Sample records for average horizontal velocity

  1. Velocity of mist droplets and suspending gas imaged separately

    NASA Astrophysics Data System (ADS)

    Kuethe, Dean O.; McBride, Amber; Altobelli, Stephen A.

    2012-03-01

    Nuclear Magnetic Resonance Images (MRIs) of the velocity of water droplets and velocity of the suspending gas, hexafluoroethane, are presented for a vertical and horizontal mist pipe flow. In the vertical flow, the upward velocity of the droplets is clearly slower than the upward velocity of the gas. The average droplet size calculated from the average falling velocity in the upward flow is larger than the average droplet size of mist drawn from the top of the pipe measured with a multi-stage aerosol impactor. Vertical flow concentrates larger particles because they have a longer transit time through the pipe. In the horizontal flow there is a gravity-driven circulation with high-velocity mist in the lower portion of the pipe and low-velocity gas in the upper portion. MRI has the advantages that it can image both phases and that it is unperturbed by optical opacity. A drawback is that the droplet phase of mist is difficult to image because of low average spin density and because the signal from water coalesced on the pipe walls is high. To our knowledge these are the first NMR images of mist.

  2. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s

    USGS Publications Warehouse

    Boore, D.M.; Atkinson, G.M.

    2008-01-01

    This paper contains ground-motion prediction equations (GMPEs) for average horizontal-component ground motions as a function of earthquake magnitude, distance from source to site, local average shear-wave velocity, and fault type. Our equations are for peak ground acceleration (PGA), peak ground velocity (PGV), and 5%-damped pseudo-absolute-acceleration spectra (PSA) at periods between 0.01 s and 10 s. They were derived by empirical regression of an extensive strong-motion database compiled by the 'PEER NGA' (Pacific Earthquake Engineering Research Center's Next Generation Attenuation) project. For periods less than 1 s, the analysis used 1,574 records from 58 mainshocks in the distance range from 0 km to 400 km (the number of available data decreased as period increased). The primary predictor variables are moment magnitude (M), closest horizontal distance to the surface projection of the fault plane (RJB), and the time-averaged shear-wave velocity from the surface to 30 m (VS30). The equations are applicable for M=5-8, RJB<200 km, and VS30= 180-1300 m/s. ?? 2008, Earthquake Engineering Research Institute.

  3. Relationship between different push-off variables and start performance in experienced swimmers.

    PubMed

    García-Ramos, Amador; Feriche, Belén; de la Fuente, Blanca; Argüelles-Cienfuegos, Javier; Strojnik, Vojko; Strumbelj, Boro; Štirn, Igor

    2015-01-01

    The objective of this study was to determine the relationship between different variables measured with a force plate during the swimming start push-off phase and start performance presented by times to 5, 10 and 15 m. Twenty-one women from the Slovenian national swimming team performed two different swim starts (freestyle and undulatory) on a portable force plate to a distance further than 15 m. Correlations between push-off variables and times to 5, 10 and 15 m were quantified through Pearson's product-moment correlation coefficient (r). The variables that significantly correlated (p < .05) to all times measured in the two starts performed were: average horizontal acceleration (freestyle: r = -0.58 to -0.71; and undulatory: r = -0.55 to -0.66), horizontal take-off velocity (freestyle: r = -0.56 to -0.69; and undulatory: r = -0.53 to -0.67) and resultant take-off velocity (freestyle: r = -0.53 to -0.65; and undulatory: r = -0.52 to -0.61). None of the variables derived from the vertical force were correlated to swimming start performance (p > .05). Based on the results of this study, we can conclude that horizontal take-off velocity and average horizontal acceleration (calculated as the average horizontal force divided by swimmer's body mass) are the variables most related to swimming start performance in experienced swimmers, and therefore could be the preferred measures to monitor swimmers' efficiency during the push-off phase.

  4. Observations of pockmark flow structure in Belfast Bay, Maine, Part 3: implications for sediment transport

    USGS Publications Warehouse

    Fandel, Christina L.; Lippmann, Thomas C.; Foster, Diane L.; Brothers, Laura L.

    2017-01-01

    Current observations and sediment characteristics acquired within and along the rim of two pockmarks in Belfast Bay, Maine, were used to characterize periods of sediment transport and to investigate conditions favorable to the settling of suspended sediment. Hourly averaged Shields parameters determined from horizontal current velocity profiles within the center of each pockmark never exceed the critical value (approximated with the theoretical model of Dade et al. 1992). However, Shields parameters estimated at the pockmark rims periodically exceed the critical value, consistent with conditions that support the onset of sediment transport and suspension. Below the rim in the near-center of each pockmark, depth-averaged vertical velocities were less than zero (downward) 60% and 55% of the time in the northern and southern pockmarks, and were often comparable to depth-averaged horizontal velocities. Along the rim, depth-averaged vertical velocities over the lower 8 m of the water column were primarily downward but much less than depth-averaged horizontal velocities indicating that suspended sediment may be moved to distant locations. Maximum grain sizes capable of remaining in suspension under terminal settling flow conditions (ranging 10–170 μm) were typically much greater than the observed median grain diameter (about 7 μm) at the bed. During upwelling flow within the pockmarks, and in the absence of flocculation, suspended sediment would not settle. The greater frequency of predicted periods of sediment transport along the rim of the southern pockmark is consistent with pockmark morphology in Belfast Bay, which transitions from more spherical to more elongated toward the south, suggesting near-bed sediment transport may contribute to post-formation pockmark evolution during typical conditions in Belfast Bay.

  5. Nonhyperbolic reflection moveout for horizontal transverse isotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Dajani, A.F.; Tsvankin, I.

    1998-09-01

    The transversely isotropic model with a horizontal axis of symmetry (HTI) has been used extensively in studies of shear-wave splitting to describe fractured formations with a single system of parallel vertical penny-shaped cracks. Here, the authors present an analytic description of long-spread reflection moveout in horizontally layered HTI media with arbitrary strength of anisotropy. To account for nonhyperbolic moveout, the authors have derived an exact expression for the azimuthally dependent quartic term of the Taylor series traveltime expansion valid for any pure mode in an HTI layer. The quartic moveout coefficient and the NMO velocity are then substituted into themore » nonhyperbolic moveout equation of Tsvankin and Thomsen, originally designed for vertical transverse isotropy (VTI). In multilayered HTI media, the NMO velocity and the quartic moveout coefficient reflect the influence of layering as well as azimuthal anisotropy. The authors show that the conventional Dix equation for NMO velocity remains entirely valid for any azimuth in HTI media if the group-velocity vectors (rays) for data in a common-midpoint (CMP) gather do not deviate from the vertical incidence plane. Although this condition is not exactly satisfied in the presence of azimuthal velocity variations, rms averaging of the interval NMO velocities represents a good approximation for models with moderate azimuthal anisotropy. Furthermore, the quartic moveout coefficient for multilayered HTI media can also be calculated with acceptable accuracy using the known averaging equations for vertical transverse isotropy. This allows one to extend the nonhyperbolic moveout equation to horizontally stratified media composed of any combination of isotropic, VTI, and HTI layers.« less

  6. Lunar near-surface shear wave velocities at the Apollo landing sites as inferred from spectral amplitude ratios

    NASA Technical Reports Server (NTRS)

    Horvath, P.; Latham, G. V.; Nakamura, Y.; Dorman, H. J.

    1980-01-01

    The horizontal-to-vertical amplitude ratios of the long-period seismograms are reexamined to determine the shear wave velocity distributions at the Apollo 12, 14, 15, and 16 lunar landing sites. Average spectral ratios, computed from a number of impact signals, were compared with spectral ratios calculated for the fundamental mode Rayleigh waves in media consisting of homogeneous, isotropic, horizontal layers. The shear velocities of the best fitting models at the different sites resemble each other and differ from the average for all sites by not more than 20% except for the bottom layer at station 14. The shear velocities increase from 40 m/s at the surface to about 400 m/s at depths between 95 and 160 m at the various sites. Within this depth range the velocity-depth functions are well represented by two piecewise linear segments, although the presence of first-order discontinuities cannot be ruled out.

  7. Effect of neck flexor muscle activation on impact velocity of the head during backward falls in young adults.

    PubMed

    Choi, W J; Robinovitch, S N; Ross, S A; Phan, J; Cipriani, D

    2017-11-01

    Falls are a common cause of traumatic brain injuries (TBI) across the lifespan. A proposed but untested hypothesis is that neck muscle activation influences impact severity and risk for TBI during a fall. We conducted backward falling experiments to test whether activation of the neck flexor muscles facilitates the avoidance of head impact, and reduces impact velocity if the head contacts the ground. Young adults (n=8) fell from standing onto a 30cm thick gymnastics mat while wearing a helmet. Participants were instructed to fall backward and (a) prevent their head from impacting the mat ("no head impact" trials); (b) allow their head to impact the mat, but with minimal impact severity ("soft impact" trials); and (c) allow their head to impact the mat, while inhibiting efforts to reduce impact severity ("hard impact" trials). Trial type associated with peak magnitude of electromyographic activity of the sternocleidomastoid (SCM) muscles (p<0.017), and with the vertical and horizontal velocity of the head at impact (p<0.001). Peak SCM activations, expressed as percent maximal voluntary isometric contraction (%MVIC), averaged 75.3, 67.5, and 44.5%MVIC in "no head impact", "soft impact", and "hard impact" trials, respectively. When compared to "soft impact" trials, vertical impact velocities in "hard impact" trials averaged 87% greater (3.23 versus 1.73m/s) and horizontal velocities averaged 83% greater (2.74 versus 1.50m/s). For every 10% increase in SCM %MVIC, vertical impact velocity decreased 0.24m/s and horizontal velocity decreased 0.22m/s. We conclude that SCM activation contributes to the prevention and modulation of head impact severity during backward falls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effects of static orientation upon human optokinetic afternystagmus

    NASA Technical Reports Server (NTRS)

    Wall, C. 3rd; Merfeld, D. M.; Zupan, L.

    1999-01-01

    "Normal" human subjects were placed in a series of 5 static orientations with respect to gravity and were asked to view an optokinetic display moving at a constant angular velocity. The axis of rotation coincided with the subject's rostro-caudal axis and produced horizontal optokinetic nystagmus and afternystagmus. Wall (1) previously reported that these optokinetic afternystagmus responses were not well characterized by parametric fits to slow component velocity. The response for nose-up, however, was larger than for nose-down. This suggested that the horizontal eye movements measured during optokinetic stimulation might include an induced linear VOR component as presented in the body of this paper. To investigate this hypothesis, another analysis of these data has been made using cumulative slow component eye position. Some subjects' responses had reversals in afternystagmus direction. These reversals were "filled in" by a zero slow component velocity. This method of analysis gives a much more consistent result across subjects and shows that, on average, responses from the nose-down horizontal (prone) orientation are greatly reduced (p < 0.05) compared to other horizontal and vertical orientations. Average responses are compared to responses predicted by a model previously used to predict successfully the responses to post-rotatory nystagmus after earth horizontal axis rotation. Ten of 11 subjects had larger responses in their supine than their prone orientation. Application of horizontal axis optokinetic afternystagmus for clinical otolith function testing, and implications for altered gravity experiments are discussed.

  9. Should tsunami simulations include a nonzero initial horizontal velocity?

    NASA Astrophysics Data System (ADS)

    Lotto, Gabriel C.; Nava, Gabriel; Dunham, Eric M.

    2017-08-01

    Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require initial conditions on sea surface height and depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). Full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor confirm that substantial horizontal momentum is imparted to the ocean. However, almost all of that initial momentum is carried away by ocean acoustic waves, with negligible momentum imparted to the tsunami. We also compare tsunami propagation in each simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial velocity. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves from ocean acoustic and seismic waves at some final time, and backpropagating the tsunami waves to their initial state by solving the adjoint problem. The resulting initial conditions have negligible horizontal velocity.[Figure not available: see fulltext.

  10. A Unified Theory for Plants and Plant Structure

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin E.

    1998-04-01

    The wave theory provides for quantization of plant structure. If one measures many spacings between plant structures it becomes apparent that certain spacings repeat from plant to plant. These spacings are associated with certain discrete frequencies associated with plant operation. When a branch grows it extend by one or more of discrete half wavelengths associated with permitted frequencies. If conditions are optimum it grows by the larger permitted half wavelengths. The angle that the branch makes with the vertical also determines the length because vertical wave velocities are in general larger than horizontal wave velocities as mentioned in the previous abstract. It also appears that cell dimensions are determined by permitted wavelengths. In conifer fiber cells it appears that there is an exact ratio between the average reciprocals of vertical lengths and horizontal reciprocal averages with a value of 1.50 in the data taken so far. Similar ratios for external structure spacings include 1.50, 1.25, 1.33, 1.66, 3.0, These ratios appear to represent ratios of vertical to horizontal velocities (Wagner 1996). See the Wagner web page.

  11. Distractor interference during smooth pursuit eye movements.

    PubMed

    Spering, Miriam; Gegenfurtner, Karl R; Kerzel, Dirk

    2006-10-01

    When 2 targets for pursuit eye movements move in different directions, the eye velocity follows the vector average (S. G. Lisberger & V. P. Ferrera, 1997). The present study investigates the mechanisms of target selection when observers are instructed to follow a predefined horizontal target and to ignore a moving distractor stimulus. Results show that at 140 ms after distractor onset, horizontal eye velocity is decreased by about 25%. Vertical eye velocity increases or decreases by 1 degrees /s in the direction opposite from the distractor. This deviation varies in size with distractor direction, velocity, and contrast. The effect was present during the initiation and steady-state tracking phase of pursuit but only when the observer had prior information about target motion. Neither vector averaging nor winner-take-all models could predict the response to a moving to-be-ignored distractor during steady-state tracking of a predefined target. The contributions of perceptual mislocalization and spatial attention to the vertical deviation in pursuit are discussed. Copyright 2006 APA.

  12. Influence of Tennis Racquet Kinematics on Ball Topspin Angular Velocity and Accuracy during the Forehand Groundstroke.

    PubMed

    Kwon, Sunku; Pfister, Robin; Hager, Ronald L; Hunter, Iain; Seeley, Matthew K

    2017-12-01

    Forehand groundstroke effectiveness is important for tennis success. Ball topspin angular velocity (TAV) and accuracy are important for forehand groundstroke effectiveness, and have been extensively studied, previously; despite previous, quality studies, it was unclear whether certain racquet kinematics relate to ball TAV and shot accuracy during the forehand groundstroke. This study evaluated potential relationships between (1) ball TAV and (2) forehand accuracy, and five measures of racquet kinematics: racquet head impact angle (i.e., closed or open face), horizontal and vertical racquet head velocity before impact, racquet head trajectory (resultant velocity direction, relative to horizontal) before impact, and hitting zone length (quasi-linear displacement, immediately before and after impact). Thirteen collegiate-level tennis players hit forehand groundstrokes in a biomechanics laboratory, where racquet kinematics and ball TAV were measured, and on a tennis court, to assess accuracy. Correlational statistics were used to evaluate potential relationships between racquet kinematics, and ball TAV (mixed model) and forehand accuracy (between-subjects model; α = 0.05). We observed an average (1) racquet head impact angle, (2) racquet head trajectory before impact, relative to horizontal, (3) racquet head horizontal velocity before impact, (4) racquet head vertical velocity before impact, and (5) hitting zone length of 80.4 ± 3.6˚, 18.6 ± 4.3˚, 15.4 ± 1.4 m·s -1 , 6.6 ± 2.2 m·s -1 , and 79.8 ± 8.6 mm, respectively; and an average ball TAV of 969 ± 375 revolutions per minute. Only racquet head impact angle and racquet head vertical velocity, before impact, significantly correlated with ball TAV (p < 0.01). None of the observed racquet kinematics significantly correlated to the measures of forehand accuracy. These results confirmed mechanical logic and indicate that increased ball TAV is associated with a more closed racquet head impact angle (ranging from 70 to 85˚, relative to the ground) and increased racquet head vertical velocity before impact.

  13. Should tsunami models use a nonzero initial condition for horizontal velocity?

    NASA Astrophysics Data System (ADS)

    Nava, G.; Lotto, G. C.; Dunham, E. M.

    2017-12-01

    Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require two initial conditions: one on sea surface height and another on depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). We run several full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor, using both idealized structures and a more realistic Tohoku structure. Substantial horizontal momentum is imparted to the ocean, but almost all momentum is carried away in the form of ocean acoustic waves. We compare tsunami propagation in each full-physics simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial conditions. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves (from ocean acoustic and seismic waves) at some final time, and backpropagating the tsunami waves to their initial state by solving the adjoint problem. The resulting initial conditions have negligible horizontal velocity.

  14. Climatology of Neutral vertical winds in the midlatitude thermosphere

    NASA Astrophysics Data System (ADS)

    Kerr, R.; Kapali, S.; Riccobono, J.; Migliozzi, M. A.; Noto, J.; Brum, C. G. M.; Garcia, R.

    2017-12-01

    More than one thousand measurements of neutral vertical winds, relative to an assumed average of 0 m/s during a nighttime period, have been made at Arecibo Observatory and the Millstone Hill Optical Facility since 2012, using imaging Fabry-Perot interferometers. These instruments, tuned to the 630 nm OI emission, are carefully calibrated for instrumental frequency drift using frequency stabilized lasers, allowing isolation of Doppler motion in the zenith with 1-2 m/s accuracy. As one example of the results, relative vertical winds at Arecibo during quiet geomagnetic conditions near winter solstice 2016, range ±70 m/s and have a one standard deviation statistical variability of ±34 m/s. This compares with a ±53 m/s deviation from the average meridional wind, and a ±56 m/s deviation from the average zonal wind measured during the same period. Vertical neutral wind velocities for all periods range from roughly 30% - 60% of the horizontal velocity domain at Arecibo. At Millstone Hill, the vertical velocities relative to horizontal velocities are similar, but slightly smaller. The midnight temperature maximum at Arecibo is usually correlated with a surge in the upward wind, and vertical wind excursions of more than 80 m/s are common during magnetic storms at both sites. Until this compilation of vertical wind climatology, vertical motions of the neutral atmosphere outside of the auroral zone have generally been assumed to be very small compared to horizontal transport. In fact, excursions from small vertical velocities in the mid-latitude thermosphere near the F2 ionospheric peak are common, and are not isolated events associated with unsettled geomagnetic conditions or other special dynamic conditions.

  15. Kinematics and Kinetics of Maximum Running Speed in Youth Across Maturity.

    PubMed

    Rumpf, Michael C; Cronin, John B; Oliver, Jonathan; Hughes, Michael

    2015-05-01

    Sprinting is an important physical capacity and the development of sprint ability can take place throughout the athlete's growth. The purpose of this study therefore was to determine if the kinematics and kinetics associated with maximum sprint velocity differs in male youth participants of different maturity status (pre, mid- and postpeak height velocity (PHV)) and if maximum sprint velocity is determined by age, maturity or individual body size measurement. Participants (n = 74) sprinted over 30 meters on a nonmotorized treadmill and the fastest four consecutive steps were analyzed. Pre-PHV participants were found to differ significantly (p < .05) to mid- and post-PHV participants in speed, step length, step frequency, vertical and horizontal force, and horizontal power (~8-78%). However, only relative vertical force and speed differed significantly between mid and post-PHV groups. The greatest average percent change in kinetics and kinematics was observed from pre- to mid-PHV (37.8%) compared with mid- to post- PHV groups (11.6%). When maturity offset was entered as a covariate, there was no significant difference in velocity between the three groups. However, all groups were significantly different from each other when age was chosen as the covariate. The two best predictors of maximal velocity within each maturity group were power and horizontal force (R2 = 97-99%) indicating the importance of horizontal force application while sprinting. Finally, maturity explained 83% of maximal velocity across all groups.

  16. Influence of Tennis Racquet Kinematics on Ball Topspin Angular Velocity and Accuracy during the Forehand Groundstroke

    PubMed Central

    Kwon, Sunku; Pfister, Robin; Hager, Ronald L.; Hunter, Iain; Seeley, Matthew K.

    2017-01-01

    Forehand groundstroke effectiveness is important for tennis success. Ball topspin angular velocity (TAV) and accuracy are important for forehand groundstroke effectiveness, and have been extensively studied, previously; despite previous, quality studies, it was unclear whether certain racquet kinematics relate to ball TAV and shot accuracy during the forehand groundstroke. This study evaluated potential relationships between (1) ball TAV and (2) forehand accuracy, and five measures of racquet kinematics: racquet head impact angle (i.e., closed or open face), horizontal and vertical racquet head velocity before impact, racquet head trajectory (resultant velocity direction, relative to horizontal) before impact, and hitting zone length (quasi-linear displacement, immediately before and after impact). Thirteen collegiate-level tennis players hit forehand groundstrokes in a biomechanics laboratory, where racquet kinematics and ball TAV were measured, and on a tennis court, to assess accuracy. Correlational statistics were used to evaluate potential relationships between racquet kinematics, and ball TAV (mixed model) and forehand accuracy (between-subjects model; α = 0.05). We observed an average (1) racquet head impact angle, (2) racquet head trajectory before impact, relative to horizontal, (3) racquet head horizontal velocity before impact, (4) racquet head vertical velocity before impact, and (5) hitting zone length of 80.4 ± 3.6˚, 18.6 ± 4.3˚, 15.4 ± 1.4 m·s-1, 6.6 ± 2.2 m·s-1, and 79.8 ± 8.6 mm, respectively; and an average ball TAV of 969 ± 375 revolutions per minute. Only racquet head impact angle and racquet head vertical velocity, before impact, significantly correlated with ball TAV (p < 0.01). None of the observed racquet kinematics significantly correlated to the measures of forehand accuracy. These results confirmed mechanical logic and indicate that increased ball TAV is associated with a more closed racquet head impact angle (ranging from 70 to 85˚, relative to the ground) and increased racquet head vertical velocity before impact. Key points The study confirmed previous research that two key racquet kinematic variables, near impact, are significantly correlated to ball topspin angular velocity, during the forehand groundstroke: racquet head impact angle (i.e., open or closed racquet face) and racquet vertical velocity, before impact. The trajectory (direction of resultant velocity) and horizontal velocity of the racquet head before impact, and length of hitting zone were not significantly correlated to ball topspin angular velocity, or shot placement accuracy, during the tennis forehand groundstroke, for skilled male players. Hitting zone length was smaller than expected for skilled tennis players performing the forehand groundstroke. PMID:29238250

  17. An evaluation of borehole flowmeters used to measure horizontal ground-water flow in limestones of Indiana, Kentucky, and Tennessee, 1999

    USGS Publications Warehouse

    Wilson, John T.; Mandell, Wayne A.; Paillet, Frederick L.; Bayless, E. Randall; Hanson, Randall T.; Kearl, Peter M.; Kerfoot, William B.; Newhouse, Mark W.; Pedler, William H.

    2001-01-01

    Three borehole flowmeters and hydrophysical logging were used to measure ground-water flow in carbonate bedrock at sites in southeastern Indiana and on the westcentral border of Kentucky and Tennessee. The three flowmeters make point measurements of the direction and magnitude of horizontal flow, and hydrophysical logging measures the magnitude of horizontal flowover an interval. The directional flowmeters evaluated include a horizontal heat-pulse flowmeter, an acoustic Doppler velocimeter, and a colloidal borescope flowmeter. Each method was used to measure flow in selected zones where previous geophysical logging had indicated water-producing beds, bedding planes, or other permeable features that made conditions favorable for horizontal-flow measurements. Background geophysical logging indicated that ground-water production from the Indiana test wells was characterized by inflow from a single, 20-foot-thick limestone bed. The Kentucky/Tennessee test wells produced water from one or more bedding planes where geophysical logs indicated the bedding planes had been enlarged by dissolution. Two of the three test wells at the latter site contained measurable vertical flow between two or more bedding planes under ambient hydraulic head conditions. Field measurements and data analyses for each flow-measurement technique were completed by a developer of the technology or by a contractor with extensive experience in the application of that specific technology. Comparison of the horizontal-flow measurements indicated that the three point-measurement techniques rarely measured the same velocities and flow directions at the same measurement stations. Repeat measurements at selected depth stations also failed to consistently reproduce either flow direction, flow magnitude, or both. At a few test stations, two of the techniques provided similar flow magnitude or direction but usually not both. Some of this variability may be attributed to naturally occurring changes in hydraulic conditions during the 1-month study period in August and September 1999. The actual velocities and flow directions are unknown; therefore, it is uncertain which technique provided the most accurate measurements of horizontal flow in the boreholes and which measurements were most representative of flow in the aquifers. The horizontal heat-pulse flowmeter consistently yielded flow magnitudes considerably less than those provided by the acoustic Doppler velocimeter and colloidal borescope. The design of the horizontal heat-pulse flowmeter compensates for the local acceleration of ground-water velocity in the open borehole. The magnitude of the velocities estimated from the hydrophysical logging were comparable to those of the horizontal heat-pulse flowmeter, presumably because the hydrophysical logging also effectively compensates for the effect of the borehole on the flow field and averages velocity over a length of borehole rather than at a point. The acoustic Doppler velocimeter and colloidal borescope have discrete sampling points that allow for measuring preferential flow velocities that can be substantially higher than the average velocity through a length of borehole. The acoustic Doppler velocimeter and colloidal borescope also measure flow at the center of the borehole where the acceleration of the flow field should be greatest. Of the three techniques capable of measuring direction and magnitude of horizontal flow, only the acoustic Doppler velocimeter measured vertical flow. The acoustic Doppler velocimeter consistently measured downward velocity in all test wells. This apparent downward flow was attributed, in part, to particles falling through the water column as a result of mechanical disturbance during logging. Hydrophysical logging yielded estimates of vertical flow in the Kentucky/Tennessee test wells. In two of the test wells, the hydrophysical logging involved deliberate isolation of water-producing bedding planes with a packer to ensure that small horizontal flow could be quantified without the presence of vertical flow. The presence of vertical flow in the Kentucky/Tennessee test wells may preclude the definitive measurement of horizontal flow without the use of effective packer devices. None of the point-measurement techniques used a packer, but each technique used baffle devices to help suppress the vertical flow. The effectiveness of these baffle devices is not known; therefore, the effect of vertical flow on the measurements cannot be quantified. The general lack of agreement among the point-measurement techniques in this study highlights the difficulty of using measurements at a single depth point in a borehole to characterize the average horizontal flow in a heterogeneous aquifer. The effective measurement of horizontal flow may depend on the precise depth at which measurements are made, and the measurements at a given depth may vary over time as hydraulic head conditions change. The various measurements also demonstrate that the magnitude and possibly the direction of horizontal flow are affected by the presence of the open borehole. Although there is a lack of agreement among the measurement techniques, these results could mean that effective characterization of horizontal flow in heterogeneous aquifers might be possible if data from many depth stations and from repeat measurements can be averaged over an extended time period. Complications related to vertical flow in the borehole highlights the importance of using background logging methods like vertical flowmeters or hydrophysical logging to characterize the borehole environment before horizontal-flow measurements are attempted. If vertical flow is present, a packer device may be needed to acquire definitive measurements of horizontal flow. Because hydrophysical logging provides a complete depth profile of the borehole, a strength of this technique is in identifying horizontal- and vertical-flow zones in a well. Hydrophysical logging may be most applicable as a screening method. Horizontal- flow zones identified with the hydrophysical logging then could be evaluated with one of the point-measurement techniques for quantifying preferential flow zones and flow directions. Additional research is needed to determine how measurements of flow in boreholes relate to flow in bedrock aquifers. The flowmeters may need to be evaluated under controlled laboratory conditions to determine which of the methods accurately measure ground-water velocities and flow directions. Additional research also is needed to investigate variations in flow direction with time, daily changes in velocity, velocity corrections for fractured bedrock aquifers and unconsolidated aquifers, and directional differences in individual wells for hydraulically separated flow zones.

  18. Variation in velocity of cytoplasmic streaming and gravity effect in characean internodal cells measured by laser-Doppler-velocimetry.

    PubMed

    Ackers, D; Hejnowicz, Z; Sievers, A

    1994-01-01

    Velocities of cytoplasmic streaming were measured in internodal cells of Nitella flexilis L. and Chara corallina Klein ex Willd. by laser-Doppler-velocimetry to investigate the possibility of non-statolith-based perception of gravity. This was recently proposed, based on a report of gravity-dependent polarity of cytoplasmic streaming. Our measurements revealed large spatial and temporal variation in streaming velocity within a cell, independent of the position of the cell with respect to the direction of gravity. In 58% of the horizontally positioned cells the velocities of acropetal and basipetal streaming, measured at opposite locations in the cell, differed significantly. In 45% of these, basipetal streaming was faster than acropetal streaming. In 60% of the vertically positioned cells however the difference was significant, downward streaming was faster in only 61% of these. When cell positions were changed from vertical to horizontal and vice versa the cells reacted variably. A significant difference between velocities in one direction, before and after the change, was observed in approx. 70% of the measurements, but the velocity was faster in the downward direction, as the second position, in only 70% of the significantly different. The ratio of basipetal to acropetal streaming velocities at opposite locations of a cell was quite variable within groups of cells with a particular orientation (horizontal, normal vertical, inverted vertical). On average, however, the ratio was close to 1.00 in the horizontal position and approx. 1.03 in the normal vertical position (basipetal streaming directed downwards), which indicates a small direct effect of gravity on streaming velocity. Individual cells, however, showed an increased, as well as a decreased, ratio when moved from the horizontal to the vertical position. No discernible effect of media (either Ca(2+)-buffered medium or 1.2% agar in distilled water) on the streaming velocities was observed. The above mentioned phenomenon of graviperception is not supported by our data.

  19. Two-dimensional, average velocity field across the Asal Rift, Djibouti from 1997-2008 RADARSAT data

    NASA Astrophysics Data System (ADS)

    Tomic, J.; Doubre, C.; Peltzer, G.

    2009-12-01

    Located at the western end of the Aden ridge, the Asal Rift is the first emerged section of the ridge propagating into Afar, a region of intense volcanic and tectonic activity. We construct a two-dimensional surface velocity map of the 200x400 km2 region covering the rift using the 1997-2008 archive of InSAR data acquired from ascending and descending passes of the RADARSAT satellite. The large phase signal due to turbulent troposphere conditions over the Afar region is mostly removed from the 11-year average line of sight (LOS) velocity maps, revealing a clear deformation signal across the rift. We combine the ascending and descending pass LOS velocity fields with the Arabia-Somalia pole of rotation adjusted to regional GPS velocities (Vigny et al., 2007) to compute the fields of the vertical and horizontal, GPS-parallel components of the velocity over the rift. The vertical velocity field shows a ~40 km wide zone of doming centered over the Fieale caldera associated with shoulder uplift and subsidence of the rift inner floor. Differential movement between shoulders and floor is accommodated by creep at 6 mm/yr on Fault γ and 2.7 mm/yr on Fault E. The horizontal field shows that the two shoulders open at a rate of ~15 mm/yr, while the horizontal velocity decreases away from the rift to the plate motion rate of ~11 mm/yr. Part of the opening is concentrated on faults γ (5 mm/yr) and E (4 mm/yr) and about 4 mm/yr is distributed between Fault E and Fault H in the southern part of the rift. The observed velocity field along a 60 km-long profile across the eastern part of the rift can be explained with a 2D mechanical model involving a 5-9 km-deep, vertical dyke expanding horizontally at a rate of 5 cm/yr, a 2 km-wide, 7 km-deep sill expanding vertically at 1cm/yr, and down-dip and opening of faults γ and E. Results from 3D rift models describing along-strike velocity decrease away from the Goubbet Gulf and the effects of a pressurized magma chamber will be presented.

  20. First results on quiet and magnetic granulation from SOUP

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Tarbell, T. D.; Acton, L.; Duncan, D.; Ferguson, S. H.; Finch, M.; Frank, Z.; Kelly, G.; Lindgren, R.; Morrill, M.

    1987-01-01

    The flight of Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 allowed the collection of time sequences of diffraction limited (0.5 arc sec) granulation images with excellent pointing (0.003 arc sec) and completely free of the distortion that plagues groundbased images. The p-mode oscillations are clearly seen in the data. Using Fourier transforms in the temporal and spatial domain, it was shown that the p-modes dominate the autocorrelation lifetime in magnetic regions. When these oscillations are removed the autocorrelation lifetime is found to be 500 sec in quiet and 950 sec in magnetic regions. In quiet areas exploding granules are seen to be common. It is speculated that a significant fraction of granule lifetimes are terminated by nearby explosions. Using local correlation tracking techniques it was able to measure horizontal displacements, and thus transverse velocities, in the magnetic field. In quiet sun it is possible to detect both super and mesogranulation. Horizontal velocities are as great as 1000 m/s and the average velocity is 400 m/s. In magnetic regions horizontal velocities are much less, about 100 m/s.

  1. First results on quiet and magnetic granulation from SOUP

    NASA Astrophysics Data System (ADS)

    Title, A. M.; Tarbell, T. D.; Acton, L.; Duncan, D.; Ferguson, S. H.; Finch, M.; Frank, Z.; Kelly, G.; Lindgren, R.; Morrill, M.

    1987-09-01

    The flight of Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 allowed the collection of time sequences of diffraction limited (0.5 arc sec) granulation images with excellent pointing (0.003 arc sec) and completely free of the distortion that plagues groundbased images. The p-mode oscillations are clearly seen in the data. Using Fourier transforms in the temporal and spatial domain, it was shown that the p-modes dominate the autocorrelation lifetime in magnetic regions. When these oscillations are removed the autocorrelation lifetime is found to be 500 sec in quiet and 950 sec in magnetic regions. In quiet areas exploding granules are seen to be common. It is speculated that a significant fraction of granule lifetimes are terminated by nearby explosions. Using local correlation tracking techniques it was able to measure horizontal displacements, and thus transverse velocities, in the magnetic field. In quiet sun it is possible to detect both super and mesogranulation. Horizontal velocities are as great as 1000 m/s and the average velocity is 400 m/s. In magnetic regions horizontal velocities are much less, about 100 m/s.

  2. A Comparative Analysis of Selected Mechanical Aspects of the Ice Skating Stride.

    ERIC Educational Resources Information Center

    Marino, G. Wayne

    This study quantitatively analyzes selected aspects of the skating strides of above-average and below-average ability skaters. Subproblems were to determine how stride length and stride rate are affected by changes in skating velocity, to ascertain whether the basic assumption that stride length accurately approximates horizontal movement of the…

  3. Large-scale variability of wind erosion mass flux rates at Owens Lake 1. Vertical profiles of horizontal mass fluxes of wind-eroded particles with diameter greater than 50 μm

    USGS Publications Warehouse

    Gillette, Dale A.; Fryrear, D.W.; Xiao, Jing Bing; Stockton, Paul; Ono, Duane; Helm, Paula J.; Gill, Thomas E; Ley, Trevor

    1997-01-01

    A field experiment at Owens (dry) Lake, California, tested whether and how the relative profiles of airborne horizontal mass fluxes for >50-μm wind-eroded particles changed with friction velocity. The horizontal mass flux at almost all measured heights increased proportionally to the cube of friction velocity above an apparent threshold friction velocity for all sediment tested and increased with height except at one coarse-sand site where the relative horizontal mass flux profile did not change with friction velocity. Size distributions for long-time-averaged horizontal mass flux samples showed a saltation layer from the surface to a height between 30 and 50 cm, above which suspended particles dominate. Measurements from a large dust source area on a line parallel to the wind showed that even though the saltation flux reached equilibrium ∼650 m downwind of the starting point of erosion, weakly suspended particles were still input into the atmosphere 1567 m downwind of the starting point; thus the saltating fraction of the total mass flux decreased after 650 m. The scale length difference and ratio of 70/30 suspended mass flux to saltation mass flux at the farthest down wind sampling site confirm that suspended particles are very important for mass budgets in large source areas and that saltation mass flux can be a variable fraction of total horizontal mass flux for soils with a substantial fraction of <100-μm particles.

  4. Influence of thermo-gravitational convection in the flow of liquid metal in a horizontal pipe with a longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Akhmedagaev, R.; Listratov, Y.

    2017-11-01

    The direct numerical simulation (DNS) of MHD-heat transfer problems in turbulent flow of liquid metal (LM) in a horizontal pipe with a joint effect of the longitudinal magnetic field (MF) and thermo-gravitational convection (TGC). The authors calculated the effect of TGC in a strong longitudinal MF for a homogeneous heating. Investigated the averaged fields of velocity and temperature, heat transfer characteristics, the distribution of wall temperature along the perimeter of the cross section of the pipe. The effect of TGC on the velocity field is affected stronger than in the temperature field.

  5. Spatial correlation of shear-wave velocity in the San Francisco Bay Area sediments

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.

    2007-01-01

    Ground motions recorded within sedimentary basins are variable over short distances. One important cause of the variability is that local soil properties are variable at all scales. Regional hazard maps developed for predicting site effects are generally derived from maps of surficial geology; however, recent studies have shown that mapped geologic units do not correlate well with the average shear-wave velocity of the upper 30 m, Vs(30). We model the horizontal variability of near-surface soil shear-wave velocity in the San Francisco Bay Area to estimate values in unsampled locations in order to account for site effects in a continuous manner. Previous geostatistical studies of soil properties have shown horizontal correlations at the scale of meters to tens of meters while the vertical correlations are on the order of centimeters. In this paper we analyze shear-wave velocity data over regional distances and find that surface shear-wave velocity is correlated at horizontal distances up to 4 km based on data from seismic cone penetration tests and the spectral analysis of surface waves. We propose a method to map site effects by using geostatistical methods based on the shear-wave velocity correlation structure within a sedimentary basin. If used in conjunction with densely spaced shear-wave velocity profiles in regions of high seismic risk, geostatistical methods can produce reliable continuous maps of site effects. ?? 2006 Elsevier Ltd. All rights reserved.

  6. Frontal dynamics at the edge of the Columbia River plume

    NASA Astrophysics Data System (ADS)

    Akan, Çiğdem; McWilliams, James C.; Moghimi, Saeed; Özkan-Haller, H. Tuba

    2018-02-01

    In the tidal ebb-cycle at the Mouth of the Columbia River, strong density and velocity fronts sometimes form perpendicular to the coast at the edges of the freshwater plume. They are distinct from previously analyzed fronts at the offshore western edge of the plume that evolve as a gravity-wave bore. We present simulation results to demonstrate their occurrence and investigate the mechanisms behind their frontogenesis and evolution. Tidal velocities on average ranged between 1.5 m s-1 in flood and 2.5 m s-1 in ebb during the brief hindcast period. The tidal fronts exhibit strong horizontal velocity and buoyancy gradients on a scale ∼ 100 m in width with normalized relative vorticity (ζz/f) values reaching up to 50. We specifically focus on the front on the northern edge of the plume and examine the evolution in plume characteristics such as its water mass gradients, horizontal and vertical velocity structure, vertical velocity, turbulent vertical mixing, horizontal propagation, cross-front momentum balance, and Lagrangian frontogenetic tendencies in both buoyancy and velocity gradients. Advective frontogenesis leads to a very sharp front where lateral mixing near the grid-resolution limit arrests its further contraction. The negative vorticity within the front is initiated by the positive bottom drag curl on the north side of the Columbia estuary and against the north jetty. Because of the large negative vorticity and horizontal vorticity gradient, centrifugal and lateral shear instability begins to develop along the front, but frontal fragmentation and decay set in only after the turn of the tide because of the briefness of the ebb interval.

  7. Evaluation of a new model of aeolian transport in the presence of vegetation

    USGS Publications Warehouse

    Li, Junran; Okin, Gregory S.; Herrick, Jeffrey E.; Belnap, Jayne; Miller, Mark E.; Vest, Kimberly; Draut, Amy E.

    2013-01-01

    Aeolian transport is an important characteristic of many arid and semiarid regions worldwide that affects dust emission and ecosystem processes. The purpose of this paper is to evaluate a recent model of aeolian transport in the presence of vegetation. This approach differs from previous models by accounting for how vegetation affects the distribution of shear velocity on the surface rather than merely calculating the average effect of vegetation on surface shear velocity or simply using empirical relationships. Vegetation, soil, and meteorological data at 65 field sites with measurements of horizontal aeolian flux were collected from the Western United States. Measured fluxes were tested against modeled values to evaluate model performance, to obtain a set of optimum model parameters, and to estimate the uncertainty in these parameters. The same field data were used to model horizontal aeolian flux using three other schemes. Our results show that the model can predict horizontal aeolian flux with an approximate relative error of 2.1 and that further empirical corrections can reduce the approximate relative error to 1.0. The level of error is within what would be expected given uncertainties in threshold shear velocity and wind speed at our sites. The model outperforms the alternative schemes both in terms of approximate relative error and the number of sites at which threshold shear velocity was exceeded. These results lend support to an understanding of the physics of aeolian transport in which (1) vegetation's impact on transport is dependent upon the distribution of vegetation rather than merely its average lateral cover and (2) vegetation impacts surface shear stress locally by depressing it in the immediate lee of plants rather than by changing the bulk surface's threshold shear velocity. Our results also suggest that threshold shear velocity is exceeded more than might be estimated by single measurements of threshold shear stress and roughness length commonly associated with vegetated surfaces, highlighting the variation of threshold shear velocity with space and time in real landscapes.

  8. Microtremor exploration for shallow S-wave velocity structure in Bandung Basin, Indonesia

    NASA Astrophysics Data System (ADS)

    Pramatadie, Andi Muhamad; Yamanaka, Hiroaki; Chimoto, Kosuke; Afnimar Collaboration; Koketsu, Kazuki; Sakaue, Minoru; Miyake, Hiroe; Sengara, I. Wayan; Sadisun, Imam A.

    2017-05-01

    We have conducted a microtremor survey for shallow S-wave velocity profiles to be used for seismic hazard evaluation in the Bandung Basin, Indonesia. In the survey, two arrays were deployed temporarily at each of 29 sites, by installing seven vertical sensors in triangular configurations with side lengths from 1 to 16 m. Records of vertical microtremors from each array were used to estimate Rayleigh wave phase velocity spectra using the spatial autocorrelation method, as well as the horizontal-to-vertical spectral ratio obtained at the centre of the arrays. Phase velocities at sites on the basin margin exhibit higher values than those obtained in the central part of the basin, in a frequency range of 7 to 30 Hz. The phase velocity data were used to deduce S-wave velocity profiles of shallow soil using a hybrid heuristic inversion method. We validated our inversion models by comparing observed horizontal-to-vertical spectral ratios with ellipticities of the fundamental mode of Rayleigh waves, calculated for the inversion models. The S-wave velocity profiles in the area can be characterised by two soft layers over a firm engineering basement that has an S-wave velocity of 500 m/s. The S-wave velocities of the two layers are 120 and 280 m/s on average. The distribution of the averaged S-wave velocity in the top 30 m clearly indicates low values in the eastern central part and high values in the edge of the basin. The amplification is large in the areas with low velocity layers. In addition, we have proposed an empirical relation between the amplification factor and the topographical slope in the area.

  9. Threshold Velocity for Saltation Activity in the Taklimakan Desert

    NASA Astrophysics Data System (ADS)

    Yang, Xinghua; He, Qing; Matimin, Ali; Yang, Fan; Huo, Wen; Liu, Xinchun; Zhao, Tianliang; Shen, Shuanghe

    2017-12-01

    The threshold velocity is an indicator of a soil's susceptibility to saltation activity and is also an important parameter in dust emission models. In this study, the saltation activity, atmospheric conditions, and soil conditions were measured from 1 August 2008 to 31 July 2009 in the Taklimakan Desert, China. the threshold velocity was estimated using the Gaussian time fraction equivalence method. At 2 m height, the 1-min averaged threshold velocity varied between 3.5 and 10.9 m/s, with a mean of 5.9 m/s. Threshold velocities varying between 4.5 and 7.5 m/s accounted for about 91.4% of all measurements. The average threshold velocity displayed clear seasonal variations in the following sequence: winter (5.1 m/s) < autumn (5.8 m/s) < spring (6.1 m/s) < summer (6.5 m/s). A regression equation of threshold velocity was established based on the relations between daily mean threshold velocity and air temperature, specific humidity, and soil volumetric moisture content. High or moderate positive correlations were found between threshold velocity and air temperature, specific humidity, and soil volumetric moisture content (air temperature r = 0.75; specific humidity r = 0.59; and soil volumetric moisture content r = 0.55; sample size = 251). In the study area, the observed horizontal dust flux was 4198.0 kg/m during the whole period of observation, while the horizontal dust flux calculated using the threshold velocity from the regression equation was 4675.6 kg/m. The correlation coefficient between the calculated result and the observations was 0.91. These results indicate that atmospheric and soil conditions should not be neglected in parameterization schemes for threshold velocity.

  10. Fluid forces or impacts: What governs the entrainment of soil particles in sediment transport mediated by a Newtonian fluid?

    NASA Astrophysics Data System (ADS)

    Pähtz, Thomas; Durán, Orencio

    2017-07-01

    In steady sediment transport, the deposition of transported particles is balanced by the entrainment of soil bed particles by the action of fluid forces or particle-bed impacts. Here we propose a proxy to determine the role of impact entrainment relative to entrainment by the mean turbulent flow: the "bed velocity" Vb, which is an effective near-bed-surface value of the average horizontal particle velocity that generalizes the classical slip velocity, used in studies of aeolian saltation transport, to sediment transport in an arbitrary Newtonian fluid. We study Vb for a wide range of the particle-fluid-density ratio s , Galileo number Ga , and Shields number Θ using direct sediment transport simulations with the numerical model of Durán et al. [Phys. Fluids 24, 103306 (2012), 10.1063/1.4757662], which couples the discrete element method for the particle motion with a continuum Reynolds-averaged description of hydrodynamics. We find that transport is fully sustained through impact entrainment (i.e., Vb is constant in natural units) when the "impact number" Im =Ga √{s +0.5 }≳20 or Θ ≳5 /Im . These conditions are obeyed for the vast majority of transport regimes, including steady turbulent bedload, which has long been thought to be sustained solely through fluid entrainment. In fact, we find that transport is fully sustained through fluid entrainment (i.e., Vb scales with the near-bed horizontal fluid velocity) only for sufficiently viscous bedload transport at grain scale (i.e., for Im ≲20 and Θ ≲1 /Im ). Finally, we do not find a strong correlation between Vb, or the classical slip velocity, and the transport-layer-averaged horizontal particle velocity vx¯, which challenges the long-standing consensus that predominant impact entrainment is responsible for a linear scaling of the transport rate with Θ . For turbulent bedload in particular, vx¯ increases with Θ despite Vb remaining constant, which we propose is linked to the formation of a liquidlike bed on top of the static-bed surface.

  11. Numerical investigation of flow motion and performance of a horizontal axis tidal turbine subjected to a steady current

    NASA Astrophysics Data System (ADS)

    Li, Lin-juan; Zheng, Jin-hai; Peng, Yu-xuan; Zhang, Ji-sheng; Wu, Xiu-guang

    2015-04-01

    Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k- ɛ model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.

  12. Spatial orientation of optokinetic nystagmus and ocular pursuit during orbital space flight

    NASA Technical Reports Server (NTRS)

    Moore, Steven T.; Cohen, Bernard; Raphan, Theodore; Berthoz, Alain; Clement, Gilles

    2005-01-01

    On Earth, eye velocity of horizontal optokinetic nystagmus (OKN) orients to gravito-inertial acceleration (GIA), the sum of linear accelerations acting on the head and body. We determined whether adaptation to micro-gravity altered this orientation and whether ocular pursuit exhibited similar properties. Eye movements of four astronauts were recorded with three-dimensional video-oculography. Optokinetic stimuli were stripes moving horizontally, vertically, and obliquely at 30 degrees/s. Ocular pursuit was produced by a spot moving horizontally or vertically at 20 degrees/s. Subjects were either stationary or were centrifuged during OKN with 1 or 0.5 g of interaural or dorsoventral centripetal linear acceleration. Average eye position during OKN (the beating field) moved into the quick-phase direction by 10 degrees during lateral and upward field movement in all conditions. The beating field did not shift up during downward OKN on Earth, but there was a strong upward movement of the beating field (9 degrees) during downward OKN in the absence of gravity; this likely represents an adaptation to the lack of a vertical 1-g bias in-flight. The horizontal OKN velocity axis tilted 9 degrees in the roll plane toward the GIA during interaural centrifugation, both on Earth and in space. During oblique OKN, the velocity vector tilted towards the GIA in the roll plane when there was a disparity between the direction of stripe motion and the GIA, but not when the two were aligned. In contrast, dorsoventral acceleration tilted the horizontal OKN velocity vector 6 degrees in pitch away from the GIA. Roll tilts of the horizontal OKN velocity vector toward the GIA during interaural centrifugation are consistent with the orientation properties of velocity storage, but pitch tilts away from the GIA when centrifuged while supine are not. We speculate that visual suppression during OKN may have caused the velocity vector to tilt away from the GIA during dorsoventral centrifugation. Vertical OKN and ocular pursuit did not exhibit orientation toward the GIA in any condition. Static full-body roll tilts and centrifugation generating an equivalent interaural acceleration produced the same tilts in the horizontal OKN velocity before and after flight. Thus, the magnitude of tilt in OKN velocity was dependent on the magnitude of interaural linear acceleration, rather than the tilt of the GIA with regard to the head. These results favor a 'filter' model of spatial orientation in which orienting eye movements are proportional to the magnitude of low frequency interaural linear acceleration, rather than models that postulate an internal representation of gravity as the basis for spatial orientation.

  13. Radioisotope measurements of the liquid-gas flow in the horizontal pipeline using phase method

    NASA Astrophysics Data System (ADS)

    Hanus, Robert; Zych, Marcin; Jaszczur, Marek; Petryka, Leszek; Świsulski, Dariusz

    2018-06-01

    The paper presents application of the gamma-absorption method to a two-phase liquid-gas flow investigation in a horizontal pipeline. The water-air mixture was examined by a set of two Am-241 radioactive sources and two NaI(Tl) scintillation probes. For analysis of the electrical signals obtained from detectors the cross-spectral density function (CSDF) was applied. Results of the gas phase average velocity measurements for CSDF were compared with results obtained by application of the classical cross-correlation function (CCF). It was found that the combined uncertainties of the gas-phase velocity in the presented experiments did not exceed 1.6% for CSDF method and 5.5% for CCF.

  14. Velocity and void distribution in a counter-current two-phase flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabriel, S.; Schulenberg, T.; Laurien, E.

    2012-07-01

    Different flow regimes were investigated in a horizontal channel. Simulating a hot leg injection in case of a loss of coolant accident or flow conditions in reflux condenser mode, the hydraulic jump and partially reversed flow were identified as major constraints for a high amount of entrained water. Trying to simulate the reflux condenser mode, the test section now includes an inclined section connected to a horizontal channel. The channel is 90 mm high and 110 mm wide. Tests were carried out for water and air at ambient pressure and temperature. High speed video-metry was applied to obtain velocities frommore » flow pattern maps of the rising and falling fluid. In the horizontal part of the channel with partially reversed flow the fluid velocities were measured by planar particle image velocimetry. To obtain reliable results for the gaseous phase, this analysis was extended by endoscope measurements. Additionally, a new method based on the optical refraction at the interface between air and water in a back-light was used to obtain time-averaged void fraction. (authors)« less

  15. Inherent Variability in Short-time Wind Turbine Statistics from Turbulence Structure in the Atmospheric Surface Layer

    NASA Astrophysics Data System (ADS)

    Lavely, Adam; Vijayakumar, Ganesh; Brasseur, James; Paterson, Eric; Kinzel, Michael

    2011-11-01

    Using large-eddy simulation (LES) of the neutral and moderately convective atmospheric boundary layers (NBL, MCBL), we analyze the impact of coherent turbulence structure of the atmospheric surface layer on the short-time statistics that are commonly collected from wind turbines. The incoming winds are conditionally sampled with a filtering and thresholding algorithm into high/low horizontal and vertical velocity fluctuation coherent events. The time scales of these events are ~5 - 20 blade rotations and are roughly twice as long in the MCBL as the NBL. Horizontal velocity events are associated with greater variability in rotor power, lift and blade-bending moment than vertical velocity events. The variability in the industry standard 10 minute average for rotor power, sectional lift and wind velocity had a standard deviation of ~ 5% relative to the ``infinite time'' statistics for the NBL and ~10% for the MCBL. We conclude that turbulence structure associated with atmospheric stability state contributes considerable, quantifiable, variability to wind turbine statistics. Supported by NSF and DOE.

  16. Reconstruction of Horizontal Plasma Motions at the Photosphere from Intensitygrams: A Comparison Between DeepVel, LCT, FLCT, and CST

    NASA Astrophysics Data System (ADS)

    Tremblay, Benoit; Roudier, Thierry; Rieutord, Michel; Vincent, Alain

    2018-04-01

    Direct measurements of plasma motions in the photosphere are limited to the line-of-sight component of the velocity. Several algorithms have therefore been developed to reconstruct the transverse components from observed continuum images or magnetograms. We compare the space and time averages of horizontal velocity fields in the photosphere inferred from pairs of consecutive intensitygrams by the LCT, FLCT, and CST methods and the DeepVel neural network in order to identify the method that is best suited for generating synthetic observations to be used for data assimilation. The Stein and Nordlund ( Astrophys. J. Lett. 753, L13, 2012) magnetoconvection simulation is used to generate synthetic SDO/HMI intensitygrams and reference flows to train DeepVel. Inferred velocity fields show that DeepVel performs best at subgranular and granular scales and is second only to FLCT at mesogranular and supergranular scales.

  17. Estimating Variances of Horizontal Wind Fluctuations in Stable Conditions

    NASA Astrophysics Data System (ADS)

    Luhar, Ashok K.

    2010-05-01

    Information concerning the average wind speed and the variances of lateral and longitudinal wind velocity fluctuations is required by dispersion models to characterise turbulence in the atmospheric boundary layer. When the winds are weak, the scalar average wind speed and the vector average wind speed need to be clearly distinguished and both lateral and longitudinal wind velocity fluctuations assume equal importance in dispersion calculations. We examine commonly-used methods of estimating these variances from wind-speed and wind-direction statistics measured separately, for example, by a cup anemometer and a wind vane, and evaluate the implied relationship between the scalar and vector wind speeds, using measurements taken under low-wind stable conditions. We highlight several inconsistencies inherent in the existing formulations and show that the widely-used assumption that the lateral velocity variance is equal to the longitudinal velocity variance is not necessarily true. We derive improved relations for the two variances, and although data under stable stratification are considered for comparison, our analysis is applicable more generally.

  18. System for Estimating Horizontal Velocity During Descent

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew; Cheng, Yang; Wilson, Reg; Goguen, Jay; Martin, Alejandro San; Leger, Chris; Matthies, Larry

    2007-01-01

    The descent image motion estimation system (DIMES) is a system of hardware and software, designed for original use in estimating the horizontal velocity of a spacecraft descending toward a landing on Mars. The estimated horizontal velocity is used in generating rocket-firing commands to reduce the horizontal velocity as part of an overall control scheme to minimize the landing impact. DIMES can also be used for estimating the horizontal velocity of a remotely controlled or autonomous aircraft for purposes of navigation and control.

  19. Numerical analysis of the wake of a 10kW HAWT

    NASA Astrophysics Data System (ADS)

    Gong, S. G.; Deng, Y. B.; Xie, G. L.; Zhang, J. P.

    2017-01-01

    With the rising of wind power industry and the ever-growing scale of wind farm, the research for the wake performance of wind turbine has an important guiding significance for the overall arrangement of wind turbines in the large wind farm. The wake simulation model of 10kW horizontal-axis wind turbine is presented on the basis of Averaged Navier-Stokes (RANS) equations and the RNG k-ε turbulence model for applying to the rotational fluid flow. The sliding mesh technique in ANSYS CFX software is used to solve the coupling equation of velocity and pressure. The characters of the average velocity in the wake zone under rated inlet wind speed and different rotor rotational speeds have been investigated. Based on the analysis results, it is proposed that the horizontal spacing between the wind turbines is less than two times radius of rotor, and its longitudinal spacing is less than five times of radius. And other results have also been obtained, which are of great importance for large wind farms.

  20. Estimating the Instantaneous Drag-Wind Relationship for a Horizontally Homogeneous Canopy

    NASA Astrophysics Data System (ADS)

    Pan, Ying; Chamecki, Marcelo; Nepf, Heidi M.

    2016-07-01

    The mean drag-wind relationship is usually investigated assuming that field data are representative of spatially-averaged metrics of statistically stationary flow within and above a horizontally homogeneous canopy. Even if these conditions are satisfied, large-eddy simulation (LES) data suggest two major issues in the analysis of observational data. Firstly, the streamwise mean pressure gradient is usually neglected in the analysis of data from terrestrial canopies, which compromises the estimates of mean canopy drag and provides misleading information for the dependence of local mean drag coefficients on local velocity scales. Secondly, no standard approach has been proposed to investigate the instantaneous drag-wind relationship, a critical component of canopy representation in LES. Here, a practical approach is proposed to fit the streamwise mean pressure gradient using observed profiles of the mean vertical momentum flux within the canopy. Inclusion of the fitted mean pressure gradient enables reliable estimates of the mean drag-wind relationship. LES data show that a local mean drag coefficient that characterizes the relationship between mean canopy drag and the velocity scale associated with total kinetic energy can be used to identify the dependence of the local instantaneous drag coefficient on instantaneous velocity. Iterative approaches are proposed to fit specific models of velocity-dependent instantaneous drag coefficients that represent the effects of viscous drag and the reconfiguration of flexible canopy elements. LES data are used to verify the assumptions and algorithms employed by these new approaches. The relationship between mean canopy drag and mean velocity, which is needed in models based on the Reynolds-averaged Navier-Stokes equations, is parametrized to account for both the dependence on velocity and the contribution from velocity variances. Finally, velocity-dependent drag coefficients lead to significant variations of the calculated displacement height and roughness length with wind speed.

  1. Horizontal supergranule-scale motions inferred from TRACE ultraviolet observations of the chromosphere

    NASA Astrophysics Data System (ADS)

    Tian, H.; Potts, H. E.; Marsch, E.; Attie, R.; He, J.-S.

    2010-09-01

    Aims: We study horizontal supergranule-scale motions revealed by TRACE observation of the chromospheric emission, and investigate the coupling between the chromosphere and the underlying photosphere. Methods: A highly efficient feature-tracking technique called balltracking has been applied for the first time to the image sequences obtained by TRACE (transition region and coronal explorer) in the passband of white light and the three ultraviolet passbands centered at 1700 Å, 1600 Å, and 1550 Å. The resulting velocity fields have been spatially smoothed and temporally averaged in order to reveal horizontal supergranule-scale motions that may exist at the emission heights of these passbands. Results: We find indeed a high correlation between the horizontal velocities derived in the white-light and ultraviolet passbands. The horizontal velocities derived from the chromospheric and photospheric emission are comparable in magnitude. Conclusions: The horizontal motions derived in the UV passbands might indicate the existence of a supergranule-scale magneto-convection in the chromosphere, which may shed new light on the study of mass and energy supply to the corona and solar wind at the height of the chromosphere. However, it is also possible that the apparent motions reflect the chromospheric brightness evolution as produced by acoustic shocks which might be modulated by the photospheric granular motions in their excitation process, or advected partly by the supergranule-scale flow towards the network while propagating upward from the photosphere. To reach a firm conclusion, it is necessary to investigate the role of granular motions in the excitation of shocks through numerical modeling, and future high-cadence chromospheric magnetograms must be scrutinized.

  2. Studies of the Ocean Surface and the Coupling between the Sea and the Atmosphere.

    DTIC Science & Technology

    1984-10-01

    design was developed and built for use - in this work.. A number of new ideas were involved and five patents were assigned to the Navy in the following...close enough that the mounting surface was not involved in the drag. A physical description of the process using entraining slabs of turbulent air allowed...each slab the average turbulence, average horizontal velocity and average dissipation rate are still used . The ve- locity at any given level matches

  3. Radar measurement of the seasonal variation in the velocity of the sunrise terminator

    NASA Astrophysics Data System (ADS)

    Meehan, D. H.

    1990-03-01

    The HF phased-array radar at Bribie Island, Australia, used to measure horizontal movements of the ionosphere, has been calibrated using the known velocity of the sunrise terminator. The seasonal variation in the velocity of the terminator has been resolved, both in magnitud and direction. The technique uses single-station ionospheric sounding, and requires the angle of arrival and Doppler shift of ionospheric echoes to be measured as the terminator passes overhead. Pfister's (1971) theorem allows calculation of the velocity of the reflecting surface. The difference between theory and experiment is less than 3 percent in speed and 2 degrees in direction on average.

  4. Experimental investigation of turbulent diffusion of slightly buoyant droplets in locally isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Gopalan, Balaji; Malkiel, Edwin; Katz, Joseph

    2008-09-01

    High-speed inline digital holographic cinematography is used for studying turbulent diffusion of slightly buoyant 0.5-1.2 mm diameter diesel droplets and 50 μm diameter neutral density particles. Experiments are performed in a 50×50×70 mm3 sample volume in a controlled, nearly isotropic turbulence facility, which is characterized by two dimensional particle image velocimetry. An automated tracking program has been used for measuring velocity time history of more than 17 000 droplets and 15 000 particles. For most of the present conditions, rms values of horizontal droplet velocity exceed those of the fluid. The rms values of droplet vertical velocity are higher than those of the fluid only for the highest turbulence level. The turbulent diffusion coefficient is calculated by integration of the ensemble-averaged Lagrangian velocity autocovariance. Trends of the asymptotic droplet diffusion coefficient are examined by noting that it can be viewed as a product of a mean square velocity and a diffusion time scale. To compare the effects of turbulence and buoyancy, the turbulence intensity (ui') is scaled by the droplet quiescent rise velocity (Uq). The droplet diffusion coefficients in horizontal and vertical directions are lower than those of the fluid at low normalized turbulence intensity, but exceed it with increasing normalized turbulence intensity. For most of the present conditions the droplet horizontal diffusion coefficient is higher than the vertical diffusion coefficient, consistent with trends of the droplet velocity fluctuations and in contrast to the trends of the diffusion timescales. The droplet diffusion coefficients scaled by the product of turbulence intensity and an integral length scale are a monotonically increasing function of ui'/Uq.

  5. Kinematics and dynamics of Nubia-Somalia divergence along the East African rift

    NASA Astrophysics Data System (ADS)

    Stamps, Dorothy Sarah

    Continental rifting is fundamental to the theory of plate tectonics, yet the force balance driving Earth's largest continental rift system, the East African Rift (EAR), remains debated. The EAR actively diverges the Nubian and Somalian plates spanning ˜5000 km N-S from the Red Sea to the Southwest Indian Ridge and ˜3000 km NW-SE from eastern Congo to eastern Madagascar. Previous studies suggest either lithospheric buoyancy forces or horizontal tractions dominate the force balance acting to rupture East Africa. In this work, we investigate the large-scale dynamics of Nubia-Somalia divergence along the EAR driving present-day kinematics. Because Africa is largely surrounded by spreading ridges, we assume plate-plate interactions are minimal and that the major driving forces are gradients in gravitational potential energy (GPE), which includes the effect of vertical mantle tractions, and horizontal basal tractions arising from viscous coupling to horizontal mantle flow. We quantify a continuous strain rate and velocity field based on kinematic models, an updated GPS velocity solution, and the style of earthquake focal mechanisms, which we use as an observational constraint on surface deformation. We solve the 3D force balance equations and calculate vertically averaged deviatoric stress for a 100 km thick lithosphere constrained by the CRUST2.0 crustal density and thickness model. By comparing vertically integrated deviatoric stress with integrated lithospheric strength we demonstrate forces arising from gradients in gravitational potential energy are insufficient to rupture strong lithosphere, hence weakening mechanisms are required to initiate continental rupture. The next step involves inverting for a stress field boundary condition that is the long-wavelength minimum energy deviatoric stress field required to best-fit the style of our continuous strain rate field in addition to deviatoric stress from gradients in GPE. We infer the stress field boundary condition is an estimate of basal shear stress from viscous coupling to horizontal mantle flow. The stress field boundary condition is small (˜1.6 MPa) compared to deviatoric stress from GPE gradients (8-20 MPa) and does not improve the fit to surface deformation indicators more than 8% when combined with deviatoric stress from GPE gradients. Hence we suggest the style of deformation across the EAR can be explained by forces derived from gradients in GPE. We then calculate dynamic velocities using two types of forward models to solve the instantaneous momentum equations. One method is regional and requires vertically averaged effective viscosity to define lithospheric structure with velocity boundary conditions and a free-slip basal boundary condition. The second is a global model that accounts for a brittle upper crust and viscous mantle lithosphere with velocity boundary conditions imposed at the base of the lithosphere from 5 mantle flow models. With both methods we find deformation driven by internal lithospheric buoyancy forces provides the best-fit to GPS observations of surface velocities on the Somalian plate. We find that any additional contribution from horizontal tractions results in overpredicting surface velocities. This work indicates horizontal mantle flow plays a minimal role in Nubia-Somalia divergence and the EAR is driven largely by gradients in GPE.

  6. Distractor Interference during Smooth Pursuit Eye Movements

    ERIC Educational Resources Information Center

    Spering, Miriam; Gegenfurtner, Karl R.; Kerzel, Dirk

    2006-01-01

    When 2 targets for pursuit eye movements move in different directions, the eye velocity follows the vector average (S. G. Lisberger & V. P. Ferrera, 1997). The present study investigates the mechanisms of target selection when observers are instructed to follow a predefined horizontal target and to ignore a moving distractor stimulus. Results show…

  7. Geohydrologic evaluation of a landfill in a coastal area, St Petersburg, Florida

    USGS Publications Warehouse

    Hutchinson, C.B.; Stewart, Joseph W.

    1978-01-01

    The 250-acre Toytown landfill site is in a poorly-drained area in coastal Pinellas County, Florida. Average altitude of land surface at the landfill is less than 10 feet. About 1000 tons of solid waste and about 200,000 gallons of digested sewage sludge are disposed of daily at the landfill. The velocity of ground-water flow through the 23-foot thick surficial aquifer northeast from the landfill toward Old Tampa Bay probably ranges from 1 to 10 feet per year, and downward velocity through the confining bed is about 0.00074 foot per day. The horizontal and vertical flow velocities indicate that leachate moves slowly downgradient, and that leachate has not yet seeped through the confining bed after 12 years of landfill operation. Untreated surface run-off from the site averages about 15 inches per year, and ground-water outflow averages about 3.3 inches per year. The Floridan aquifer is used as a limited source of water for domestic supply in this area. (Woodard-USGS)

  8. Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: A summary of recent work

    USGS Publications Warehouse

    Boore, D.M.; Joyner, W.B.; Fumal, T.E.

