. The friction is much higher than expected for elasticallly deforming surfaces,^* and substantial plastic deformation is observed. Indeed, friction forces for different surface roughness collapse when plotted against the number of plastic rearrangements per unit sliding distance. Including adhesion leads to an increase in both friction and plasticity. ^* M. H. Müser, L. Wenning, and M. O. Robbins, Phys. Rev. Lett. 86, 1295 (2001).

  3. The Friction Factor in the Forchheimer Equation for Rock Fractures

    NASA Astrophysics Data System (ADS)

    Zhou, Jia-Qing; Hu, Shao-Hua; Chen, Yi-Feng; Wang, Min; Zhou, Chuang-Bing

    2016-08-01

    The friction factor is an important dimensionless parameter for fluid flow through rock fractures that relates pressure head loss to average flow velocity; it can be affected by both fracture geometry and flow regime. In this study, a theoretical formula form of the friction factor containing both viscous and inertial terms is formulated by incorporating the Forchheimer equation, and a new friction factor model is proposed based on a recent phenomenological relation for the Forchheimer coefficient. The viscous term in the proposed formula is inversely proportional to Reynolds number and represents the limiting case in Darcy flow regime when the inertial effects diminish, whereas the inertial term is a power function of the relative roughness and represents a limiting case in fully turbulent flow regime when the fracture roughness plays a dominant role. The proposed model is compared with existing friction factor models for fractures through parametric sensitivity analyses and using experimental data on granite fractures, showing that the proposed model has not only clearer physical significance, but also better predictive performance. By accepting proper percentages of nonlinear pressure drop to quantify the onset of Forchheimer flow and fully turbulent flow, a Moody-type diagram with explicitly defined flow regimes is created for rock fractures of varying roughness, indicating that rougher fractures have a large friction factor and are more prone to the Forchheimer flow and fully turbulent flow. These findings may prove useful in better understanding of the flow behaviors in rock fractures and improving the numerical modeling of non-Darcy flow in fractured aquifers.

  4. Effect of time derivative of contact area on dynamic friction

    NASA Astrophysics Data System (ADS)

    Arakawa, Kazuo

    2014-06-01

    This study investigated dynamic friction during oblique impact of a golf ball by evaluating the ball's angular velocity, contact force, and the contact area between the ball and target. The effect of the contact area on the angular velocities was evaluated, and the results indicated that the contact area plays an important role in dynamic friction. In this study, the dynamic friction force F was given by F = μN + μη dA/dt, where μ is the coefficient of friction, N is the contact force, dA/dt is the time derivative of the contact area A, and η is a coefficient associated with the contact area.

  5. Multiscale physics of rubber-ice friction

    NASA Astrophysics Data System (ADS)

    Tuononen, Ari J.; Kriston, András; Persson, Bo

    2016-09-01

    Ice friction plays an important role in many engineering applications, e.g., tires on icy roads, ice breaker ship motion, or winter sports equipment. Although numerous experiments have already been performed to understand the effect of various conditions on ice friction, to reveal the fundamental frictional mechanisms is still a challenging task. This study uses in situ white light interferometry to analyze ice surface topography during linear friction testing with a rubber slider. The method helps to provide an understanding of the link between changes in the surface topography and the friction coefficient through direct visualization and quantitative measurement of the morphologies of the ice surface at different length scales. Besides surface polishing and scratching, it was found that ice melts locally even after one sweep showing the refrozen droplets. A multi-scale rubber friction theory was also applied to study the contribution of viscoelasticity to the total friction coefficient, which showed a significant level with respect to the smoothness of the ice; furthermore, the theory also confirmed the possibility of local ice melting.

  6. Quantized friction across ionic liquid thin films

    NASA Astrophysics Data System (ADS)

    Smith, Alexander M.; Lovelock, Kevin R. J.; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

    Ionic liquids, salts in the liquid state under ambient conditions, are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition.

  7. Coordinated Water Under Confinement Eases Sliding Friction

    NASA Astrophysics Data System (ADS)

    Defante, Adrian; Dhopotkar, Nishad; Dhinojwala, Ali

    Water is essential to a number of interfacial phenomena such as the lubrication of knee joints, protein folding, mass transport, and adsorption processes. We have used a biaxial friction cell to quantify underwater friction between a hydrophobic elastomeric lens and a hydrophobic self-assembled monolayer in the presence of surfactant solutions. To gain an understanding of the role of water in these processes we have coupled this measurement with surface sensitive sum frequency generation to directly probe the molecular constitution of the confined contact interface. We observe that role of confined coordinated water between two hydrophobic substrates covered with surfactants is the key to obtaining a low coefficient of friction.

  8. Quantized friction across ionic liquid thin films.

    PubMed

    Smith, Alexander M; Lovelock, Kevin R J; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

    2013-10-07

    Ionic liquids - salts in the liquid state under ambient conditions - are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition.

  9. Internal Friction And Instabilities Of Rotors

    NASA Technical Reports Server (NTRS)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1992-01-01

    Report describes study of effects of internal friction on dynamics of rotors prompted by concern over instabilities in rotors of turbomachines. Theoretical and experimental studies described. Theoretical involved development of nonlinear mathematical models of internal friction in three joints found in turbomachinery - axial splines, Curvic(TM) splines, and interference fits between smooth cylindrical surfaces. Experimental included traction tests to determine the coefficients of friction of rotor alloys at various temperatures, bending-mode-vibration tests of shafts equipped with various joints and rotordynamic tests of shafts with axial-spline and interference-fit joints.

  10. Dependence of frictional strength on compositional variations of Hayward fault rock gouges

    USGS Publications Warehouse

    Morrow, Carolyn A.; Moore, Diane E.; Lockner, David A.

    2010-01-01

    The northern termination of the locked portion of the Hayward Fault near Berkeley, California, is found to coincide with the transition from strong Franciscan metagraywacke to melange on the western side of the fault. Both of these units are juxtaposed with various serpentinite, gabbro and graywacke units to the east, suggesting that the gouges formed within the Hayward Fault zone may vary widely due to the mixing of adjacent rock units and that the mechanical behavior of the fault would be best modeled by determining the frictional properties of mixtures of the principal rock types. To this end, room temperature, water-saturated, triaxial shearing tests were conducted on binary and ternary mixtures of fine-grained gouges prepared from serpentinite and gabbro from the Coast Range Ophiolite, a Great Valley Sequence graywacke, and three different Franciscan Complex metasedimentary rocks. Friction coefficients ranged from 0.36 for the serpentinite to 0.84 for the gabbro, with four of the rock types having coefficients of friction ranging from 0.67-0.84. The friction coefficients of the mixtures can be predicted reliably by a simple weighted average of the end-member dry-weight percentages and strengths for all samples except those containing serpentinite. For the serpentinite mixtures, a linear trend between end-member values slightly overestimates the coefficients of friction in the midcomposition ranges. The range in strength for these rock admixtures suggests that both theoretical and numerical modeling of the fault should attempt to account for variations in rock and gouge properties.

  11. The Effect of Particle Dimensionality on Granular Friction: Comparison of Laboratory and Numerical Approaches

    NASA Astrophysics Data System (ADS)

    Marone, C.; Mair, K.; Frye, K. M.

    2002-12-01

    accomplished by shearing perpendicular to rod axes. The average coefficient of friction during stable sliding for 1-D, 2-D, smooth 3-D, and rough 3-D particles is 0.15, 0.3, 0.45, and 0.6, respectively. Frictional strength of 2-D layers exceeds 1-D friction by an amount associated with dilatancy and the additional contact plane in 2-D. We show that 3-D granular friction exceeds 2-D friction by the amount of interparticle friction on the out-of-plane particle contacts that do not exist in 2-D. Data from our 2-D experiments are remarkably similar to numerical results based on 2-D particle dynamic simulations. Both exhibit a coefficient of friction of ~ 0.3 and large fluctuations in sliding friction that correlate with changes in dilatancy rate. Two main conclusions can be drawn from this work: 1) the first order disparities between laboratory and numerical studies of granular shear can be explained by differences in grain characteristics and loading conditions, and 2) in sheared granular layers, friction scales with particle dimensionality, such that the macroscopic coefficient of friction is lowest for 1-D shear and systematically higher for 2-D and 3-D configurations. Since natural faults predominantly contain angular gouge we find no evidence for a fault weakening mechanism associated with the presence of gouge.

  12. Frictional behavior of large displacement experimental faults

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.; Blanpied, M.L.; Weeks, J.D.

    1996-01-01

    The coefficient of friction and velocity dependence of friction of initially bare surfaces and 1-mm-thick simulated fault gouges (400 mm at 25??C and 25 MPa normal stress. Steady state negative friction velocity dependence and a steady state fault zone microstructure are achieved after ???18 mm displacement, and an approximately constant strength is reached after a few tens of millimeters of sliding on initially bare surfaces. Simulated fault gouges show a large but systematic variation of friction, velocity dependence of friction, dilatancy, and degree of localization with displacement. At short displacement (<10 mm), simulated gouge is strong, velocity strengthening and changes in sliding velocity are accompanied by relatively large changes in dilatancy rate. With continued displacement, simulated gouges become progressively weaker and less velocity strengthening, the velocity dependence of dilatancy rate decreases, and deformation becomes localized into a narrow basal shear which at its most localized is observed to be velocity weakening. With subsequent displacement, the fault restrengthens, returns to velocity strengthening, or to velocity neutral, the velocity dependence of dilatancy rate becomes larger, and deformation becomes distributed. Correlation of friction, velocity dependence of friction and of dilatancy rate, and degree of localization at all displacements in simulated gouge suggest that all quantities are interrelated. The observations do not distinguish the independent variables but suggest that the degree of localization is controlled by the fault strength, not by the friction velocity dependence. The friction velocity dependence and velocity dependence of dilatancy rate can be used as qualitative measures of the degree of localization in simulated gouge, in agreement with previous studies. Theory equating the friction velocity dependence of simulated gouge to the sum of the friction velocity dependence of bare surfaces and the velocity

  13. Internally architectured materials with directionally asymmetric friction.

    PubMed

    Bafekrpour, Ehsan; Dyskin, Arcady; Pasternak, Elena; Molotnikov, Andrey; Estrin, Yuri

    2015-06-04

    Internally Architectured Materials (IAMs) that exhibit different friction forces for sliding in the opposite directions are proposed. This is achieved by translating deformation normal to the sliding plane into a tangential force in a manner that is akin to a toothbrush with inclined bristles. Friction asymmetry is attained by employing a layered material or a structure with parallel 'ribs' inclined to the direction of sliding. A theory of directionally asymmetric friction is presented, along with prototype IAMs designed, fabricated and tested. The friction anisotropy (the ξ-coefficient) is characterised by the ratio of the friction forces for two opposite directions of sliding. It is further demonstrated that IAM can possess very high levels of friction anisotropy, with ξ of the order of 10. Further increase in ξ is attained by modifying the shape of the ribs to provide them with directionally dependent bending stiffness. Prototype IAMs produced by 3D printing exhibit truly giant friction asymmetry, with ξ in excess of 20. A novel mechanical rectifier, which can convert oscillatory movement into unidirectional movement by virtue of directionally asymmetric friction, is proposed. Possible applications include locomotion in a constrained environment and energy harvesting from oscillatory noise and vibrations.

  14. Internally architectured materials with directionally asymmetric friction

    PubMed Central

    Bafekrpour, Ehsan; Dyskin, Arcady; Pasternak, Elena; Molotnikov, Andrey; Estrin, Yuri

    2015-01-01

    Internally Architectured Materials (IAMs) that exhibit different friction forces for sliding in the opposite directions are proposed. This is achieved by translating deformation normal to the sliding plane into a tangential force in a manner that is akin to a toothbrush with inclined bristles. Friction asymmetry is attained by employing a layered material or a structure with parallel ‘ribs’ inclined to the direction of sliding. A theory of directionally asymmetric friction is presented, along with prototype IAMs designed, fabricated and tested. The friction anisotropy (the ξ-coefficient) is characterised by the ratio of the friction forces for two opposite directions of sliding. It is further demonstrated that IAM can possess very high levels of friction anisotropy, with ξ of the order of 10. Further increase in ξ is attained by modifying the shape of the ribs to provide them with directionally dependent bending stiffness. Prototype IAMs produced by 3D printing exhibit truly giant friction asymmetry, with ξ in excess of 20. A novel mechanical rectifier, which can convert oscillatory movement into unidirectional movement by virtue of directionally asymmetric friction, is proposed. Possible applications include locomotion in a constrained environment and energy harvesting from oscillatory noise and vibrations. PMID:26040634

  15. Friction microprobe studies of composite surfaces

    SciTech Connect

    Blau, P.J.

    1990-01-01

    A newly-constructed friction microprobe has been used to study the variations in friction force associated with unlubricated sliding of small 1.0 mm diameter. 440C stainless steel spheres over the surfaces of alumina, silicon nitride, silicon carbide, and silicon carbide whisker-reinforced composites with matrices of alumina and silicon nitride. The purpose of the work was to attempt to detect frictional transients associated with the sliding interaction of individual asperities and to relate these transients to the microstructures of the ceramics and their composites. Friction data could be obtained without detectable wear of either the spheres or the flat specimens. The presence of whiskers increased in the friction of alumina by about 28% and decreased the friction of silicon nitride by about 15%. Less than a 1% instantaneous variation in friction coefficient could be directly ascribed to contacts with whiskers. Future studies are planned to investigate whisker orientation effects on the variation of the sliding friction of composites. 11 refs., 8 figs., 3 tabs.

  16. Kalker's algorithm Fastsim solves tangential contact problems with slip-dependent friction and friction anisotropy

    NASA Astrophysics Data System (ADS)

    Piotrowski, J.

    2010-07-01

    This paper presents two extensions of Kalker's algorithm Fastsim of the simplified theory of rolling contact. The first extension is for solving tangential contact problems with the coefficient of friction depending on slip velocity. Two friction laws have been considered: with and without recuperation of the static friction. According to the tribological hypothesis for metallic bodies shear failure, the friction law without recuperation of static friction is more suitable for wheel and rail than the other one. Sample results present local quantities inside the contact area (division to slip and adhesion, traction) as well as global ones (creep forces as functions of creepages and rolling velocity). For the coefficient of friction diminishing with slip, the creep forces decay after reaching the maximum and they depend on the rolling velocity. The second extension is for solving tangential contact problems with friction anisotropy characterised by a convex set of the permissible tangential tractions. The effect of the anisotropy has been shown on examples of rolling without spin and in the presence of pure spin for the elliptical set. The friction anisotropy influences tangential tractions and creep forces. Sample results present local and global quantities. Both extensions have been described with the same language of formulation and they may be merged into one, joint algorithm.

  17. Gas desorption during friction of amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Rusanov, A.; Fontaine, J.; Martin, J.-M.; Mogne, T. L.; Nevshupa, R.

    2008-03-01

    Gas desorption induced by friction of solids, i.e. tribodesorption, is one of the numerous physical and chemical phenomena, which arise during friction as result of thermal and structural activation of material in a friction zone. Tribodesorption of carbon oxides, hydrocarbons, and water vapours may lead to significant deterioration of ultra high vacuum conditions in modern technological equipment in electronic, optoelectronic industries. Therefore, knowledge of tribodesorption is crucial for the performance and lifetime of vacuum tribosystems. Diamond-like carbon (DLC) coatings are interesting materials for vacuum tribological systems due to their high wear resistance and low friction. Highly hydrogenated amorphous carbon (a-C:H) films are known to exhibit extremely low friction coefficient under high vacuum or inert environment, known as 'superlubricity' or 'superlow friction'. However, the superlow friction period is not always stable and then tends to spontaneous transition to high friction. It is supposed that hydrogen supply from the bulk to the surface is crucial for establishing and maintaining superlow friction. Thus, tribodesorption can serve also as a new technique to determine the role of gases in superlow friction mechanisms. Desorption of various a-C:H films, deposited by PECVD, ion-beam deposition and deposition using diode system, has been studied by means of ultra-high vacuum tribometer equipped with a mass spectrometer. It was found that in superlow friction period desorption rate was below the detection limit in the 0-85 mass range. However, transition from superlow friction to high friction was accompanied by desorption of various gases, mainly of H2 and CH4. During friction transition, surfaces were heavily damaged. In experiments with DLC films with low hydrogen content tribodesorption was significant during the whole experiment, while low friction was not observed. From estimation of maximum surface temperature during sliding contact it was

  18. Frictional Heating Recoded in Vitrinite Reflectance Within Coal Material Concentrated Layer: the Cretaceous Shimanto Belt

    NASA Astrophysics Data System (ADS)

    Kiyohiko, M.; Hashimoto, Y.; Hirose, T.; Kitamura, M.

    2013-12-01

    Frictional heating by faulting is related to effective friction coefficient, displacement, and thickness of fault. Geological records of frictional heating have been measured from some faults by various methods and applied to reconstructions of the fault slip behaviors (i.e., Fulton et al., 2012). Vitrinite reflectance (Ro) is one of the methods to detect the geological records of frictional heating. Vitrinite is a kind of coal maceral. Degree of coalification is related to Ro. In the previous studies, using Ro, frictional heating was identified along some faults including shallow deocollement and mega-splay fault in Nankai trough (Sakaguchi et al., 2011). The similar geological evidence can be observed in exhumed accretionary complexes. In this study, we tried to detect the evidence of frictional heating along minor faults developed in an exhumed accretionary complex using Ro. A coal concentrated layer was found in an exhumed accretionary complex, Shimanto Belt, SW Japan. The thickness of the coal concentrated layer is about 80 cm. Some faults are developed within the coal concentrated layer. Thickness of the faults is about a few mm to 1 cm. The coal concentrated layer is appropriate to examine the distribution of Ro. I measured Ro from samples collected around and outside of the layer. Ro of the sample more than 3cm away from the fault was about 1.0% in average. This value is corresponds the background value in this area. On the other hand, Ro of the samples within 3 cm from the fault shows bimodal distribution in histogram representing 1.0% and 1.2% at the peaks. This higher peak can indicate the frictional heating by faulting. Temperature by frictional heating was estimated from Ro following methods of O'Hara (2004), Fulton et al (2012) and Kitamura et al (2013). O'Hara (2004) set cooling rates as 100c/Ma and 0.035, 1.0c/s. Fulton et al. (2012) calculated temperature evolution at and around a fault on the basis of frictional heating and heat diffusion. Both

  19. Estimation of Dynamic Friction Process of the Akatani Landslide Based on the Waveform Inversion and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Mangeney, A.; Moretti, L.; Matsushi, Y.

    2014-12-01

    Understanding physical parameters, such as frictional coefficients, velocity change, and dynamic history, is important issue for assessing and managing the risks posed by deep-seated catastrophic landslides. Previously, landslide motion has been inferred qualitatively from topographic changes caused by the event, and occasionally from eyewitness reports. However, these conventional approaches are unable to evaluate source processes and dynamic parameters. In this study, we use broadband seismic recordings to trace the dynamic process of the deep-seated Akatani landslide that occurred on the Kii Peninsula, Japan, which is one of the best recorded large slope failures. Based on the previous results of waveform inversions and precise topographic surveys done before and after the event, we applied numerical simulations using the SHALTOP numerical model (Mangeney et al., 2007). This model describes homogeneous continuous granular flows on a 3D topography based on a depth averaged thin layer approximation. We assume a Coulomb's friction law with a constant friction coefficient, i. e. the friction is independent of the sliding velocity. We varied the friction coefficients in the simulation so that the resulting force acting on the surface agrees with the single force estimated from the seismic waveform inversion. Figure shows the force history of the east-west components after the band-pass filtering between 10-100 seconds. The force history of the simulation with frictional coefficient 0.27 (thin red line) the best agrees with the result of seismic waveform inversion (thick gray line). Although the amplitude is slightly different, phases are coherent for the main three pulses. This is an evidence that the point-source approximation works reasonably well for this particular event. The friction coefficient during the sliding was estimated to be 0.38 based on the seismic waveform inversion performed by the previous study and on the sliding block model (Yamada et al., 2013

  20. Turbine blade friction damping study

    NASA Technical Reports Server (NTRS)

    Dominic, R. J.

    1985-01-01

    A lumped parameter method, implemented on a VAX 11/780 computer shows that the primary parameters affecting the performance of the friction damper of the first stage turbine of the SSME high pressure fuel pump are: the damper-blade coefficient of friction; the normal force applied to the friction interface; the amplitude of the periodic forcing function; the relative phase angle of the forcing functions for adjacent blades bridged by a damper (effectively, the engine order of the forcing function); and the amount of hysteretic damping that acts to limit the vibration amplitude of the blade in its resonance modes. The low order flexural resonance vibration modes of HPFTP blades without dampers, with production dampers, and with two types of lightweight experimental dampers were evaluated in high speed spin pit tests. Results agree with those of the analytical study in that blades fitted with production friction dampers experienced the airfoil-alone flexural resonance mode, while those without dampers or with lighter weight dampers did not. No blades fitted with dampers experienced the whole blade flexural resonance mode during high speed tests, while those without dampers did.

  1. The role of adsorbed water on the friction of a layer of submicron particles

    USGS Publications Warehouse

    Sammis, Charles G.; Lockner, David A.; Reches, Ze’ev

    2011-01-01

    Anomalously low values of friction observed in layers of submicron particles deformed in simple shear at high slip velocities are explained as the consequence of a one nanometer thick layer of water adsorbed on the particles. The observed transition from normal friction with an apparent coefficient near μ = 0.6 at low slip speeds to a coefficient near μ = 0.3 at higher slip speeds is attributed to competition between the time required to extrude the water layer from between neighboring particles in a force chain and the average lifetime of the chain. At low slip speeds the time required for extrusion is less than the average lifetime of a chain so the particles make contact and lock. As slip speed increases, the average lifetime of a chain decreases until it is less than the extrusion time and the particles in a force chain never come into direct contact. If the adsorbed water layer enables the otherwise rough particles to rotate, the coefficient of friction will drop to μ = 0.3, appropriate for rotating spheres. At the highest slip speeds particle temperatures rise above 100°C, the water layer vaporizes, the particles contact and lock, and the coefficient of friction rises to μ = 0.6. The observed onset of weakening at slip speeds near 0.001 m/s is consistent with the measured viscosity of a 1 nm thick layer of adsorbed water, with a minimum particle radius of approximately 20 nm, and with reasonable assumptions about the distribution of force chains guided by experimental observation. The reduction of friction and the range of velocities over which it occurs decrease with increasing normal stress, as predicted by the model. Moreover, the analysis predicts that this high-speed weakening mechanism should operate only for particles with radii smaller than approximately 1 μm. For larger particles the slip speed required for weakening is so large that frictional heating will evaporate the adsorbed water and weakening will not occur.

  2. A multiscale transport model for Lennard-Jones binary mixtures based on interfacial friction

    NASA Astrophysics Data System (ADS)

    Bhadauria, Ravi; Aluru, N. R.

    2016-08-01

    We propose a one-dimensional isothermal hydrodynamic transport model for non-reacting binary mixtures in slit shaped nanochannels. The coupled species momentum equations contain viscous dissipation and interspecies friction term of Maxwell-Stefan form. Species partial viscosity variations in the confinement are modeled using the van der Waals one fluid approximation and the local average density method. Species specific macroscopic friction coefficient based Robin boundary conditions are provided to capture the species wall slip effects. The value of this friction coefficient is computed using a species specific generalized Langevin formulation. Gravity driven flow of methane-hydrogen and methane-argon mixtures confined between graphene slit shaped nanochannels are considered as examples. The proposed model yields good quantitative agreement with the velocity profiles obtained from the non-equilibrium molecular dynamics simulations. The mixtures considered are observed to behave as single species pseudo fluid, with the interfacial friction displaying linear dependence on molar composition of the mixture. The results also indicate that the different species have different slip lengths, which remain unchanged with the channel width.

  3. A multiscale transport model for Lennard-Jones binary mixtures based on interfacial friction.

    PubMed

    Bhadauria, Ravi; Aluru, N R

    2016-08-21

    We propose a one-dimensional isothermal hydrodynamic transport model for non-reacting binary mixtures in slit shaped nanochannels. The coupled species momentum equations contain viscous dissipation and interspecies friction term of Maxwell-Stefan form. Species partial viscosity variations in the confinement are modeled using the van der Waals one fluid approximation and the local average density method. Species specific macroscopic friction coefficient based Robin boundary conditions are provided to capture the species wall slip effects. The value of this friction coefficient is computed using a species specific generalized Langevin formulation. Gravity driven flow of methane-hydrogen and methane-argon mixtures confined between graphene slit shaped nanochannels are considered as examples. The proposed model yields good quantitative agreement with the velocity profiles obtained from the non-equilibrium molecular dynamics simulations. The mixtures considered are observed to behave as single species pseudo fluid, with the interfacial friction displaying linear dependence on molar composition of the mixture. The results also indicate that the different species have different slip lengths, which remain unchanged with the channel width.

  4. Subjective scaling of smooth surface friction.

    PubMed

    Smith, A M; Scott, S H

    1996-05-01

    1. Six men and four women, 30-51 yr of age, were asked to use the tip of the washed and dried index finger to stroke six different featureless, flat surfaces mounted on a three-dimensional force platform. The six surfaces were rosin-coated glass, glass, satin-finished aluminum, poly-vinyl chloride (PVC) plastic, Teflon, and nyloprint (polyamide plastic). The subjects were requested to indicate where the sensation produced by each surface should be placed on an unidimensional scale represented by an 18cm line labeled at one end by the words "most slippery" and at the other end by the words "most sticky." The coefficients of friction for each surface and for each subject were subsequently assessed by asking each subject to stroke the surfaces as if they were assessing its slipperiness for 5 s. 2. The finger forces normal and tangential to the stroked surfaces were digitized at 250 Hz and stored on a laboratory computer. The ratio of the mean tangential force to the mean perpendicular force during stroking was used to calculate the mean coefficient of kinetic friction. The mean friction for all subjects ranged from 0.43 for the nyloprint surface to 2.79 for the rosin-coated glass. Correlation coefficients calculated between the subjective estimates of friction and the measured coefficients of friction for each subject individually resulted in a mean correlation of 0.85 (n = 10, P < 0.001). 3. These data indicate that subjects can accurately scale relative differences in the friction of macroscopically smooth, flat surfaces, by modulating the tangential force applied to the finger while keeping the normal force relatively constant. The fact that subjects maintained a relatively constant normal force and instead varied the tangential force across different surfaces suggests that receptors sensitive to these tangential forces are important in the perception of smooth surface friction.

  5. Prediction of Very High Reynolds Number Compressible Skin Friction

    NASA Technical Reports Server (NTRS)

    Carlson, John R.

    1998-01-01

    Flat plate skin friction calculations over a range of Mach numbers from 0.4 to 3.5 at Reynolds numbers from 16 million to 492 million using a Navier Stokes method with advanced turbulence modeling are compared with incompressible skin friction coefficient correlations. The semi-empirical correlation theories of van Driest; Cope; Winkler and Cha; and Sommer and Short T' are used to transform the predicted skin friction coefficients of solutions using two algebraic Reynolds stress turbulence models in the Navier-Stokes method PAB3D. In general, the predicted skin friction coefficients scaled well with each reference temperature theory though, overall the theory by Sommer and Short appeared to best collapse the predicted coefficients. At the lower Reynolds number 3 to 30 million, both the Girimaji and Shih, Zhu and Lumley turbulence models predicted skin-friction coefficients within 2% of the semi-empirical correlation skin friction coefficients. At the higher Reynolds numbers of 100 to 500 million, the turbulence models by Shih, Zhu and Lumley and Girimaji predicted coefficients that were 6% less and 10% greater, respectively, than the semi-empirical coefficients.

  6. Contact Hysteresis and Friction of Alkanethiol SAMs on Au

    SciTech Connect

    Houston, J.E.; Kiely, J.D.

    1998-10-14

    Nanoindentation has been combhed with nanometer-scale friction measurements to identi~ dissipative mechanisms responsible for friction in hexadecanethiol self-assembled monolayer on Au. We have demonstrated that friction is primarily due to viscoelastic relaxations within the films, which give rise to contact hysteresis when deformation rates are within the ranges of 5 and 200 k. We observe that this contact hysteresis increases with exposure to air such that the friction coefficient increases from 0.004 to 0.075 when films are exposed to air for 40 days. Both hysteresis and friction increase with probe speed, and we present a model of friction that characterizes this speed dependence and which also predicts a linear dependence of friction on normal force in thin organic films. Finally, we identify several short-term wear regimes and identify that wear changes dramatically when fdms age.

  7. Variables influencing the frictional behaviour of in vivo human skin.

    PubMed

    Veijgen, N K; Masen, M A; van der Heide, E

    2013-12-01

    In the past decades, skin friction research has focused on determining which variables are important to affect the frictional behaviour of in vivo human skin. Until now, there is still limited knowledge on these variables. This study has used a large dataset to identify the effect of variables on the human skin, subject characteristics and environmental conditions on skin friction. The data are obtained on 50 subjects (34 males and 16 females). Friction measurements represent the friction between in vivo human skin and an aluminium sample, assessed on three anatomical locations. The coefficient of friction increased significantly (p<0.05) with increasing age, increasing ambient temperature and increasing relative air humidity. A significant inversely proportional relationship was found between friction and both the amount of hair present on the skin and the height of the subject. Other outcome variables in this study were the hydration of the skin and the skin temperature.

  8. Investigation of Friction-induced Damage to the Pig Cornea.

    PubMed

    Barros, Raquel C; Van Kooten, Theo G; Veeregowda, Deepak Halenahally

    2015-10-01

    Mechanical friction causes damage to the cornea. A friction measurement device with minimal intervention with the pig cornea tear film revealed a low friction coefficient of 0.011 in glycerine solution. Glycerine molecules presumably bind to water, mucins, and epithelial cells and therewith improve both squeeze film and boundary lubrication. Using confocal microscopy, we determined that glycerine solution reduced damage to epithelial cells by 50% compared with the phosphate buffer saline.

  9. Friction measurement in MEMS using a new test structure

    SciTech Connect

    Crozier, B.T.; De Boer, M.P.; Redmond, J.M.; Bahr, D.F.; Michalske, T.A.

    1999-12-09

    A MEMS test structure capable of measuring friction between polysilicon surfaces under a variety of test conditions has been refined from previous designs. The device is applied here to measuring friction coefficients of polysilicon surfaces under different environmental, loading, and surface conditions. Two methods for qualitatively comparing friction coefficients ({mu}) using the device are presented. Samples that have been coated with a self-assembled monolayer of the lubricating film perfluorinated-decyltrichorosilane (PFTS) have a coefficient of friction that is approximately one-half that of samples dried using super-critical CO{sub 2} (SCCO{sub 2}) drying. Qualitative results indicate that {mu} is independent of normal pressure. Wear is shown to increase {mu} for both supercritically dried samples and PFTS coated samples, though the mechanisms appear to be different. Super critically dried surfaces appear to degrade continuously with increased wear cycles, while PFTS coated samples reach a steady state friction value after about 10{sup 4} cycles.

  10. A vacuum (10(exp -9) Torr) friction apparatus for determining friction and endurance life of MoSx films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Honecy, Frank S.; Abel, Phillip B.; Pepper, Stephen V.; Spalvins, Talivaldis; Wheeler, Donald R.

    1992-01-01

    The first part of this paper describes an ultrahigh vacuum friction apparatus (tribometer). The tribometer can be used in a ball-on-disk configuration and is specifically designed to measure the friction and endurance life of solid lubricating films such as MoS(x) in vacuum at a pressure of 10 exp -7 Pa. The sliding mode is typically unidirectional at a constant rotating speed. The second part of this paper presents some representative friction and endurance life data for magnetron sputtered MoS(x) films (110 nm thick) deposited on sputter-cleaned 440 C stainless-steel disk substrates, which were slid against a 6-mm-diameter 440 C stainless-steel bearing ball. All experiments were conducted with loads of 0.49 to 3.6 N (average Hertzian contact pressure, 0.33 to 0.69 GPa), at a constant rotating speed of 120 rpm (sliding velocity ranging from 31 to 107 mm/s due to the range of wear track radii involved in the experiments), in a vacuum of 7 x 10 exp -7 Pa and at room temperature. The results indicate that there are similarities in friction behavior of MoS(x) films overs their life cycles regardless of load applied. The coefficient of friction (mu) decreases as load W increases according to mu = kW exp -1/3. The endurance life E of MoS(x) films decreases as the load W increases according to E = KW exp -1.4 for the load range. The load- (or contract-pressure-) dependent endurance life allows us to reduce the time for wear experiments and to accelerate endurance life testing of MoS(x) films. For the magnetron-sputtered MoS(x) films deposited on 440 C stainless-steel disks: the specific wear rate normalized to the load and the number of revolutions was 3 x 10 exp -8 mm exp 3/N-revolution; the specific wear rate normalized to the load and the total sliding distance was 8 x 10 exp -7 mm exp 3/N-m; and the nondimensional wear coefficient of was approximately 5 x 10 exp -6. The values are almost independent of load in the range 0.49 to 3.6 N (average Hertzian contact

  11. Friction and scale-dependent deformation processes of large experimental carbonate faults

    NASA Astrophysics Data System (ADS)

    Tesei, Telemaco; Carpenter, Brett M.; Giorgetti, Carolina; Scuderi, Marco M.; Sagy, Amir; Scarlato, Piergiorgio; Collettini, Cristiano

    2017-07-01

    We studied the frictional behaviour and deformation products of large (20 cm × 20 cm bare surfaces) experimental limestone faults. We sheared samples in a direct shear configuration, with an imposed normal force of 40-200 kN and shear velocity of 10 μm/s. The steady-state shearing of these surfaces yielded a coefficient of friction 0.7<μ<1 (average μ∼0.9), significantly higher than gouge friction of the same material, μ∼0.6. Frictional healing, studied via slide-hold-slide tests, is null (Δμ≤0 upon re-shear). Moreover, sliding of these surfaces is accompanied by dilatation and production of grooves, gouge striations and fault mirrors. These products are entirely analogous to slip surface phenomena found on natural limestone-bearing faults at both the macroscale and at the microscale. We infer that high friction, accompanied by dilatant deformation, and null frictional healing are the macroscopic effect of brittle damage on the sliding surface, constrained by the strength of the rock and by fast healing processes in the gouge. Simultaneously to brittle failure, plastic deformation occurs on the sliding surface and inside the intact rock via nanoparticle formation (mirrors) and twinning at the micron scale. Because of the similarity between experimental and natural structures, we suggest that sliding of carbonate-bearing faults in the uppermost crust could be characterized by high friction, fast healing and strongly dilatant deformation, which would help to explain shallow seismicity frequently documented in carbonatic terrains such as the Northern Apennines of Italy.

  12. Modeling and calculation of impact friction caused by corner contact in gear transmission

    NASA Astrophysics Data System (ADS)

    Zhou, Changjiang; Chen, Siyu

    2014-09-01

    Corner contact in gear pair causes vibration and noise, which has attracted many attentions. However, teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches. Based on the mechanism of corner contact, the process of corner contact is divided into two stages of impact and scratch, and the calculation model including gear equivalent error—combined deformation is established along the line of action. According to the distributive law, gear equivalent error is synthesized by base pitch error, normal backlash and tooth profile modification on the line of action. The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action, on basis of the theory of engagement and the curve of tooth synthetic compliance & load-history. Combined secondarily the equivalent error with the combined deflection, the position standard of the point situated at corner contact is probed. Then the impact positions and forces, from the beginning to the end during corner contact before the normal path, are calculated accurately. Due to the above results, the lash model during corner contact is founded, and the impact force and frictional coefficient are quantified. A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated. This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient, and to gear exact design for tribology.

  13. Reciprocal Sliding Friction Model for an Electro-Deposited Coating and Its Parameter Estimation Using Markov Chain Monte Carlo Method

    PubMed Central

    Kim, Kyungmok; Lee, Jaewook

    2016-01-01

    This paper describes a sliding friction model for an electro-deposited coating. Reciprocating sliding tests using ball-on-flat plate test apparatus are performed to determine an evolution of the kinetic friction coefficient. The evolution of the friction coefficient is classified into the initial running-in period, steady-state sliding, and transition to higher friction. The friction coefficient during the initial running-in period and steady-state sliding is expressed as a simple linear function. The friction coefficient in the transition to higher friction is described with a mathematical model derived from Kachanov-type damage law. The model parameters are then estimated using the Markov Chain Monte Carlo (MCMC) approach. It is identified that estimated friction coefficients obtained by MCMC approach are in good agreement with measured ones. PMID:28773359

  14. Frictional Behavior of Amphibolite at Seismic Slip Rates from High-velocity Rotary Shear Experiments

    NASA Astrophysics Data System (ADS)

    Jung, S.; Ree, J.; Hirose, T.; Lee, S.