    1997-01-01

    In this paper we summarize our recently-published work on estimating horizontal response spectra and peak acceleration for shallow earthquakes in western North America. Although none of the sets of coefficients given here for the equations are new, for the convenience of the reader and in keeping with the style of this special issue, we provide tables for estimating random horizontal-component peak acceleration and 5 percent damped pseudo-acceleration response spectra in terms of the natural, rather than common, logarithm of the ground-motion parameter. The equations give ground motion in terms of moment magnitude, distance, and site conditions for strike-slip, reverse-slip, or unspecified faulting mechanisms. Site conditions are represented by the shear velocity averaged over the upper 30 m, and recommended values of average shear velocity are given for typical rock and soil sites and for site categories used in the National Earthquake Hazards Reduction Program's recommended seismic code provisions. In addition, we stipulate more restrictive ranges of magnitude and distance for the use of our equations than in our previous publications. Finally, we provide tables of input parameters that include a few corrections to site classifications and earthquake magnitude (the corrections made a small enough difference in the ground-motion predictions that we chose not to change the coefficients of the prediction equations).

  9. Characterization of two-phase flow regimes in horizontal tubes using 81mKr tracer experiments.

    PubMed

    Oriol, Jean; Leclerc, Jean Pierre; Berne, Philippe; Gousseau, Georges; Jallut, Christian; Tochon, Patrice; Clement, Patrice

    2008-10-01

    The diagnosis of heat exchangers on duty with respect to flow mal-distributions needs the development of non-intrusive inlet-outlet experimental techniques in order to perform an online fault diagnosis. Tracer experiments are an example of such techniques. They can be applied to mono-phase heat exchangers but also to multi-phase ones. In this case, the tracer experiments are more difficult to perform. In order to check for the capabilities of tracer experiments to be used for the flow mal-distribution diagnosis in the case of multi-phase heat exchangers, we present here a preliminary study on the simplest possible system: two-phase flows in a horizontal tube. (81m)Kr is used as gas tracer and properly collimated NaI (TI) crystal scintillators as detectors. The specific shape of the tracer response allows two-phase flow regimes to be characterized. Signal analysis allows the estimation of the gas phase real average velocity and consequently of the liquid phase real average velocity as well as of the volumetric void fraction. These results are compared successfully to those obtained with liquid phase tracer experiments previously presented by Oriol et al. 2007. Characterization of the two-phase flow regimes and liquid dispersion in horizontal and vertical tubes using coloured tracer and no intrusive optical detector. Chem. Eng. Sci. 63(1), 24-34, as well as to those given by correlations from literature.

  10. Fluid flow analysis behind heliostat using LES and RANS: A step towards optimized field design in desert regions

    NASA Astrophysics Data System (ADS)

    Boddupalli, Nibodh; Goenka, Vikash; Chandra, Laltu

    2017-06-01

    Heliostats are used for concentrating beam radiation onto a receiver. The flow induced dust deposition on these reflectors will lead to failure of the receiver. For this purpose, the wake behind a heliostat is analyzed at 25° of inclination and at a Reynolds number of 60000. In this paper the Reynolds Averaged Navier-Stokes (RANS) and the Large Eddy Simulation (LES) approaches are used for analyzing the air-flow behind a heliostat. LES and RANS are performed with a wall-resolved grid. For the purpose of validation, the horizontal velocity is measured in a wind-tunnel with a model heliostat using laser Doppler velocimetry technique. RANS and LES approaches are found to qualitatively predict the statistical quantities, like the mean horizontal-velocity in comparison to experiment. RANS under-predicts root-mean-square of the horizontal-velocity and even failed to capture the flow features behind heliostat. Thus, it is concluded that RANS will suffice with well-resolved grid for analyzing mean flow features. For analyzing wake and to understand the induced dust deposition LES is required. Further, the analysis reveals that the wake-affected region is up to three times the length of the heliostat's mirror. This can be recommended as the minimum distance between any two aligned heliostats in Jodhpur.

  11. Unsteady Velocity Measurements Taken Behind a Model Helicopter Rotor Hub in Forward Flight

    NASA Technical Reports Server (NTRS)

    Berry, John D.

    1997-01-01

    Drag caused by separated flow behind the hub of a helicopter has an adverse effect on aerodynamic performance of the aircraft. To determine the effect of separated flow on a configuration used extensively for helicopter aerodynamic investigations, an experiment was conducted using a laser velocimeter to measure velocities in the wake of a model helicopter hub operating at Mach-scaled conditions in forward flight. Velocity measurements were taken using a laser velocimeter with components in the vertical and downstream directions. Measurements were taken at 13 stations downstream from the rotor hub. At each station, measurements were taken in both a horizontal and vertical row of locations. These measurements were analyzed for harmonic content based on the rotor period of revolution. After accounting for these periodic velocities, the remaining unsteady velocities were treated as turbulence. Turbulence intensity distributions are presented. Average turbulent intensities ranged from approximately 2 percent of free stream to over 15 percent of free stream at specific locations and azimuths. The maximum average value of turbulence was located near the rear-facing region of the fuselage.

  12. Application of Effective Medium Theory to the Three-Dimensional Heterogeneity of Mantle Anisotropy

    NASA Astrophysics Data System (ADS)

    Song, X.; Jordan, T. H.

    2015-12-01

    A self-consistent theory for the effective elastic parameters of stochastic media with small-scale 3D heterogeneities has been developed using a 2nd-order Born approximation to the scattered wavefield (T. H. Jordan, GJI, in press). Here we apply the theory to assess how small-scale variations in the local anisotropy of the upper mantle affect seismic wave propagation. We formulate a anisotropic model in which the local elastic properties are specified by a constant stiffness tensor with hexagonal symmetry of arbitrary orientation. This orientation is guided by a Gaussian random vector field with transversely isotropic (TI) statistics. If the outer scale of the statistical variability is small compared to a wavelength, then the effective seismic velocities are TI and depend on two parameters, a horizontal-to-vertical orientation ratio ξ and a horizontal-to-vertical aspect ratio, η. If ξ = 1, the symmetry axis is isotropically distributed; if ξ < 1, it is vertical biased (bipolar distribution), and if ξ > 1, it is horizontally biased (girdle distribution). If η = 1, the heterogeneity is geometrically isotropic; as η à∞, the medium becomes a horizontal stochastic laminate; as η à0, the medium becomes a vertical stochastic bundle. Using stiffness tensors constrained by laboratory measurements of mantle xenoliths, we explore the dependence of the effective P and S velocities on ξ and η. The effective velocities are strongly controlled by the orientation ratio ξ; e.g., if the hexagonal symmetry axis of the local anisotropy is the fast direction of propagation, then vPH > vPV and vSH > vSV for ξ > 1. A more surprising result is the 2nd-order insensitivity of the velocities to the heterogeneity aspect ratio η. Consequently, the geometrical anisotropy of upper-mantle heterogeneity significantly enhances seismic-wave anisotropy only through local variations in the Voigt-averaged velocities, which depend primarily on rock composition and not deformation history.

  13. DeepVel: Deep learning for the estimation of horizontal velocities at the solar surface

    NASA Astrophysics Data System (ADS)

    Asensio Ramos, A.; Requerey, I. S.; Vitas, N.

    2017-07-01

    Many phenomena taking place in the solar photosphere are controlled by plasma motions. Although the line-of-sight component of the velocity can be estimated using the Doppler effect, we do not have direct spectroscopic access to the components that are perpendicular to the line of sight. These components are typically estimated using methods based on local correlation tracking. We have designed DeepVel, an end-to-end deep neural network that produces an estimation of the velocity at every single pixel, every time step, and at three different heights in the atmosphere from just two consecutive continuum images. We confront DeepVel with local correlation tracking, pointing out that they give very similar results in the time and spatially averaged cases. We use the network to study the evolution in height of the horizontal velocity field in fragmenting granules, supporting the buoyancy-braking mechanism for the formation of integranular lanes in these granules. We also show that DeepVel can capture very small vortices, so that we can potentially expand the scaling cascade of vortices to very small sizes and durations. The movie attached to Fig. 3 is available at http://www.aanda.org

  14. Field Testing of an In-well Point Velocity Probe for the Rapid Characterization of Groundwater Velocity

    NASA Astrophysics Data System (ADS)

    Osorno, T.; Devlin, J. F.

    2017-12-01

    Reliable estimates of groundwater velocity is essential in order to best implement in-situ monitoring and remediation technologies. The In-well Point Velocity Probe (IWPVP) is an inexpensive, reusable tool developed for rapid measurement of groundwater velocity at the centimeter-scale in monitoring wells. IWPVP measurements of groundwater speed are based on a small-scale tracer test conducted as ambient groundwater passes through the well screen and the body of the probe. Horizontal flow direction can be determined from the difference in tracer mass passing detectors placed in four funnel-and-channel pathways through the probe, arranged in a cross pattern. The design viability of the IWPVP was confirmed using a two-dimensional numerical model in Comsol Multiphysics, followed by a series of laboratory tank experiments in which IWPVP measurements were calibrated to quantify seepage velocities in both fine and medium sand. Lab results showed that the IWPVP was capable of measuring the seepage velocity in less than 20 minutes per test, when the seepage velocity was in the range of 0.5 to 4.0 m/d. Further, the IWPVP estimated the groundwater speed with a precision of ± 7%, and an accuracy of ± 14%, on average. The horizontal flow direction was determined with an accuracy of ± 15°, on average. Recently, a pilot field test of the IWPVP was conducted in the Borden aquifer, C.F.B. Borden, Ontario, Canada. A total of approximately 44 IWPVP tests were conducted within two 2-inch groundwater monitoring wells comprising a 5 ft. section of #8 commercial well screen. Again, all tests were completed in under 20 minutes. The velocities estimated from IWPVP data were compared to 21 Point Velocity Probe (PVP) tests, as well as Darcy-based estimates of groundwater velocity. Preliminary data analysis shows strong agreement between the IWPVP and PVP estimates of groundwater velocity. Further, both the IWPVP and PVP estimates of groundwater velocity appear to be reasonable when compared to a Darcy-based estimate of groundwater velocity, using the range of hydraulic conductivity values previously reported at the Borden aquifer. Based on these promising results, the IWPVP appears to be a viable tool for the determination of groundwater velocity at the centimeter-scale.

  15. Near-bottom energy cascade from subinertial flows to ocean mixing in the northeastern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Liu, Z.; Zhao, Y.; Wang, W.; Li, J.; Xu, J.

    2013-12-01

    The motions with different scales in the bottom boundary layer are potentially important in controlling the water mass transportation. Many physical processes are involved in transferring energy from mesoscale to small-scale motions. Recent studies suggest that subinertial flows should be taken into account in the parameterization of deep-ocean mixing besides topography and tidal forcing. Here, we present the current velocity data obtained from 2 moored downward-looking ADCPs (Acoustic Doppler Current Profiler) and 1 RCM (Recording Current Meter) moored near the bottom boundary layer at a water depth of about 2000 m in the northeastern South China Sea from 2012 to 2013. Specifically, they include an ADCP 1200 kHz deployed at 30 m, an ADCP 300 kHz deployed at 110 m, and a RCM deployed at 40 m above the seafloor. Subinertial flows were calculated from the moored current velocity data by low-pass filtering with a cutoff frequency of 0.3 cycles per day (the local inertial period is about 35 hours). The horizontal subinertial flows were quite strong with average values of 2-5 cm/s. The strong downward vertical velocity with average values of 1-2 cm/s was observed during times of weak subinertial flows. The vertical propagation during both the times of weak and strong subinertial flows can also be shown by vector spectra of horizontal near-inertial current velocity. Turbulent kinetic energy production rate estimated indirectly with the variances of ADCP velocities will be compared with the subinertial kinetic energy to detect the processes of energy cascade from mesoscale motions to small-scale oscillations. The results presented in this study can provide an observational evidence for such energy cascade near the bottom boundary layer in the deep South China Sea.

  16. Proof of the Wave Nature of Plants

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin

    2008-03-01

    I assume plants operate with a set of frequencies. These frequencies and the means of these frequencies are equal in all directions. We can then write (vh/λ)avh=(vv/λ)avv where the subscripts h and v represent horizontal and vertical respectively and av is average,. or vv/vh=(1/λh)av/(1/λv)av. I use an internodal spacing as λ/2 or the the distance between adjacent branches, leaves, etc. The ratios, vv/vh, are ratios of small integers for sufficient samplings. For example, for Ponderosa pine the ratio is 3/1 or for delicious apple 4/3. Note that these ratios represent the shape of the tree or other plant and their interactions with gravity. These ratios are derivable by other means such as use the ratio of # of horizontal needles per unit length from a horizontal sample to the # of needles per unit length from a vertical sample from p-pine. Or measure the vertical and horizontal velocities. My literature provides many other proofs of the wave nature of plants. I suggest that the waves in and related waves outside of plants (outside 4.9 m/s) are a dark matter related since they travel at such low velocities. See my present web site at home.budget.net/˜oedphd.

  17. Coordination of multiple appendages in drag-based swimming.

    PubMed

    Alben, Silas; Spears, Kevin; Garth, Stephen; Murphy, David; Yen, Jeannette

    2010-11-06

    Krill are aquatic crustaceans that engage in long distance migrations, either vertically in the water column or horizontally for 10 km (over 200,000 body lengths) per day. Hence efficient locomotory performance is crucial for their survival. We study the swimming kinematics of krill using a combination of experiment and analysis. We quantify the propulsor kinematics for tethered and freely swimming krill in experiments, and find kinematics that are very nearly metachronal. We then formulate a drag coefficient model which compares metachronal, synchronous and intermediate motions for a freely swimming body with two legs. With fixed leg velocity amplitude, metachronal kinematics give the highest average body speed for both linear and quadratic drag laws. The same result holds for five legs with the quadratic drag law. When metachronal kinematics is perturbed towards synchronous kinematics, an analysis shows that the velocity increase on the power stroke is outweighed by the velocity decrease on the recovery stroke. With fixed time-averaged work done by the legs, metachronal kinematics again gives the highest average body speed, although the advantage over synchronous kinematics is reduced.

  18. Oscillatory bedload transport: Data review and simple formulation

    NASA Astrophysics Data System (ADS)

    Hallermeier, Robert J.

    1982-11-01

    This review displays over 700 rates of sediment transport by oscillatory flow from 20 sources. Sediments include fine sands to pebbles, both of quartz and of lightweight materials, and the transport rates in water range over seven orders of magnitude. Most data are average gross (to and fro) bedload rates collinear with laboratory flow over a horizontal sediment bed, although other situations with net transport, suspended load, or oblique field waves are considered. As peak flow velocity nears twice the threshold velocity for sediment motion, bedload appears to be fully developed and the transport rate is near that given by a simple formula including flow frequency and peak velocity, and sediment size and density. At lesser peak velocities, bedload rates are markedly smaller and distinctly different regimes of sediment mobilization and transport may be identified.

  19. New statistical analysis of the horizontal phase velocity distribution of gravity waves observed by airglow imaging

    NASA Astrophysics Data System (ADS)

    Matsuda, Takashi S.; Nakamura, Takuji; Ejiri, Mitsumu K.; Tsutsumi, Masaki; Shiokawa, Kazuo

    2014-08-01

    We have developed a new analysis method for obtaining the power spectrum in the horizontal phase velocity domain from airglow intensity image data to study atmospheric gravity waves. This method can deal with extensive amounts of imaging data obtained on different years and at various observation sites without bias caused by different event extraction criteria for the person processing the data. The new method was applied to sodium airglow data obtained in 2011 at Syowa Station (69°S, 40°E), Antarctica. The results were compared with those obtained from a conventional event analysis in which the phase fronts were traced manually in order to estimate horizontal characteristics, such as wavelengths, phase velocities, and wave periods. The horizontal phase velocity of each wave event in the airglow images corresponded closely to a peak in the spectrum. The statistical results of spectral analysis showed an eastward offset of the horizontal phase velocity distribution. This could be interpreted as the existence of wave sources around the stratospheric eastward jet. Similar zonal anisotropy was also seen in the horizontal phase velocity distribution of the gravity waves by the event analysis. Both methods produce similar statistical results about directionality of atmospheric gravity waves. Galactic contamination of the spectrum was examined by calculating the apparent velocity of the stars and found to be limited for phase speeds lower than 30 m/s. In conclusion, our new method is suitable for deriving the horizontal phase velocity characteristics of atmospheric gravity waves from an extensive amount of imaging data.

  20. Contemporary Deformation within the Snake River Plain and Northern Basin and Range Province, USA

    NASA Astrophysics Data System (ADS)

    Payne, S. J.; McCaffrey, R.; King, R. W.

    2007-05-01

    GPS velocities, earthquakes, faults, and volcanic features are used to evaluate contemporary deformation within the Snake River Plain (SRP) and surrounding northern Basin and Range Province. The SRP is a prominent low- relief physiographic feature that extends from eastern Oregon through southern Idaho and into northwestern Wyoming, USA. The Eastern Snake River Plain (ESRP) is a 400-km long, NE-trending volcanic province that is characterized by bimodal volcanism, which represents the track of the Yellowstone Hotspot currently located in Wyoming. The Western Snake River Plain (WSRP) is a 300-km long, NW-trending graben that extends into eastern Oregon. The WSRP is an extensional basin that formed adjacent to an earlier position of the Yellowstone Hotspot in southern Idaho. Previous geodetic investigations suggest the ESRP and, perhaps the WSRP, have GPS velocities indicative of rigid block motion of the SRP along its physiographic boundaries. GPS data compiled for this study are used to test this hypothesis. Several institutions including the National Geodetic Survey, Idaho National Laboratory, Rensselaer Polytechnic Institute, and University of Utah observed GPS stations from 1994 to 2006 within the SRP and surrounding region. Horizontal velocities show generally consistent N110°W orientations with an average rate of 1.5 ± 0.3 mm/yr (for 11 stations) along most of the ESRP and adjacent northwest Basin and Range, although some Basin and Range velocities are less and may be influenced by post viscoelastic relaxation following the 1983 Mw 6.9 normal-faulting Borah Peak, Idaho earthquake. GPS velocities with an average rate of 1.9 ± 0.3 mm/yr (for 5 stations) change orientation to N95°W at a distance of 190 km from the Yellowstone Hotspot within the southern region of the ESRP and adjacent Basin and Range. Within the WSRP, GPS velocities have an average rate of 2.0 ± 0.5 mm/yr (for 7 stations) and change orientation to N40°W. These GPS velocities are more consistent with those in eastern Oregon, a region that is rotating clockwise relative to North America. To assess possible rotations and strain rates, we invert GPS horizontal velocities, geologic fault slip rates, earthquake-derived fault slip vector azimuths, and volcanic dike extension rates. We interpret GPS velocities to describe the relative motions of coherent regions of consistent strain within the SRP and surrounding Basin and Range Province.

  1. The power spectrum of solar convection flows from high-resolution observations and 3D simulations

    NASA Astrophysics Data System (ADS)

    Yelles Chaouche, L.; Moreno-Insertis, F.; Bonet, J. A.

    2014-03-01

    Context. Understanding solar surface magnetoconvection requires the study of the Fourier spectra of the velocity fields. Nowadays, observations are available that resolve very small spatial scales, well into the subgranular range, almost reaching the scales routinely resolved in numerical magnetoconvection simulations. Comparison of numerical and observational data at present can provide an assessment of the validity of the observational proxies. Aims: Our aims are: (1) to obtain Fourier spectra for the photospheric velocity fields using the spectropolarimetric observations with the highest spatial resolution so far (~120 km), thus reaching for the first time spatial scales well into the subgranular range; (2) to calculate corresponding Fourier spectra from realistic 3D numerical simulations of magnetoconvection and carry out a proper comparison with their observational counterparts considering the residual instrumental degradation in the observational data; and (3) to test the observational proxies on the basis of the numerical data alone, by comparing the actual velocity field in the simulations with synthetic observations obtained from the numerical boxes. Methods: (a) For the observations, data from the SUNRISE/IMaX spectropolarimeter are used. (b) For the simulations, we use four series of runs obtained with the STAGGER code for different average signed vertical magnetic field values (0, 50, 100, and 200 G). Spectral line profiles are synthesized from the numerical boxes for the same line observed by IMaX (Fe I 5250.2 Å) and degraded to match the performance of the IMaX instrument. Proxies for the velocity field are obtained via Dopplergrams (vertical component) and local correlation tracking (LCT, for the horizontal component). Fourier power spectra are calculated and a comparison between the synthetic and observational data sets carried out. (c) For the internal comparison of the numerical data, velocity values on constant optical depth surfaces are used instead of on horizontal planes. Results: A very good match between observational and simulated Fourier power spectra is obtained for the vertical velocity data for scales between 200 km and 6 Mm. Instead, a clear vertical shift is obtained when the synthetic observations are not degraded to emulate the degradation in the IMaX data. The match for the horizontal velocity data is much less impressive because of the inaccuracies of the LCT procedure. Concerning the internal comparison of the direct velocity values of the numerical boxes with those from the synthetic observations, a high correlation (0.96) is obtained for the vertical component when using the velocity values on the log τ500 = -1 surface in the box. The corresponding Fourier spectra are near each other. A lower maximum correlation (0.5) is reached (at log τ500 = 0) for the horizontal velocities as a result of the coarseness of the LCT procedure. Correspondingly, the Fourier spectra for the LCT-determined velocities is well below that from the actual velocity components. Conclusions: As measured by the Fourier spectra, realistic numerical simulations of surface magnetoconvection provide a very good match to the observational proxies for the photospheric velocity fields at least on scales from several Mm down to around 200 km. Taking into account the spatial and spectral instrumental blurring is essential for the comparison between simulations and observations. Dopplergrams are an excellent proxy for the vertical velocities on constant-τ isosurfaces, while LCT is a much less reliable method of determining the horizontal velocities.

  2. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1992-01-01

    Condensation heat transfer in an annular flow regime with and without interfacial waves was experimentally investigated. The study included measurements of heat transfer rate with condensation of vapor flowing inside a horizontal rectangular duct and experiments on the initiation of interfacial waves in condensation, and adiabatic air-liquid flow. An analytical model for the condensation was developed to predict condensate film thickness and heat transfer coefficients. Some conclusions drawn from the study are that the condensate film thickness was very thin (less than 0.6 mm). The average heat transfer coefficient increased with increasing the inlet vapor velocity. The local heat transfer coefficient decreased with the axial distance of the condensing surface, with the largest change at the leading edge of the test section. The interfacial shear stress, which consisted of the momentum shear stress and the adiabatic shear stress, appeared to have a significant effect on the heat transfer coefficients. In the experiment, the condensate flow along the condensing surface experienced a smooth flow, a two-dimensional wavy flow, and a three-dimensional wavy flow. In the condensation experiment, the local wave length decreased with the axial distance of the condensing surface and the average wave length decreased with increasing inlet vapor velocity, while the wave speed increased with increasing vapor velocity. The heat transfer measurements are reliable. And, the ultrasonic technique was effective for measuring the condensate film thickness when the surface was smooth or had waves of small amplitude.

  3. Interferometric Radar Observations of Glaciar San Rafael, Chile

    NASA Technical Reports Server (NTRS)

    Rignot, Eric; Forster, Richard; Isacks, Bryan

    1996-01-01

    Interferometric radar observations of Glaciar San Rafael, Chile, were collected in October 1994 by NASA's Spaceborne Imaging Radar C (SIR-C) at both L- (24cm) and C-band frequency (5.6cm), with vertical transmit and receive polarization. The C-band data did not yield good geophysical products, because the temporal coherence of the signal was significantly reduced after 24h. The L-band data were, however, successfully employed to map the surface topography of the icefield with a 10m uncertainty in height, and measure ice velocity with a precision of 4 mm/d or 1.4 m/a. The corresponding error in strain rates is 0.05/a at a 30 m horizontal spacing. The one-dimensional interferometric velocities were subsequently converted to horizontal displacements by assuming a flow direction and complemented by feature-tracking results near the calving front. The results provide a comprehensive view of the ice-flow dynamics of Glaciar San Rafael. The glacier has a core of rapid flow, 4.5 km in width and 3.5 degrees in average slope,surrounded by slower moving ice, not by rock. Ice velocity is 2.6 m/d or 0.95 km/a near the equilibrium line altitude (1200m), increasing rapidly before the glacier enters the narrower terminal valley, to reach 17.5 m/d or 6.4 km/a at the calving front. Strain rates are dominated by lateral shearing at the glacier margins (0.4-0.7/a), except for the terminal-valley section, where longitudinal strain rates average close to 1/a. This spectacular longitudinal increase in ice velocity in the last few kilometers may be a fundamental feature of tidewater glaciers.

  4. Estimation of ground motion parameters

    USGS Publications Warehouse

    Boore, David M.; Joyner, W.B.; Oliver, A.A.; Page, R.A.

    1978-01-01

    Strong motion data from western North America for earthquakes of magnitude greater than 5 are examined to provide the basis for estimating peak acceleration, velocity, displacement, and duration as a function of distance for three magnitude classes. A subset of the data (from the San Fernando earthquake) is used to assess the effects of structural size and of geologic site conditions on peak motions recorded at the base of structures. Small but statistically significant differences are observed in peak values of horizontal acceleration, velocity and displacement recorded on soil at the base of small structures compared with values recorded at the base of large structures. The peak acceleration tends to b3e less and the peak velocity and displacement tend to be greater on the average at the base of large structures than at the base of small structures. In the distance range used in the regression analysis (15-100 km) the values of peak horizontal acceleration recorded at soil sites in the San Fernando earthquake are not significantly different from the values recorded at rock sites, but values of peak horizontal velocity and displacement are significantly greater at soil sites than at rock sites. Some consideration is given to the prediction of ground motions at close distances where there are insufficient recorded data points. As might be expected from the lack of data, published relations for predicting peak horizontal acceleration give widely divergent estimates at close distances (three well known relations predict accelerations between 0.33 g to slightly over 1 g at a distance of 5 km from a magnitude 6.5 earthquake). After considering the physics of the faulting process, the few available data close to faults, and the modifying effects of surface topography, at the present time it would be difficult to accept estimates less than about 0.8 g, 110 cm/s, and 40 cm, respectively, for the mean values of peak acceleration, velocity, and displacement at rock sites within 5 km of fault rupture in a magnitude 6.5 earthquake. These estimates can be expected to change as more data become available.

  5. Increases of Chamber Height and Base Diameter Have Contrasting Effects on Grazing Rate of Two Cladoceran Species: Implications for Microcosm Studies.

    PubMed

    Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun

    2015-01-01

    Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as "scale" effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments.

  6. Increases of Chamber Height and Base Diameter Have Contrasting Effects on Grazing Rate of Two Cladoceran Species: Implications for Microcosm Studies

    PubMed Central

    Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun

    2015-01-01

    Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as “scale” effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments. PMID:26273836

  7. Doppler-shifting effects on frequency spectra of gravity waves observed near the summer mesopause at high latitude

    NASA Technical Reports Server (NTRS)

    Fritts, David C.; Wang, Ding-Yi

    1991-01-01

    Results are presented of radar observations of horizontal and vertical velocities near the summer mesopause at Poker Flat (Alaska), showing that the observed vertical velocity spectra were influenced strongly by Doppler-shifting effects. The horizontal velocity spectra, however, were relatively insensitive to horizontal wind speed. The observed spectra are compared with predicted spectra for various models of the intrinsic motion spectrum and degrees of Doppler shifting.

  8. Quantification of tracer plume transport parameters in 2D saturated porous media by cross-borehole ERT imaging

    NASA Astrophysics Data System (ADS)

    Lekmine, G.; Auradou, H.; Pessel, M.; Rayner, J. L.

    2017-04-01

    Cross-borehole ERT imaging was tested to quantify the average velocity and transport parameters of tracer plumes in saturated porous media. Seven tracer tests were performed at different flow rates and monitored by either a vertical or horizontal dipole-dipole ERT sequence. These sequences were tested to reconstruct the shape and temporally follow the spread of the tracer plumes through a background regularization procedure. Data sets were inverted with the same inversion parameters and 2D model sections of resistivity ratios were converted to tracer concentrations. Both array types provided an accurate estimation of the average pore velocity vz. The total mass Mtot recovered was always overestimated by the horizontal dipole-dipole and underestimated by the vertical dipole-dipole. The vertical dipole-dipole was however reliable to quantify the longitudinal dispersivity λz, while the horizontal dipole-dipole returned better estimation for the transverse component λx. λ and Mtot were mainly influenced by the 2D distribution of the cumulated electrical sensitivity and the Shadow Effects induced by the third dimension. The size reduction of the edge of the plume was also related to the inability of the inversion process to reconstruct sharp resistivity contrasts at the interface. Smoothing was counterbalanced by a non-realistic rise of the ERT concentrations around the centre of mass returning overpredicted total masses. A sensitivity analysis on the cementation factor m and the porosity ϕ demonstrated that a change in one of these parameters by 8% involved non negligible variations by 30 and 40% of the dispersion coefficients and mass recovery.

  9. Observations of the Space-time Structure of Flow, Vorticity and Stress over Orbital-scale Ripples

    NASA Astrophysics Data System (ADS)

    Hare, J.; Hay, A. E.; Cheel, R. A.; Zedel, L. J.

    2012-12-01

    Results are presented from a laboratory investigation of the spatial and temporal structure at turbulence-resolving scales of the flow, vorticity and stress over equilibrium orbital-scale sand ripples. The ripples were created in 0.153 mm median diameter sand, at 10 s period and an excursion of 0.5 m, using the oscillating tray apparatus described in Hay et al. (JGR-Oceans, 2012). Vertical profiles of velocity above the bed were obtained at 40 Hz and 3 mm vertical resolution using a wide-band coherent Doppler profiler (MFDop). Through runs at different positions of the MFDop relative to a particular ripple crest, phase-averaged measures of the flow over a full ripple wavelength were obtained as a function of phase during the forcing cycle. These measurements are used to determine the formation of the lee vortex and the position of the point of reattachment. Estimates of the phase-averaged bottom stress (obtained using the vertical integral of the defect acceleration, the Reynolds stress and the law-of-the-wall) as a function of position along the ripple profile are inter-compared.Phase-averaged horizontal velocity over one ripple where the black line indicates the sediment-water interface. Phase-averaged vertical velocity over one ripple where the black line indicates the sediment-water interface.

  10. Fine-scale structure of the San Andreas fault zone and location of the SAFOD target earthquakes

    USGS Publications Warehouse

    Thurber, C.; Roecker, S.; Zhang, H.; Baher, S.; Ellsworth, W.

    2004-01-01

    We present results from the tomographic analysis of seismic data from the Parkfield area using three different inversion codes. The models provide a consistent view of the complex velocity structure in the vicinity of the San Andreas, including a sharp velocity contrast across the fault. We use the inversion results to assess our confidence in the absolute location accuracy of a potential target earthquake. We derive two types of accuracy estimates, one based on a consideration of the location differences from the three inversion methods, and the other based on the absolute location accuracy of "virtual earthquakes." Location differences are on the order of 100-200 m horizontally and up to 500 m vertically. Bounds on the absolute location errors based on the "virtual earthquake" relocations are ??? 50 m horizontally and vertically. The average of our locations places the target event epicenter within about 100 m of the SAF surface trace. Copyright 2004 by the American Geophysical Union.

  11. Plate tectonics from VLBI and SLR global data

    NASA Technical Reports Server (NTRS)

    Harrison, Christopher G. A.; Robaudo, Stefano

    1992-01-01

    This study is based on data derived from fifteen years of observations of the SLR (side-looking radar) network and six years of the VLBI (very long baseline interferometry) network. In order to use all available information VLBI and SLR global data sets were combined in a least squares fashion to calculate station horizontal velocities. All significant data pertaining to a single site contribute to the station horizontal motion. The only constraint on the solution is that no vertical motion is allowed. This restriction does not greatly affect the precision of the overall solution given the fact that the expected vertical motion for most stations, even those experiencing post glacial uplift, is well under 1 cm/yr. Since the average baseline is under 4,000 km, only a small fraction of the station vertical velocity is translated into baseline rates so that the error introduced in the solution by restricting up-down station movement is minimal. As a reference, station velocities were then compared to the ones predicted by the NUVEL-1 geological model of DeMets et al. (1990). The focus of the study is on analyzing these discrepancies for global plate tectonics as well as regional tectonic settings. The method used also allows us not only to derive horizontal motion for individual stations but also to calculate Euler vectors for those plates that have enough stations located on the stable interior like North America, Pacific, Eurasia, and Australia.

  12. Suspended sand transport in surf zones

    NASA Astrophysics Data System (ADS)

    Kobayashi, Nobuhisa; Zhao, Haoyu; Tega, Yukiko

    2005-12-01

    Three tests were conducted in a wave flume to investigate time-averaged suspended sediment transport processes under irregular breaking waves on equilibrium beaches consisting of fine sand. Free surface elevations were measured at ten locations for each test. Velocities and concentrations were measured in the vicinity of the bottom at 94 elevations along 17 vertical lines. The relations among the three turbulent velocity variances are found to be similar to those for the boundary layer flow. The vertical variation of the mean velocity, which causes offshore transport, is fitted by a parabolic profile fairly well. The vertical variation of the mean concentration ? is fitted by the exponential and power-form distributions equally well. The ratio between the concentration standard deviation σC and the mean ? varies little vertically. The correlation coefficient γUC between the horizontal velocity and concentration, which results in onshore transport, is of the order of 0.1 and decreases upward linearly. The offshore and onshore transport rates of suspended sediment are estimated and expressed in terms of the suspended sediment volume ? per unit area. A time-averaged numerical model is developed to predict ? as well as the mean and standard deviation of the free surface elevation and horizontal velocity. The bottom slope effect on the wave energy dissipation rate DB due to wave breaking is included in the model. The computation can be made well above the still water shoreline with no numerical difficulty. Reflected waves from the shoreline are estimated from the wave energy flux remaining at the shoreline. The numerical model is in agreement with the statistical data except that the undertow current is difficult to predict accurately. The measured turbulent velocities are found to be more related to the turbulent velocity estimated from the energy dissipation rate Df due to bottom friction. The suspended sediment volume ? expressed in terms of DB and Df can be predicted only within a factor of about 2. The roller effect represented by the roller volume flux does not necessarily improve the agreement for the three tests.

  13. Pulsed EMAT (Electromagnetic Acoustic Transducer) acoustic measurements on a horizontal continuous caster for internal temperature determination

    NASA Astrophysics Data System (ADS)

    Boyd, Donald M.

    1989-10-01

    Development of a Pulsed Electromagnetic Acoustic Transducer (EMAT) through transmission system for acoustic measurements on steel billets up to 1300 C was completed. Laboratory measurements of acoustic velocity were made, and used to determine the average internal temperature of hot stainless and carbon steel billets. Following the success of the laboratory system development, the laboratory EMAT system was subsequently tested successfully at the Baltimore Specialty Steel Co. on a horizontal continuous caster. Details of the sensor system development and the steel plant demonstration results are presented. Future directions for the high temperature pulsed EMAT internal temperature concept are discussed for potential material processing applications.

  14. Comparison with the horizontal phase velocity distribution of gravity waves observed airglow imaging data of different sampling periods

    NASA Astrophysics Data System (ADS)

    Matsuda, T. S.; Nakamura, T.; Ejiri, M. K.; Tsutsumi, M.; Shiokawa, K.

    2014-12-01

    Atmospheric gravity waves (AGWs), which are generated in the lower atmosphere, transport significant amount of energy and momentum into the mesosphere and lower thermosphere. Among many parameters to characterize AGWs, horizontal phase velocity is very important to discuss the vertical propagation. Airglow imaging is a useful technique for investigating the horizontal structures of AGWs around mesopause. There are many airglow imagers operated all over the world, and a large amount of data which could improve our understanding of AGWs propagation direction and source distribution in the MLT region. We have developed a new statistical analysis method for obtaining the power spectrum in the horizontal phase velocity domain (phase velocity spectrum), from airglow image data, so as to deal with huge amounts of imaging data obtained on different years and at various observation sites, without bias caused by different event extraction criteria for the observer. From a series of images projected onto the geographic coordinates, 3-D Fourier transform is applied and 3-D power spectrum in horizontal wavenumber and frequency domain is obtained. Then, it is converted into phase velocity and frequency domain. Finally, the spectrum is integrated along the frequency for the range of interest and 2-D spectrum in horizontal phase velocity is calculated. This method was applied to the data obtained at Syowa Station (69ºS, 40ºE), Antarctica, in 2011 and compared with a conventional event analysis in which the phase fronts were traced manually in order to estimate horizontal propagation characteristics. This comparison shows that our new method is adequate to deriving the horizontal phase velocity characteristics of AGWs observed by airglow imaging technique. Airglow imaging observation has been operated with various sampling intervals. We also presents how the images with different sample interval should be treated.

  15. Hemodynamics of 8 different configurations of stenting for bifurcation aneurysms.

    PubMed

    Kono, K; Terada, T

    2013-10-01

    SACE is performed for complex aneurysms. There are several configurations of stent placement for bifurcation aneurysms. We investigated hemodynamics among 8 different configurations of stent placement, which may relate to the recanalization rate. We created a silicone block model of a patient-specific asymmetric bifurcation aneurysm. Enterprise closed-cell stents were deployed in the model as various configurations. 3D images of these stents were obtained by micro-CT. We performed CFD simulations for a no-stent model and 8 stent models: a single stent from a proximal vessel to a right or left distal vessel, a horizontal stent, a kissing-Y stent with a uniformly narrowed structure, a nonoverlapping-Y stent, a virtual-Y stent with no narrowed structure (fusion of 2 single stents), and 2 different crossing-Y stents with a focally narrowed structure. Hemodynamic parameters were evaluated. Cycle-averaged velocity and WSS in the aneurysm were reduced because of stent placement in the following order: single stent (19% reduction in cycle-averaged velocity) < nonoverlapping-Y stent (29%) < virtual-Y stent (32%) < horizontal stent (39%) < kissing-Y stent (48%) < crossing-Y stent (54%). Kissing- and crossing-Y stents redirected impingement flow into the distal vessels because of lowered porosity of stents due to narrowed structures. Among 8 different configurations of stent placement, kissing- and crossing-Y stents showed the strongest reduction in flow velocity in the aneurysm because of lowered porosity of stents and redirection of impingement flow. This may be a desirable reconstruction of flow hemodynamics and may decrease recanalization rates in SACE.

  16. Neural basis for eye velocity generation in the vestibular nuclei of alert monkeys during off-vertical axis rotation

    NASA Technical Reports Server (NTRS)

    Reisine, H.; Raphan, T.; Cohen, B. (Principal Investigator)

    1992-01-01

    Activity of "vestibular only" (VO) and "vestibular plus saccade" (VPS) units was recorded in the rostral part of the medial vestibular nucleus and caudal part of the superior vestibular nucleus of alert rhesus monkeys. By estimating the "null axes" of recorded units (n = 79), the optimal plane of activation was approximately the mean plane of reciprocal semicircular canals, i.e., lateral canals, left anterior-right posterior (LARP) canals or right anterior-left posterior (RALP) canals. All units were excited by rotation in a direction that excited a corresponding ipsilateral semicircular canal. Thus, they all displayed a "type I" response. With the animal upright, there were rapid changes in firing rates of both VO and VPS units in response to steps of angular velocity about a vertical axis. The units were bidirectionally activated during vestibular nystagmus (VN), horizontal optokinetic nystagmus (OKN), optokinetic after-nystagmus (OKAN) and off-vertical axis rotation (OVAR). The rising and falling time constants of the responses to rotation indicated that they were closely linked to velocity storage. There were differences between VPS and VO neurons in that activity of VO units followed the expected time course in response to a stimulus even during periods of drowsiness, when eye velocity was reduced. Firing rates of VPS units, on the other hand, were significantly reduced in the drowsy state. Lateral canal-related units had average firing rates that were linearly related to the bias or steady state level of horizontal eye velocity during OVAR over a range of +/- 60 deg/s. These units could be further divided into two classes according to whether they were modulated during OVAR. Non-modulated units (n = 5) were VO types and all modulated units (n = 5) were VPS types. There was no significant difference between the bias level sensitivities relative to eye velocity of the units with and without modulation (P > 0.05). The modulated units had no sustained change in firing rate in response to static head tilts and their phases relative to head position varied from unit to unit. The phase did not appear to be linked to the modulation of horizontal eye velocity during OVAR. The sensitivities of unit activity to eye velocity were similar during all stimulus modalities despite the different gains of eye velocity vs stimulus velocity during VN, OKN and OVAR. Therefore, VO and VPS units are likely to carry an eye velocity signal related to velocity storage.(ABSTRACT TRUNCATED AT 400 WORDS).

  17. Studies of dynamo field structure and related effects: DE satellite project guest investigator program

    NASA Technical Reports Server (NTRS)

    Coley, W. R.

    1986-01-01

    The establishment of the latitudinal and longitudinal structure of the low latitude dynamo electric (DE) field was initiated using data primarily from the Unified Abstract (UA) files of the Atmosphere Explorer E (AE-E) satellite. Mass plots of the vertical ion drift values were made for 1977, 1978, and 1979. The average diurnal variation of V sub v within 20 degrees of the dip equator is remarkably similar to that obtained at Jicamarca in the same years. The average meridional ion drift velocity vectors, obtained as a function of latitude by combining the average vertical and horizontal (nearly north-south) ion drift values from the AE-E, showed the expected variations with local time and season based on the well known equatorial fountain effect theory. The average diurnal variation of the vertical drift was found for four different ranges of dip latitude for a northern solstice season. The effect of the transequatorial neutral winds was as evident in this plotting format as in the meridional or fountain effect format. Finally, the average vertical drift velocity V sub v, not the east-west electric field E sub ew, was found to be approximately independent of longitude, as expected from the dynamo theory.

  18. Directional abnormalities of vestibular and optokinetic responses in cerebellar disease

    NASA Technical Reports Server (NTRS)

    Walker, M. F.; Zee, D. S.; Shelhamer, M. J. (Principal Investigator)

    1999-01-01

    Directional abnormalities of vestibular and optokinetic responses in patients with cerebellar degeneration are reported. Three-axis magnetic search-coil recordings of the eye and head were performed in eight cerebellar patients. Among these patients, examples of directional cross-coupling were found during (1) high-frequency, high-acceleration head thrusts; (2) constant-velocity chair rotations with the head fixed; (3) constant-velocity optokinetic stimulation; and (4) following repetitive head shaking. Cross-coupling during horizontal head thrusts consisted of an inappropriate upward eye-velocity component. In some patients, sustained constant-velocity yaw-axis chair rotations produced a mixed horizontal-torsional nystagmus and/or an increase in the baseline vertical slow-phase velocity. Following horizontal head shaking, some patients showed an increase in the slow-phase velocity of their downbeat nystagmus. These various forms of cross-coupling did not necessarily occur to the same degree in a given patient; this suggests that different mechanisms may be responsible. It is suggested that cross-coupling during head thrusts may reflect a loss of calibration of brainstem connections involved in the direct vestibular pathways, perhaps due to dysfunction of the flocculus. Cross-coupling during constant-velocity rotations and following head shaking may result from a misorientation of the angular eye-velocity vector in the velocity-storage system. Finally, responses to horizontal optokinetic stimulation included an inappropriate torsional component in some patients. This suggests that the underlying organization of horizontal optokinetic tracking is in labyrinthine coordinates. The findings are also consistent with prior animal-lesion studies that have shown a role for the vestibulocerebellum in the control of the direction of the VOR.

  19. Optimisation of the mean boat velocity in rowing.

    PubMed

    Rauter, G; Baumgartner, L; Denoth, J; Riener, R; Wolf, P

    2012-01-01

    In rowing, motor learning may be facilitated by augmented feedback that displays the ratio between actual mean boat velocity and maximal achievable mean boat velocity. To provide this ratio, the aim of this work was to develop and evaluate an algorithm calculating an individual maximal mean boat velocity. The algorithm optimised the horizontal oar movement under constraints such as the individual range of the horizontal oar displacement, individual timing of catch and release and an individual power-angle relation. Immersion and turning of the oar were simplified, and the seat movement of a professional rower was implemented. The feasibility of the algorithm, and of the associated ratio between actual boat velocity and optimised boat velocity, was confirmed by a study on four subjects: as expected, advanced rowing skills resulted in higher ratios, and the maximal mean boat velocity depended on the range of the horizontal oar displacement.

  20. Long-term variation of horizontal phase velocity and propagation direction of mesospheric and thermospheric gravity waves by using airglow images obtained at Shigarkai, Japan

    NASA Astrophysics Data System (ADS)

    Takeo, D.; Kazuo, S.; Hujinami, H.; Otsuka, Y.; Matsuda, T. S.; Ejiri, M. K.; Yamamoto, M.; Nakamura, T.

    2016-12-01

    Atmospheric gravity waves generated in the lower atmosphere transport momentum into the upper atmosphere and release it when they break. The released momentum drives the global-scale pole-to-pole circulation and causes global mass transport. Vertical propagation of the gravity waves and transportation of momentum depend on horizontal phase velocity of gravity waves according to equation about dispersion relation of waves. Horizontal structure of gravity waves including horizontal phase velocity can be seen in the airglow images, and there have been many studies about gravity waves by using airglow images. However, long-term variation of horizontal phase velocity spectrum of gravity waves have not been studied yet. In this study, we used 3-D FFT method developed by Matsuda et al., (2014) to analyze the horizontal phase velocity spectrum of gravity waves by using 557.7-nm (altitude of 90-100 km) and 630.0-nm (altitude of 200-300 km) airglow images obtained at Shigaraki MU Observatory (34.8 deg N, 136.1 deg E) over 16 years from October 1, 1998 to July 26, 2015. Results about 557.7-nm shows clear seasonal variation of propagation direction of gravity waves in the mesopause region. Between summer and winter, there are propagation direction anisotropies which probably caused by filtering due to zonal mesospheric jet and by difference of latitudinal location of wave sources relative to Shigaraki. Results about 630.0-nm shows clear negative correlation between the yearly power spectrum density of horizontal phase velocity and sunspot number. This negative correlation with solar activity is consistent with growth rate of the Perkins instability, which may play an important role in generating the nighttime medium-scale traveling ionospheric disturbances at middle latitudes.

  1. Horizontal and Vertical Velocities Derived from the IDS Contribution to ITRF2014, and Comparisons with Geophysical Models

    NASA Technical Reports Server (NTRS)

    Moreaux, G.; Lemoine, F. G.; Argus, D. F.; Santamaria-Gomez, A.; Willis, P.; Soudarin, L.; Gravelle, M.; Ferrage, P.

    2016-01-01

    In the context of the 2014 realization of the International Terrestrial Reference Frame (ITRF2014), the International DORIS Service (IDS) has delivered to the IERS a set of 1140 weekly SINEX files including station coordinates and Earth orientation parameters, covering the time period from 1993.0 to 2015.0. From this set of weekly SINEX files, the IDS Combination Center estimated a cumulative DORIS position and velocity solution to obtain mean horizontal and vertical motion of 160 stations at 71 DORIS sites. The main objective of this study is to validate the velocities of the DORIS sites by comparison with external models or time series. Horizontal velocities are compared with two recent global plate models (GEODVEL 2010 and NNR-MORVEL56). Prior to the comparisons, DORIS horizontal velocities were corrected for Global Isostatic Adjustment (GIA) from the ICE-6G (VM5a) model. For more than half of the sites, the DORIS horizontal velocities differ from the global plate models by less than 2-3 mm/yr. For five of the sites (Arequipa, Dionysos/Gavdos, Manila, Santiago) with horizontal velocity differences wrt these models larger than 10 mm/yr, comparisons with GNSS estimates show the veracity of the DORIS motions. Vertical motions from the DORIS cumulative solution are compared with the vertical velocities derived from the latest GPS cumulative solution over the time span 1995.0-2014.0 from the University of La Rochelle (ULR6) solution at 31 co-located DORIS-GPS sites. These two sets of vertical velocities show a correlation coefficient of 0.83. Vertical differences are larger than 2 mm/yr at 23 percent of the sites. At Thule the disagreement is explained by fine-tuned DORIS discontinuities in line with the mass variations of outlet glaciers. Furthermore, the time evolution of the vertical time series from the DORIS station in Thule show similar trends to the GRACE equivalent water height.

  2. Impact Testing of the H1224A Shipping/Storage Container

    DTIC Science & Technology

    1994-05-01

    may not provide significant ener- gy absorption for the re - entry vehicle midsection but can provide some confinement of potentially damaged...Horizontal Low-Velocity impact test LHV Longitudinal High-Velocity impact test HHV Horizontal High-Velocity impact test RV Re - entry Vehicle midsection mass...Also, integration of these pulses showed that only a much shorter dura- tion pulse was necessary to slow the re - entry vehicle midsection velocity

  3. Vestibulo-Ocular Reflex to Transient Surge Translation: Complex Geometric Response Ablated by Normal Aging

    PubMed Central

    Tian, Jun-ru; Mokuno, Eriko; Demer, Joseph L.

    2007-01-01

    The linear vestibulo-ocular reflex (LVOR) to surge (fore-aft) translation has complex kinematics varying with target eccentricity and distance. To determine normal responses and aging changes, 9 younger [age, 28 ± 2 (SE) yr] and 11 older subjects (age, 69 ± 2 yr) underwent 0.5g whole body surge transients while wearing binocular scleral search coils. Linear chair position and head acceleration were measured with a potentiometer and accelerometer. Subjects viewed centered and 10° horizontally and vertically eccentric targets 50, 25, or 15 cm distant before unpredictable onset of randomly directed surge in darkness (LVOR) and light (V-LVOR). Response directions were kinematically appropriate to eccentricity in all subjects, but there were significantly more measurable LVOR and V-LVOR responses (63–79%) in younger than older subjects (38–44%, P < 0.01). Minimal LVOR latency averaged 48 ± 4 ms for younger and significantly longer at 70 ± 6 ms for older subjects. In the interval 200–300 ms after surge onset, horizontal LVOR gain (relative to ideal velocity) of younger subjects averaged over all target distances was 0.55 ± 0.04 and was significantly reduced in older subjects to 0.33 ± 0.04. Horizontal V-LVOR gain was 0.58 ± 0.04 in younger and significantly lower at 0.35 ± 0.06 in older subjects. Vertical gains did not differ significantly between groups. Target visibility had no effect in either group during the initial 200 ms. The LVOR and V-LVOR were augmented by saccades in younger more than older subjects. Aging thus decreases LVOR velocity gain, response rate, and saccade augmentation, but prolongs latency. PMID:16551841

  4. Adaptation of primate vestibuloocular reflex to altered peripheral vestibular inputs. II Spatiotemporal properties of the adapted slow-phase eye velocity

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1996-01-01

    1. The ability of the vestibuloocular reflex (VOR) to undergo adaptive modification after selective changes in the peripheral vestibular system was investigated in rhesus monkeys by recording three-dimensional eye movements before and after inactivation of selective semicircular canals. In the preceding paper we showed that the horizontal VOR gain evoked by passive yaw oscillations after lateral semicircular canal inactivation recovers gradually over time in a frequency-specific manner. Here we present the spatial tuning of the adapted slow-phase eye velocity and describe its spatiotemporal properties as a function of time after canal inactivation. 2. The spatial organization of the VOR was investigated during oscillations at different head positions in the pitch, roll, and yaw planes, as well as in the right anterior/left posterior and left anterior/right posterior canal planes. Acutely after bilateral inactivation of the lateral semicircular canals, a small horizontal response could still be elicited that peaked during rotations in pitched head positions that would maximally stimulate vertical semicircular canals. In addition, the phase of horizontal slow-phase velocity abruptly reversed through 180 degrees at positions close to upright, similarly to torsional slow-phase velocity. These spatial response properties suggest that the small, residual horizontal response components that are present acutely after plugging of both lateral canals originate from vertical semicircular canal signals. 3. As the horizontal response amplitude increased over time, consistent changes were also observed in the spatiotemporal tuning of horizontal slow-phase velocity. 1) The spatiotemporal response properties of horizontal slow-phase velocity acquired noncosine tuning characteristics, primarily in the pitch plane, in the right anterior/left posterior and left anterior/right posterior canal planes. Accordingly, horizontal response amplitude was nonzero during rotation in any head position in these planes and response phase varied significantly as a function of head orientation. 2) The peak horizontal response amplitude shifted spatially over time, such that 5-10 mo after plugging it was maximal during rotations at head positions close to upright. 4. In parallel to these unique spatiotemporal response properties characterizing the adapted horizontal VOR, torsional slow-phase velocity also exhibited small spatiotemporal changes after lateral canal inactivation that tended to precede in time the changes associated with the horizontal response components. In contrast, vertical slow-phase velocity in the plugged animals was unaltered and continued to be characterized by cosine-tuned spatial properties in three dimensions. 5. Recovery of the horizontal response gain during yaw oscillations in upright position, as well as the unique, noncosine spatiotemporal characteristics of the adapted horizontal VOR, were also observed in an animal with all but one vertical semicircular canals inactivated. There was, however, no sign of VOR gain recovery up to 2 mo after all semicircular canals were inactivated. These results suggest that the observed recovery of horizontal VOR is at least partly due to signals originating from the remaining intact vertical canal(s). Even in the presence of a single intact vertical canal, the improvement in horizontal gaze stability is at least partly restored through spatiotemporal changes in the processing of vestibuloocular signals that improve the gain and spatial tuning of horizontal VOR at the expense of temporal response properties.

  5. Developments in Marine Current Turbine Research at the United States Naval Academy (Invited)

    NASA Astrophysics Data System (ADS)

    Flack, K. A.; Luznik, L.

    2013-12-01

    A series of tests have been performed on a 1/25th scale model of a two bladed horizontal axis marine current turbine. The tests were conducted in a large tow tank facility at the United States Naval Academy. The turbine model has a 0.8 m diameter (D) rotor with a NACA 63-618 cross section, which is Reynolds number independent with respect to the lift coefficient in the operating range of Rec ≈ 4 x 105. Baseline test were conducted to obtain torque, thrust and rotational speed at a range of tip speed ratios (TSR) from 5 < TSR < 11. The power and thrust coefficients for the model turbine match expected results from blade-element-momentum theory. The lift and drag curves for the numerical model were obtained by testing a 2D NACA 63-618 airfoil in a wind tunnel. Additional tests were performed at two rotor depths (1.3D and 2.25D) in the presence of intermediate and deep water waves. The average values for power and thrust coefficient are weakly dependent on turbine depth. The waves yield a small increase in turbine performance which can be explained by Stokes drift velocity. Phase averaged results indicate that the oscillatory wave velocity results in significant variations in measured turbine torque and rotational speed as a function of wave phase. The turbine rotation speed, power, and thrust reach a maximum with the passing of the wave crest and a minimum with the passing of the wave trough. The torque appears dependent on vertical velocity, which lags the horizontal velocity by 90° of wave phase. Variations of the performance parameters are of the same order of magnitude as the average value, especially when the turbine is near the mean free surface and in the presence of high energy waves. These results demonstrate the impact of surface gravity waves on power production and structural loading. Future tests will focus on measuring and modeling the wake of the turbine for unsteady flow conditions. Model Turbine Power Coefficient vs, Tip Speed Ratio

  6. Measurement of the horizontal velocity of wind perturbations in the middle atmosphere by spaced MF radar systems

    NASA Technical Reports Server (NTRS)

    Meek, C. E.; Manson, A. H.; Smith, M. J.

    1983-01-01

    Two remote receiving sites have been set up at a distance of approx 40 km from the main MF radar system. This allows measurement of upper atmosphere winds from 60-120 km (3 km resolution) at the corners of an approximately equilateral triangle of side approx 20 km. Some preliminary data are compared through cross correlation and cross spectral analysis in an attempt to determine the horizontal velocity of wind perturbations and/or the horizontal wavelength and phase velocity of gravity waves.

  7. Lateral-torsional response of base-isolated buildings with curved surface sliding system subjected to near-fault earthquakes

    NASA Astrophysics Data System (ADS)

    Mazza, Fabio

    2017-08-01

    The curved surface sliding (CSS) system is one of the most in-demand techniques for the seismic isolation of buildings; yet there are still important aspects of its behaviour that need further attention. The CSS system presents variation of friction coefficient, depending on the sliding velocity of the CSS bearings, while friction force and lateral stiffness during the sliding phase are proportional to the axial load. Lateral-torsional response needs to be better understood for base-isolated structures located in near-fault areas, where fling-step and forward-directivity effects can produce long-period (horizontal) velocity pulses. To analyse these aspects, a six-storey reinforced concrete (r.c.) office framed building, with an L-shaped plan and setbacks in elevation, is designed assuming three values of the radius of curvature for the CSS system. Seven in-plan distributions of dynamic-fast friction coefficient for the CSS bearings, ranging from a constant value for all isolators to a different value for each, are considered in the case of low- and medium-type friction properties. The seismic analysis of the test structures is carried out considering an elastic-linear behaviour of the superstructure, while a nonlinear force-displacement law of the CSS bearings is considered in the horizontal direction, depending on sliding velocity and axial load. Given the lack of knowledge of the horizontal direction at which near-fault ground motions occur, the maximum torsional effects and residual displacements are evaluated with reference to different incidence angles, while the orientation of the strongest observed pulses is considered to obtain average values.

  8. Field measurements of horizontal forward motion velocities of terrestrial dust devils: Towards a proxy for ambient winds on Mars and Earth

    NASA Astrophysics Data System (ADS)

    Balme, M. R.; Pathare, A.; Metzger, S. M.; Towner, M. C.; Lewis, S. R.; Spiga, A.; Fenton, L. K.; Renno, N. O.; Elliott, H. M.; Saca, F. A.; Michaels, T. I.; Russell, P.; Verdasca, J.

    2012-11-01

    Dust devils - convective vortices made visible by the dust and debris they entrain - are common in arid environments and have been observed on Earth and Mars. Martian dust devils have been identified both in images taken at the surface and in remote sensing observations from orbiting spacecraft. Observations from landing craft and orbiting instruments have allowed the dust devil translational forward motion (ground velocity) to be calculated, but it is unclear how these velocities relate to the local ambient wind conditions, for (i) only model wind speeds are generally available for Mars, and (ii) on Earth only anecdotal evidence exists that compares dust devil ground velocity with ambient wind velocity. If dust devil ground velocity can be reliably correlated to the ambient wind regime, observations of dust devils could provide a proxy for wind speed and direction measurements on Mars. Hence, dust devil ground velocities could be used to probe the circulation of the martian boundary layer and help constrain climate models or assess the safety of future landing sites. We present results from a field study of terrestrial dust devils performed in the southwest USA in which we measured dust devil horizontal velocity as a function of ambient wind velocity. We acquired stereo images of more than a 100 active dust devils and recorded multiple size and position measurements for each dust devil. We used these data to calculate dust devil translational velocity. The dust devils were within a study area bounded by 10 m high meteorology towers such that dust devil speed and direction could be correlated with the local ambient wind speed and direction measurements. Daily (10:00-16:00 local time) and 2-h averaged dust devil ground speeds correlate well with ambient wind speeds averaged over the same period. Unsurprisingly, individual measurements of dust devil ground speed match instantaneous measurements of ambient wind speed more poorly; a 20-min smoothing window applied to the ambient wind speed data improves the correlation. In general, dust devils travel 10-20% faster than ambient wind speed measured at 10 m height, suggesting that their ground speeds are representative of the boundary layer winds a few tens of meters above ground level. Dust devil ground motion direction closely matches the measured ambient wind direction. The link between ambient winds and dust devil ground velocity demonstrated here suggests that a similar one should apply on Mars. Determining the details of the martian relationship between dust devil ground velocity and ambient wind velocity might require new in situ or modelling studies but, if completed successfully, would provide a quantitative means of measuring wind velocities on Mars that would otherwise be impossible to obtain.

  9. Vertical temperature and density patterns in the Arctic mesosphere analyzed as gravity waves

    NASA Technical Reports Server (NTRS)

    Eberstein, I. J.; Theon, J. S.

    1975-01-01

    Rocket soundings conducted from high latitude sites in the Arctic mesosphere are described. Temperature and wind profiles and one density profile were observed independently to obtain the thermodynamic structure, the wind structure, and their interdependence in the mesosphere. Temperature profiles from all soundings were averaged, and a smooth curve (or series of smooth curves) drawn through the points. A hydrostatic atmosphere based on the average, measured temperature profile was computed, and deviations from the mean atmosphere were analyzed in terms of gravity wave theory. The vertical wavelengths of the deviations were 10-20 km, and the wave amplitudes slowly increased with height. The experimental data were matched by calculated gravity waves having a period of 15-20 minutes and a horizontal wavelength of 60-80 km. The wind measurements are consistent with the thermodynamic measurements. The results also suggest that gravity waves travel from East to West with a horizontal phase velocity of approximately 60 m sec-1.

  10. Amyloplast sedimentation and organelle saltation in living corn columella cells

    NASA Technical Reports Server (NTRS)

    Sack, F. D.; Suyemoto, M. M.; Leopold, A. C.

    1986-01-01

    Amyloplast sedimentation during gravistimulation and organelle movements was studied in living central rootcap cells of Zea mays L. cv. Merit. Cells from sectioned roots were viewed with a horizontally-mounted videomicroscope. The kinetics of gravity-induced amyloplast sedimentation were comparable to those calculated from experiments using fixed material. Individual amyloplasts fell at an average velocity of 5.5 micrometers min-1; the maximal velocity of fall measured was 18.0 micrometers min-1. Amyloplasts often rotated, sometimes rose in the cytoplasm, and occasionally underwent sudden rapid movements as fast as 58 micrometers min-1. Saltations of other organelles were frequently observed. This appears to be the first report of cytoplasmic streaming in the presumptive statocytes of roots.

  11. Ground-motion site effects from multimethod shear-wave velocity characterization at 16 seismograph stations deployed for aftershocks of the August 2011 Mineral, Virginia earthquake

    USGS Publications Warehouse

    Stephenson, William J.; Odum, Jackson K.; McNamara, Daniel E.; Williams, Robert A.; Angster, Stephen J

    2014-01-01

    We characterize shear-wave velocity versus depth (Vs profile) at 16 portable seismograph sites through the epicentral region of the 2011 Mw 5.8 Mineral (Virginia, USA) earthquake to investigate ground-motion site effects in the area. We used a multimethod acquisition and analysis approach, where active-source horizontal shear (SH) wave reflection and refraction as well as active-source multichannel analysis of surface waves (MASW) and passive-source refraction microtremor (ReMi) Rayleigh wave dispersion were interpreted separately. The time-averaged shear-wave velocity to a depth of 30 m (Vs30), interpreted bedrock depth, and site resonant frequency were estimated from the best-fit Vs profile of each method at each location for analysis. Using the median Vs30 value (270–715 m/s) as representative of a given site, we estimate that all 16 sites are National Earthquake Hazards Reduction Program (NEHRP) site class C or D. Based on a comparison of simplified mapped surface geology to median Vs30 at our sites, we do not see clear evidence for using surface geologic units as a proxy for Vs30 in the epicentral region, although this may primarily be because the units are similar in age (Paleozoic) and may have similar bulk seismic properties. We compare resonant frequencies calculated from ambient noise horizontal:vertical spectral ratios (HVSR) at available sites to predicted site frequencies (generally between 1.9 and 7.6 Hz) derived from the median bedrock depth and average Vs to bedrock. Robust linear regression of HVSR to both site frequency and Vs30 demonstrate moderate correlation to each, and thus both appear to be generally representative of site response in this region. Based on Kendall tau rank correlation testing, we find that Vs30 and the site frequency calculated from average Vs to median interpreted bedrock depth can both be considered reliable predictors of weak-motion site effects in the epicentral region.

  12. A clear link connecting the troposphere and ionosphere: ionospheric reponses to the 2015 Typhoon Dujuan

    NASA Astrophysics Data System (ADS)

    Kong, Jian; Yao, Yibin; Xu, Yahui; Kuo, Chungyen; Zhang, Liang; Liu, Lei; Zhai, Changzhi

    2017-09-01

    The global navigation satellite system (GNSS) total electron content (TEC) sequences were used to capture the arrival time and location of the ionosphere disturbances in response to the 2015 Typhoon Dujuan. After removing the de-trended TEC variation, the clear ionosphere disturbances on the typhoon landing day could be distinguished, and these disturbances disappeared from the TEC sequences before and after the typhoon landing day. The foF2 data observed by Xiamen ionosonde station also show ionosphere disturbances. Based on the advantages of GNSS multi-point observations, the disturbances horizontal velocity in the ionosphere were estimated according to the linear theory for a dispersion relation of acoustic gravity waves (AGWs) in an isothermal atmosphere. The average horizontal velocity (˜ 240 m/s) and the radial velocity (˜ 287 m/s) were used in the two-dimensional grid search for the origin point on the Earth's surface. The origin area was determined to be on the eastern side of Taiwan. Lastly, a possible physical mechanism is discussed in this study. When typhoons land on Taiwan, the severe convective storms and the drag effect from the Central Mountains create an ideal location for development of AGWs. Topographic conditions, like the high lapse rate, contribute to the formation of AGWs, which then propagates into the ionosphere altitude.

  13. Effects of wave shape on sheet flow sediment transport

    USGS Publications Warehouse

    Hsu, T.-J.; Hanes, D.M.

    2004-01-01

    A two-phase model is implemented to study the effects of wave shape on the transport of coarse-grained sediment in the sheet flow regime. The model is based on balance equations for the average mass, momentum, and fluctuation energy for both the fluid and sediment phases. Model simulations indicate that the responses of the sheet flow, such as the velocity profiles, the instantaneous bed shear stress, the sediment flux, and the total amount of the mobilized sediment, cannot be fully parameterized by quasi-steady free-stream velocity and may be correlated with the magnitude of local horizontal pressure gradient (or free-stream acceleration). A net sediment flux in the direction of wave advance is obtained for both skewed and saw-tooth wave shapes typical of shoaled and breaking waves. The model further suggests that at critical values of the horizontal pressure gradient, there is a failure event within the bed that mobilizes more sediment into the mobile sheet and enhances the sediment flux. Preliminary attempts to parameterize the total bed shear stress and the total sediment flux appear promising. Copyright 2004 by the American Geophysical Union.