    2012-12-01

    Gabbroic rocks of oceanic crust transform into amphibolite with depth at subduction zone, and thus frictional property of amphibolite may be important for a better understanding of subduction zone earthquakes. We report preliminary results of high-velocity rotary shear experiments on amphibolite at a seismic slip rate (~1.05 m/s) and normal stresses of 2-15 MPa. Amphibolite from the Imjingang belt of South Korea is composed of hornblende (0.5-1.5 mm) and plagioclase (0.25-0.5 mm) with rare occurrence of quartz. The frictional behavior of the amphibolite is characterized by two phases of unstable slip weakening separated by strengthening, followed by a final weakening with a very low steady-state friction coefficient of 0.07. The average coefficient of the first, second and final peak frictions is 0.48, 0.36 and 0.22, respectively. The fault zone consists of a principal slip zone (PSZ, 200-300 μm thick) with molten material mantled by damage zone (1-3 mm thick). In the damage zone, the color of hornblende grains becomes darker toward the PSZ and thin, black stripes occur along cleavage planes of hornblende in plane-polarized light. Also fracture density of hornblende and plagioclase increases relative to those of wall rock. The PSZ comprises molten material and mineral clasts (25-50 μm) and the clasts tend to concentrate along the center of the PSZ. The surface temperature of the fault zones measured by a radiation thermography during experiments is about 1060°C and the internal temperature of the fault zones could be higher than the measured temperature in view of the melting of hornblende and plagioclase. The frictional behavior of amphibolite is much different from that of gabbro where the overall friction is much higher with the final peak friction of 0.84-1.09 and steady-state friction of ~0.6 (Hirose and Shimamoto, 2005 in Journal of Geophysical Research). This difference may be due to dehydration of hornblende by frictional heating and lower viscosity of

  15. Multiscale physics-based modeling of friction

    NASA Astrophysics Data System (ADS)

    Eriten, Melih

    Frictional contacts between solids exist in nature and in a wide range of engineering applications. Friction causes energy loss, and it is the main source of wear and surface degradation which limits the lifetime of mechanical systems. Yet, friction is needed to walk, run, accelerate, slow down or stop moving systems. Whether desirable or not, friction is a very complex physical phenomenon. The behavior of systems with friction is nonlinear, and the physical mechanisms governing friction behavior span a wide range of spatial and temporal scales. A thorough study of friction should employ experimentalists and theoreticians in chemistry, materials science, tribology, mechanics, dynamics, and structural engineering. High spatial and temporal resolutions are required to capture and model essential physics of a frictional contact. However, such a detailed model is impractical in large-scale structural dynamics simulations; especially since frictional contacts can be numerous in a given application. Reduced-order models (ROMs) achieve broader applicability by compromising several aspects and accounting for the important physics. Hence, rather simple Coulomb friction is still the most ubiquitous model in the modeling and simulation literature. As an alternative, a reduced-order friction model built-up from micromechanics of surfaces is proposed in this work. Continuum-scale formulation of pre-sliding friction behavior is combined with material-strength-based friction coefficients to develop a physics-based friction model at asperity-scale. Then, the statistical summation technique is utilized to build a multiscale modeling framework. A novel joint fretting setup is designed for friction experiments in a practical setting, and the developed models are tested. Both asperity and rough surface friction models show good agreement with experimental data. The influences of materials, surface roughness and contact contamination on the friction are also studied. Finally, the

  16. On surface structure and friction regulation in reptilian limbless locomotion.

    PubMed

    Abdel-Aal, Hisham A

    2013-06-01

    One way of controlling friction and associated energy losses is to engineer a deterministic structural pattern on the surface of the rubbing parts (i.e., texture engineering). Custom texturing enhances the quality of lubrication, reduces friction, and allows the use of lubricants of lower viscosity. To date, a standardized procedure to generate deterministic texture constructs is virtually non-existent. Many engineers, therefore, study natural species to explore surface construction and to probe the role that surface topography assumes in friction control. Snakes offer rich examples of surfaces where topological features allow the optimization and control of frictional behavior. In this paper, we investigate the frictional behavior of a constrictor type reptile, Python regius. The study employed a specially designed tribo-acoustic probe capable of measuring the coefficient of friction and detecting the acoustical behavior of the skin in vivo. The results confirm the anisotropy of the frictional response of snakeskin. The coefficient of friction depends on the direction of sliding: the value in forward motion is lower than that in the converse direction. Detailed analysis of the surface metrological feature reveals that tuning frictional response in snakes originates from the hierarchical nature of surface topology combined to the profile asymmetry of the surface micro-features, and the variation of the curvature of the contacting scales at different body regions. Such a combination affords the reptile the ability to optimize the frictional response. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. The Static Ladder Problem with Two Sources of Friction

    ERIC Educational Resources Information Center

    Bennett, Jonathan; Mauney, Alex

    2011-01-01

    The problem of a ladder leaning against a wall in static equilibrium is a classic example encountered in introductory mechanics texts. Most discussions of this problem assume that the static frictional force between the ladder and wall can be ignored. A few authors consider the case where the static friction coefficients between ladder/wall…

  18. The Static Ladder Problem with Two Sources of Friction

    ERIC Educational Resources Information Center

    Bennett, Jonathan; Mauney, Alex

    2011-01-01

    The problem of a ladder leaning against a wall in static equilibrium is a classic example encountered in introductory mechanics texts. Most discussions of this problem assume that the static frictional force between the ladder and wall can be ignored. A few authors consider the case where the static friction coefficients between ladder/wall…

  19. Composites materials for friction and braking application

    NASA Astrophysics Data System (ADS)

    Crăciun, A. L.; Pinca-Bretotean, C.; Birtok-Băneasă, C.; Josan, A.

    2017-05-01

    The brake pads are an important component in the braking system of automotive. Materials used for brake pads should have stable and reliable frictional and wear properties under varying conditions of load, velocity, temperature and high durability. These factors must be satisfied simultaneously which makes it difficult to select effective brake pads material. The paper presents the results of the study for characterisation of the friction product used for automotive brake pads. In the study it was developed four frictional composites by using different percentages of coconut fibres (0%, 5%, 10%, 15%) reinforcement in aluminium matrix. The new composites tested in the laboratory, modelling appropriate percentage ratio between matrix and reinforcement volume and can be obtained with low density, high hardness properties, good thermal stability, higher ability to hold the compressive force and have a stable friction coefficient. These characteristics make them useful in automotive industry.

  20. The asymptotics of the solutions of the Signorini problem without friction or with small friction

    SciTech Connect

    Nazarov, S.A.

    1994-12-25

    We find the first few terms of the asymptotic expansion of a regular solution of the two-dimensional Signorini problem with a small coefficient of friction. As the fundamental approximation we take the solution of the limiting problem without friction. This solution is assumed to be known, and it is assumed that the region of contact consists of a finite number of arcs, on each of which one boundary condition or another is realized. We study the asymptotics of the solution of the Signorini problem without friction under small load variation.

  1. Experimental study on effect of micro textured surfaces generated by ultrasonic vibration assisted face turning on friction and wear performance

    NASA Astrophysics Data System (ADS)

    Amini, S.; Hosseinabadi, H. Nouri; Sajjady, S. A.

    2016-12-01

    Ultrasonic vibration-assisted turning process (UVAT) is one of the effective methods in improving the tribological properties. In this research, the effect of different machining parameters such as cutting speed and feed rate as well as the effect of three vibration modes of one-dimensional (LVT), elliptical (EVT), and three-dimensional (3D-VT) on the tribological properties is examined. In order to validate the results of UVAT process, conventional face-turning operation was performed as well. Wear and friction tests were performed using pin-on-disk wear and friction machine with identical vertical load and sliding speed. The results of the tests show that the surfaces upon which micro-dimples have been created by UVAT processes reduce the average friction coefficient, wear rate and adhesion between pin and samples surface compared with conventional machined surfaces. Compared with conventional face-turning surfaces, average friction coefficient of the surfaces face-turned by LVT, EVT, and 3D-VT processes, show a maximum decrease of 13%, 18%, and 21% respectively. Moreover, compared with CT process, because of the unique features of UVAT process in creating micro-dimples, the contact between chrome steel pin and the sample surface decreases; this in turn leads to further reduction in wear rate for the processes of LVT, EVT, and 3D-VT respectively.

  2. Nanotribology and Nanoscale Friction

    SciTech Connect

    Guo, Yi; Qu, Zhihua; Braiman, Yehuda; Zhang, Zhenyu; Barhen, Jacob

    2008-01-01

    Tribology is the science and technology of contacting solid surfaces in relative motion, including the study of lubricants, lubrication, friction, wear, and bearings. It is estimated that friction and wear cost the U.S. economy 6% of the gross national product (Persson, 2000). For example, 5% of the total energy generated in an automobile engine is lost to frictional resistance. The study of nanoscale friction has a technological impact in reducing energy loss in machines, in microelectromechanical systems (MEMS), and in the development of durable, low-friction surfaces and ultra-thin lubrication films.

  3. Molecular origin of friction

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Zhang, Tao; Hu, Yuanzhong

    2004-01-01

    The wearless friction originating from molecular interactions has been discussed in this paper. We find that the frictional properties are closely related to the structural match of two surfaces in relative motion. For the surfaces with incommensurate structure and week inter-surface interaction, zero static and kinetic friction can be achieved. In a sliding considered as in a quasi-static state, the energy dissipation initiates when interfacial particles move in a discontinuous fashion, which gives rise to a finite kinetic friction. The state of superlubricity is a result of computer simulations, but the prediction will encourage people to look for a technical approach to realizing the state of super low friction.

  4. Static and dynamic friction of hierarchical surfaces

    NASA Astrophysics Data System (ADS)

    Costagliola, Gianluca; Bosia, Federico; Pugno, Nicola M.

    2016-12-01

    Hierarchical structures are very common in nature, but only recently have they been systematically studied in materials science, in order to understand the specific effects they can have on the mechanical properties of various systems. Structural hierarchy provides a way to tune and optimize macroscopic mechanical properties starting from simple base constituents and new materials are nowadays designed exploiting this possibility. This can be true also in the field of tribology. In this paper we study the effect of hierarchical patterned surfaces on the static and dynamic friction coefficients of an elastic material. Our results are obtained by means of numerical simulations using a one-dimensional spring-block model, which has previously been used to investigate various aspects of friction. Despite the simplicity of the model, we highlight some possible mechanisms that explain how hierarchical structures can significantly modify the friction coefficients of a material, providing a means to achieve tunability.

  5. Adhesion and friction of thin metal films

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    Sliding friction experiments were conducted in vacuum with thin films of titanium, chromium, iron, and platinum sputter deposited on quartz or mica substrates. A single crystal hemispherically tipped gold slider was used in contact with the films at loads of 1.0 to 30.0 and at a sliding velocity of 0.7 mm/min at 23 C. Test results indicate that the friction coefficient is dependent on the adhesion of two interfaces, that between the film and its substrate and the slider and the film. There exists a relationship between the percent d bond character of metals in bulk and in thin film form and the friction coefficient. Oxygen can increase adhesive bonding of a metal film (platinum) to a substrate.

  6. Static and dynamic friction of hierarchical surfaces.

    PubMed

    Costagliola, Gianluca; Bosia, Federico; Pugno, Nicola M

    2016-12-01

    Hierarchical structures are very common in nature, but only recently have they been systematically studied in materials science, in order to understand the specific effects they can have on the mechanical properties of various systems. Structural hierarchy provides a way to tune and optimize macroscopic mechanical properties starting from simple base constituents and new materials are nowadays designed exploiting this possibility. This can be true also in the field of tribology. In this paper we study the effect of hierarchical patterned surfaces on the static and dynamic friction coefficients of an elastic material. Our results are obtained by means of numerical simulations using a one-dimensional spring-block model, which has previously been used to investigate various aspects of friction. Despite the simplicity of the model, we highlight some possible mechanisms that explain how hierarchical structures can significantly modify the friction coefficients of a material, providing a means to achieve tunability.

  7. Effect of Interface Modified by Graphene on the Mechanical and Frictional Properties of Carbon/Graphene/Carbon Composites

    PubMed Central

    Yang, Wei; Luo, Ruiying; Hou, Zhenhua

    2016-01-01

    In this work, we developed an interface modified by graphene to simultaneously improve the mechanical and frictional properties of carbon/graphene/carbon (C/G/C) composite. Results indicated that the C/G/C composite exhibits remarkably improved interfacial bonding mode, static and dynamic mechanical performance, thermal conductivity, and frictional properties in comparison with those of the C/C composite. The weight contents of carbon fibers, graphene and pyrolytic carbon are 31.6, 0.3 and 68.1 wt %, respectively. The matrix of the C/G/C composite was mainly composed of rough laminar (RL) pyrocarbon. The average hardness by nanoindentation of the C/G/C and C/C composite matrices were 0.473 and 0.751 GPa, respectively. The flexural strength (three point bending), interlaminar shear strength (ILSS), interfacial debonding strength (IDS), internal friction and storage modulus of the C/C composite were 106, 10.3, 7.6, 0.038 and 12.7 GPa, respectively. Those properties of the C/G/C composite increased by 76.4%, 44.6%, 168.4% and 22.8%, respectively, and their internal friction decreased by 42.1% in comparison with those of the C/C composite. Owing to the lower hardness of the matrix, improved fiber/matrix interface bonding strength, and self-lubricating properties of graphene, a complete friction film was easily formed on the friction surface of the modified composite. Compared with the C/C composite, the C/G/C composite exhibited stable friction coefficients and lower wear losses at simulating air-plane normal landing (NL) and rejected take-off (RTO). The method appears to be a competitive approach to improve the mechanical and frictional properties of C/C composites simultaneously. PMID:28773613

  8. Effect of Interface Modified by Graphene on the Mechanical and Frictional Properties of Carbon/Graphene/Carbon Composites.

    PubMed

    Yang, Wei; Luo, Ruiying; Hou, Zhenhua

    2016-06-20

    In this work, we developed an interface modified by graphene to simultaneously improve the mechanical and frictional properties of carbon/graphene/carbon (C/G/C) composite. Results indicated that the C/G/C composite exhibits remarkably improved interfacial bonding mode, static and dynamic mechanical performance, thermal conductivity, and frictional properties in comparison with those of the C/C composite. The weight contents of carbon fibers, graphene and pyrolytic carbon are 31.6, 0.3 and 68.1 wt %, respectively. The matrix of the C/G/C composite was mainly composed of rough laminar (RL) pyrocarbon. The average hardness by nanoindentation of the C/G/C and C/C composite matrices were 0.473 and 0.751 GPa, respectively. The flexural strength (three point bending), interlaminar shear strength (ILSS), interfacial debonding strength (IDS), internal friction and storage modulus of the C/C composite were 106, 10.3, 7.6, 0.038 and 12.7 GPa, respectively. Those properties of the C/G/C composite increased by 76.4%, 44.6%, 168.4% and 22.8%, respectively, and their internal friction decreased by 42.1% in comparison with those of the C/C composite. Owing to the lower hardness of the matrix, improved fiber/matrix interface bonding strength, and self-lubricating properties of graphene, a complete friction film was easily formed on the friction surface of the modified composite. Compared with the C/C composite, the C/G/C composite exhibited stable friction coefficients and lower wear losses at simulating air-plane normal landing (NL) and rejected take-off (RTO). The method appears to be a competitive approach to improve the mechanical and frictional properties of C/C composites simultaneously.

  9. A study of frictional property of the human fingertip using three-dimensional finite element analysis.

    PubMed

    Yoshida, Hiroaki; Tada, Mitsunori; Mochimaru, Masaaki

    2011-03-01

    Since the tactile perception detects skin deformation due to the contact of an object, it is important to understand contact mechanics, especially, frictional behavior of the human fingertip. The coefficient of friction is recently modeled as a function of the applied normal load in which case the traditional Coulomb's law does not provide a description for the skin surface. When a surface is a rubber-like material, the frictional behavior follows the frictional law of the rubber-like material. Therefore, we developed a three-dimensional Finite Element model of the fingertip and analyzed frictional behavior based on the frictional law of rubber-like material. We proposed a combined technique using both experimental and Finite Element analyses in order to investigate the frictional property of the fingertip. A three-dimensional Finite Element model of the fingertip was developed using MRI images. We hypothesized a frictional equation of the critical shear stress. Squared differences between equivalent coefficient of friction of the FE analysis and the coefficient of kinetic friction of the experiment while sliding was decreased and the Finite Element analysis iterated until the error was minimized, and thus the frictional equation was determined. We obtained the equation of the critical shear stress and simulated kinetic friction of the fingertip while sliding under arbitrary normal loading condition by using the Finite Element analysis. We think this study is an appropriate method for understanding the frictional property of the human fingertip using the Finite Element analysis.

  10. Major and minor slip-events in frictional stick-slip

    NASA Astrophysics Data System (ADS)

    Tsekenis, Georgios; Tatar, Demet; Rubinstein, Shmuel; Weitz, David; Aziz, Michael; Spaepen, Frans

    Several universal phenomena characterize friction that are independent of the materials involved such as the logarithmic aging of the static friction coefficient and the logarithmic velocity weakening of the dynamic friction coefficient. We study dry friction between rough surfaces with programmed statistical profiles. By measuring the displacement field at the frictional interface we observe stick-slip behavior which reveals two kinds of slip: major events that tend to grow large and unbounded and minor events that usually stay small and bounded. Research supported by Harvard MRSEC Program under NSF contracts DMR-0820484, DMR-1420570.

  11. Frictional properties of single crystals HMX, RDX and PETN explosives.

    PubMed

    Wu, Y Q; Huang, F L

    2010-11-15

    The frictional properties of single crystals of cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN) secondary explosives are examined using a sensitive friction machine. The explosive crystals used for the measurements are at least 3.5 mm wide. The friction coefficients between crystals of the same explosive (i.e., HMX on HMX, etc.), crystals of different explosives (i.e., HMX on RDX, etc.), and each explosive and a well-polished gauge steel surface are determined. The frictional surfaces are also studied under an environmental scanning electron microscope (ESEM) to analyze surface microstructural changes under increasing loading forces. The friction coefficients vary considerably with increasing normal loading forces and are particularly sensitive to slider shapes, crystal roughness and the mechanical properties of both the slider and the sample. With increasing loading forces, most friction experiments show surface damage, consisting of grooves, debris, and nano-particles, on both the slider and sample. In some cases, a strong evidence of a localized molten state is found in the central region of the friction track. Possible mechanisms that affect the friction coefficient are discussed based on microscopic observations. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Skin friction related behaviour of artificial turf systems.

    PubMed

    Tay, Sock Peng; Fleming, Paul; Hu, Xiao; Forrester, Steph

    2017-08-01

    The occurrence of skin friction related injuries is an issue for artificial turf sports pitches and remains a barrier to their acceptance. The purpose of this study was to evaluate the current industry standard Securisport® Sports Surface Tester that measures skin surface related frictional behaviour of artificial turf. Little research has been published about the device and its efficacy, despite its widespread use as a standard FIFA test instrument. To achieve a range of frictional behaviours, several "third generation" (3G) carpet and infill combinations were investigated; friction time profiles throughout the Securisport rotations were assessed in combination with independent measurements of skin roughness before and after friction testing via 3D surface scanning. The results indicated that carpets without infill had greatest friction (coefficients of friction 0.97-1.20) while those completely filled with sand or rubber had similar and lower values independent of carpet type (coefficient of friction (COF) ≈0.57). Surface roughness of a silicone skin (s-skin) decreased after friction testing, with the largest change on sand infilled surfaces, indicating an "abrasive" polishing effect. The combined data show that the s-skin is damaged in a surface-specific manner, thus the Securisport COF values appear to be a poor measure of the potential for skin abrasion. It is proposed that the change in s-skin roughness improves assessment of the potential for skin damage when players slide on artificial turf.

  13. Study on the friction of κ-carrageenan hydrogels in air and aqueous environments.

    PubMed

    Kozbial, Andrew; Li, Lei

    2014-03-01

    Understanding the friction mechanism of polysaccharide hydrogels, which is the key component of human cartilage that has very low friction coefficient, is critical to develop next generation artificial joint replacement materials. In this study, the friction of the polysaccharide κ-carrageenan hydrogel was investigated to elucidate the effect of external load, cross-linking density, velocity, and environment on friction. Our experimental results show that (1) coefficient of friction (COF) decreases with normal load in air and remains constant in water, (2) increasing cross-linking density concurrently increases friction and is proportional to Young's modulus, (3) COF increases with testing velocity in both air and water, and (4) friction is reduced in aqueous environment due to the lubricating effect of water. The underlying frictional mechanism is discussed on the basis of water transport from bulk to surface and a previously proposed "repulsion-adsorption" model. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Friction and deformation behavior of single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1977-01-01

    Friction and deformation studies were conducted with single-crystal silicon carbide in sliding contact with diamond. When the radius of curvature of the spherical diamond rider was large (0.3), deformation of silicon carbide was primarily elastic. Under these conditions the friction coefficient was low and did not show a dependence on the silicon carbide orientation. Further, there was no detectable cracking of the silicon carbide surfaces. When smaller radii of curvature of the spherical diamond riders (0.15 and 0.02 mm) or a conical diamond rider was used, plastic grooving occured and the silicon carbide exhibited anisotropic friction and deformation behavior. Under these conditions the friction coefficient depended on load. Anisotropic friction and deformation of the basal plane of silicon carbide was controlled by the slip system. 10101120and cleavage of1010.

  15. Effect of friction on dense suspension flows of hard particles

    NASA Astrophysics Data System (ADS)

    Trulsson, M.; DeGiuli, E.; Wyart, M.