  14. Do humans show velocity-storage in the vertical rVOR?

    PubMed

    Bertolini, G; Bockisch, C J; Straumann, D; Zee, D S; Ramat, S

    2008-01-01

    To investigate the contribution of the vestibular velocity-storage mechanism (VSM) to the vertical rotational vestibulo-ocular reflex (rVOR) we recorded eye movements evoked by off-vertical axis rotation (OVAR) using whole-body constant-velocity pitch rotations about an earth-horizontal, interaural axis in four healthy human subjects. Subjects were tumbled forward, and backward, at 60 deg/s for over 1 min using a 3D turntable. Slow-phase velocity (SPV) responses were similar to the horizontal responses elicited by OVAR along the body longitudinal axis, ('barbecue' rotation), with exponentially decaying amplitudes and a residual, otolith-driven sinusoidal response with a bias. The time constants of the vertical SPV ranged from 6 to 9 s. These values are closer to those that reflect the dynamic properties of vestibular afferents than the typical 20 s produced by the VSM in the horizontal plane, confirming the relatively smaller contribution of the VSM to these vertical responses. Our preliminary results also agree with the idea that the VSM velocity response aligns with the direction of gravity. The horizontal and torsional eye velocity traces were also sinusoidally modulated by the change in gravity, but showed no exponential decay.

  15. Oceanic lithosphere and asthenosphere - Thermal and mechanical structure

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Yuen, D. A.; Froidevaux, C.

    1976-01-01

    A coupled thermomechanical subsolidus model of the oceanic lithosphere and asthenosphere is developed which includes vertical heat conduction, a temperature-dependent thermal conductivity, heat advection by a horizontal and vertical mass flow that depends on depth and age, contributions of viscous dissipation or shear heating, a linear or nonlinear deformation law relating shear stress and strain rate, as well as a temperature- and pressure-dependent viscosity. The model requires a constant horizontal velocity and temperature at the surface, but zero horizontal velocity and constant temperature at great depths. The depth- and age-dependent temperature, horizontal and vertical velocities, and viscosity structure of the lithosphere and asthenosphere are determined along with the age-dependent shear stress in those two zones. The ocean-floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of ocean-floor age; seismic velocity profiles which exhibit a marked low-velocity zone are constructed from the age-dependent geotherms and assumed values of the elastic parameters. It is found that simple boundary-layer cooling determines the thermal structure at young ages, while effects of viscous dissipation become more important at older ages.

  16. Generation of a pseudo-2D shear-wave velocity section by inversion of a series of 1D dispersion curves

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that inverting high-frequency surface-wave dispersion curves - by a pair of traces through cross-correlation with phase-shift scanning method and with the damped least-square method and the singular-value decomposition technique - can feasibly achieve a reliable pseudo-2D S-wave velocity section with relatively high horizontal resolution. ?? 2008 Elsevier B.V. All rights reserved.

  17. Nystagmus responses in a group of normal humans during earth-horizontal axis rotation

    NASA Technical Reports Server (NTRS)

    Wall, Conrad, III; Furman, Joseph M. R.

    1989-01-01

    Horizontal eye movement responses to earth-horizontal yaw axis rotation were evaluated in 50 normal human subjects who were uniformly distributed in age (20-69 years) and each age group was then divided by gender. Subjects were rotated with eyes open in the dark, using clockwise and counter-clockwise 60 deg velocity trapezoids. The nystagmus slow component velocity is analyzed. It is shown that, despite large intersubject variability, parameters which describe earth-horizontal yaw axis responses are loosely interrelated, and some of them vary significantly with gender and age.

  18. Can imaginary head tilt shorten postrotatory nystagmus?

    PubMed

    Gianna-Poulin, C C; Voelker, C C; Erickson, B; Black, F O

    2001-08-01

    In healthy subjects, head tilt upon cessation of a constant-velocity yaw head rotation shortens the duration of postrotatory nystagmus. The presumed mechanism for this effect is that the velocity storage of horizontal semicircular canal inputs is being discharged by otolith organ inputs which signal a constant yaw head position when the head longitudinal axis is no longer earth-vertical. In the present study, normal subjects were rotated head upright in the dark on a vertical-axis rotational chair at 60 degrees/s for 75 s and were required to perform a specific task as soon as the chair stopped. Horizontal position of the right eye was recorded with an infra-red video camera. The average eye velocity (AEV) was measured over a 30-s interval following chair acceleration/deceleration. The ratios (postrotatory AEV/perrotatory AEV) were 1.1 (SD 0.112) when subjects (N=10) kept their head erect, 0.414 (SD 0.083) when subjects tilted their head forward, 1.003 (SD 0.108) when subjects imagined watching a TV show, 1.012 (SD 0.074) when subjects imagined looking at a painting on a wall, and 0.995 (SD 0.074) when subjects imagined floating in a prone position on a lake. Thus, while actual head tilt reduced postrotatory nystagmus, the imagination tasks did not have a statistically significant effect on postrotatory nystagmus. Therefore, velocity storage does not appear to be under the influence of cortical neural signals when subjects imagine that they are floating in a prone orientation.

  19. Estimation of the surface stress near the eye wall of hurricanes using WSR-88D radar data

    NASA Astrophysics Data System (ADS)

    Businger, S.; Morrison, I.; Marks, F.; Dodge, P.; Businger, J. A.

    2003-04-01

    Analysis of Doppler velocity data from the WSR-88D radar during hurricane landfall reveals evidence of organized secondary circulations in the vicinity of the hurricane eye wall at low elevations. A Fourier analysis of the Velocity-Azimuthal Display (VAD) provides estimates of divergence (0th harmonic), wind speed and direction (1st harmonic), and deformation (2nd harmonic). A residual velocity field is obtained by subtracting the mean VAD velocity from the radial Doppler velocity for elevation angles between 0.5 and 5.5 degrees. The wavelength, length, depth, magnitude, and motion of velocity anomalies are then compiled from the residual velocity displays. The resulting statistics suggest the presence of organized secondary circulations or boundary layer (BL) rolls in the marine boundary layer of the hurricanes. To date, three storms have been examined: Fran (1996), Bonnie (1998), and Georges (1998) using WSR-88D data from Wilmington, N.C.; Morehead City, N.C.; and Key West, FL, respectively. The analysis focuses on the period between the time the first BL roll is identified and hurricane landfall. The number of BL rolls tracked in Bonnie, Fran, and Georges was 44, 56, and 24, respectively. BL rolls were less frequent in Georges, and the magnitude of the velocity anomalies was less than those in Fran and Bonnie. The average low-level (800 m--50 m) shear in Georges was substantially less than in the other storms, likely contributing to the fewer number of rolls identified and a lower intensity of the rolls. The wavelength of the observed BL rolls is about twice the horizontal distance between adjacent positive and negative velocity anomalies. Georges had the largest average wavelength (˜1400 m), followed by Fran (˜1320 m) and Bonnie (˜1200 m). The gradient between adjacent positive and negative anomalies corresponds to a horizontal wind shear of ˜14 m s-1 over 660 m, and a vertical shear component of vorticity of 2.0×10-2 s-1. Momentum fluxes associated with the secondary circulations are estimated with reference to mixing length theory. Estimates of the surface stress are obtained from the radar derived wind profiles using a modified momentum budget approach. The impact of secondary circulations on the magnitude of the surface stress in the hurricane eye wall will be discussed and contrasted with other approaches for estimating the stress.

  20. Elliptical spreading characteristics of a liquid metal droplet impact on a glass surface under a horizontal magnetic field

    NASA Astrophysics Data System (ADS)

    Yang, Juan-Cheng; Qi, Tian-Yu; Han, Tian-Yang; Zhang, Jie; Ni, Ming-Jiu

    2018-01-01

    The spreading characteristics of a liquid GaInSn alloy droplet on a glass surface with the action of a horizontal magnetic field have been experimentally investigated in the present paper. With changing the impact velocity from 0.1 m/s to 1.2 m/s and increasing the magnetic field from 0 T to 1.6 T, we focus on studying the influence of the horizontal magnetic field on the spreading characteristics of a liquid metal droplet using the shadow-graph method. The elliptical spreading pattern of a liquid metal droplet induced by the horizontal magnetic field was discovered by experiments. By introducing a numerical method in getting the distribution of current lines and the Lorentz force inside the droplet, we give a detailed explanation on the mechanism of elliptical spreading. Furthermore, some quantitative results on a maximum spreading factor and time at moment of maximum spreading varied with the Hartmann number and Weber number are shown to give us a comprehensive understanding of the elliptical spreading. With the increasing of the magnetic field, the maximum spreading factor in the front view is reduced while that in the side view is increased, which reveals a larger deformation happened during the spreading process. While with the increasing of impact velocity, the spreading factor increased. Finally, we present a non-dimensional parameter to get scaling laws for the averaged maximum spreading factor and the aspect ratio of the maximum spreading factor; results show that the predict data can agree with experimental data in a certain degree.

  1. Analysis of Supergranule Sizes and Velocities Using Solar Dynamics Observatory (SDO)/Helioseismic Magnetic Imager (HMI) and Solar and Heliospheric Observatory (SOHO)/Michelson Doppler Imager (MDI) Dopplergrams

    NASA Technical Reports Server (NTRS)

    Williams, Peter E.; Pesnell, W. Dean; Beck, John G.; Lee, Shannon

    2013-01-01

    Co-temporal Doppler images from Solar and Heliospheric Observatory (SOHO)/ Michelson Doppler Imager (MDI) and Solar Dynamics Observatory (SDO)/Helioseismic Magnetic Imager (HMI) have been analyzed to extract quantitative information about global properties of the spatial and temporal characteristics of solar supergranulation. Preliminary comparisons show that supergranules appear to be smaller and have stronger horizontal velocity flows within HMI data than was measured with MDI. There appears to be no difference in their evolutionary timescales. Supergranule sizes and velocities were analyzed over a ten-day time period at a 15-minute cadence. While the averages of the time-series retain the aforementioned differences, fluctuations of these parameters first observed in MDI data were seen in both MDI and HMI time-series, exhibiting a strong cross-correlation. This verifies that these fluctuations are not instrumental, but are solar in origin. The observed discrepancies between the averaged values from the two sets of data are a consequence of instrument resolution. The lower spatial resolution of MDI results in larger observed structures with lower velocities than is seen in HMI. While these results offer a further constraint on the physical nature of supergranules, they also provide a level of calibration between the two instruments.

  2. Turbulence feature modifications from high to low wind conditions: results from the CCT observations at Ny-Ålesund, Svalbard.

    NASA Astrophysics Data System (ADS)

    Schiavon, Mario; Mazzola, Mauro; Tampieri, Francesco; Pietro Viola, Angelo; Choi, Taejin

    2017-04-01

    The turbulence features in the quasi neutral surface layer are investigated as the intensity of the wind decreases, i.e. as the forcing due to the shear decreases. In this aim, a 5-year (2012-2016) set of observations of meteorological and micro-meteorological parameters acquired on the Climate Change Tower (CCT) in Ny-Ålesund, Svalbard Islands, is used. The 34-m high tower, operated by the Italian National Council of Research (CNR) is equipped with four slow response wind and temperature probes and three fast response sonic anemometers and is located on heterogeneous terrain. One of the fast sensors was installed by KOPRI since 2012. The observations are averaged over 10 and 30 minutes intervals. The analysis addresses the share of the mean turbulent kinetic energy (TKE) among the along-wind, cross-wind and vertical velocity variances (respectively < u2 >, < v2 >, < w2 >), with attention to the parameterizations of the boundary layer commonly used in NWP models: the classical Mellor-Yamada (1982) scheme with the return-to-isotropy term by Rotta(1951) and its modifications, and the recent approach by Zilitinkevich and coworkers (2013). The results show that the share of TKE among the vertical < w2 > and the total horizontal variance < u2 > + < v2 > is weakly dependent on the wind velocity while the share of the total horizontal variance between the along-wind and cross-wind components depends on wind speed. At high velocity (and large wind shear) a clear anisotropy , with < u2 >≈ 2 < v2 >, is observed, quite consistent with literature (Tampieri, 2017, pag. 69). As the velocity decreases, the ratio < u2 > /(< u2 > + < v2 >) displays a wide flat distribution between 0.2 and 0.8 with median values corresponding approximately to horizontal isotropy: < u2 >≈< v2 >. These features can be parameterized using suitable coefficients, function of the wind intensity in the equations for the TKE share, capturing the average behaviour of the flow. A further investigation based on estimates of the relative importance of the high frequency and low frequency spectral distribution of TKE suggests that the presence of slow motions (like meandering) affects the tendency to isotropy; in absence of such effects, the horizontal turbulence is anisotropic both in high and in relatively low wind conditions. Some comparison with the results from other data sets is outlined, to give a preliminary answer to the possible generalization of such features. Mellor, Yamada. Rev. G. Space Phys. 20, 851 (1982) Rotta. Z. Phys. 129, 547 (1951) Tampieri. Turbulence and Dispersion in the PBL. Springer (2017) Zilitinkevich et al. Bound.-Layer Meteorol. 146, 341 (2013)

  3. Stratospheric Horizontal Wavenumber Spectra of Winds, Potential Temperature, and Atmospheric Tracers Observed by High-Altitude Aircraft

    NASA Technical Reports Server (NTRS)

    Bacmeister, Julio T.; Eckermann, Stephen D.; Newman, Paul A.; Lait, Leslie; Chan, K. R.; Loewenstein, Max; Proffitt, Michael H.; Gary, Bruce L.

    1996-01-01

    Horizontal wavenumber power spectra of vertical and horizontal wind velocities, potential temperatures, and ozone and N(2)O mixing ratios, as measured in the mid-stratosphere during 73 ER-2 flights (altitude approx. 20km) are presented. The velocity and potential temperature spectra in the 100 to 1-km wavelength range deviate significantly from the uniform -5/3 power law expected for the inverse energy-cascade regime of two-dimensional turbulence and also for inertial-range, three-dimensional turbulence. Instead, steeper spectra approximately consistent with a -3 power law are observed at horizontal scales smaller than 3 km for all velocity components as well as potential temperature. Shallower spectra are observed at scales longer than 6 km. For horizontal velocity and potential temperature the spectral indices at longer scales are between -1.5 and -2.0. For vertical velocity the spectrum at longer scales become flat. It is argued that the observed velocity and potential temperature spectra are consistent with gravity waves. At smaller scales, the shapes are also superficially consistent with a Lumley-Shur-Weinstock buoyant subrange of turbulence and/or nonlinear gravity waves. Contemporaneous spectra of ozone and N(sub 2)O mixing ratio in the 100 to 1-km wavelength range do conform to an approximately uniform -5/3 power law. It is argued that this may reflect interactions between gravity wave air-parcel displacements and laminar or filamentary structures in the trace gas mixing ratio field produced by enstropy-cascading two-dimensional turbulence.

  4. Experimental and Theoretical Studies of Condensation on a Horizontal Tube Row with Vapour Shear

    NASA Astrophysics Data System (ADS)

    Aoune, Azzeddine

    Available from UMI in association with The British Library. This thesis presents an experimental and theoretical investigation into the effect of vapour shear on the condensation of steam flowing vertically downwards over a single horizontal tube and a horizontal tube in a row. Honda and Fujii's conjugate heat transfer analysis has been adapted and modified to take account of property variation with temperature and release of sensible heat to the condensing film. In industrial condensers, even in the first row, the vapour velocity profile around a tube is affected by the presence of its neighbours. This work extends Honda and Fujii's analysis to investigate the effect of tube spacing on the heat transfer. The finite element method was used to obtain the velocity field around the tube in a row and subsequently the boundary layer equations for the condensate and vapour film along with the heat flow in the tube wall were solved simultaneously. Data have been obtained at absolute pressures of 0.8 and 0.9 bar and for steam superheat up to 40 degC. Approach steam velocities up to 25 m/s were covered. Cooling water velocities and temperatures were in the range 0.68-1.16 m/s and 18-43^circ C, respectively. Honda et al (67), Roshko's flow, theory was found to fit the data for the steam flowing over the isolated tube. The theoretical data for the latter agreed well with the Shekriladze and Gomelauri (2) and Rose (40) correlations and Honda et al (67), potential flow, theory. On | Nu| Re^{-1/2} versus F basis, an average enhancement of 50% in condensate film heat transfer was observed in the case of steam flowing over the tube in a row compared to the isolated tube. This compared with the predicted value of 23% enhancement.

  5. Contribution of irregular semicircular canal afferents to the horizontal vestibuloocular response during constant velocity rotation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Perachio, A. A.

    1993-01-01

    1. The effects of constant anodal currents (100 microA) delivered bilaterally to both labyrinths on the horizontal vestibuloocular response (VOR) were studied in squirrel monkeys during steps of angular velocity in the dark. We report that bilateral anodal currents decreased eye velocity approximately 30-50% during the period of galvanic stimulation without a change in the time constant of VOR. The decrease in eye velocity, present during steps of angular velocity, was not observed during sinusoidal head rotation at 0.2, 0.5, and 1 Hz. The results suggest that responses from irregular vestibular afferents influence VOR amplitude during constant velocity rotation.

  6. A two-dimensional kinematic dynamo model of the ionospheric magnetic field at Venus

    NASA Technical Reports Server (NTRS)

    Cravens, T. E.; Wu, D.; Shinagawa, H.

    1990-01-01

    The results of a high-resolution, two-dimensional, time dependent, kinematic dynamo model of the ionospheric magnetic field of Venus are presented. Various one-dimensional models are considered and the two-dimensional model is then detailed. In this model, the two-dimensional magnetic induction equation, the magnetic diffusion-convection equation, is numerically solved using specified plasma velocities. Origins of the vertical velocity profile and of the horizontal velocities are discussed. It is argued that the basic features of the vertical magnetic field profile remain unaltered by horizontal flow effects and also that horizontal plasma flow can strongly affect the magnetic field for altitudes above 300 km.

  7. Repeatability and oblique flow response characteristics of current meters

    USGS Publications Warehouse

    Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.; ,

    1993-01-01

    Laboratory investigation into the precision and accuracy of various mechanical-current meters are presented. Horizontal-axis and vertical-axis meters that are used for the measurement of point velocities in streams and rivers were tested. Meters were tested for repeatability and response to oblique flows. Both horizontal- and vertical-axis meters were found to under- and over-register oblique flows with errors generally increasing as the velocity and angle of flow increased. For the oblique flow tests, magnitude of errors were smallest for horizontal-axis meters. Repeatability of all meters tested was good, with the horizontal- and vertical-axis meters performing similarly.

  8. Forces on stationary particles in near-bed turbulent flows

    NASA Astrophysics Data System (ADS)

    Schmeeckle, Mark W.; Nelson, Jonathan M.; Shreve, Ronald L.

    2007-06-01

    In natural flows, bed sediment particles are entrained and moved by the fluctuating forces, such as lift and drag, exerted by the overlying flow on the particles. To develop a better understanding of these forces and the relation of the forces to the local flow, the downstream and vertical components of force on near-bed fixed particles and of fluid velocity above or in front of them were measured synchronously at turbulence-resolving frequencies (200 or 500 Hz) in a laboratory flume. Measurements were made for a spherical test particle fixed at various heights above a smooth bed, above a smooth bed downstream of a downstream-facing step, and in a gravel bed of similarly sized particles as well as for a cubical test particle and 7 natural particles above a smooth bed. Horizontal force was well correlated with downstream velocity and not correlated with vertical velocity or vertical momentum flux. The standard drag formula worked well to predict the horizontal force, but the required value of the drag coefficient was significantly higher than generally used to model bed load motion. For the spheres, cubes, and natural particles, average drag coefficients were found to be 0.76, 1.36, and 0.91, respectively. For comparison, the drag coefficient for a sphere settling in still water at similar particle Reynolds numbers is only about 0.4. The variability of the horizontal force relative to its mean was strongly increased by the presence of the step and the gravel bed. Peak deviations were about 30% of the mean force for the sphere over the smooth bed, about twice the mean with the step, and 4 times it for the sphere protruding roughly half its diameter above the gravel bed. Vertical force correlated poorly with downstream velocity, vertical velocity, and vertical momentum flux whether measured over or ahead of the test particle. Typical formulas for shear-induced lift based on Bernoulli's principle poorly predict the vertical forces on near-bed particles. The measurements suggest that particle-scale pressure variations associated with turbulence are significant in the particle momentum balance.

  9. Forces on stationary particles in near-bed turbulent flows

    USGS Publications Warehouse

    Schmeeckle, M.W.; Nelson, J.M.; Shreve, R.L.

    2007-01-01

    In natural flows, bed sediment particles are entrained and moved by the fluctuating forces, such as lift and drag, exerted by the overlying flow on the particles. To develop a better understanding of these forces and the relation of the forces to the local flow, the downstream and vertical components of force on near-bed fixed particles and of fluid velocity above or in front of them were measured synchronously at turbulence-resolving frequencies (200 or 500 Hz) in a laboratory flume. Measurements were made for a spherical test particle fixed at various heights above a smooth bed, above a smooth bed downstream of a downstream-facing step, and in a gravel bed of similarly sized particles as well as for a cubical test particle and 7 natural particles above a smooth bed. Horizontal force was well correlated with downstream velocity and not correlated with vertical velocity or vertical momentum flux. The standard drag formula worked well to predict the horizontal force, but the required value of the drag coefficient was significantly higher than generally used to model bed load motion. For the spheres, cubes, and natural particles, average drag coefficients were found to be 0.76, 1.36, and 0.91, respectively. For comparison, the drag coefficient for a sphere settling in still water at similar particle Reynolds numbers is only about 0.4. The variability of the horizontal force relative to its mean was strongly increased by the presence of the step and the gravel bed. Peak deviations were about 30% of the mean force for the sphere over the smooth bed, about twice the mean with the step, and 4 times it for the sphere protruding roughly half its diameter above the gravel bed. Vertical force correlated poorly with downstream velocity, vertical velocity, and vertical momentum flux whether measured over or ahead of the test particle. Typical formulas for shear-induced lift based on Bernoulli's principle poorly predict the vertical forces on near-bed particles. The measurements suggest that particle-scale pressure variations associated with turbulence are significant in the particle momentum balance. Copyright 2007 by the American Geophysical Union.

  10. Tidal and residual currents measured by an acoustic doppler current profiler at the west end of Carquinez Strait, San Francisco Bay, California, March to November 1988

    USGS Publications Warehouse

    Burau, J.R.; Simpson, M.R.; Cheng, R.T.

    1993-01-01

    Water-velocity profiles were collected at the west end of Carquinez Strait, San Francisco Bay, California, from March to November 1988, using an acoustic Doppler current profiler (ADCP). These data are a series of 10-minute-averaged water velocities collected at 1-meter vertical intervals (bins) in the 16.8-meter water column, beginning 2.1 meters above the estuary bed. To examine the vertical structure of the horizontal water velocities, the data are separated into individual time-series by bin and then used for time-series plots, harmonic analysis, and for input to digital filters. Three-dimensional graphic renditions of the filtered data are also used in the analysis. Harmonic analysis of the time-series data from each bin indicates that the dominant (12.42 hour or M2) partial tidal currents reverse direction near the bottom, on average, 20 minutes sooner than M2 partial tidal currents near the surface. Residual (nontidal) currents derived from the filtered data indicate that currents near the bottom are pre- dominantly up-estuary during the neap tides and down-estuary during the more energetic spring tides.

  11. Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry. Final report, September 1988--November 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, T.A.

    1992-12-01

    The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows.more » A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.« less

  12. Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, T.A.

    1992-12-01

    The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows.more » A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.« less

  13. Kinematic, kinetic and EMG analysis of four front crawl flip turn techniques.

    PubMed

    Pereira, Suzana Matheus; Ruschel, Caroline; Hubert, Marcel; Machado, Leandro; Roesler, Helio; Fernandes, Ricardo Jorge; Vilas-Boas, João Paulo

    2015-01-01

    This study aimed to analyse the kinematic, kinetic and electromyographic characteristics of four front crawl flip turn technique variants. The variants distinguished from each other by differences in body position (i.e., dorsal, lateral, ventral) during rolling, wall support, pushing and gliding phases. Seventeen highly trained swimmers (17.9 ± 3.2 years old) participated in interventional sessions and performed three trials of each variant, being monitored with a 3-D video system, a force platform and an electromyography (EMG) system. Studied variables: rolling time and distance, wall support time, push-off time, peak force and horizontal impulse at wall support and push-off, centre of mass horizontal velocity at the end of the push-off, gliding time, centre of mass depth, distance, average and final velocity during gliding, total turn time and electrical activity of Gastrocnemius Medialis, Tibialis Anterior, Biceps Femoris and Vastus Lateralis muscles. Depending on the variant, total turn time ranged from 2.37 ± 0.32 to 2.43 ± 0.33 s, push-off force from 1.86 ± 0.33 to 1.92 ± 0.26 BW and centre of mass velocity during gliding from 1.78 ± 0.21 to 1.94 ± 0.22 m · s(-1). The variants were not distinguishable in terms of kinematical, kinetic and EMG parameters during the rolling, wall support, pushing and gliding phases.

  14. Hip joint kinetics in the table tennis topspin forehand: relationship to racket velocity.

    PubMed

    Iino, Yoichi

    2018-04-01

    The purpose of this study was to determine hip joint kinetics during a table tennis topspin forehand, and to investigate the relationship between the relevant kinematic and kinetic variables and the racket horizontal and vertical velocities at ball impact. Eighteen male advanced table tennis players hit cross-court topspin forehands against backspin balls. The hip joint torque and force components around the pelvis coordinate system were determined using inverse dynamics. Furthermore, the work done on the pelvis by these components was also determined. The peak pelvis axial rotation velocity and the work done by the playing side hip pelvis axial rotation torque were positively related to the racket horizontal velocity at impact. The sum of the work done on the pelvis by the backward tilt torques and the upward joint forces was positively related to the racket vertical velocity at impact. The results suggest that the playing side hip pelvis axial rotation torque exertion is important for acquiring a high racket horizontal velocity at impact. The pelvis backward tilt torques and upward joint forces at both hip joints collectively contribute to the generation of the racket vertical velocity, and the mechanism for acquiring the vertical velocity may vary among players.

  15. Running Technique is an Important Component of Running Economy and Performance

    PubMed Central

    FOLLAND, JONATHAN P.; ALLEN, SAM J.; BLACK, MATTHEW I.; HANDSAKER, JOSEPH C.; FORRESTER, STEPHANIE E.

    2017-01-01

    ABSTRACT Despite an intuitive relationship between technique and both running economy (RE) and performance, and the diverse techniques used by runners to achieve forward locomotion, the objective importance of overall technique and the key components therein remain to be elucidated. Purpose This study aimed to determine the relationship between individual and combined kinematic measures of technique with both RE and performance. Methods Ninety-seven endurance runners (47 females) of diverse competitive standards performed a discontinuous protocol of incremental treadmill running (4-min stages, 1-km·h−1 increments). Measurements included three-dimensional full-body kinematics, respiratory gases to determine energy cost, and velocity of lactate turn point. Five categories of kinematic measures (vertical oscillation, braking, posture, stride parameters, and lower limb angles) and locomotory energy cost (LEc) were averaged across 10–12 km·h−1 (the highest common velocity < velocity of lactate turn point). Performance was measured as season's best (SB) time converted to a sex-specific z-score. Results Numerous kinematic variables were correlated with RE and performance (LEc, 19 variables; SB time, 11 variables). Regression analysis found three variables (pelvis vertical oscillation during ground contact normalized to height, minimum knee joint angle during ground contact, and minimum horizontal pelvis velocity) explained 39% of LEc variability. In addition, four variables (minimum horizontal pelvis velocity, shank touchdown angle, duty factor, and trunk forward lean) combined to explain 31% of the variability in performance (SB time). Conclusions This study provides novel and robust evidence that technique explains a substantial proportion of the variance in RE and performance. We recommend that runners and coaches are attentive to specific aspects of stride parameters and lower limb angles in part to optimize pelvis movement, and ultimately enhance performance. PMID:28263283

  16. An In-Well Point Velocity Probe for the rapid determination of groundwater velocity at the centimeter-scale

    NASA Astrophysics Data System (ADS)

    Osorno, Trevor C.; Devlin, J. F.; Firdous, Rubina

    2018-02-01

    The In-Well Point Velocity Probe (IWPVP) is a novel device designed for obtaining rapid, initial measurements of groundwater velocity at the centimeter-scale using a standard monitoring well to access the subsurface. IWPVP measurements of groundwater speed are quantified on the basis of a mini-tracer test that is conducted within the body of the probe. Information regarding horizontal flow directions is obtained from differential responses at detectors placed in the four quadrants of the probe. The viability of the IWPVP design was confirmed by (1) numerical modeling that accounted for laminar flow in the porous medium outside the well and turbulent flow inside the well (and probe), and (2) a series of laboratory tank experiments in which the probe was calibrated to quantify seepage rates in a medium-grain sand. Laboratory tests were completed in less than 20 min in all cases, when seepage velocity was between 50 and 400 cm/day. The magnitude of the groundwater velocity was determined with a precision of ±7% on average, and accuracy of ±11% for seepage velocities up to 400 cm/day. The flow direction was determined within ±15°. The IWPVP appears to be a viable tool for rapid assessment of groundwater velocity.

  17. Continuous Data Assimilation for a 2D Bénard Convection System Through Horizontal Velocity Measurements Alone

    NASA Astrophysics Data System (ADS)

    Farhat, Aseel; Lunasin, Evelyn; Titi, Edriss S.

    2017-06-01

    In this paper we propose a continuous data assimilation (downscaling) algorithm for a two-dimensional Bénard convection problem. Specifically we consider the two-dimensional Boussinesq system of a layer of incompressible fluid between two solid horizontal walls, with no-normal flow and stress-free boundary conditions on the walls, and the fluid is heated from the bottom and cooled from the top. In this algorithm, we incorporate the observables as a feedback (nudging) term in the evolution equation of the horizontal velocity. We show that under an appropriate choice of the nudging parameter and the size of the spatial coarse mesh observables, and under the assumption that the observed data are error free, the solution of the proposed algorithm converges at an exponential rate, asymptotically in time, to the unique exact unknown reference solution of the original system, associated with the observed data on the horizontal component of the velocity.

  18. Turbulence spectra measured during fire front passage

    Treesearch

    Daisuke Seto; Craig B. Clements; Warren E. Heilman

    2013-01-01

    Four field experiments were conducted over various fuel and terrain to investigate turbulence generation during the passage of wildland fire fronts. Our results indicate an increase in horizontal mean winds and friction velocity, horizontal and vertical velocity variances as well as a decreased degree of anisotropy in TKE during fire front passage (FFP) due to fire-...

  19. Current kinematics and dynamics of Africa and the East African Rift System

    NASA Astrophysics Data System (ADS)

    Stamps, D. S.; Flesch, L. M.; Calais, E.; Ghosh, A.

    2014-06-01

    Although the East African Rift System (EARS) is an archetype continental rift, the forces driving its evolution remain debated. Some contend buoyancy forces arising from gravitational potential energy (GPE) gradients within the lithosphere drive rifting. Others argue for a major role of the diverging mantle flow associated with the African Superplume. Here we quantify the forces driving present-day continental rifting in East Africa by (1) solving the depth averaged 3-D force balance equations for 3-D deviatoric stress associated with GPE, (2) inverting for a stress field boundary condition that we interpret as originating from large-scale mantle tractions, (3) calculating dynamic velocities due to lithospheric buoyancy forces, lateral viscosity variations, and velocity boundary conditions, and (4) calculating dynamic velocities that result from the stress response of horizontal mantle tractions acting on a viscous lithosphere in Africa and surroundings. We find deviatoric stress associated with lithospheric GPE gradients are ˜8-20 MPa in EARS, and the minimum deviatoric stress resulting from basal shear is ˜1.6 MPa along the EARS. Our dynamic velocity calculations confirm that a force contribution from GPE gradients alone is sufficient to drive Nubia-Somalia divergence and that additional forcing from horizontal mantle tractions overestimates surface kinematics. Stresses from GPE gradients appear sufficient to sustain present-day rifting in East Africa; however, they are lower than the vertically integrated strength of the lithosphere along most of the EARS. This indicates additional processes are required to initiate rupture of continental lithosphere, but once it is initiated, lithospheric buoyancy forces are enough to maintain rifting.

  20. Vergence-mediated modulation of the human horizontal vestibulo-ocular reflex is eliminated by a partial peripheral gentamicin lesion.

    PubMed

    Migliaccio, Americo A; Minor, Lloyd B; Carey, John P

    2004-11-01

    The angular vestibulo-ocular reflex normally has an increased response during vergence on a near target. Surgical unilateral vestibular deafferentation reduces the horizontal vestibulo-ocular reflex (VOR) in response to far target viewing and eliminates this vergence effect. Intratympanic gentamicin treatment reduces VOR gain during far viewing, but the reduction is less severe than that after unilateral vestibular deafferentation. We sought to determine how gentamicin would affect vergence-mediated modulation of the VOR. The VOR in response to passive head impulses in the horizontal plane while viewing a far (124 cm) or near (15 cm) target was evaluated in 11 subjects following intratympanic gentamicin treatment. Three of these subjects had also been tested immediately prior to receiving gentamicin. The impulses were low amplitude (approximately 20 degrees ), high velocity (approximately 150 degrees /s), high acceleration (approximately 3,000 degrees /s2) horizontal head rotations administered manually by the investigator. Binocular eye and head velocity were recorded using the scleral search coil technique. The VOR gain was defined as eye velocity divided by inverted head velocity. Prior to intratympanic gentamicin, the VOR gain during rotations to either side was symmetric and showed the same vergence-mediated increase. Following gentamicin, head impulses towards the untreated side yielded VOR gains of 0.91+/-0.12 while viewing a far target and 1.27+/-0.22 while viewing a near target, an increase of 33%. Head impulses towards the treated side produced a hypometric VOR with no increase between far and near viewing. The average latency of the VOR was 7.6+/-2.5 ms towards the untreated side for either near or far viewing and 20.7+/-13.1 ms towards the treated side for either near or far viewing. Our findings show that a peripheral lesion caused by gentamicin does not ablate the VOR but does eliminate a component of the vestibular signal that is necessary for vergence-mediated modulation of the VOR. Gentamicin has preferential toxicity for the hair cells in the central zone of the crista, where irregular afferents predominate. Our findings are consistent with the hypothesis that irregular afferents provide the necessary signal for vergence-mediated modulation of the VOR.

  1. Shear velocity profiles in the crust and lithospheric mantle across Tibet

    NASA Astrophysics Data System (ADS)

    Agius, M. R.; Lebedev, S.

    2010-12-01

    We constrain variations in the crustal and lithospheric structure across Tibet, using phase velocities of seismic surface waves. The data are seismograms recorded by broadband instruments of permanent and temporary networks within and around the plateau. Phase-velocity measurements are performed in broad period ranges using an elaborate recent implementation of the 2-station method. A combination of the cross-correlation and multimode-waveform-inversion measurements using tens to hundreds of seismograms per station pair produces robust, accurate phase-velocity curves for Rayleigh and Love waves. We use our new measurements to infer phase-velocity variations and to constrain S-velocity profiles in different parts of the plateau, including radial anisotropy and depths of lithospheric discontinuities. We observe a mid-crustal low-velocity zone (LVZ) in the 20-45 km depth range across the plateau, with S-velocities within a 3.2-3.5 km/s range. This LVZ coincides with a low-resistivity layer inferred from magnetotelluric studies, interpreted as evidence for partial melting in the middle crust. Surface-wave data are also consistent with radial anisotropy in this layer, indicative of horizontal flow. At the north-eastern boundary of the plateau, past the Kunlun Fault, the mid-crustal LVZ, in the sense of an S-velocity decrease with depth in the 15-25 km depth range, is not required by the surface-wave data although the velocity is still relatively low. The mantle-lithosphere structure shows a pronounced contrast between the south-western and central-northern parts of the plateau. The south-west is underlain by a thick, high-velocity, craton-like lithospheric mantle. Below central Lhasa the uppermost mantle appears to be close to global average with an increase in velocity between 150 - 250 km depth. Beneath central and northern Tibet, the average S velocity between the Moho and 200 km depth is close to the global continental average (4.5 km/s). In order to investigate the finer detail of the lithosphere in the North we perform an extensive series of test inversions. We find that surface-wave dispersion measurements alone are consistent both with models that have low S velocity just beneath the Moho, increasing with depth below, and with models that display a thin high-velocity mantle lid underlain by a low-velocity zone (asthenosphere). To resolve this non-uniqueness from the inversion model, we combine our surface-wave measurements in the Qiangtang Block with receiver-function constraints on the Moho depth, and Sn constraints on the uppermost mantle S velocities. We show that the data is matched significantly better with models that contain a thin, high-velocity lithosphere (up to 90 km thick) underlain by a low-velocity zone than by models with no wave-speed decrease between the Moho and ~100 km depth. In the deeper upper mantle (below ~150 km depth), S velocity increases and is likely to exceed the global average value.

  2. 3D near-surface soil response from H/V ambient-noise ratios

    USGS Publications Warehouse

    Wollery, E.W.; Street, R.

    2002-01-01

    The applicability of the horizontal-to-vertical (H/V) ambient-noise spectral ratio for characterizing earthquake site effects caused by nearsurface topography and velocity structures was evaluated at sites underlain by thick (i.e. >100 m) sediment deposits near the southern-end of the New Madrid seismic zone in the central United States. Three-component ambient-noise and velocity models derived from seismic (shearwave) refraction/reflection surveys showed that a relatively horizontal, sharp shear-wave velocity interface in the soil column resulted in an H/V spectral ratio with a single well-defined peak. Observations at sites with more than one sharp shear-wave velocity contrast and horizontally arranged soil layers resulted in at least two well-defined H/V spectral ratio peaks. Furthermore, at sites where there were sharp shear-wave velocity contrasts in nonhorizontal, near-surface soil layers, the H/V spectra exhibited a broad-bandwidth, relatively low amplitude signal instead of a single well-defined peak. ?? 2002 Elsevier Science Ltd. All rights reserved.

  3. The sudden coalescene model of the boiling crisis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrica, P.M.; Clausse, A.

    1995-09-01

    A local two-phase flow integral model of nucleate boiling and crisis is presented. The model is based on average balances on a control volume, yielding to a set of three nonlinear differential equations for the local void fraction, bubble number density and velocity. Boiling crisis as critical heat flux is interpreted as a dynamic transition caused by the coalescence of bubbles near the heater. The theoretical dynamic model is compared with experimental results obtained for linear power ramps in a horizontal plate heater in R-113, showing an excellent qualitative agreement.

  4. The horizontal and vertical cervico-ocular reflexes of the rabbit.

    PubMed

    Barmack, N H; Nastos, M A; Pettorossi, V E

    1981-11-16

    Horizontal and vertical cervico-ocular reflexes of the rabbit (HCOR, VCOR) were evoked by sinusoidal oscillation of the body about the vertical and longitudinal axes while the head was fixed. These reflexes were studied over a frequency range of 0.005-0.800 Hz and at stimulus amplitudes of +/- 10 degrees. When the body of the rabbit was rotated horizontally clockwise around the fixed head, clockwise conjugate eye movements were evoked. When the body was rotated about the longitudinal axis onto the right side, the right eye rotated down and the left eye rotated up. The mean gain of the HCOR (eye velocity/body velocity) rose from 0.21 and 0.005 Hz to 0.27 at 0.020 Hz and then declined to 0.06 at 0.3Hz. The gain of the VCOR was less than the gain of the HCOR by a factor of 2-3. The HCOR was measured separately and in combination with the horizontal vestibulo-ocular reflex (HVOR). These reflexes combine linearly. The relative movements of the first 3 cervical vertebrae during stimulation of the HCOR and VCOR were measured. For the HCOR, the largest angular displacement (74%) occurs between C1 and C2. For the VCOR, the largest relative angular displacement (45%) occurs between C2 and C3. Step horizontal clockwise rotation of the head and body (HVOR) evoked low velocity counterclockwise eye movements followed by fast clockwise (resetting) eye movements. Step horizontal clockwise rotation of the body about the fixed head (HCOR) evoked low velocity clockwise eye movements which were followed by fast clockwise eye movements. Step horizontal clockwise rotation of the head about the fixed body (HCOR + HVOR) evoked low velocity counterclockwise eye movements which were not interrupted by fast clockwise eye movements. These data provide further evidence for a linear combination of independent HCOR and HVOR signals.

  5. F-region neutral winds from ionosonde measurements of h/sub mF2/ at low-latitude magnetic conjugate regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bittencourt, J.A.

    1977-08-01

    The behavior of the F2-peak height difference, delta h/sub F2/, between low-latitude magnetic conjugate points, is known to be governed by thermospheric winds blowing along the magnetic meridian. Ground-based ionosonde measurement of h/sub m F2/, at two pairs of magnetic conjugate stations, were analyzed in conjunction with the results of a realistic dynamic computer model of the tropical ionospheric F-region, to determine thermospheric wind velocities. The behavior of monthly average values of the sun, at conjugate points, of the thermospheric horizontal wind velocity component in the magnetic meridian, at low latitudes, is inferred for months of solstice and equinox, asmore » well as for periods of low and high solar activity.« less

  6. Analysis of current-meter data at Columbia River gaging stations, Washington and Oregon

    USGS Publications Warehouse

    Savini, John; Bodhaine, G.L.

    1971-01-01

    The U.S. Geological Survey developed equipment to measure stream velocity simultaneously with 10 current meters arranged in a vertical and to measure velocity closer to the streambed than attainable with conventional equipment. With the 10 current meters, synchronous velocities were recorded for a period of 66 minutes at 10 different depths in one vertical of one gaging-station cross section. In addition, with a current meter installed on a special bracket to allow measurements to 0.5 foot above streambed, data were obtained at two to four verticals in four gaging-station cross sections. The mean velocity determined for the 66-minute period of record was 3.30 fps (feet per second). The graphic record of velocity was analyzed on a minute-by-minute basis. It was noted that the shape of the vertical velocity curves (plot of horizontal flow velocities measured in a vertical) changed from one minute to the next, but the change seemed to be random. Velocities obtained at different depths in the, profile fluctuated significantly, with the 1-minute velocities obtained at 0.05 depth (5 percent of total depths measured from the surface at indicated vertical) showing the smallest range--0.66 fps--and those at 0.55 depth the largest range--l.22 fps. The standard deviation, expressed in feet per second, of the velocity at each point in the vertical tended to increase with depth--from 0.16 fps at 0.05 depth to a maximum of 0.24 fps at 0.75 depth. The standard deviation, expressed as a percentage of the mean velocity, ranged from about 4 percent near the surface to 11 percent at 0.95 depth. In spite of the fluctuation in mean velocity that occurred during the 66 minutes and observation period of 4 minutes yields a mean velocity that differs from the 66-minute mean by less than one-half of a percent. Determining the mean velocity by averaging the 10-point observations of the 66minute run proved to be as accurate as by plotting the vertical velocity curvy (from the averaged 10 points) and then integrating the depth-velocity profile. In comparing the velocity obtained by integrating the depth-velocity profile with the 10-point mean velocity for other field data, collected beyond that obtained during the 66-minute run, the difference ranged from -1.3 to +1.7 percent and averaged -0.2 percent. Extension of the curve below the 0.95 depth by use of a power function proved to be fairly accurate (when compared with actual measurements within this reach made with the special current-meter bracket). However, the extension did not improve significantly the accuracy of the integrated-curve mean velocity. Both the one- and two-point methods were found to agree with the 10-point velocity. In computing mean river velocity, values determined by the two-point method ranged from -1.4 to +1.6 percent when compared with the base integrated-curve mean river velocity. The one-point method yielded results that ranged from -1.9 to +4.4 percent and averaged 40.1 percent. In determining river flow by use of the midsection and mean-section methods, the mean-section method uniformly yields lower flows for the same dart.. The range in difference is from -0.2 percent to -1.6 percent, with an average difference of -0.6 percent.

  7. Mechanical Properties of Sprinting in Elite Rugby Union and Rugby League.

    PubMed

    Cross, Matt R; Brughelli, Matt; Brown, Scott R; Samozino, Pierre; Gill, Nicholas D; Cronin, John B; Morin, Jean-Benoît

    2015-09-01

    To compare mechanical properties of overground sprint running in elite rugby union and rugby league athletes. Thirty elite rugby code (15 rugby union and 15 rugby league) athletes participated in this cross-sectional analysis. Radar was used to measure maximal overground sprint performance over 20 or 30 m (forwards and backs, respectively). In addition to time at 2, 5, 10, 20, and 30 m, velocity-time signals were analyzed to derive external horizontal force-velocity relationships with a recently validated method. From this relationship, the maximal theoretical velocity, external relative and absolute horizontal force, horizontal power, and optimal horizontal force for peak power production were determined. While differences in maximal velocity were unclear between codes, rugby union backs produced moderately faster split times, with the most substantial differences occurring at 2 and 5 m (ES 0.95 and 0.86, respectively). In addition, rugby union backs produced moderately larger relative horizontal force, optimal force, and peak power capabilities than rugby league backs (ES 0.73-0.77). Rugby union forwards had a higher absolute force (ES 0.77) despite having ~12% more body weight than rugby league forwards. In this elite sample, rugby union athletes typically displayed greater short-distance sprint performance, which may be linked to an ability to generate high levels of horizontal force and power. The acceleration characteristics presented in this study could be a result of the individual movement and positional demands of each code.

  8. Statistical comparison of methods for estimating sediment thickness from Horizontal-to-Vertical Spectral Ratio (HVSR) seismic methods: An example from Tylerville, Connecticut, USA

    USGS Publications Warehouse

    Johnson, Carole D.; Lane, John W.

    2016-01-01

    Determining sediment thickness and delineating bedrock topography are important for assessing groundwater availability and characterizing contamination sites. In recent years, the horizontal-to-vertical spectral ratio (HVSR) seismic method has emerged as a non-invasive, cost-effective approach for estimating the thickness of unconsolidated sediments above bedrock. Using a three-component seismometer, this method uses the ratio of the average horizontal- and vertical-component amplitude spectrums to produce a spectral ratio curve with a peak at the fundamental resonance frequency. The HVSR method produces clear and repeatable resonance frequency peaks when there is a sharp contrast (>2:1) in acoustic impedance at the sediment/bedrock boundary. Given the resonant frequency, sediment thickness can be determined either by (1) using an estimate of average local sediment shear-wave velocity or by (2) application of a power-law regression equation developed from resonance frequency observations at sites with a range of known depths to bedrock. Two frequently asked questions about the HVSR method are (1) how accurate are the sediment thickness estimates? and (2) how much do sediment thickness/bedrock depth estimates change when using different published regression equations? This paper compares and contrasts different approaches for generating HVSR depth estimates, through analysis of HVSR data acquired in the vicinity of Tylerville, Connecticut, USA.

  9. Near Surface Seismic Hazard Characterization in the Presence of High Velocity Contrasts

    NASA Astrophysics Data System (ADS)

    Gribler, G.; Mikesell, D.; Liberty, L. M.

    2017-12-01

    We present new multicomponent surface wave processing techniques that provide accurate characterization of near-surface conditions in the presence of large lateral or vertical shear wave velocity boundaries. A common problem with vertical component Rayleigh wave analysis in the presence of high contrast subsurface conditions is Rayleigh wave propagation mode misidentification due to an overlap of frequency-phase velocity domain dispersion, leading to an overestimate of shear wave velocities. By using the vertical and horizontal inline component signals, we isolate retrograde and prograde particle motions to separate fundamental and higher mode signals, leading to more accurate and confident dispersion curve picks and shear wave velocity estimates. Shallow, high impedance scenarios, such as the case with shallow bedrock, are poorly constrained when using surface wave dispersion information alone. By using a joint inversion of dispersion and horizontal-to-vertical (H/V) curves within active source frequency ranges (down to 3 Hz), we can accurately estimate the depth to high impedance boundaries, a significant improvement compared to the estimates based on dispersion information alone. We compare our approach to body wave results that show comparable estimates of bedrock topography. For lateral velocity contrasts, we observe horizontal polarization of Rayleigh waves identified by an increase in amplitude and broadening of the horizontal spectra with little variation in the vertical component spectra. The horizontal spectra offer a means to identify and map near surface faults where there is no topographic or clear body wave expression. With these new multicomponent active source seismic data processing and inversion techniques, we better constrain a variety of near surface conditions critical to the estimation of local site response and seismic hazards.

  10. Crew Exploration Vehicle (CEV) Water Landing Simulation

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Lawrence, Charles; Carney, Kelly S.

    2007-01-01

    Crew Exploration Vehicle (CEV) water splashdowns were simulated in order to find maximum acceleration loads on the astronauts and spacecraft under various landing conditions. The acceleration loads were used in a Dynamic Risk Index (DRI) program to find the potential risk for injury posed on the astronauts for a range of landing conditions. The DRI results showed that greater risks for injury occurred for two landing conditions; when the vertical velocity was large and the contact angle between the spacecraft and the water impact surface was zero, and when the spacecraft was in a toe down configuration and both the vertical and horizontal landing velocities were large. Rollover was also predicted to occur for cases where there is high horizontal velocity and low contact angles in a toe up configuration, and cases where there was a high horizontal velocity with high contact angles in a toe down configuration.

  11. Spot cooling. Part 1: Human responses to cooling with air jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melikov, A.K.; Halkjaer, L.; Arakelian, R.S.

    Eight standing male subjects and a thermal manikin were studied for thermal, physiological, and subjective responses to cooling with an air jet at room temperatures of 28 C, 33 C, and 38 C and a constant relative humidity of 50%. The subjects wore a standard uniform and performed light work. A vertical jet and a horizontal jet were employed The target area of the jet, i.e., the cross section of the jet where it first met the subject, had a diameter of 0.4 m and was located 0.5 m from the outlet. Experiments were performed at average temperatures at themore » jet target area of 20 C, 24 C, and 28 C. Each experiment lasted 190 minutes and was performed with three average velocities at the target area: 1 and 2 m/s and the preferred velocity selected by the subjects. The impact of the relative humidity of the room air, the jet`s turbulence intensity, and the use of a helmet on the physiological and subjective responses of the eight subjects was also studied The responses of the eight subjects were compared with the responses of a group of 29 subjects. The spot cooling improved the thermal conditions of the occupants. The average general thermal sensation for the eight subjects was linearly correlated to the average mean skin temperature and the average sweat rate. An average mean skin temperature of 33 C and an average sweat rate of 33 g{center_dot}h{sup {minus}1} m{sup {minus}2} were found to correspond to a neutral thermal sensation. The local thermal sensation at the neck and at the arm exposed to the cooling jet was found to be a function of the room air temperature and the local air velocity and temperature of the jet. The turbulence intensity of the cooling jet and the humidity of the room air had no impact on the subjects` physiological and subjective responses. Large individual differences were observed in the evaluation of the environment and in the air velocity preferred by the subjects.« less

  12. Increasing of horizontal velocity of particles leaving a belt conveyor

    NASA Astrophysics Data System (ADS)

    Tavares, Abraão; Faria, Allbens

    2017-06-01

    We investigate the transport of granular materials by a conveyor belt via numerical simulations. We report an unusual increasing of particles horizontal velocity when they leave the belt and initiate free-fall. Using Discrete Elements Method, the mechanism underlying this phenomenon were investigated, and a study on how particle and system properties influences this effect were conducted.

  13. Effect of a Starting Model on the Solution of a Travel Time Seismic Tomography Problem

    NASA Astrophysics Data System (ADS)

    Yanovskaya, T. B.; Medvedev, S. V.; Gobarenko, V. S.

    2018-03-01

    In the problems of three-dimensional (3D) travel time seismic tomography where the data are travel times of diving waves and the starting model is a system of plane layers where the velocity is a function of depth alone, the solution turns out to strongly depend on the selection of the starting model. This is due to the fact that in the different starting models, the rays between the same points can intersect different layers, which makes the tomography problem fundamentally nonlinear. This effect is demonstrated by the model example. Based on the same example, it is shown how the starting model should be selected to ensure a solution close to the true velocity distribution. The starting model (the average dependence of the seismic velocity on depth) should be determined by the method of successive iterations at each step of which the horizontal velocity variations in the layers are determined by solving the two-dimensional tomography problem. An example illustrating the application of this technique to the P-wave travel time data in the region of the Black Sea basin is presented.

  14. Wind Tunnel Measurement of Turbulent and Advective Scalar Fluxes: A Case Study on Intersection Ventilation

    PubMed Central

    Kukačka, Libor; Nosek, Štĕpán; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk

    2012-01-01

    The objective of this study is to determine processes of pollution ventilation in the X-shaped street intersection in an idealized symmetric urban area for the changing approach flow direction. A unique experimental setup for simultaneous wind tunnel measurement of the flow velocity and the tracer gas concentration in a high temporal resolution is assembled. Advective horizontal and vertical scalar fluxes are computed from averaged measured velocity and concentration data within the street intersection. Vertical advective and turbulent scalar fluxes are computed from synchronized velocity and concentration signals measured in the plane above the intersection. All the results are obtained for five approach flow directions. The influence of the approach flow on the advective and turbulent fluxes is determined. The contribution of the advective and turbulent flux to the ventilation is discussed. Wind direction with the best dispersive conditions in the area is found. The quadrant analysis is applied to the synchronized signals of velocity and concentration fluctuation to determine events with the dominant contribution to the momentum flux and turbulent scalar flux. PMID:22649290

  15. Wind tunnel measurement of turbulent and advective scalar fluxes: a case study on intersection ventilation.

    PubMed

    Kukačka, Libor; Nosek, Štĕpán; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk

    2012-01-01

    The objective of this study is to determine processes of pollution ventilation in the X-shaped street intersection in an idealized symmetric urban area for the changing approach flow direction. A unique experimental setup for simultaneous wind tunnel measurement of the flow velocity and the tracer gas concentration in a high temporal resolution is assembled. Advective horizontal and vertical scalar fluxes are computed from averaged measured velocity and concentration data within the street intersection. Vertical advective and turbulent scalar fluxes are computed from synchronized velocity and concentration signals measured in the plane above the intersection. All the results are obtained for five approach flow directions. The influence of the approach flow on the advective and turbulent fluxes is determined. The contribution of the advective and turbulent flux to the ventilation is discussed. Wind direction with the best dispersive conditions in the area is found. The quadrant analysis is applied to the synchronized signals of velocity and concentration fluctuation to determine events with the dominant contribution to the momentum flux and turbulent scalar flux.

  16. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume IV S-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.

    2007-06-06

    In this volume (IV), all S-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. S-wave measurements were performed over the depth range of 370 to 1300 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Shear (S) waves were generated by moving the base plate of T-Rex for a given number of cycles at amore » fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition, a second average shear wave record was recorded by reversing the polarity of the motion of the T-Rex base plate. In this sense, all the signals recorded in the field were averaged signals. In all cases, the base plate was moving perpendicular to a radial line between the base plate and the borehole which is in and out of the plane of the figure shown in Figure 1.1. The definition of “in-line”, “cross-line”, “forward”, and “reversed” directions in items 2 and 3 of Section 2 was based on the moving direction of the base plate. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas (UT) was embedded near the borehole at about 1.5 ft below the ground surface. The Redpath geophone and the UT geophone were properly aligned so that one of the horizontal components in each geophone was aligned with the direction of horizontal shaking of the T-Rex base plate. This volume is organized into 12 sections as follows. Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vs Profile at Borehole C4993, Sections 4 to 6: Unfiltered S-wave records of lower horizontal receiver, reaction mass, and reference receiver, respectively, Sections 7 to 9: Filtered S-wave signals of lower horizontal receiver, reaction mass and reference receiver, respectively, Section 10: Expanded and filtered S-wave signals of lower horizontal receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower horizontal receiver signals, respectively.« less

  17. Winter Precipitation Efficiency of Mountain Ranges in the Colorado Rockies Under Climate Change

    NASA Astrophysics Data System (ADS)

    Eidhammer, Trude; Grubišić, Vanda; Rasmussen, Roy; Ikdea, Kyoko

    2018-03-01

    Orographic precipitation depends on the environmental conditions and the barrier shape. In this study we examine the sensitivity of the precipitation efficiency (i.e., drying ratio (DR)), defined as the ratio of precipitation to incoming water flux, to mountain shape, temperature, stability, and horizontal velocity of the incoming air mass. Furthermore, we explore how the DR of Colorado mountain ranges might change under warmer and moister conditions in the future. For given environmental conditions, we find the DR to be primarily dependent on the upwind slope for mountain ranges wider than about 70 km and on both the slope and width for narrower ranges. Temperature is found to exert an influence on the DR for all Colorado mountain ranges, with DR decreasing with increasing temperature, under both the current and future climate conditions. The decrease of DR with temperature under warmer climate was found to be stronger for wider mountains than the narrower ones. We attribute this asymmetry to the sensitivity of DR to reduced horizontal velocity under warmer conditions. Specifically, while DR for wider mountains shows no sensitivity to changes in horizontal velocity, the DR for narrow ranges increases as the horizontal velocity decreases and more time is provided for precipitation to form. Thus, for narrower ranges, the horizontal velocity appears to offset the temperature effect slightly. The percentagewise decrease of DR for all examined mountain ranges is about 4%K-1. In comparison, the increase in precipitation is about 6%K-1 while the vapor flux increase is about 9%K-1.

  18. SH wave structure of the crust and upper mantle in southeastern margin of the Tibetan Plateau from teleseismic Love wave tomography

    NASA Astrophysics Data System (ADS)

    Fu, Yuanyuan V.; Jia, Ruizhi; Han, Fengqin; Chen, Anguo

    2018-06-01

    The deep structure of southeastern Tibet is important for determining lateral plateau expansion mechanisms, such as movement of rigid crustal blocks along large strike-slip faults, continuous deformation or the eastward crustal channel flow. We invert for 3-D isotropic SH wave velocity model of the crust and upper mantle to the depth of 110 km from Love wave phase velocity data using a best fitting average model as the starting model. The 3-D SH velocity model presented here is the first SH wave velocity structure in the study area. In the model, the Tibetan Plateau is characterized by prominent slow SH wave velocity with channel-like geometry along strike-slip faults in the upper crust and as broad zones in the lower crust, indicating block-like and distributed deformation at different depth. Positive radial anisotropy (VSH > VSV) is suggested by a high SH wave and low SV wave anomaly at the depths of 70-110 km beneath the northern Indochina block. This positive radial anisotropy could result from the horizontal alignment of anisotropic minerals caused by lithospheric extensional deformation due to the slab rollback of the Australian plate beneath the Sumatra trench.

  19. Flow Environment Study Near the Empennage of a 15-Percent Scale Helicopter Model

    NASA Technical Reports Server (NTRS)

    Gorton, Susan Althoff; Berry, John D.; Hodges, W. Todd; Reis, Deane G.

    2000-01-01

    Development of advanced rotorcraft configurations has highlighted a need for high-quality experimental data to support the development of flexible and accurate analytical design tools. To provide this type of data, a test program was conducted in the Langley 14- by 22-Foot Subsonic Tunnel to measure the flow near the empennage of a 15-percent scale powered helicopter model with an operating tail fan. Three-component velocity profiles were measured with laser velocimetry (LV) one chord forward of the horizontal tail for four advance ratios to evaluate the effect of the rotor wake impingement on the horizontal tail angle of attack. These velocity data indicate the horizontal tail can experience unsteady angle of attack variations of over 30 degrees due to the rotor wake influence. The horizontal tail is most affected by the rotor wake above advance ratios of 0.10. Velocity measurements of the flow on the inlet side of the tail fan were made for a low-speed flight condition using conventional LV techniques. The velocity data show an accelerated flow near the tail fan duct, and vorticity calculations track the passage of main rotor wake vortices through the measurement plane.

  20. Site Characterization at Napa Strong Motion Sites Using Tomography, MASW, and MALW

    NASA Astrophysics Data System (ADS)

    Chan, J. H.; Catchings, R.; Goldman, M.; Criley, C.

    2015-12-01

    The 24 August 2014 Mw 6.0 South Napa earthquake caused $300 million in damage to private and commercial properties. Previous studies indicate areas underlain by deposits with low average shear-wave velocity to 30 m depth (Vs30) can experience extensive structural damage during earthquakes. Thus, Vs30 is considered a predictor of the influence of local geology on strong shaking from earthquakes. The goal of our study was to evaluate Vs30 at six accelerograph stations in the City and County of Napa and in the City of Vallejo. We used active seismic sources and 4.5-Hz sensors recorded on 120 channels to investigate the shallow velocity structure. Geophones and shots were spaced at 3 m along each profile, which ranged in length from 85 to 260 m. We used a 226-kg accelerated weight-drop and a seisgun to generate P and Rayleigh waves for P-wave tomography and MASW, and we used a 3.5-kg sledgehammer and block to generate S and Love waves for S-wave tomography and MALW. One of the six accelerographs was housed inside Napa Fire Station #3, where the local surface geology consists of late Pleistocene to Holocene alluvium and alluvial fan deposits. The average Vs30 determined from MASW (Rayleigh waves) is 312 m/s, and the average Vs30 from MALW (Love waves) is 340 m/s, with an average velocity difference of about 8% between the two methods. These average values are both slightly less than the average Vs30 of 375 m/s determined from S-wave tomography, which suggests the three methods are complimentary and can be useful in evaluating site response. The 0.42g median horizontal peak ground acceleration (PGA) recorded at Napa Fire Station #3 indicates the area experienced strong shaking during the Mw 6.0 South Napa earthquake, consistent with expectations for a site with relatively low average Vs30.

  1. Large-Eddy Simulation of Shallow Cumulus over Land: A Composite Case Based on ARM Long-Term Observations at Its Southern Great Plains Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yunyan; Klein, Stephen A.; Fan, Jiwen

    Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime nonprecipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land surface forcing and are not influenced by synoptic weather events. The case includes early morning initial profiles of temperature and moisture with a residual layer; diurnally varying sensible and latent heat fluxes, which represent a domain average over different land surface types; simplified large-scalemore » horizontal advective tendencies and subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation. The observed diurnal cycle is well reproduced by LES; however, the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 m. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity, and updraft mass flux. Both observations and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.« less

  2. Large-Eddy Simulation of Shallow Cumulus over Land: A Composite Case Based on ARM Long-Term Observations at Its Southern Great Plains Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yunyan; Klein, Stephen A.; Fan, Jiwen

    Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime non-precipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land-surface forcing, and are not influenced by synoptic weather events. The case includes: early-morning initial profiles of temperature and moisture with a residual layer; diurnally-varying sensible and latent heat fluxes which represent a domain average over different land-surface types; simplified large-scale horizontal advective tendencies andmore » subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation. The observed diurnal cycle is well-reproduced by LES, however the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 meters. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity and updraft mass flux. Finally, both observation and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.« less

  3. Large-Eddy Simulation of Shallow Cumulus over Land: A Composite Case Based on ARM Long-Term Observations at Its Southern Great Plains Site

    DOE PAGES

    Zhang, Yunyan; Klein, Stephen A.; Fan, Jiwen; ...

    2017-09-19

    Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime non-precipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land-surface forcing, and are not influenced by synoptic weather events. The case includes: early-morning initial profiles of temperature and moisture with a residual layer; diurnally-varying sensible and latent heat fluxes which represent a domain average over different land-surface types; simplified large-scale horizontal advective tendencies andmore » subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation. The observed diurnal cycle is well-reproduced by LES, however the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 meters. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity and updraft mass flux. Finally, both observation and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.« less

  4. Influence of gravitoinertial force level on vestibular and visual velocity storage in yaw and pitch.

    PubMed

    Dizio, P; Lackner, J R

    1992-01-01

    Velocity storage is an important aspect of sensory-motor control of body orientation. The effective decay rate and three-dimensional organization of velocity storage are dependent upon body orientation relative to gravity and also are influenced by gravitoinertial force (G) level. Several of the inputs to velocity storage including otolithic, somatosensory, proprioceptive, and possibly motor are highly dependent on G level. To see whether the G dependency of velocity storage is related to changes in the effective coupling of individual sensory inputs to the velocity storage mechanism or to alterations in the time constant of velocity storage per se, we have studied horizontal vestibular nystagmus, horizontal optokinetic after nystagmus (OKAN) and vertical vestibular nystagmus as a function of force level. Horizontal OKAN and vestibular nystagmus both showed no effect of G level on their initial or peak slow phase velocities but their decay rates were quicker in 0G and 1.8G than in 1G. Vertical vestibular nystagmus also showed no effect of G level on peak velocity but decayed quicker in 0G relative to 1G. These-findings indicate that the intrinsic decay rate of a common velocity storage mechanism is affected by the magnitude of G. A negligible amount of slow phase eye velocity was observed in planes outside the planes of stimulation, thus short-term changes in G across multiple body axes can change velocity storage, but the change is restricted to the axis common to the rotary stimulus and the G vector.

  5. Velocity and temperature profiles in near-critical nitrogen flowing past a horizontal flat plate

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1977-01-01

    Boundary layer velocity and temperature profiles were measured for nitrogen near its thermodynamic critical point flowing past a horizontal flat plate. The results were compared measurements made for vertically upward flow. The boundary layer temperatures ranged from below to above the thermodynamic critical temperature. For wall temperatures below the thermodynamic critical temperature there was little variation between the velocity and temperature profiles in three orientations. In all three orientations the point of crossing into the critical temperature region is marked by a significant flattening of the velocity and temperature profiles and also a decrease in heat transfer coefficient.

  6. Medium scale traveling ionospheric disturbances observed by detrended total electron content maps over South-Southeast of Brazil

    NASA Astrophysics Data System (ADS)

    Takahashi, H.; Figueiredo, C. A. O. B.; Wrasse, C. M.; Otsuka, Y.; Shiokawa, K.; Barros, D.