    2017-01-01

    We use numerical simulations to study the effect of particle friction on suspension flows of non-Brownian hard particles. By systematically varying the microscopic friction coefficient μp and the viscous number J , we build a phase diagram that identifies three regimes of flow: frictionless, frictional sliding, and rolling. Using energy balance in flow, we predict relations between kinetic observables, confirmed by numerical simulations. For realistic friction coefficients and small viscous numbers (below J ˜10-3 ), we show that the dominating dissipative mechanism is sliding of frictional contacts, and we characterize asymptotic behaviors as jamming is approached. Outside this regime, our observations support the idea that flow belongs to the universality class of frictionless particles. We discuss recent experiments in the context of our phase diagram.

  16. Remote Estimation of River Discharge and Bathymetry: Sensitivity to Turbulent Dissipation and Bottom Friction

    NASA Astrophysics Data System (ADS)

    Simeonov, J.; Holland, K. T.

    2016-12-01

    We investigated the fidelity of a hierarchy of inverse models that estimate river bathymetry and discharge using measurements of surface currents and water surface elevation. Our most comprehensive depth inversion was based on the Shiono and Knight (1991) model that considers the depth-averaged along-channel momentum balance between the downstream pressure gradient due to gravity, the bottom drag and the lateral stresses induced by turbulence. The discharge was determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. The bottom friction coefficient was assumed to be known or determined by alternative means. We also considered simplifications of the comprehensive inversion model that exclude the lateral mixing term from the momentum balance and assessed the effect of neglecting this term on the depth and discharge estimates for idealized in-bank flow in symmetric trapezoidal channels with width/depth ratio of 40 and different side-wall slopes. For these simple gravity-friction models, we used two different bottom friction parameterizations - a constant Darcy-Weisbach local friction and a depth-dependent friction related to the local depth and a constant Manning (roughness) coefficient. Our results indicated that the Manning gravity-friction model provides accurate estimates of the depth and the discharge that are within 1% of the assumed values for channels with side-wall slopes between 1/2 and 1/17. On the other hand, the constant Darcy-Weisbach friction model underpredicted the true depth and discharge by 7% and 9%, respectively, for the channel with side-wall slope of 1/17. These idealized modeling results suggest that a depth-dependent parameterization of the bottom friction is important for accurate inversion of depth and discharge and that the lateral turbulent mixing is not important. We also tested the comprehensive and the simplified inversion models for the Kootenai River near Bonners Ferry

  17. Investigation of High Speed Friction Test for Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Ooki, K.; Takahashi, S.

    2016-08-01

    To shorten the development stage of automobiles, FEM simulation has been applied. It was important to increase the accuracy of the sheet metal simulation results. The friction coefficient between the sheet metal and dies the greatly affected the simulation results. Therefore, apparatus for measuring the friction coefficient with a specific press forming speed (300 mm/s) has been developed. The materials of the sheet metals and dies were aluminum alloys and die steel respectively. It was found that the friction was affected by the difference between the velocity of the sheet metal and that of the dies.

  18. Effects of System Dynamics on Friction-Induced Oscillations

    NASA Astrophysics Data System (ADS)

    Swayze, J. L.; Akay, A.

    1994-06-01

    In many mechanical systems, friction is the primary source of oscillations, often leading to unstable behavior of system components. In some cases, it is the non-linear nature of the friction force that causes a non-linear response of the system. In others, however, regardless of the type of friction force, the coupling between the modes of a system can be the primary reason for its non-linear behavior. In this paper, a simple model is given to demonstrate the stability characteristics of a mass with two degrees of freedom, excited by a steady friction force. The mass is compressed against a frictional surface by a combination of linear and torsional springs, similar to a brush held against a commutator in electric motors. System equations are developed using a constant friction coefficient. Results are obtained by observing the motion of the mass in the phase space.

  19. Phenomenological theory of kinetic friction for the solid lubricant film

    NASA Astrophysics Data System (ADS)

    Braun, O. M.

    2008-07-01

    Molecular dynamics based on the Langevin equations with the coordinate- and velocity-dependent damping coefficients is used to investigate the friction properties of a 'hard' lubricant film confined between two solids, when the lubricant remains in the solid state during sliding. The dependence of the friction force on the temperature and sliding velocity in the smooth sliding regime is studied in detail for all three states of the lubricant: a lubricant with a crystalline structure, when the system exhibits a very low friction (superlubricity), an amorphous lubricant structure, which results in a high friction, and the liquid state of the lubricant film at high temperatures or velocities. A phenomenological theory of the kinetic friction is developed, which allows us to explain the simulation results and predict a variation of the friction properties with model parameters analytically.

  20. Friction Networks: Network-Configurations of Dynamic Friction Patterns

    NASA Astrophysics Data System (ADS)

    Ghaffari, H.; Young, R. P.

    2012-04-01

    The complex configurations of dynamic friction patterns-regarding real time contact areas- are transformed into appropriate networks. With this transformation of a system to network space, many properties can be inferred about the structure and dynamics of the system. Here, we analyze the dynamics of static friction, i.e. nucleation processes, with respect to "friction networks". We show that networks can successfully capture the crack-like shear ruptures and possible corresponding acoustic features. We found that the fraction of triangles remarkably scales with the detachment fronts. There is a universal power law between nodes' degree and motifs frequency . We confirmed the obtained universality in aperture-based friction networks. Based on the achieved results, we extracted a possible friction law in terms of network parameters and compared it with the rate and state friction laws. In particular, the evolutions of loops are scaled with power law, indicating the aggregation of cycles around hub nodes. Also, the transition to slow rupture is scaled with the fast variation of local heterogeneity. Furthermore, the motif distributions and modularity space of networks -in terms of within-module degree and participation coefficient-show non-uniform general trends, indicating a universal aspect of energy flow in shear ruptures. As a conclusion to our study, we introduced friction networks over dynamics of different real time contact areas. Based on our solid observations, we formulated a probabilistic frame for the evolution of the state variable in terms of friction networks. Moreover, we confirmed that slow ruptures generally hold small localization, while regular ruptures carry a high level of energy localization. We also introduced two new universalities with respect to the evolution of dry frictional interfaces: the scaling of local and global characteristics and the occupation of certain regions of modularity parameter space. Our results showed how the relatively

  1. Friction and wear of plasma-deposited diamond films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Garscadden, Alan; Barnes, Paul N.; Jackson, Howard E.

    1993-01-01

    Reciprocating sliding friction experiments in humid air and in dry nitrogen and unidirectional sliding friction experiments in ultrahigh vacuum were conducted with a natural diamond pin in contact with microwave-plasma-deposited diamond films. Diamond films with a surface roughness (R rms) ranging from 15 to 160 nm were produced by microwave-plasma-assisted chemical vapor deposition. In humid air and in dry nitrogen, abrasion occurred when the diamond pin made grooves in the surfaces of diamond films, and thus the initial coefficients of friction increased with increasing initial surface roughness. The equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. In vacuum the friction for diamond films contacting a diamond pin arose primarily from adhesion between the sliding surfaces. In these cases, the initial and equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. The equilibrium coefficients of friction were 0.02 to 0.04 in humid air and in dry nitrogen, but 1.5 to 1.8 in vacuum. The wear factor of the diamond films depended on the initial surface roughness, regardless of environment; it increased with increasing initial surface roughness. The wear factors were considerably higher in vacuum than in humid air and in dry nitrogen.

  2. Friction in Forming of UD Composites

    SciTech Connect

    Sachs, U.; Haanappel, S. P.; Akkerman, R.; Thije, R. H. W. ten; Rooij, M. B. de

    2011-05-04

    Inter-ply and tool/ply friction play a dominant role in hot stamp forming of UD fiber-reinforced thermoplastic laminates. This research treats friction measurements of a PEEK-AS4 composite system. To this end, an in-house developed friction tester is utilized to pull a laminate through two heat controlled clamping platens. The friction coefficient is determined by relating the clamp force to the pull force. The geometry of the gap between the clamping platens is monitored with micrometer accuracy. A first approach to describe the relation between the geometry and frictional behavior is undertaken by applying a standard thin-film theory for hydrodynamic lubrication. Experimental measurements showed that the thin-film theory does not entirely cover the underlying physics. Thus a second model is utilized, which employs a Leonov-model to describe the shear deformation of the matrix material, while its viscosity is described with a multi-mode Maxwell model. The combination of both models shows the potential to capture the complete frictional behavior.

  3. A frictional law for volcanic ash gouge

    NASA Astrophysics Data System (ADS)

    Lavallée, Y.; Hirose, T.; Kendrick, J. E.; De Angelis, S.; Petrakova, L.; Hornby, A. J.; Dingwell, D. B.

    2014-08-01

    Volcanic provinces are structurally active regions - undergoing continual deformation along faults. Within such fault structures, volcanic ash gouge, containing both crystalline and glassy material, may act as a potential fault plane lubricant. Here, we investigate the frictional properties of volcanic ash gouges with varying glass fractions using a rotary shear apparatus at a range of slip rates (1.3-1300 mm/s) and axial stresses (0.5-2.5 MPa). We show that the frictional behaviour of volcanic ash is in agreement with Byerlee's friction law at low slip velocities, irrespective of glass content. The results reveal a common non-linear reduction of the friction coefficient with slip velocity and yield a frictional law for fault zones containing volcanic ash gouge. Textural analysis reveals that strain localisation and the development of shear bands are more prominent at higher slip velocities (>10 mm/s). The textures observed here are similar to those recorded in ash gouge at the surface of extrusive spines at Mount St. Helens (USA). We use the rate-weakening component of the frictional law to estimate shear-stress-resistance reductions associated with episodic seismogenic slip events that accompany magma ascent pulses. We conclude that the internal structure of volcanic ash gouge may act as a kinematic marker of exogenic dome growth.

  4. Friction of rocks

    USGS Publications Warehouse

    Byerlee, J.

    1978-01-01

    Experimental results in the published literature show that at low normal stress the shear stress required to slide one rock over another varies widely between experiments. This is because at low stress rock friction is strongly dependent on surface roughness. At high normal stress that effect is diminished and the friction is nearly independent of rock type. If the sliding surfaces are separated by gouge composed of Montmorillonite or vermiculite the friction can be very low. ?? 1978 Birkha??user Verlag.

  5. Friction-Stir Processing

    DTIC Science & Technology

    2006-01-01

    fatigue results for friction stir welded 2219 aluminum in the following conditions: 1) milled, 2) milled + LPB, 3) milled + 100 hours in a salt...same alloy following friction stir processing. Increased fatigue life in 5083-H321 aluminum fusion welds It will not be possible to friction...fine grain and weld defects near the surface will be eliminated. Potential benefits include both increased corrosion resistance and fatigue life

  6. A reassessment of surface friction model for maximum cold fusion reactions in superheavy mass region

    SciTech Connect

    Fukushima, A.; Wada, T.; Ohta, M.; Nasirov, A.; Aritomo, Y.

    2007-02-26

    We have made a study on the capture process of 40,48Ca+ 208Pb systems with a dynamical approach based on the surface friction model. The deformation of the nuclei due to the mutual excitation is taken into account. We have calculated the capture cross sections for several values of the friction coefficients. It was shown that, in the cold fusion reactions, the friction parameters of the surface friction model needs to be reexamined.

  7. In vivo measured joint friction in hip implants during walking after a short rest.

    PubMed

    Damm, Philipp; Bender, Alwina; Duda, Georg; Bergmann, Georg

    2017-01-01

    It has been suspected that friction in hip implants is higher when walking is initiated after a resting period than during continuous movement. It cannot be excluded that such increased initial moments endanger the cup fixation in the acetabulum, overstress the taper connections in the implant or increase wear. To assess these risks, the contact forces, friction moments and friction coefficients in the joint were measured in vivo in ten subjects. Instrumented hip joint implants with telemetric data transmission were used to access the contact loads between the cup and head during the first steps of walking after a short rest. The analysis demonstrated that the contact force is not increased during the first step. The friction moment in the joint, however, is much higher during the first step than during continuous walking. The moment increases throughout the gait cycle were 32% to 143% on average and up to 621% individually. The high initial moments will probably not increase wear by much in the joint. However, comparisons with literature data on the fixation resistance of the cup against moments made clear that the stability can be endangered. This risk is highest during the first postoperative months for cementless cups with insufficient under-reaming. The high moments after a break can also put taper connections between the head and neck and neck and shaft at a higher risk. During continuous walking, the friction moments individually were extremely varied by factors of 4 to 10. Much of this difference is presumably caused by the varying lubrication properties of the synovia. These large moment variations can possibly lead to friction-induced temperature increases during walking, which are higher than the 43.1°C which have previously been observed in a group of only five subjects.

  8. In vivo measured joint friction in hip implants during walking after a short rest

    PubMed Central

    Damm, Philipp; Bender, Alwina; Duda, Georg; Bergmann, Georg

    2017-01-01

    Introduction It has been suspected that friction in hip implants is higher when walking is initiated after a resting period than during continuous movement. It cannot be excluded that such increased initial moments endanger the cup fixation in the acetabulum, overstress the taper connections in the implant or increase wear. To assess these risks, the contact forces, friction moments and friction coefficients in the joint were measured in vivo in ten subjects. Instrumented hip joint implants with telemetric data transmission were used to access the contact loads between the cup and head during the first steps of walking after a short rest. Results The analysis demonstrated that the contact force is not increased during the first step. The friction moment in the joint, however, is much higher during the first step than during continuous walking. The moment increases throughout the gait cycle were 32% to 143% on average and up to 621% individually. The high initial moments will probably not increase wear by much in the joint. However, comparisons with literature data on the fixation resistance of the cup against moments made clear that the stability can be endangered. This risk is highest during the first postoperative months for cementless cups with insufficient under-reaming. The high moments after a break can also put taper connections between the head and neck and neck and shaft at a higher risk. Discussion During continuous walking, the friction moments individually were extremely varied by factors of 4 to 10. Much of this difference is presumably caused by the varying lubrication properties of the synovia. These large moment variations can possibly lead to friction-induced temperature increases during walking, which are higher than the 43.1°C which have previously been observed in a group of only five subjects. PMID:28350858

  9. Origins of rolling friction

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2017-09-01

    When a hard object rolls on a soft surface, or vice versa, rolling friction arises from deformation of the soft object or the soft surface. The friction force can be described in terms of an offset in the normal reaction force or in terms of energy loss arising from the deformation. The origin of the friction force itself is not entirely clear. It is investigated qualitatively in this paper by rolling a steel ball on soft foam and by rolling a foam cylinder on a hard surface. The deformation of the foam was observed visually, providing simple insights into the origin of the friction force.

  10. Rubber friction directional asymmetry

    NASA Astrophysics Data System (ADS)

    Tiwari, A.; Dorogin, L.; Steenwyk, B.; Warhadpande, A.; Motamedi, M.; Fortunato, G.; Ciaravola, V.; Persson, B. N. J.

    2016-12-01

    In rubber friction studies it is usually assumed that the friction force does not depend on the sliding direction, unless the substrate has anisotropic properties, like a steel surface grinded in one direction. Here we will present experimental results for rubber friction, where we observe a strong asymmetry between forward and backward sliding, where forward and backward refer to the run-in direction of the rubber block. The observed effect could be very important in tire applications, where directional properties of the rubber friction could be induced during braking.

  11. Friction and wear of single-crystal manganese-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with single crystal manganese-zinc ferrite in contact with itself and with transition metals. Results indicate mating highest atomic density directions (110) on matched crystallographic planes exhibit the lowest coefficient of friction, indicating that direction is important in the friction behavior of ferrite. Matched parallel high atomic density planes and crystallographic directions at the interface exhibit low coefficients of friction. The coefficients of friction for ferrite in contact with various metals are related to the relative chemical activity of these metals. The more active the metal, the higher the coefficient of friction. Cracking and the formation of hexagon- and rectangular-shaped platelet wear debris due to cleavages of (110) planes are observed on the ferrite surfaces as a result of sliding.

  12. Friction and wear of single-crystal manganese-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with single-crystal manganese-zinc ferrite in contact with itself and with transition metals. Results indicate mating highest atomic density directions (110 line type) on matched crystallographic planes exhibit the lowest coefficient of friction indicating that direction is important in the friction behavior of ferrite. Matched parallel high atomic density planes and crystallographic directions at the interface exhibit low coefficients of friction. The coefficients of friction for ferrite in contact with various metals are related to the relative chemical activity of these metals. The more active the metal, the higher the coefficient of friction. Cracking and the formation of hexagon- and rectangular-shaped platelet wear debris due to cleavages are observed on the ferrite surfaces as a result of sliding.

  13. Friction and wear of single-crystal manganese-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with single-crystal manganese-zinc ferrite in contact with itself and with transition metals. Results indicate mating highest atomic density directions (110 line type) on matched crystallographic planes exhibit the lowest coefficient of friction indicating that direction is important in the friction behavior of ferrite. Matched parallel high atomic density planes and crystallographic directions at the interface exhibit low coefficients of friction. The coefficients of friction for ferrite in contact with various metals are related to the relative chemical activity of these metals. The more active the metal, the higher the coefficient of friction. Cracking and the formation of hexagon- and rectangular-shaped platelet wear debris due to cleavages are observed on the ferrite surfaces as a result of sliding.

  14. Skin friction on a flat perforated acoustic liner

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Brinich, P. F.

    1976-01-01

    The report concerns the measurement of friction coefficients of a typical perforated acoustic liner installed in the side of a wind tunnel. The results are compared with measured friction coefficients of a smooth hard wall for the same mean flow velocities in a wind tunnel. At a velocity of 61 m/sec, an increase in the local skin coefficient of only a few percent was observed, but at the highest velocity of 213 m/sec an increase of about 20% was obtained. This velocity is a realistic velocity for turbo-machinery components utilizing such liners, so a loss in performance is to be expected. Some tests were also performed to see if changes in the mean boundary layer induced by imposed noise would result in friction increase, but only at low velocity levels was such an increase in friction noted.

  15. Skin friction on a flat perforated acoustic liner

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Brinich, P. F.

    1976-01-01

    The report concerns the measurement of friction coefficients of a typical perforated acoustic liner installed in the side of a wind tunnel. The results are compared with measured friction coefficients of a smooth hard wall for the same mean flow velocities in a wind tunnel. At a velocity of 61 m/sec, an increase in the local skin coefficient of only a few percent was observed, but at the highest velocity of 213 m/sec an increase of about 20% was obtained. This velocity is a realistic velocity for turbo-machinery components utilizing such liners, so a loss in performance is to be expected. Some tests were also performed to see if changes in the mean boundary layer induced by imposed noise would result in friction increase, but only at low velocity levels was such an increase in friction noted.

  16. Friction and wear in threaded surfaces of rotary drill collars

    SciTech Connect

    Thornton, H.R. ); Bailey, E.I. ); Williamson, J.S. )

    1993-03-01

    Two surfaces, under high normal stress, in sliding contact provide the basis for friction and wear studies within rotary drill collars. Flat and ring specimens, considering three different contact areas, were rotated to determine the effect of surface finish, coatings, lubricants and normal stress on friction and wear. The 4145 steel specimens were heat-treated to a yield strength of 124,000 lb/in[sup 2] (855 MPa) and a R[sub c] hardness of 28. The torque required to rotate the ring specimen was measured as a function of the rotation angle. The friction coefficient was calculated. Seizure and galling were common for metal-to-metal contact. Rust and phosphate coatings break down under the high normal stress. Metal-filled lubricants produce static coefficients of friction between 0.03 and 0.25 and dynamic coefficients between 0.04 and 0.26. Seizure and galling were not observed.

  17. Influence of friction on granular segregation

    NASA Astrophysics Data System (ADS)

    Ulrich, Stephan; Schröter, Matthias; Swinney, Harry L.

    2007-10-01

    Vertical shaking of a mixture of small and large beads can lead to segregation where the large beads either accumulate at the top of the sample, the so-called Brazil nut effect (BNE), or at the bottom, the reverse Brazil nut effect (RBNE). Here we demonstrate experimentally a sharp transition from the RBNE to the BNE when the particle coefficient of friction increases due to aging of the particles. This result can be explained by the two competing mechanisms of buoyancy and sidewall-driven convection, where the latter is assumed to grow in strength with increasing friction.

  18. Increase in friction force with sliding speed

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2005-09-01

    A block sliding down an inclined plane normally accelerates. However, if the friction force increases with speed, then the block can slide at a constant terminal speed in a manner similar to the fall of an object through a fluid. Measurements of the increase in the coefficient of friction for tennis ball cloth sliding on a smooth surface are described over speeds varying by a factor of 9000. For the low speed measurements, the ball cloth was attached to the bottom of a weighted box and pulled along a horizontal surface by a constant horizontal force. Results at higher speeds were obtained by bouncing a tennis ball off the surface.

  19. Smart damper using the combination of magnetic friction and pre-compressed rubber springs

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Choi, Gyuchan; Kim, Hong-Taek; Youn, Heejung

    2015-09-01

    This paper proposes a new concept of a smart damper using the combination of magnetic friction and rubber springs. The magnet provides energy dissipation, and the rubber springs with precompression contribute to increasing the recentering capacity of the damper. To verify their performance, dynamic tests of magnet frictional dampers and precompressed rubber springs were conducted. For this purpose, hexahedron neodymium (NdFeB) magnets and polyurethane rubber cylinders were used. In the dynamic tests, the loading frequency was varied from 0.1 to 2.0 Hz. The magnets showed almost perfect rectangular behavior in the force-deformation curve, and the frictional coefficient of the magnets was estimated through averaging and regression. The rubber springs were tested with and without precompression. The rubber springs showed different loading path from the second cycle and residual deformation that was not recovered immediately. The rubber springs showed greater rigid force with increasing precompression. Finally, this paper discusses the combination of rigid-elastic behavior and friction to generate 'flag-shaped' behavior for a smart damper and suggests how to combine magnets and rubber springs to obtain flag-shaped behavior. The performance of the magnets and precompressed rubber springs was verified through analytical models.

  20. Large-scale landslide simulations: Global deformation, velocities and basal friction

    NASA Technical Reports Server (NTRS)

    Campbell, Charles S.; Cleary, Paul W.; Hopkins, Mark

    1995-01-01

    The cause of the apparent small friction exhibited by long runout landslides has long been speculated upon. In an attempt to provide some insight into the matter, this paper describes results obtained from a discrete particle computer simulation of landslides composed of up to 1,000,000 two-dimensional discs. While simplified, the results show many of the characteristics of field data (the volumetric effect on runout, preserved strata, etc.) and with allowances made for the two-dimensional nature of the simulation, the runouts compare well with those of actual landslides. The results challenge the current view that landslides travel as a nearly solid block riding atop a low friction basal layer. Instead, they show that the mass is completely shearing and indicate that the apparent friction coefficient is an increasing function of shear rate. The volumetric effect can then be understood. With all other conditions being equal, different size slides appear to travel with nearly the same average velocity; however, as the larger landslides are thicker, they experience smaller shear rates and correspondingly smaller frictional resistance.

  1. Effects of antimony trisulfide (Sb2S3) on sliding friction of automotive brake friction materials

    NASA Astrophysics Data System (ADS)

    Lee, Wan Kyu; Rhee, Tae Hee; Kim, Hyun Seong; Jang, Ho

    2013-09-01

    The effect of antimony trisulfide (Sb2S3) on the tribological properties of automotive brake friction materials was investigated using a Krauss type tribometer and a 1/5 scale dynamometer with a rigid caliper. Results showed that Sb2S3 improved fade resistance by developing transfer films on the disc surface at elevated temperatures. On the other hand, the rubbing surfaces of the friction material exhibited contact plateaus with a broader height distribution when it contained Sb2S3, indicating fewer contact junctions compared to the friction material with graphite. The friction material with Sb2S3 also exhibited a lower stick-slip propensity than the friction material with graphite. The improved fade resistance with Sb2S3 is attributed to its lubricating capability sustained at high temperatures, while the lower stick-slip propensity of the friction material with Sb2S3 is associated with the slight difference between its static and kinetic coefficients of friction and high normal stiffness.

  2. Friction Stir Processing of a High Entropy Alloy Al0.1CoCrFeNi

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Komarasamy, M.; Nelaturu, P.; Tang, Z.; Liaw, P. K.; Mishra, R. S.

    2015-05-01

    High entropy alloys are a new class of metallic materials with a potential for use in structural applications. However, most of the studies have focused on microhardness and compressive strength measurements for mechanical properties determination. This study presents the tensile deformation behavior of a single-phase, face-centered cubic Al0.1CoCrFeNi high entropy alloy (HEA). Friction stir processing was carried out to refine the grain size. Scanning electron microscopy and electron backscatter diffraction were carried out for microstructural examination. The grain size of the alloy was on the order of millimeters in the as-received condition. The average grain size after friction stir processing of the alloy was 14 ± 10 micrometers. The mechanical properties were determined through microhardness measurement and mini-tensile tests. The friction stir processed alloy showed a total elongation of ~75% for the mini-tensile sample used and yield strength of 315 MPa. It is an exceptional combination of strength and ductility. Friction stress was determined to be 174 MPa and the Hall-Petch coefficient was 371 MPa ( µm)1/2. Such a high value of Hall-Petch coefficient suggests that grain boundary strengthening can be a very effective strengthening mechanism for the HEA Al0.1CoCrFeNi.

  3. Ice Friction in the Sport of Bobsleigh

    NASA Astrophysics Data System (ADS)

    Poirier, Louis

    The primary objective of this work is to examine the effect of the bobsleigh runner profile on ice / runner friction. The work is centered on a computational model (F.A.S.T. 3.2b) which calculates the coefficient of friction between a steel blade and ice. The first step was to analyze runners used in the sport of bobsleigh. This analysis was performed using a handheld rocker gauge, a device used in speed skating. The size of the device was optimized for hockey, short and long track speed skating, and bobsleigh. A number of runners were measured using the gauge and it was found that the portion of the runner contacting the ice generally has a rocker value of (20--50) m. Next, the hardness of athletic ice surfaces was analyzed. The ice hardness was determined by dropping steel balls varying in mass from (8--540) g onto the ice surface, from a height of (0.3--1.2) m, and measuring the diameter of the indentation craters. The ice hardness was found to be P¯(T) = ((--0.6 +/- 0.4) T + 14.7 +/- 2.1) MPa and the elastic recovery of the ice surface was found to be negligible. The F.A.S.T. model was adapted from a speed skate model to calculate the coefficient of friction between a bobsleigh runner and a flat ice surface. The model predicts that maximum velocities are obtained for temperatures between --10 and --20°C, in agreement with observations on the Calgary bobsleigh track. The model for flat ice suggests that the flattest runners produce the lowest coefficient of friction and that the rocker affects friction more than the cross-sectional radius. The coefficient of friction between runners and ice and the drag performance of 2-men bobsleighs were determined from radar speed measurements taken at the Calgary Olympic Oval and at Canada Olympic Park: at the Ice House and on the bobsleigh track during a World Cup competition. The mean coefficient of friction was found to be mu = (5.3 +/- 2.0) x 10--3 and the mean drag performance was CdA = (0.18 +/- 0.02) m2.

  4. Friction induced rail vibrations

    NASA Astrophysics Data System (ADS)

    Kralov, Ivan; Sinapov, Petko; Nedelchev, Krasimir; Ignatov, Ignat

    2012-11-01

    A model of rail, considered as multiple supported beam, subjected on friction induced vibration is studied in this work using FEM. The model is presented as continuous system and the mass and elastic properties of a real object are taken into account. The friction forces are nonlinear functions of the relative velocity during slipping. The problem is solved using Matlab Simulink.

  5. Atomistics of friction

    NASA Astrophysics Data System (ADS)

    Hirano, M.

    2006-03-01

    When two solid bodies contact and slide against each other, a frictional phenomenon occurs. There have been two models for the origin of the friction forces: the surface roughness model and Tomlinson's model. The surface roughness model explains the origin of the static friction force; contacting solid surfaces are so rough that surface asperities are mechanically locked against the gravitational force. From an atomistic point of view, Tomlinson explained a mechanism of the energy dissipation for the origin of the dynamic friction force. The atomistic mechanisms are described for the origin of the static and the dynamic friction forces, based on the theoretical conclusion that Tomlinson's mechanism is unlikely to occur in realistic frictional systems. The mechanism for the origin of the static friction force resembles the mechanical locking mechanism in a surface roughness model. The origin of the dynamic friction force is formulated as a problem of how the given translational kinetic energy dissipates into the internal relative motions of constituent atoms of bodies during sliding. From studying the available phase space volume of the translational motion becomes negligibly small for a large system size, compared with that of the internal motions, it is concluded that the energy dissipation occurs irreversibly from the translational motion to the internal motions. The comparison of the atomistic mechanisms with the surface roughness model and Tomlinson's model is discussed. A phenomenon of superlubricity, where two solid bodies move relatively with no resistance, is discussed.

  6. Ratchet effect driven by Coulomb friction: the asymmetric Rayleigh piston.

    PubMed

    Sarracino, A; Gnoli, A; Puglisi, A

    2013-04-01

    The effect of Coulomb friction is studied in the framework of collisional ratchets. It turns out that the average drift of these devices can be expressed as the combination of a term related to the lack of equipartition between the probe and the surrounding bath, and a term featuring the average frictional force. We illustrate this general result in the asymmetric Rayleigh piston, showing how Coulomb friction can induce a ratchet effect in a Brownian particle in contact with an equilibrium bath. An explicit analytical expression for the average velocity of the piston is obtained in the rare collision limit. Numerical simulations support the analytical findings.

  7. Friction plug welding

    NASA Technical Reports Server (NTRS)

    Takeshita, Riki (Inventor); Hibbard, Terry L. (Inventor)

    2001-01-01

    Friction plug welding (FPW) usage is advantageous for friction stir welding (FSW) hole close-outs and weld repairs in 2195 Al--Cu--Li fusion or friction stir welds. Current fusion welding methods of Al--Cu--Li have produced welds containing varied defects. These areas are found by non-destructive examination both after welding and after proof testing. Current techniques for repairing typically small (<0.25) defects weaken the weldment, rely heavily on welders' skill, and are costly. Friction plug welding repairs increase strength, ductility and resistance to cracking over initial weld quality, without requiring much time or operator skill. Friction plug welding while pulling the plug is advantageous because all hardware for performing the weld can be placed on one side of the workpiece.

  8. Smart friction driven systems

    NASA Astrophysics Data System (ADS)

    Nitsche, Rainer; Gaul, Lothar

    2005-02-01

    Vibration properties of most assembled mechanical systems depend on frictional damping in joints. The nonlinear transfer behavior of the frictional interfaces often provides the dominant damping mechanism in a built-up structure and plays an important role in the vibratory response of the structure (Gaul and Nitsche 2001 Appl. Mech. Rev. 54 93-105). For improving the performance of systems, many studies have been carried out to predict, measure and/or enhance the energy dissipation of friction. To enhance the friction damping in joint connections a semi-active joint is investigated. A rotational joint connection is designed and manufactured such that the normal force in the friction interface can be influenced with a piezoelectric stack disc. With the piezoelectric device the normal force and thus the friction damping in the joint connection can be controlled. A control design method, namely semi-active control, is investigated. The recently developed LuGre friction model is used to describe the nonlinear transfer behavior of joints. This model is based on a bristle model and turns out to be highly suitable for systems assembled by such smart joints. Those systems can also be regarded as friction driven systems, since the energy flow is controlled by smart joints. The semi-active method is well suited for large space structures since the friction damping in joints turned out to be a major source of damping. To show the applicability of the proposed concept to large space structures a two-beam system representing a part of a large space structure is considered. Two flexible beams are connected with a semi-active joint connection. It can be shown that the damping of the system can be improved significantly by controlling the normal force in the semi-active joint connection. Experimental results validate the damping improvement due to the semi-active friction damping.

  9. Hybrid oil film approach to measuring skin friction distribution

    NASA Astrophysics Data System (ADS)

    Kurita, Mitsuru; Iijima, Hidetoshi

    2017-05-01

    This paper describes a technique for quantitatively measuring the time-averaged skin friction distribution on a wind tunnel test model. The technique is a hybrid oil film approach that is based on the combination of the qualitative skin friction distribution obtained from luminescent oil film and the quantitative local skin friction measurements obtained from oil film interferometry in another blowing of the same flow condition. To demonstrate its validity, the proposed method was applied to the flow field around a vortex generator on a flat plate, and successfully measured the quantitative skin friction distribution.

  10. Friction enhancement in concertina locomotion of snakes

    PubMed Central

    Marvi, Hamidreza; Hu, David L.

    2012-01-01

    Narrow crevices are challenging terrain for most organisms and biomimetic robots. Snakes move through crevices using sequential folding and unfolding of their bodies in the manner of an accordion or concertina. In this combined experimental and theoretical investigation, we elucidate this effective means of moving through channels. We measure the frictional properties of corn snakes, their body kinematics and the transverse forces they apply to channels of varying width and inclination. To climb channels inclined at 60°, we find snakes use a combination of ingenious friction-enhancing techniques, including digging their ventral scales to double their frictional coefficient and pushing channel walls transversely with up to nine times body weight. Theoretical modelling of a one-dimensional n-linked crawler is used to calculate the transverse force factor of safety: we find snakes push up to four times more than required to prevent sliding backwards, presumably trading metabolic energy for an assurance of wall stability. PMID:22728386

  11. Frictional strength of wet and dry montmorillonite

    NASA Astrophysics Data System (ADS)

    Morrow, C. A.; Moore, D. E.; Lockner, D. A.

    2017-05-01

    Montmorillonite is a common mineral in fault zones, and its low strength relative to other common gouge minerals is important in many models of fault rheology. However, the coefficient of friction, μ, varies with degree of saturation and is not well constrained in the literature due to the difficulty of establishing fully drained or fully dried states in the laboratory. We measured μ of both saturated and oven-dried montmorillonite at normal stresses up to 700 MPa. Care was taken to shear saturated samples slowly enough to avoid pore fluid overpressure. For saturated samples, μ increased from 0.10 to 0.28 with applied effective normal stress, while for dry samples μ decreased from 0.78 to 0.45. The steady state rate dependence of friction, (a - b), was positive, promoting stable sliding. The wide disparity in reported frictional strengths can be attributed to experimental procedures that promote differing degrees of partial saturation or overpressured pore fluid conditions.

  12. Hyperstaticity and loops in frictional granular packings

    NASA Astrophysics Data System (ADS)

    Tordesillas, Antoinette; Lam, Edward; Metzger, Philip T.

    2009-06-01

    The hyperstatic nature of granular packings of perfectly rigid disks is analyzed algebraically and through numerical simulation. The elementary loops of grains emerge as a fundamental element in addressing hyperstaticity. Loops consisting of an odd number of grains behave differently than those with an even number. For odd loops, the latent stresses are exterior and are characterized by the sum of frictional forces around each loop. For even loops, the latent stresses are interior and are characterized by the alternating sum of frictional forces around each loop. The statistics of these two types of loop sums are found to be Gibbsian with a "temperature" that is linear with the friction coefficient μ when μ<1.

  13. Friction enhancement in concertina locomotion of snakes.

    PubMed

    Marvi, Hamidreza; Hu, David L

    2012-11-07

    Narrow crevices are challenging terrain for most organisms and biomimetic robots. Snakes move through crevices using sequential folding and unfolding of their bodies in the manner of an accordion or concertina. In this combined experimental and theoretical investigation, we elucidate this effective means of moving through channels. We measure the frictional properties of corn snakes, their body kinematics and the transverse forces they apply to channels of varying width and inclination. To climb channels inclined at 60°, we find snakes use a combination of ingenious friction-enhancing techniques, including digging their ventral scales to double their frictional coefficient and pushing channel walls transversely with up to nine times body weight. Theoretical modelling of a one-dimensional n-linked crawler is used to calculate the transverse force factor of safety: we find snakes push up to four times more than required to prevent sliding backwards, presumably trading metabolic energy for an assurance of wall stability.

  14. Frictional strength of wet- and dry- talc gouge in high-velocity shear experiments

    NASA Astrophysics Data System (ADS)

    Chen, X.; Reches, Z.; Elwood Madden, A. S.

    2015-12-01

    The strength of the creeping segment of the San Andres fault may be controlled by the distinct weakness and stability of talc (Moore & Rymer, 2007). We analyze talc frictional strength at high slip-velocity of 0.002 - 0.66 m/s, long slip-distances of 0.01 m to 33 m, and normal stresses up to 4.1 MPa. This analysis bridges the gap between nucleation stage of low velocity/distance, and the frictional behavior during large earthquakes. We tested wet and dry samples of pure talc gouge in a confined rotary cell, and continuously monitored the slip-velocity, stresses, dilation and temperature. We run 29 experiments of single and stepped velocities to obtain 243 values of quasi-static frictional coefficients. Dry talc gouge showed distinct slip-strengthening: friction coefficient of µ ~0.4 at short slip-distances of D < 0.1 m, and it increased systematically to µ ~0.8 at slip-distances of D = 0.1- 1 m; at D > 1 m, the frictional strength saturated at µ= 0.8 - 1 level. Wet talc gouge (16-20% water) displayed low frictional strength of µ= 0.1-0.3, in agreement with published triaxial tests. The stepped-velocity runs revealed a consistent velocity-strengthening trend. For a velocity jump from V1 to V2, we used VD = (µ2 -µ1)/ln (V2/V1), and found that on average VD = 0.06 and 0.03 for dry and wet talc, respectively, and for slip distances shorter than 1 m. Microstructural analysis of post-shearing wet talc gouge revealed extreme slip localization to a principal-slip-zone of a few microns, and significant shear compaction of 10-30%. In contrast, dry talc gouge exhibited distributed shear in a wide zone and systematic shear dilation (10-50%). We propose slip along weak interlayer talc plates and thermal-pressurization as the possible weakening mechanisms for wet talc. The development of distributed secondary fault network along with substantial grain crushing is responsible for slip-strengthening in dry condition. Fig. 1. Friction maps of talc gouge as function of slip

  15. Bulk-friction modeling of afterslip and the modified Omori law

    NASA Astrophysics Data System (ADS)

    Wennerberg, Leif; Sharp, Robert V.