    2017-12-01

    Medium Scale Traveling Ionospheric Disturbances (MSTIDs) were studied using detrended Total Electron Content (dTEC) maps and keograms over South-Southeast of Brazil during the period from December 2012 to February 2016. In total 826 MSTIDs were observed and they present average values of horizontal wavelength, period, and horizontal phase velocity of 445.19 ± 106.70 km, 23.58 ± 3.65 min e 322.68 ± 80.95 m/s, respectively. The direction of propagation presented anisotropy depending on the season. In addition, the occurrences of MSTIDs were during the daytime between 11-15 LT in winter and other seasons near to solar terminator (17-19 LT). Furthermore, the seasonality of MSTIDs has a higher occurrence rate in winter. The MSTIDs characteristics also suggest that gravity wave activities in the thermosphere, mesosphere and troposphere could play an important role in generating the MSTIDs.

  7. Heat transfer to horizontal tubes in a pilot-scale fluidized-bed combustor burning low-rank coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grewal, N.S.; Goblirsch, G.

    Experimental data are obtained for the heat transfer coefficient between immersed horizontal tube bundles and an atmospheric-fluidized-bed combustor burning low-rank coals. Silica sand and limestone are used as bed material. The tests are conducted, with and without limestone addition and ash recycle, at average bed temperatures ranging from 1047 to 1125 K, superficial fluidizing velocity of 1.66 to 2.04 m/s, and excess air levels of 15 to 40 percent. The experimental data are examined in the light of the existing correlations for the heat transfer coefficient. The predicted values of heat transfer coefficient from the correlations proposed by Grewal andmore » Bansal et al. are found to be within + or - 25 percent of the experimental values of heat transfer coefficient, when the contribution due to radiation is also included.« less

  8. Horizontal Conflict Resolution Maneuvers with a Cockpit Display of Traffic Information

    NASA Technical Reports Server (NTRS)

    Palmer, E.; Jago, S.; Dubord, M.

    1981-01-01

    Pilot resolution of potential conflicts in the horizontal plane when the only information available on the other aircraft was presented on a Cockpit Display of Traffic Information (CDTI) is investigated. The pilot's task was to assess the situation and if necessary maneuver so as to avoid the other aircraft. No instructions were given on evasive strategy or on what was considered to be an acceptable minimum separation. The results indicate that pilots had a strong bias of turning toward the intruder aircraft in order to pass behind it. In more than 50% of the encounters with a 90 degree crossing angle in which the intruder aircraft was programmed to pass behind the aircraft, the pilots maneuvered so as to pass behind the intruder. This bias was not as strong with the display which showed a prediction of the intruder's relative velocity. The average miss distance for all encounters was about 4500 feet.

  9. Oceanic lithosphere and asthenosphere: The thermal and mechanical structure

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Froidevaux, C.; Yuen, D. A.

    1976-01-01

    A coupled thermal and mechanical solid state model of the oceanic lithosphere and asthenosphere is presented. The model includes vertical conduction of heat with a temperature dependent thermal conductivity, horizontal and vertical advection of heat, viscous dissipation or shear heating, and linear or nonlinear deformation mechanisms with temperature and pressure dependent constitutive relations between shear stress and strain rate. A constant horizontal velocity u sub 0 and temperature t sub 0 at the surface and zero horizontal velocity and constant temperature t sub infinity at great depth are required. In addition to numerical values of the thermal and mechanical properties of the medium, only the values of u sub 0, t sub 0 and t sub infinity are specified. The model determines the depth and age dependent temperature horizontal and vertical velocity, and viscosity structures of the lithosphere and asthenosphere. In particular, ocean floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of the age of the ocean floor.

  10. Strain accumulation and rotation in western Oregon and southwestern Washington

    USGS Publications Warehouse

    Svarc, J.L.; Savage, J.C.; Prescott, W.H.; Murray, M.H.

    2002-01-01

    Velocities of 75 geodetic monuments in western Oregon and southwestern Washington extending from the coast to more than 300 km inland have been determined from GPS surveys over the interval 1992-2000. The average standard deviation in each of the horizontal velocity components is ??? 1 mm yr-1. The observed velocity field is approximated by a combination of rigid rotation (Euler vector relative to interior North America: 43. 40??N ?? 0.14??, 119.33??W ?? 0.28??, and 0.822 ?? 0.057?? Myr-1 clockwise; quoted uncertainties are standard deviations), uniform regional strain rate (??EE = -7.4 ?? 1.8, ??EN = -3.4 ?? 1.0, and ??NN = -5.0 ?? 0.8 nstrain yr-1, extension reckoned positive), and a dislocation model representing subduction of the Juan de Fuca plate beneath North America. Subduction south of 44.5??N was represented by a 40-km-wide locked thrust and subduction north of 44.5??N by a 75-km-wide locked thrust.

  11. Detection of Traveling Ionospheric Disturbances Induced by 2010 Mindanao Earthquakes

    NASA Astrophysics Data System (ADS)

    Shahbazi, A.; Park, J.; Huang, C.

    2017-12-01

    Earthquakes precipitate anomalous variations in the concentration of free electrons/ions in the ionosphere being known as the Traveling Ionospheric Disturbance (TID). The TIDs can be detected from the Total Electron Content (TEC), which can be extracted from the ionospheric delay along the ray path of the GNSS signal between a satellite and a receiver. In this study, we utilized the GNSS-derived TEC observed by Communication/Navigation Outage Forecasting System (C/NOFS), which is a Low Earth Orbit (LEO) satellite. As a case study, we detected the ionospheric perturbations triggered by 2010 Mindanao earthquakes in the Moro Gulf, southern Philippines. Since this sequence of the earthquakes was occurred in depths of about 600 km, the low detectability of TID signature was expected while the magnitude of the foreshock, primary shock and aftershock were of 7.3, 7.6, and 7.5 Mb, respectively. Hence, we introduced a novel filtering scheme to assess the performance of space-based TEC observations in identification of earthquake-induced TIDs as well as to cope with the challenge of investigating deep subsequent earthquakes. The proposed approach suppresses the dominant trend of TEC by Hodrick-Prescott (H-P) Filter, which identifies the extremums of the remained signal as the potential TIDs and associates them to the seismic waves. Considering the propagation mechanism of the seismic waves given in the literatures that the wave propagates upward from the earthquake epicenter to the upper atmosphere, and then, moves horizontally through the ionosphere, we applied the first order linear regression model to estimate the propagation velocity of TIDs. Our experimental result demonstrated the vertical propagation velocity of 0.980 km/s and the horizontal propagation velocity through the ionosphere of 1.066 km/s with the std. of 0.364 km/s. The correlation coefficient of the detected TIDs in this model is 0.78 that illustrates the detected TIDs are well correlated with the event under consideration. Also, the average (vertical and horizontal) velocities of wave were matched with the literatures which reveal the 2010 Mindanao earthquakes with near 600km of depth generated the TIDs being detectable by GNSS receivers on a LEO satellite.

  12. Gaze pursuit responses in nucleus reticularis tegmenti pontis of head-unrestrained macaques.

    PubMed

    Suzuki, David A; Betelak, Kathleen F; Yee, Robert D

    2009-01-01

    Eye-head gaze pursuit-related activity was recorded in rostral portions of the nucleus reticularis tegmenti pontis (rNRTP) in alert macaques. The head was unrestrained in the horizontal plane, and macaques were trained to pursue a moving target either with their head, with the eyes stationary in the orbits, or with their eyes, with their head voluntarily held stationary in space. Head-pursuit-related modulations in rNRTP activity were observed with some cells exhibiting increases in firing rate with increases in head-pursuit frequency. For many units, this head-pursuit response appeared to saturate at higher frequencies (>0.6 Hz). The response phase re:peak head-pursuit velocity formed a continuum, containing cells that could encode head-pursuit velocity and those encoding head-pursuit acceleration. The latter cells did not exhibit head position-related activity. Sensitivities were calculated with respect to peak head-pursuit velocity and averaged 1.8 spikes/s/deg/s. Of the cells that were tested for both head- and eye-pursuit-related activity, 86% exhibited responses to both head- and eye-pursuit and therefore carried a putative gaze-pursuit signal. For these gaze-pursuit units, the ratio of head to eye response sensitivities averaged approximately 1.4. Pursuit eccentricity seemed to affect head-pursuit response amplitude even in the absence of a head position response per se. The results indicated that rNRTP is a strong candidate for the source of an active head-pursuit signal that projects to the cerebellum, specifically to the target-velocity and gaze-velocity Purkinje cells that have been observed in vermal lobules VI and VII.

  13. Effects of sedimenting particles on the turbulence structure in a horizontal channel flow

    NASA Astrophysics Data System (ADS)

    Tay, Godwin F. K.; Kuhn, David C. S.; Tachie, Mark F.

    2015-02-01

    This work presents the results of experiments conducted in a horizontal channel to characterize low Reynolds number turbulent flows in the presence of small solid particles. The particle diameter relative to the integral length scale, dp/Λx, is approximately 0.02. Particles and fluid turbulence characteristics are measured for three average solid volume fractions of approximately ϕv = 2.0 × 10-4, 4.0 × 10-4, and 8.0 × 10-4 under conditions where the particle number density is evolving due to deposition. The results indicate that the mean slip between particles and the fluid is important only close to the wall. Away from the wall, the particles and unladen fluid mean velocities are similar. Differences between particles and the unladen fluid statistics are more pronounced in the wall-normal velocity fluctuations than the streamwise velocity fluctuations and Reynolds shear stress due to the stronger effect of the gravitational force in the wall-normal direction. The fluid turbulent intensities show no dependency on loading, but the peak Reynolds shear stress is significantly reduced. A quadrant decomposition of the Reynolds shear stress revealed a corresponding reduction in the ejections and sweeps for the laden flow in comparison with the unladen flow. Swirling strength and vorticity root-mean-square fluctuations decayed due to the damping effect of particles. The influence of particles on the turbulence structure was examined using two-point correlations of the velocity fluctuations and swirling strength, where it was demonstrated that the wall structures are attached eddies which are more extensive (much larger) in the particle-laden flow compared to the unladen flow.

  14. Film condensation of steam flowing downward on a tier of horizontal cylinders at different inclination angles in the presence of a non-condensable gas

    NASA Astrophysics Data System (ADS)

    Ramadan, Abdulghani; Yamali, Cemil

    2013-12-01

    The problem of forced laminar film condensation of steam flowing downward a tier of horizontal cylinders is investigated numerically. The effects of free stream non-condensable gas, air concentration (m1,∞), free stream velocity (Reynolds number), cylinder diameter, and angle of inclination on the condensation heat transfer are analyzed. Two flow arrangements, inline and staggered, are analyzed and investigated. The mathematical model takes into account the effect of staggering of the cylinders and how condensation is affected at the lower cylinders when condensate does not fall on to the center line of the cylinders. Condensation heat transfer results are available in ranges from (U∞ = 1 - 30 m/s) for free stream velocity, (m1,∞ = 0.01 -0.8) for free stream air mass fraction and (D = 12.7 -50.8 mm) for cylinder diameter. Results show that; a remarked reduction in the vapor side heat transfer coefficient is noticed. This results from the presence of small amounts of free stream air mass fractions in the steam-air mixture and increase in the cylinder diameter. On the other hand, it increases by increasing the free stream velocity (Reynolds number). Average heat transfer coefficient at the middle and the bottom cylinders increases by increasing the angle of inclination, whereas, no significant change is observed for that of the upper cylinder. Down the bank, a rapid decrease in the vapor side heat transfer coefficient is noticed. It may be resulted from the combined effects of inundation, decrease in the vapor velocity and increase in the non-condensable gas (air) at the bottom cylinders in the bank.

  15. Backstroke start kinematic and kinetic changes due to different feet positioning.

    PubMed

    de Jesus, Karla; de Jesus, Kelly; Figueiredo, Pedro; Gonçalves, Pedro; Pereira, Suzana Matheus; Vilas-Boas, João Paulo; Fernandes, Ricardo Jorge

    2013-01-01

    The backstroke swimming start international rules changed in 2005. This study compared two backstroke start variants, both with feet parallel to each other but in complete immersion and emersion. Six elite swimmers performed two sets of 4 maximal 15 m bouts, each set using one of the variants. The starts were videotaped in the sagittal plane with two cameras, providing bi-dimensional dual-media kinematic evaluation, and an underwater force plate and a handgrip instrumented with a load cell collected kinetic data. Backstroke start with feet immerged displayed greater centre-of-mass horizontal starting position, centre-of-mass horizontal velocity at hands-off and take-off angle. Backstroke start with feet emerged showed greater wall contact time, centre-of-mass horizontal and downward vertical velocity at take-off, lower limbs horizontal impulse, and centre-of-mass downward vertical velocity during flight phase. Backstroke start with feet immerged and emerged displayed similar centre-of-mass horizontal water reach, back arc angle and 5 m starting time. Irrespective of the swimmer's feet positioning, coaches should emphasise each variant's mechanical advantages during the wall contact phases. Furthermore, the maintenance of those advantages throughout the flight should be stressed for better backstroke start performance.

  16. Steady Capillary Driven Flow

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M.

    1996-01-01

    A steady capillary driven flow is developed for a liquid index in a circular tube which is partially coated with a surface modifier to produce a discontinuous wetting condition from one side of the tube to the other. The bulk flow is novel in that it is truly steady, and controlled solely by the physics associated with dynamic wetting. The influence of gravity on the flow is minimized through the use of small diameter tubes approximately O(1 mm) tested horizontally in a laboratory and larger tubes approximately O(10 mm) tested in the low gravity environment of a drop tower. Average steady velocities are predicted and compared against a large experimental data set which includes the effects of tube dimensions and fluid properties. The sensitivity of the velocity to surface cleanliness is dramatic and the advantages of experimentation in a microgravity environment are discussed.

  17. Vertical structure of internal wave induced velocity for mode I and II solitary waves in two- and three-layer fluid

    NASA Astrophysics Data System (ADS)

    Gigiyatullin, Ayrat; Kurkin, Andrey; Kurkina, Oxana; Rouvinskaya, Ekaterina; Rybin, Artem

    2017-04-01

    With the use of the Gardner equation, or its variable-coefficient forms, the velocity components of fluid particles in the vertical section induced by a passage of internal waves can be estimated in weakly nonlinear limit. The horizontal velocity gives the greatest contribution into the local current speed. This is a typical property of long waves. This feature of an internal wave field may greatly contribute to the local sediment transport and/or resuspension. The velocity field induced by mode I and II internal solitary waves are studied. The contribution from second-order terms in asymptotic expansion into the horizontal velocity is estimated for the models of two- and three-layer fluid density stratification for solitons of positive and negative polarity, as well as for breathers of different shapes and amplitudes. The influence of the nonlinear correction manifests itself firstly in the shape of the lines of zero horizontal velocity: they are curved and the shape depends on the soliton amplitude and polarity while for the leading-order wave field they are horizontal. Also the wavefield accounting for the nonlinear correction for mode I waves has smaller maximal absolute values of negative velocities (near-surface for the soliton of elevation, and near-bottom for the soliton of depression) and larger maximums of positive velocities. Thus for the solitary internal waves of positive polarity weakly nonlinear theory overestimates the near-bottom velocities and underestimates the near-surface current. For solitary waves of negative polarity, which are the most typical for hydrological conditions of low and middle latitudes, the situation is the opposite. Similar estimations are produced for mode II waves, which possess more complex structure. The presented results of research are obtained with the support of the Russian Foundation for Basic Research grant 16-35-00413.

  18. Method and apparatus for measuring stress

    DOEpatents

    Thompson, R.B.

    1983-07-28

    A method and apparatus for determining stress in a material independent of micro-structural variations and anisotropies. The method comprises comparing the velocities of two horizontally polarized and horizontally propagating ultrasonic shear waves with interchanged directions of propagation and polarization. The apparatus for carrying out the method comprises periodic permanent magnet-electromagnetic acoustic transducers for generating and detecting the shear waves and means for determining the wave velocities.

  19. Method and apparatus for measuring stress

    DOEpatents

    Thompson, R. Bruce

    1985-06-11

    A method and apparatus for determining stress in a material independent of micro-structural variations and anisotropies. The method comprises comparing the velocities of two horizontally polarized and horizontally propagating ultrasonic shear waves with interchanged directions of propagation and polarization. The apparatus for carrying out the method comprises periodic permanent magnet-electromagnetic acoustic transducers for generating and detecting the shear waves and means for determining the wave velocities.

  20. Experimental data for the slug two-phase flow characteristics in horizontal pipeline.

    PubMed

    Mohmmed, Abdalellah O; Nasif, Mohammad S; Al-Kayiem, Hussain H

    2018-02-01

    The data presented in this article were the basis for the study reported in the research articles entitled "Statistical assessment of experimental observation on the slug body length and slug translational velocity in a horizontal pipe" (Al-Kayiem et al., 2017) [1] which presents an experimental investigation of the slug velocity and slug body length for air-water tow phase flow in horizontal pipe. Here, in this article, the experimental set-up and the major instruments used for obtaining the computed data were explained in details. This data will be presented in the form of tables and videos.

  1. Effects of line-of-sight velocity on spaced-antenna measurements, part 3.5A

    NASA Technical Reports Server (NTRS)

    Royrvik, O.

    1984-01-01

    Horizontal wind velocities in the upper atmosphere, particularly the mesosphere, have been measured using a multitude of different techniques. Most techniques are based on stated or unstated assumptions about the wind field that may or may not be true. Some problems with the spaced antenna drifts (SAD) technique that usually appear to be overlooked are investigated. These problems are not unique to the SAD technique; very similar considerations apply to measurement of horizontal wind using multiple-beam Doppler radars as well. Simply stated, the SAD technique relies on scattering from multiple scatterers within an antenna beam of fairly large beam width. The combination of signals with random phase gives rise to an interference pattern on the ground. This pattern will drift across the ground with a velocity twice that of the ionospheric irregularities from which the radar signals are scattered. By using spaced receivers and measuring time delays of the signal fading in different antennas, it is possible to estimate the horizontal drift velocities.

  2. Ballistics Model for Particles on a Horizontal Plane in a Vacuum Propelled by a Vertically Impinging Gas Jet

    NASA Technical Reports Server (NTRS)

    Lane, J. E.; Metzger, P. T.

    2010-01-01

    A simple trajectory model has been developed and is presented. The particle trajectory path is estimated by computing the vertical position as a function of the horizontal position using a constant horizontal velocity and a vertical acceleration approximated as a power law. The vertical particle position is then found by solving the differential equation of motion using a double integral of vertical acceleration divided by the square of the horizontal velocity, integrated over the horizontal position. The input parameters are: x(sub 0) and y(sub 0), the initial particle starting point; the derivative of the trajectory at x(sub 0) and y(sub 0), s(sub 0) = s(x(sub 0))= dx(y)/dy conditional expectation y = y((sub 0); and b where bx(sub 0)/y(sub 0) is the final trajectory angle before gravity pulls the particle down. The final parameter v(sub 0) is an approximation to a constant horizontal velocity. This model is time independent, providing vertical position x as a function of horizontal distance y: x(y) = (x(sub 0) + s(sub 0) (y-y(sub 0))) + bx(sub 0) -(s(sub 0)y(sub 0) ((y - y(sub 0)/y(sub 0) - ln((y/y(sub 0)))-((g(y-y(sub 0)(exp 2))/ 2((v(sub 0)(exp 2). The first term on the right in the above equation is due to simple ballistics and a spherically expanding gas so that the trajectory is a straight line intersecting (0,0), which is the point at the center of the gas impingement on the surface. The second term on the right is due to vertical acceleration, which may be positive or negative. The last term on the right is the gravity term, which for a particle with velocities less than escape velocity will eventually bring the particle back to the ground. The parameters b, s(sub 0), and in some cases v(sub 0), are taken from an interpolation of similar parameters determined from a CFD simulation matrix, coupled with complete particle trajectory simulations.

  3. Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Maceira, M.; Zhang, H.; Rowe, C. A.

    2009-12-01

    We focus on the development and application of advanced multivariate inversion techniques to generate a realistic, comprehensive, and high-resolution 3D model of the seismic structure of the crust and upper mantle that satisfies several independent geophysical datasets. Building on previous efforts of joint invesion using surface wave dispersion measurements, gravity data, and receiver functions, we have added a fourth dataset, seismic body wave P and S travel times, to the simultaneous joint inversion method. We present a 3D seismic velocity model of the crust and upper mantle of northwest China resulting from the simultaneous, joint inversion of these four data types. Surface wave dispersion measurements are primarily sensitive to seismic shear-wave velocities, but at shallow depths it is difficult to obtain high-resolution velocities and to constrain the structure due to the depth-averaging of the more easily-modeled, longer-period surface waves. Gravity inversions have the greatest resolving power at shallow depths, and they provide constraints on rock density variations. Moreover, while surface wave dispersion measurements are primarily sensitive to vertical shear-wave velocity averages, body wave receiver functions are sensitive to shear-wave velocity contrasts and vertical travel-times. Addition of the fourth dataset, consisting of seismic travel-time data, helps to constrain the shear wave velocities both vertically and horizontally in the model cells crossed by the ray paths. Incorporation of both P and S body wave travel times allows us to invert for both P and S velocity structure, capitalizing on empirical relationships between both wave types’ seismic velocities with rock densities, thus eliminating the need for ad hoc assumptions regarding the Poisson ratios. Our new tomography algorithm is a modification of the Maceira and Ammon joint inversion code, in combination with the Zhang and Thurber TomoDD (double-difference tomography) program.

  4. Rayleigh lidar observations of gravity wave activity in the upper stratosphere at Urbana, Ill.

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.; Miller, M. S.; Liu, C. H.

    1988-01-01

    During 13 nights of Rayleigh lidar measurements at Urbana, Ill. in 1984 to 1986, thirty-six quasi-monochromatic gravity waves were observed in the 35 to 50 km altitude region of the stratosphere. The characteristics of the waves are compared with other lidar and radar measurements of gravity waves and the theoretical models of wave saturation and dissipation phenomena. The measured vertical wavelengths ranged from 2 to 11.5 km and the measured vertical phase velocities ranged from 10 to 85 cm/s. The vertical wavelengths and vertical phase velocities were used to infer observed wave periods which ranged from 100 to 1000 min and horizontal wavelengths which ranged from 70 to 2000 km. Dominant wave activity was found at vertical wavelengths between 2 to 4 km and 7 to 10 km. No significant seasonal variations were evident in the observed parameters. Vertical and horizontal wavelengths showed a clear tendency to increase with wave periods, which is consistent with recent sodium lidar studies of quasi-monochromatic waves near the mesopause. An average amplitude growth length of 20.9 km for the rms wind perturbations was estimated from the data. Kinetic energy density associated with the waves decreased with height, suggesting that waves in this altitude region were subject to dissipation or saturation effects.

  5. A model for near-wall dynamics in turbulent Rayleigh Bénard convection

    NASA Astrophysics Data System (ADS)

    Theerthan, S. Ananda; Arakeri, Jaywant H.

    1998-10-01

    Experiments indicate that turbulent free convection over a horizontal surface (e.g. Rayleigh Bénard convection) consists of essentially line plumes near the walls, at least for moderately high Rayleigh numbers. Based on this evidence, we propose here a two-dimensional model for near-wall dynamics in Rayleigh Bénard convection and in general for convection over heated horizontal surfaces. The model proposes a periodic array of steady laminar two-dimensional plumes. A plume is fed on either side by boundary layers on the wall. The results from the model are obtained in two ways. One of the methods uses the similarity solution of Rotem & Classen (1969) for the boundary layer and the similarity solution of Fuji (1963) for the plume. We have derived expressions for mean temperature and temperature and velocity fluctuations near the wall. In the second approach, we compute the two-dimensional flow field in a two-dimensional rectangular open cavity. The number of plumes in the cavity depends on the length of the cavity. The plume spacing is determined from the critical length at which the number of plumes increases by one. The results for average plume spacing and the distribution of r.m.s. temperature and velocity fluctuations are shown to be in acceptable agreement with experimental results.

  6. Horizontal wind powered reaction turbine electrical generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Geus, A.M.

    1980-05-27

    A horizontal wind powered electrical generator is disclosed in which a horizontal reaction turbine is disposed within an augmentor cowling which extends downwind of the turbine. First stage curved stator blades interconnect the augmentor with the turbine cowling, and secondary stator blades are spaced downwind from said primary stator blades to extend inwardly from the augmentor to terminate short of the turbine cowling. These secondary stator blades have a greater angle of departure than the primary stator blades to increase the rotational velocity of the air at the expense of its axial velocity while permitting the axial velocity of themore » air moving inwardly of the secondary stator blades to be undiminished. A venturi-structured diffusor is carried by said augmentor in a downwind position to lower the pressure generally and assist the action of the secondary stator blades.« less

  7. A numerical circulation model with topography for the Martian Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    Mass, C.; Sagan, C.

    1975-01-01

    A quasi-geostrophic numerical model, including friction, radiation, and the observed planetary topography, is applied to the general circulation of the Martian atmosphere in the Southern Hemisphere at latitudes south of about 35 deg. Near equilibrium weather systems developed after about 5 model days. To avoid violating the quasi-geostrophic approximation, only 0.8 of the already smoothed relief was employed. Weather systems and velocity fields are strikingly tied to topography. A 2mb middle latitude jet stream is found of remarkably terrestrial aspect. Highest surface velocities, both horizontal and vertical, are predicted in western Hellas Planitia and eastern Argyre Planitia, which are observed to be preferred sites of origin of major Martian dust storms. Mean horizontal velocities and vertical velocities are found just above the surface velocity boundary layer.

  8. Flow behaviour and structure of heterogeneous particles-water mixture in horizontal and inclined pipes

    NASA Astrophysics Data System (ADS)

    Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří

    2018-06-01

    The effect of slurry velocity and mean concentration of heterogeneous particle-water mixture on flow behaviour and structure in the turbulent regime was studied in horizontal and inclined pipe sections of inner diameter D = 100 mm. The stratified flow pattern of heterogeneous particle-water mixture in the inclined pipe sections was revealed. The particles moved mostly near to the pipe invert. Concentration distribution in ascending and descending vertical pipe sections confirmed the effect of fall velocity on particle-carrier liquid slip velocity and increase of in situ concentration in the ascending pipe section. Slip velocity in two-phase flow, which is defined as the velocity difference between the solid and liquid phase, is one of mechanism of particle movement in two-phase flow. Due to the slip velocity, there is difference between transport and in situ concentrations, and the slip velocity can be determined from comparison of the in situ and transport concentration. For heterogeneous particle-water mixture flow the slip velocity depends on the flow structure.

  9. Comparisons of the NASA ER-2 meteorological measurement system with radar tracking and radiosonde data

    NASA Technical Reports Server (NTRS)

    Gaines, Steven E.; Bowen, Stuart W.; Hipskind, R. S.; Bui, T. P.; Chan, K. R.

    1992-01-01

    Measurements of aircraft longitude, latitude, and velocity, and measurements of atmospheric pressure, temperature, and horizontal wind from the meteorological measurement system (MMS) on board the NASA ER-2 aircraft were compared with independent measurements of these quantities from radiosondes and radar tracking of both the ER-2 and radiosonde balloons. In general, the comparisons were good and within the expected measurement accuracy and natural variability of the meteorological parameters. Radar tracking of the ER-2 resolved the velocity and position drift of the inertial navigation system (INS). The rms errors in the horizontal velocity components of the ER-2, due to INS errors, were found to be 0.5 m/s. The magnitude of the drift in longitude and latitude depends on the sign and magnitude of the corresponding component velocity drift and can be a few hundredths of a degree. The radar altitudes of the ER-2 and radiosondes were used as the basis for comparing measurements of atmospheric pressure, temperature, and horizontal wind from these two platforms. The uncertainty in the MMS horizontal wind measurement is estimated to be +/- 2.5 m/s. The accuracy of the MMS pressure and temperature measurements were inferred to be +/- 0.3 hPa and +/- 0.3 K.

  10. Optimal landing of a helicopter in autorotation

    NASA Technical Reports Server (NTRS)

    Lee, A. Y. N.

    1985-01-01

    Gliding descent in autorotation is a maneuver used by helicopter pilots in case of engine failure. The landing of a helicopter in autorotation is formulated as a nonlinear optimal control problem. The OH-58A helicopter was used. Helicopter vertical and horizontal velocities, vertical and horizontal displacement, and the rotor angle speed were modeled. An empirical approximation for the induced veloctiy in the vortex-ring state were provided. The cost function of the optimal control problem is a weighted sum of the squared horizontal and vertical components of the helicopter velocity at touchdown. Optimal trajectories are calculated for entry conditions well within the horizontal-vertical restriction curve, with the helicopter initially in hover or forwared flight. The resultant two-point boundary value problem with path equality constraints was successfully solved using the Sequential Gradient Restoration Technique.

  11. GPS coordinate time series measurements in Ontario and Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Samadi Alinia, Hadis; Tiampo, Kristy F.; James, Thomas S.

    2017-06-01

    New precise network solutions for continuous GPS (cGPS) stations distributed in eastern Ontario and western Québec provide constraints on the regional three-dimensional crustal velocity field. Five years of continuous observations at fourteen cGPS sites were analyzed using Bernese GPS processing software. Several different sub-networks were chosen from these stations, and the data were processed and compared to in order to select the optimal configuration to accurately estimate the vertical and horizontal station velocities and minimize the associated errors. The coordinate time series were then compared to the crustal motions from global solutions and the optimized solution is presented here. A noise analysis model with power-law and white noise, which best describes the noise characteristics of all three components, was employed for the GPS time series analysis. The linear trend, associated uncertainties, and the spectral index of the power-law noise were calculated using a maximum likelihood estimation approach. The residual horizontal velocities, after removal of rigid plate motion, have a magnitude consistent with expected glacial isostatic adjustment (GIA). The vertical velocities increase from subsidence of almost 1.9 mm/year south of the Great Lakes to uplift near Hudson Bay, where the highest rate is approximately 10.9 mm/year. The residual horizontal velocities range from approximately 0.5 mm/year, oriented south-southeastward, at the Great Lakes to nearly 1.5 mm/year directed toward the interior of Hudson Bay at stations adjacent to its shoreline. Here, the velocity uncertainties are estimated at less than 0.6 mm/year for the horizontal component and 1.1 mm/year for the vertical component. A comparison between the observed velocities and GIA model predictions, for a limited range of Earth models, shows a better fit to the observations for the Earth model with the smallest upper mantle viscosity and the largest lower mantle viscosity. However, the pattern of horizontal deformation is not well explained in the north, along Hudson Bay, suggesting that revisions to the ice thickness history are needed to improve the fit to observations.

  12. Threshold wind velocity dynamics as a driver of aeolian sediment mas flux

    USDA-ARS?s Scientific Manuscript database

    Horizontal (saltation) mass flux is a key driver of aeolian dust emission. Estimates of the horizontal mass flux underpin assessments of the global dust budget and influence our understanding of the dust cycle and its interactions. Current equations for predicting horizontal mass flux are based on l...

  13. Vestibuloocular reflex of rhesus monkeys after spaceflight

    NASA Technical Reports Server (NTRS)

    Cohen, Bernard; Kozlovskaia, Inessa; Raphan, Theodore; Solomon, David; Helwig, Denice; Cohen, Nathaniel; Sirota, Mikhail; Iakushin, Sergei

    1992-01-01

    The vestibuloocular reflex (VOR) of two rhesus monkeys was recorded before and after 14 days of spaceflight. The gain (eye velocity/head velocity) of the horizontal VOR, tested 15 and 18 h after landing, was approximately equal to preflight values. The dominant time constant of the animal tested 15 h after landing was equivalent to that before flight. During nystagmus induced by off-vertical axis rotation (OVAR), the latency, rising time constant, steady-state eye velocity, and phase of modulation in eye velocity and eye position with respect to head position were similar in both monkeys before and after flight. There were changes in the amplitude of modulation of horizontal eye velocity during steady-state OVAR and in the ability to discharge stored activity rapidly by tilting during postrotatory nystagmus (tilt dumping) after flight: OVAR modulations were larger, and tilt dumping was lost in the one animal tested on the day of landing and for several days thereafter. If the gain and time constant of the horizontal VOR exchange in microgravity, they must revert to normal soon after landing. The changes that were observed suggest that adaptation to microgravity had caused alterations in way that the central nervous system processes otolith input.

  14. Estimates of lower-tropospheric divergence and average vertical motion in the Southern Great Plains region

    NASA Astrophysics Data System (ADS)

    Muradyan, P.; Coulter, R.; Kotamarthi, V. R.; Wang, J.; Ghate, V. P.

    2016-12-01

    Large-scale mean vertical motion affects the atmospheric stability and is an important component in cloud formation. Thus, the analysis of temporal variations in the long-term averages of large-scale vertical motion would provide valuable insights into weather and climate patterns. 915-MHz radar wind profilers (RWP) provide virtually unattended and almost uninterrupted long-term wind speed measurements. We use five years of RWP wind data from the Atmospheric Boundary Layer Experiments (ABLE) located within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site from 1999 to 2004. Wind speed data from a triangular array of SGP A1, A2, and A5 ancillary sites are used to calculate the horizontal divergence field over the profiler network area using the line integral method. The distance between each vertex of this triangle is approximately 60km. Thus, the vertical motion profiles deduced from the divergence/convergence of horizontal winds over these spatial scales are of relevance to mesoscale dynamics. The wind data from RWPs are averaged over 1 hour time slice and divergence is calculated at each range gate from the lowest at 82 m to the highest at 2.3 km. An analysis of temporal variations in the long-term averages of the atmospheric divergence and vertical air motion for the months of August/September indicates an overall vertical velocity of -0.002 m/s with a standard deviation of 0.013 m/s, agreeing well with previous studies. Overall mean of the diurnal variation of vertical velocity for the study period from surface to 500 m height is 0.0018 m/s with a standard error of 0.00095 m/s. Seasonal mean daytime vertical winds suggest generally downward motion in Winter and upward motion in Summer. Validation of the derived divergence and vertical motion against a regional climate model (Weather Forecast and Research, WRF) at a spatial resolution of 12 km, as well as clear-sky vs. cloudy conditions comparisons will also be presented.

  15. Investigation into influence factors of wave velocity anisotropy for TCDP borehole

    NASA Astrophysics Data System (ADS)

    Wu, C. N.; Dong, J. J.; Yang, C. M.; Wu, W. J.

    2015-12-01

    The direction of fast horizontal shear wave velocity (FSH direction) is used as an indicator of the direction of maximum horizontal principal stress. However, the wave velocity anisotropy will be simultaneously dominated by the stress induced anisotropy and the inherent anisotropy which includes the effects of sedimentary and tectonic structures. In this study, the influence factors of wave velocity anisotropy will be analyzed in borehole-A of Taiwan Chelungpu-Fault Drilling Project (TCDP). The anisotropic compliance tensors of intact sandstones and mudrocks derived from the laboratory wave measurement are combined with the equivalent continuous model to evaluate the compliance tensor of jointed rock mass. Results show the lithology was identified as the most influential factor on the wave velocity anisotropy. Comparing the FSH direction logging data with our results, the wave velocity anisotropy in sandstones is mostly caused by inherent anisotropy of intact sandstones. The spatial variations of wave velocity anisotropy in mudrocks is caused by other relatively higher influence factors than inherent anisotropy of intact mudrocks. In addition, the dip angle of bedding plans is also important for wave velocity anisotropy of mudrocks because the FSH direction logging data seems dominated by the dip direction of bedding planes when the dip angle becomes steeper (at the depth greater than 1785 m). Surprisingly, the wave velocity anisotropy contributed by joints that we determined by equivalent continuous model is not significant. In this study, based on the TCDP borehole data, we conclude that determining the direction of maximum horizontal principal stress from the FSH directions should consider the influence of inherent anisotropy on rock mass.

  16. Kinematic Patterns Associated with the Vertical Force Produced during the Eggbeater Kick.

    PubMed

    Oliveira, Nuno; Chiu, Chuang-Yuan; Sanders, Ross H

    2015-01-01

    The purpose of this study was to determine the kinematic patterns that maximized the vertical force produced during the water polo eggbeater kick. Twelve water polo players were tested executing the eggbeater kick with the trunk aligned vertically and with the upper limbs above water while trying to maintain as high a position as possible out of the water for nine eggbeater kick cycles. Lower limb joint angular kinematics, pitch angles and speed of the feet were calculated. The vertical force produced during the eggbeater kick cycle was calculated using inverse dynamics for the independent lower body segments and combined upper body segments, and a participant-specific second-degree regression equation for the weight and buoyancy contributions. Vertical force normalized to body weight was associated with hip flexion (average, r = 0.691; maximum, r = 0.791; range of motion, r = 0.710), hip abduction (maximum, r = 0.654), knee flexion (average, r = 0.716; minimum, r = 0.653) and knee flexion-extension angular velocity (r = 0.758). Effective orientation of the hips resulted in fast horizontal motion of the feet with positive pitch angles. Vertical motion of the feet was negatively associated with vertical force. A multiple regression model comprising the non-collinear variables of maximum hip abduction, hip flexion range of motion and knee flexion angular velocity accounted for 81% of the variance in normalized vertical force. For high performance in the water polo, eggbeater kick players should execute fast horizontal motion with the feet by having large abduction and flexion of the hips, and fast extension and flexion of the knees.

  17. Quantifying performance on an outdoor agility drill using foot-mounted inertial measurement units.

    PubMed

    Zaferiou, Antonia M; Ojeda, Lauro; Cain, Stephen M; Vitali, Rachel V; Davidson, Steven P; Stirling, Leia; Perkins, Noel C

    2017-01-01

    Running agility is required for many sports and other physical tasks that demand rapid changes in body direction. Quantifying agility skill remains a challenge because measuring rapid changes of direction and quantifying agility skill from those measurements are difficult to do in ways that replicate real task/game play situations. The objectives of this study were to define and to measure agility performance for a (five-cone) agility drill used within a military obstacle course using data harvested from two foot-mounted inertial measurement units (IMUs). Thirty-two recreational athletes ran an agility drill while wearing two IMUs secured to the tops of their athletic shoes. The recorded acceleration and angular rates yield estimates of the trajectories, velocities and accelerations of both feet as well as an estimate of the horizontal velocity of the body mass center. Four agility performance metrics were proposed and studied including: 1) agility drill time, 2) horizontal body speed, 3) foot trajectory turning radius, and 4) tangential body acceleration. Additionally, the average horizontal ground reaction during each footfall was estimated. We hypothesized that shorter agility drill performance time would be observed with small turning radii and large tangential acceleration ranges and body speeds. Kruskal-Wallis and mean rank post-hoc statistical analyses revealed that shorter agility drill performance times were observed with smaller turning radii and larger tangential acceleration ranges and body speeds, as hypothesized. Moreover, measurements revealed the strategies that distinguish high versus low performers. Relative to low performers, high performers used sharper turns, larger changes in body speed (larger tangential acceleration ranges), and shorter duration footfalls that generated larger horizontal ground reactions during the turn phases. Overall, this study advances the use of foot-mounted IMUs to quantify agility performance in contextually-relevant settings (e.g., field of play, training facilities, obstacle courses, etc.).

  18. Surface Wave Tomography across the Alpine-Mediterranean Mobile Belt

    NASA Astrophysics Data System (ADS)

    El-Sharkawy, A. M. M. E.; Meier, T. M.; Lebedev, S.; Weidle, C.; Cristiano, L.

    2017-12-01

    The Alpine-Mediterranean mobile belt is, tectonically, one of the most complicated and active regions in the world. Since the Mesozoic, collisions between Gondwana-derived continental blocks and Eurasia, due to the closure of a number of rather small ocean basins, have shaped the Mediterranean geology. Despite the numerous studies that have attempted to characterize the lithosphere-asthenosphere structure in that area, details of the lithospheric structure and dynamics, as well as flow in the asthenosphere are, however, poorly known. The purpose of this study is to better define the 3D shear-wave velocity structure of the lithosphere-asthenosphere system in the Mediterranean using new tomographic images obtained from surface wave tomography. An automated algorithm for inter-station phase velocity measurements is applied here to obtain Rayleigh fundamental mode phase velocities. We utilize a database consisting of more than 4000 seismic events recorded by more than 3000 broadband seismic stations within the area (WebDc/EIDA, IRIS). Moreover, for the first time, data from the Egyptian National Seismological Network (ENSN), recorded by up to 25 broad band seismic stations, are also included in the analysis. For each station pair, approximately located on the same great circle path, the recorded waveforms are cross correlated and the dispersion curves of fundamental modes are calculated from the phase of the cross correlation functions weighted in the time-frequency plane. Path average dispersion curves are obtained by averaging the smooth parts of single-event dispersion curves. We calculate maps of Rayleigh phase velocity at more than 100 different periods. The phase-velocity maps provide the local phase-velocity dispersion curve for each geographical grid node of the map. Each of these local dispersion curves is inverted individually for 1D shear wave velocity model using a newly implemented Particle Swarm Optimization (PSO) algorithm. The resulted 1D velocity models are then combined to construct the 3D shear-velocity model. Horizontal and vertical slices through the 3D isotropic model reveal significant variations in shear wave velocity with depth, and lateral changes in the crust and upper mantle structure emphasizing the processes associated with the convergence of the Eurasian and African plates

  19. The free-flight response of Drosophila to motion of the visual environment.

    PubMed

    Mronz, Markus; Lehmann, Fritz-Olaf

    2008-07-01

    In the present study we investigated the behavioural strategies with which freely flying fruit flies (Drosophila) control their flight trajectories during active optomotor stimulation in a free-flight arena. We measured forward, turning and climbing velocities of single flies using high-speed video analysis and estimated the output of a 'Hassenstein-Reichardt' elementary motion detector (EMD) array and the fly's gaze to evaluate flight behaviour in response to a rotating visual panorama. In a stationary visual environment, flight is characterized by flight saccades during which the animals turn on average 120 degrees within 130 ms. In a rotating environment, the fly's behaviour typically changes towards distinct, concentric circular flight paths where the radius of the paths increases with increasing arena velocity. The EMD simulation suggests that this behaviour is driven by a rotation-sensitive EMD detector system that minimizes retinal slip on each compound eye, whereas an expansion-sensitive EMD system with a laterally centred visual focus potentially helps to achieve centring response on the circular flight path. We developed a numerical model based on force balance between horizontal, vertical and lateral forces that allows predictions of flight path curvature at a given locomotor capacity of the fly. The model suggests that turning flight in Drosophila is constrained by the production of centripetal forces needed to avoid side-slip movements. At maximum horizontal velocity this force may account for up to 70% of the fly's body weight during yaw turning. Altogether, our analyses are widely consistent with previous studies on Drosophila free flight and those on the optomotor response under tethered flight conditions.

  20. Kinematic dynamo action in square and hexagonal patterns.

    PubMed

    Favier, B; Proctor, M R E

    2013-11-01

    We consider kinematic dynamo action in rapidly rotating Boussinesq convection just above onset. The velocity is constrained to have either a square or a hexagonal pattern. For the square pattern, large-scale dynamo action is observed at onset, with most of the magnetic energy being contained in the horizontally averaged component. As the magnetic Reynolds number increases, small-scale dynamo action becomes possible, reducing the overall growth rate of the dynamo. For the hexagonal pattern, the breaking of symmetry between up and down flows results in an effective pumping velocity. For intermediate rotation rates, this additional effect can prevent the growth of any mean-field dynamo, so that only a small-scale dynamo is eventually possible at large enough magnetic Reynolds number. For very large rotation rates, this pumping term becomes negligible, and the dynamo properties of square and hexagonal patterns are qualitatively similar. These results hold for both perfectly conducting and infinite magnetic permeability boundary conditions.

  1. Effects of vest loading on sprint kinetics and kinematics.

    PubMed

    Cross, Matt R; Brughelli, Matt E; Cronin, John B

    2014-07-01

    The effects of vest loading on sprint kinetics and kinematics during the acceleration and maximum velocity phases of sprinting are relatively unknown. A repeated measures analysis of variance with post hoc contrasts was used to determine whether performing 6-second maximal exertion sprints on a nonmotorized force treadmill, under 2 weighted vest loading conditions (9 and 18 kg) and an unloaded baseline condition, affected the sprint mechanics of 13 males from varying sporting backgrounds. Neither vest load promoted significant change in peak vertical ground reaction force (GRF-z) outputs compared with baseline during acceleration, and only 18-kg loading increased GRF-z at the maximum velocity (8.8%; effect size [ES] = 0.70). The mean GRF-z significantly increased with 18-kg loading during acceleration and maximum velocity (11.8-12.4%; ES = 1.17-1.33). Horizontal force output was unaffected, although horizontal power was decreased with the 18-kg vest during maximum velocity (-14.3%; ES = -0.48). Kinematic analysis revealed decreasing velocity (-3.6 to -5.6%; ES = -0.38 to -0.61), decreasing step length (-4.2%; ES = -0.33 to -0.34), increasing contact time (5.9-10.0%; ES = 1.01-1.71), and decreasing flight time (-17.4 to -26.7%; ES = -0.89 to -1.50) with increased loading. As a vertical vector-training stimulus, it seems that vest loading decreases flight time, which in turn reduces GRF-z. Furthermore, it seems that heavier loads than that are traditionally recommended are needed to promote increases in the GRF-z output during maximum velocity sprinting. Finally, vest loading offers little as a horizontal vector-training stimulus and actually compromises horizontal power output.

  2. Review of literature on the finite-element solution of the equations of two-dimensional surface-water flow in the horizontal plane

    USGS Publications Warehouse

    Lee, Jonathan K.; Froehlich, David C.

    1987-01-01

    Published literature on the application of the finite-element method to solving the equations of two-dimensional surface-water flow in the horizontal plane is reviewed in this report. The finite-element method is ideally suited to modeling two-dimensional flow over complex topography with spatially variable resistance. A two-dimensional finite-element surface-water flow model with depth and vertically averaged velocity components as dependent variables allows the user great flexibility in defining geometric features such as the boundaries of a water body, channels, islands, dikes, and embankments. The following topics are reviewed in this report: alternative formulations of the equations of two-dimensional surface-water flow in the horizontal plane; basic concepts of the finite-element method; discretization of the flow domain and representation of the dependent flow variables; treatment of boundary conditions; discretization of the time domain; methods for modeling bottom, surface, and lateral stresses; approaches to solving systems of nonlinear equations; techniques for solving systems of linear equations; finite-element alternatives to Galerkin's method of weighted residuals; techniques of model validation; and preparation of model input data. References are listed in the final chapter.

  3. Dispersive stresses in wind farms

    NASA Astrophysics Data System (ADS)

    Segalini, Antonio; Braunbehrens, Robert; Hyvarinen, Ann

    2017-11-01

    One of the most famous models of wind farms is provided by the assumption that the farm can be approximated as a horizontally-homogeneous forest canopy with vertically-varying force intensity. By means of this approximation, the flow-motion equations become drastically simpler, as many of the three-dimensional effects are gone. However, the application of the horizontal average operator to the RANS equations leads to the appearance of new transport terms (called dispersive stresses) originating from the horizontal (small-scale) variation of the mean velocity field. Since these terms are related to the individual turbine signature, they are expected to vanish outside the roughness sublayer, providing a definition for the latter. In the present work, an assessment of the dispersive stresses is performed by means of a wake-model approach and through the linearised code ORFEUS developed at KTH. Both approaches are very fast and enable the characterization of a large number of wind-farm layouts. The dispersive stress tensor and its effect on the turbulence closure models are investigated, providing guidelines for those simulations where it is impossible to resolve the farm at a turbine scale due to grid requirements (as, for instance, mesoscale simulations).

  4. A pitfall in shallow shear-wave refraction surveying

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Park, C.B.; Wightman, E.; Nigbor, R.

    2002-01-01

    The shallow shear-wave refraction method works successfully in an area with a series of horizontal layers. However, complex near-surface geology may not fit into the assumption of a series of horizontal layers. That a plane SH-wave undergoes wave-type conversion along an interface in an area of nonhorizontal layers is theoretically inevitable. One real example shows that the shallow shear-wave refraction method provides velocities of a converted wave rather than an SH- wave. Moreover, it is impossible to identify the converted wave by refraction data itself. As most geophysical engineering firms have limited resources, an additional P-wave refraction survey is necessary to verify if velocities calculated from a shear-wave refraction survey are velocities of converted waves. The alternative at this time may be the surface wave method, which can provide reliable S-wave velocities, even in an area of velocity inversion (a higher velocity layer underlain by a lower velocity layer). ?? 2002 Elsevier Science B.V. All rights reserved.

  5. Seismic wide-angle constraints on the crust of the southern Urals

    NASA Astrophysics Data System (ADS)

    Carbonell, R.; Gallart, J.; PéRez-Estaún, A.; Diaz, J.; Kashubin, S.; Mechie, J.; Wenzel, F.; Knapp, J.

    2000-06-01

    A wide-angle seismic reflection/refraction data set was acquired during spring 1995 across the southern Urals to characterize the lithosphere beneath this Paleozoic orogen. The wide-angle reflectivity features a strong frequency dependence. While the lower crustal reflectivity is in the range of 6-15 Hz, the PmP is characterized by frequencies below 6 Hz. After detailed frequency filtering, the seismic phases constrain a new average P wave velocity crustal model that consists of an upper layer of 5.0-6.0 km/s, which correlates with the surface geology; 5-7 km depths at which the velocities increase to 6.2-6.3 km/s; 10-30 km depths at which, on average, the crust is characterized by velocities of 6.6 km/s; and finally, the lower crust, from 30-35 km down to the Moho, which has velocities ranging from 6.8 to 7.4 km/s. Two different S wave velocity models, one for the N-S and one for the E-W, were derived from the analysis of the horizontal component recordings. Crustal sections of Poisson's ratio and anisotropy were calculated from the velocity models. The Poisson's ratio increases in the lower crust at both sides of the root zone. A localized 2-3% anisotropy zone is imaged within the lower crust beneath the terranes east of the root. This feature is supported by time differences in the SmS phase and by the particle motion diagrams, which reveal two polarized directions of motion. Velocities are higher in the central part of the orogen than for the Siberian and eastern plates. These seismic recordings support a 50-56 km crustal thickness beneath the central part of the orogen in contrast to Moho depths of ≈ 45 km documented at the edges of the transect. The lateral variation of the PmP phase in frequency content and in waveform can be taken as evidence of different genetic origins of the Moho in the southern Urals.

  6. Gaze Pursuit Responses in Nucleus Reticularis Tegmenti Pontis of Head-Unrestrained Macaques

    PubMed Central

    Suzuki, David A.; Betelak, Kathleen F.; Yee, Robert D.

    2009-01-01

    Eye-head gaze pursuit–related activity was recorded in rostral portions of the nucleus reticularis tegmenti pontis (rNRTP) in alert macaques. The head was unrestrained in the horizontal plane, and macaques were trained to pursue a moving target either with their head, with the eyes stationary in the orbits, or with their eyes, with their head voluntarily held stationary in space. Head-pursuit–related modulations in rNRTP activity were observed with some cells exhibiting increases in firing rate with increases in head-pursuit frequency. For many units, this head-pursuit response appeared to saturate at higher frequencies (>0.6 Hz). The response phase re:peak head-pursuit velocity formed a continuum, containing cells that could encode head-pursuit velocity and those encoding head-pursuit acceleration. The latter cells did not exhibit head position–related activity. Sensitivities were calculated with respect to peak head-pursuit velocity and averaged 1.8 spikes/s/deg/s. Of the cells that were tested for both head- and eye-pursuit–related activity, 86% exhibited responses to both head- and eye-pursuit and therefore carried a putative gaze-pursuit signal. For these gaze-pursuit units, the ratio of head to eye response sensitivities averaged ∼1.4. Pursuit eccentricity seemed to affect head-pursuit response amplitude even in the absence of a head position response per se. The results indicated that rNRTP is a strong candidate for the source of an active head-pursuit signal that projects to the cerebellum, specifically to the target-velocity and gaze-velocity Purkinje cells that have been observed in vermal lobules VI and VII. PMID:18987125

  7. DIVERGENT HORIZONTAL SUB-SURFACE FLOWS WITHIN ACTIVE REGION 11158

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Kiran; Tripathy, S. C.; Hill, F., E-mail: kjain@nso.edu, E-mail: stripathy@nso.edu, E-mail: fhill@nso.edu

    We measure the horizontal subsurface flow in a fast emerging active region (AR; NOAA 11158) using the ring-diagram technique and the Helioseismic and Magnetic Imager high spatial resolution Dopplergrams. This AR had a complex magnetic structure and displayed significant changes in morphology during its disk passage. Over a period of six days from 2011 February 11 to 16, the temporal variation in the magnitude of the total velocity is found to follow the trend of magnetic field strength. We further analyze regions of individual magnetic polarity within AR 11158 and find that the horizontal velocity components in these sub-regions havemore » significant variation with time and depth. The leading and trailing polarity regions move faster than the mixed-polarity region. Furthermore, both zonal and meridional components have opposite signs for trailing and leading polarity regions at all depths showing divergent flows within the AR. We also find a sharp decrease in the magnitude of total horizontal velocity in deeper layers around major flares. It is suggested that the re-organization of magnetic fields during flares, combined with the sunspot rotation, decreases the magnitude of horizontal flows or that the flow kinetic energy has been converted into the energy released by flares. After the decline in flare activity and sunspot rotation, the flows tend to follow the pattern of magnetic activity. We also observe less variation in the velocity components near the surface but these tend to increase with depth, further demonstrating that the deeper layers are more affected by the topology of ARs.« less

  8. Detection and reconstruction of large scale flow structures in a river by means of empirical mode decomposition combined with Hilbert transform

    NASA Astrophysics Data System (ADS)

    Franca, Mário J.; Lemmin, Ulrich

    2014-05-01

    The occurrence of large scale flow structures (LSFS) coherently organized throughout the flow depth has been reported in field and laboratory experiments of flows over gravel beds, especially under low relative submergence conditions. In these, the instantaneous velocity is synchronized over the whole vertical profile oscillating at a low frequency above or below the time-averaged value. The detection of large scale coherently organized regions in the flow field is often difficult since it requires detailed simultaneous observations of the flow velocities at several levels. The present research avoids the detection problem by using an Acoustic Doppler Velocity Profiler (ADVP), which permits measuring three-dimensional velocities quasi-simultaneously over the full water column. Empirical mode decomposition (EMD) combined with the application of the Hilbert transform is then applied to the instantaneous velocity data to detect and isolate LSFS. The present research was carried out in a Swiss river with low relative submergence of 2.9, herein defined as h/D50, (where h is the mean flow depth and D50 the bed grain size diameter for which 50% of the grains have smaller diameters). 3D ADVP instantaneous velocity measurements were made on a 3x5 rectangular horizontal grid (x-y). Fifteen velocity profiles were equally spaced in the spanwise direction with a distance of 10 cm, and in the streamwise direction with a distance of 15 cm. The vertical resolution of the measurements is roughly 0.5 cm. A measuring grid covering a 3D control volume was defined. The instantaneous velocity profiles were measured for 3.5 min with a sampling frequency of 26 Hz. Oscillating LSFS are detected and isolated in the instantaneous velocity signal of the 15 measured profiles. Their 3D cycle geometry is reconstructed and investigated through phase averaging based on the identification of the instantaneous signal phase (related to the Hilbert transform) applied to the original raw signal. Results for all the profiles are consistent and indicate clearly the presence of LSFS throughout the flow depth with impact on the three components of the velocity profile and on the bed friction velocity. A high correlation of the movement is found throughout the flow depth, thus corroborating the hypothesis of large-scale coherent motion evolving over the whole water depth. These latter are characterized in terms of period, horizontal scale and geometry. The high spatial and temporal resolution of our ADVP was crucial for obtaining comprehensive results on coherent structures dynamics. EMD combined with the Hilbert transform have previously been successfully applied to geophysical flow studies. Here we show that this method can also be used for the analysis of river dynamics. In particular, we demonstrate that a clean, well-behaved intrinsic mode function can be obtained from a noisy velocity time series that allowed a precise determination of the vertical structure of the coherent structures. The phase unwrapping of the UMR and the identification of the phase related velocity components brings new insight into the flow dynamics Research supported by the Swiss National Science Foundation (2000-063818). KEY WORDS: large scale flow structures (LSFS); gravel-bed rivers; empirical mode decomposition; Hilbert transform

  9. Effects of vertical shear in modelling horizontal oceanic dispersion

    NASA Astrophysics Data System (ADS)

    Lanotte, A. S.; Corrado, R.; Palatella, L.; Pizzigalli, C.; Schipa, I.; Santoleri, R.

    2016-02-01

    The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of the South Mediterranean is investigated by means of observation and model data. In situ current measurements reveal that vertical gradients of horizontal velocities in the upper mixing layer decorrelate quite fast ( ˜ 1 day), whereas an eddy-permitting ocean model, such as the Mediterranean Forecasting System, tends to overestimate such decorrelation time because of finite resolution effects. Horizontal dispersion, simulated by the Mediterranean sea Forecasting System, is mostly affected by: (1) unresolved scale motions, and mesoscale motions that are largely smoothed out at scales close to the grid spacing; (2) poorly resolved time variability in the profiles of the horizontal velocities in the upper layer. For the case study we have analysed, we show that a suitable use of deterministic kinematic parametrizations is helpful to implement realistic statistical features of tracer dispersion in two and three dimensions. The approach here suggested provides a functional tool to control the horizontal spreading of small organisms or substance concentrations, and is thus relevant for marine biology, pollutant dispersion as well as oil spill applications.

  10. GPS-determined Crustal Deformation of South Korea after the 2011 Tohoku-Oki Earthquake: Straining Heterogeneity and Seismicity

    NASA Astrophysics Data System (ADS)

    Ree, J. H.; Kim, S.; Yoon, H. S.; Choi, B. K.; Park, P. H.

    2017-12-01

    The GPS-determined, pre-, co- and post-seismic crustal deformations of the Korean peninsula with respect to the 2011 Tohoku-Oki earthquake (Baek et al., 2012, Terra Nova; Kim et al., 2015, KSCE Jour. of Civil Engineering) are all stretching ones (extensional; horizontal stretching rate larger than horizontal shortening rate). However, focal mechanism solutions of earthquakes indicate that South Korea has been at compressional regime dominated by strike- and reverse-slip faultings. We reevaluated the velocity field of GPS data to see any effect of the Tohoku-Oki earthquake on the Korean crustal deformation and seismicity. To calculate the velocity gradient tensor of GPS sites, we used a gridding method based on least-square collocation (LSC). This LSC method can overcome shortcomings of the segmentation methods including the triangulation method. For example, an undesirable, abrupt change in components of velocity field occurs at segment boundaries in the segmentation methods. It is also known that LSC method is more useful in evaluating deformation patterns in intraplate areas with relatively small displacements. Velocity vectors of South Korea, pointing in general to 113° before the Tohoku-Oki earthquake, instantly changed their direction toward the epicenter (82° on average) during the Tohoku-Oki earthquake, and then gradually returned to the original position about 2 years after the Tohoku-Oki earthquake. Our calculation of velocity gradient tensors after the Tohoku-Oki earthquake shows that the stretching and rotating fields are quite heterogeneous, and that both stretching and shortening areas exist in South Korea. In particular, after the post-seismic relaxation ceased (i.e., from two years after the Tohoku-Oki earthquake), regions with thicker and thinner crusts tend to be shortening and stretching, respectively, in South Korea. Furthermore, the straining rate is larger in the regions with thinner crust. Although there is no meaningful correlation between seismicity and crustal straining pattern of South Korea at present, the seismicity tends to be localized along boundaries between areas with opposite vorticity, particularly for velocity field for one year after the Tohoku-Oki earthquake.

  11. Deformation Along the Rio Grande Rift: Investigating the Spatial and Temporal Distribution of Strain Using GPS

    NASA Astrophysics Data System (ADS)

    Murray, K. D.; Murray, M. H.; Sheehan, A. F.; Nerem, R. S.

    2014-12-01

    Low velocity (<1 mm/yr) extensional environments, such as the Rio Grande rift (RGR) in Colorado and New Mexico, are complex but can provide insights into continental dynamics, tectonic processes, and seismic hazards. We use eight years of measurements from 26 continuous GPS stations across the RGR installed as part of a collaborative EarthScope experiment. We combine this data with regional Plate Boundary Observatory (PBO) and National Geodetic Survey (NGS) CORS GPS stations, and survey-mode data collected on NGS benchmarks to investigate how deformation is distributed across a broad area from the Great Plains to the Colorado Plateau. The data from over 150 stations are processed using GAMIT/GLOBK, and time series, velocities, strain rates are estimated with respect to realizations of a stable North America reference frame, such as NA12. This study extends our previous analysis, based on 4 years of data, which found an approximately uniform 1.2 nanostrain/yr east-west extensional strain rate across the entire region that was not concentrated on the narrow surface expression of the rift. We expand on this previous work by using a denser network of GPS stations and analyzing longer time series, which reduce horizontal velocity uncertainties to approximately 0.15 mm/yr. We also improve the accuracy of the estimated velocity uncertainties by robustly characterizing time-correlated noise. The noise models indicate that both power-law and flicker noise are present in the time series along with white noise. On average, power law noise constitutes about 90% of the total noise in the vertical component and 60% in the horizontal components for the RGR sites. We use the time series, and velocity and strain-rate estimates to constrain spatial and temporal variations in the deformation field in order to locate possible regions of strain localization and detect transient deformation signals, and to address some of the kinematic and dynamic issues raised by the observation that a broad, low seismic velocity zone underlies the narrow geologic surface expression of the RGR defined by normal fault bounded basins.

  12. Smooth-pursuit eye-movement-related neuronal activity in macaque nucleus reticularis tegmenti pontis.

    PubMed

    Suzuki, David A; Yamada, Tetsuto; Yee, Robert D

    2003-04-01

    Neuronal responses that were observed during smooth-pursuit eye movements were recorded from cells in rostral portions of the nucleus reticularis tegmenti pontis (rNRTP). The responses were categorized as smooth-pursuit eye velocity (78%) or eye acceleration (22%). A separate population of rNRTP cells encoded static eye position. The sensitivity to pursuit eye velocity averaged 0.81 spikes/s per degrees /s, whereas the average sensitivity to pursuit eye acceleration was 0.20 spikes/s per degrees /s(2). Of the eye-velocity cells with horizontal preferences for pursuit responses, 56% were optimally responsive to contraversive smooth-pursuit eye movements and 44% preferred ipsiversive pursuit. For cells with vertical pursuit preferences, 61% preferred upward pursuit and 39% preferred downward pursuit. The direction selectivity was broad with 50% of the maximal response amplitude observed for directions of smooth pursuit up to +/-85 degrees away from the optimal direction. The activities of some rNRTP cells were linearly related to eye position with an average sensitivity of 2.1 spikes/s per deg. In some cells, the magnitude of the response during smooth-pursuit eye movements was affected by the position of the eyes even though these cells did not encode eye position. On average, pursuit centered to one side of screen center elicited a response that was 73% of the response amplitude obtained with tracking centered at screen center. For pursuit centered on the opposite side, the average response was 127% of the response obtained at screen center. The results provide a neuronal rationale for the slow, pursuit-like eye movements evoked with rNRTP microstimulation and for the deficits in smooth-pursuit eye movements observed with ibotenic acid injection into rNRTP. More globally, the results support the notion of a frontal and supplementary eye field-rNRTP-cerebellum pathway involved with controlling smooth-pursuit eye movements.

  13. Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 imperial valley, California, earthquake

    USGS Publications Warehouse

    Joyner, William B.; Boore, David M.

    1981-01-01

    We have taken advantage of the recent increase in strong-motion data at close distances to derive new attenuation relations for peak horizontal acceleration and velocity. This new analysis uses a magnitude-independent shape, based on geometrical spreading and anelastic attenuation, for the attenuation curve. An innovation in technique is introduced that decouples the determination of the distance dependence of the data from the magnitude dependence.

  14. Premotor neurons encode torsional eye velocity during smooth-pursuit eye movements

    NASA Technical Reports Server (NTRS)

    Angelaki, Dora E.; Dickman, J. David

    2003-01-01

    Responses to horizontal and vertical ocular pursuit and head and body rotation in multiple planes were recorded in eye movement-sensitive neurons in the rostral vestibular nuclei (VN) of two rhesus monkeys. When tested during pursuit through primary eye position, the majority of the cells preferred either horizontal or vertical target motion. During pursuit of targets that moved horizontally at different vertical eccentricities or vertically at different horizontal eccentricities, eye angular velocity has been shown to include a torsional component the amplitude of which is proportional to half the gaze angle ("half-angle rule" of Listing's law). Approximately half of the neurons, the majority of which were characterized as "vertical" during pursuit through primary position, exhibited significant changes in their response gain and/or phase as a function of gaze eccentricity during pursuit, as if they were also sensitive to torsional eye velocity. Multiple linear regression analysis revealed a significant contribution of torsional eye movement sensitivity to the responsiveness of the cells. These findings suggest that many VN neurons encode three-dimensional angular velocity, rather than the two-dimensional derivative of eye position, during smooth-pursuit eye movements. Although no clear clustering of pursuit preferred-direction vectors along the semicircular canal axes was observed, the sensitivity of VN neurons to torsional eye movements might reflect a preservation of similar premotor coding of visual and vestibular-driven slow eye movements for both lateral-eyed and foveate species.

  15. Transient rheology of the upper mantle beneath central Alaska inferred from the crustal velocity field following the 2002 Denali earthquake

    USGS Publications Warehouse

    Pollitz, F.F.

    2005-01-01

    The M7.9 2002 Denali earthquake, Alaska, is one of the largest strike-slip earthquakes ever recorded. The postseismic GPS velocity field around the 300-km-long rupture is characterized by very rapid horizontal velocity up to ???300 mm/yr for the first 0.1 years and slower but still elevated horizontal velocity up to ???100 mm/yr for the succeeding 1.5 years. I find that the spatial and temporal pattern of the displacement field may be explained by a transient mantle rheology. Representing the regional upper mantle as a Burghers body, I infer steady state and transient viscosities of ??1 = 2.8 ?? 1018 Pa s and ??2 = 1.0 ?? 1017 Pa s, respectively, corresponding to material relaxation times of 1.3 and 0.05 years. The lower crustal viscosity is poorly constrained by the considered horizontal velocity field, and the quoted mantle viscosities assume a steady state lower crust viscosity that is 7??1. Systematic bias in predicted versus observed velocity vectors with respect to a fixed North America during the first 3-6 months following the earthquake is reduced when all velocity vectors are referred to a fixed site. This suggests that the post-Denali GPS time series for the first 1.63 years are shaped by a combination of a common mode noise source during the first 3-6 months plus viscoelastic relaxation controlled by a transient mantle rheology.