    1997-08-01

    Afterslip data from the Superstition Hills fault in southern California, a creep event on the same fault, the modified Omori law, and cumulative moments from aftershocks of the 1957 Aleutian Islands earthquake all indicate that the original formulation by Dieterich (1981) [Constitutive properties of faults with simulated gouge. AGU, Geophys. Monogr. 24, 103-120] for friction evolution is more appropriate for systems far from instability than the commonly used approximation developed by Ruina (1983) [Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359-10370] to study instability. The mathematical framework we use to test the friction models is a one-dimensional, massless spring-slider under the simplifying assumption, proposed by Scholz (1990) [The Mechanics of Earthquakes and Faulting. Cambridge University Press] and used by Marone et al. (1991) [On the mechanics of earthquake afterslip. J. Geophys. Res., 96: 8441-8452], that the state variable takes on its velocity-dependent steady-state value throughout motion in response to a step in stress. This assumption removes explicit state-variable dependence from the model, obviating the need to consider state-variable evolution equations. Anti-derivatives of the modified Omori law fit our data very well and are very good approximate solutions to our model equations. A plausible friction model with Omori-law solutions used by Wesson (1988) [Dynamics of fault creep. J. Geophys. Res. 93, 8929-8951] to model fault creep and generalized by Rice (1983) [Constitutive relations for fault slip and earthquake instabilities. Pure Appl. Geophys. 121, 443-475] to a rate-and-state variable friction model yields exactly Omori's law with exponents greater than 1, but yields unstable solutions for Omori exponents less than 1. We estimate from the Dieterich formulation the dimensionless parameter a∗ which is equal to the product of the nominal coefficient of friction and the more commonly reported friction

  16. Bulk-friction modeling of afterslip and the modified Omori law

    USGS Publications Warehouse

    Wennerberg, Leif; Sharp, Robert V.

    1997-01-01

    Afterslip data from the Superstition Hills fault in southern California, a creep event on the same fault, the modified Omori law, and cumulative moments from aftershocks of the 1957 Aleutian Islands earthquake all indicate that the original formulation by Dieterich (1981) [Constitutive properties of faults with simulated gouge. AGU, Geophys. Monogr. 24, 103–120] for friction evolution is more appropriate for systems far from instability than the commonly used approximation developed by Ruina (1983) [Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370] to study instability. The mathematical framework we use to test the friction models is a one-dimensional, massless spring-slider under the simplifying assumption, proposed by Scholz (1990) [The Mechanics of Earthquakes and Faulting. Cambridge University Press] and used by Marone et al. (1991) [On the mechanics of earthquake afterslip. J. Geophys. Res., 96: 8441–8452], that the state variable takes on its velocity-dependent steady-state value throughout motion in response to a step in stress. This assumption removes explicit state-variable dependence from the model, obviating the need to consider state-variable evolution equations. Anti-derivatives of the modified Omori law fit our data very well and are very good approximate solutions to our model equations. A plausible friction model with Omori-law solutions used by Wesson (1988) [Dynamics of fault creep. J. Geophys. Res. 93, 8929–8951] to model fault creep and generalized by Rice (1983) [Constitutive relations for fault slip and earthquake instabilities. Pure Appl. Geophys. 121, 443–475] to a rate-and-state variable friction model yields exactly Omori's law with exponents greater than 1, but yields unstable solutions for Omori exponents less than 1. We estimate from the Dieterich formulation the dimensionless parameter a∗ which is equal to the product of the nominal coefficient of friction and the more commonly reported

  17. Association between friction and wear in diarthrodial joints lacking lubricin.

    PubMed

    Jay, Gregory D; Torres, Jahn R; Rhee, David K; Helminen, Heikki J; Hytinnen, Mika M; Cha, Chung-Ja; Elsaid, Khaled; Kim, Kyung-Suk; Cui, Yajun; Warman, Matthew L

    2007-11-01

    The glycoprotein lubricin (encoded by the gene Prg4) is secreted by surface chondrocytes and synovial cells, and has been shown to reduce friction in vitro. In contrast to man-made bearings, mammalian diarthrodial joints must endogenously produce friction-reducing agents. This study was undertaken to investigate whether friction is associated with wear. The lubricating ability of synovial fluid (SF) samples from humans with genetic lubricin deficiency was tested in vitro. The coefficient of friction in the knee joints of normal and lubricin-null mice was measured ex vivo; these joints were also studied by light and electron microscopy. Atomic force microscopy was used to image and measure how lubricin reduces friction in vitro. SF lacking lubricin failed to reduce friction in the boundary mode. Joints of lubricin-null mice showed early wear and higher friction than joints from their wild-type counterparts. Lubricin self-organized and reduced the work of adhesion between apposing asperities. These data show that friction is coupled with wear at the cartilage surface in vivo. They imply that acquired lubricin degradation occurring in inflammatory joint diseases predisposes the cartilage to damage. Lastly, they suggest that lubricin, or similar biomolecules, will have applications in man-made devices in which reducing friction is essential.

  18. Reduction of friction using piezoelectrically excited ultrasonic vibrations

    NASA Astrophysics Data System (ADS)

    Littmann, Walter; Storck, Heiner; Wallaschek, Joerg

    2001-07-01

    Piezoelectric materials are an important class of smart materials for the generation of mechanical ultrasonic vibrations. In industrial applications (for example ultrasonic cutting) the frictional contact of the vibrating tool with the workpiece is of special importance. A common observation at the contact zone is that frictional forces can be significantly reduced by superposition of ultrasonic vibrations. In this report we present a theoretical explanation for the reduction of friction. A basic system, consisting of a longitudinal ultrasonic vibrator sliding on a plane, is investigated. It is shown that a modification of Coulomb's friction law can be applied to this kind of vibrating friction contact. The macroscopically observed friction-force with ultrasonic vibration depends on the sliding velocity and the velocity of vibration: For sliding velocities higher than the vibration-amplitude the frictional force is not changed by vibration. But for small sliding velocities the friction-coefficient is significantly reduced and almost approaches zero for very slow sliding-velocity. The theoretical results were confirmed systematically by experimental investigations done on a specially designed test-rig. Energy considerations are used to calculate the ultrasonic energy which is required to achieve a prescribed reduction of the frictional forces. The model is also used for sensing the vibration-amplitude as well as the sliding-velocity without an additional sensor.

  19. Chirality-dependent friction of bulk molecular solids.

    PubMed

    Yang, Dian; Cohen, Adam E

    2014-08-26

    We show that the solid-solid friction between bulk chiral molecular solids can depend on the relative chirality of the two materials. In menthol and 1-phenyl-1-butanol, heterochiral friction is smaller than homochiral friction, while in ibuprofen, heterochiral friction is larger. Chiral asymmetries in the coefficient of sliding friction vary with temperature and can be as large as 30%. In the three compounds tested, the sign of the difference between heterochiral and homochiral friction correlated with the sign of the difference in melting point between racemate (compound or conglomerate) and pure enantiomer. Menthol and ibuprofen each form a stable racemic compound, while 1-phenyl-1-butanol forms a racemic conglomerate. Thus, a difference between heterochiral and homochiral friction does not require the formation of a stable interfacial racemic compound. Measurements of chirality-dependent friction provide a unique means to distinguish the role of short-range intermolecular forces from all other sources of dissipation in the friction of bulk molecular solids.

  20. Fingerprints are unlikely to increase the friction of primate fingerpads.

    PubMed

    Warman, Peter H; Ennos, A Roland

    2009-07-01

    It is generally assumed that fingerprints improve the grip of primates, but the efficiency of their ridging will depend on the type of frictional behaviour the skin exhibits. Ridges would be effective at increasing friction for hard materials, but in a rubbery material they would reduce friction because they would reduce contact area. In this study we investigated the frictional performance of human fingertips on dry acrylic glass using a modified universal mechanical testing machine, measuring friction at a range of normal loads while also measuring the contact area. Tests were carried out on different fingers, fingers at different angles and against different widths of acrylic sheet to separate the effects of normal force and contact area. The results showed that fingertips behaved more like rubbers than hard solids; their coefficients of friction fell at higher normal forces and friction was higher when fingers were held flatter against wider sheets and hence when contact area was greater. The shear stress was greater at higher pressures, suggesting the presence of a biofilm between the skin and the surface. Fingerprints reduced contact area by a factor of one-third compared with flat skin, however, which would have reduced the friction; this casts severe doubt on their supposed frictional function.

  1. Friction of different monolayer lubricants in MEMs interfaces.

    SciTech Connect

    Carpick, Robert W. (University of Wisconsin, Madison, WI); Street, Mark D.; Ashurst, William Robert; Corwin, Alex David

    2006-01-01

    This report details results from our last year of work (FY2005) on friction in MEMS as funded by the Campaign 6 program for the Microscale Friction project. We have applied different monolayers to a sensitive MEMS friction tester called the nanotractor. The nanotractor is also a useful actuator that can travel {+-}100 {micro}m in 40 nm steps, and is being considered for several MEMS applications. With this tester, we can find static and dynamic coefficients of friction. We can also quantify deviations from Amontons' and Coulomb's friction laws. Because of the huge surface-to-volume ratio at the microscale, surface properties such as adhesion and friction can dominate device performance, and therefore such deviations are important to quantify and understand. We find that static and dynamic friction depend on the monolayer lubricant applied. The friction data can be modeled with a non-zero adhesion force, which represents a deviation from Amontons' Law. Further, we show preliminary data indicating that the adhesion force depends not only on the monolayer, but also on the normal load applied. Finally, we also observe slip deflections before the transition from static to dynamic friction, and find that they depend on the monolayer.

  2. Quantifying the Frictional Forces between Skin and Nonwoven Fabrics.

    PubMed

    Jayawardana, Kavinda; Ovenden, Nicholas C; Cottenden, Alan

    2017-01-01

    When a compliant sheet of material is dragged over a curved surface of a body, the frictional forces generated can be many times greater than they would be for a planar interface. This phenomenon is known to contribute to the abrasion damage to skin often suffered by wearers of incontinence pads and bed/chairbound people susceptible to pressure sores. Experiments that attempt to quantify these forces often use a simple capstan-type equation to obtain a characteristic coefficient of friction. In general, the capstan approach assumes the ratio of applied tensions depends only on the arc of contact and the coefficient of friction, and ignores other geometric and physical considerations; this approach makes it straightforward to obtain explicitly a coefficient of friction from the tensions measured. In this paper, two mathematical models are presented that compute the material displacements and surface forces generated by, firstly, a membrane under tension in moving contact with a rigid obstacle and, secondly, a shell-membrane under tension in contact with a deformable substrate. The results show that, while the use of a capstan equation remains fairly robust in some cases, effects such as the curvature and flaccidness of the underlying body, and the mass density of the fabric can lead to significant variations in stresses generated in the contact region. Thus, the coefficient of friction determined by a capstan model may not be an accurate reflection of the true frictional behavior of the contact region.

  3. Quantifying the Frictional Forces between Skin and Nonwoven Fabrics

    PubMed Central

    Jayawardana, Kavinda; Ovenden, Nicholas C.; Cottenden, Alan

    2017-01-01

    When a compliant sheet of material is dragged over a curved surface of a body, the frictional forces generated can be many times greater than they would be for a planar interface. This phenomenon is known to contribute to the abrasion damage to skin often suffered by wearers of incontinence pads and bed/chairbound people susceptible to pressure sores. Experiments that attempt to quantify these forces often use a simple capstan-type equation to obtain a characteristic coefficient of friction. In general, the capstan approach assumes the ratio of applied tensions depends only on the arc of contact and the coefficient of friction, and ignores other geometric and physical considerations; this approach makes it straightforward to obtain explicitly a coefficient of friction from the tensions measured. In this paper, two mathematical models are presented that compute the material displacements and surface forces generated by, firstly, a membrane under tension in moving contact with a rigid obstacle and, secondly, a shell-membrane under tension in contact with a deformable substrate. The results show that, while the use of a capstan equation remains fairly robust in some cases, effects such as the curvature and flaccidness of the underlying body, and the mass density of the fabric can lead to significant variations in stresses generated in the contact region. Thus, the coefficient of friction determined by a capstan model may not be an accurate reflection of the true frictional behavior of the contact region. PMID:28321192

  4. Frictional Characteristics of Thrust Bearing in Scroll Compressor

    NASA Astrophysics Data System (ADS)

    Sato, Hajime; Itoh, Takahide; Kobayashi, Hiroyuki

    This paper presents frictional characteristics of thrust bearing in scroll compressor focusing on the behavior of sliding portion which affects the generation of oil film. The coefficient of friction and tilt angle of sliding portion in the thrust bearing are obtained through both elemental friction test and cylinder pressure measurement of actual scroll compressor. Both tests showed that the coefficient of friction in low contact pressure rose with increase of tilt angle of sliding portion. The value of contact pressure which the coefficient of friction turns into increase was in agreement of the value which tilt angle become to increase. Numerical analysis using mixed lubrication theory was also performed. Analytical result indicated the same characteristics as the experiments, and the correlation between the coefficient of friction and the behavior of sliding portion was confirmed. Based on the experimental and the analytical results obtained here, the optimization of thrust bearing for commercial scroll compressor was applied. 2% improvement of total efficiency in rated condition was archived by optimization of thrust bearing.

  5. Water-vapor effects on friction of magnetic tape in contact with nickel-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    The effects of humidity of moist nitrogen on the friction and deformation behavior of magnetic tape in contact with a nickel-zinc ferrite spherical pin were studied. The results indicate that the coefficient of friction is markedly dependent on the ambient relative humidity. Although the coefficient of friction remains low below 40-percent relative humidity, it increases rapidly with increasing relative humidity above 40 percent. The general ambient environment of the tape does not have any effect on the friction behavior if the area where the tape is in sliding contact with the ferrite pin is flooded with controlled nitrogen. The response time for the friction of the tape to humidity changes is about 10 sec. The effect of friction as a function of relative humidity on dehumidifying is very similar to that on humidifying. A surface softening of the tape due to water vapor increases the friction of the tape.

  6. Friction of iron lubricated with aliphatic and aromatic hydrocarbons and halogenated analogs

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    The influence of oxygen and various organic molecules on the reduction of the friction of an iron (011) single crystal surface was investigated. A comparison was made between aliphatic and aromatic structures, all of which contained six carbon atoms, and among various halogen atoms. Results of the investigation indicate that hexane and benzene give similar friction coefficients over a range of loads except at very light loads. At light loads, the friction decreased with an increase in the load where the halogens fluorine and chlorine are incorporated into the benzene molecular structure; however, over the same load range when bromine and iodine were present, the friction was relatively unchanged. The aliphatic compound chlorohexane exhibited lower friction coefficients than the aromatic structure chlorobenzene at very light loads. With the brominated benzene structures, however, friction was essentially the same. Oxygen was more effective in reducing friction than were the simple hydrocarbons.

  7. Reduction of friction stress of ethylene glycol by attached hydrogen ions.

    PubMed

    Li, Jinjin; Zhang, Chenhui; Deng, Mingming; Luo, Jianbin

    2014-11-27

    In the present work, it is shown that the friction stress of ethylene glycol can decrease by an order of magnitude to achieve superlubricity if there are hydrogen ions attached on the friction surfaces. An ultra-low friction coefficient (μ = 0.004) of ethylene glycol between Si3N4 and SiO2 can be obtained with the effect of hydrogen ions. Experimental result indicates that the hydrogen ions adsorbed on the friction surfaces forming a hydration layer and the ethylene glycol in the contact region forming an elastohydrodynamic film are the two indispensable factors for the reduction of friction stress. The mechanism of superlubricity is attributed to the extremely low shear strength of formation of elastohydrodynamic film on the hydration layer. This finding may introduce a new approach to reduce friction coefficient of liquid by attaching hydrogen ions on friction surfaces.

  8. Reduction of friction stress of ethylene glycol by attached hydrogen ions

    PubMed Central

    Li, Jinjin; Zhang, Chenhui; Deng, Mingming; Luo, Jianbin

    2014-01-01

    In the present work, it is shown that the friction stress of ethylene glycol can decrease by an order of magnitude to achieve superlubricity if there are hydrogen ions attached on the friction surfaces. An ultra-low friction coefficient (μ = 0.004) of ethylene glycol between Si3N4 and SiO2 can be obtained with the effect of hydrogen ions. Experimental result indicates that the hydrogen ions adsorbed on the friction surfaces forming a hydration layer and the ethylene glycol in the contact region forming an elastohydrodynamic film are the two indispensable factors for the reduction of friction stress. The mechanism of superlubricity is attributed to the extremely low shear strength of formation of elastohydrodynamic film on the hydration layer. This finding may introduce a new approach to reduce friction coefficient of liquid by attaching hydrogen ions on friction surfaces. PMID:25428584

  9. Reduction of friction stress of ethylene glycol by attached hydrogen ions

    NASA Astrophysics Data System (ADS)

    Li, Jinjin; Zhang, Chenhui; Deng, Mingming; Luo, Jianbin

    2014-11-01

    In the present work, it is shown that the friction stress of ethylene glycol can decrease by an order of magnitude to achieve superlubricity if there are hydrogen ions attached on the friction surfaces. An ultra-low friction coefficient (μ = 0.004) of ethylene glycol between Si3N4 and SiO2 can be obtained with the effect of hydrogen ions. Experimental result indicates that the hydrogen ions adsorbed on the friction surfaces forming a hydration layer and the ethylene glycol in the contact region forming an elastohydrodynamic film are the two indispensable factors for the reduction of friction stress. The mechanism of superlubricity is attributed to the extremely low shear strength of formation of elastohydrodynamic film on the hydration layer. This finding may introduce a new approach to reduce friction coefficient of liquid by attaching hydrogen ions on friction surfaces.

  10. Ultralow Friction in a Superconducting Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Bornemann, Hans J.; Siegel, Michael; Zaitsev, Oleg; Bareiss, Martin; Laschuetza, Helmut

    1996-01-01

    Passive levitation by superconducting magnetic bearings can be utilized in flywheels for energy storage. Basic design criteria of such a bearing are high levitation force, sufficient vertical and horizontal stability and low friction. A test facility was built for the measurement and evaluation of friction in a superconducting magnetic bearing as a function of operating temperature and pressure in the vacuum vessel. The bearing consists of a commercial disk shaped magnet levitated above single grain, melt-textured YBCO high-temperature superconductor material. The superconductor was conduction cooled by an integrated AEG tactical cryocooler. The temperature could be varied from 50 K to 80 K. The pressure in the vacuum chamber was varied from 1 bar to 10(exp -5) mbar. At the lowest pressure setting, the drag torque shows a linear frequency dependence over the entire range investigated (0 less than f less than 40 Hz). Magnetic friction, the frequency independent contribution, is very low. The frequency dependent drag torque is generated by molecular friction from molecule-surface collisions and by eddy currents. Given the specific geometry of the set-up and gas pressure, the molecular drag torque can be estimated. At a speed of 40 Hz, the coefficient of friction (drag-to-lift ratio) was measured to be mu = 1.6 x 10(exp -7) at 10(exp -5) mbar and T = 60 K. This is equivalent to a drag torque of 7.6 x 10(exp -10) Nm. Magnetic friction causes approx. 1% of the total losses. Molecular friction accounts for about 13% of the frequency dependent drag torque, the remaining 87% being due to eddy currents and losses from rotor unbalance. The specific energy loss is only 0.3% per hour.

  11. Friction and wear performance of ion-beam deposited diamondlike carbon films on steel substrates

    SciTech Connect

    Erdemir, A.; Nichols, F.A.; Pan, X.Z. . Materials and Components Technology Div.); Wei, R.; Wilbur, P. . Dept. of Mechanical Engineering)

    1993-01-01

    In this study, we investigated the friction and wear performance of ion-beam-deposited diamondlike-carbon (DLC) films (1.5 [mu]m thick) on AISI 440C steel substrates. Furthermore, we ran a series of long-duration wear tests under 5, 10, and 20 N load to assess the load-bearing capacity and durability limits of these films under each load. Tests were performed on a ball-on-disk machine in open air at room temperature [approx] 22[plus minus]1[degrees]C, and humidity, [approx] 30[plus minus]5%. For the test conditions explored, we found that (1) the steady-state friction coefficients of pairs without a DLC film were in the range of 0.7 to 0.9 and the average wear rates of 440C balls (9.55 mm diameter) sliding against uncoated 440C disks were on the order of 10[sup [minus]5] mm[sup 3]/N.m, depending on contact load; (2) DLC films reduced the steady-state friction coefficients of test pairs by factors of 6 to 8, and the wear rates of pins by factors of 500 to 2000; (3) The wear of disks coated with a DLC film was virtually unmeasurable while the wear of uncoated disks was quite substantial, (4) these DLC films were able to endure the range of loads, 5 to 20 N, without any delamination and to last over a million cycles before wearing out. During long-duration wear tests, the friction coefficients were initially on the order of 0.15, but decreased to some low values of 0.05 to 0.07 after sliding for 15 to 25 km, depending on the load, and remained low until wearing out. This low-friction regime was correlated with the formation of a carbon-rich transfer film on the wear scar of 440C balls. Micro-laser-Raman spectroscopy and scanning-electron microscopy were used to examine the structure and chemistry of worn surfaces and to elucidate the wear- and friction-reducing mechanisms of the DLC film.

  12. Friction and wear performance of ion-beam deposited diamondlike carbon films on steel substrates

    SciTech Connect

    Erdemir, A.; Nichols, F.A.; Pan, X.Z.; Wei, R.; Wilbur, P.

    1993-01-01

    In this study, we investigated the friction and wear performance of ion-beam-deposited diamondlike-carbon (DLC) films (1.5 {mu}m thick) on AISI 440C steel substrates. Furthermore, we ran a series of long-duration wear tests under 5, 10, and 20 N load to assess the load-bearing capacity and durability limits of these films under each load. Tests were performed on a ball-on-disk machine in open air at room temperature {approx} 22{plus_minus}1{degrees}C, and humidity, {approx} 30{plus_minus}5%. For the test conditions explored, we found that (1) the steady-state friction coefficients of pairs without a DLC film were in the range of 0.7 to 0.9 and the average wear rates of 440C balls (9.55 mm diameter) sliding against uncoated 440C disks were on the order of 10{sup {minus}5} mm{sup 3}/N.m, depending on contact load; (2) DLC films reduced the steady-state friction coefficients of test pairs by factors of 6 to 8, and the wear rates of pins by factors of 500 to 2000; (3) The wear of disks coated with a DLC film was virtually unmeasurable while the wear of uncoated disks was quite substantial, (4) these DLC films were able to endure the range of loads, 5 to 20 N, without any delamination and to last over a million cycles before wearing out. During long-duration wear tests, the friction coefficients were initially on the order of 0.15, but decreased to some low values of 0.05 to 0.07 after sliding for 15 to 25 km, depending on the load, and remained low until wearing out. This low-friction regime was correlated with the formation of a carbon-rich transfer film on the wear scar of 440C balls. Micro-laser-Raman spectroscopy and scanning-electron microscopy were used to examine the structure and chemistry of worn surfaces and to elucidate the wear- and friction-reducing mechanisms of the DLC film.

  13. Confinement-Dependent Friction in Peptide Bundles

    PubMed Central

    Erbaş, Aykut; Netz, Roland R.

    2013-01-01

    Friction within globular proteins or between adhering macromolecules crucially determines the kinetics of protein folding, the formation, and the relaxation of self-assembled molecular systems. One fundamental question is how these friction effects depend on the local environment and in particular on the presence of water. In this model study, we use fully atomistic MD simulations with explicit water to obtain friction forces as a single polyglycine peptide chain is pulled out of a bundle of k adhering parallel polyglycine peptide chains. The whole system is periodically replicated along the peptide axes, so a stationary state at prescribed mean sliding velocity V is achieved. The aggregation number is varied between k = 2 (two peptide chains adhering to each other with plenty of water present at the adhesion sites) and k = 7 (one peptide chain pulled out from a close-packed cylindrical array of six neighboring peptide chains with no water inside the bundle). The friction coefficient per hydrogen bond, extrapolated to the viscous limit of vanishing pulling velocity V → 0, exhibits an increase by five orders of magnitude when going from k = 2 to k = 7. This dramatic confinement-induced friction enhancement we argue to be due to a combination of water depletion and increased hydrogen-bond cooperativity. PMID:23528088

  14. Iliotibial band friction syndrome

    PubMed Central

    2010-01-01

    Published articles on iliotibial band friction syndrome have been reviewed. These articles cover the epidemiology, etiology, anatomy, pathology, prevention, and treatment of the condition. This article describes (1) the various etiological models that have been proposed to explain iliotibial band friction syndrome; (2) some of the imaging methods, research studies, and clinical experiences that support or call into question these various models; (3) commonly proposed treatment methods for iliotibial band friction syndrome; and (4) the rationale behind these methods and the clinical outcome studies that support their efficacy. PMID:21063495

  15. Iliotibial band friction syndrome.

    PubMed

    Lavine, Ronald

    2010-07-20

    Published articles on iliotibial band friction syndrome have been reviewed. These articles cover the epidemiology, etiology, anatomy, pathology, prevention, and treatment of the condition. This article describes (1) the various etiological models that have been proposed to explain iliotibial band friction syndrome; (2) some of the imaging methods, research studies, and clinical experiences that support or call into question these various models; (3) commonly proposed treatment methods for iliotibial band friction syndrome; and (4) the rationale behind these methods and the clinical outcome studies that support their efficacy.

  16. Frictional velocity-weakening in landslides on Earth and on other planetary bodies.

    PubMed

    Lucas, Antoine; Mangeney, Anne; Ampuero, Jean Paul

    2014-03-04

    One of the ultimate goals in landslide hazard assessment is to predict maximum landslide extension and velocity. Despite much work, the physical processes governing energy dissipation during these natural granular flows remain uncertain. Field observations show that large landslides travel over unexpectedly long distances, suggesting low dissipation. Numerical simulations of landslides require a small friction coefficient to reproduce the extension of their deposits. Here, based on analytical and numerical solutions for granular flows constrained by remote-sensing observations, we develop a consistent method to estimate the effective friction coefficient of landslides. This method uses a constant basal friction coefficient that reproduces the first-order landslide properties. We show that friction decreases with increasing volume or, more fundamentally, with increasing sliding velocity. Inspired by frictional weakening mechanisms thought to operate during earthquakes, we propose an empirical velocity-weakening friction law under a unifying phenomenological framework applicable to small and large landslides observed on Earth and beyond.

  17. Superlow friction behavior of diamond-like carbon coatings: Time and speed effects

    NASA Astrophysics Data System (ADS)

    Heimberg, J. A.; Wahl, K. J.; Singer, I. L.; Erdemir, A.

    2001-04-01

    The friction behavior of a diamond-like carbon coating was studied in reciprocating sliding contact at speeds from 0.01 to 5 mm/s, in dry nitrogen. "Superlow" friction coefficients of 0.003-0.008 were obtained in continuous sliding at the higher speeds (>1 mm/s). However, friction coefficients rose to values typical of diamond-like carbon in dry and ambient air (0.01-0.1) at lower speeds (<0.5 mm/s) as well as in time-delayed, higher speed tests. The rise of the friction coefficients in both speed and time-delay tests was in good quantitative agreement with gas adsorption kinetics predicted by the Elovich equation for adsorption onto carbon. More generally, superlow friction could be sustained, suppressed, and recovered as a function of exposure time, demonstrating that duty cycle cannot be ignored when predicting performance of superlow friction coatings in devices.

  18. Experimental Investigation on Heat Transfer and Frictional Characteristics of Shell-and-tube Heat exchangers with Different Baffles and Tubes

    NASA Astrophysics Data System (ADS)

    Wang, C.; Zhu, J. G.; Sang, Z. F.

    2010-03-01

    In this study, the heat transfer and tube frictional characteristics of the helixchangers (shell-and-tube heat exchanger with helical baffles) with spirally corrugated and smooth tubes and the conventional shell-and-tube heat exchanger with smooth tubes were experimentally obtained. The results show that the helixchangers with the spirally corrugated tube and the smooth tubes enhance the total heat transfer coefficient about 26% and 7% on the average than the segmental baffled heat exchanger. In the tube side, the spirally corrugated tube leads to about 28% average increase on convective heat transfer performance and about 24% average increase on pressure drop than the smooth tube, but its conversion efficiency is still higher. The helical baffle could enhance the shell-side condensation coefficient by 13%, and the spirally corrugated tube could help the helixchanger with it enhance remarkably the condensation performance by 53% than the segmental baffled heat exchanger.

  19. Ice friction: The effects of surface roughness, structure, and hydrophobicity

    SciTech Connect

    Kietzig, Anne-Marie; Hatzikiriakos, Savvas G.; Englezos, Peter

    2009-07-15

    The effect of surface roughness, structure, and hydrophobicity on ice friction is studied systematically over a wide range of temperature and sliding speeds using several metallic interfaces. Hydrophobicity in combination with controlled roughness at the nanoscale is achieved by femtosecond laser irradiation to mimic the lotus effect on the slider's surface. The controlled roughness significantly increases the coefficient of friction at low sliding speeds and temperatures well below the ice melting point. However, at temperatures close to the melting point and relatively higher speeds, roughness and hydrophobicity significantly decrease ice friction. This decrease in friction is mainly due to the suppression of capillary bridges in spite of the presence of surface asperities that facilitate their formation. Finally, grooves oriented in the sliding direction also significantly decrease friction in the low velocity range compared to scratches and grooves randomly distributed over a surface.

  20. Artificial tribotactic microscopic walkers: walking based on friction gradients.

    PubMed

    Steimel, Joshua P; Aragones, Juan L; Alexander-Katz, Alfredo

    2014-10-24

    Friction, the resistive force between two surfaces sliding past each other, is at the core of a wide diversity of locomotion schemes. While such schemes are well described for homogeneous environments, locomotion based on friction in inhomogeneous environments has not received much attention. Here we introduce and demonstrate the concept of tribotaxis, a motion that is guided by gradients in the friction coefficient. Our system is composed of microwalkers that undergo an effective frictional interaction with biological receptors on the substrate, which is regulated by the density of such receptors. When actuated stochastically, microwalkers migrate to regions of higher friction, much like a chemotactic cell migrates to regions of higher chemoattractant concentration. Simulations and theory based on biased random walks are in excellent agreement with experiments. We foresee important implications for tribotaxis in artificial and natural locomotion in biological environments.

  1. Regimes of frictional sliding of a spring-block system

    NASA Astrophysics Data System (ADS)

    Putelat, Thibaut; Dawes, Jonathan H. P.; Willis, John R.

    2010-01-01

    In the context of rate-and-state friction, we revisit the crossover between the creep and inertial regimes in the dynamics of a spring-block system as observed and described in the dry friction experiment of Heslot et al. (1994) and Baumberger et al. (1994). We show that the transition between the quasi-static motion of a spring-block and its dynamic motion occurs at a lower sliding velocity than that which minimises the steady-state friction coefficient. We perform a weakly nonlinear stability analysis combined with numerical studies with the continuation package A UTO. In particular, attention is focused on the change of nature the Hopf bifurcation from supercritical to subcritical, as observed by Heslot et al. Comparing the results obtained for different friction laws, we conclude that the weakly nonlinear analysis provides a possible criterion for distinguishing which friction laws may be physically relevant.

  2. Science 101: What Causes Friction?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2014-01-01

    Defining friction and asking what causes it might seem like a trivial question. Friction seems simple enough to understand. Friction is a force between surfaces that pushes against things that are moving or tending to move, and the rougher the surfaces, the greater the friction. Bill Robertson answers this by saying, "Well, not exactly".…

  3. Science 101: What Causes Friction?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2014-01-01

    Defining friction and asking what causes it might seem like a trivial question. Friction seems simple enough to understand. Friction is a force between surfaces that pushes against things that are moving or tending to move, and the rougher the surfaces, the greater the friction. Bill Robertson answers this by saying, "Well, not exactly".…

  4. Development of metalloceramic friction materials for aircraft brake

    SciTech Connect

    Nair, C.G.K.; Dutta, D.; Mohan, G.

    1993-12-31

    The paper presents the science and technology of designing and developing complex iron and copper based metalloceramic composites for aircraft brake applications to meet diverse characteristics such as high coefficient of friction, low wear rate, high melting point, high temperature strength and hardness, high specific heat and thermal conductivity and resistance to seizure. The composition of the various ingredients and sintering parameters are optimized by statistically designed experiments. Friction test in a laboratory scale dynamometer is used to measure friction coefficient, temperature rise and wear rate. EPMA and EDAX are used for assessing uniformity of alloying of matrix and distribution of various ingredients. A variety of complex compositions have been developed to suit a number of applications as friction material for aircraft ranging from jet engine trainer, advanced fighter, civil and military transport aircraft.

  5. Friction stir welding tool

    DOEpatents

    Tolle; Charles R. , Clark; Denis E. , Barnes; Timothy A.

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  6. Friction stir welding tool

    DOEpatents

    Tolle, Charles R.; Clark, Denis E.; Barnes, Timothy A.

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  7. Friction Stir Weld Tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  8. Friction stir weld tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  9. Rotor internal friction instability

    NASA Technical Reports Server (NTRS)

    Bently, D. E.; Muszynska, A.

    1985-01-01

    Two aspects of internal friction affecting stability of rotating machines are discussed. The first role of internal friction consists of decreasing the level of effective damping during rotor subsynchronous and backward precessional vibrations caused by some other instability mechanisms. The second role of internal frication consists of creating rotor instability, i.e., causing self-excited subsynchronous vibrations. Experimental test results document both of these aspects.

  10. TBM tunnel friction values for the Grizzly Powerhouse Project

    SciTech Connect

    Stutsman, R.D.; Rothfuss, B.D.

    1995-12-31

    Tunnel boring machine (TBM) driven water conveyance tunnels are becoming increasingly more common. Despite advances in tunnel engineering and construction technology, hydraulic performance data for TBM driven tunnels remains relatively unavailable. At the Grizzly Powerhouse Project, the TBM driven water conveyance tunnel was designed using friction coefficients developed from a previous PG&E project. A range of coefficients were selected to bound the possible hydraulic performance variations of the water conveyance system. These friction coefficients, along with the water conveyance systems characteristics, and expected turbine characteristics, were used in a hydraulic transient analysis to determine the expected system pressure fluctuations, and surge chamber performance. During startup test data, these performance characteristics were measured to allow comparison to the original design assumptions. During construction of the tunnel, plaster casts were made of the actual excavated tunnel unlined and fiber reinforced shotcrete lined surfaces. These castings were used to measure absolute roughness of the surfaces so that a friction coefficient could be developed using the Moody diagram and compare them against the design values. This paper compares the assumed frictional coefficient with computed coefficients from headlosses measured during startup testing, and plaster cast measurement calculations. In addition, a comparison of coefficients will be presented for an other TBM driven water conveyance tunnel constructed in the 1980`s.

  11. Friction- and wear-reducing coating

    SciTech Connect

    Zhu, Dong; Milner, Robert; Elmoursi, Alaa AbdelAzim

    2011-10-18

    A coating includes a first layer of a ceramic alloy and a second layer disposed on the first layer and including carbon. The coating has a hardness of from 10 to 20 GPa and a coefficient of friction of less than or equal to 0.12. A method of coating a substrate includes cleaning the substrate, forming the first layer on the substrate, and depositing the second layer onto the first layer to thereby coat the substrate.

  12. Friction Stir Welding Development

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.

    1998-01-01

    The research of this summer was a continuation of work started during the previous summer faculty fellowship period. The Friction Stir Welding process (FSW) patented by The Welding Institute (TWI), in Great Britain, has become a popular topic at the Marshall Space Flight Center over the past year. Last year it was considered a novel approach to welding but few people took it very seriously as a near term solution. However, due to continued problems with cracks in the new aluminum-lithium space shuttle external tank (ET), the friction stir process is being mobilized at full speed in an effort to mature this process for the potential manufacture of flight hardware. It is now the goal of NASA and Lockheed-Martin Corporation (LMC) to demonstrate a full-scale friction stir welding system capable of welding ET size barrel sections. The objectives this summer were: (1) Implementation and validation of the rotating dynamometer on the MSFC FSW system; (2) Collection of data for FSW process modeling efforts; (3) Specification development for FSW implementation on the vertical weld tool; (4) Controls and user interface development for the adjustable pin tool; and (5) Development of an instrumentation system for the planishing process. The projects started this summer will lead to a full scale friction stir welding system that is expected to produce a friction stir welded shuttle external tank type barrel section. The success of this could lead to the implementation of the friction stir process for manufacturing future shuttle external tanks.

  13. Studies of the frictional heating of polycrystalline diamond compact drag tools during rock cutting

    SciTech Connect

    Ortega, A.; Glowka, D.A.

    1982-06-01

    A numerical-analytical model is developed to analyze temperatures in polycrystalline diamond compact (PDC) drag tools subject to localized frictional heating at a worn flat area and convective cooling at exposed lateral surfaces. Experimental measurements of convective heat transfer coefficients of PDC cutters in a uniform crossflow are presented and used in the model to predict temperatures under typical drilling conditions with fluid flow. The analysis compares favorably with measurements of frictional temperatures in controlled cutting tests on Tennessee marble. It is found that average temperatures at the wearflat contact zone vary directly with frictional force per unit area and are proportional to the one-half power of the cutting speed at the velocities investigated. Temperatures are found to be much more sensitive to decreases in the dynamic friction by lubrication than to increases in convective cooling rates beyond currently achievable levels with water or drilling fluids. It is shown that use of weighted drilling fluids may actually decrease cooling rates compared to those achieved with pure water. It is doubtful that tool temperatures can be kept below critical levels (750/sup 0/C) if air is employed as the drilling fluid. The degree of tool wear is found to have a major influence on the thermal response of the friction contact zone, so that for equal heating per contact area, a worn tool will run much hotter than a sharp tool. It is concluded that tool temperatures may be kept below critical levels with conventional water or mud cooling as long as the fluid provides good cutter-rock lubrication.

  14. On the turbulent friction layer for rising pressure

    NASA Technical Reports Server (NTRS)

    Wieghardt, K; Tillmann, W

    1951-01-01

    Among the information presented are included displacement, momentum, and kinetic energy thicknesses, shearing stress distributions across boundary layer, and surface friction coefficients. The Gruschwitz method and its modifications are examined and tested. An energy theorem for the turbulent boundary layer is introduced and discussed but does not lead to a method for the prediction of the behavior of the turbulent boundary layer because relations for the shearing stress and the surface friction are lacking.

  15. Friction and wear of polyethylene oxide polymer having a range of molecular weights

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1978-01-01

    Sliding friction and wear experiments were conducted at light loads (25 to 250 g) with various molecular weights of the polyethylene oxide polymer sliding on itself and iron. Results of the experimental investigation indicate that: (1) the coefficient of friction for the polymer decreases with increasing molecular weight; (2) friction coefficient is higher for the polymer sliding on itself than it is for the polymer sliding on iron; (3) at sufficiently high loads localized surface melting occurs and the friction coefficient is the same for the polymer sliding on itself and iron; (4) fracture cracks develop in the sliding wear track at higher but not lower sliding velocities, reflecting a strain rate sensitivity to crack initiation, and (5) the friction coefficient for the polymer sliding on iron increases with the formation of a polymer film on the iron surface.