  16. Wind tunnel study of natural ventilation of building integrated photovoltaics double skin façade

    NASA Astrophysics Data System (ADS)

    Hudişteanu, Sebastian Valeriu; Popovici, Cătălin George; Cherecheş, Nelu-Cristian

    2018-02-01

    The paper presents a wind tunnel experimental analysis of a small-scale building model (1:30). The objective of the study is to determine the wind influence on the ventilation of a double skin façade channel (DSF) and the cooling effect over integrated photovoltaic panels. The tests were achieved by conceiving and implementation of an experimental program using a wind tunnel with atmospheric boundary layer. The effect of the wind over the ventilation of the horizontal channels of double skin façades is evaluated for different incident velocities. The results are generalized for the average steady state values of the velocities analysed. The experimental results put in evidence the correlation between the reference wind velocity and the dynamics of the air movement inside the double skin façade. These values are used to determine the convective heat transfer and the cooling effect of the air streams inside the channel upon the integrated photovoltaic panels. The decrease of the photovoltaic panels temperature determines a raise of 11% in efficiency and power generated.

  17. Numerical simulation of marine currents in the Bunaken Strait, North Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Rompas, P. T. D.; Manongko, J. D. I.

    2016-04-01

    This study intended for the generation of hydroelectric power at suitable area of the strait in order to provide electric current to a close environment. The project uses a three-dimensional model of taking flow into account the variation of hydrostatic pressure in the liquid vertical layers. We brought back to a two-dimensional calculation using the shallow water equations. The objectives of the study are getting simultaneous obtaining the velocities of currents by the component of velocities and distributions of the kinetic energy from the numerical results. The Bunaken strait is 5280 m width for an average depth of 130 m. Numerical calculation is simulated using horizontal meshes of 60 side meters. The numerical solutions obtained by using a time step of one second. It found that there was no great difference between 2D and 3D numerical simulations because the effect of flow velocity in the vertical direction is very small. The numerical results have shown that the average current velocities when low and high tide currents are 1.46 m/s and 0.85 m/s respectively. The kinetic energy ranged from 0.01 to 2.54 kW/m2 when low and high tide in the Bunaken strait area at discharge of 1 Sv, whereas at discharge 2 Sv, 0.11-17.40 kW/m2 and 0.11-2.77 kW/m2 (when low and high tide currents). These results can used in the design of turbines for power generation marine currents in the Bunaken strait at depths below 60 meters.

  18. Functional Role of the Front and Back Legs During a Track Start with Special Reference to an Inverted Pendulum Model in College Swimmers.

    PubMed

    Ikeda, Yusuke; Ichikawa, Hiroshi; Nara, Rio; Baba, Yasuhiro; Shimoyama, Yoshimitsu; Kubo, Yasuyuki

    2016-10-01

    This study investigated factors that determine the velocity of the center of mass (CM) and flight distance from a track start to devise effective technical and physical training methods. Nine male and 5 female competitive swimmers participated in this study. Kinematics and ground reaction forces of the front and back legs were recorded using a video camera and force plates. The track start was modeled as an inverted pendulum system including a compliant leg, connecting the CM and front edge of the starting block. The increase in the horizontal velocity of the CM immediately after the start signal was closely correlated with the rotational component of the inverted pendulum. This rotational component at hands-off was significantly correlated with the average vertical force of the back plate from the start signal to hands-off (r = .967, P < .001). The flight distance / height was significantly correlated with the average vertical force of the front plate from the back foot-off to front foot-off (r = .783, P < .01). The results indicate that the legs on the starting block in the track start play a different role in the behavior of the inverted pendulum.

  19. Analysis of Earthquake Recordings Obtained from the Seafloor Earthquake Measurement System (SEMS) Instruments Deployed off the Coast of Southern California

    USGS Publications Warehouse

    Boore, D.M.; Smith, C.E.

    1999-01-01

    For more than 20 years, a program has been underway to obtain records of earthquake shaking on the seafloor at sites offshore of southern California, near oil platforms. The primary goal of the program is to obtain data that can help determine if ground motions at offshore sites are significantly different than those at onshore sites; if so, caution may be necessary in using onshore motions as the basis for the seismic design of oil platforms. We analyze data from eight earthquakes recorded at six offshore sites; these are the most important data recorded on these stations to date. Seven of the earthquakes were recorded at only one offshore station; the eighth event was recorded at two sites. The earthquakes range in magnitude from 4.7 to 6.1. Because of the scarcity of multiple recordings from any one event, most of the analysis is based on the ratio of spectra from vertical and horizontal components of motion. The results clearly show that the offshore motions have very low vertical motions compared to those from an average onshore site, particularly at short periods. Theoretical calculations find that the water layer has little effect on the horizontal components of motion but that it produces a strong spectral null on the vertical component at the resonant frequency of P waves in the water layer. The vertical-to-horizontal ratios for a few selected onshore sites underlain by relatively low shear-wave velocities are similar to the ratios from offshore sites for frequencies less than about one-half the water layer P-wave resonant frequency, suggesting that the shear-wave velocities beneath a site are more important than the water layer in determining the character of the ground motions at lower frequencies.

  20. Difference of horizontal-to-vertical spectral ratios of observed earthquakes and microtremors and its application to S-wave velocity inversion based on the diffuse field concept

    NASA Astrophysics Data System (ADS)

    Kawase, Hiroshi; Mori, Yuta; Nagashima, Fumiaki

    2018-01-01

    We have been discussing the validity of using the horizontal-to-vertical spectral ratios (HVRs) as a substitute for S-wave amplifications after Nakamura first proposed the idea in 1989. So far a formula for HVRs had not been derived that fully utilized their physical characteristics until a recent proposal based on the diffuse field concept. There is another source of confusion that comes from the mixed use of HVRs from earthquake and microtremors, although their wave fields are hardly the same. In this study, we compared HVRs from observed microtremors (MHVR) and those from observed earthquake motions (EHVR) at one hundred K-NET and KiK-net stations. We found that MHVR and EHVR share similarities, especially until their first peak frequency, but have significant differences in the higher frequency range. This is because microtremors mainly consist of surface waves so that peaks associated with higher modes would not be prominent, while seismic motions mainly consist of upwardly propagating plain body waves so that higher mode resonances can be seen in high frequency. We defined here the spectral amplitude ratio between them as EMR and calculated their average. We categorize all the sites into five bins by their fundamental peak frequencies in MHVR. Once we obtained EMRs for five categories, we back-calculated EHVRs from MHVRs, which we call pseudo-EHVRs (pEHVR). We found that pEHVR is much closer to EHVR than MHVR. Then we use our inversion code to invert the one-dimensional S-wave velocity structures from EHVRs based on the diffuse field concept. We also applied the same code to pEHVRs and MHVRs for comparison. We found that pEHVRs yield velocity structures much closer to those by EHVRs than those by MHVRs. This is natural since what we have done up to here is circular except for the average operation in EMRs. Finally, we showed independent examples of data not used in the EMR calculation, where better ground structures were successfully identified from pEHVRs again. Thus we proposed here a simple empirical method to estimate S-wave velocity structures using single-station microtremor records, which is the most cost-effective method to characterize the site effects.

  1. Prerequisites for Accurate Monitoring of River Discharge Based on Fixed-Location Velocity Measurements

    NASA Astrophysics Data System (ADS)

    Kästner, K.; Hoitink, A. J. F.; Torfs, P. J. J. F.; Vermeulen, B.; Ningsih, N. S.; Pramulya, M.

    2018-02-01

    River discharge has to be monitored reliably for effective water management. As river discharge cannot be measured directly, it is usually inferred from the water level. This practice is unreliable at places where the relation between water level and flow velocity is ambiguous. In such a case, the continuous measurement of the flow velocity can improve the discharge prediction. The emergence of horizontal acoustic Doppler current profilers (HADCPs) has made it possible to continuously measure the flow velocity. However, the profiling range of HADCPs is limited, so that a single instrument can only partially cover a wide cross section. The total discharge still has to be determined with a model. While the limitations of rating curves are well understood, there is not yet a comprehensive theory to assess the accuracy of discharge predicted from velocity measurements. Such a theory is necessary to discriminate which factors influence the measurements, and to improve instrument deployment as well as discharge prediction. This paper presents a generic method to assess the uncertainty of discharge predicted from range-limited velocity profiles. The theory shows that a major source of error is the variation of the ratio between the local and cross-section-averaged velocity. This variation is large near the banks, where HADCPs are usually deployed and can limit the advantage gained from the velocity measurement. We apply our theory at two gauging stations situated in the Kapuas River, Indonesia. We find that at one of the two stations the index velocity does not outperform a simple rating curve.

  2. Wind Characteristics of Coastal and Inland Surface Flows

    NASA Astrophysics Data System (ADS)

    Subramanian, Chelakara; Lazarus, Steven; Jin, Tetsuya

    2015-11-01

    Lidar measurements of the winds in the surface layer (up to 80 m) inland and near the beach are studied to better characterize the velocity profile and the effect of roughness. Mean and root-mean-squared profiles of horizontal and vertical wind components are analyzed. The effects of variable time (18, 60 and 600 seconds) averaging on the above profiles are discussed. The validity of common surface layer wind profile models to estimate skin friction drag is assessed in light of these measurements. Other turbulence statistics such as auto- and cross- correlations in spatial and temporal domains are also presented. The help of FIT DMES field measurement crew is acknowledged.

  3. Spatial Variation of Slip Behavior Beneath the Alaska Peninsula Along Alaska-Aleutian Subduction Zone

    NASA Astrophysics Data System (ADS)

    Li, Shanshan; Freymueller, Jeffrey T.

    2018-04-01

    We resurveyed preexisting campaign Global Positioning System (GPS) sites and estimated a highly precise GPS velocity field for the Alaska Peninsula. We use the TDEFNODE software to model the slip deficit distribution using the new GPS velocities. We find systematic misfits to the vertical velocities from the optimal model that fits the horizontal velocities well, which cannot be explained by altering the slip distribution, so we use only the horizontal velocities in the study. Locations of three boundaries that mark significant along-strike change in the locking distribution are identified. The Kodiak segment is strongly locked, the Semidi segment is intermediate, the Shumagin segment is weakly locked, and the Sanak segment is dominantly creeping. We suggest that a change in preexisting plate fabric orientation on the downgoing plate has an important control on the along-strike variation in the megathrust locking distribution and subduction seismicity.

  4. A Spectroscopic Survey of Field Red Horizontal-branch Stars

    NASA Astrophysics Data System (ADS)

    Afşar, Melike; Bozkurt, Zeynep; Böcek Topcu, Gamze; Casetti-Dinescu, Dana I.; Sneden, Christopher; Şehitog̅lu, Gizem

    2018-06-01

    A metallicity, chemical composition, and kinematic survey has been conducted for a sample of 340 candidate field red horizontal-branch (RHB) stars. Spectra with high resolution and high signal-to-noise ratio were gathered with the McDonald Observatory 2.7 m Tull and the Hobby–Eberly Telescope echelle spectrographs, and were used to determine effective temperatures, surface gravities, microturbulent velocities, [Fe/H] metallicities, and abundance ratios [X/Fe] for seven α and Fe-group species. The derived temperatures and gravities confirm that at least half of the candidates are true RHB stars, with (average) parameters T eff ∼ 5000 K and log g ∼ 2.5. From the α abundances alone, the thin and thick Galactic populations are apparent in our sample. Space motions for 90% of the program stars were computed from Hipparcos and Gaia parallaxes and proper motions. Correlations between chemical compositions and Galactic kinematics clearly indicate the existence of both thin-disk and thick-disk RHB stars.

  5. Heat transfer to horizontal tubes in a pilot-scale fluidized-bed combustor burning low-rank coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grewal, N.S.; Goblirsch, G.

    Experimental data are obtained for the heat transfer coefficient between immersed horizontal tube bundles and an atmospheric-fluidized-bed combustor burning low-rank coals. Silica sand (d/sub p/ = 888 to 1484 ..mu..m) and limestone (d/sub p/ = 716 to 1895 ..mu..m) are used as bed material. The tests are conducted, with and without limestone addition and ash recycle, at average bed temperatures ranging from 1047 to 1125/sup 0/K, superficial fluidizing velocity of 1.66 to 2.04 m/s, and excess air levels of 15 to 40 percent. The experimental data are examined in the light of the existing correlations for the heat transfer coefficient.more » The predicted values of heat transfer coefficient from the correlations proposed by Grewal (1981) and Bansal et al. (1980) are found to be within +-25 percent of the experimental values of heat transfer coefficient, when the contribution due to radiation is also included. 5 figures, 5 tables.« less

  6. Numerical Study of Wake Characteristics in a Horizontal-Axis Hydrokinetic Turbine.

    PubMed

    Silva, Paulo A S F; Oliveira, Taygoara F DE; Brasil, Antonio C P; Vaz, Jerson R P

    2016-01-01

    Over the years most studies on wake characteristics have been devoted to wind turbines, while few works are related to hydrokinetic turbines. Among studies applied to rivers, depth and width are important parameters for a suitable design. In this work, a numerical study of the wake in a horizontal-axis hydrokinetic turbine is performed, where the main objective is an investigation on the wake structure, which can be a constraining factor in rivers. The present paper uses the Reynolds Averaged Navier Stokes (RANS) flow simulation technique, in which the Shear-Stress Transport (SST) turbulent model is considered, in order to simulate a free hydrokinetic runner in a typical river flow. The NREL-PHASE VI wind turbine was used to validate the numerical approach. Simulations for a 3-bladed axial hydrokinetic turbine with 10 m diameter were carried out, depicting the expanded helical behavior of the wake. The axial velocity, in this case, is fully recovered at 12 diameters downstream in the wake. The results are compared with others available in the literature and also a study of the turbulence kinetic energy and mean axial velocity is presented so as to assess the influence of proximity of river surface from rotor in the wake geometry. Hence, even for a single turbine facility it is still necessary to consider the propagation of the wake over the spatial domain.

  7. Analysis of Doppler Lidar Data Acquired During the Pentagon Shield Field Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newsom, Rob K.

    2011-04-14

    Observations from two coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to characterize the overall boundary-layer structure, and identify the dominant flow characteristics during the entire two-week field campaign. Convective boundary layer (CBL) heights and cloud base heights (CBH) are estimated from an analysis of the lidar signal-to-noise-ratio (SNR), and mean wind profiles are computed using a modified velocity-azimuth-display (VAD) algorithm. Three-dimensional wind field retrievals are computed from coordinated overlapping volume scans, and the results are analyzed by visualizing the flow in horizontal and vertical cross sections. The VAD winds showmore » that southerly flows dominate during the two-week field campaign. Low-level jets (LLJ) were evident on all but two of the nights during the field campaign. The LLJs tended to form a couple hours after sunset and reach maximum strength between 03 and 07 UTC. The surface friction velocities show distinct local maxima during four nights when strong LLJs formed. Estimates of the convective boundary layer height and residual layer height are obtained through an analysis of the vertical gradient of the lidar signal-to-noise-ratio (SNR). Strong minimum in the SNR gradient often develops just above the surface after sunrise. This minimum is associated with the developing CBL, and increases rapidly during the early portion of the daytime period. On several days, this minimum continues to increase until about sunset. Secondary minima in the SNR gradient were also observed at higher altitudes, and are believed to be remnants of the CBL height from previous days, i.e. the residual layer height. The dual-Doppler analysis technique used in this study makes use of hourly averaged radial velocity data to produce three-dimensional grids of the horizontal velocity components, and the horizontal velocity variance. Visualization of horizontal and vertical cross sections of the dual-Doppler wind retrievals often indicated a jet-like flow feature over the Potomac River under southerly flow conditions. This linear flow feature is roughly aligned with the Potomac River corridor to the south of the confluence with the Anatostia River, and is most apparent at low levels (i.e. below ~150 m MSL). It is believed that this flow arises due to reduced drag over the water surface and when the large scale flow aligns with the Potomac River corridor. A so-called area-constrained VAD analysis generally confirmed the observations from the dual-Doppler analysis. When the large scale flow is southerly, wind speeds over the Potomac River are consistently larger than the at a site just to the west of the river for altitudes less than 100 m MSL. Above this level, the trend is somewhat less obvious. The data suggest that the depth of the wind speed maximum may be reduced by strong directional shear aloft.« less

  8. Global Velocities from VLBI

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Gordon, David; MacMillan, Daniel

    1999-01-01

    Precise geodetic Very Long Baseline Interferometry (VLBI) measurements have been made since 1979 at about 130 points on all major tectonic plates, including stable interiors and deformation zones. From the data set of about 2900 observing sessions and about 2.3 million observations, useful three-dimensional velocities can be derived for about 80 sites using an incremental least-squares adjustment of terrestrial, celestial, Earth rotation and site/session-specific parameters. The long history and high precision of the data yield formal errors for horizontal velocity as low as 0.1 mm/yr, but the limitation on the interpretation of individual site velocities is the tie to the terrestrial reference frame. Our studies indicate that the effect of converting precise relative VLBI velocities to individual site velocities is an error floor of about 0.4 mm/yr. Most VLBI horizontal velocities in stable plate interiors agree with the NUVEL-1A model, but there are significant departures in Africa and the Pacific. Vertical precision is worse by a factor of 2-3, and there are significant non-zero values that can be interpreted as post-glacial rebound, regional effects, and local disturbances.

  9. Inverse energy cascade and emergence of large coherent vortices in turbulence driven by Faraday waves.

    PubMed

    Francois, N; Xia, H; Punzmann, H; Shats, M

    2013-05-10

    We report the generation of large coherent vortices via inverse energy cascade in Faraday wave driven turbulence. The motion of floaters in the Faraday waves is three dimensional, but its horizontal velocity fluctuations show unexpected similarity with two-dimensional turbulence. The inverse cascade is detected by measuring frequency spectra of the Lagrangian velocity, and it is confirmed by computing the third moment of the horizontal velocity fluctuations. This is observed in deep water in a broad range of wavelengths and vertical accelerations. The results broaden the scope of recent findings on Faraday waves in thin layers [A. von Kameke et al., Phys. Rev. Lett. 107, 074502 (2011)].

  10. Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations

    NASA Astrophysics Data System (ADS)

    Niiler, Pearn P.; Maximenko, Nikolai A.; McWilliams, James C.

    2003-11-01

    The 1992-2002 time-mean absolute sea level distribution of the global ocean is computed for the first time from observations of near-surface velocity. For this computation, we use the near-surface horizontal momentum balance. The velocity observed by drifters is used to compute the Coriolis force and the force due to acceleration of water parcels. The anomaly of horizontal pressure gradient is derived from satellite altimetry and corrects the temporal bias in drifter data distribution. NCEP reanalysis winds are used to compute the force due to Ekman currents. The mean sea level gradient force, which closes the momentum balance, is integrated for mean sea level. We find that our computation agrees, within uncertainties, with the sea level computed from the geostrophic, hydrostatic momentum balance using historical mean density, except in the Antarctic Circumpolar Current. A consistent horizontally and vertically dynamically balanced, near-surface, global pressure field has now been derived from observations.

  11. Determining whether a ball will land behind or in front of you: not just a combination of expansion and angular velocity.

    PubMed

    Brouwer, Anne-Marie; López-Moliner, Joan; Brenner, Eli; Smeets, Jeroen B J

    2006-02-01

    We propose and evaluate a source of information that ball catchers may use to determine whether a ball will land behind or in front of them. It combines estimates for the ball's horizontal and vertical speed. These estimates are based, respectively, on the rate of angular expansion and vertical velocity. Our variable could account for ball catchers' data of Oudejans et al. [The effects of baseball experience on movement initiation in catching fly balls. Journal of Sports Sciences, 15, 587-595], but those data could also be explained by the use of angular expansion alone. We therefore conducted additional experiments in which we asked subjects where simulated balls would land under conditions in which both angular expansion and vertical velocity must be combined for obtaining a correct response. Subjects made systematic errors. We found evidence for the use of angular velocity but hardly any indication for the use of angular expansion. Thus, if catchers use a strategy that involves combining vertical and horizontal estimates of the ball's speed, they do not obtain their estimates of the horizontal component from the rate of expansion alone.

  12. Near‐surface void detection using a seismic landstreamer and horizontal velocity and attenuation tomography

    USGS Publications Warehouse

    Buckley, Sean F.; Lane, John W.

    2012-01-01

    The detection and characterization of subsurface voids plays an important role in the study of karst formations and clandestine tunnels. Horizontal velocity and attenuation tomography (HVAT) using offset‐fan shooting and a towed seismic land streamer is a simple, rapid, minimally invasive method that shows promise for detecting near‐surface voids and providing information on the orientation of linear voids. HVAT surveys were conducted over a known subsurface steam tunnel on the University of Connecticut Depot Campus, Storrs, Connecticut. First‐arrival travel‐time and amplitude data were used to produce two‐dimensional (2D) horizontal (map view) velocity and attenuation tomograms. In addition, attenuation tomograms were produced based on normalized total trace energy (TTE). Both the velocity and TTE attenuation tomograms depict an anomaly consistent with the location and orientation of the known tunnel; the TTE method, however, requires significantly less processing time, and therefore may provide a path forward to semi‐automated, near real‐time detection of near‐surface voids. Further study is needed to assess the utility of the HVAT method to detect deeper voids and the effects of a more complex geology on HVAT results.

  13. Strain rate orientations near the Coso Geothermal Field

    NASA Astrophysics Data System (ADS)

    Ogasa, N. T.; Kaven, J. O.; Barbour, A. J.; von Huene, R.

    2016-12-01

    Many geothermal reservoirs derive their sustained capacity for heat exchange in large part due to continuous deformation of preexisting faults and fractures that permit permeability to be maintained. Similarly, enhanced geothermal systems rely on the creation of suitable permeability from fracture and faults networks to be viable. Stress measurements from boreholes or earthquake source mechanisms are commonly used to infer the tectonic conditions that drive deformation, but here we show that geodetic data can also be used. Specifically, we quantify variations in the horizontal strain rate tensor in the area surrounding the Coso Geothermal Field (CGF) by analyzing more than two decades of high accuracy differential GPS data from a network of 14 stations from the University of Nevada Reno Geodetic Laboratory. To handle offsets in the data, from equipment changes and coseismic deformation, we segment the data, perform a piecewise linear fit and take the average of each segment's strain rate to determine secular velocities at each station. With respect to North America, all stations tend to travel northwest at velocities ranging from 1 to 10 mm/yr. The nearest station to CGF shows anomalous motion compared to regional stations, which otherwise show a coherent increase in network velocity from the northeast to the southwest. We determine strain rates via linear approximation using GPS velocities in Cartesian reference frame due to the small area of our network. Principal strain rate components derived from this inversion show maximum extensional strain rates of 30 nanostrain/a occur at N87W with compressional strain rates of 37nanostrain/a at N3E. These results generally align with previous stress measurements from borehole breakouts, which indicate the least compressive horizontal principal stress is east-west oriented, and indicative of the basin and range tectonic setting. Our results suggest that the CGF represents an anomaly in the crustal deformation field, which may be influenced by the hydrothermal anomaly and possibly by the geothermal reservoir operations as well.

  14. A formulation of directivity for earthquake sources using isochrone theory

    USGS Publications Warehouse

    Spudich, Paul; Chiou, Brian S.J.; Graves, Robert; Collins, Nancy; Somerville, Paul

    2004-01-01

    A functional form for directivity effects can be derived from isochrone theory, in which the measure of the directivity-induced amplification of an S body wave is c, the isochrone velocity. Ground displacement of the near-, intermediate-, and far-field terms of P and S waves is linear in isochrone velocity for a finite source in a whole space. We have developed an approximation c-tilde-prime of isochrone velocity that can easily be implemented as a predictor of directivity effects in empirical ground motion prediction relations. Typically, for a given fault surface, hypocenter, and site geometry, c-tilde-prime is a simple function of the hypocentral distance, the rupture distance, the crustal shear wave speed in the seismogenic zone, and the rupture velocity. c-tilde-prime typically ranges in the interval 0.44, for rupture away from the station, to about 4, for rupture toward the station. In this version of the theory directivity is independent of period. Additionally, we have created another functional form which is c-tilde-prime modified to include the approximate radiation pattern of a finite fault having a given rake. This functional form can be used to model the spatial variations of fault-parallel and fault-normal horizontal ground motions. The strengths of this formulation are 1) the proposed functional form is based on theory, 2) the predictor is unambiguously defined for all possible site locations and source rakes, and 3) it can easily be implemented for well-studied important previous earthquakes. We compare predictions of our functional form with synthetic ground motions calculated for finite strike-slip and dip-slip faults in the magnitude range 6.5 - 7.5. In general our functional form correlates best with computed fault-normal and fault-parallel motions in the synthetic motions calculated for events with M6.5. Correlation degrades but is still useful for larger events and for the geometric average horizontal motions. We have had limited success applying it to geometrically complicated faults.

  15. A new GNSS velocity field for Fennoscandia and comparison to GIA models (Invited)

    NASA Astrophysics Data System (ADS)

    Kierulf, H. P.; Simpson, M. J.; Steffen, H.; Lidberg, M.

    2013-12-01

    In Fennoscandia, the process of Glacial Isostatic Adjustment (GIA) causes ongoing crustal deformation. The vertical and horizontal movements of the Earth can be measured to a high degree of precision using Global Navigation Satellite System (GNSS). The GNSS network in Fennoscandia has gradually been established since the early 1990s and today contains a dense network well suited for geophysical studies and especially GIA. We will present new velocity estimates for the Fennoscandian and North-European GNSS network using the processing package GAMIT/GLOBK. GNSS measurements have proved to be a good tool to constrain and validate GIA models. However, reference frame uncertainties, plate tectonics as well as intra-plate deformations might decontaminate the results. Different ITRFs have had large discrepancies, especially in the TZ-component, which have made the geophysical interpretation of GNSS results difficult. In GIA areas the uncertainties in the TZ component almost directly affect the height component which makes constraining of GIA models less reliable. Plate tectonics introduces large horizontal velocities which are hard to distinguish from horizontal GIA-induced velocities. We will present a new approach where our GNSS velocity field is directly realized in a GIA frame. With this approach, the effect of systematic errors in the reference frames and 'biasing' signal from the plate tectonics will be reduced to a minimum for our GIA results. Moreover, we are able to provide consistent GIA-free plate velocities for the Eurasian plate.

  16. Accuracy of flowmeters measuring horizontal groundwater flow in an unconsolidated aquifer simulator.

    USGS Publications Warehouse

    Bayless, E.R.; Mandell, Wayne A.; Ursic, James R.

    2011-01-01

    Borehole flowmeters that measure horizontal flow velocity and direction of groundwater flow are being increasingly applied to a wide variety of environmental problems. This study was carried out to evaluate the measurement accuracy of several types of flowmeters in an unconsolidated aquifer simulator. Flowmeter response to hydraulic gradient, aquifer properties, and well-screen construction was measured during 2003 and 2005 at the U.S. Geological Survey Hydrologic Instrumentation Facility in Bay St. Louis, Mississippi. The flowmeters tested included a commercially available heat-pulse flowmeter, an acoustic Doppler flowmeter, a scanning colloidal borescope flowmeter, and a fluid-conductivity logging system. Results of the study indicated that at least one flowmeter was capable of measuring borehole flow velocity and direction in most simulated conditions. The mean error in direction measurements ranged from 15.1 degrees to 23.5 degrees and the directional accuracy of all tested flowmeters improved with increasing hydraulic gradient. The range of Darcy velocities examined in this study ranged 4.3 to 155 ft/d. For many plots comparing the simulated and measured Darcy velocity, the squared correlation coefficient (r2) exceeded 0.92. The accuracy of velocity measurements varied with well construction and velocity magnitude. The use of horizontal flowmeters in environmental studies appears promising but applications may require more than one type of flowmeter to span the range of conditions encountered in the field. Interpreting flowmeter data from field settings may be complicated by geologic heterogeneity, preferential flow, vertical flow, constricted screen openings, and nonoptimal screen orientation.

  17. A Comprehensive Study of Gridding Methods for GPS Horizontal Velocity Fields

    NASA Astrophysics Data System (ADS)

    Wu, Yanqiang; Jiang, Zaisen; Liu, Xiaoxia; Wei, Wenxin; Zhu, Shuang; Zhang, Long; Zou, Zhenyu; Xiong, Xiaohui; Wang, Qixin; Du, Jiliang

    2017-03-01

    Four gridding methods for GPS velocities are compared in terms of their precision, applicability and robustness by analyzing simulated data with uncertainties from 0.0 to ±3.0 mm/a. When the input data are 1° × 1° grid sampled and the uncertainty of the additional error is greater than ±1.0 mm/a, the gridding results show that the least-squares collocation method is highly robust while the robustness of the Kriging method is low. In contrast, the spherical harmonics and the multi-surface function are moderately robust, and the regional singular values for the multi-surface function method and the edge effects for the spherical harmonics method become more significant with increasing uncertainty of the input data. When the input data (with additional errors of ±2.0 mm/a) are decimated by 50% from the 1° × 1° grid data and then erased in three 6° × 12° regions, the gridding results in these three regions indicate that the least-squares collocation and the spherical harmonics methods have good performances, while the multi-surface function and the Kriging methods may lead to singular values. The gridding techniques are also applied to GPS horizontal velocities with an average error of ±0.8 mm/a over the Chinese mainland and the surrounding areas, and the results show that the least-squares collocation method has the best performance, followed by the Kriging and multi-surface function methods. Furthermore, the edge effects of the spherical harmonics method are significantly affected by the sparseness and geometric distribution of the input data. In general, the least-squares collocation method is superior in terms of its robustness, edge effect, error distribution and stability, while the other methods have several positive features.

  18. A Dual Conductance Sensor for Simultaneous Measurement of Void Fraction and Structure Velocity of Downward Two-Phase Flow in a Slightly Inclined Pipe

    PubMed Central

    Lee, Yeon-Gun; Won, Woo-Youn; Lee, Bo-An; Kim, Sin

    2017-01-01

    In this study, a new and improved electrical conductance sensor is proposed for application not only to a horizontal pipe, but also an inclined one. The conductance sensor was designed to have a dual layer, each consisting of a three-electrode set to obtain two instantaneous conductance signals in turns, so that the area-averaged void fraction and structure velocity could be measured simultaneously. The optimum configuration of the electrodes was determined through numerical analysis, and the calibration curves for stratified and annular flow were obtained through a series of static experiments. The fabricated conductance sensor was applied to a 45 mm inner diameter U-shaped downward inclined pipe with an inclination angle of 3° under adiabatic air-water flow conditions. In the tests, the superficial velocities ranged from 0.1 to 3.0 m/s for water and from 0.1 to 18 m/s for air. The obtained mean void fraction and the structure velocity from the conductance sensor were validated against the measurement by the wire-mesh sensor and the cross-correlation technique for the visualized images, respectively. The results of the flow regime classification and the corresponding time series of the void fraction at a variety of flow velocities were also discussed. PMID:28481308

  19. Human convective boundary layer and its interaction with room ventilation flow.

    PubMed

    Licina, D; Melikov, A; Sekhar, C; Tham, K W

    2015-02-01

    This study investigates the interaction between the human convective boundary layer (CBL) and uniform airflow with different velocity and from different directions. Human body is resembled by a thermal manikin with complex body shape and surface temperature distribution as the skin temperature of an average person. Particle image velocimetry (PIV) and pseudocolor visualization (PCV) are applied to identify the flow around the manikin's body. The findings show that the direction and magnitude of the surrounding airflows considerably influence the airflow distribution around the human body. Downward flow with velocity of 0.175 m/s does not influence the convective flow in the breathing zone, while flow at 0.30 m/s collides with the CBL at the nose level reducing the peak velocity from 0.185 to 0.10 m/s. Transverse horizontal flow disturbs the CBL at the breathing zone even at 0.175 m/s. A sitting manikin exposed to airflow from below with velocity of 0.30 and 0.425 m/s assisting the CBL reduces the peak velocity in the breathing zone and changes the flow pattern around the body, compared to the assisting flow of 0.175 m/s or quiescent conditions. In this case, the airflow interaction is strongly affected by the presence of the chair. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Kinetic Energy Recovery from the Chimney Flue Gases Using Ducted Turbine System

    NASA Astrophysics Data System (ADS)

    Mann, Harjeet S.; Singh, Pradeep K.

    2017-03-01

    An innovative idea of extracting kinetic energy from man-made wind resources using ducted turbine system for on-site power generation is introduced in this paper. A horizontal axis ducted turbine is attached to the top of the chimney to harness the kinetic energy of flue gases for producing electricity. The turbine system is positioned beyond the chimney outlet, to avoid any negative impact on the chimney performance. The convergent-divergent duct causes increase in the flue gas velocity and hence enhances the performance of the turbine. It also acts as a safety cover to the energy recovery system. The results from the CFD based simulation analysis indicate that significant power 34 kW can be harnessed from the chimney exhaust. The effect of airfoils NACA4412 and NACA4416 and the diffuser angle on the power extraction by the energy recovery system using a 6-bladed ducted turbine has been studied with the CFD simulation. It is observed that the average flue gas velocity in the duct section at the throat is approximately twice that of the inlet velocity, whereas maximum velocity achieved is 2.6 times the inlet velocity. The simulated results show that about power may be extracted from the chimney flue gases of 660 MW power plant. The system can be retrofitted to existing chimneys of thermal power plants, refineries and other industries.

  1. Effects of Daytime Atmospheric Boundary Layer Turbulence on the Generation of Nonsteady Wind Turbine Loadings and Predictive Accuracy of Lower Order Models

    NASA Astrophysics Data System (ADS)

    Lavely, Adam W.

    Modern utility-scale wind turbines operate in the the lower atmospheric boundary layer (ABL), which is characterized by large gradients in mean velocity and temperature and the existence of strong coherent turbulence eddies that reflect the interaction between strong mean shear and vertical buoyancy driven by solar heating. The spatio-temporal velocity variations drive nonsteady loadings on wind turbines that contribute to premature wind turbine component fatigue failure, decreasing the levelized cost of (wind) energy (LCOE). The aims of the current comprehensive research program center on the quantification of the characteristics of the nonsteady loads resulting from the interactions between the coherent energy contain gin atmospheric turbulence eddies within the lower ABL as the eddies advect through the rotor plane and the rotating wind turbine blade encounter the internal turbulence structure of the atmospheric eddies. We focus on the daytime atmospheric boundary layer, where buoyancy due to surface heating interacts with shear to create coherent turbulence structures. Pseudo-spectral large eddy simulation (LES) is used to generate an equilibrium atmospheric boundary layer over at terrain with uniform surface roughness characteristic of the Midwest on a typical sunny windy afternoon when the ABL can be approximated as quasi-steady. The energy-containing eddies are found to create advective time-responses of order 30-90 seconds with lateral spatial scales of order the wind turbine rotor diameter. Different wind turbine simulation methods of a representative utility scale turbine were applied using the atmospheric turbulence as in flow. We apply three different fidelity wind turbine simulation methods to quantify the extent to which lower order models are able to accurately predict the nonsteady loading due to atmospheric turbulence eddies advecting through the rotor plane and interacting with the wind turbine. The methods vary both the coupling to the atmospheric boundary layer and the way in which the blade geometry is resolved and sectional blade forces are calculated. The highest fidelity simulation resolves the blade geometry to capture unsteady boundary layer response and separation dynamics within a simulation of the atmospheric boundary layer coupling the effect of the turbine to the atmospheric in flow. The lower order models both use empirical look-up tables to predict the time changes in blade sectional forces as a function of time changes in local velocity vector. The actuator line method (ALM) is two-way coupled and feeds these blade forces back into a simulation of the atmospheric boundary layer. The blade element momentum theory (BEMT) is one-way coupled and models the effect of the turbine on the incoming velocity field. The coupling method and method of blade resolution are both found to have an effect on the ability to accurately predict sectional blade load response to nonsteady atmospheric turbulence. The BEMT cannot accurately predict the timing of the response changes as these are modulated by the wind turbine within the ABL simulations. The lower order models have increased blade sectional load range and temporal gradients due to their inability to accurately capture the temporal response of the blade geometry to in flow changes. Taking advantage of horizontal homogeneity to collect statistics, we investigate the time period required to create well converged statistics in the equilibrium atmospheric boundary layer and find whereas the 10-minute industry standard for 'averages' retains variability of order 10%, the 10-minute average is an optimal choice. We compare the industry standard 10-minute averaging period. The residual variability within the 10-minute period to the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) field test database to find that whereas the 10-minute window still contains large variability, it is, in some sense, optimal because averaging times much longer would be required to significantly reduce variability. Turbulence fluctuations in streamwise velocity are found to be the primary driver of temporal variations in local angles of attack and sectional blade loads. Based on this new understanding, we develop analyses to show that whereas rotor torque and thrust correlate well with upstream horizontal velocity averaged over the rotor disk, out-of-plane bending moment magnitude correlates with the asymmetry in the horizontal fluctuating velocity over the rotor disk. Consequentially, off-design motions of the drivetrain and gearbox shown with the GRC field test data are well predicted using an asymmetry index designed to capture the response of a three-bladed turbine to asymmetry in the rotor plane. The predictors for torque, thrust and out-of-plane bending moment are shown to correlate well to upstream rotor planes indicating that they may be applied to advanced feed-forward control methods such as forward-facing LIDAR used to detect velocity changes in front of a wind turbine. This has the potential to increase wind turbine reliability by using controls to reduce potentially detrimental load responses to incoming atmospheric turbulence and decrease the LCOE.

  2. Radar - ARL Wind Profilerwith RASS, Boardman - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  3. Radar - ANL Wind Profiler with RASS, Yakima - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  4. Radar - ESRL Wind Profiler with RASS, Condon - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  5. Radar - ANL Wind Profiler with RASS, Walla Walla - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  6. Radar - ESRL Wind Profiler with RASS, Prineville - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  7. Radar - ESRL Wind Profiler with RASS, Troutdale - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  8. Radar - ANL Wind Profiler with RASS, Goldendale - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  9. Radar - ESRL Wind Profiler with RASS, Wasco Airport - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  10. Influences of Atmospheric Stability State on Wind Turbine Aerodynamic Loadings

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Ganesh; Lavely, Adam; Brasseur, James; Paterson, Eric; Kinzel, Michael

    2011-11-01

    Wind turbine power and loadings are influenced by the structure of atmospheric turbulence and thus on the stability state of the atmosphere. Statistical differences in loadings with atmospheric stability could impact controls, blade design, etc. Large-eddy simulation (LES) of the neutral and moderately convective atmospheric boundary layer (NBL, MCBL) are used as inflow to the NREL FAST advanced blade-element momentum theory code to predict wind turbine rotor power, sectional lift and drag, blade bending moments and shaft torque. Using horizontal homogeneity, we combine time and ensemble averages to obtain converged statistics equivalent to ``infinite'' time averages over a single turbine. The MCBL required longer effective time periods to obtain converged statistics than the NBL. Variances and correlation coefficients among wind velocities, turbine power and blade loadings were higher in the MCBL than the NBL. We conclude that the stability state of the ABL strongly influences wind turbine performance. Supported by NSF and DOE.

  11. Coding of Velocity Storage in the Vestibular Nuclei.

    PubMed

    Yakushin, Sergei B; Raphan, Theodore; Cohen, Bernard

    2017-01-01

    Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO neurons were unaffected by states of alertness and declined with the time constant of velocity storage. Thus, the VO neurons are the prime components of the mechanism of coding for velocity storage, whereas the VPS neurons are likely to provide the path from the vestibular to the oculomotor system for the VO neurons.

  12. Coding of Velocity Storage in the Vestibular Nuclei

    PubMed Central

    Yakushin, Sergei B.; Raphan, Theodore; Cohen, Bernard

    2017-01-01

    Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO neurons were unaffected by states of alertness and declined with the time constant of velocity storage. Thus, the VO neurons are the prime components of the mechanism of coding for velocity storage, whereas the VPS neurons are likely to provide the path from the vestibular to the oculomotor system for the VO neurons. PMID:28861030

  13. Plate kinematics of Nubia Somalia using a combined DORIS and GPS solution

    NASA Astrophysics Data System (ADS)

    Nocquet, J.-M.; Willis, P.; Garcia, S.

    2006-11-01

    We have used up to 12 years of data to assess DORIS performance for geodynamics applications. We first examine the noise characteristics of the DORIS time-series of weekly station coordinates to derive realistic estimates of velocity uncertainties. We find that a combination of white and flicker noise best explains the DORIS time-series noise characteristics. Second, weekly solutions produced by the Institut Géographique National/Jet Propulsion Laboratory (IGN/JPL) DORIS Analysis Centre are combined to derive a global velocity field. This solution is combined with two independent GPS solutions, including 11 sites on Nubia and 5 on the Somalia plate. The combination indicates that DORIS horizontal velocities have an average accuracy of 3 mm/year, with best-determined sites having velocity accuracy better than 1 mm/year (one-sigma levels). Using our combined velocity field, we derive an updated plate kinematics model with a focus on the Nubia Somalia area. Including DORIS data improves the precision of the angular velocity vector for Nubia by 15%. Our proposed model provides robust bounds on the maximum opening rates along the East African Rift (4.7 6.7 mm/year). It indicates opening rates 15 and 7% slower than values predicted by NUVEL-1A for the southern Atlantic Ocean and Indian Ocean, respectively. These differences are likely to arise from the fact that NUVEL-1A considered Africa as a single non-deforming plate, while here we use a more refined approach.

  14. Adaptation of primate vestibuloocular reflex to altered peripheral vestibular inputs. I. Frequency-specific recovery of horizontal VOR after inactivation of the lateral semicircular canals

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.; Arai, Y.; Suzuki, J.

    1996-01-01

    1. The adaptive plasticity of the vestibuloocular reflex (VOR) following a selective lesion of the peripheral vestibular organs was investigated in rhesus monkeys whose lateral semicircular canals were inactivated by plugging of the canal lumen in both ears. Gain and phase of horizontal, vertical, and torsional slow-phase eye velocity were determined from three-dimensional eye movement recordings obtained acutely after the plugging operation, as well as in regular intervals up to 10 mo later. 2. Acutely after plugging, horizontal VOR was minimal during yaw rotation with gains of < 0.1 at all frequencies. Horizontal VOR gain gradually increased over time, reaching gains of 0.4-0.5 for yaw oscillations at 1.1 Hz approximately 5 mo after lateral canal inactivation. This response recovery was strongly frequency dependent: horizontal VOR gains were largest at the highest frequency tested and progressively decreased for lower frequencies. Below approximately 0.1 Hz, no consistent horizontal VOR could be elicited even 10 mo after plugging. 3. The frequency-dependent changes in gain paralleled changes in horizontal VOR phase. Below approximately 0.1-0.05 Hz large phase leads were present, similarly as in semicircular canal primary afferents. Smaller phase leads were also present at higher frequencies, particularly at 1.1 Hz (the highest frequency tested). 4. Consistent with the afferent-like dynamics of the adapted horizontal VOR, per- and postrotatory horizontal responses to constant-velocity yaw rotations were short lasting. Time constants of the slow-phase eye velocity envelope of the horizontal postrotatory nystagmus were approximately 2 s. Nonetheless, a consistent horizontal optokinetic afternystagmus was evoked in plugged animals. 5. A torsional component that was absent in intact animals was consistently present during yaw rotation acutely after lateral canal inactivation and remained approximately constant thereafter. The frequency response characteristics of this torsional component resembled those of the adapted horizontal slow-phase responses: gain decreased and large phase leads were introduced at frequencies below approximately 0.05-0.1 Hz. Torsional responses elicited by roll oscillations in supine position, on the other hand, were indistinguishable in their dynamics from intact animals. No consistent vertical nystagmus was elicited during yaw rotation. 6. Our results show that there is a slow, frequency-specific recovery of horizontal VOR after selective inactivation of the lateral semicircular canals. Both the spatial organization and the dynamic properties of the adapted VOR responses are distinctly different from responses in intact animals, suggesting complex changes in the underlying vestibuloocular circuitry.

  15. Numerical and Experimental Investigation of Stratified Gas-Liquid Two-Phase Flow in Horizontal Circular Pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faccini, J.L.H.; Sampaio, P.A.B. de; Su, J.

    This paper reports numerical and experimental investigation of stratified gas-liquid two-phase flow in horizontal circular pipes. The Reynolds averaged Navier Stokes equations (RANS) with the k-{omega} model for a fully developed stratified gas-liquid two-phase flow are solved by using the finite element method. A smooth and horizontal interface surface is assumed without considering the interfacial waves. The continuity of the shear stress across the interface is enforced with the continuity of the velocity being automatically satisfied by the variational formulation. For each given interface position and longitudinal pressure gradient, an inner iteration loop runs to solve the nonlinear equations. Themore » Newton-Raphson scheme is used to solve the transcendental equations by an outer iteration to determine the interface position and pressure gradient for a given pair of volumetric flow rates. The interface position in a 51.2 mm ID circular pipe was measured experimentally by the ultrasonic pulse-echo technique. The numerical results were also compared with experimental results in a 21 mm ID circular pipe reported by Masala [1]. The good agreement between the numerical and experimental results indicates that the k-{omega} model can be applied for the numerical simulation of stratified gas-liquid two-phase flow. (authors)« less

  16. Horizontal Residual Mean Circulation: Evaluation of Spatial Correlations in Coarse Resolution Ocean Models

    NASA Astrophysics Data System (ADS)

    Li, Y.; McDougall, T. J.

    2016-02-01

    Coarse resolution ocean models lack knowledge of spatial correlations between variables on scales smaller than the grid scale. Some researchers have shown that these spatial correlations play a role in the poleward heat flux. In order to evaluate the poleward transport induced by the spatial correlations at a fixed horizontal position, an equation is obtained to calculate the approximate transport from velocity gradients. The equation involves two terms that can be added to the quasi-Stokes streamfunction (based on temporal correlations) to incorporate the contribution of spatial correlations. Moreover, these new terms do not need to be parameterized and is ready to be evaluated by using model data directly. In this study, data from a high resolution ocean model have been used to estimate the accuracy of this HRM approach for improving the horizontal property fluxes in coarse-resolution ocean models. A coarse grid is formed by sub-sampling and box-car averaging the fine grid scale. The transport calculated on the coarse grid is then compared to the transport on original high resolution grid scale accumulated over a corresponding number of grid boxes. The preliminary results have shown that the estimate on coarse resolution grids roughly match the corresponding transports on high resolution grids.

  17. Shallow Subsurface Velocity Structure using the Ambient Noise for the Garhwal and Kumaon Himalaya.

    NASA Astrophysics Data System (ADS)

    LAL, S.; Joshi, A.; S.; P.

    2017-12-01

    Abstract: In this paper effort has been made to obtain one dimensional subsurface velocity structure using H/V spectral ratio method Nakamura (1989). The complete study shows that ambient noises are reflective of structural properties of underlying strata. Data has been obtained at stations from foothills of Himalaya up to higher Himalaya along road using strong motion accelerograph in the Garhwal and Kumaon Himalaya along the two transects lines. Noise data has been processed using the seismosignal software. The ratio between the Fourier amplitude spectra of the horizontal components to the vertical component of the ambient noise had been used to consider the site effects of the concerned site. The relation given by Lermo and Chavez-Garcia (1993) between the thickness of layer and average S- wave velocity of the sedimentary layer has been utilized to obtain sub surface velocity model. To fit the synthetic H/V curve with the observed H/V curve, technique given by Castellaro and Mulargia (2009) is used in the present study. This model is improved via forward modelling to give final one dimensional velocity structure at a particular station. Velocity structures obtained at all stations are used to obtain continuous velocity models for concerned area using Kringing interpolation, which is correlated with the geology and tectonic of region. Keywords: Ambient noise, H/V spectral ratio, Site characterization, Accelerograph, Velocity ReferencesNakamura Y (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. QR RTRI 30(1):25-30. Castellaro S, Mulargia F (2009). The effect of velocity inversions on H/V. PAGEOPH 166:567-592. Lermo, J., & Chavez-Garcia, F. J. (1993). Site effect evaluation using spectral ratios with only one station Bulletin Seismological Society of America, 83, 1574-1594.

  18. On the transition towards slow manifold in shallow-water and 3D Euler equations in a rotating frame

    NASA Technical Reports Server (NTRS)

    Mahalov, A.

    1994-01-01

    The long-time, asymptotic state of rotating homogeneous shallow-water equations is investigated. Our analysis is based on long-time averaged rotating shallow-water equations describing interactions of large-scale, horizontal, two-dimensional motions with surface inertial-gravity waves field for a shallow, uniformly rotating fluid layer. These equations are obtained in two steps: first by introducing a Poincare/Kelvin linear propagator directly into classical shallow-water equations, then by averaging. The averaged equations describe interaction of wave fields with large-scale motions on time scales long compared to the time scale 1/f(sub o) introduced by rotation (f(sub o)/2-angular velocity of background rotation). The present analysis is similar to the one presented by Waleffe (1991) for 3D Euler equations in a rotating frame. However, since three-wave interactions in rotating shallow-water equations are forbidden, the final equations describing the asymptotic state are simplified considerably. Special emphasis is given to a new conservation law found in the asymptotic state and decoupling of the dynamics of the divergence free part of the velocity field. The possible rising of a decoupled dynamics in the asymptotic state is also investigated for homogeneous turbulence subjected to a background rotation. In our analysis we use long-time expansion, where the velocity field is decomposed into the 'slow manifold' part (the manifold which is unaffected by the linear 'rapid' effects of rotation or the inertial waves) and a formal 3D disturbance. We derive the physical space version of the long-time averaged equations and consider an invariant, basis-free derivation. This formulation can be used to generalize Waleffe's (1991) helical decomposition to viscous inhomogeneous flows (e.g. problems in cylindrical geometry with no-slip boundary conditions on the cylinder surface and homogeneous in the vertical direction).

  19. 3-D Anisotropic Ambient Noise Tomography of Piton De La Fournaise Volcano (La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Mordret, A.; Rivet, D. N.; Landes, M.; Shapiro, N.

    2014-12-01

    We cross-correlate four years of seismic noise continuously recorded by the seismic monitoring network of the Piton de la Fournaise volcano (La Réunion Island). The network is composed of 40 stations 27 of which have 3-component sensors. We use Vertical-to-Vertical (ZZ) cross-correlation components from all stations and Radial-to-Radial (RR) and Transverse-to-Transverse (TT) cross-correlations computed from 3-component records. The group velocity dispersion curves for Rayleigh and Love waves are measured using a Frequency-Time Analysis. We average measurements from ZZ and RR components to finally obtain 577 Rayleigh-wave dispersion curves. 395 Love-wave dispersion curves are obtained from the TT cross-correlations. We then regionalize the group velocities measurements to construct 2D dispersion maps at a set of periods between 0.4 and 8 s. Finally, we construct a 3D shear-velocity model down to 3 km below the sea level by jointly inverting the Rayleigh and Love wave group velocity maps with a Neighborhood Algorithm and with taking into account the radial anisotropy. The distribution of 3-D Voigt averaged S-wave velocities shows three distinct high-velocity anomalies surrounded by a low-velocity ring. The most western high-velocity anomaly is located below the actual "Plaine des Sables" and could be attributed to an old intrusive body at the location of the former volcanic center before it migrated toward its present location. The second high-velocity body is located below the summit of the volcano and likely corresponds to the actual preferential dyke intrusion zone as highlighted by the seismicity. The third high-velocity anomaly is located below the "Grandes Pentes" and the "Grand Brûlé" areas and is thought to be an imprint of the solidified magma chamber of the ancient dismantled "Les Alizé" volcano. The distribution of the radial anisotropy shows two main anomalies: a positive anisotropy (Vsh>Vsv) above sea level highlighting the recent edifice of Piton de la Fournaise with an accumulation of mostly horizontal lava flows, and the second one below the sea level with a negative anisotropy (Vsv>Vsh) showing the ancient edifice of the Piton de la Fournaise dominated by intrusions of vertical dykes.

  20. Evaluation of local site effect in the western side of the Suez Canal area by applying H/V and MASW techniques

    NASA Astrophysics Data System (ADS)

    Mohamed, Emad K.; Shokry, M. M. F.; Hassoup, Awad; Helal, A. M. A.

    2016-11-01

    The soft sediments are one of the most important factors responsible for the amplification of the seismic ground motion in an area of study. Three components, single-station microtremor measurements were performed at 61 sites along the Suez Canal to estimate the fundamental frequencies of the soil and corresponding H/V amplitude ratios by using the horizontal-to-vertical spectral ratio (HVSR) method. We have applied the investigations of the shear wave velocity for supplementing the existing seismic microzonation of the Suez Canal. The multichannel analysis of surface wave (MASW) tests were done along the Suez Canal in the three cities, Suez, Ismailia, and Port Said using 24 channels digital engineering seismograph with 4.5 Hz geophones from September 2014 to January 2015 to get the shear wave velocity VS30. The SeisImager/SW software was used for analyzing the data, and 1D-shear wave velocity model have achieved for each site. The HVSR curves show that the fundamental frequency values are ranging from 0.57 to 1.08 Hz, and H/V amplitude ratios are ranging from 4.05 to 6.46. The average values of VS30 are (548, 301), (241, 319), (194, 110, 238) for Suez, Ismailia, and Port Said respectively. The average of shear wave velocity up to 30 m depth is estimated and used for site classification based on the National Earthquake Hazard Reduction Program (NEHRP) classification. The majority of the sites was classified as Class D (stiff soil) except one site at Port Said city is classified as Class E (soft soils), and another site in the Suez city is classified as Class C (hard rock).

  1. Boundary Layer Control of a Circular Cylinder Using a Synthetic Jet

    DTIC Science & Technology

    2005-06-01

    Average Velocity at . 375 Hz .............................................................................65 Figure 54 Average Velocity at 0.45 Hz...Figure 53 Average Velocity at . 375 Hz Columns=0; Rows=0 Figure 54 Average Velocity at 0.45 Hz Columns=0; Rows=0 Figure 55 Average Velocity

  2. Lidar measurements of boundary layers, aerosol scattering and clouds during project FIFE

    NASA Technical Reports Server (NTRS)

    Eloranta, Edwin W. (Principal Investigator)

    1995-01-01

    A detailed account of progress achieved under this grant funding is contained in five journal papers. The titles of these papers are: The calculation of area-averaged vertical profiles of the horizontal wind velocity using volume imaging lidar data; Volume imaging lidar observation of the convective structure surrounding the flight path of an instrumented aircraft; Convective boundary layer mean depths, cloud base altitudes, cloud top altitudes, cloud coverages, and cloud shadows obtained from Volume Imaging Lidar data; An accuracy analysis of the wind profiles calculated from Volume Imaging Lidar data; and Calculation of divergence and vertical motion from volume-imaging lidar data. Copies of these papers form the body of this report.

  3. Effect of film slicks on near-surface wind

    NASA Astrophysics Data System (ADS)

    Charnotskii, Mikhail; Ermakov, Stanislav; Ostrovsky, Lev; Shomina, Olga

    2016-09-01

    The transient effects of horizontal variation of sea-surface wave roughness due to surfactant films on near-surface turbulent wind are studied theoretically and experimentally. Here we suggest two practical schemes for calculating variations of wind velocity profiles near the water surface, the average short-wave roughness of which is varying in space and time when a film slick is present. The schemes are based on a generalized two-layer model of turbulent air flow over a rough surface and on the solution of the continuous model involving the equation for turbulent kinetic energy of the air flow. Wave tank studies of wind flow over wind waves in the presence of film slicks are described and compared with theory.

  4. Experimental study on the flame behaviors of premixed methane/air mixture in horizontal rectangular ducts

    NASA Astrophysics Data System (ADS)

    Chen, Dongliang; Sun, Jinhua; Chen, Sining; Liu, Yi; Chu, Guanquan

    2007-01-01

    In order to explore the flame propagation characteristics and tulip flame formation mechanism of premixed methane/air mixture in horizontal rectangular ducts, the techniques of Schlieren and high-speed video camera are used to study the flame behaviors of the premixed gases in a closed duct and opened one respectively, and the propagation characteristics in both cases and the formation mechanism of the tulip flame are analyzed. The results show that, the propagation flame in a closed duct is prior to form a tulip flame structure than that in an opened duct, and the tulip flame structure formation in a closed duct is related to the flame propagation velocity decrease. The sharp decrease of the flame propagation velocity is one of the reasons to the tulip flame formation, and the decrease of the flame propagation velocity is due to the decrease of the burned product flow velocity mainly.

  5. Enhanced solution velocity between dark and light areas with horizontal tubes and triangular prism baffles to improve microalgal growth in a flat-panel photo-bioreactor.

    PubMed

    Yang, Zongbo; Cheng, Jun; Xu, Xiaodan; Zhou, Junhu; Cen, Kefa

    2016-07-01

    Novel horizontal tubes and triangular prism (HTTP) baffles that generate flow vortices were developed to increase solution velocity between dark and light areas and thus improve microalgal growth in a flat-panel photo-bioreactor. Solution velocity, mass-transfer coefficient, and mixing time were measured with a particle-imaging velocimeter, dissolved oxygen probes, and pH probes. The solution mass-transfer coefficient increased by 30% and mixing time decreased by 21% when the HTTP baffles were used. The solution velocity between dark and light areas increased from ∼0.9cm/s to ∼3.5cm/s, resulting in a decreased dark-light cycle period to one-fourth. This enhanced flashing light effect with the HTTP baffles dramatically increased microalgae biomass yield by 70% in the flat-panel photo-bioreactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A study on the unsteady flow of two immiscible micropolar and Newtonian fluids through a horizontal channel: A numerical approach

    NASA Astrophysics Data System (ADS)

    Devakar, M.; Raje, Ankush

    2018-05-01

    The unsteady flow of two immiscible micropolar and Newtonian fluids through a horizontal channel is considered. In addition to the classical no-slip and hyper-stick conditions at the boundary, it is assumed that the fluid velocities and shear stresses are continuous across the fluid-fluid interface. Three cases for the applied pressure gradient are considered to study the problem: one with constant pressure gradient and the other two cases with time-dependent pressure gradients, viz. periodic and decaying pressure gradient. The Crank-Nicolson approach has been used to obtain numerical solutions for fluid velocity and microrotation for diverse sets of fluid parameters. The nature of fluid velocities and microrotation with various values of pressure gradient, Reynolds number, ratio of viscosities, micropolarity parameter and time is illustrated through graphs. It has been observed that micropolarity parameter and ratio of viscosities reduce the fluid velocities.

  7. Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics

    DOE PAGES

    Lundquist, J. K.; Churchfield, M. J.; Lee, S.; ...

    2015-02-23

    Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes ormore » complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s -1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s −1) and errors in the vertical velocity measurement exceed the actual vertical velocity. By three rotor diameters downwind, DBS-based assessments of wake wind speed deficits based on the stream-wise velocity can be relied on even within the near wake within 1.0 s -1 (or 15% of the hub-height inflow wind speed), and the cross-stream velocity error is reduced to 8% while vertical velocity estimates are compromised. Furthermore, measurements of inhomogeneous flow such as wind turbine wakes are susceptible to these errors, and interpretations of field observations should account for this uncertainty.« less

  8. Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Churchfield, M. J.; Lee, S.; Clifton, A.

    2015-02-01

    Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes or complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s-1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s-1) and errors in the vertical velocity measurement exceed the actual vertical velocity. By three rotor diameters downwind, DBS-based assessments of wake wind speed deficits based on the stream-wise velocity can be relied on even within the near wake within 1.0 m s-1 (or 15% of the hub-height inflow wind speed), and the cross-stream velocity error is reduced to 8% while vertical velocity estimates are compromised. Measurements of inhomogeneous flow such as wind turbine wakes are susceptible to these errors, and interpretations of field observations should account for this uncertainty.

  9. Ocular Reflex Phase During Off-Vertical Axis Rotation In Humans Is Modified By Head-On-Trunk Position

    NASA Technical Reports Server (NTRS)

    Wood, Scott; Clement, Gilles; Denise, Pierre; Reschke, Millard

    2005-01-01

    Constant velocity Off-Vertical Axis Rotation (OVAR) imposes a continuously varying orientation of the head and body relative to gravity. The ensuing ocular reflexes include modulation of both horizontal and torsional eye velocity as a function of the varying linear acceleration along the lateral plane. The purpose of this study was to examine whether the modulation of these ocular reflexes would be modified by different head-on-trunk positions. Ten human subjects were rotated in darkness about their longitudinal axis 20 deg off-vertical at constant rates of 45 and 180 deg/s, corresponding to 0.125 and 0.5 Hz. Binocular responses were obtained with video-oculography with the head and trunk aligned, and then with the head turned relative to the trunk 40 deg to the right or left of center. Sinusoidal curve fits were used to derive amplitude, phase and bias velocity of the eye movements across multiple cycles for each head-on-trunk position. Consistent with previous studies, the modulation of torsional eye movements was greater at 0.125 Hz while the modulation of horizontal eye movements was greater at 0.5 Hz. Neither amplitude nor bias velocities were significantly altered by head-on-trunk position. The phases of both torsional and horizontal ocular reflexes, on the other hand, shifted towards alignment with the head. These results are consistent with the modulation of torsional and horizontal ocular reflexes during OVAR being primarily mediated by the otoliths in response to the sinusoidally varying linear acceleration along the interaural head axis.

  10. Proper horizontal photospheric flows in a filament channel

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Roudier, T.; Mein, N.; Mein, P.; Malherbe, J. M.; Chandra, R.

    2014-04-01

    Context. An extended filament in the central part of the active region NOAA 11106 crossed the central meridian on Sept. 17, 2010 in the southern hemisphere. It has been observed in Hα with the THEMIS telescope in the Canary Islands and in 304 Å with the EUV imager (AIA) onboard the Solar Dynamic Observatory (SDO). Counterstreaming along the Hα threads and bright moving blobs (jets) along the 304 Å filament channel were observed during 10 h before the filament erupted at 17:03 UT. Aims: The aim of the paper is to understand the coupling between magnetic field and convection in filament channels and relate the horizontal photospheric motions to the activity of the filament. Methods: An analysis of the proper photospheric motions using SDO/HMI continuum images with the new version of the coherent structure tracking (CST) algorithm developed to track granules, as well as the large scale photospheric flows, was performed for three hours. Using corks, we derived the passive scalar points and produced a map of the cork distribution in the filament channel. Averaging the velocity vectors in the southern hemisphere in each latitude in steps of 3.5 arcsec, we defined a profile of the differential rotation. Results: Supergranules are clearly identified in the filament channel. Diverging flows inside the supergranules are similar in and out of the filament channel. Converging flows corresponding to the accumulation of corks are identified well around the Hα filament feet and at the edges of the EUV filament channel. At these convergence points, the horizontal photospheric velocity may reach 1 km s-1, but with a mean velocity of 0.35 km s-1. In some locations, horizontal flows crossing the channel are detected, indicating eventually large scale vorticity. Conclusions: The coupling between convection and magnetic field in the photosphere is relatively strong. The filament experienced the convection motions through its anchorage points with the photosphere, which are magnetized areas (ends, feet, lateral extensions of the EUV filament channel). From a large scale point-of-view, the differential rotation induced a shear of 0.1 km s-1 in the filament. From a small scale point-of-view, any convective motions favored the interaction of the parasitic polarities responsible for the anchorages of the filament to the photosphere with the surrounding network and may explain the activity of the filament. Two movies are available in electronic form at http://www.aanda.org

  11. Shallow subsurface structure estimated from dense aftershock records and microtremor observations in Furukawa district, Miyagi, Japan

    NASA Astrophysics Data System (ADS)

    Goto, Hiroyuki; Mitsunaga, Hitoshi; Inatani, Masayuki; Iiyama, Kahori; Hada, Koji; Ikeda, Takaaki; Takaya, Toshiyasu; Kimura, Sayaka; Akiyama, Ryohei; Sawada, Sumio; Morikawa, Hitoshi

    2017-11-01

    We conducted single-site and array observations of microtremors in order to revise the shallow subsurface structure of the Furukawa district, Miyagi, Japan, where severe residential damage was reported during the Great Eastern Japan Earthquake of 2011, off the Pacific coast of Tohoku. The phase velocities of Rayleigh waves are estimated from array observations at three sites, and S-wave velocity models are established. The spatial distribution of predominant periods is estimated for the surface layer, on the basis of the spectral ratio of horizontal and vertical components (H/V) of microtremors obtained from single-site observations. We then compared ground motion records from a dense seismometer network with results of microtremor observations, and revised a model of the shallow (~100 m) subsurface structure in the Furukawa district. The model implies that slower near-surface S-wave velocity and deeper basement are to be found in the southern and eastern areas. It was found that the damage in residential structures was concentrated in an area where the average value for the transfer functions in the frequency range of 2 to 4 Hz was large.

  12. Jet-mixing of initially-stratified liquid-liquid pipe flows: experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Wright, Stuart; Ibarra-Hernandes, Roberto; Xie, Zhihua; Markides, Christos; Matar, Omar

    2016-11-01

    Low pipeline velocities lead to stratification and so-called 'phase slip' in horizontal liquid-liquid flows due to differences in liquid densities and viscosities. Stratified flows have no suitable single point for sampling, from which average phase properties (e.g. fractions) can be established. Inline mixing, achieved by static mixers or jets in cross-flow (JICF), is often used to overcome liquid-liquid stratification by establishing unstable two-phase dispersions for sampling. Achieving dispersions in liquid-liquid pipeline flows using JICF is the subject of this experimental and modelling work. The experimental facility involves a matched refractive index liquid-liquid-solid system, featuring an ETFE test section, and experimental liquids which are silicone oil and a 51-wt% glycerol solution. The matching then allows the dispersed fluid phase fractions and velocity fields to be established through advanced optical techniques, namely PLIF (for phase) and PTV or PIV (for velocity fields). CFD codes using the volume of a fluid (VOF) method are then used to demonstrate JICF breakup and dispersion in stratified pipeline flows. A number of simple jet configurations are described and their dispersion effectiveness is compared with the experimental results. Funding from Cameron for Ph.D. studentship (SW) gratefully acknowledged.

  13. Event-scale relationships between surface velocity, temperature and chlorophyll in the coastal ocean, as seen by satellite

    NASA Technical Reports Server (NTRS)

    Strub, P. Ted

    1991-01-01

    The overall goal of this project was to increase our understanding of processes which determine the temporally varying distributions of surface chlorophyll pigment concentration and surface temperature in the California Current System (CCS) on the time-scale of 'events', i.e., several days to several weeks. We also proposed to investigate seasonal and regional differences in these events. Additionally, we proposed to evaluate methods of estimating surface velocities and horizontal transport of pigment and heat from sequences of AVHRR and CZCS images. The four specific objectives stated in the original proposal were to: (1) test surface current estimates made from sequences of both SST and color images using variations of the statistical method of Emery et al. (1986) and estimate the uncertainties in these satellite-derived surface currents; (2) characterize the spatial and temporal relationships of chlorophyll and temperature in rapidly evolving features for which adequate imagery exist and evaluate the contribution of these events to monthly and seasonal averages; (3) use the methods tested in (1) to determine the nature of the velocity fields in the CCS; and (4) compare the currents, temperature, and currents in different seasons and in different geographic regions.

  14. Rupture History of the 2001 Nisqually Washington Earthquake

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Creager, K. C.; Crosson, R. S.

    2001-12-01

    We analyze the temporal-spatial rupture history of the magnitude 6.8 February 28, 2001 Nisqually earthquake using about two dozen 3-component strong-motion records from the Pacific Northwest Seismic Network (PNSN) and the USGS National Strong Motion Program (NSMP) network. We employ a finite-fault inversion scheme similar to Hartzell and Heaton [Bull. Seism. Soc. Am., 1983] to recover the slip history. We assume rupture initiates at the epicenter and origin time determined using PNSN P arrival times and a high-resolution 3-D velocity model. Hypocentral depth is 54 km based on our analysis of teleseismic pP-P times and the regional 3-D model. Using the IASP91 standard Earth model to explain the pP-P times gives a depth of 58 km. Three-component strong motion accelerograms are integrated to obtain velocity, low-pass filtered at 4 s period and windowed to include the direct P- and S- wave arrivals. Theoretical Green's functions are calculated using the Direct Solution Method (DSM) [Cummins, etal, Geophys. Res. Lett., 1994] for each of 169, 4km x 4km, subfaults which lie on one of the two fault plates specified by the Harvard CMT solution. A unique 1-D model that gives an adequate representation of velocity structure for each station is obtained by path averaging the 3-D tomographic model. The S velocity model is generated from the P velocity model. For Vp larger than 4.5 km/s, We use the linear relationship Vs=0.18+0.52Vp obtained from laboratory measurements of local mafic rock samples. For slower velocities, probably associated with sedimentary rocks, we derived Vs=Vp/2.04 which best fits the strong-motion S-arrival times. The resulting source model indicates unilateral rupture along a fault that is elongated in the north-south direction. Inversion for the near vertical (strike 1° , dip 72° ) and horizontal (strike 183° , dip 18° ) fault planes reveal the same source directivity, however, the horizontal fault plane gives a slightly better fit to the data than the vertical one. We will also incorporate teleseismic P pP and sP waves into the waveform modeling to provide additional constraints on vertical source directivity.

  15. An examination of slo-pitch pitching trajectories.

    PubMed

    Wu, Tom; Gervais, Pierre

    2008-01-01

    Many slo-pitch coaches and players believe that generating spin on a ball can affect its trajectory. The influence of air resistance on a ball that is thrown at a moderate speed and spin is unclear. The aim of this study was to examine the influence of spin on the ball's trajectory in slo-pitch pitching using both experimental results and ball flight simulations. Fourteen pitchers participated in the study, each of whom threw five backspin and topspin pitches each. Data were collected using standard three-dimensional videography. The horizontal velocity, vertical velocity, angular velocity, release height, and horizontal displacement of the backspin pitches were significantly higher than those of the topspin pitches. The ball flight simulations were developed to examine the influence of the ball spin, and it was concluded that the spin of the ball had a significant effect on the ball's vertical and horizontal displacements. Furthermore, our results suggest that a backspin pitch that reaches the maximum height allowable and lands in the front edge of the strike zone has the steepest slope. The present results add to our understanding of projectile motion and aerodynamics.

  16. Characterization of electrophysiological propagation by multichannel sensors

    PubMed Central

    Bradshaw, L. Alan; Kim, Juliana H.; Somarajan, Suseela; Richards, William O.; Cheng, Leo K.

    2016-01-01

    Objective The propagation of electrophysiological activity measured by multichannel devices could have significant clinical implications. Gastric slow waves normally propagate along longitudinal paths that are evident in recordings of serosal potentials and transcutaneous magnetic fields. We employed a realistic model of gastric slow wave activity to simulate the transabdominal magnetogastrogram (MGG) recorded in a multichannel biomagnetometer and to determine characteristics of electrophysiological propagation from MGG measurements. Methods Using MGG simulations of slow wave sources in a realistic abdomen (both superficial and deep sources) and in a horizontally-layered volume conductor, we compared two analytic methods (Second Order Blind Identification, SOBI and Surface Current Density, SCD) that allow quantitative characterization of slow wave propagation. We also evaluated the performance of the methods with simulated experimental noise. The methods were also validated in an experimental animal model. Results Mean square errors in position estimates were within 2 cm of the correct position, and average propagation velocities within 2 mm/s of the actual velocities. SOBI propagation analysis outperformed the SCD method for dipoles in the superficial and horizontal layer models with and without additive noise. The SCD method gave better estimates for deep sources, but did not handle additive noise as well as SOBI. Conclusion SOBI-MGG and SCD-MGG were used to quantify slow wave propagation in a realistic abdomen model of gastric electrical activity. Significance These methods could be generalized to any propagating electrophysiological activity detected by multichannel sensor arrays. PMID:26595907

  17. Primate translational vestibuloocular reflexes. I. High-frequency dynamics and three-dimensional properties during lateral motion

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; McHenry, M. Q.; Hess, B. J.

    2000-01-01

    The dynamics and three-dimensional (3-D) properties of the primate translational vestibuloocular reflex (trVOR) for high-frequency (4-12 Hz, +/-0.3-0.4 g) lateral motion were investigated during near-target viewing at center and eccentric targets. Horizontal response gains increased with frequency and depended on target eccentricity. The larger the horizontal and vertical target eccentricity, the steeper the dependence of horizontal response gain on frequency. In addition to horizontal eye movements, robust torsional response components also were present at all frequencies. During center-target fixation, torsional response phase was opposite (anticompensatory) to that expected for an "apparent" tilt response. Instead torsional response components depended systematically on vertical-target eccentricity, increasing in amplitude when looking down and reversing phase when looking up. As a result the trVOR eye velocity vector systematically tilted away from a purely horizontal direction, through an angle that increased with vertical eccentricity with a slope of approximately 0.7. This systematic dependence of torsional eye velocity tilt on vertical eye position suggests that the trVOR might follow the 3-D kinematic requirements that have been shown to govern visually guided eye movements and near-target fixation.

  18. Direct and inverse energy cascades in a forced rotating turbulence experiment

    NASA Astrophysics Data System (ADS)

    Campagne, Antoine; Gallet, Basile; Moisy, Frédéric; Cortet, Pierre-Philippe

    2014-11-01

    Turbulence in a rotating frame provides a remarkable system where 2D and 3D properties may coexist, with a possible tuning between direct and inverse cascades. We present here experimental evidence for a double cascade of kinetic energy in a statistically stationary rotating turbulence experiment. Turbulence is generated by a set of vertical flaps which continuously injects velocity fluctuations towards the center of a rotating water tank. The energy transfers are evaluated from two-point third-order three-component velocity structure functions, which we measure using stereoscopic PIV in the rotating frame. Without global rotation, the energy is transferred from large to small scales, as in classical 3D turbulence. For nonzero rotation rates, the horizontal kinetic energy presents a double cascade: a direct cascade at small horizontal scales and an inverse cascade at large horizontal scales. By contrast, the vertical kinetic energy is always transferred from large to small horizontal scales, a behavior reminiscent of the dynamics of a passive scalar in 2D turbulence. At the largest rotation rate, the flow is nearly 2D and a pure inverse energy cascade is found for the horizontal energy.

  19. Borehole characterization of hydraulic properties and groundwater flow in a crystalline fractured aquifer of a headwater mountain watershed, Laramie Range, Wyoming

    NASA Astrophysics Data System (ADS)

    Ren, Shuangpo; Gragg, Samuel; Zhang, Ye; Carr, Bradley J.; Yao, Guangqing

    2018-06-01

    Fractured crystalline aquifers of mountain watersheds may host a significant portion of the world's freshwater supply. To effectively utilize water resources in these environments, it is important to understand the hydraulic properties, groundwater storage, and flow processes in crystalline aquifers and field-derived insights are critically needed. Based on borehole hydraulic characterization and monitoring data, this study inferred hydraulic properties and groundwater flow of a crystalline fractured aquifer in Laramie Range, Wyoming. At three open holes completed in a fractured granite aquifer, both slug tests and FLUTe liner profiling were performed to obtain estimates of horizontal hydraulic conductivity (Kh). Televiewer (i.e., optical and acoustic) and flowmeter logs were then jointly interpreted to identify the number of flowing fractures and fracture zones. Based on these data, hydraulic apertures were obtained for each borehole. Average groundwater velocity was then computed using Kh, aperture, and water level monitoring data. Finally, based on all available data, including cores, borehole logs, LIDAR topography, and a seismic P-wave velocity model, a three dimensional geological model of the site was built. In this fractured aquifer, (1) borehole Kh varies over ∼4 orders of magnitude (10-8-10-5 m/s). Kh is consistently higher near the top of the bedrock that is interpreted as the weathering front. Using a cutoff Kh of 10-10 m/s, the hydraulically significant zone extends to ∼40-53 m depth. (2) FLUTe-estimated hydraulic apertures of fractures vary over 1 order of magnitude, and at each borehole, the average hydraulic aperture by FLUTe is very close to that obtained from slug tests. Thus, slug test can be used to provide a reliable estimate of the average fracture hydraulic aperture. (3) Estimated average effective fracture porosity is 4.0 × 10-4, therefore this fractured aquifer can host significant quantity of water. (4) Natural groundwater velocity is estimated to range from 0.4 to 81.0 m/day, implying rapid pathways of fracture flow. (5) The average ambient water table position follows the boundary between saprolite and fractured bedrock. Groundwater flow at the site appears topography driven.

  20. Improvement of Long-Jump Performance During Competition Using a Plyometric Exercise.

    PubMed

    Bogdanis, Gregory C; Tsoukos, Athanasios; Veligekas, Panagiotis

    2017-02-01

    To examine the acute effects of a conditioning plyometric exercise on long-jump performance during a simulated long-jump competition. Eight national-level track and field decathletes performed 6 long-jump attempts with a full approach run separated by 10-min recoveries. In the experimental condition subjects performed 3 rebound vertical jumps with maximal effort 3 min before the last 5 attempts, while the 1st attempt served as baseline. In the control condition the participants performed 6 long jumps without executing the conditioning exercise. Compared with baseline, long-jump performance progressively increased only in the experimental condition, from 3.0%, or 17.5 cm, in the 3rd attempt (P = .046, d = 0.56), to 4.8%, or 28.2 cm, in the 6th attempt (P = .0001, d = 0.84). The improvement in long-jump performance was due to a gradual increase in vertical takeoff velocity from the 3rd (by 8.7%, P = .0001, d = 1.82) to the 6th jump (by 17.7%, P = .0001, d = 4.38). Horizontal-approach velocity, takeoff duration, and horizontal velocity at takeoff were similar at all long-jump attempts in both conditions (P = .80, P = .36, and P = .15, respectively). Long-jump performance progressively improved during a simulated competition when a plyometric conditioning exercise was executed 3 min before each attempt. This improvement was due to a progressive increase in vertical velocity of takeoff, while there was no effect on the horizontal velocity.

  1. Simulation of mixed convection in a horizontal channel heated from below by the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Sahraoui, Nassim M.; Houat, Samir; Saidi, Nawal

    2017-05-01

    We perform a contribution with a simulation study of the mixed convection in horizontal channel heated from below. The lattice Boltzmann method (LBM) is used with the Boussinesq approximation to solve the coupled phenomenon that governs the systems thermo-hydrodynamics. The double populations thermal lattice Boltzmann model (TLBM) is used with the D2Q5 for the thermal field and D2Q9 model for the dynamic field. A comparison of the results of the averaged Nusselt number obtained by the TLBM with other references is presented for an area stretching. The streamlines, the vortices, the isotherms, the velocity profiles and other parameters of the study, are presented at a certain time tT which is chosen arbitrarily. The results presented here are in good agreement with those reported in the scientific literature which gives us high expectations about the reliability of the TLBM to simulate this kind of physical phenomena. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  2. Comparison of current meters used for stream gaging

    USGS Publications Warehouse

    Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.

    1994-01-01

    The U.S. Geological Survey (USGS) is field and laboratory testing the performance of several current meters used throughout the world for stream gaging. Meters tested include horizontal-axis current meters from Germany, the United Kingdom, and the People's Republic of China, and vertical-axis and electromagnetic current meters from the United States. Summarized are laboratory test results for meter repeatability, linearity, and response to oblique flow angles and preliminary field testing results. All current meters tested were found to under- and over-register velocities; errors usually increased as the velocity and angle of the flow increased. Repeatability and linearity of all meters tested were good. In the field tests, horizontal-axis meters, except for the two meters from the People's Republic of China, registered higher velocity than did the vertical-axis meters.

  3. Computational and theoretical analysis of free surface flow in a thin liquid film under zero and normal gravity

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Swanson, Theodore D.

    1988-01-01

    The results of a numerical computation and theoretical analysis are presented for the flow of a thin liquid film in the presence and absence of a gravitational body force. Five different flow systems were used. Also presented are the governing equations and boundary conditions for the situation of a thin liquid emanating from a pressure vessel; traveling along a horizontal plate with a constant initial height and uniform initial velocity; and traveling radially along a horizontal disk with a constant initial height and uniform initial velocity.

  4. Turbulence model sensitivity and scour gap effect of unsteady flow around pipe: a CFD study.

    PubMed

    Ali, Abbod; Sharma, R K; Ganesan, P; Akib, Shatirah

    2014-01-01

    A numerical investigation of incompressible and transient flow around circular pipe has been carried out at different five gap phases. Flow equations such as Navier-Stokes and continuity equations have been solved using finite volume method. Unsteady horizontal velocity and kinetic energy square root profiles are plotted using different turbulence models and their sensitivity is checked against published experimental results. Flow parameters such as horizontal velocity under pipe, pressure coefficient, wall shear stress, drag coefficient, and lift coefficient are studied and presented graphically to investigate the flow behavior around an immovable pipe and scoured bed.

  5. Full nonlinear treatment of the global thermospheric wind system. Part 1: Mathematical method and analysis of forces

    NASA Technical Reports Server (NTRS)

    Blum, P. W.; Harris, I.

    1973-01-01

    The equations of horizontal motion of the neutral atmosphere between 120 and 500 km are integrated with the inclusion of all the nonlinear terms of the convective derivative and the viscous forces due to vertical and horizontal velocity gradients. Empirical models of the distribution of neutral and charged particles are assumed to be known. The model of velocities developed is a steady state model. In part 1 the mathematical method used in the integration of the Navier-Stokes equations is described and the various forces are analysed.

  6. 40 CFR 61.172 - Standard for new and existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... converter mouth, charging ladles, skimming ladles, and any other material transfer vessels used will be... and secondary hood system at all times as follows: (i) Copper converter. (A) Increase the air curtain... horizontal slot. (2) The velocity of air through the horizontal slot during each mode of converter operation...

  7. 40 CFR 61.172 - Standard for new and existing sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... converter mouth, charging ladles, skimming ladles, and any other material transfer vessels used will be... and secondary hood system at all times as follows: (i) Copper converter. (A) Increase the air curtain... horizontal slot. (2) The velocity of air through the horizontal slot during each mode of converter operation...

  8. 40 CFR 61.172 - Standard for new and existing sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... converter mouth, charging ladles, skimming ladles, and any other material transfer vessels used will be... and secondary hood system at all times as follows: (i) Copper converter. (A) Increase the air curtain... horizontal slot. (2) The velocity of air through the horizontal slot during each mode of converter operation...

  9. 40 CFR 61.172 - Standard for new and existing sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... converter mouth, charging ladles, skimming ladles, and any other material transfer vessels used will be... and secondary hood system at all times as follows: (i) Copper converter. (A) Increase the air curtain... horizontal slot. (2) The velocity of air through the horizontal slot during each mode of converter operation...

  10. A Two-Radius Circular Array Method: Extracting Independent Information on Phase Velocities of Love Waves From Microtremor Records From a Simple Seismic Array

    NASA Astrophysics Data System (ADS)

    Tada, T.; Cho, I.; Shinozaki, Y.

    2005-12-01

    We have invented a Two-Radius (TR) circular array method of microtremor exploration, an algorithm that enables to estimate phase velocities of Love waves by analyzing horizontal-component records of microtremors that are obtained with an array of seismic sensors placed around circumferences of two different radii. The data recording may be done either simultaneously around the two circles or in two separate sessions with sensors distributed around each circle. Both Rayleigh and Love waves are present in the horizontal components of microtremors, but in the data processing of our TR method, all information on the Rayleigh waves ends up cancelled out, and information on the Love waves alone are left to be analyzed. Also, unlike the popularly used frequency-wavenumber spectral (F-K) method, our TR method does not resolve individual plane-wave components arriving from different directions and analyze their "vector" phase velocities, but instead directly evaluates their "scalar" phase velocities --- phase velocities that contain no information on the arrival direction of waves --- through a mathematical procedure which involves azimuthal averaging. The latter feature leads us to expect that, with our TR method, it is possible to conduct phase velocity analysis with smaller numbers of sensors, with higher stability, and up to longer-wavelength ranges than with the F-K method. With a view to investigating the capabilities and limitations of our TR method in practical implementation to real data, we have deployed circular seismic arrays of different sizes at a test site in Japan where the underground structure is well documented through geophysical exploration. Ten seismic sensors were placed equidistantly around two circumferences, five around each circle, with varying combinations of radii ranging from several meters to several tens of meters, and simultaneous records of microtremors around circles of two different radii were analyzed with our TR method to produce estimates for the phase velocities of Love waves. The estimates were then checked against "model" phase velocities that are derived from theoretical calculations. We have also conducted a check of the estimated spectral ratios against the "model" spectral ratios, where we mean by "spectral ratio" an intermediary quantity that is calculated from observed records prior to the estimation of the phase velocity in the data analysis procedure of our TR method. In most cases, the estimated phase velocities coincided well with the model phase velocities within a wavelength range extending roughly from 3r to 6r (r: array radius). It was found out that, outside the upper and lower resolution limits of the TR method, the discrepancy between the estimated and model phase velocities, as well as the discrepancy between the estimated and model spectral ratios, were accounted for satisfactorily by theoretical consideration of three factors: the presence of higher surface-wave modes, directional aliasing effects related to the finite number of sensors in the seismic array, and the presence of incoherent noise.

  11. Accuracy Analysis of Precise Point Positioning of Compass Navigation System Applied to Crustal Motion Monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Yuebing

    2017-04-01

    Based on the observation data of Compass/GPSobserved at five stations, time span from July 1, 2014 to June 30, 2016. UsingPPP positioning model of the PANDA software developed by Wuhan University,Analyzedthe positioning accuracy of single system and Compass/GPS integrated resolving, and discussed the capability of Compass navigation system in crustal motion monitoring. The results showed that the positioning accuracy in the east-west directionof the Compass navigation system is lower than the north-south direction (the positioning accuracy de 3 times RMS), in general, the positioning accuracyin the horizontal direction is about 1 2cm and the vertical direction is about 5 6cm. The GPS positioning accuracy in the horizontal direction is better than 1cm and the vertical direction is about 1 2cm. The accuracy of Compass/GPS integrated resolving is quite to GPS. It is worth mentioning that although Compass navigation system precision point positioning accuracy is lower than GPS, two sets of velocity fields obtained by using the Nikolaidis (2002) model to analyze the Compass and GPS time series results respectively, the results showed that the maximum difference of the two sets of velocity field in horizontal directions is 1.8mm/a. The Compass navigation system can now be used to monitor the crustal movement of the large deformation area, based on the velocity field in horizontal direction.

  12. Hawkmoth flight performance in tornado-like whirlwind vortices.

    PubMed

    Ortega-Jimenez, Victor Manuel; Mittal, Rajat; Hedrick, Tyson L

    2014-06-01

    Vertical vortex systems such as tornadoes dramatically affect the flight control and stability of aircraft. However, the control implications of smaller scale vertically oriented vortex systems for small fliers such as animals or micro-air vehicles are unknown. Here we examined the flapping kinematics and body dynamics of hawkmoths performing hovering flights (controls) and maintaining position in three different whirlwind intensities with transverse horizontal velocities of 0.7, 0.9 and 1.2 m s(-1), respectively, generated in a vortex chamber. The average and standard deviation of yaw and pitch were respectively increased and reduced in comparison with hovering flights. Average roll orientation was unchanged in whirlwind flights but was more variable from wingbeat to wingbeat than in hovering. Flapping frequency remained unchanged. Wingbeat amplitude was lower and the average stroke plane angle was higher. Asymmetry was found in the angle of attack between right and left wings during both downstroke and upstroke at medium and high vortex intensities. Thus, hawkmoth flight control in tornado-like vortices is achieved by a suite of asymmetric and symmetric changes to wingbeat amplitude, stroke plane angle and principally angle of attack.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinuesa, Ricardo; Fick, Lambert; Negi, Prabal

    In the present document we describe a toolbox for the spectral-element code Nek5000, aimed at computing turbulence statistics. The toolbox is presented for a small test case, namely a square duct with L x = 2h, L y = 2h and L z = 4h, where x, y and z are the horizontal, vertical and streamwise directions, respectively. The number of elements in the xy-plane is 16 X 16 = 256, and the number of elements in z is 4, leading to a total of 1,204 spectral elements. A polynomial order of N = 5 is chosen, and the meshmore » is generated using the Nek5000 tool genbox. The toolbox presented here allows to compute mean-velocity components, the Reynolds-stress tensor as well as turbulent kinetic energy (TKE) and Reynolds-stress budgets. Note that the present toolbox allows to compute turbulence statistics in turbulent flows with one homogeneous direction (where the statistics are based on time-averaging as well as averaging in the homogeneous direction), as well as in fully three-dimensional flows (with no periodic directions, where only time-averaging is considered).« less

  14. Plate Motion and Crustal Deformation Estimated with Geodetic Data from the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Argus, Donald F.; Heflin, Michael B.

    1995-01-01

    We use geodetic data taken over four years with the Global Positioning System (GPS) to estimate: (1) motion between six major plates and (2) motion relative to these plates of ten sites in plate boundary zones. The degree of consistency between geodetic velocities and rigid plates requires the (one-dimensional) standard errors in horizontal velocities to be approx. 2 mm/yr. Each of the 15 angular velocities describing motion between plate pairs that we estimate with GPS differs insignificantly from the corresponding angular velocity in global plate motion model NUVEL-1A, which averages motion over the past 3 m.y. The motion of the Pacific plate relative to both the Eurasian and North American plates is observed to be faster than predicted by NUVEL-1A, supporting the inference from Very Long B ase- line Interferometry (VLBI) that motion of the Pacific plate has speed up over the past few m.y. The Eurasia-North America pole of rotation is estimated to be north of NUVEL-1A, consistent with the independent hypothesis that the pole has recently migrated northward across northeast Asia to near the Lena River delta. Victoria, which lies above the main thrust at the Cascadia subduction zone, moves relative to the interior of the overriding plate at 30% of the velocity of the subducting plate, reinforcing the conclusion that the thrust there is locked beneath the continental shelf and slope.

  15. Impact of Glacial Isostatic Adjustment on North America Plate Specific Terrestrial Reference Frame

    NASA Astrophysics Data System (ADS)

    Herring, Thomas; Melbourne, Tim; Murray, Mark; Floyd, Mike; Szeliga, Walter; King, Robert; Phillips, David; Puskas, Christine

    2017-04-01

    We examine the impact of incorporating glacial isostatic adjustment (GIA) models in determining the Euler poles for plate specific terrestrial reference frames. We will specifically examine the impact of GIA models on the realization of a North America Reference frame. We use a combination of the velocity fields determined by the Geodesy Advancing Geosciences and EarthScope (GAGE) Facility which analyzes GPS data from the Plate Boundary Observatory (PBO) and other geodetic quality GPS sites in North America, and from the ITRF2014 re-analysis. Initial analysis of the GAGE velocity field shows reduced root-mean-square (RMS) scatter of velocity estimate residuals when the North America Euler pole is estimated including the ICE-6G GIA mode. The reduction in the north-south direction is from 0.69 mm/yr to 0.52 mm/yr, in the east-west direction from 0.34 mm/yr to 0.30 mm/yr and in height from 0.93 mm/yr to 0.72 mm/yr. The reduction in the height RMS is not surprising since the contemporary geodetic height velocity estimates are used in the developing the ICE-6G model. Contemporary horizontal motions are not used the GIA model development, and the reduction in horizontal RMS provides a partial validation of the model. There is no reduction in the horizontal velocity residual when the ICE-5G model is used. Although removing the ICE-6G model before fitting an Euler pole for the North American plate reduces the RMS of the residuals, the pattern of residuals is still systematic suggesting possibly that a spherically symmetric viscosity model might not be adequate for accurate modeling of the horizontal motions associated with GIA in North America. This presentation in focus on the prospects and impacts of incorporating GIA models in plate-specific Euler poles with emphasis on North America.

  16. Strong ground motion in the Kathmandu Valley during the 2015 Gorkha, Nepal, earthquake

    NASA Astrophysics Data System (ADS)

    Takai, Nobuo; Shigefuji, Michiko; Rajaure, Sudhir; Bijukchhen, Subeg; Ichiyanagi, Masayoshi; Dhital, Megh Raj; Sasatani, Tsutomu

    2016-01-01

    On 25 April 2015, a large earthquake of Mw 7.8 occurred along the Main Himalayan Thrust fault in central Nepal. It was caused by a collision of the Indian Plate beneath the Eurasian Plate. The epicenter was near the Gorkha region, 80 km northwest of Kathmandu, and the rupture propagated toward east from the epicentral region passing through the sediment-filled Kathmandu Valley. This event resulted in over 8000 fatalities, mostly in Kathmandu and the adjacent districts. We succeeded in observing strong ground motions at our four observation sites (one rock site and three sedimentary sites) in the Kathmandu Valley during this devastating earthquake. While the observed peak ground acceleration values were smaller than the predicted ones that were derived from the use of a ground motion prediction equation, the observed peak ground velocity values were slightly larger than the predicted ones. The ground velocities observed at the rock site (KTP) showed a simple velocity pulse, resulting in monotonic-step displacements associated with the permanent tectonic offset. The vertical ground velocities observed at the sedimentary sites had the same pulse motions that were observed at the rock site. In contrast, the horizontal ground velocities as well as accelerations observed at three sedimentary sites showed long duration with conspicuous long-period oscillations, due to the valley response. The horizontal valley response was characterized by large amplification (about 10) and prolonged oscillations. However, the predominant period and envelope shape of their oscillations differed from site to site, indicating a complicated basin structure. Finally, on the basis of the velocity response spectra, we show that the horizontal long-period oscillations on the sedimentary sites had enough destructive power to damage high-rise buildings with natural periods of 3 to 5 s.

  17. Mantle plumes and associated flow beneath Arabia and East Africa

    NASA Astrophysics Data System (ADS)

    Chang, Sung-Joon; Van der Lee, Suzan

    2011-02-01

    We investigate mantle plumes and associated flow beneath the lithosphere by imaging the three-dimensional S-velocity structure beneath Arabia and East Africa. This image shows elongated vertical and horizontal low-velocity anomalies down to at least mid mantle depths. This three-dimensional S-velocity model is obtained through the joint inversion of teleseismic S- and SKS-arrival times, regional S- and Rayleigh waveform fits, fundamental-mode Rayleigh-wave group velocities, and independent Moho constraints from receiver functions, reflection/refraction profiles, and gravity measurements. In the resolved parts of our S-velocity model we find that the Afar plume is distinctly separate from the Kenya plume, showing the Afar plume's origin in the lower mantle beneath southwestern Arabia. We identify another quasi-vertical low-velocity anomaly beneath Jordan and northern Arabia which extends into the lower mantle and may be related to volcanism in Jordan, northern Arabia, and possibly southern Turkey. Comparing locations of mantle plumes from the joint inversion with fast axes of shear-wave splitting, we confirm horizontal mantle flow radially away from Afar. Low-velocity channels in our model support southwestward flow beneath Ethiopia, eastward flow beneath the Gulf of Aden, but not northwestwards beneath the entire Red Sea. Instead, northward mantle flow from Afar appears to be channeled beneath Arabia.

  18. Identification of temporal pathomechanical factors during the tennis serve.

    PubMed

    Martin, Caroline; Kulpa, Richard; Ropars, Mickaël; Delamarche, Paul; Bideau, Benoit

    2013-11-01

    The purpose of this study was twofold: (a) to measure the effects of temporal parameters on both ball velocity and upper limb joint kinetics to identify pathomechanical factors during the tennis serve and (b) to validate these pathomechanical factors by comparing injured and noninjured players. The serves of expert tennis players were recorded with an optoelectronic motion capture system. These experts were then followed during two seasons to identify overuse injuries of the upper limb. Correlation coefficients assessed the relationships between temporal parameters, ball velocity, and peaks of upper limb joint kinetics to identify pathomechanical factors. Temporal parameters and ball velocity were compared between injured and noninjured groups. Temporal pathomechanical factors were identified. The timings of peak angular velocities of pelvis longitudinal rotation, upper torso longitudinal rotation, trunk sagittal rotation, and trunk transverse rotation and the duration between instants of shoulder horizontal adduction and external rotation were significantly related to upper limb joint kinetics and ball velocity. Injured players demonstrated later timings of trunk rotations, improper differences in time between instants of shoulder horizontal adduction and external rotation, lower ball velocities, and higher joint kinetics. The findings of this study imply that improper temporal mechanics during the tennis serve can decrease ball velocity, increase upper limb joint kinetics, and thus possibly increase overuse injuries of the upper limb.

  19. Magma replenishment and volcanic unrest inferred from the analysis of VT micro-seismicity and seismic velocity changes at Piton de la Fournaise Volcano

    NASA Astrophysics Data System (ADS)

    Brenguier, F.; Rivemale, E.; Clarke, D. S.; Schmid, A.; Got, J.; Battaglia, J.; Taisne, B.; Staudacher, T.; Peltier, A.; Shapiro, N. M.; Tait, S.; Ferrazzini, V.; Di Muro, A.

    2011-12-01

    Piton de la Fournaise volcano (PdF) is among the most active basaltic volcanoes worldwide with more than one eruption per year on average. Also, PdF is densely instrumented with short-period and broad-band seismometers as well as with GPS receivers. Continuous seismic waveforms are available from 1999. Piton de la Fournaise volcano has a moderate inter-eruptive seismic activity with an average of five detected Volcano-Tectonic (VT) earthquakes per day with magnitudes ranging from 0.5 to 3.5. These earthquakes are shallow and located about 2.5 kilometers beneath the edifice surface. Volcanic unrest is captured on average a few weeks before eruptions by measurements of increased VT seismicity rate, inflation of the edifice summit, and decreased seismic velocities from correlations of seismic noise. Eruptions are usually preceded by seismic swarms of VT earthquakes. Recently, almost 50 % of seismic swarms were not followed by eruptions. Within this work, we aim to gather results from different groups of the UnderVolc research project in order to better understand the processes of deep magma transfer, volcanic unrest, and pre-eruptive magma transport initiation. Among our results, we show that the period 1999-2003 was characterized by a long-term increase of VT seismicity rate coupled with a long-term decrease of seismic velocities. These observations could indicate a long-term replenishment of the magma storage area. The relocation of ten years of inter-eruptive micro-seismicity shows a narrow (~300 m long) sub-vertical fault zone thus indicating a conduit rather than an extended magma reservoir as the shallow magma feeder system. Also, we focus on the processes of short-term volcanic unrest and prove that magma intrusions within the edifice leading to eruptions activate specific VT earthquakes that are distinct from magma intrusions that do not lead to eruptions. We thus propose that, among the different pathways of magma transport within the edifice, only one will allow magma to reach the edifice summit. Moreover, we have identified transient seismic velocity changes lasting a few weeks that could be associated with unreported lateral magma intrusions not leading to eruptions. The clustering of pre-eruptive micro-seismicity between mid 1999-2003 shows that seismic events repeat over successive seismic swarms and suggests that the magma pathway is spatially separated from the seismic faults. Also, the inversion for focal mechanisms shows dominant sub-horizontal P-axes indicating that part of the pre-eruptive micro-seismicity is due to the horizontal compressive stress induced by magma injection. Finally, the analysis of long-term GPS data recorded on the edifice flank shows a constant lateral displacement rate of 3.5 cm/year. More work will be needed in order to infer the possible mutual interactions between magma unrest and transport and the large-scale deformation of the edifice flank.

  20. Relationship of biomechanical factors to baseball pitching velocity: within pitcher variation.

    PubMed

    Stodden, David F; Fleisig, Glenn S; McLean, Scott P; Andrews, James R

    2005-02-01

    To reach the level of elite, most baseball pitchers need to consistently produce high ball velocity but avoid high joint loads at the shoulder and elbow that may lead to injury. This study examined the relationship between fastball velocity and variations in throwing mechanics within 19 baseball pitchers who were analyzed via 3-D high-speed motion analysis. Inclusion in the study required each one to demonstrate a variation in velocity of at least 1.8 m/s (range 1.8-3.5 m/s) during 6 to 10 fastball pitch trials. Three mixed model analyses were performed to assess the independent effects of 7 kinetic, 11 temporal, and 12 kinematic parameters on pitched ball velocity. Results indicated that elbow flexion torque, shoulder proximal force, and elbow proximal force were the only three kinetic parameters significantly associated with increased ball velocity. Two temporal parameters (increased time to max shoulder horizontal adduction and decreased time to max shoulder internal rotation) and three kinematic parameters (decreased shoulder horizontal adduction at foot contact, decreased shoulder abduction during acceleration, and increased trunk tilt forward at release) were significantly related to increased ball velocity. These results point to variations in an individual's throwing mechanics that relate to pitched ball velocity, and also suggest that pitchers should focus on consistent mechanics to produce consistently high fastball velocities. In addition, pitchers should strengthen shoulder and elbow musculature that resist distraction as well as improve trunk strength and flexibility to maximize pitching velocity and help prevent injury.

  1. Regional modelling of groundwater flow and salt and environmental tracer transport in deep aquifers in the Paris Basin

    NASA Astrophysics Data System (ADS)

    Wei, Huai Fu; Ledoux, Emmanuel; De Marsily, Ghislain

    1990-12-01

    A hydrodynamic model which takes into account the aquitard storage effect was developed for the deep multilayered system including the Dogger aquifer and its surroundings in the Paris Basin. It provides a good explanation for a series of observations in the Dogger concerning, for instance, the hydraulic head, the salinity and the transmissivity. The calibration of the model also makes it possible to estimate some unmeasured parameters such as the aquifer and aquitard storage coefficients. Finally, the results of simulations of the transport of 4He and 14C strengthen the representativeness of the model. The Darcy average horizontal velocity in the Dogger, obtained with the model, is of the order of 0.33m year -1.

  2. Reproducing the Photospheric Magnetic Field Evolution during the Rise of Cycle 24 with Flux Transport by Supergranules

    NASA Technical Reports Server (NTRS)

    Hathaway, David; Upton, Lisa

    2012-01-01

    We simulate the transport of magnetic flux in the Sun s photosphere by an evolving pattern of cellular horizontal flows (supergranules). Characteristics of the simulated flow pattern can match observed characteristics including the velocity power spectrum, cell lifetimes, and cell motions in longitude and latitude. Simulations using an average, and north-south symmetric, meridional motion of the cellular pattern produce polar magnetic fields that are too weak in the North and too strong in the South. Simulations using cellular patterns with meridional motions that evolve with the observed changes in strength and north-south asymmetry will be analyzed to see if they reproduce the polar field evolution observed during the rise of Cycle 24.

  3. Reproducing the Photospheric Magnetic Field Evolution During the Rise of Cycle 24 with Flux Transport by Supergranules

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Upton, Lisa

    2012-01-01

    We simulate the transport of magnetic flux in the Sun s photosphere by an evolving pattern of cellular horizontal flows (supergranules). Characteristics of the simulated flow pattern match observed characteristics including the velocity power spectrum, cell lifetimes, and cell pattern motion in longitude and latitude. Simulations using an average, and north-south symmetric, meridional motion of the cellular pattern produce polar magnetic fields that are too weak in the North and too strong in the South. Simulations using cellular patterns with meridional motions that evolve with the observed changes in strength and north-south asymmetry will be analyzed to see if they reproduce the polar field evolution observed during the rise of Cycle 24.

  4. Horizontal wells up odds for profit in Giddings Austin chalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloy, W.T.

    1992-02-17

    This paper reports on horizontal drilling in the Giddings field Austin chalk which has significantly improved average well recoveries and more than offset increased drilling costs. Although not the panacea originally promoted, horizontal drilling, in Giddings field, offers economic profits to the average investor. Economic analysis indicates that the typical investor is making money by earning returns in excess of market values. Field-wide development will, therefore, remain active unless oil prices or average well recoveries fall below $12/bbl or 112,000 bbl of oil equivalent (BOE), respectively. The application of technological innovation in the Giddings field may culminate in the drillingmore » of over 2,000 horizontal Austin chalk wells, and has conceivably increased recoverable reserves by 400 million BOE.« less

  5. Test Report for MSFC Test No. 83-2: Pressure scaled water impact test of a 12.5 inch diameter model of the Space Shuttle solid rocket booster filament wound case and external TVC PCD

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Water impact tests using a 12.5 inch diameter model representing a 8.56 percent scale of the Space Shuttle Solid Rocket Booster configuration were conducted. The two primary objectives of this SRB scale model water impact test program were: 1. Obtain cavity collapse applied pressure distributions for the 8.56 percent rigid body scale model FWC pressure magnitudes as a function of full-scale initial impact conditions at vertical velocities from 65 to 85 ft/sec, horizontal velocities from 0 to 45 ft/sec, and angles from -10 to +10 degrees. 2. Obtain rigid body applied pressures on the TVC pod and aft skirt internal stiffener rings at initial impact and cavity collapse loading events. In addition, nozzle loads were measured. Full scale vertical velocities of 65 to 85 ft/sec, horizontal velocities of 0 to 45 ft/sec, and impact angles from -10 to +10 degrees simulated.

  6. The role of vertical shear on the horizontal oceanic dispersion

    NASA Astrophysics Data System (ADS)

    Lanotte, A. S.; Corrado, R.; Lacorata, G.; Palatella, L.; Pizzigalli, C.; Schipa, I.; Santoleri, R.

    2015-09-01

    The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of South Mediterranean is investigated by means of observative and model data. In-situ current measurements reveal that vertical velocity gradients in the upper mixed layer decorrelate quite fast (∼ 1 day), whereas basin-scale ocean circulation models tend to overestimate such decorrelation time because of finite resolution effects. Horizontal dispersion simulated by an eddy-permitting ocean model, like, e.g., the Mediterranean Forecasting System, is mosty affected by: (1) unresolved scale motions, and mesoscale motions that are largely smoothed out; (2) poorly resolved time variability of vertical velocity profiles in the upper layer. For the case study we have analysed, we show that a suitable use of kinematic parameterisations is helpful to implement realistic statistical features of tracer dispersion in two and three dimensions. The approach here suggested provides a functional tool to control the horizontal spreading of small organisms or substance concentrations, and is thus relevant for marine biology, pollutant dispersion as well as oil spill applications.

  7. Visualization investigation on flowing condensation in horizontal small channels with liquid separator

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Jia, Li; Dang, Chao; Peng, Qi

    2018-02-01

    A simultaneous visualization and measurement experiment was carried out to investigate condensation flow patterns and condensing heat transfer characteristics of refrigerant R141b in parallel horizontal multi-channels with liquid-vapor separator. The hydraulic diameter of each channel was 1.5 mm and the channel length was 100 mm. The refrigerant vapor flowing in the small channels was cooled by cooling water. The parallel horizontal multi- channels were covered with a transparent silica glass for visualization of flow patterns. Experiments were performed at different inlet superheat temperatures (ranging from 3°C to 7°C). Mass velocity was in the range of 82.37 kg m-2s-1 to 35.56 kg m-2s-1. It was found that there were three different flow patterns through the multi- channels with the increase of mass velocity. The flow patterns in each channel pass almost tended to be same and all of them were annular flows. The efficiency of the liquid-vapor separator with U-type was related to vapor mass velocity and the pressure in the small channels. It was also found that the heat transfer coefficient increased with the increase of the mass velocity while the cooling water mass flow rate increased. It increased to a top point and then decreased. It increased with the increase of superheat in the low superheat temperature region.

  8. Granular flow through an aperture: influence of the packing fraction.

    PubMed

    Aguirre, M A; De Schant, R; Géminard, J-C

    2014-07-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g., silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains at the outlet. We can also expect the flow rate to depend on the local density of the grains. Indeed, vertical systems are packed in dense configurations by gravity, but, in contrast, in horizontal systems the density can take a large range of values, potentially very small, which may significantly alter the flow rate. In the present article, we study, for different initial packing fractions, the discharge through an orifice of monodisperse grains driven at constant velocity by a horizontal conveyor belt. We report how, during the discharge, the packing fraction is modified by the presence of the outlet, and we analyze how changes in the packing fraction induce variations in the flow rate. We observe that variations of packing fraction do not affect the velocity of the grains at the outlet, and, therefore, we establish that flow-rate variations are directly related to changes in the packing fraction.

  9. Granular flow through an aperture: Influence of the packing fraction

    NASA Astrophysics Data System (ADS)

    Aguirre, M. A.; De Schant, R.; Géminard, J.-C.

    2014-07-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g., silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains at the outlet. We can also expect the flow rate to depend on the local density of the grains. Indeed, vertical systems are packed in dense configurations by gravity, but, in contrast, in horizontal systems the density can take a large range of values, potentially very small, which may significantly alter the flow rate. In the present article, we study, for different initial packing fractions, the discharge through an orifice of monodisperse grains driven at constant velocity by a horizontal conveyor belt. We report how, during the discharge, the packing fraction is modified by the presence of the outlet, and we analyze how changes in the packing fraction induce variations in the flow rate. We observe that variations of packing fraction do not affect the velocity of the grains at the outlet, and, therefore, we establish that flow-rate variations are directly related to changes in the packing fraction.

  10. Nonlinear Dynamics of Turbulent Thermals in Shear Flow

    NASA Astrophysics Data System (ADS)

    Ingel, L. Kh.

    2018-03-01

    The nonlinear integral model of a turbulent thermal is extended to the case of the horizontal component of its motion relative to the medium (e.g., thermal floating-up in shear flow). In contrast to traditional models, the possibility of a heat source in the thermal is taken into account. For a piecewise constant vertical profile of the horizontal velocity of the medium and a constant vertical velocity shear, analytical solutions are obtained which describe different modes of dynamics of thermals. The nonlinear interaction between the horizontal and vertical components of thermal motion is studied because each of the components influences the rate of entrainment of the surrounding medium, i.e., the growth rate of the thermal size and, hence, its mobility. It is shown that the enhancement of the entrainment of the medium due to the interaction between the thermal and the cross flow can lead to a significant decrease in the mobility of the thermal.

  11. Influence of gravity on the spatial orientation of eye nystagmus induced by unilateral lesion of horizontal semicircular canal.

    PubMed

    Pettorossi, V E; Ermanno, M; Pierangelo, E; Silvarosa, G

    2000-03-01

    The influence of gravity in the orientation and slow phase eye velocity of the ocular nystagmus following unilateral damage of the cupula in the ampulla of the horizontal semicircular canal (UHCD) was investigated. The nystagmus was analysed at different sagittal head positions using the x-y infrared eye monitor technique. The nystagmus was almost horizontal at 0 degrees head pitch angle and remained partially fixed in space when the head was pitched upward or downward. The reorientation gain of the slow and quick phases was high (about 0.75) within +/- 45 degrees of head pitch angle, but beyond this range, it decreased greatly. The gain value depended on the lesion extension to otolithic receptors. The absolute value of the slow phase eye velocity of UHCD nystagmus was also modified systematically by the head pitch, showing a reduction in the upward and an increase in the downward.

  12. Criteria for approximating certain microgravity flow boiling characteristics in Earth gravity.

    PubMed

    Merte, Herman; Park, Jaeseok; Shultz, William W; Keller, Robert B

    2002-10-01

    The forces governing flow boiling, aside from system pressure, are buoyancy, liquid momentum, interfacial surface tensions, and liquid viscosity. Guidance for approximating certain aspects of the flow boiling process in microgravity can be obtained in Earth gravity research by the imposition of a liquid velocity parallel to a flat heater surface in the inverted position, horizontal, or nearly horizontal, by having buoyancy hold the heated liquid and vapor formed close to the heater surface. Bounds on the velocities of interest are obtained from several dimensionless numbers: a two-phase Richardson number, a two-phase Weber number, and a Bond number. For the fluid used in the experimental work here, liquid velocities in the range U = 5-10cm/sec are judged to be critical for changes in behavior of the flow boiling process. Experimental results are presented for flow boiling heat transfer, concentrating on orientations that provide the largest reductions in buoyancy parallel to the heater surface, varying +/-5 degrees from facing horizontal downward. Results are presented for velocity, orientation, and subcooling effects on nucleation, dryout, and heat transfer. Two different heater surfaces were used: a thin gold film on a polished quartz substrate, acting as a heater and resistance thermometer, and a gold-plated copper heater. Both transient and steady measurements of surface heat flux and superheat were made with the quartz heater; only steady measurements were possible with the copper heater. R-113 was the fluid used; the velocity varied over the interval 4-16cm/sec; bulk liquid subcooling varied over 2-20 degrees C; heat flux varied over 4-8W/cm(2).

  13. Turbulence Model Sensitivity and Scour Gap Effect of Unsteady Flow around Pipe: A CFD Study

    PubMed Central

    Ali, Abbod; Sharma, R. K.; Ganesan, P.

    2014-01-01

    A numerical investigation of incompressible and transient flow around circular pipe has been carried out at different five gap phases. Flow equations such as Navier-Stokes and continuity equations have been solved using finite volume method. Unsteady horizontal velocity and kinetic energy square root profiles are plotted using different turbulence models and their sensitivity is checked against published experimental results. Flow parameters such as horizontal velocity under pipe, pressure coefficient, wall shear stress, drag coefficient, and lift coefficient are studied and presented graphically to investigate the flow behavior around an immovable pipe and scoured bed. PMID:25136666

  14. Sequential resuspension of biofilm components (viruses, prokaryotes and protists) as measured by erodimetry experiments in the Brouage mudflat (French Atlantic coast)

    NASA Astrophysics Data System (ADS)

    Dupuy, Christine; Mallet, Clarisse; Guizien, Katell; Montanié, Hélène; Bréret, Martine; Mornet, Françoise; Fontaine, Camille; Nérot, Caroline; Orvain, Francis

    2014-09-01

    Resuspension thresholds in terms of friction velocity were experimentally quantified for the prokaryotes, protists and for the first time, viruses of intertidal mudflat biofilms. Differences in resuspension thresholds could be related to the type, behaviour and size of microorganisms and their association with particles. Free microorganisms (viruses, bacteria and some nanoflagellates) were resuspended by weak flow at friction velocities lower than 2 cm s- 1. Chlorophyll a, some nanoflagellates and attached bacteria were resuspended together with the bed's muddy sediment, which required friction velocities larger than 3 cm s- 1. Diatoms smaller than 60 μm were resuspended at velocities between 3 and 5 cm s- 1, while those larger than 60 μm were resuspended at higher friction velocities (5.5 to 6.5 cm s- 1). The thresholds of resuspension also depended on the micro-scale position of microorganisms in the sediment (horizontal and vertical distributions). In the field, the vertical distribution of chlorophyll a (a proxy of microphytobenthos) was skewed, with a maximum in the first 2 mm of sediment. Along the neap-spring tidal cycle, chlorophyll a revealed an increase in MPB biomass in the first 2 mm of the sediment, in relation to light increases with exposure durations. The horizontal distribution of chlorophyll a could be inferred from erosion experiments. During the initial phase of biofilm growth, the distribution of chlorophyll a seemed horizontally homogeneous, and was uniformly eroded at the beginning of the increase in chlorophyll a. From these results, we can make a hypothesis: in the subsequent phase of biofilm growth until the maximum of emersion duration, the eroded quantity of chlorophyll a was larger than expected based from chlorophyll a vertical distribution, suggesting that biofilm horizontal distribution became patchy and enriched chlorophyll a was preferentially eroded. When emersion duration and biofilm growth decreased, the trend was reversed, and eroded quantity of chlorophyll a was lower than expected from chlorophyll a vertical distribution, suggesting that areas with low chlorophyll a were preferentially eroded. Such erosion patterns when biofilm growth decreased probably resulted from the bulldozing activity of a surficial sediment bioturbator, the gastropod Peringia ulvae. Our study did not directly prove this horizontal distribution but it should be further discussed. This distribution needs to be studied to acquire real evidence of patchy distributions.

  15. Ice Velocity Mapping of Ross Ice Shelf, Antarctica by Matching Surface Undulations Measured by Icesat Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Lee, Choon-Ki; Han, Shin-Chan; Yu, Jaehyung; Scambos, Ted A.; Seo, Ki-Weon

    2012-01-01

    We present a novel method for estimating the surface horizontal velocity on ice shelves using laser altimetrydata from the Ice Cloud and land Elevation Satellite (ICESat; 20032009). The method matches undulations measured at crossover points between successive campaigns.

  16. Compensating for Electro-Osmosis in Electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.

    1987-01-01

    Simple mechanical adjustment eliminates transverse velocity component. New apparatus for moving-wall electrophoresis increases degree of collimation of chemical species in sample stream. Electrophoresis chamber set at slight angle in horizontal plane to adjust angle between solution flow and wall motion. Component of velocity created cancels electro-osmotic effect.

  17. Experiment K-7-31: Studies of Vestibular Primary Afferents and Eye Movements in Normal, Hypergravity and Hypogravity - Axon Cosmos Flight 2044

    NASA Technical Reports Server (NTRS)

    Correia, M. J.; Perachio, A. A.; Dickman, J. D.; Kozlovskaya, I.; Sirota, M.; Yakushin, S.; Beloozerova, I. N.

    1994-01-01

    Fourteen days of active head movements in microgravity appear to modify the gain and neural adaptation properties of the horizontal semicircular canals in the rhesus monkey. This is the first demonstration of adaptive plasticity in the sensory receptor. Reversing prisms, for example, do not modify the gain of the primary afferent response. Pulse yaw rotation, sinusoidal rotation, and sum of sinusoidal rotation testing during the first day following recovery revealed that the gain of a sample of afferents was significantly greater than the gain derived from afferent responses obtained during pre-flight and control monkey testing. There was no strong evidence of tilt sensitivity in the sample of afferents that we tested either during the pre-flight or control tests or during the first day post-flight. Two irregular afferents tested on postflight day 2 showed changes with tilt but the responses were not systematic. The spontaneous discharge did not change following flight. Mean firing rate and coefficient of variation remained constant during the post flight tests and was near the value measured during pre flight tests. The change in gain of horizontal canal afferents might be adaptive. The animals were required to look at a target for food. This required active head and eye movements. Active head movements have been shown to be hypometric and eye movements have been shown to be hypermetric during the first few days of past Cosmos flights (see introduction). It might be that the increased gain in the horizontal semicircular canals permit accurate target acquisition during hypometric head movements by driving the eyes to greater angles for smaller angles of head movement. The mechanism by which the semicircular canals recalibrate (increase their gain) is unknown. The efferent vestibular system is a logical candidate. Horizontal nystagmus during rotation about an earth vertical axis with the horizontal semicircular canals in the plane of rotation produced the same response during postflight day 1 and post-flight day 9. But when the head was pitched down 45? the nystagmus slow phase velocity was greater and the duration was about twice during post-flight day 1. Apparently, this response involving the interaction of the horizontal and vertical semicircular canals and the otoliths did not recalibrate during post-flight day 1. The 'DC' bias of the slow phase velocity of the horizontal nystagmus during constant velocity horizontal axis rotation was roughly 4 times for one flight monkey and roughly 2 times for the other on post-flight day 1 compared to post-flight day 9. These results suggest that the otolith mediated response during constant velocity rotation also did not recalibrate on post-flight day 1.

  18. Direct and inverse energy cascades in a forced rotating turbulence experiment

    NASA Astrophysics Data System (ADS)

    Campagne, Antoine; Gallet, Basile; Moisy, Frédéric; Cortet, Pierre-Philippe

    2014-12-01

    We present experimental evidence for a double cascade of kinetic energy in a statistically stationary rotating turbulence experiment. Turbulence is generated by a set of vertical flaps, which continuously injects velocity fluctuations towards the center of a rotating water tank. The energy transfers are evaluated from two-point third-order three-component velocity structure functions, which we measure using stereoscopic particle image velocimetry in the rotating frame. Without global rotation, the energy is transferred from large to small scales, as in classical three-dimensional turbulence. For nonzero rotation rates, the horizontal kinetic energy presents a double cascade: a direct cascade at small horizontal scales and an inverse cascade at large horizontal scales. By contrast, the vertical kinetic energy is always transferred from large to small horizontal scales, a behavior reminiscent of the dynamics of a passive scalar in two-dimensional turbulence. At the largest rotation rate, the flow is nearly two-dimensional, and a pure inverse energy cascade is found for the horizontal energy. To describe the scale-by-scale energy budget, we consider a generalization of the Kármán-Howarth-Monin equation to inhomogeneous turbulent flows, in which the energy input is explicitly described as the advection of turbulent energy from the flaps through the surface of the control volume where the measurements are performed.

  19. Vertical Motion Characteristics of Tropical Cyclones Determined with Airborne Doppler Radial Velocities.

    NASA Astrophysics Data System (ADS)

    Black, Micheal L.; Burpee, Robert W.; Marks, Frank D., Jr.

    1996-07-01

    Vertical motions in seven Atlantic hurricanes are determined from data recorded by Doppler radars on research aircraft. The database consists of Doppler velocities and reflectivities from vertically pointing radar rays collected along radial flight legs through the hurricane centers. The vertical motions are estimated throughout the depth of the troposphere from the Doppler velocities and bulk estimates of particle fallspeeds.Portions of the flight tracks are subjectively divided into eyewall, rainband, stratiform, and `other' regions. Characteristics of the vertical velocity and radar structure are described as a function of altitude for the entire dataset and each of the four regions. In all of the regions, more than 70% of the vertical velocities range from 2 to 2 m s1. The broadest distribution of vertical motion is in the eyewall region where 5% of the vertical motions are >5 m s1. Averaged over the entire dataset, the mean vertical velocity is upward at all altitudes. Mean downward motion occurs only in the lower troposphere of the stratiform region. Significant vertical variations in the mean profiles of vertical velocity and reflectivity are discussed and related to microphysical processes.In the lower and middle troposphere, the characteristics of the Doppler-derived vertical motions are similar to those described in an earlier study using flight-level vertical velocities, even though the horizontal resolution of the Doppler data is 750 m compared to 125 m from the in situ flight-level measurements. The Doppler data are available at higher altitudes than those reached by turboprop aircraft and provide information on vertical as well as horizontal variations. In a vertical plane along the radial flight tracks, Doppler up- and downdrafts are defined at each 300-m altitude interval as vertical velocities whose absolute values continuously exceed 1.5 m s1, with at least one speed having an absolute value greater than 3.0 m s1. The properties of the Doppler drafts are lognormally distributed. In each of the regions, updrafts outnumber downdrafts by at least a factor of 2 and updrafts are wider and stronger than downdrafts. Updrafts in the eyewall slope radially outward with height and are significantly correlated over larger radial and vertical extents than in the other three regions. If the downwind (tangential) slope with height of updrafts varies little among the regions, updrafts capable of transporting air with relatively large moist static energy from the boundary layer to the upper troposphere are primarily in the eyewall region. Downdrafts affect a smaller vertical and horizontal area than updrafts and have no apparent radial slope.The total upward or downward mass flux is defined as the flux produced by all of the upward or downward Doppler vertical velocities. The maximum upward mass flux in all but the `other' region is near 1-km altitude, an indication that boundary-layer convergence is efficient in producing upward motion. Above the sea surface, the downward mass flux decreases with altitude. At every altitude, the total net mass flux is upward, except for the lower troposphere in the stratiform region where it is downward. Doppler-derived up- and downdrafts are a subset of the vertical velocity field that occupy small fractions of the total area, yet they contribute a substantial fraction to the total mass flux. In the eyewall and rainband regions, for example, the Doppler updrafts cover less than 30% of the area but are responsible for >75% and >50% to the total upward mass flux, respectively. The Doppler downdrafts typically encompass less than 10% of the area yet provide 50% of the total downward mass flux in the eyewall and 20% of the total downward flux in the rainband, stratiform, and `other' regions.

  20. The Effects of a Geomagnetic Storm on Thermospheric Circulation.

    DTIC Science & Technology

    1987-01-01

    frequency. .*. p air density. olU 2 Pedersen and Hall conductivities. a P height intergrated Pedersen conductivity. horizontal viscous stress. * east...equations need to be ex- ,n~panded upon. The energy density is: (.2 1 + V2). I~i~iCPT +<V 2 . The horizontal viscous stress, including molecular and...with Z=0 at 80 km and Z=14.4 at 450 km for a total of 49 levels each 0.3 of a scale height apart. Also, the horizontal wind velocity, gas energy

  1. 3-component time-dependent crustal deformation in Southern California from Sentinel-1 and GPS

    NASA Astrophysics Data System (ADS)

    Tymofyeyeva, E.; Fialko, Y. A.

    2017-12-01

    We combine data from the Sentinel-1 InSAR mission collected between 2014-2017 with continuous GPS measurements to calculate the three components of the interseismic surface velocity field in Southern California at the resolution of InSAR data ( 100 m). We use overlapping InSAR tracks with two different look geometries (descending tracks 71, 173, and 144, and ascending tracks 64 and 166) to obtain the 3 orthogonal components of surface motion. Because of the under-determined nature of the problem, we use the local azimuth of the horizontal velocity vector as an additional constraint. The spatially variable azimuths of the horizontal velocity are obtained by interpolating data from the continuous GPS network. We estimate both secular velocities and displacement time series. The latter are obtained by combining InSAR time series from different lines of sight with time-dependent azimuths computed using continuous GPS time series at every InSAR epoch. We use the CANDIS method [Tymofyeyeva and Fialko, 2015], a technique based on iterative common point stacking, to correct the InSAR data for tropospheric and ionospheric artifacts when calculating secular velocities and time series, and to isolate low-amplitude deformation signals in our study region. The obtained horizontal (East and North) components of secular velocity exhibit long-wavelength patterns consistent with strain accumulation on major faults of the Pacific-North America plate boundary. The vertical component of velocity reveals a number of localized uplift and subsidence anomalies, most likely related to hydrologic effects and anthropogenic activity. In particular, in the Los Angeles basin we observe localized uplift of about 10-15mm/yr near Anaheim, Long Beach, and Redondo Beach, as well as areas of rapid subsidence near Irvine and Santa Monica, which are likely caused by the injection of water in the oil fields, and the pumping and recharge cycles of the aquifers in the basin.

  2. Estimating vertical velocity and radial flow from Doppler radar observations of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Lee, J. L.; Lee, W. C.; MacDonald, A. E.

    2006-01-01

    The mesoscale vorticity method (MVM) is used in conjunction with the ground-based velocity track display (GBVTD) to derive the inner-core vertical velocity from Doppler radar observations of tropical cyclone (TC) Danny (1997). MVM derives the vertical velocity from vorticity variations in space and in time based on the mesoscale vorticity equation. The use of MVM and GBVTD allows us to derive good correlations among the eye-wall maximum wind, bow-shaped updraught and echo east of the eye-wall in Danny. Furthermore, we demonstrate the dynamically consistent radial flow can be derived from the vertical velocity obtained from MVM using the wind decomposition technique that solves the Poisson equations over a limited-area domain. With the wind decomposition, we combine the rotational wind which is obtained from Doppler radar wind observations and the divergent wind which is inferred dynamically from the rotational wind to form the balanced horizontal wind in TC inner cores, where rotational wind dominates the divergent wind. In this study, we show a realistic horizontal and vertical structure of the vertical velocity and the induced radial flow in Danny's inner core. In the horizontal, the main eye-wall updraught draws in significant surrounding air, converging at the strongest echo where the maximum updraught is located. In the vertical, the main updraught tilts vertically outwards, corresponding very well with the outward-tilting eye-wall. The maximum updraught is located at the inner edge of the eye-wall clouds, while downward motions are found at the outer edge. This study demonstrates that the mesoscale vorticity method can use high-temporal-resolution data observed by Doppler radars to derive realistic vertical velocity and the radial flow of TCs. The vorticity temporal variations crucial to the accuracy of the vorticity method have to be derived from a high-temporal-frequency observing system such as state-of-the-art Doppler radars.

  3. Lower-extremity ground reaction forces in collegiate baseball pitchers.

    PubMed

    Guido, John A; Werner, Sherry L

    2012-07-01

    The purpose of this study was to investigate ground reaction forces (GRF) in collegiate baseball pitchers and their relationship to pitching mechanics. Fourteen healthy collegiate baseball pitchers participated in this study. High-speed video and force plate data were collected for fastballs from each pitcher. The average ball speed was 35 ± 3 m/sec (78 ± 7 mph). Peak GRFs of 245 ± 20% body weight (BW) were generated in an anterior or braking direction to control descent. Horizontal GRFs tended to occur in a laterally directed fashion, reaching a peak of 45 ± 63% BW. The maximum vertical GRF averaged 202 ± 43% BW approximately 45 milliseconds after stride foot contact. A correlation between braking force and ball velocity was evident. Because of the downward inclination and rotation of the pitching motion, in addition to volume, shear forces may occur in the musculoskeletal tissues of the stride limb leading to many of the lower-extremity injuries seen in this athletic population.

  4. Low-latitude zonal and vertical ion drifts seen by DE 2

    NASA Technical Reports Server (NTRS)

    Coley, W. R.; Heelis, R. A.

    1989-01-01

    Horizontal and vertical ion drift data from the DE 2 spacecraft have been used to determine average zonal and vertical plasma flow (electric field) characteristics in the +/- 26-deg dip latitude region during a time of high solar activity. The 'average data' local time profile for an apex height bin centered at 400 km indicates westward plasma flow from 0600 to 1900 solar local time ((SLT) with a maximum westward velocity of 80 m/s in the early afternoon. There is a sharp change to eastward flow at approximately 1900 hours with an early evening peak of 170 m/s. A secondary nighttime maximum exists at 0430 SLT preceeding the reversal to westward flow. This profile is in good agreement with Jicamarca, Peru, radar measurements made under similar solar maximum conditions. Haramonic analysis indicates a net superrotation which is strongest at lower apex altitudes. The diurnal term is dominant, but higher order terms through the quatradiurnal are significant.

  5. Experiment K-7-30: Effects of Spaceflight in the Cosmos Biosatellite 2044 on the Vestibular-Ocular Reflex (VOR) of Rhesus Monkeys

    NASA Technical Reports Server (NTRS)

    Cohen, B.; Cohen, N.; Helwig, D.; Solomon, D.; Kozlovskaya, I.; Sirota, M.; Yakushin, S.; Raphan, T.

    1994-01-01

    This technical paper discusses the following: (1) The VOR of two rhesus monkeys was studied before and after 14 days of spaceflight to determine effects of microgravity on the VOR. Horizontal, vertical and roll eye movements were recorded in these and six other monkeys implanted with scleral search coils. Animals were rotated about a vertical axis to determine the gain of the horizontal, vertical and roll VOR. They were rotated about axes tilted from the vertical (off-vertical axis rotation, OVAR) to determine steady state gains and effects of gravity on modulations in eye position and eye velocity. They were also tested for tilt dumping of post-rotatory nystagmus. (2) The gain of the horizontal VOR was close to unity when animals were tested 15 and 18 hours after flight. VOR gain values were similar to those registered before flight. If the gain of the horizontal VOR changes in microgravity, it must revert to normal soon after landing. (3) Steady state velocities of nystagmus induced by off-vertical axis rotation (OVAR) were unchanged by adaptation to microgravity, and the phase of the modulations was similar before and after flight. However, modulations in horizontal eye velocity had more variation after landing and were on mean about 50% larger for angles of tilt of the axis of rotation between 50 and 90?/s after flight. This difference was similar in both animals and was significant. (4) A striking finding was that tilt dumping was lost in the one animal tested for this function. This loss persisted for several days after return. This is reminiscent of the loss of response to pitch while rotating in the M-131 experiments of Skylab, and must be studied in detail in future spaceflights. (5) Thus, two major findings emerged from these studies: after spaceflight the modulation of horizontal eye velocity was larger during OVAR, and one animal lost its ability to tilt-dump its nystagmus. Both findings are consistent with the postulate that adaptation to microgravity causes alterations in the way that otolith information is processed in the central nervous system. The experiments lay the groundwork for studying the vertical and roll VOR before and after future space flights, as well as for studying modulations in vertical and roll eye position during OVAR and tilt dumping.

  6. Imaging Fractures Through Relative Velocity Change Using Ambient Seismic Noise And Distributed Acoustic Sensing (DAS): A SUBTER Pilot Study At Blue Canyon Dome, Socorro NM

    NASA Astrophysics Data System (ADS)

    James, S. R.; Knox, H. A.; Ajo Franklin, J. B.; Johnson, T. C.; Morris, J.; Grubelich, M. C.; King, D. K.