  16. Anisotropic friction and wear of single-crystal manganese-zinc ferrite in contact with itself

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted with manganese-zinc ferrite (100), (110), (111), and (211) planes in contact with themselves. Mating the highest-atomic-density directions, (110), of matched crystallographic planes resulted in the lowest coefficients of friction. Mating matched (same) high-atomic-density planes and matched (same)crystallographic directions resulted in low coefficients of friction. Mating dissimilar crystallographic planes, however, did not give significantly different friction results from those with matched planes. Sliding caused cracking and the formation of hexagonal- and rectangular-platelet wear debris on ferrite surfaces, primarily from cleavage of the (110) planes.

  17. Friction differences between aliphatic and aromatic structures in lubrication of titanium

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1975-01-01

    Sliding friction experiments were conducted with a titanium (0001) single crystal surface with various adsorbed aliphatic and aromatic compounds containing the same number of carbon atoms. An Auger emission spectroscopy analysis was used to monitor the presence of the organic lubricating compounds. Results of the investigation indicate that hexane and benzene give the same friction coefficients over a range of loads. At light loads the friction decreased with an increase in the halogen atom size where the halogens chlorine, bromine, and iodine are incorporated into the benzene molecular structure. The aliphatic compounds chlorohexane and bromohexane exhibited lower friction coefficients than the aromatic structures chlorobenzene and bromobenzene.

  18. Improving friction performance of cast iron by laser shock peening

    NASA Astrophysics Data System (ADS)

    Feng, Xu; Zhou, Jianzhong; Huang, Shu; Sheng, Jie; Mei, Yufen; Zhou, Hongda

    2015-05-01

    According to different purpose, some high or low friction coefficient of the material surface is required. In this study, micro-dent texture was fabricated on cast iron specimens by a set of laser shock peening (LSP) experiments under different laser energy, with different patterns of micro dimples in terms of the depth over diameter. The mechanism of LSP was discussed and surface morphology of the micro dimples were investigated by utilizing a Keyence KS-1100 3D optical surface profilometer. The tests under the conditions of dry and lubricating sliding friction were accomplished on the UMT-2 apparatus. The performance of treated samples during friction and wear tests were characterized and analyzed. Based on theoretical analysis and experimental study, friction performance of textured and untextured samples were studied and compared. Morphological characteristics were observed by scanning electron microscope (SEM) and compared after friction tests under dry condition. The results showed that friction coefficient of textured samples were obvious changed than smooth samples. It can be seen that LSP is an effective way to improve the friction performance of cast iron by fabricating high quality micro dimples on its surface, no matter what kind of engineering application mentioned in this paper.

  19. Friction and wear in surface micromachined tribological test devices

    SciTech Connect

    Senft, D.C.; Dugger, M.T.

    1997-08-01

    We report on the design, construction, and initial testing of surface micromachined devices for measuring friction and wear. The devices measure friction coefficients on both horizontal deposited polysilicon surfaces and vertical etched polysilicon surfaces. The contact geometry of the rubbing surfaces is well-defined, and a method is presented for the determination of the normal and frictional forces. Initial observations on test devices which have been dried with supercritical CO{sub 2} and devices coated with octadecyltrichlorosilane suggest that the coatings increase the lifetime of the devices and the repeatability of the results.

  20. Ultralow friction of carbonate faults caused by thermal decomposition.

    PubMed

    Han, Raehee; Shimamoto, Toshihiko; Hirose, Takehiro; Ree, Jin-Han; Ando, Jun-Ichi

    2007-05-11

    High-velocity weakening of faults may drive fault motion during large earthquakes. Experiments on simulated faults in Carrara marble at slip rates up to 1.3 meters per second demonstrate that thermal decomposition of calcite due to frictional heating induces pronounced fault weakening with steady-state friction coefficients as low as 0.06. Decomposition produces particles of tens of nanometers in size, and the ultralow friction appears to be associated with the flash heating on an ultrafine decomposition product. Thus, thermal decomposition may be an important process for the dynamic weakening of faults.

  1. Friction. Macroscale superlubricity enabled by graphene nanoscroll formation.

    PubMed

    Berman, Diana; Deshmukh, Sanket A; Sankaranarayanan, Subramanian K R S; Erdemir, Ali; Sumant, Anirudha V

    2015-06-05

    Friction and wear remain as the primary modes of mechanical energy dissipation in moving mechanical assemblies; thus, it is desirable to minimize friction in a number of applications. We demonstrate that superlubricity can be realized at engineering scale when graphene is used in combination with nanodiamond particles and diamondlike carbon (DLC). Macroscopic superlubricity originates because graphene patches at a sliding interface wrap around nanodiamonds to form nanoscrolls with reduced contact area that slide against the DLC surface, achieving an incommensurate contact and substantially reduced coefficient of friction (~0.004). Atomistic simulations elucidate the overall mechanism and mesoscopic link bridging the nanoscale mechanics and macroscopic experimental observations.

  2. Effect of Al2O3 on the friction performance of P/M composite materials for friction applications

    NASA Astrophysics Data System (ADS)

    Ivǎnuş, R. C.; ǎnuş, D., IV; Cǎlmuc, F.

    2010-06-01

    Bronze bearings are one of most used friction materials. In those applications where higher mechanical properties are needed, iron base bearings can be an alternative to bronze base materials, or other alloying elements added to bronze. The paper presents the results obtained in metal matrix composites field with friction characteristics, for automotive brakes, by P/M. The scope of these researches was the improvement of wear resistance and friction properties of metal matrix composites. Friction-wear properties of the Al2O3 reinforced samples were measured and compared with those of plain bronze based ones. For this purpose, density, hardness, friction coefficient wear behaviour of the samples were tested.Microstructures of samples before and after sintering and worn surfaces were also investigated by scanning electron microscopy (SEM), and the wear types were determined. The optimum friction-wear behaviour was obtained in the sample compacted at 500 MPa and sintered at 820°C. Density of the final samples decreased with increasing the amount of reinforcing elements (Al2O3) before presintering. However after sintering, there is no change in density of the samples including reinforcing elements (Al2O3). With increasing friction surface temperature, a reduction in the friction coefficient of the samples was observed. However, the highest reductions in the friction coefficients were observed in the as-received samples containing 0,5% reinforced Al2O3. The SEM images of the sample indicated that while bronze-based break lining material without Al2O3 showed abrasive wear behaviour, increasing the amount of Al2O3 resulted in a change of abrasive to adhesive wear mechanism. With increasing the amount of reinforcing Al2O3, wear resistance of the samples was increased. However samples reinforced with 5% and 6% Al2O3 showed the best results.

  3. Pressure-viscosity coefficient of biobased lubricants

    USDA-ARS?s Scientific Manuscript database

    Film thickness is an important tribological property that is dependent on the combined effect of lubricant properties, material property of friction surfaces, and the operating conditions of the tribological process. Pressure-viscosity coefficient (PVC) is one of the lubricant properties that influe...

  4. Friction in volcanic environments

    NASA Astrophysics Data System (ADS)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  5. Dry friction of microstructured polymer surfaces inspired by snake skin

    PubMed Central

    Heepe, Lars; Fadeeva, Elena; Gorb, Stanislav N

    2014-01-01

    Summary The microstructure investigated in this study was inspired by the anisotropic microornamentation of scales from the ventral body side of the California King Snake (Lampropeltis getula californiae). Frictional properties of snake-inspired microstructured polymer surface (SIMPS) made of epoxy resin were characterised in contact with a smooth glass ball by a microtribometer in two perpendicular directions. The SIMPS exhibited a considerable frictional anisotropy: Frictional coefficients measured along the microstructure were about 33% lower than those measured in the opposite direction. Frictional coefficients were compared to those obtained on other types of surface microstructure: (i) smooth ones, (ii) rough ones, and (iii) ones with periodic groove-like microstructures of different dimensions. The results demonstrate the existence of a common pattern of interaction between two general effects that influence friction: (1) molecular interaction depending on real contact area and (2) the mechanical interlocking of both contacting surfaces. The strongest reduction of the frictional coefficient, compared to the smooth reference surface, was observed at a medium range of surface structure dimensions suggesting a trade-off between these two effects. PMID:25161844

  6. Friction forces on atoms after acceleration

    SciTech Connect

    Intravaia, Francesco; Mkrtchian, Vanik E.; Buhmann, Stefan Yoshi; Scheel, Stefan; Dalvit, Diego A. R.; Henkel, Carsten

    2015-05-12

    The aim of this study is to revisit the calculation of atom–surface quantum friction in the quantum field theory formulation put forward by Barton (2010 New J. Phys. 12 113045). We show that the power dissipated into field excitations and the associated friction force depend on how the atom is boosted from being initially at rest to a configuration in which it is moving at constant velocity (v) parallel to the planar interface. In addition, we point out that there is a subtle cancellation between the one-photon and part of the two-photon dissipating power, resulting in a leading order contribution to the frictional power which goes as v4. These results are also confirmed by an alternative calculation of the average radiation force, which scales as v3.

  7. Friction forces on atoms after acceleration

    DOE PAGES

    Intravaia, Francesco; Mkrtchian, Vanik E.; Buhmann, Stefan Yoshi; ...

    2015-05-12

    The aim of this study is to revisit the calculation of atom–surface quantum friction in the quantum field theory formulation put forward by Barton (2010 New J. Phys. 12 113045). We show that the power dissipated into field excitations and the associated friction force depend on how the atom is boosted from being initially at rest to a configuration in which it is moving at constant velocity (v) parallel to the planar interface. In addition, we point out that there is a subtle cancellation between the one-photon and part of the two-photon dissipating power, resulting in a leading order contributionmore » to the frictional power which goes as v4. These results are also confirmed by an alternative calculation of the average radiation force, which scales as v3.« less

  8. Effects of sustained interstitial fluid pressurization under migrating contact area, and boundary lubrication by synovial fluid, on cartilage friction.

    PubMed

    Caligaris, M; Ateshian, G A

    2008-10-01

    This experimental study tests two hypotheses which address outstanding questions in cartilage lubrication: can the friction coefficient remain low under sustained physiological loading conditions? How effective is synovial fluid (SF) in the lubrication of articular cartilage? Based on theory, it is hypothesized that migrating contact areas can maintain elevated cartilage interstitial fluid pressurization, thus a low friction coefficient, indefinitely. It is also hypothesized that the beneficial effects of SF stem from boundary lubrication rather than fluid-film lubrication. Five experiments were conducted on immature bovine femoro-tibial joints, to compare the frictional response under migrating vs stationary contact areas; the frictional response in SF vs saline; the role of sliding velocity and the role of congruence on the friction coefficient. Migrating contact area could maintain a low friction coefficient under sustained physiological conditions of loading for at least 1 h. SF reduced the friction coefficient by a factor of approximately 1.5 relative to saline. However, interstitial fluid pressurization was far more effective, reducing the friction coefficient by a factor of approximately 60 relative to equilibrium (zero-pressure) conditions. It was confirmed that SF acts as a boundary lubricant. These results emphasize the importance of interstitial fluid pressurization on the frictional response of cartilage. They imply that the mechanical integrity of cartilage must be maintained to produce low friction in articular joints. The more limited effectiveness of SF implies that intra-articular injections of lubricants in degenerated joints may have only limited effectiveness on their tribological properties.

  9. Debris-bed friction of hard-bedded glaciers

    NASA Astrophysics Data System (ADS)

    Cohen, D.; Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Jackson, M.; Moore, P. L.

    2005-06-01

    Field measurements of debris-bed friction on a smooth rock tablet at the bed of Engabreen, a hard-bedded, temperate glacier in northern Norway, indicated that basal ice containing 10% debris by volume exerted local shear traction of up to 500 kPa. The corresponding bulk friction coefficient between the dirty basal ice and the tablet was between 0.05 and 0.08. A model of friction in which nonrotating spherical rock particles are held in frictional contact with the bed by bed-normal ice flow can account for these measurements if the power law exponent for ice flowing past large clasts is 1. A small exponent (n < 2) is likely because stresses in ice are small and flow is transient. Numerical calculations of the bed-normal drag force on a sphere in contact with a flat bed using n = 1 show that this force can reach values several hundred times that on a sphere isolated from the bed, thus drastically increasing frictional resistance. Various estimates of basal friction are obtained from this model. For example, the shear traction at the bed of a glacier sliding at 20 m a-1 with a geothermally induced melt rate of 0.006 m a-1 and an effective pressure of 300 kPa can exceed 100 kPa. Debris-bed friction can therefore be a major component of sliding resistance, contradicting the common assumption that debris-bed friction is negligible.

  10. Debris-Bed Friction of Hard-Bedded Glaciers

    NASA Astrophysics Data System (ADS)

    Cohen, D.; Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Jackson, M.; Moore, P. L.

    2004-12-01

    Field measurements of debris-bed friction on a smooth rock tablet at the bed of Engabreen, a hard-bedded, temperate glacier in northern Norway, indicated that basal ice containing 10% debris by volume exerted local shear traction of up to 500~kPa. The corresponding bulk friction coefficient between the dirty basal ice and the tablet was between 0.05 and 0.08. A model of friction in which non-rotating spherical rock particles are held in frictional contact with the bed by bed-normal ice flow can account for these measurements if ice is Newtonian. Numerical calculations of the bed-normal drag force on a sphere in contact with a flat bed show that this force can reach values several hundred times that on a sphere isolated from the bed, thus drastically increasing frictional resistance. Various estimates of basal friction are obtained from this model. For example, the shear traction at the bed of a 200~m thick glacier sliding at 20~m a-1 with a geothermally induced melt rate of 0.006~m a-1 can exceed 100~kPa. Debris-bed friction can, therefore, be a major component of sliding resistance, contradicting the common assumption that debris-bed friction is negligible.

  11. Friction of drill bits under Martian pressure

    NASA Astrophysics Data System (ADS)

    Zacny, K. A.; Cooper, G. A.

    2007-03-01

    Frictional behavior was investigated for two materials that are good candidates for Mars drill bits: Diamond Impregnated Segments and Polycrystalline Diamond Compacts (PDC). The bits were sliding against dry sandstone and basalt rocks under both Earth and Mars atmospheric pressures and also at temperatures ranging from subzero to over 400 °C. It was found that the friction coefficient dropped from approximately 0.16 to 0.1 as the pressure was lowered from the Earth's pressure to Mars' pressure, at room temperature. This is thought to be a result of the loss of weakly bound water on the sliding surfaces. Holding the pressure at 5 torr and increasing the temperature to approximately 200°C caused a sudden increase in the friction coefficient by approximately 50%. This is attributed to the loss of surface oxides. If no indication of the bit temperature is available, an increase in drilling torque could be misinterpreted as being caused by an increase in auger torque (due to accumulation of cuttings) rather than being the result of a loss of oxide layers due to elevated bit temperatures. An increase in rotational speed (to allow for clearing of cuttings) would then cause greater frictional heating and would increase the drilling torque further. Therefore it would be advisable to monitor the bit temperature or, if that is not possible, to include pauses in drilling to allow the heat to dissipate. Higher friction would also accelerate the wear of the drill bit and in turn reduce the depth of the hole.

  12. Experimental heat transfer and friction in channels roughened with angled, V-shaped, and discrete ribs on two opposite walls

    SciTech Connect

    Taslim, M.E.; Li, T.; Kercher, D.M.

    1996-01-01

    Experimental investigations have shown that the enhancement in heat transfer coefficients for air flow in a channel roughened with angled ribs is on the average higher than that roughened with 90 deg ribs of the same geometry. Secondary flows generated by the angled ribs are believed to be responsible for these higher heat transfer coefficients. In an effort basically to double the area of high heat transfer coefficients, the angled rib is broken at the center to form a V-shaped rib, and tests are conducted to investigate the resulting heat transfer coefficients and friction factors. Three different square rib geometries, corresponding to blockage ratios of 0.083, 0.125, and 0.167, with a fixed pitch-to-height ratio of 10, mounted on two opposite walls of a square channel in a staggered configuration, are tested in a stationary channel for 5,000 < Re < 30,000. Heat transfer coefficients, friction factors, and thermal performances are compared with those of 90 deg, 45 deg, and discrete angled ribs. The V-shaped ribs are tested for both pointing upstream and downstream of the main flow. Test results show that: (a) 90 deg ribs represent the lowest thermal performance, based on the same pumping power, and is essentially the same for the 2:1 change in blockage ratio, (b) low-blockage-ratio (E/D{sub h} = 0.083) V-shaped ribs pointing downstream produced the highest heat transfer enhancement and friction factors. Among all other geometries with blockage ratios of 0.125 and 0.167, 45 deg ribs showed the highest heat transfer enhancements with friction factors less than those of V-shaped ribs, (c) thermal performance of 45 deg ribs and the lowest blockage discrete ribs are among the highest of the geometries tested in this investigation, and (d) discrete angled ribs, although inferior to 45 deg and V-shaped ribs, produce much higher heat transfer coefficients and lower friction factors compared to 90 deg ribs.

  13. Frictional Evolution of Schists during Seismic Slip

    NASA Astrophysics Data System (ADS)

    Chae, S.; Ree, J.; Hirose, T.; Lee, S.

    2012-12-01

    Pseudotachylytes (PT) of pelitic rocks are relatively rare, although there have been some reports on natural and experimental PT of argillites and siltstones. Thus our knowledge on earthquake mechanics in pelitic rocks is limited. The conventional wisdom for the rare occurrence of pelitic PT is that dehydration of phyllosilicate minerals due to frictional heating during seismic slip increases the pore pressure and facilitates thermal pressurization to work as a main slip weakening mechanism. We performed high-velocity-rotary-shear experiments on mica schists at seismic slip rates (up to 1.3 ms-1) and at normal stress of 2-16 MPa to understand the earthquake faulting mechanics and microstructural evolution of metapelites. The simulated fault zones show two transient peak frictions followed by a final slip weakening to reach a steady-state friction with friction coefficient of 0.16 to 0.5. The steady-state friction decreases with an increase in slip velocity, indicating a velocity-weakening behavior. Also, steady-state friction decreases with an increase in normal stress. The fault zone consists of a principal slip zone (PSZ) mantled by damage zone (DZ). The fracture density and grain size in DZ increases and decreases toward PSZ, respectively. The quartz grains of DZ tend to exhibit patchy undulose extinction and deformation bands, while those of the wall rock are mostly strain-free. Biotite grains of DZ become darker toward the PSZ in plane-polarized light and the darker color is presumably due to tiny holes produced by incipient dehydration of biotite. The PSZ is a molten layer laden with clasts of quartz and plagioclase. The melt composition of the central PSZ is felsic, whereas that of the marginal PSZ is mafic. To figure out the reason for the compositionally layered configuration of the melt in PSZ, microstructural analyses using electron microscopies and correlation of microstructural evolution with mechanical evolution are underway.

  14. Effects of vermiculite on the tribological behavior of PI-matrix friction materials

    NASA Astrophysics Data System (ADS)

    Xu, X. L.; Lu, X.; Yang, D. L.; Zhang, E.

    2015-07-01

    Effects of vermiculite as a friction modifier on brake friction performance of PI-matrix materials have been tested. PI-matrix friction materials with different vermiculite content (0%, 5%, 10%, 15%, 20% in wt) were prepared by the heat-press molding method. The friction tests were carried out on a pin-on-disk tester in the speed range of 20∼120 km/h. The experimental results indicate that the effects of vermiculite on the friction and wear performance of the materials are closely related to the friction speed. At low friction speeds (between 20∼40 km/h), the friction coefficient increases with the increasing of vermiculite content. At high friction speeds (between 60∼120 km/h), the friction coefficient increases at first when vermiculite content below 10 wt% and then decreases with vermiculite content increasing. The wear rate decreases by adding 5 wt% vermiculite, and then increases. As the