    2016-12-01

    Knowledge of fracture systems, including locations, morphology, and evolution, is critical for groundwater management, contaminant transport, and energy applications such as reservoir development (i.e. tight shale and geothermal) and reservoir management (i.e. carbon sequestration and wastewater injection). It has long been understood that the presence of fractures reduces bulk seismic velocity, with waves traveling perpendicular to fracture planes experiencing the strongest velocity reduction. We present results from seismic interferometry using ambient seismic noise to detect velocity changes following fracture emplacement from two energetic stimulations. Distributed Acoustic Sensing (DAS) using fiber optic cables was used to record seismic arrivals at high spatial resolution ( 3 ft). Cables were grouted in the annulus of four cased monitoring boreholes surrounding the stimulation borehole at a radius of 4 feet. Ambient noise was recorded before and after each stimulation for 12-hour time periods. We used the Python package MSNoise to compute cross-correlations of all near-horizontal (less than 60°) channel pairs between boreholes and calculated the velocity change of each time period relative to initial conditions prior to stimulation. Results show an average velocity decrease of approximately 6% following the first fracturing event. Variations between channel pairs suggest some are more strongly affected than others, which is supported by evaluation of other geophysical data. These results show promise for locating fractures based on spatial variation in velocity changes. Unsurprisingly, results following the second stimulation are generally more scattered. Some velocities are further reduced compared to those after the first stimulation while others show a relative velocity increase. These results are roughly consistent with time-lapse seismic measurements conducted using active sources and classical sensors (e.g. hydrophones). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Turbulent Flow and Sand Dune Dynamics: Identifying Controls on Aeolian Sediment Transport

    NASA Astrophysics Data System (ADS)

    Weaver, C. M.; Wiggs, G.

    2007-12-01

    Sediment transport models are founded on cubic power relationships between the transport rate and time averaged flow parameters. These models have achieved limited success and recent aeolian and fluvial research has focused on the modelling and measurement of sediment transport by temporally varying flow conditions. Studies have recognised turbulence as a driving force in sediment transport and have highlighted the importance of coherent flow structures in sediment transport systems. However, the exact mechanisms are still unclear. Furthermore, research in the fluvial environment has identified the significance of turbulent structures for bedform morphology and spacing. However, equivalent research in the aeolian domain is absent. This paper reports the findings of research carried out to characterise the importance of turbulent flow parameters in aeolian sediment transport and determine how turbulent energy and turbulent structures change in response to dune morphology. The relative importance of mean and turbulent wind parameters on aeolian sediment flux was examined in the Skeleton Coast, Namibia. Measurements of wind velocity (using sonic anemometers) and sand transport (using grain impact sensors) at a sampling frequency of 10 Hz were made across a flat surface and along transects on a 9 m high barchan dune. Mean wind parameters and mass sand flux were measured using cup anemometers and wedge-shaped sand traps respectively. Vertical profile data from the sonic anemometers were used to compute turbulence and turbulent stress (Reynolds stress; instantaneous horizontal and vertical fluctuations; coherent flow structures) and their relationship with respect to sand transport and evolving dune morphology. On the flat surface time-averaged parameters generally fail to characterise sand transport dynamics, particularly as the averaging interval is reduced. However, horizontal wind speed correlates well with sand transport even with short averaging times. Quadrant analysis revealed that turbulent events with a positive horizontal component, such as sweeps and outward interactions, were responsible for the majority of sand transport. On the dune surface results demonstrate the development and modification of turbulence and sediment flux in key regions: toe, crest and brink. Analysis suggests that these modifications are directly controlled by streamline curvature and flow acceleration. Conflicting models of dune development, morphology and stability arise when based upon either the dynamics of measured turbulent flow or mean flow.

  8. 3D turbulence measurements in inhomogeneous boundary layers with three wind LiDARs

    NASA Astrophysics Data System (ADS)

    Carbajo Fuertes, Fernando; Valerio Iungo, Giacomo; Porté-Agel, Fernando

    2014-05-01

    One of the most challenging tasks in atmospheric anemometry is obtaining reliable turbulence measurements of inhomogeneous boundary layers at heights or in locations where is not possible or convenient to install tower-based measurement systems, e.g. mountainous terrain, cities, wind farms, etc. Wind LiDARs are being extensively used for the measurement of averaged vertical wind profiles, but they can only successfully accomplish this task under the limiting conditions of flat terrain and horizontally homogeneous flow. Moreover, it has been shown that common scanning strategies introduce large systematic errors in turbulence measurements, regardless of the characteristics of the flow addressed. From the point of view of research, there exist a variety of techniques and scanning strategies to estimate different turbulence quantities but most of them rely in the combination of raw measurements with atmospheric models. Most of those models are only valid under the assumption of horizontal homogeneity. The limitations stated above can be overcome by a new triple LiDAR technique which uses simultaneous measurements from three intersecting Doppler wind LiDARs. It allows for the reconstruction of the three-dimensional velocity vector in time as well as local velocity gradients without the need of any turbulence model and with minimal assumptions [EGU2013-9670]. The triple LiDAR technique has been applied to the study of the flow over the campus of EPFL in Lausanne (Switzerland). The results show the potential of the technique for the measurement of turbulence in highly complex boundary layer flows. The technique is particularly useful for micrometeorology and wind engineering studies.

  9. Simulation of floods caused by overloaded sewer systems: extensions of shallow-water equations

    NASA Astrophysics Data System (ADS)

    Hilden, Michael

    2005-03-01

    The outflow of water from a manhole onto a street is a typical flow problem within the simulation of floods in urban areas that are caused by overloaded sewer systems in the event of heavy rains. The reliable assessment of the flood risk for the connected houses requires accurate simulations of the water flow processes in the sewer system and in the street.The Navier-Stokes equations (NSEs) describe the free surface flow of the fluid water accurately, but since their numerical solution requires high CPU times and much memory, their application is not practical. However, their solutions for selected flow problems are applied as reference states to assess the results of other model approaches.The classical shallow-water equations (SWEs) require only fractions (factor 1/100) of the NSEs' computational effort. They assume hydrostatic pressure distribution, depth-averaged horizontal velocities and neglect vertical velocities. These shallow-water assumptions are not fulfilled for the outflow of water from a manhole onto the street. Accordingly, calculations show differences between NSEs and SWEs solutions.The SWEs are extended in order to assess the flood risks in urban areas reliably within applicable computational efforts. Separating vortex regions from the main flow and approximating vertical velocities to involve their contributions into a pressure correction yield suitable results.

  10. Turbulent premixed combustion in V-shaped flames: Characteristics of flame front

    NASA Astrophysics Data System (ADS)

    Kheirkhah, S.; Gülder, Ö. L.

    2013-05-01

    Flame front characteristics of turbulent premixed V-shaped flames were investigated experimentally using the Mie scattering and the particle image velocimetry techniques. The experiments were performed at mean streamwise exit velocities of 4.0, 6.2, and 8.6 m/s, along with fuel-air equivalence ratios of 0.7, 0.8, and 0.9. Effects of vertical distance from the flame-holder, mean streamwise exit velocity, and fuel-air equivalence ratio on statistics of the distance between the flame front and the vertical axis, flame brush thickness, flame front curvature, and angle between tangent to the flame front and the horizontal axis were studied. The results show that increasing the vertical distance from the flame-holder and the fuel-air equivalence ratio increase the mean and root-mean-square (RMS) of the distance between the flame front and the vertical axis; however, increasing the mean streamwise exit velocity decreases these statistics. Spectral analysis of the fluctuations of the flame front position depicts that the normalized and averaged power-spectrum-densities collapse and show a power-law relation with the normalized wave number. The flame brush thickness is linearly correlated with RMS of the distance between the flame front and the vertical axis. Analysis of the curvature of the flame front data shows that the mean curvature is independent of the experimental conditions tested and equals to zero. Values of the inverse of the RMS of flame front curvature are similar to those of the integral length scale, suggesting that the large eddies in the flow make a significant contribution in wrinkling of the flame front. Spectral analyses of the flame front curvature as well as the angle between tangent to the flame front and the horizontal axis show that the power-spectrum-densities feature a peak. Value of the inverse of the wave number pertaining to the peak is larger than that of the integral length scale.

  11. Three-dimensional, thermo-mechanical and dynamical analogue experiments of subduction: first results

    NASA Astrophysics Data System (ADS)

    Boutelier, D.; Oncken, O.

    2008-12-01

    We present a new analogue modeling technique developed to investigate the mechanics of the subduction process and the build-up of subduction orogenies. The model consists of a tank filled with water representing the asthenosphere and two lithospheric plates made of temperature-sensitive hydrocarbon compositional systems. These materials possess elasto-plastic properties allowing the scaling of thermal and mechanical processes. A conductive thermal gradient is imposed in the lithosphere prior to deformation. The temperature of the asthenosphere and model surface are imposed and controlled with an electric heater, two infrared ceramic heat emitters, two thermocouples and a thermo-regulator. This system allows an unobstructed view of the model surface, which is monitored using a stereoscopic particle image technique. This monitoring technique provides a precise quantification of the horizontal deformation and variations of elevation in the three-dimensional model. Convergence is imposed with a piston moving at a constant rate or pushing at a constant stress. The velocity is scaled using the dimensionless ratio of thermal conduction over advection. The experiments are first produced at a constant rate and the stress in the horizontal direction of the convergence is recorded. Then the experiment is reproduced with a constant stress boundary condition where the stress value is set to the averaged value obtained in the previous experiment. Therefore, an initial velocity allowing proper scaling of heat exchanges is obtained, but deformation in the model and spatial variations of parameters such as density or friction coefficient can produce variations of plate convergence velocity. This in turn impacts the strength of the model lithosphere because it changes the model thermal structure. In the first presented experiments the model lithosphere is one layer and the plate boundary is linear. The effects of variations of the subducting plate thickness, density and the lubrication of the interface between the plates are investigated.

  12. Analysis of the solar radiation data for Beer Sheva, Israel, and its environs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudish, A.I.; Ianetz, A.

    The solar radiation climate of Beer Sheva, Israel, is reported upon in detail. The database utilized in this analysis consisted of global radiation on a horizontal surface, normal incidence beam radiation, and global radiation on a south-facing surface tilted at 40{degree}. Monthly-average hourly and daily values are reported for each of these three types of measured radiations, together with the calculated monthly-average daily values for the components of the global radiation, viz. the horizontal beam and diffuse radiations. The monthly-average hourly and daily clearness index values have also been calculated and analyzed. Monthly-average daily frequency distributions of the clearness indexmore » values are reported for each month. The solar radiation climate of Beer Sheva has also been compared to those reported for a number of countries in this region. The annual-average daily global radiation incident on a horizontal surface is 18.91 MG/m{sup 2} and that for normal incidence beam radiation is 21.17 MG/m{sup 2}. The annual-average daily fraction of the horizontal global radiation that is beam is 0.72. The annual-average daily value for the clearness index is 0.587 and the average frequency of clear days annually is 58.6%. The authors conclude, based upon the above analysis, that Beer Sheva and its environs are characterized by relatively high, average-daily irradiation rates, both global and beam, and a relatively high frequency of clear days.« less

  13. Wake Survey of a Marine Current Turbine Under Steady Conditions

    NASA Astrophysics Data System (ADS)

    Lust, Ethan; Luznik, Luksa; Flack, Karen

    2016-11-01

    A submersible particle image velocimetry (PIV) system was used to study the wake of a horizontal axis marine current turbine. The turbine was tested in a large tow tank facility at the United States Naval Academy. The turbine is a 1/25th scale model of the U.S. National Renewable Energy Laboratory's Reference Model 1 (RM1) tidal turbine. It is a two-bladed turbine measuring 0.8 m in diameter and featuring a NACA 63-618 airfoil cross section. Separate wind tunnel testing has shown the foil section used on the turbine to be Reynolds number independent with respect to lift at the experimental parameters of tow carriage speed (Utow = 1 . 68 m/s) and tip speed ratio (TSR = 7). The wake survey was conducted over an area extending 0.25D forward of the turbine tip path to 2.0D aft, and to a depth of 1.0D beneath the turbine output shaft in the streamwise plane. Each field of view was approximately 30 cm by 30 cm, and each overlapped the adjacent fields of view by 5 cm. The entire flow field was then reconstructed into a single field of investigation. Results include streamwise and vertical ensemble average velocity fields averaged over approximately 1,000 realizations, as well as higher-order statistics. Turbine tip vortex centers were identified and plotted showing increasing aperiodicity with wake age. keywords: horizontal axis marine current turbine, particle image velocimetry, towing tank, wake survey

  14. Characteristics of low reynolds number shear-free turbulence at an impermeable base.

    PubMed

    Wan Mohtar, W H M; ElShafie, A

    2014-01-01

    Shear-free turbulence generated from an oscillating grid in a water tank impinging on an impermeable surface at varying Reynolds number 74 ≤ Re(l) ≤ 570 was studied experimentally, where the Reynolds number is defined based on the root-mean-square (r.m.s) horizontal velocity and the integral length scale. A particular focus was paid to the turbulence characteristics for low Re(l) < 150 to investigate the minimum limit of Re l obeying the profiles of rapid distortion theory. The measurements taken at near base included the r.m.s turbulent velocities, evolution of isotropy, integral length scales, and energy spectra. Statistical analysis of the velocity data showed that the anisotropic turbulence structure follows the theory for flows with Re(l) ≥ 117. At low Re(l) < 117, however, the turbulence profile deviated from the prediction where no amplification of horizontal velocity components was observed and the vertical velocity components were seen to be constant towards the tank base. Both velocity components sharply decreased towards zero at a distance of ≈ 1/3 of the integral length scale above the base due to viscous damping. The lower limit where Re(l) obeys the standard profile was found to be within the range 114 ≤ Re(l) ≤ 116.

  15. Characteristics of Low Reynolds Number Shear-Free Turbulence at an Impermeable Base

    PubMed Central

    Wan Mohtar, W. H. M.; ElShafie, A.

    2014-01-01

    Shear-free turbulence generated from an oscillating grid in a water tank impinging on an impermeable surface at varying Reynolds number 74 ≤ Re l ≤ 570 was studied experimentally, where the Reynolds number is defined based on the root-mean-square (r.m.s) horizontal velocity and the integral length scale. A particular focus was paid to the turbulence characteristics for low Re l < 150 to investigate the minimum limit of Re l obeying the profiles of rapid distortion theory. The measurements taken at near base included the r.m.s turbulent velocities, evolution of isotropy, integral length scales, and energy spectra. Statistical analysis of the velocity data showed that the anisotropic turbulence structure follows the theory for flows with Re l ≥ 117. At low Re l < 117, however, the turbulence profile deviated from the prediction where no amplification of horizontal velocity components was observed and the vertical velocity components were seen to be constant towards the tank base. Both velocity components sharply decreased towards zero at a distance of ≈1/3 of the integral length scale above the base due to viscous damping. The lower limit where Re l obeys the standard profile was found to be within the range 114 ≤ Re l ≤ 116. PMID:25250384

  16. Surprises from the field: Novel aspects of aeolian saltation observed under natural turbulence

    NASA Astrophysics Data System (ADS)

    Martin, R. L.; Kok, J. F.; Chamecki, M.

    2015-12-01

    The mass flux of aeolian (wind-blown) sediment transport - critical for understanding earth and planetary geomorphology, dust generation, and soil stability - is difficult to predict. Recent work suggests that competing models for saltation (the characteristic hopping of aeolian sediment) fail because they do not adequately account for wind turbulence. To address this issue, we performed field deployments measuring high-frequency co-variations of aeolian saltation and near-surface winds at multiple sites under a range of conditions. Our observations yield several novel findings not currently captured by saltation models: (1) Saltation flux displays no significant lag relative to horizontal wind velocity; (2) Characteristic height of the saltation layer remains constant with changes in shear velocity; and (3) During saltation, the vertical profile of mean horizontal wind velocity is steeper than expected from the Reynolds stress. We examine how the interactions between saltation and turbulence in field settings could explain some of these surprising observations.

  17. Pressure independence of granular flow through an aperture.

    PubMed

    Aguirre, M A; Grande, J G; Calvo, A; Pugnaloni, L A; Géminard, J-C

    2010-06-11

    We experimentally demonstrate that the flow rate of granular material through an aperture is controlled by the exit velocity imposed on the particles and not by the pressure at the base, contrary to what is often assumed in previous work. This result is achieved by studying the discharge process of a dense packing of monosized disks through an orifice. The flow is driven by a conveyor belt. This two-dimensional horizontal setup allows us to independently control the velocity at which the disks escape the horizontal silo and the pressure in the vicinity of the aperture. The flow rate is found to be proportional to the belt velocity, independent of the amount of disks in the container and, thus, independent of the pressure in the outlet region. In addition, this specific configuration makes it possible to get information on the system dynamics from a single image of the disks that rest on the conveyor belt after the discharge.

  18. Effect of superficial velocity on vaporization pressure drop with propane in horizontal circular tube

    NASA Astrophysics Data System (ADS)

    Novianto, S.; Pamitran, A. S.; Nasruddin, Alhamid, M. I.

    2016-06-01

    Due to its friendly effect on the environment, natural refrigerants could be the best alternative refrigerant to replace conventional refrigerants. The present study was devoted to the effect of superficial velocity on vaporization pressure drop with propane in a horizontal circular tube with an inner diameter of 7.6 mm. The experiments were conditioned with 4 to 10 °C for saturation temperature, 9 to 20 kW/m2 for heat flux, and 250 to 380 kg/m2s for mass flux. It is shown here that increased heat flux may result in increasing vapor superficial velocity, and then increasing pressure drop. The present experimental results were evaluated with some existing correlations of pressure drop. The best prediction was evaluated by Lockhart-Martinelli (1949) with MARD 25.7%. In order to observe the experimental flow pattern, the present results were also mapped on the Wang flow pattern map.

  19. A Laboratory Study of a Water Surface in Response to Rainfall

    NASA Astrophysics Data System (ADS)

    Liu, Ren; Liu, Xinan; Duncan, James

    2016-11-01

    The shape of a water surface in response to the impact of raindrops is studied experimentally in a 1.22-m-by-1.22-m water pool with a water depth of 0.3 m. Simulated raindrops are generated by an array of 22-gauge hypodermic needles that are attached to the bottom of an open-surface water tank. The tank is connected to a 2D translation stage to provide a small-radius horizontal circular or oval motion to the needles, thus avoiding repeated drop impacts at the same location under each needle. The drop diameter is about 2.6 mm and the height of the water tank above the water surface of the pool is varied from 1 m to 4.8 m to provide different impact velocities. The water surface features including stalks, crowns and ring waves are measured with a cinematic laser-induced- fluorescence (LIF) technique. It is found that the average stalk height is strongly correlated to the impact velocities of raindrops and the phase speeds of ring waves inside the rain field are different from that measured outside the rain field.

  20. Effects of Time-Dependent Inflow Perturbations on Turbulent Flow in a Street Canyon

    NASA Astrophysics Data System (ADS)

    Duan, G.; Ngan, K.

    2017-12-01

    Urban flow and turbulence are driven by atmospheric flows with larger horizontal scales. Since building-resolving computational fluid dynamics models typically employ steady Dirichlet boundary conditions or forcing, the accuracy of numerical simulations may be limited by the neglect of perturbations. We investigate the sensitivity of flow within a unit-aspect-ratio street canyon to time-dependent perturbations near the inflow boundary. Using large-eddy simulation, time-periodic perturbations to the streamwise velocity component are incorporated via the nudging technique. Spatial averages of pointwise differences between unperturbed and perturbed velocity fields (i.e., the error kinetic energy) show a clear dependence on the perturbation period, though spatial structures are largely insensitive to the time-dependent forcing. The response of the error kinetic energy is maximized for perturbation periods comparable to the time scale of the mean canyon circulation. Frequency spectra indicate that this behaviour arises from a resonance between the inflow forcing and the mean motion around closed streamlines. The robustness of the results is confirmed using perturbations derived from measurements of roof-level wind speed.

  1. Slab and Plume Morphology in the Transition Zone and Below: a Comparison of Images From Recent P and S Velocity Models

    NASA Astrophysics Data System (ADS)

    Salmi, L. M.; French, S. W.; Romanowicz, B. A.

    2014-12-01

    Resolving subduction zones in the shallow upper mantle using global shear velocity tomography has long been a challenge, likely due to the rather narrow signature of the slabs down to ~400 km depth compared to the wavelength of fundamental mode and overtone surface waves, on which resolution of Vs at these depths often relies. On the other hand, models based on P wave travel times exhibit higher resolution in subduction zone regions, owing to both the higher frequencies of the P waves as well as an optimal illumination geometry. Conversely, the global Vs models typically have better resolution near the CMB, because of constraints provided by Sdiff and multiple ScS phases. Here we compare the morphology of subducted slabs throughout the mantle, as imaged by both a recent Vp model (GAP_P4, Fukao and Obayashi, 2013) and a new Vs model (SEMUCB-WM1, French and Romanowicz, GJI, in revision). The latter model was developed by inverting body (to 32s) and fundamental and overtone surface (to 60s) waveforms, with the forward seismic wavefield computed using the spectral element method. While the S velocity model is still "fuzzier" than the Vp model, it tracks the behavior of slabs trapped in the transition zone, and those ponding around 1000 km depth. We quantify the high correlation of the region of fast Vp and Vs anomalies, and thus derive a robust estimate of the R=dlnVs/dlnVp ratio as a function of depth in regions of faster than average velocity. We compare these results with estimates obtained with other combinations of available P and S models, as well as theoretical values from mineral physical calculations. Estimating R in slow velocity regions is more difficult, as resolution varies more among models. Here we compare slow velocity images in SEMUCB-WM1 with those of other recent Vs and Vp models and attempt to estimate R in those regions as well. Interestingly, we note that, in the SEMUCB-WM1 model, some of the columnar, lower than average velocity regions "rising" from the CMB through the lower mantle appear to be deflected horizontally at ~1000 km depth. This observation suggests that whatever mechanism causes the resistance to downward flow in subduction zones at this depth may also affect upwellings.

  2. Gait in Pregnancy-related Pelvic girdle Pain: amplitudes, timing, and coordination of horizontal trunk rotations.

    PubMed

    Wu, Wen Hua; Meijer, Onno G; Bruijn, Sjoerd M; Hu, Hai; van Dieën, Jaap H; Lamoth, Claudine J C; van Royen, Barend J; Beek, Peter J

    2008-09-01

    Walking is impaired in Pregnancy-related Pelvic girdle Pain (PPP). Walking velocity is reduced, and in postpartum PPP relative phase between horizontal pelvis and thorax rotations was found to be lower at higher velocities, and rotational amplitudes tended to be larger. While attempting to confirm these findings for PPP during pregnancy, we wanted to identify underlying mechanisms. We compared gait kinematics of 12 healthy pregnant women and 12 pregnant women with PPP, focusing on the amplitudes of transverse segmental rotations, the timing and relative phase of these rotations, and the amplitude of spinal rotations. In PPP during pregnancy walking velocity was lower than in controls, and negatively correlated with fear of movement. While patients' rotational amplitudes were larger, with large inter-individual differences, spinal rotations did not differ between groups. In the patients, peak thorax rotation occurred earlier in the stride cycle at higher velocities, and relative phase was lower. The earlier results on postpartum PPP were confirmed for PPP during pregnancy. Spinal rotations remained unaffected, while at higher velocities the peak of thorax rotations occurred earlier in the stride cycle. The latter change may serve to avoid excessive spine rotations caused by the larger segmental rotations.

  3. Gait in Pregnancy-related Pelvic girdle Pain: amplitudes, timing, and coordination of horizontal trunk rotations

    PubMed Central

    Wu, Wen Hua; Bruijn, Sjoerd M.; Hu, Hai; van Dieën, Jaap H.; Lamoth, Claudine J. C.; van Royen, Barend J.; Beek, Peter J.

    2008-01-01

    Walking is impaired in Pregnancy-related Pelvic girdle Pain (PPP). Walking velocity is reduced, and in postpartum PPP relative phase between horizontal pelvis and thorax rotations was found to be lower at higher velocities, and rotational amplitudes tended to be larger. While attempting to confirm these findings for PPP during pregnancy, we wanted to identify underlying mechanisms. We compared gait kinematics of 12 healthy pregnant women and 12 pregnant women with PPP, focusing on the amplitudes of transverse segmental rotations, the timing and relative phase of these rotations, and the amplitude of spinal rotations. In PPP during pregnancy walking velocity was lower than in controls, and negatively correlated with fear of movement. While patients’ rotational amplitudes were larger, with large inter-individual differences, spinal rotations did not differ between groups. In the patients, peak thorax rotation occurred earlier in the stride cycle at higher velocities, and relative phase was lower. The earlier results on postpartum PPP were confirmed for PPP during pregnancy. Spinal rotations remained unaffected, while at higher velocities the peak of thorax rotations occurred earlier in the stride cycle. The latter change may serve to avoid excessive spine rotations caused by the larger segmental rotations. PMID:18661160

  4. Microstructures, composition, and seismic properties of the Ontong Java Plateau mantle root

    NASA Astrophysics Data System (ADS)

    Tommasi, Andréa.; Ishikawa, Akira

    2014-11-01

    To study how an impacting plume modifies the mantle lithosphere, we analyzed the microstructures and crystal preferred orientations (CPO) of 29 peridotites and 37 pyroxenites that sample the mantle root of the Ontong Java Plateau (OJP) from 60 to 120 km depth. The peridotites show a strong compositional variability, but homogeneous coarse granular to tabular microstructures, except for those equilibrated at the shallowest and deepest depths, which are porphyroclastic. All peridotites have clear olivine CPO, with dominant fiber-[010] patterns. Low intragranular misorientations and straight grain boundaries in olivine suggest that, above 100 km depth, annealing often followed deformation. Calculated density and P wave velocities of the peridotites decrease weakly with depth. S wave velocities decrease faster, resulting in increasing Vp/Vs ratio with depth. Calculated densities and seismic velocity profiles are consistent with those estimated for normal mantle compositions under a cold oceanic geotherm. Enrichment in pyroxenites may further increase seismic velocities. The calculated seismic properties cannot therefore explain the low S waves velocities predicted by Rayleigh wave tomography and ScS data in the mantle beneath the OJP. Calculated P and S waves anisotropy is variable (2-12%). It is higher on average in the deeper section of the lithosphere. Because olivine has dominantly [010]-fiber CPO patterns, if foliations are horizontal, vertically propagating S waves and Rayleigh waves will sample very weak anisotropy in the OJP mantle lithosphere. Moreover, if the orientation of the lineation changes with depth, the anisotropy-induced contrast in seismic properties might produce an intralithospheric reflector marking the stratification of the OJP mantle root.

  5. 3-D S-velocity structure in the lowermost mantle beneath the Northern Pacific

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Kawai, K.; Geller, R. J.; Borgeaud, A. F. E.; Konishi, K.

    2017-12-01

    We previously (Suzuki et al., EPS, 2016) reported the results of waveform inversion to infer the three-dimensional (3-D) S-velocity structure in the lowermost 400 km of the mantle (the Dʺ region) beneath the Northern Pacific region. Our dataset consists of about 20,000 transverse component broadband body-wave seismograms observed at North American stations (mainly USArray) for 131 intermediate and deep earthquakes which occurred beneath the western Pacific subduction region. Synthetic resolution tests indicate that our methods and dataset can resolve the velocity structure in the target region with a horizontal scale of about 150 km and a vertical scale of about 50 km. The 3-D S-velocity model obtained in that study shows three prominent features: (i) horizontal high-velocity anomalies up to about 3 per cent faster than the Preliminary Reference Earth Model (PREM) with a thickness of a few hundred km and a lower boundary which is at most about 150 km above the core-mantle boundary (CMB), (ii) low-velocity anomalies about 2.5 per cent slower than PREM beneath the high-velocity anomalies at the base of the lower mantle, (iii) a thin (about 150 km) low-velocity structure continuous from the base of the low-velocity zone to at least 400 km above the CMB. We interpret these features respectively as: (i) remnants of slab material where the Mg-perovskite to Mg-post-perovskite phase transition could have occurred within the slab, (ii, iii) large amounts of hot and less dense materials beneath the cold Kula or Pacific slab remnants immediately above the CMB which ascend and form a passive plume upwelling at the edge of the slab remnants. Since our initial work we subsequently conducted waveform inversion using both the transverse- and radial-component horizontal waveform data to infer the isotropic shear velocity structure in the lowermost mantle beneath the Northern Pacific in more detail. We also compute partial derivatives with respect to the 5 independent elastic constants (A, C, F, L, N) of a transversely isotropy (TI) medium, and conduct a synthetic resolution test to examine the ability of our methods and dataset to resolve the anisotropic structure in this region using two-component waveform data.

  6. Multifractal Analysis of Velocity Vector Fields and a Continuous In-Scale Cascade Model

    NASA Astrophysics Data System (ADS)

    Fitton, G.; Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.

    2012-04-01

    In this study we have compared the multifractal analyses of small-scale surface-layer wind velocities from two different datasets. The first dataset consists of six-months of wind velocity and temperature measurements at the heights 22, 23 and 43m. The measurements came from 3D sonic anemometers with a 10Hz data output rate positioned on a mast in a wind farm test site subject to wake turbulence effects. The location of the test site (Corsica, France) meant the large scale structures were subject to topography effects that therefore possibly caused buoyancy effects. The second dataset (Germany) consists of 300 twenty minute samples of horizontal wind velocity magnitudes simultaneously recorded at several positions on two masts. There are eight propeller anemometers on each mast, recording velocity magnitude data at 2.5Hz. The positioning of the anemometers is such that there are effectively two grids. One grid of 3 rows by 4 columns and a second of 5 rows by 2 columns. The ranges of temporal scale over which the analyses were done were from 1 to 103 seconds for both datasets. Thus, under the universal multifractal framework we found both datasets exhibit parameters α ≈ 1.5 and C1 ≈ 0.1. The parameters α and C1, measure respectively the multifractality and mean intermittency of the scaling field. A third parameter, H, quantifies the divergence from conservation of the field (e.g. H = 0 for the turbulent energy flux density). To estimate the parameters we used the ratio of the scaling moment function of the energy flux and of the velocity increments. This method was particularly useful when estimating the parameter α over larger scales. In fact it was not possible to obtain a reasonable estimate of alpha using the usual double trace moment method. For each case the scaling behaviour of the wind was almost isotropic when the scale ranges remained close to the sphero-scale. For the Corsica dataset this could be seen by the agreement of the spectral exponents of the order of 1.5 for all three components. Given we have only the horizontal wind components over a grid for the Germany dataset the comparable probability distributions of horizontal and vertical velocity increments shows the field is isotropic. The Germany dataset allows us to compare the spatial velocity increments with that of the temporal. We briefly mentioned above that the winds in Corsica were subject to vertical forcing effects over large scales. This means the velocity field scaled as 11/5 i.e. Bolgiano-Obukhov instead of Kolmogorov's. To test this we were required to invoke Taylor's frozen turbulence hypothesis since the data was a one point measurement. Having vertical and horizontal velocity increments means we can further justify the claims of an 11/5 scaling law for vertical shears of the velocity and test the validity of the Taylor's hypothesis. We used the results to first simulate the velocity components using continuous in-scale cascades and then discuss the reconstruction of the full vector fields.

  7. Present-Day 3D Velocity Field of Eastern North America Based on Continuous GPS Observations

    NASA Astrophysics Data System (ADS)

    Goudarzi, Mohammad Ali; Cocard, Marc; Santerre, Rock

    2016-07-01

    The Saint Lawrence River valley in eastern Canada was studied using observations of continuously operating GPS (CGPS) stations. The area is one of the most seismically active regions in eastern North America characterized by many earthquakes, which is also subject to an ongoing glacial isostatic adjustment. We present the current three-dimensional velocity field of eastern North America obtained from more than 14 years (9 years on average) of data at 112 CGPS stations. Bernese GNSS and GITSA software were used for CGPS data processing and position time series analysis, respectively. The results show the counterclockwise rotation of the North American plate in the No-Net-Rotation model with the average of 16.8 ± 0.7 mm/year constrained to ITRF 2008. We also present an ongoing uplift model for the study region based on the present-day CGPS observations. The model shows uplift all over eastern Canada with the maximum rate of 13.7 ± 1.2 mm/year and subsidence to the south mainly over northern USA with a typical rate of -1 to -2 mm/year and the minimum value of -2.7 ± 1.4 mm/year. We compared our model with the rate of radial displacements from the ICE-5G model. Both models agree within 0.02 mm/year at the best stations; however, our model shows a systematic spatial tilt compared to ICE-5G. The misfits between two models amount to the maximum relative subsidence of -6.1 ± 1.1 mm/year to the east and maximum relative uplift of 5.9 ± 2.7 mm/year to the west. The intraplate horizontal velocities are radially outward from the centers of maximum uplift and are inward to the centers of maximum subsidence with the typical velocity of 1-1.6 ± 0.4 mm/year that is in agreement with the ICE-5G model to the first order.

  8. Measuring Magnetic Oscillations in the Solar Photosphere: Coordinated Observations with MDI, ASP and MWO

    NASA Astrophysics Data System (ADS)

    Norton, A. A.; Ulrich, R. K.

    2000-03-01

    A comprehensive observing effort was undertaken to simultaneously obtain full Stokes profiles as well as longitudinal magnetogram maps of a positive plage region on 8 December, 1998 with the Michelson Doppler Imager, the Advanced Stokes Polarimeter and Mt. Wilson Observatory magnetograph. We compare 1.2'' spatially-averaged signals of velocities as well as filter magnetograph longitudinal flux signals with Stokes determined fluctuations in filling factor, field inclination, magnetic flux and field strength. The velocity signals are in excellent agreement. Michelson Doppler Imager magnetic flux correlates best with fluctuations in the Advanced Stokes Polarimeter filling factor, not inclination angle or field strength. A correlated flux and filling factor change in the absence of a field strength fluctuation can be understood in terms of internally unperturbed flux tubes being buffeted by external pressure fluctuations. The 12.5'' square aperture spatially averaged Mt. Wilson magnetograph signals are compared with Michelson Doppler Imager signals from the corresponding observing area. Velocity signals are in superb agreement. Magnetic signals exhibit similar oscillatory behavior. Lack of Advanced Stokes Polarimeter data for this time excludes interpretation of magnetic fluctuations as due to filling factor or field inclination angle. Mt. Wilson Observatory simultaneous sampling of the nickel and sodium spectral line profiles with several wing pairs allowed inter-comparison of signals from different heights of formation. Slight phase shifts and large propagation speeds for the velocity signals are indicative of modified standing waves. Phase speeds associated with magnetic signals are characteristic of photospheric Alfvén speeds for plage fields. The phase speed increase with height agrees with the altitude dependence of the Alfvén speed. The observed fluctuations and phases are interpreted as a superposition of signatures from the horizontal component of the driving mechanism sweeping the field lines in/out of the resolution area and the magnetic response of the flux tube to this buffeting.

  9. A simple model for testing the effects of gravity-wave-produced vertical oscillations of scattering irregularities on spaced-antenna, horizontal drift measurements

    NASA Technical Reports Server (NTRS)

    Meek, C. E.; Reid, I. M.

    1984-01-01

    It has been suggested that the velocities produced by the spaced antenna partial-reflection drift experiment may constitute a measure of the vertical oscillations due to short-period gravity waves rather than the mean horizontal flow. The contention is that the interference between say two scatterers, one of which is traveling upward, and the other down, will create a pattern which sweeps across the ground in the direction (or anti-parallel) of the wave propagation. Since the expected result, viz., spurious drift directions, is seldom, if ever, seen in spaced antenna drift velocities, this speculation is tested in an atmospheric model.

  10. Some techniques for reducing the tower shadow of the DOE/NASA mod-0 wind turbine tower. [wind tunnel tests to measure effects of tower structure on wind velocity

    NASA Technical Reports Server (NTRS)

    Burley, R. R.; Savino, J. M.; Wagner, L. H.; Diedrich, J. H.

    1979-01-01

    Wind speed profile measurements to measure the effect of a wind turbine tower on the wind velocity are presented. Measurements were made in the wake of scale models of the tower and in the wake of certain full scale components to determine the magnitude of the speed reduction (tower shadow). Shadow abatement techniques tested on the towers included the removal of diagonals, replacement of diagonals and horizontals with round cross section members, installation of elliptical shapes on horizontal members, installation of airfoils on vertical members, and application of surface roughness to vertical members.

  11. Application of a simplified calculation for full-wave microtremor H/ V spectral ratio based on the diffuse field approximation to identify underground velocity structures

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Masaki, Kazuaki; Irikura, Kojiro; Sánchez-Sesma, Francisco José

    2017-12-01

    Under the diffuse field approximation, the full-wave (FW) microtremor H/ V spectral ratio ( H/ V) is modeled as the square root of the ratio of the sum of imaginary parts of the Green's function of the horizontal components to that of the vertical one. For a given layered medium, the FW H/ V can be well approximated with only surface waves (SW) H/ V of the "cap-layered" medium which consists of the given layered medium and a new larger velocity half-space (cap layer) at large depth. Because the contribution of surface waves can be simply obtained by the residue theorem, the computation of SW H/ V of cap-layered medium is faster than that of FW H/ V evaluated by discrete wavenumber method and contour integration method. The simplified computation of SW H/ V was then applied to identify the underground velocity structures at six KiK-net strong-motion stations. The inverted underground velocity structures were used to evaluate FW H/ Vs which were consistent with the SW H/ Vs of corresponding cap-layered media. The previous study on surface waves H/ Vs proposed with the distributed surface sources assumption and a fixed Rayleigh-to-Love waves amplitude ratio for horizontal motions showed a good agreement with the SW H/ Vs of our study. The consistency between observed and theoretical spectral ratios, such as the earthquake motions of H/ V spectral ratio and spectral ratio of horizontal motions between surface and bottom of borehole, indicated that the underground velocity structures identified from SW H/ V of cap-layered medium were well resolved by the new method.[Figure not available: see fulltext.

  12. A thickness-weighted average perspective of force balance in an idealized circumpolar current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ringler, Todd Darwin; Saenz, Juan Antonio; Wolfram, Jr., Phillip Justin

    The exact, three-dimensional thickness-weighted averaged (TWA) Boussinesq equations are used to diagnose eddy-mean flow interaction in an idealized circumpolar current (ICC). The force exerted by mesoscale eddies on the TWA velocity is expressed as the divergence of the Eliassen-Palm flux tensor. Consistent with previous findings, the analysis indicates that the dynamically relevant definition of the ocean surface layer is comprised of the set of buoyancy coordinates that ever reside at the ocean surface at a given horizontal position. The surface layer is found to be a physically distinct object with a diabatic- and force-balance that is largely isolated from themore » underlying adiabatic region in the interior. Within the ICC surface layer, the TWA meridional velocity is southward/northward in the top/bottom half, and has a value near zero at the bottom. In the top half of the surface layer, the zonal forces due to wind stress and meridional advection of potential vorticity act to accelerate the TWA zonal velocity; equilibrium is obtained by eddies decelerating the zonal flow via a downward flux of eastward momentum that increases with depth. In the bottom half of the surface layer, the accelerating force of the wind stress is balanced by the eddy force and meridional advection of potential vorticity. The bottom of the surface layer coincides with the location where the zonal eddy force, meridional advection of potential vorticity and zonal wind stress force are all zero. The net meridional transport, S f, within the surface layer is a small residual of its southward and northward TWA meridional flows. Furthermore, the mean meridional gradient of surface-layer buoyancy is advected by S f to balance the surface buoyancy fluxs.« less

  13. A thickness-weighted average perspective of force balance in an idealized circumpolar current

    DOE PAGES

    Ringler, Todd Darwin; Saenz, Juan Antonio; Wolfram, Jr., Phillip Justin; ...

    2016-11-22

    The exact, three-dimensional thickness-weighted averaged (TWA) Boussinesq equations are used to diagnose eddy-mean flow interaction in an idealized circumpolar current (ICC). The force exerted by mesoscale eddies on the TWA velocity is expressed as the divergence of the Eliassen-Palm flux tensor. Consistent with previous findings, the analysis indicates that the dynamically relevant definition of the ocean surface layer is comprised of the set of buoyancy coordinates that ever reside at the ocean surface at a given horizontal position. The surface layer is found to be a physically distinct object with a diabatic- and force-balance that is largely isolated from themore » underlying adiabatic region in the interior. Within the ICC surface layer, the TWA meridional velocity is southward/northward in the top/bottom half, and has a value near zero at the bottom. In the top half of the surface layer, the zonal forces due to wind stress and meridional advection of potential vorticity act to accelerate the TWA zonal velocity; equilibrium is obtained by eddies decelerating the zonal flow via a downward flux of eastward momentum that increases with depth. In the bottom half of the surface layer, the accelerating force of the wind stress is balanced by the eddy force and meridional advection of potential vorticity. The bottom of the surface layer coincides with the location where the zonal eddy force, meridional advection of potential vorticity and zonal wind stress force are all zero. The net meridional transport, S f, within the surface layer is a small residual of its southward and northward TWA meridional flows. Furthermore, the mean meridional gradient of surface-layer buoyancy is advected by S f to balance the surface buoyancy fluxs.« less

  14. Radar - 449MHz - Forks, WA (FKS) - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2018-06-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.

  15. Radar - 449MHz - North Bend, OR (OTH) - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2018-06-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.

  16. Radar - 449MHz - North Bend, OR (OTH) - Reviewed Data

    DOE Data Explorer

    Gottas, Daniel

    2018-06-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.

  17. Radar - 449MHz - Forks, WA (FKS) - Reviewed Data

    DOE Data Explorer

    Gottas, Daniel

    2018-06-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.

  18. Radar - 449MHz - Astoria, OR (AST) - Reviewed Data

    DOE Data Explorer

    Gottas, Daniel

    2018-06-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.

  19. Radar - 449MHz - Astoria, OR (AST) - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2018-06-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.

  20. Cerebellar nodulectomy impairs spatial memory of vestibular and optokinetic stimulation in rabbits.

    PubMed

    Barmack, N H; Errico, P; Ferraresi, A; Fushiki, H; Pettorossi, V E; Yakhnitsa, V

    2002-02-01

    Natural vestibular and optokinetic stimulation were used to investigate the possible role of the cerebellar nodulus in the regulation and modification of reflexive eye movements in rabbits. The nodulus and folium 9d of the uvula were destroyed by surgical aspiration. Before and after nodulectomy the vertical and horizontal vestibuloocular reflexes (VVOR, HVOR) were measured during sinusoidal vestibular stimulation about the longitudinal (roll) and vertical (yaw) axes. Although the gain of the HVOR (G(HVOR) = peak eye movement velocity/peak head velocity) was not affected by the nodulectomy, the gain of the VVOR (G(VVOR)) was reduced. The gains of the vertical and horizontal optokinetic reflexes (G(VOKR), G(HOKR)) were measured during monocular, sinusoidal optokinetic stimulation (OKS) about the longitudinal and vertical axes. Following nodulectomy, there was no reduction in G(VOKR) or G(HOKR). Long-term binocular OKS was used to generate optokinetic afternystagmus, OKAN II, that lasts for hours. After OKAN II was induced, rabbits were subjected to static pitch and roll, to determine how the plane and velocity of OKAN II is influenced by a changing vestibular environment. During static pitch, OKAN II slow phase remained aligned with earth-horizontal. This was true for normal and nodulectomized rabbits. During static roll, OKAN II remained aligned with earth-horizontal in normal rabbits. During static roll in nodulectomized rabbits, OKAN II slow phase developed a centripetal vertical drift. We examined the suppression and recovery of G(VVOR) following exposure to conflicting vertical OKS for 10-30 min. This vestibular-optokinetic conflict reduced G(VVOR) in both normal and nodulectomized rabbits. The time course of recovery of G(VVOR) after conflicting OKS was the same before and after nodulectomy. In normal rabbits, the head pitch angle, at which peak OKAN II velocity occurred, corresponded to the head pitch angle maintained during long-term OKS. If the head was maintained in a "pitched-up" or "pitched-down" orientation during long-term OKS, the subsequently measured OKAN II peak velocity occurred at the same orientation. This was not true for nodulectomized rabbits, who had OKAN II peak velocities at head pitch angles independent of those maintained during long-term OKS. We conclude that the nodulus participates in the regulation of compensatory reflexive movements. The nodulus also influences "remembered" head position in space derived from previous optokinetic and vestibular stimulation.

  1. Evaluation of factors that influence estimated zones of transport for six municipal wells in Clark County, Washington

    USGS Publications Warehouse

    Orzol, L.L.; Truini, Margot

    1999-01-01

    Sensitivity of the zones of transport to change in the discharge rate of the selected well, porosity, and hydraulic conductivity, as well as to the presence or absence of interfering wells, was evaluated at six well sites to evaluate the effect of uncertainties in these factors on the size and shape of zones of transport. Uncertainty in porosity contributed the most to the uncertainty in delineating the zones of transport. Uncertainty in other factors, such as well discharge rate and horizontal hydraulic conductivity, had measurable effects on the zones of transport, but errors introduced through these factors were less significant. Insight into the causes of the changes in the size and shape of the zones of transport to varying conditions was gained by evaluating the simulated water budget and ground-water levels in the vicinity of the well. Changes in the simulated water budget and ground-water levels provided information to better understand the effects of uncertainties in the data on simulation results.The results of this study suggest that ground-water velocity is the underlying control on the size of the zones of transport. The regional hydraulic gradient is the most significant factor controlling the shape and orientation of the zones of transport. Spatial variation in recharge, discharge, and hydraulic properties can also affect the shape of the zones of transport, however. Underestimation of porosity or overestimation of horizontal hydraulic conductivity leads to overestimation of ground-water velocity and overestimation of the size of zones of transport. Overestimation of porosity or underestimation of horizontal hydraulic conductivity leads to underestimation of ground-water velocity and underestimation of the size of zones of transport. Well discharge rate affects ground-water velocities near the well. Underestimation of discharge (and therefore velocities) will result in underestimation of the size of the zones of transport. The sensitivity of estimated zones of transport to uncertainty in parameters such as porosity and horizontal hydraulic conductivity is a function of the well discharge rate and the proximity of the well to boundaries, such as streams and rivers.

  2. Effects of mechanostimulation on gravitropism and signal persistence in flax roots.

    PubMed

    John, Susan P; Hasenstein, Karl H

    2011-09-01

    Gravitropism describes curvature of plants in response to gravity or differential acceleration and clinorotation is commonly used to compensate unilateral effect of gravity. We report on experiments that examine the persistence of the gravity signal and separate mechanostimulation from gravistimulation. Flax roots were reoriented (placed horizontally for 5, 10 or 15 min) and clinorotated at a rate of 0.5 to 5 rpm either vertically (parallel to the gravity vector and root axis) or horizontally (perpendicular to the gravity vector and parallel to the root axis). Image sequences showed that horizontal clinorotation did not affect root growth rate (0.81 ± 0.03 mm h-1) but vertical clinorotation reduced root growth by about 7%. The angular velocity (speed of clinorotation) did not affect growth for either direction. However, maximal curvature for vertical clinorotation decreased with increasing rate of rotation and produced straight roots at 5 rpm. In contrast, horizontal clinorotation increased curvature with increasing angular velocity. The point of maximal curvature was used to determine the longevity (memory) of the gravity signal, which lasted about 120 min. The data indicate that mechanostimulation modifies the magnitude of the graviresponse but does not affect memory persistence.

  3. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Emission of charged particles from the surface of a moving target acted on by cw CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S. I.; Petrov, A. L.; Shadrin, A. N.

    1990-06-01

    An experimental investigation was made of the emission of charged particles due to the irradiation of moving steel and graphite targets with cw CO2 laser radiation. The characteristics of the emission current signals were determined for different laser irradiation regimes. The maximum emission current density from the surface of a melt pool ( ~ 1.1 × 10 - 2 A/cm2) and the average temperature of the liquid metal (~ 2040 K) were measured for an incident radiation power density of 550 W and for horizontal and vertical target velocities of respectively ~ 1.5 mm/s and ~ 0.17 mm/s. The authors propose to utilize this phenomenon for monitoring the laser processing of materials.

  4. Numerical modeling of heat transfer in molten silicon during directional solidification process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinivasan, M.; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in

    2015-06-24

    Numerical investigation is performed for some of the thermal and fluid flow properties of silicon melt during directional solidification by numerical modeling. Dimensionless numbers are extremely useful to understand the heat and mass transfer of fluid flow on Si melt and control the flow patterns during crystal growth processes. The average grain size of whole crystal would increase when the melt flow is laminar. In the silicon growth process, the melt flow is mainly driven by the buoyancy force resulting from the horizontal temperature gradient. The thermal and flow pattern influences the quality of the crystal through the convective heatmore » and mass transport. The computations are carried out in a 2D axisymmetric model using the finite-element technique. The buoyancy effect is observed in the melt domain for a constant Rayleigh number and for different Prandtl numbers. The convective heat flux and Reynolds numbers are studied in the five parallel horizontal cross section of melt silicon region. And also, velocity field is simulated for whole melt domain with limited thermal boundaries. The results indicate that buoyancy forces have a dramatic effect on the most of melt region except central part.« less

  5. Horizontal mantle flow controls subduction dynamics.

    PubMed

    Ficini, E; Dal Zilio, L; Doglioni, C; Gerya, T V

    2017-08-08

    It is generally accepted that subduction is driven by downgoing-plate negative buoyancy. Yet plate age -the main control on buoyancy- exhibits little correlation with most of the present-day subduction velocities and slab dips. "West"-directed subduction zones are on average steeper (~65°) than "East"-directed (~27°). Also, a "westerly"-directed net rotation of the lithosphere relative to the mantle has been detected in the hotspot reference frame. Thus, the existence of an "easterly"-directed horizontal mantle wind could explain this subduction asymmetry, favouring steepening or lifting of slab dip angles. Here we test this hypothesis using high-resolution two-dimensional numerical thermomechanical models of oceanic plate subduction interacting with a mantle flow. Results show that when subduction polarity is opposite to that of the mantle flow, the descending slab dips subvertically and the hinge retreats, thus leading to the development of a back-arc basin. In contrast, concordance between mantle flow and subduction polarity results in shallow dipping subduction, hinge advance and pronounced topography of the overriding plate, regardless of their age-dependent negative buoyancy. Our results are consistent with seismicity data and tomographic images of subduction zones. Thus, our models may explain why subduction asymmetry is a common feature of convergent margins on Earth.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saenz, Juan A.; Chen, Qingshan; Ringler, Todd

    Recent work has shown that taking the thickness-weighted average (TWA) of the Boussinesq equations in buoyancy coordinates results in exact equations governing the prognostic residual mean flow where eddy–mean flow interactions appear in the horizontal momentum equations as the divergence of the Eliassen–Palm flux tensor (EPFT). It has been proposed that, given the mathematical tractability of the TWA equations, the physical interpretation of the EPFT, and its relation to potential vorticity fluxes, the TWA is an appropriate framework for modeling ocean circulation with parameterized eddies. The authors test the feasibility of this proposition and investigate the connections between the TWAmore » framework and the conventional framework used in models, where Eulerian mean flow prognostic variables are solved for. Using the TWA framework as a starting point, this study explores the well-known connections between vertical transfer of horizontal momentum by eddy form drag and eddy overturning by the bolus velocity, used by Greatbatch and Lamb and Gent and McWilliams to parameterize eddies. After implementing the TWA framework in an ocean general circulation model, we verify our analysis by comparing the flows in an idealized Southern Ocean configuration simulated using the TWA and conventional frameworks with the same mesoscale eddy parameterization.« less

  7. Grouping patients for masseter muscle genotype-phenotype studies.

    PubMed

    Moawad, Hadwah Abdelmatloub; Sinanan, Andrea C M; Lewis, Mark P; Hunt, Nigel P

    2012-03-01

    To use various facial classifications, including either/both vertical and horizontal facial criteria, to assess their effects on the interpretation of masseter muscle (MM) gene expression. Fresh MM biopsies were obtained from 29 patients (age, 16-36 years) with various facial phenotypes. Based on clinical and cephalometric analysis, patients were grouped using three different classifications: (1) basic vertical, (2) basic horizontal, and (3) combined vertical and horizontal. Gene expression levels of the myosin heavy chain genes MYH1, MYH2, MYH3, MYH6, MYH7, and MYH8 were recorded using quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and were related to the various classifications. The significance level for statistical analysis was set at P ≤ .05. Using classification 1, none of the MYH genes were found to be significantly different between long face (LF) patients and the average vertical group. Using classification 2, MYH3, MYH6, and MYH7 genes were found to be significantly upregulated in retrognathic patients compared with prognathic and average horizontal groups. Using classification 3, only the MYH7 gene was found to be significantly upregulated in retrognathic LF compared with prognathic LF, prognathic average vertical faces, and average vertical and horizontal groups. The use of basic vertical or basic horizontal facial classifications may not be sufficient for genetics-based studies of facial phenotypes. Prognathic and retrognathic facial phenotypes have different MM gene expressions; therefore, it is not recommended to combine them into one single group, even though they may have a similar vertical facial phenotype.

  8. Three-Dimensional Laminar Separation.

    DTIC Science & Technology

    1983-12-01

    and are due to the power supply. ........................... 51 Fig. 26 The actual experimental points shown together with the smoothed profile on...Flow visualizations of the regions of interest are presented and compared with the calculated results. Streamwlse and cross flow velocity profiles ...the leeward side at the fourth .station . ............................................... 52 Fig. 27 The u-component velocity profile . Horizontal and

  9. Changes in Contact Area in Meniscus Horizontal Cleavage Tears Subjected to Repair and Resection.

    PubMed

    Beamer, Brandon S; Walley, Kempland C; Okajima, Stephen; Manoukian, Ohan S; Perez-Viloria, Miguel; DeAngelis, Joseph P; Ramappa, Arun J; Nazarian, Ara

    2017-03-01

    To assess the changes in tibiofemoral contact pressure and contact area in human knees with a horizontal cleavage tear before and after treatment. Ten human cadaveric knees were tested. Pressure sensors were placed under the medial meniscus and the knees were loaded at twice the body weight for 20 cycles at 0°, 10°, and 20° of flexion. Contact area and pressure were recorded for the intact meniscus, the meniscus with a horizontal cleavage tear, after meniscal repair, after partial meniscectomy (single leaflet), and after subtotal meniscectomy (double leaflet). The presence of a horizontal cleavage tear significantly increased average peak contact pressure and reduced effective average tibiofemoral contact area at all flexion angles tested compared with the intact state (P < .03). There was approximately a 70% increase in contact pressure after creation of the horizontal cleavage tear. Repairing the horizontal cleavage tear restored peak contact pressures and areas to within 15% of baseline, statistically similar to the intact state at all angles tested (P < .05). Partial meniscectomy and subtotal meniscectomy significantly increased average peak contact pressure and reduced average contact area at all degrees of flexion compared with the intact state (P < .05). The presence of a horizontal cleavage tear in the medial meniscus causes a significant reduction in contact area and a significant elevation in contact pressure. These changes may accelerate joint degeneration. A suture-based repair of these horizontal cleavage tears returns the contact area and contact pressure to nearly normal, whereas both partial and subtotal meniscectomy lead to significant reductions in contact area and significant elevations in contact pressure within the knee. Repairing horizontal cleavage tears may lead to improved clinical outcomes by preserving meniscal tissue and the meniscal function. Understanding contact area and peak contact pressure resulting from differing strategies for treating horizontal cleavage tears will allow the surgeon to evaluate the best strategy for treating his or her patients who present with this meniscal pathology. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  10. Lapse-time-dependent coda-wave depth sensitivity to local velocity perturbations in 3-D heterogeneous elastic media

    NASA Astrophysics Data System (ADS)

    Obermann, Anne; Planès, Thomas; Hadziioannou, Céline; Campillo, Michel

    2016-10-01

    In the context of seismic monitoring, recent studies made successful use of seismic coda waves to locate medium changes on the horizontal plane. Locating the depth of the changes, however, remains a challenge. In this paper, we use 3-D wavefield simulations to address two problems: first, we evaluate the contribution of surface- and body-wave sensitivity to a change at depth. We introduce a thin layer with a perturbed velocity at different depths and measure the apparent relative velocity changes due to this layer at different times in the coda and for different degrees of heterogeneity of the model. We show that the depth sensitivity can be modelled as a linear combination of body- and surface-wave sensitivity. The lapse-time-dependent sensitivity ratio of body waves and surface waves can be used to build 3-D sensitivity kernels for imaging purposes. Second, we compare the lapse-time behaviour in the presence of a perturbation in horizontal and vertical slabs to address, for instance, the origin of the velocity changes detected after large earthquakes.

  11. Clarifying the interplate main tectonic elements of Western Anatolia, Turkey by using GNSS velocities and Bouguer gravity anomalies

    NASA Astrophysics Data System (ADS)

    Çırmık, Ayça; Pamukçu, Oya

    2017-10-01

    In this study, the GNSS and gravity data were processed and compared together for examining the continental structures of the Western Anatolia region which has very complicated tectonism. The GNSS data of three national projects were processed and GNSS velocities were found as approximately 25 mm per year towards southwest with respect to the Eurasia fixed frame. In order to investigate the interplate motions of the region, the Anatolian and Aegean block solutions were calculated and the differences in directions and amplitudes of velocities were observed particularly in the Anatolian block solution. Due to the Anatolian block solutions, the study area was grouped into three regions and compared with the tectonic structures as the first time for Western Anatolia by this study. Additionally, W-E and N-S relative GNSS solutions were obtained for observing the possible tectonic borders of the study area. Besides, 2nd order horizontal derivative and low-pass filter methods were applied to Bouguer gravity anomalies and the results of the gravity applications and the changes on crustal-mantle interface were compared with the GNSS horizontal velocities.

  12. A simple, analytic 3-dimensional downburst model based on boundary layer stagnation flow

    NASA Technical Reports Server (NTRS)

    Oseguera, Rosa M.; Bowles, Roland L.

    1988-01-01

    A simple downburst model is developed for use in batch and real-time piloted simulation studies of guidance strategies for terminal area transport aircraft operations in wind shear conditions. The model represents an axisymmetric stagnation point flow, based on velocity profiles from the Terminal Area Simulation System (TASS) model developed by Proctor and satisfies the mass continuity equation in cylindrical coordinates. Altitude dependence, including boundary layer effects near the ground, closely matches real-world measurements, as do the increase, peak, and decay of outflow and downflow with increasing distance from the downburst center. Equations for horizontal and vertical winds were derived, and found to be infinitely differentiable, with no singular points existent in the flow field. In addition, a simple relationship exists among the ratio of maximum horizontal to vertical velocities, the downdraft radius, depth of outflow, and altitude of maximum outflow. In use, a microburst can be modeled by specifying four characteristic parameters, velocity components in the x, y and z directions, and the corresponding nine partial derivatives are obtained easily from the velocity equations.

  13. Upper-Ocean Variability in the Arctic’s Amundsen and Nansen Basins

    DTIC Science & Technology

    2017-05-01

    collect vertical profiles of ocean temperature, salinity and horizontal velocity at few- hour interval as well as sample for specified time periods...deployed for the MIZ program - specifically, vertical temperature, salinity and velocity profiles were collected every 3 hours in the upper 250m of the...the system), this ITP-V returned 5+ months of upper ocean temperature, salinity , velocity and turbulence data from the Makarov Basin, a region of

  14. Changes in pitching mechanics after ulnar collateral ligament reconstruction in major league baseball pitchers.

    PubMed

    Portney, Daniel A; Lazaroff, Jake M; Buchler, Lucas T; Gryzlo, Stephen M; Saltzman, Matthew D

    2017-08-01

    Medial ulnar collateral ligament (UCL) reconstruction is a common procedure performed on Major League Baseball pitchers. Variations in pitching mechanics before and after UCL reconstructive surgery are not well understood. Publicly available pitch tracking data (PITCHf/x) were compared for all Major League Baseball pitchers who underwent UCL reconstruction between 2008 and 2013. Specific parameters analyzed were fastball percentage, release location, velocity, and movement of each pitch type. These data were compared before and after UCL reconstructive surgery and compared with a randomly selected control cohort. There were no statistically significant changes in pitch selection or pitch accuracy after UCL reconstruction, nor was there a decrease in pitch velocity. The average pitch release location for 4-seam and 2-seam fastballs, curveballs, and changeups is more medial after UCL reconstruction (P < .01). Four-seam fastballs and sliders showed decreased horizontal breaking movement after surgery (P < .05), whereas curveballs showed increased downward breaking movement after surgery (P < .05). Pitch selection, pitch velocity, and pitch accuracy do not significantly change after UCL reconstruction, nor do players who require UCL reconstruction have significantly different pitch selection, velocity, or accuracy than a randomly selected control cohort. Pitch release location is more medial after UCL reconstruction for all pitch types except sliders. Breaking movement of fastballs, sliders, and curveballs changes after UCL reconstruction. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  15. The Impact of Immediate Verbal Feedback on the Improvement of Swimming Technique

    PubMed Central

    Zatoń, Krystyna; Szczepan, Stefan

    2014-01-01

    The present research attempts to ascertain the impact of immediate verbal feedback (IVF) on modifications of stroke length (SL). In all swimming styles, stroke length is considered an essential kinematic parameter of the swimming cycle. It is important for swimming mechanics and energetics. If SL shortens while the stroke rate (SR) remains unchanged or decreases, the temporal-spatial structure of swimming is considered erroneous. It results in a lower swimming velocity. Our research included 64 subjects, who were divided into two groups: the experimental – E (n=32) and the control – C (n=32) groups. A pretest and a post-test were conducted. The subjects swam the front crawl over the test distance of 25m at Vmax. Only the E group subjects were provided with IVF aiming to increase their SL. All tests were filmed by two cameras (50 samples•s-1). The kinematic parameters of the swimming cycle were analyzed using the SIMI Reality Motion Systems 2D software (SIMI Reality Motion Systems 2D GmbH, Germany). The movement analysis allowed to determine the average horizontal swimming velocity over 15 meters. The repeated measures analysis of variance ANOVA with a post-hoc Tukey range test demonstrated statistically significant (p<0.05) differences between the two groups in terms of SL and swimming velocity. IVF brought about a 6.93% (Simi method) and a 5.09% (Hay method) increase in SL, as well as a 2.92% increase in swimming velocity. PMID:25114741

  16. Crust and uppermost-mantle structure of Greenland and the Northwest Atlantic from Rayleigh wave group velocity tomography

    NASA Astrophysics Data System (ADS)

    Darbyshire, Fiona A.; Dahl-Jensen, Trine; Larsen, Tine B.; Voss, Peter H.; Joyal, Guillaume

    2018-03-01

    The Greenland landmass preserves ˜4 billion years of tectonic history, but much of the continent is inaccessible to geological study due to the extensive inland ice cap. We map out, for the first time, the 3-D crustal structure of Greenland and the NW Atlantic ocean, using Rayleigh wave anisotropic group velocity tomography, in the period range 10-80 s, from regional earthquakes and the ongoing GLATIS/GLISN seismograph networks. 1-D inversion gives a pseudo-3-D model of shear wave velocity structure to depths of ˜100 km with a horizontal resolution of ˜200 km. Crustal thickness across mainland Greenland ranges from ˜25 km to over 50 km, and the velocity structure shows considerable heterogeneity. The large sedimentary basins on the continental shelf are clearly visible as low velocities in the upper ˜5-15 km. Within the upper continental basement, velocities are systematically lower in northern Greenland than in the south, and exhibit a broadly NW-SE trend. The thinning of the crust at the continental margins is also clearly imaged. Upper-mantle velocities show a clear distinction between typical fast cratonic lithosphere (Vs ≥4.6 km s-1) beneath Greenland and its NE margin and anomalously slow oceanic mantle (Vs ˜4.3-4.4 km s-1) beneath the NW Atlantic. We do not observe any sign of pervasive lithospheric modification across Greenland in the regions associated with the presumed Iceland hotspot track, though the average crustal velocity in this region is higher than that of areas to the north and south. Crustal anisotropy beneath Greenland is strong and complex, likely reflecting numerous episodes of tectonic deformation. Beneath the North Atlantic and Baffin Bay, the dominant anisotropy directions are perpendicular to the active and extinct spreading centres. Anisotropy in the subcontinental lithosphere is weaker than that of the crust, but still significant, consistent with cratonic lithosphere worldwide.

  17. Inference and Biogeochemical Response of Vertical Velocities inside a Mode Water Eddy

    NASA Astrophysics Data System (ADS)

    Barceló-Llull, B.; Pallas Sanz, E.; Sangrà, P.

    2016-02-01

    With the aim to study the modulation of the biogeochemical fluxes by the ageostrophic secondary circulation in anticyclonic mesoscale eddies, a typical eddy of the Canary Eddy Corridor was interdisciplinary surveyed on September 2014 in the framework of the PUMP project. The eddy was elliptical shaped, 4 month old, 110 km diameter and 400 m depth. It was an intrathermocline type often also referred as mode water eddy type. We inferred the mesoscale vertical velocity field resolving a generalized omega equation from the 3D density and ADCP velocity fields of a five-day sampled CTD-SeaSoar regular grid centred on the eddy. The grid transects where 10 nautical miles apart. Although complex, in average, the inferred omega velocity field (hereafter w) shows a dipolar structure with downwelling velocities upstream of the propagation path (west) and upwelling velocities downstream. The w at the eddy center was zero and maximum values were located at the periphery attaining ca. 6 m day-1. Coinciding with the occurrence of the vertical velocities cells a noticeable enhancement of phytoplankton biomass was observed at the eddy periphery respect to the far field. A corresponding upward diapycnal flux of nutrients was also observed at the periphery. As minimum velocities where reached at the eddy center, lineal Ekman pumping mechanism was discarded. Minimum values of phytoplankton biomass where also observed at the eddy center. The possible mechanisms for such dipolar w cell are still being investigated, but an analysis of the generalized omega equation forcing terms suggest that it may be a combination of horizontal deformation and advection of vorticity by the ageostrophic current (related to nonlinear Ekman pumping). As expected for Trades, the wind was rather constant and uniform with a speed of ca. 5 m s-1. Diagnosed nonlinear Ekman pumping leaded also to a dipolar cell that mirrors the omega w dipolar cell.

  18. UAS Well Clear Recovery Against Non-Cooperative Intruders Using Vertical Maneuvers

    NASA Technical Reports Server (NTRS)

    Cone, Andrew; Thipphavong, David; Lee, Seung Man; Santiago, Confesor

    2017-01-01

    This paper documents a study that drove the development of a mathematical expression in the minimum operational performance standards (MOPS) of detect-and-avoid (DAA) systems for unmanned aircraft systems (UAS). This equation describes the conditions under which vertical maneuver guidance could be provided during recovery of well clear separation with a non-cooperative VFR aircraft in addition to horizontal maneuver guidance. Although suppressing vertical maneuver guidance in these situations increased the minimum horizontal separation from 500 to 800 feet, the maximum severity of loss of well clear increased in about 35 of the encounters compared to when a vertical maneuver was preferred and allowed. Additionally, analysis of individual cases led to the identification of a class of encounter where vertical rate error had a large effect on horizontal maneuvers due to the difficulty of making the correct left-right turn decision: crossing conflict with intruder changing altitude. These results supported allowing vertical maneuvers when UAS vertical performance exceeds the relative vertical position and velocity accuracy of the DAA tracker given the current velocity of the UAS and the relative vertical position and velocity estimated by the DAA tracker. Looking ahead, these results indicate a need to improve guidance algorithms by utilizing maneuver stability and near mid-air collision risk when determining maneuver guidance to regain well clear separation.

  19. Effect of spaceflight on the spatial orientation of the vestibulo-ocular reflex during eccentric roll rotation: A case report.

    PubMed

    Reschke, Millard F; Wood, Scott J; Clément, Gilles

    2018-01-01

    Ground-based studies have reported shifts of the vestibulo-ocular reflex (VOR) slow phase velocity (SPV) axis toward the resultant gravito-inertial force vector. The VOR was examined during eccentric roll rotation before, during and after an 8-day orbital mission. On orbit this vector is aligned with the head z-axis. Our hypothesis was that eccentric roll rotation on orbit would generate horizontal eye movements. Two subjects were rotated in a semi-supine position with the head nasal-occipital axis parallel to the axis of rotation and 0.5 m off-center. The chair accelerated at 120 deg/s2 to 120 deg/s, rotated at constant velocity for one minute, and then decelerated to a stop in similar fashion. On Earth, the stimulation primarily generated torsional VOR. During spaceflight, in one subject torsional VOR became horizontal VOR, and then decayed very slowly. In the other subject, torsional VOR was reduced on orbit relative to pre- and post-flight, but the SPV axis did not rotate. We attribute the shift from torsional to horizontal VOR on orbit to a spatial orientation of velocity storage toward alignment with the gravito-inertial force vector, and the inter-individual difference to cognitive factors related to the subjective straight-ahead.

  20. Interplate locking derived from seafloor geodetic measurement at the shallow subduction zone of the northernmost Suruga Trough, Japan

    NASA Astrophysics Data System (ADS)

    Yasuda, K.; Tadokoro, K.; Ikuta, R.; Watanabe, T.; Nagai, S.; Sayanagi, K.

    2013-12-01

    Observation of seafloor crustal deformation is crucial for megathrust earthquake because most of the focal areas are located below seafloor. Seafloor crustal deformation can be observed GPS/Acoustic technique, and this technique has been carried out at subduction margins in Japan, e.g., Japan Trench, Suruga Trough, and Nankai Trough. At the present, the accuracy of seafloor positioning is one to several centimeters for each epoch. Velocity vectors at seafloor site are estimated through repeated observations. Co- and post- seismic slip distribution and interseismic deformation are estimated from results of seafloor geodetic measurement (e.g., Iinuma et al., 2012; Tadokoro et al., 2012). We repeatedly observed seafloor crustal deformations at two sites across the Suruga Trough from 2005 to investigate interplate locking condition at the focal area of the anticipated megathrust, Tokai, earthquake. We observed 12 and 16 times at an east site of the Suruga Trough (SNE) and at an west site of the Suruga Trough (SNW), respectively. We reinstalled seafloor benchmarks at both sites because of run out of batteries in 2012. We calculated and removed the bias between the old and new seafloor benchmarks. Furthermore, we evaluated two type of analysis. One is Fixed triangular configuration Analysis (FTA). When we determine the seafloor benchmark position, we fix the triangular configuration of seafloor units averaging all the measurements to improve trade-off relation between seafloor benchmark position and sound speed structure. Sound speed structure is assumed to be horizontal layered structure. The other one is Fixed Triangle and Gradient structure of sound speed structure (FTGA). We fixed triangular configuration same as FTA. Sound speed structure is assumed to have gradient structure. Comparing FTA with FTGA, the RMS of horizontal position analyzed through FTA is smaller than that through FTGA at SNE site. On the other hand, the RMS of horizontal position analyzed through FTA is larger than that through FTGA at SNW site. We estimated the displacement velocities with relative to the Amurian plate from the result of repeated observation. The estimated displacement velocity vectors at SNE and SNW are 42×8 mm/y to N94W direction and 46×13 mm/y to N77W direction, respectively. The directions are the same as those measured at the on-land GPS stations. The magnitudes of velocity vector indicate significant shortening by approximately 11 mm/y between SNW and on-land GPS stations at the western part of the Suruga Trough. We also calculated the theoretical surface deformation pattern to depict the interplate locking condition. These results show that the plate interface at the shallow zone of the northernmost Suruga trough is strongly locked.

  1. A case study using kinematic quantities derived from a triangle of VHF Doppler wind profilers

    NASA Technical Reports Server (NTRS)

    Carlson, Catherine A.; Forbes, Gregory S.

    1989-01-01

    Horizontal divergence, relative vorticity, kinematic vertical velocity, and geostrophic and ageostrophic winds are computed from Colorado profiler network data to investigate an upslope snowstorm in northeastern Colorado. Horizontal divergence and relative vorticity are computed using the Gauss and Stokes theorems, respectively. Kinematic vertical velocities are obtained from the surface to 9 km by vertically integrating the continuity equation. The geostrophic and ageostrophic winds are computed by applying a finite differencing technique to evaluate the derivatives in the horizontal equations of motion. Comparison of the synoptic-scale data with the profiler network data reveals that the two datasets are generally consistent. Also, the profiler-derived quantities exhibit coherent vertical and temporal patterns consistent with conceptual and theoretical flow fields of various meteorological phenomena. It is suggested that the profiler-derived quantities are of potential use to weather forecasters in that they enable the dynamic and kinematic interpretation of weather system structure to be made and thus have nowcasting and short-term forecasting value.

  2. Crustal structure of southwestern Saudi Arabia

    USGS Publications Warehouse

    Gettings, M.E.; Blank, H.R.; Mooney, W.D.; Healy, J.H.

    1983-01-01

    The southwestern Arabian Shield is composed of uplifted Proterozoic metamorphic and plutonic rocks. The Shield is bordered on the southwest by Cenozoic sedimentary and igneous rocks of the Red Sea paar and on the east by the Arabian Platform, an area of basin sedimentation throughout Phanerozoic time. The Shield appears to have been formed by successive episodes of island arc volcanism and sea-floor spreading, followed by several cycles of compressive tectonism and metamorphism. An interpretation and synthesis of a deep-refraction seismic profile from the Riyadh area to the Farasan Islands, and regional gravity, aeromagnetic, heat flow, and surface geologic data have yielded a self-consistent regional-scale model of the crust and upper mantle for this area. The model consists of two 20 km-thick layers of crust with an average compressional wave velocity in the upper crust of about 6.3 km/s and an average velocity in the lower. crust of about 7.0 km/s. This crust thins abruptly to less than 20 km near the southwestern end of the profile where Precambrian outcrops abut the Cenozoic rocks and to 8 km beneath the Farasan Islands. The data over the coastal plain and Red Sea shelf areas are fit satisfactorily by an oceanic crustal model. A major lateral velocity inhomogeneity in the crust is inferred about 25 km northeast of Sabhah and is supported by surface geologic evidence. The major velocity discontinuities occur at about the same depth across the entire Shield and are interpreted to indicate horizontal metamorphic stratification of the Precambrian crust. Several lateral inhomogenities in both the upper and lower .crust of the . Shield are interpreted, to indicate bulk compositional variations. The subcrustal portion of the model is composed of a hot, low-density lithosphere beneath the Red Sea which is systematically cooler and denser to the northeast. This model provides a mechanism which explains the observed topographic uplift, regional gravity pattern, heat flow, and mantle compressional wave velocities. Such a lithosphere could be produced by upwelling of hot asthenosphere beneath the Red Sea which then flows laterally beneath the lithosphere of the Arabian Plate.

  3. A Quantitative Evaluation of SCEC Community Velocity Model Version 3.0

    NASA Astrophysics Data System (ADS)

    Chen, P.; Zhao, L.; Jordan, T. H.

    2003-12-01

    We present a systematic methodology for evaluating and improving 3D seismic velocity models using broadband waveform data from regional earthquakes. The operator that maps a synthetic waveform into an observed waveform is expressed in the Rytov form D(ω ) = {exp}[{i} ω δ τ {p}(ω ) - ω δ τ {q}(ω )]. We measure the phase delay time δ τ p(ω ) and the amplitude reduction time δ τ q(ω ) as a function of frequency ω using Gee & Jordan's [1992] isolation-filter technique, and we correct the data for frequency-dependent interference and frequency-independent source statics. We have applied this procedure to a set of small events in Southern California. Synthetic seismograms were computed using three types of velocity models: the 1D Standard Southern California Crustal Model (SoCaL) [Dreger & Helmberger, 1993], the 3D SCEC Community Velocity Model, Version 3.0 (CVM3.0) [Magistrale et al., 2000], and a set of path-averaged 1D models (A1D) extracted from CVM3.0 by horizontally averaging wave slownesses along source-receiver paths. The 3D synthetics were computed using K. Olsen's finite difference code. More than 1000 measurements were made on both P and S waveforms at frequencies ranging from 0.2 to 1 Hz. Overall, the 3D model provided a substantially better fit to the waveform data than either laterally homogeneous or path-dependent 1D models. Relative to SoCaL, CVM3.0 provided a variance reduction of about 64% in δ τ p, and 41% in δ τ q. Relative to A1D, the variance reduction is about 46% and 20%, respectively. The same set of measurements can be employed to invert for both seismic source properties and seismic velocity structures. Fully numerical methods are being developed to compute the Fréchet kernels for these measurements [L. Zhao et. al., this meeting]. This methodology thus provides a unified framework for regional studies of seismic sources and Earth structure in Southern California and elsewhere.

  4. Field monitoring of sprinting power-force-velocity profile before, during and after hamstring injury: two case reports.

    PubMed

    Mendiguchia, J; Edouard, P; Samozino, P; Brughelli, M; Cross, M; Ross, A; Gill, N; Morin, J B

    2016-01-01

    Very little is currently known about the effects of acute hamstring injury on over-ground sprinting mechanics. The aim of this research was to describe changes in power-force-velocity properties of sprinting in two injury case studies related to hamstring strain management: Case 1: during a repeated sprint task (10 sprints of 40 m) when an injury occurred (5th sprint) in a professional rugby player; and Case 2: prior to (8 days) and after (33 days) an acute hamstring injury in a professional soccer player. A sports radar system was used to measure instantaneous velocity-time data, from which individual mechanical profiles were derived using a recently validated method based on a macroscopic biomechanical model. Variables of interest included: maximum theoretical velocity (V0) and horizontal force (F(H0)), slope of the force-velocity (F-v) relationship, maximal power, and split times over 5 and 20 m. For Case 1, during the injury sprint (sprint 5), there was a clear change in the F-v profile with a 14% greater value of F(H0) (7.6-8.7 N/kg) and a 6% decrease in V0 (10.1 to 9.5 m/s). For Case 2, at return to sport, the F-v profile clearly changed with a 20.5% lower value of F(H0) (8.3 vs. 6.6 N/kg) and no change in V0. The results suggest that the capability to produce horizontal force at low speed (F(H0)) (i.e. first metres of the acceleration phase) is altered both before and after return to sport from a hamstring injury in these two elite athletes with little or no change of maximal velocity capabilities (V0), as evidenced in on-field conditions. Practitioners should consider regularly monitoring horizontal force production during sprint running both from a performance and injury prevention perspective.

  5. Influence of surface displacement on solid state flow induced by horizontally heterogeneous Joule heating in the inner core of the Earth

    NASA Astrophysics Data System (ADS)

    Takehiro, Shin-ichi

    2015-04-01

    We investigate the influence of surface displacement on fluid motions induced by horizontally heterogeneous Joule heating in the inner core. The difference between the governing equations and those of Takehiro (2011) is the boundary conditions at the inner core boundary (ICB). The temperature disturbance at the ICB coincides with the melting temperature, which varies depending on the surface displacement. The normal component of stress equalizes with the buoyancy induced by the surface displacement. The toroidal magnetic field and surface displacement with the horizontal structure of Y20 spherical harmonics is given. The flow fields are calculated numerically for various amplitudes of surface displacement with the expected values of the parameters of the core. Further, by considering the heat balance at the ICB, the surface displacement amplitude is related to the turbulent velocity amplitude in the outer core, near the ICB. The results show that when the turbulent velocity is on the order of 10-1 -10-2 m/s, the flow and stress fields are similar to those of Takehiro (2011), where the surface displacement vanishes. As the amplitude of the turbulent velocity decreases, the amplitude of the surface displacement increases, and counter flows from the polar to equatorial regions emerge around the ICB, while flow in the inner regions is directed from the equatorial to polar regions, and the non-zero radial component of velocity at the ICB remains. When the turbulent velocity is on the order of 10-4 -10-5 m/s, the radial component of velocity at the ICB vanishes, the surface counter flows become stronger than the flow in the inner region, and the amplitude of the stress field near the ICB dominates the inner region, which might be unsuitable for explaining the elastic anisotropy in the inner core.

  6. Remote determination of the velocity index and mean streamwise velocity profiles

    NASA Astrophysics Data System (ADS)

    Johnson, E. D.; Cowen, E. A.

    2017-09-01

    When determining volumetric discharge from surface measurements of currents in a river or open channel, the velocity index is typically used to convert surface velocities to depth-averaged velocities. The velocity index is given by, k=Ub/Usurf, where Ub is the depth-averaged velocity and Usurf is the local surface velocity. The USGS (United States Geological Survey) standard value for this coefficient, k = 0.85, was determined from a series of laboratory experiments and has been widely used in the field and in laboratory measurements of volumetric discharge despite evidence that the velocity index is site-specific. Numerous studies have documented that the velocity index varies with Reynolds number, flow depth, and relative bed roughness and with the presence of secondary flows. A remote method of determining depth-averaged velocity and hence the velocity index is developed here. The technique leverages the findings of Johnson and Cowen (2017) and permits remote determination of the velocity power-law exponent thereby, enabling remote prediction of the vertical structure of the mean streamwise velocity, the depth-averaged velocity, and the velocity index.

  7. Effects of free convection and friction on heat-pulse flowmeter measurement

    NASA Astrophysics Data System (ADS)

    Lee, Tsai-Ping; Chia, Yeeping; Chen, Jiun-Szu; Chen, Hongey; Liu, Chen-Wuing

    2012-03-01

    SummaryHeat-pulse flowmeter can be used to measure low flow velocities in a borehole; however, bias in the results due to measurement error is often encountered. A carefully designed water circulation system was established in the laboratory to evaluate the accuracy and precision of flow velocity measured by heat-pulse flowmeter in various conditions. Test results indicated that the coefficient of variation for repeated measurements, ranging from 0.4% to 5.8%, tends to increase with flow velocity. The measurement error increases from 4.6% to 94.4% as the average flow velocity decreases from 1.37 cm/s to 0.18 cm/s. We found that the error resulted primarily from free convection and frictional loss. Free convection plays an important role in heat transport at low flow velocities. Frictional effect varies with the position of measurement and geometric shape of the inlet and flow-through cell of the flowmeter. Based on the laboratory test data, a calibration equation for the measured flow velocity was derived by the least-squares regression analysis. When the flowmeter is used with a diverter, the range of measured flow velocity can be extended, but the measurement error and the coefficient of variation due to friction increase significantly. At higher velocities under turbulent flow conditions, the measurement error is greater than 100%. Our laboratory experimental results suggested that, to avoid a large error, the heat-pulse flowmeter measurement is better conducted in laminar flow and the effect of free convection should be eliminated at any flow velocities. Field measurement of the vertical flow velocity using the heat-pulse flowmeter was tested in a monitoring well. The calibration of measured velocities not only improved the contrast in hydraulic conductivity between permeable and less permeable layers, but also corrected the inconsistency between the pumping rate and the measured flow rate. We identified two highly permeable sections where the horizontal hydraulic conductivity is 3.7-6.4 times of the equivalent hydraulic conductivity obtained from the pumping test. The field test results indicated that, with a proper calibration, the flowmeter measurement is capable of characterizing the vertical distribution of preferential flow or hydraulic conductivity.

  8. Abnormal Vestibulo-Ocular Reflexes in Autism: A Potential Endophenotype

    DTIC Science & Technology

    2013-06-01

    Annual Report for 15 May 2012 – 14 May 2013 8 Table 5. Summary of Gaze Evoked Nystagmus Tests (no differences between groups) Target...abnormalities of vestibulo-ocular reflexes (VOR) in Autism Spectrum Disorder (ASD). Specific Aim 1: Characterize horizontal VOR post-rotary nystagmus ...without optokinetic feedback using a velocity step test. We hypothesize that in ASD vertical eye movement intrusions during horizontal nystagmus will

  9. Visually induced adaptation in three-dimensional organization of primate vestibuloocular reflex

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1998-01-01

    The adaptive plasticity of the spatial organization of the vestibuloocular reflex (VOR) has been investigated in intact and canal-plugged primates using 2-h exposure to conflicting visual (optokinetic, OKN) and vestibular rotational stimuli about mutually orthogonal axes (generating torsional VOR + vertical OKN, torsional VOR + horizontal OKN, vertical VOR + horizontal OKN, and horizontal VOR + vertical OKN). Adaptation protocols with 0.5-Hz (+/-18 degrees ) head movements about either an earth-vertical or an earth-horizontal axis induced orthogonal response components as high as 40-70% of those required for ideal adaptation. Orthogonal response gains were highest at the adapting frequency with phase leads present at lower and phase lags present at higher frequencies. Furthermore, the time course of adaptation, as well as orthogonal response dynamics were similar and relatively independent of the particular visual/vestibular stimulus combination. Low-frequency (0. 05 Hz, vestibular stimulus: +/-60 degrees ; optokinetic stimulus: +/-180 degrees ) adaptation protocols with head movements about an earth-vertical axis induced smaller orthogonal response components that did not exceed 20-40% of the head velocity stimulus (i.e., approximately 10% of that required for ideal adaptation). At the same frequency, adaptation with head movements about an earth-horizontal axis generated large orthogonal responses that reached values as high as 100-120% of head velocity after 2 h of adaptation (i.e., approximately 40% of ideal adaptation gains). The particular spatial and temporal response characteristics after low-frequency, earth-horizontal axis adaptation in both intact and canal-plugged animals strongly suggests that the orienting (and perhaps translational) but not inertial (velocity storage) components of the primate otolith-ocular system exhibit spatial adaptability. Due to the particular nested arrangement of the visual and vestibular stimuli, the optic flow pattern exhibited a significant component about the third spatial axis (i.e., orthogonal to the axes of rotation of the head and visual surround) at twice the oscillation frequency. Accordingly, the adapted VOR was characterized consistently by a third response component (orthogonal to both the axes of head and optokinetic drum rotation) at twice the oscillation frequency after earth-horizontal but not after earth-vertical axis 0.05-Hz adaptation. This suggests that the otolith-ocular (but not the semicircular canal-ocular) system can adaptively change its spatial organization at frequencies different from those of the head movement.

  10. Joint representation of translational and rotational components of optic flow in parietal cortex

    PubMed Central

    Sunkara, Adhira; DeAngelis, Gregory C.; Angelaki, Dora E.

    2016-01-01

    Terrestrial navigation naturally involves translations within the horizontal plane and eye rotations about a vertical (yaw) axis to track and fixate targets of interest. Neurons in the macaque ventral intraparietal (VIP) area are known to represent heading (the direction of self-translation) from optic flow in a manner that is tolerant to rotational visual cues generated during pursuit eye movements. Previous studies have also reported that eye rotations modulate the response gain of heading tuning curves in VIP neurons. We tested the hypothesis that VIP neurons simultaneously represent both heading and horizontal (yaw) eye rotation velocity by measuring heading tuning curves for a range of rotational velocities of either real or simulated eye movements. Three findings support the hypothesis of a joint representation. First, we show that rotation velocity selectivity based on gain modulations of visual heading tuning is similar to that measured during pure rotations. Second, gain modulations of heading tuning are similar for self-generated eye rotations and visually simulated rotations, indicating that the representation of rotation velocity in VIP is multimodal, driven by both visual and extraretinal signals. Third, we show that roughly one-half of VIP neurons jointly represent heading and rotation velocity in a multiplicatively separable manner. These results provide the first evidence, to our knowledge, for a joint representation of translation direction and rotation velocity in parietal cortex and show that rotation velocity can be represented based on visual cues, even in the absence of efference copy signals. PMID:27095846

  11. Multi Plumes and Their Flows beneath Arabia and East Africa

    NASA Astrophysics Data System (ADS)

    Chang, S.; van der Lee, S.

    2010-12-01

    The three-dimensional S-velocity structure beneath Arabia and East Africa is estimated down to the lower mantle to investigate vertical and horizontal extension of low-velocity anomalies that bear out the presence of mantle plumes and their flows beneath lithosphere. We estimated this model through joint inversion of teleseismic S- and SKS-arrival times, regional S- and Rayleigh waveform fits, fundamental-mode Rayleigh-wave group velocities, and independent Moho constraints from receiver functions, reflection/refraction profiles, and gravity measurements. With the unprecedented resolution in our S-velocity model, we found different flow patterns of hot materials upwelling beneath Afar beneath the Red Sea and the Gulf of Aden. While the low-velocity anomaly from Afar is well confined beneath the Gulf of Aden, inferring mantle flow along the gulf, N-S channel of low velocity is found beneath Arabia, not along the Red Sea. The Afar plume is distinctively separate from the Kenya plume, showing its origin in the lower mantle beneath southwestern Arabia. We identified another low-velocity extension to the lower mantle beneath Jordan and northern Arabia, which is thought to have caused volcanism in Jordan, northern Arabia, and possibly southern Turkey. Comparing locations of mantle plumes from the joint inversion with fast axes of shear-wave splitting, we confirmed horizontal plume flow from Afar in NS direction beneath Arabia and in NE-SW direction beneath Ethiopia as a likely cause of the observed seismic anisotropy.

  12. Developments in the Use of Proximity and Ratio Cues in Velocity Judgments.

    ERIC Educational Resources Information Center

    Shire, Beatrice; Durkin, Kevin

    Young children's responses to a velocity inference task based on static pictorial stimuli giving cues of proximity and ratio were examined. Subjects (N=65) in preschool through second grade viewed pictures of snails moving horizontally or spiders suspended vertically and were asked to estimate which competitor would reach its destination first.…

  13. Turbulent dispersion of slightly buoyant oil droplets and turbulent breakup of crude oil droplets mixed with dispersants

    NASA Astrophysics Data System (ADS)

    Gopalan, Balaji

    In part I, high speed in-line digital holographic cinematography is used for studying turbulent diffusion of slightly buoyant 0.5-1.2 mm diameter diesel droplets (specific gravity of 0.85) and 50 mum diameter neutral density particles. Experiments are performed in a 50x50x70 mm3 sample volume in a controlled, nearly isotropic turbulence facility, which is characterized by 2-D PIV. An automated tracking program has been used for measuring velocity time history of more than 17000 droplets and 15000 particles. The PDF's of droplet velocity fluctuations are close to Gaussian for all turbulent intensities ( u'i ). The mean rise velocity of droplets is enhanced or suppressed, compared to quiescent rise velocity (Uq), depending on Stokes number at lower turbulence levels, but becomes unconditionally enhanced at higher turbulence levels. The horizontal droplet velocity rms exceeds the fluid velocity rms for most of the data, while the vertical ones are higher than the fluid only at the highest turbulence level. The scaled droplet horizontal diffusion coefficient is higher than the vertical one, for 1 < u'i /Uq < 5, consistent with trends of the droplet velocity fluctuations. Conversely, the scaled droplet horizontal diffusion timescale is smaller than the vertical one due to crossing trajectories effect. The droplet diffusion coefficients scaled by the product of turbulence intensity and an integral length scale is a monotonically increasing function of u'i /Uq. Part II of this work explains the formation of micron sized droplets in turbulent flows from crude oil droplets pre-mixed with dispersants. Experimental visualization shows that this breakup starts with the formation of very long and quite stable, single or multiple micro threads that trail behind millimeter sized droplets. These threads form in regions with localized increase in concentration of surfactant, which in turn depends on the flow around the droplet. The resulting reduction of local surface tension, aided by high oil viscosity and stretching by the flow, suppresses capillary breakup and explains the stability of these threads. Due to increasing surface area and diffusion of dispersants into the continuous phase, the threads eventually breakup into ˜3 mum droplets.

  14. Statistical analysis of gravity waves characteristics observed by airglow imaging at Syowa Station (69S, 39E), Antarctica

    NASA Astrophysics Data System (ADS)

    Matsuda, Takashi S.; Nakamura, Takuji; Shiokawa, Kazuo; Tsutsumi, Masaki; Suzuki, Hidehiko; Ejiri, Mitsumu K.; Taguchi, Makoto

    Atmospheric gravity waves (AGWs), which are generated in the lower atmosphere, transport significant amount of energy and momentum into the mesosphere and lower thermosphere and cause the mean wind accelerations in the mesosphere. This momentum deposit drives the general circulation and affects the temperature structure. Among many parameters to characterize AGWs, horizontal phase velocity is very important to discuss the vertical propagation. Airglow imaging is a useful technique for investigating the horizontal structures of AGWs at around 90 km altitude. Recently, there are many reports about statistical characteristics of AGWs observed by airglow imaging. However, comparison of these results obtained at various locations is difficult because each research group uses its own method for extracting and analyzing AGW events. We have developed a new statistical analysis method for obtaining the power spectrum in the horizontal phase velocity domain from airglow image data, so as to deal with huge amounts of imaging data obtained on different years and at various observation sites, without bias caused by different event extraction criteria for the observer. This method was applied to the data obtained at Syowa Station, Antarctica, in 2011 and compared with a conventional event analysis in which the phase fronts were traced manually in order to estimate horizontal characteristics. This comparison shows that our new method is adequate to deriving the horizontal phase velocity characteristics of AGWs observed by airglow imaging technique. We plan to apply this method to airglow imaging data observed at Syowa Station in 2002 and between 2008 and 2013, and also to the data observed at other stations in Antarctica (e.g. Rothera Station (67S, 68W) and Halley Station (75S, 26W)), in order to investigate the behavior of AGWs propagation direction and source distribution in the MLT region over Antarctica. In this presentation, we will report interim analysis result of the data at Syowa Station.

  15. Near-Fault Ground Motion Velocity Pulses Input and Its Non-Stationary Characteristics from 2015 Gorkha Nepal Mw7.8 Earthquake KATNP Station

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Wen, Zengping; Wang, Fang

    2017-04-01

    Using near-fault strong motions from Nepal Mw7.8 earthquake at KATNP station in the city center of Kathmandu, velocity-pulse and non-stationary characteristics of the strong motions are shown, and the reason and potential effect on earthquake damage for intense non-stationary characteristics of near fault velocity-pulse strong motions are mainly studied. The observed strong ground motions of main shock were collected from KATNP station located in 76 kilometers south-east away from epicenter along with forward direction of the rupture fault at an inter-montane basin of the Himalaya. Large velocity pulse show the period of velocity pulse reach up to 6.6s and peak ground velocity of the pulse ground motion is 120 cm/s. Compared with the median spectral acceleration value of NGA prediction equation, significant long-period amplification effect due to velocity pulse is detected at period more than 3.2s. Wavelet analysis shows that the two horizontal component of ground motion is intensely concentration of energy in a short time range of 25-38s and period range of 4-8s. The maximum wavelet-coefficient of horizontal component is 2455, which is about four time of vertical component of strong ground motion. On the perspective of this study, large velocity pulses are identified from two orthogonal components using wavelet method. Intense non-stationary characteristics amplitude and frequency content are mainly caused by site conditions and fault rupture mechanism, which will help to understand the damage evaluation and serve local seismic design.

  16. A modified beam-to-earth transformation to measure short-wavelength internal waves with an acoustic Doppler current profiler

    USGS Publications Warehouse

    Scotti, A.; Butman, B.; Beardsley, R.C.; Alexander, P.S.; Anderson, S.

    2005-01-01

    The algorithm used to transform velocity signals from beam coordinates to earth coordinates in an acoustic Doppler current profiler (ADCP) relies on the assumption that the currents are uniform over the horizontal distance separating the beams. This condition may be violated by (nonlinear) internal waves, which can have wavelengths as small as 100-200 m. In this case, the standard algorithm combines velocities measured at different phases of a wave and produces horizontal velocities that increasingly differ from true velocities with distance from the ADCP. Observations made in Massachusetts Bay show that currents measured with a bottom-mounted upward-looking ADCP during periods when short-wavelength internal waves are present differ significantly from currents measured by point current meters, except very close to the instrument. These periods are flagged with high error velocities by the standard ADCP algorithm. In this paper measurements from the four spatially diverging beams and the backscatter intensity signal are used to calculate the propagation direction and celerity of the internal waves. Once this information is known, a modified beam-to-earth transformation that combines appropriately lagged beam measurements can be used to obtain current estimates in earth coordinates that compare well with pointwise measurements. ?? 2005 American Meteorological Society.

  17. Observations of vertical velocities in the tropical upper troposphere and lower stratosphere using the Arecibo 430-MHz radar

    NASA Technical Reports Server (NTRS)

    Cornish, C. R.

    1988-01-01

    The first clear-air observations of vertical velocities in the tropical upper troposphere and lower stratosphere (8-22 km) using the Arecibo 430-MHz radar are presented. Oscillations in the vertical velocity near the Brunt-Vaisala period are observed in the lower stratosphere during the 12-hour observation period. Frequency power spectra from the vertical velocity time series show a slope between -0.5 and -1.0. Vertical wave number spectra computed from the height profiles of vertical velocities have slopes between -1.0 and -1.5. These observed slopes do not agree well with the slopes of +1/3 and -2.5 for frequency and vertical wave number spectra, respectively, predicted by a universal gravity-wave spectrum model. The spectral power of wave number spectra of a radial beam directed 15 deg off-zenith is enhanced by an order of magnitude over the spectral power levels of the vertical beam. This enhancement suggests that other geophysical processes besides gravity waves are present in the horizontal flow. The steepening of the wave number spectrum of the off-vertical beam in the lower stratosphere to near -2.0 is attributed to a quasi-inertial period wave, which was present in the horizontal flow during the observation period.

  18. Flow over bedforms in a large sand-bed river: A field investigation

    USGS Publications Warehouse

    Holmes, Robert R.; Garcia, Marcelo H.

    2008-01-01

    An experimental field study of flows over bedforms was conducted on the Missouri River near St. Charles, Missouri. Detailed velocity data were collected under two different flow conditions along bedforms in this sand-bed river. The large river-scale data reflect flow characteristics similar to those of laboratory-scale flows, with flow separation occurring downstream of the bedform crest and flow reattachment on the stoss side of the next downstream bedform. Wave-like responses of the flow to the bedforms were detected, with the velocity decreasing throughout the flow depth over bedform troughs, and the velocity increasing over bedform crests. Local and spatially averaged velocity distributions were logarithmic for both datasets. The reach-wise spatially averaged vertical-velocity profile from the standard velocity-defect model was evaluated. The vertically averaged mean flow velocities for the velocity-defect model were within 5% of the measured values and estimated spatially averaged point velocities were within 10% for the upper 90% of the flow depth. The velocity-defect model, neglecting the wake function, was evaluated and found to estimate thevertically averaged mean velocity within 1% of the measured values.  

  19. A Geodetic Strain Rate Model for the Pacific-North American Plate Boundary, western United States

    NASA Astrophysics Data System (ADS)

    Kreemer, C.; Hammond, W. C.; Blewitt, G.; Holland, A. A.; Bennett, R. A.

    2012-04-01

    We present a model of crustal strain rates derived from GPS measurements of horizontal station velocities in the Pacific-North American plate boundary in the western United States. The model reflects a best estimate of present-day deformation from the San Andreas fault system in the west to the Basin and Range province in the east. Of the total 2,846 GPS velocities used in the model, 1,197 are derived by ourselves, and 1,649 are taken from (mostly) published results. The velocities derived by ourselves (the "UNR solution") are estimated from GPS position time-series of continuous and semi-continuous stations for which data are publicly available. We estimated ITRF2005 positions from 2002-2011.5 using JPL's GIPSY-OASIS II software with ambiguity resolution applied using our custom Ambizap software. Only stations with time-series that span at least 2.25 years are considered. We removed from the time-series continental-scale common-mode errors using a spatially-varying filtering technique. Velocity uncertainties (typically 0.1-0.3 mm/yr) assume that the time-series contain flicker plus white noise. We used a subset of stations on the stable parts of the Pacific and North American plates to estimate the Pacific-North American pole of rotation. This pole is applied as a boundary condition to the model and the North American - ITRF2005 pole is used to rotate our velocities into a North America fixed reference frame. We do not include parts of the time-series that show curvature due to post-seismic deformation after major earthquakes and we also exclude stations whose time-series display a significant unexplained non-linearity or that are near volcanic centers. Transient effects longer than the observation period (i.e., slow viscoelastic relaxation) are left in the data. We added to the UNR solution velocities from 12 other studies. The velocities are transformed onto the UNR solution's reference frame by estimating and applying a translation and rotation that minimizes the velocities at collocated stations. We removed obvious outliers and velocities in areas that we identified to undergo subsidence likely due to excessive water pumping. For the strain rate calculations we excluded GPS stations with anomalous vertical motion or annual horizontal periodicity, which are indicators of local site instability. First, we used the stations from the UNR solution to create a Delaunay triangulation and estimated the horizontal strain rate components (and rigid body rotation) for each triangle in a linear least-squares inversion using the horizontal velocities as input. Some level of spatial damping was applied to minimize unnecessary spatial variation in the model parameters. The strain rates estimates were then used as a priori strain rate variances in a method that fits continuous bi-cubic Bessel spline functions through the velocity gradient field while minimizing the weighted misfit to all velocities. A minimal level of spatial smoothing of the variances was applied. The strain rate tensor model is shown by contours of the second invariant of the tensor, which is a measure of the amplitude that is coordinate frame independent. We also show a map of the tensor style and of the signal-to-noise ratio of the model.

  20. Theoretical analysis and design of hydro-hammer with a jet actuator: An engineering application to improve the penetration rate of directional well drilling in hard rock formations.

    PubMed

    He, Jiang-Fu; Liang, Yun-Pei; Li, Li-Jia; Luo, Yong-Jiang

    2018-01-01

    Rapid horizontal directional well drilling in hard or fractured formations requires efficient drilling technology. The penetration rate of conventional hard rock drilling technology in horizontal directional well excavations is relatively low, resulting in multiple overgrinding of drill cuttings in bottom boreholes. Conventional drilling techniques with reamer or diamond drill bit face difficulties due to the long construction periods, low penetration rates, and high engineering costs in the directional well drilling of hard rock. To improve the impact energy and penetration rate of directional well drilling in hard formations, a new drilling system with a percussive and rotary drilling technology has been proposed, and a hydro-hammer with a jet actuator has also been theoretically designed on the basis of the impulse hydro-turbine pressure model. In addition, the performance parameters of the hydro-hammer with a jet actuator have been numerically and experimentally analyzed, and the influence of impact stroke and pumped flow rate on the motion velocity and impact energy of the hydro-hammer has been obtained. Moreover, the designed hydro-hammer with a jet actuator has been applied to hard rock drilling in a trenchless drilling program. The motion velocity of the hydro-hammer ranges from 1.2 m/s to 3.19 m/s with diverse flow rates and impact strokes, and the motion frequency ranges from 10 Hz to 22 Hz. Moreover, the maximum impact energy of the hydro-hammer is 407 J, and the pumped flow rate is 2.3 m3/min. Thus, the average penetration rate of the optimized hydro-hammer improves by over 30% compared to conventional directional drilling in hard rock formations.

  1. Theoretical analysis and design of hydro-hammer with a jet actuator: An engineering application to improve the penetration rate of directional well drilling in hard rock formations

    PubMed Central

    He, Jiang-fu; Li, Li-jia; Luo, Yong-jiang

    2018-01-01

    Rapid horizontal directional well drilling in hard or fractured formations requires efficient drilling technology. The penetration rate of conventional hard rock drilling technology in horizontal directional well excavations is relatively low, resulting in multiple overgrinding of drill cuttings in bottom boreholes. Conventional drilling techniques with reamer or diamond drill bit face difficulties due to the long construction periods, low penetration rates, and high engineering costs in the directional well drilling of hard rock. To improve the impact energy and penetration rate of directional well drilling in hard formations, a new drilling system with a percussive and rotary drilling technology has been proposed, and a hydro-hammer with a jet actuator has also been theoretically designed on the basis of the impulse hydro-turbine pressure model. In addition, the performance parameters of the hydro-hammer with a jet actuator have been numerically and experimentally analyzed, and the influence of impact stroke and pumped flow rate on the motion velocity and impact energy of the hydro-hammer has been obtained. Moreover, the designed hydro-hammer with a jet actuator has been applied to hard rock drilling in a trenchless drilling program. The motion velocity of the hydro-hammer ranges from 1.2 m/s to 3.19 m/s with diverse flow rates and impact strokes, and the motion frequency ranges from 10 Hz to 22 Hz. Moreover, the maximum impact energy of the hydro-hammer is 407 J, and the pumped flow rate is 2.3 m3/min. Thus, the average penetration rate of the optimized hydro-hammer improves by over 30% compared to conventional directional drilling in hard rock formations. PMID:29768421

  2. Second-moment budgets in cloud topped boundary layers: A large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Heinze, Rieke; Mironov, Dmitrii; Raasch, Siegfried

    2015-06-01

    A detailed analysis of second-order moment budgets for cloud topped boundary layers (CTBLs) is performed using high-resolution large-eddy simulation (LES). Two CTBLs are simulated—one with trade wind shallow cumuli, and the other with nocturnal marine stratocumuli. Approximations to the ensemble-mean budgets of the Reynolds-stress components, of the fluxes of two quasi-conservative scalars, and of the scalar variances and covariance are computed by averaging the LES data over horizontal planes and over several hundred time steps. Importantly, the subgrid scale contributions to the budget terms are accounted for. Analysis of the LES-based second-moment budgets reveals, among other things, a paramount importance of the pressure scrambling terms in the Reynolds-stress and scalar-flux budgets. The pressure-strain correlation tends to evenly redistribute kinetic energy between the components, leading to the growth of horizontal-velocity variances at the expense of the vertical-velocity variance which is produced by buoyancy over most of both CTBLs. The pressure gradient-scalar covariances are the major sink terms in the budgets of scalar fluxes. The third-order transport proves to be of secondary importance in the scalar-flux budgets. However, it plays a key role in maintaining budgets of TKE and of the scalar variances and covariance. Results from the second-moment budget analysis suggest that the accuracy of description of the CTBL structure within the second-order closure framework strongly depends on the fidelity of parameterizations of the pressure scrambling terms in the flux budgets and of the third-order transport terms in the variance budgets. This article was corrected on 26 JUN 2015. See the end of the full text for details.

  3. Summary of the GK15 ground‐motion prediction equation for horizontal PGA and 5% damped PSA from shallow crustal continental earthquakes

    USGS Publications Warehouse

    Graizer, Vladimir;; Kalkan, Erol

    2016-01-01

    We present a revised ground‐motion prediction equation (GMPE) for computing medians and standard deviations of peak ground acceleration (PGA) and 5% damped pseudospectral acceleration (PSA) response ordinates of the horizontal component of randomly oriented ground motions to be used for seismic‐hazard analyses and engineering applications. This GMPE is derived from the expanded Next Generation Attenuation (NGA)‐West 1 database (see Data and Resources; Chiou et al., 2008). The revised model includes an anelastic attenuation term as a function of quality factor (Q0) to capture regional differences in far‐source (beyond 150 km) attenuation, and a new frequency‐dependent sedimentary‐basin scaling term as a function of depth to the 1.5  km/s shear‐wave velocity isosurface to improve ground‐motion predictions at sites located on deep sedimentary basins. The new Graizer–Kalkan 2015 (GK15) model, developed to be simple, is applicable for the western United States and other similar shallow crustal continental regions in active tectonic environments for earthquakes with moment magnitudes (M) 5.0–8.0, distances 0–250 km, average shear‐wave velocities in the upper 30 m (VS30) 200–1300  m/s, and spectral periods (T) 0.01–5 s. Our aleatory variability model captures interevent (between‐event) variability, which decreases with magnitude and increases with distance. The mixed‐effect residuals analysis reveals that the GK15 has no trend with respect to the independent predictor parameters. Compared to our 2007–2009 GMPE, the PGA values are very similar, whereas spectral ordinates predicted are larger at T<0.2  s and they are smaller at longer periods.

  4. Time-Series Analyses of Supergranule Characteristics Compared Between SDO/HMI, SOHO/MDI and Simulated Datasets

    NASA Technical Reports Server (NTRS)

    Williams, Peter E.; Pesnell, William Dean

    2012-01-01

    Supergranulation is a well-observed solar phenomenon despite its underlying mechanisms remaining a mystery. Originally considered to arise due to convective motions, alternative mechanisms have been suggested such as the cumulative downdrafts of granules as well as displaying wave-like properties. Supergranule characteristics are well documented, however. Supergranule cells are approximately 35 Mm across, have lifetimes on the order of a day and have divergent horizontal velocities of around 300 mis, a factor of 10 higher than their central radial components. While they have been observed using Doppler methods for more than half a century, their existence is also observed in other datasets such as magneto grams and Ca II K images. These datasets clearly show the influence of supergranulation on solar magnetism and how the local field is organized by the flows of supergranule cells. The Heliospheric and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO) continues to produce Doppler images enabling the continuation of supergranulation studies made with SOHO/MDI, but with superior temporal and spatial resolution. The size-distribution of divergent cellular flows observed on the photosphere now reaches down to granular scales, allowing contemporaneous comparisons between the two flow components. SOHO/MDI Doppler observations made during the minima of cycles 22/23 and 23/24 exhibit fluctuations of supergranule characteristics (global averages of the supergranule size, size-range and horizontal velocity) with periods of 3-5 days. Similar fluctuations have been observed in SDO/HMI Dopplergrams and the high correlation between co-temporal HMI & MOl suggest a solar origin. Their nature has been probed by invoking data simulations that produce realistic Dopplergrams based on MOl data.

  5. Wounding patterns and human performance in knife attacks: optimising the protection provided by knife-resistant body armour.

    PubMed

    Bleetman, A; Watson, C H; Horsfall, I; Champion, S M

    2003-12-01

    Stab attacks generate high loads, and to defeat them, armour needs to be of a certain thickness and stiffness. Slash attacks produce much lower loads and armour designed to defeat them can be far lighter and more flexible. Phase 1: Human performance in slash attacks: 87 randomly selected students at the Royal Military College of Science were asked to make one slash attack with an instrumented blade on a vertically mounted target. No instructions on how to slash the target were given. The direction, contact forces and velocity of each attack were recorded. Phase 2: Clinical experience with edged weapon attacks: The location and severity of all penetrating injuries in patients attending the Glasgow Royal Infirmary between 1993 and 1996 were charted on anatomical figures. Phase 1: Two types of human slash behaviour were evident: a 'chop and drag' blow and a 'sweep motion' type of attack. 'Chop and drag' attacks had higher peak forces and velocities than sweep attacks. Shoulder to waist blows (diagonal) accounted for 82% of attacks, 71% of attackers used a long diagonal slash with an average cut length of 34 cm and 11% used short diagonal attacks with an average cut length of 25 cm. Only 18% of attackers slashed across the body (short horizontal); the average measured cut length of this type was 28 cm. The maximum peak force for the total sample population was 212 N; the maximum velocity was 14.88 m s(-1). The 95 percentile force for the total sample population was 181 N and the velocity was 9.89 m s(-1). Phase 2: 431 of the 500 patients had been wounded with edged weapons. The average number of wounds sustained by victims in knife assaults was 2.4. The distribution of wounds by frequency and severity are presented. Anti-slash protection is required for the arms, neck, shoulders, and thighs. The clinical experience of knife-attack victims provides information on the relative vulnerabilities of different regions of the body. It is anticipated that designing a tunic-type of Police uniform that is inherently stab and slash resistant will eventually replace the current obvious and often bulky extra protective vest. Attempts at making a combined garment will need to be guided by ergonomic considerations and field testing. A similar anatomical regional risk model might also be appropriate in the design of anti-ballistic armour and combined anti-ballistic and knife-resistant armour.

  6. Integration of vestibular and head movement signals in the vestibular nuclei during whole-body rotation

    NASA Technical Reports Server (NTRS)

    Gdowski, G. T.; McCrea, R. A.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    Single-unit recordings were obtained from 107 horizontal semicircular canal-related central vestibular neurons in three alert squirrel monkeys during passive sinusoidal whole-body rotation (WBR) while the head was free to move in the yaw plane (2.3 Hz, 20 degrees /s). Most of the units were identified as secondary vestibular neurons by electrical stimulation of the ipsilateral vestibular nerve (61/80 tested). Both non-eye-movement (n = 52) and eye-movement-related (n = 55) units were studied. Unit responses recorded when the head was free to move were compared with responses recorded when the head was restrained from moving. WBR in the absence of a visual target evoked a compensatory vestibulocollic reflex (VCR) that effectively reduced the head velocity in space by an average of 33 +/- 14%. In 73 units, the compensatory head movements were sufficiently large to permit the effect of the VCR on vestibular signal processing to be assessed quantitatively. The VCR affected the rotational responses of different vestibular neurons in different ways. Approximately one-half of the units (34/73, 47%) had responses that decreased as head velocity decreased. However, the responses of many other units (24/73) showed little change. These cells had signals that were better correlated with trunk velocity than with head velocity. The remaining units had responses that were significantly larger (15/73, 21%) when the VCR produced a decrease in head velocity. Eye-movement-related units tended to have rotational responses that were correlated with head velocity. On the other hand, non-eye-movement units tended to have rotational responses that were better correlated with trunk velocity. We conclude that sensory vestibular signals are transformed from head-in-space coordinates to trunk-in-space coordinates on many secondary vestibular neurons in the vestibular nuclei by the addition of inputs related to head rotation on the trunk. This coordinate transformation is presumably important for controlling postural reflexes and constructing a central percept of body orientation and movement in space.

  7. Challenges of Roll Orientation with Respect to Vehicle Heading at Touchdown for the Orion Command Module

    NASA Technical Reports Server (NTRS)

    Gay, Robert S.; Bihari, Brian D.

    2008-01-01

    Due to mass constraints, the Orion Command Module landing attention system requires that the capsule be oriented in a specific direction with respect to the horizontal surface-relative velocity (Heading) at touchdown in order to keep crew and vehicle loads within specifications. These constraints apply to both land and water landings. In fact, water landings are even more constrained with the addition of impact angle requirements necessary to slice through the water. There are two primary challenges with achieving this touchdown orientation: 1. Navigation knowledge of velocity (needed to determine Heading) with and without GPS, including the effects of the Heading angle itself becoming undefined as horizontal velocity decreases, and 2. Controlling to the desired orientation in the presences of chute torque and wind gusts that may change the Heading just prior to touchdown. This paper will discuss the design and performance of the current Orion navigation and control system used to achieve the desired orientation at touchdown.

  8. Structure of large-scale flows and their oscillation in the thermal convection of liquid gallium.

    PubMed

    Yanagisawa, Takatoshi; Yamagishi, Yasuko; Hamano, Yozo; Tasaka, Yuji; Yoshida, Masataka; Yano, Kanako; Takeda, Yasushi

    2010-07-01

    This investigation observed large-scale flows in liquid gallium and the oscillation with Rayleigh-Bénard convection. An ultrasonic velocity profiling method was used to visualize the spatiotemporal flow pattern of the liquid gallium in a horizontally long rectangular vessel. Measuring the horizontal component of the flow velocity at several lines, an organized roll-like structure with four cells was observed in the 1×10(4)-2×10(5) range of Rayleigh numbers, and the rolls show clear oscillatory behavior. The long-term fluctuations in temperature observed in point measurements correspond to the oscillations of the organized roll structure. This flow structure can be interpreted as the continuous development of the oscillatory instability of two-dimensional roll convection that is theoretically investigated around the critical Rayleigh number. Both the velocity of the large-scale flows and the frequency of the oscillation increase proportional to the square root of the Rayleigh number. This indicates that the oscillation is closely related to the circulation of large-scale flow.

  9. Two-phase magnetoconvection flow of magnetite (Fe3O4) nanoparticles in a horizontal composite porous annulus

    NASA Astrophysics Data System (ADS)

    Abbas, Zaheer; Hasnain, Jafar

    A numerical study is performed to examine the two-phase magnetoconvection and heat transfer phenomena of Fe3O4 -kerosene nanofluid flow in a horizontal composite porous annulus with an external magnetic field. The annulus is filled with immiscible fluids flowing between two concentric cylinders. The governing equations of the flow problem are obtained using Darcy-Brinkman model. Heat transfer is analyzed in the presence of viscous and Darcian dissipation terms. The shooting method is used as a tool to solve the obtained non-linear ordinary differential equations for the velocity and temperature profiles. The velocity and temperature distributions are analyzed and discussed under the influence of involved flow parameters with the aid of graphs. It is found that both velocity and temperature of fluid are decreased with ferroparticle volume fraction. In addition to that, it is also presented that the existence of magnetic field decreases the benefit of ferrofluids in heat transfer progression.

  10. An Experimental Study of Applied Ground Loads in Landing

    NASA Technical Reports Server (NTRS)

    Milwitzky, Benjamin; Lindquist, Dean C; Potter, Dexter M

    1955-01-01

    Results are presented of an experimental investigation made of the applied ground loads and the coefficient of friction between the tire and the ground during the wheel spin-up process in impacts of a small landing gear under controlled conditions on a concrete landing strip in the Langley impact basin. The basic investigation included three major phases: impacts with forward speed at horizontal velocities up to approximately 86 feet per second, impacts with forward speed and reverse wheel rotation to simulate horizontal velocities up to about 273 feet per second, and spin-up drop tests for comparison with the other tests. In addition to the basic investigation, supplementary tests were made to evaluate the drag-load alleviating effects of prerotating the wheel before impact so as to reduce the relative velocity between the tire and ground. In the presentation of the results, an attempt has been made to interpret the experimental data so as to obtain some insight into the physical phenomena involved in the wheel spin-up process.

  11. Conceptual design of an airborne laser Doppler velocimeter system for studying wind fields associated with severe local storms

    NASA Technical Reports Server (NTRS)

    Thomson, J. A. L.; Davies, A. R.; Sulzmann, K. G. P.

    1976-01-01

    An airborne laser Doppler velocimeter was evaluated for diagnostics of the wind field associated with an isolated severe thunderstorm. Two scanning configurations were identified, one a long-range (out to 10-20 km) roughly horizontal plane mode intended to allow probing of the velocity field around the storm at the higher altitudes (4-10 km). The other is a shorter range (out to 1-3 km) mode in which a vertical or horizontal plane is scanned for velocity (and possibly turbulence), and is intended for diagnostics of the lower altitude region below the storm and in the out-flow region. It was concluded that aircraft flight velocities are high enough and severe storm lifetimes are long enough that a single airborne Doppler system, operating at a range of less than about 20 km, can view the storm area from two or more different aspects before the storm characteristics change appreciably.

  12. Seismic structure of the crust and uppermost mantle of north America and adjacent oceanic basins: A synthesis

    USGS Publications Warehouse

    Chulick, G.S.; Mooney, W.D.

    2002-01-01

    We present a new set of contour maps of the seismic structure of North America and the surrounding ocean basins. These maps include the crustal thickness, whole-crustal average P-wave and S-wave velocity, and seismic velocity of the uppermost mantle, that is, Pn and Sn. We found the following: (1) The average thickness of the crust under North America is 36.7 km (standard deviation [s.d.] ??8.4 km), which is 2.5 km thinner than the world average of 39.2 km (s.d. ?? 8.5) for continental crust; (2) Histograms of whole-crustal P- and S-wave velocities for the North American crust are bimodal, with the lower peak occurring for crust without a high-velocity (6.9-7.3 km/sec) lower crustal layer; (3) Regions with anomalously high average crustal P-wave velocities correlate with Precambrian and Paleozoic orogens; low average crustal velocities are correlated with modern extensional regimes; (4) The average Pn velocity beneath North America is 8.03 km/sec (s.d. ?? 0.19 km/sec); (5) the well-known thin crust beneath the western United States extends into northwest Canada; (6) the average P-wave velocity of layer 3 of oceanic crust is 6.61 km/ sec (s.d. ?? 0.47 km/sec). However, the average crustal P-wave velocity under the eastern Pacific seafloor is higher than the western Atlantic seafloor due to the thicker sediment layer on the older Atlantic seafloor.

  13. Context-specific adaptation of pursuit initiation in humans

    NASA Technical Reports Server (NTRS)

    Takagi, M.; Abe, H.; Hasegawa, S.; Usui, T.; Hasebe, H.; Miki, A.; Zee, D. S.; Shelhauser, M. (Principal Investigator)

    2000-01-01

    PURPOSE: To determine if multiple states for the initiation of pursuit, as assessed by acceleration in the "open-loop" period, can be learned and gated by context. METHODS: Four normal subjects were studied. A modified step-ramp paradigm for horizontal pursuit was used to induce adaptation. In an increasing paradigm, target velocity doubled 230 msec after onset; in a decreasing paradigm, it was halved. In the first experiment, vertical eye position (+/-5 degrees ) was used as the context cue, and the training paradigm (increasing or decreasing) changed with vertical eye position. In the second experiment, with vertical position constant, when the target was red, training was decreasing, and when green, increasing. The average eye acceleration in the first 100 msec of tracking was the index of open-loop pursuit performance. RESULTS: With vertical position as the cue, pursuit adaptation differed between up and down gaze. In some cases, the direction of adaptation was in exact accord with the training stimuli. In others, acceleration increased or decreased for both up and down gaze but always in correct relative proportion to the training stimuli. In contrast, multiple adaptive states were not induced with color as the cue. CONCLUSIONS: Multiple values for the relationship between the average eye acceleration during the initiation of pursuit and target velocity could be learned and gated by context. Vertical position was an effective contextual cue but not target color, implying that useful contextual cues must be similar to those occurring naturally, for example, orbital position with eye muscle weakness.

  14. Power of performance of the thumb adductor muscles: effect of laterality and gender.

    PubMed

    Gutnik, Boris; Nash, Derek; Ricacho, Norberto; Hudson, Grant; Skirius, Jonas

    2006-01-01

    The aim of this work was to originally measure mechanical power output of the thumb adductor muscles during fast adduction of the thumb in the horizontal plane. This information will contribute to biomechanical guidelines to help clinicians, sport medicine and rehabilitation specialists in the objective functional evaluation of abnormalities of thumb adductors. Participants performed 20 fast adductions in response to audio signals. Maximum and average angular velocity and angular acceleration were measured. Tangential components of these parameters were then derived. The force of adduction was obtained from the tangential acceleration and the mass of the rotational system. The power was then calculated as the product of the force of adduction and average tangential velocity during the acceleration phase of adduction. All young and untrained males and females were strictly right handed. There was no significant difference in power between dominant and nondominant muscles for either males or females, but males developed significantly more power than females. Because adduction was performed at maximal speed, these data may be explained by the influence of parallel and series elastic elements in the muscle, as well as by influence of fast twitch fibers. Power may be used as a clinical index of the effectiveness of muscle contraction. The similarity of power outputs from dominant and nondominant thumb adductor muscles of right-handers can suggest a classical Bernstein approach. This theoretical approach purports that peripheral factors can distort central commands projected to dominant and nondominant extremities.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Huai; Jiang, Huijun; Hou, Zhonghuai, E-mail: hzhlj@ustc.edu.cn

    The dynamics of point-like Brownian particles in a periodic confined channel with oscillating boundaries has been studied. Directional transport (DT) behavior, characterized by net displacement along the horizontal direction, is observed even without external force which is necessary for the conventional DT where the boundaries are static. For typical parameter values, the average velocity V{sub t} of DT reaches a maximum with the variation of the noise intensity D, being alike to the phenomenon of stochastic resonance. Interestingly, we find that V{sub t} shows nontrivial dependences on the particle gravity G depending on the noise level. When the noise ismore » large, V{sub t} increases monotonically with G indicating that heavier particle moves faster, while for small noise, V{sub t} shows a bell-shape dependence on G, suggesting that a particle with an intermediate weight may move the fastest. Such results were not observed for DT in a channel with static boundaries. To understand these findings, we have adopted an effective one-dimensional coarsening description, which facilitates us to introduce an effective entropic force along the horizontal direction. The average force is apparently nonzero due to the oscillatory boundary, hence leading to the net transport, and it shows similar dependences as V{sub t} on the noise intensity D and particle gravity G. The dependences of the DT behavior on other parameters describing the oscillatory channel have also been investigated, showing that DT is more pronounced for larger oscillation amplitude and frequency, and asymmetric geometry within a channel period and phase difference between neighboring periods are both necessary for the occurrence of DT.« less

  16. Adiabatic partition effect on natural convection heat transfer inside a square cavity: experimental and numerical studies

    NASA Astrophysics Data System (ADS)

    Mahmoudinezhad, S.; Rezania, A.; Yousefi, T.; Shadloo, M. S.; Rosendahl, L. A.

    2018-02-01

    A steady state and two-dimensional laminar free convection heat transfer in a partitioned cavity with horizontal adiabatic and isothermal side walls is investigated using both experimental and numerical approaches. The experiments and numerical simulations are carried out using a Mach-Zehnder interferometer and a finite volume code, respectively. A horizontal and adiabatic partition, with angle of θ is adjusted such that it separates the cavity into two identical parts. Effects of this angel as well as Rayleigh number on the heat transfer from the side-heated walls are investigated in this study. The results are performed for the various Rayleigh numbers over the cavity side length, and partition angles ranging from 1.5 × 105 to 4.5 × 105, and 0° to 90°, respectively. The experimental verification of natural convective flow physics has been done by using FLUENT software. For a given adiabatic partition angle, the results show that the average Nusselt number and consequently the heat transfer enhance as the Rayleigh number increases. However, for a given Rayleigh number the maximum and the minimum heat transfer occurs at θ = 45°and θ = 90°, respectively. Two responsible mechanisms for this behavior, namely blockage ratio and partition orientation, are identified. These effects are explained by numerical velocity vectors and experimental temperatures contours. Based on the experimental data, a new correlation that fairly represents the average Nusselt number of the heated walls as functions of Rayleigh number and the angel of θ for the aforementioned ranges of data is proposed.

  17. Aggregate Settling Velocities in San Francisco Estuary Margins

    NASA Astrophysics Data System (ADS)

    Allen, R. M.; Stacey, M. T.; Variano, E. A.

    2015-12-01

    One way that humans impact aquatic ecosystems is by adding nutrients and contaminants, which can propagate up the food web and cause blooms and die-offs, respectively. Often, these chemicals are attached to fine sediments, and thus where sediments go, so do these anthropogenic influences. Vertical motion of sediments is important for sinking and burial, and also for indirect effects on horizontal transport. The dynamics of sinking sediment (often in aggregates) are complex, thus we need field data to test and validate existing models. San Francisco Bay is well studied and is often used as a test case for new measurement and model techniques (Barnard et al. 2013). Settling velocities for aggregates vary between 4*10-5 to 1.6*10-2 m/s along the estuary backbone (Manning and Schoellhamer 2013). Model results from South San Francisco Bay shoals suggest two populations of settling particles, one fast (ws of 9 to 5.8*10-4 m/s) and one slow (ws of < 1*10-7 to 1.4*10-5 m/s) (Brand et al. 2015). While the open waters of San Francisco Bay and other estuaries are well studied and modeled, sediment and contaminants often originate from the margin regions, and the margins remain poorly characterized. We conducted a 24 hour field experiment in a channel slough of South San Francisco Bay, and measured settling velocity, turbulence and flow, and suspended sediment concentration. At this margin location, we found average settling velocities of 4-5*10-5 m/s, and saw settling velocities decrease with decreasing suspended sediment concentration. These results are consistent with, though at the low end of, those seen along the estuary center, and they suggest that the two population model that has been successful along the shoals may also apply in the margins.

  18. Wave Gradiometry for the Central U.S

    NASA Astrophysics Data System (ADS)

    liu, Y.; Holt, W. E.

    2013-12-01

    Wave gradiometry is a new technique utilizing the shape of seismic wave fields captured by USArray transportable stations to determine fundamental wave propagation characteristics. The horizontal and vertical wave displacements, spatial gradients and time derivatives of displacement are linearly linked by two coefficients which can be used to infer wave slowness, back azimuth, radiation pattern and geometrical spreading. The reducing velocity method from Langston [2007] is applied to pre-process our data. Spatial gradients of the shifted displacement fields are estimated using bi-cubic splines [Beavan and Haines, 2001]. Using singular value decomposition, the spatial gradients are then inverted to iteratively solve for wave parameters mentioned above. Numerical experiments with synthetic data sets provided by Princeton University's Neal Real Time Global Seismicity Portal are conducted to test the algorithm stability and evaluate errors. Our results based on real records in the central U.S. show that, the average Rayleigh wave phase velocity ranges from 3.8 to 4.2 km/s for periods from 60-125s, and 3.6 to 4.0 km/s for periods from 25-60s, which is consistent with earth model. Geometrical spreading and radiation pattern show similar features between different frequency bands. Azimuth variations are partially correlated with phase velocity change. Finally, we calculated waveform amplitude and spatial gradient uncertainties to determine formal errors in the estimated wave parameters. Further effort will be put into calculating shear wave velocity structure with respect to depth in the studied area. The wave gradiometry method is now being employed across the USArray using real observations and results obtained to date are for stations in eastern portion of the U.S. Rayleigh wave phase velocity derived from Aug, 20th, 2011 Vanuatu earthquake for periods from 100 - 125 s.

  19. Field Measurements of Reynolds Stress near a Riverbank

    USGS Publications Warehouse

    Moody, J.A.; Smith, J.D.; ,

    2002-01-01

    The Reynolds stress field was measured near the bank of the Powder River in southeastern Montana. The measurements were made from the bank using an aluminum I-beam cantilevered over the water to support a carriage system for positioning an acoustic doppler velocimeter in a vertical plane perpendicular to 1) the bank and 2) the streamwise velocity field. During quasi-steady flow at the peak (71 m3s-1) of the spring snowmelt runoff in May 1996, turbulent velocities were measured at 25 Hertz along six vertical locations spaced 0.5 m apart and within about 3.5 m of the riverbank. When the turbulent velocities are transformed to the ray-isovel coordinate system appropriate for this two-dimension problem, the turbulent characteristics near the bed are consistent with similar field measurements made by others for the one-dimensional problem of uniform flow over a horizontal bed far from lateral boundaries. The three turbulent intensities, (u???2) 1/2, (v???2)1/2 and (w??? 2)1/2, normalized by the local shear velocity, u*, were essentially constant with distance above the bed along a ray and the average values were 2.1, 1.4, and 1.2. Future turbulence measurements could be improved by measuring the streamwise flow first, then determining the approximate location of the rays and isovels so that the turbulence measurements could be made along the approximated rays rather than along verticals. In addition, to improve the possibility making turbulence measurements during steady, uniform flow, the site should be carefully selected to minimize local flow accelerations caused by spatial variability of the riverbank. Also, the measurements should be made at times when the stage is constant, no local erosion or deposition of sediment occurs, and when wind velocities are small.

  20. Effects of fault dip and slip rake angles on near-source ground motions: Why rupture directivity was minimal in the 1999 Chi-Chi, Taiwan, earthquake

    USGS Publications Warehouse

    Aagaard, Brad T.; Hall, J.F.; Heaton, T.H.

    2004-01-01

    We study how the fault dip and slip rake angles affect near-source ground velocities and displacements as faulting transitions from strike-slip motion on a vertical fault to thrust motion on a shallow-dipping fault. Ground motions are computed for five fault geometries with different combinations of fault dip and rake angles and common values for the fault area and the average slip. The nature of the shear-wave directivity is the key factor in determining the size and distribution of the peak velocities and displacements. Strong shear-wave directivity requires that (1) the observer is located in the direction of rupture propagation and (2) the rupture propagates parallel to the direction of the fault slip vector. We show that predominantly along-strike rupture of a thrust fault (geometry similar in the Chi-Chi earthquake) minimizes the area subjected to large-amplitude velocity pulses associated with rupture directivity, because the rupture propagates perpendicular to the slip vector; that is, the rupture propagates in the direction of a node in the shear-wave radiation pattern. In our simulations with a shallow hypocenter, the maximum peak-to-peak horizontal velocities exceed 1.5 m/sec over an area of only 200 km2 for the 30??-dipping fault (geometry similar to the Chi-Chi earthquake), whereas for the 60??- and 75??-dipping faults this velocity is exceeded over an area of 2700 km2 . These simulations indicate that the area subjected to large-amplitude long-period ground motions would be larger for events of the same size as Chi-Chi that have different styles of faulting or a deeper hypocenter.

  1. Cross-correlation Doppler global velocimetry (CC-DGV)

    NASA Astrophysics Data System (ADS)

    Cadel, Daniel R.; Lowe, K. Todd

    2015-08-01

    A flow velocimetry method, cross-correlation Doppler global velocimetry (CC-DGV), is presented as a robust, simplified, and high dynamic range implementation of the Doppler global/planar Doppler velocimetry technique. A sweep of several gigahertz of the vapor absorption spectrum is used for each velocity sample, with signals acquired from both Doppler-shifted scattered light within the flow and a non-Doppler shifted reference beam. Cross-correlation of these signals yields the Doppler shift between them, averaged over the duration of the scan. With presently available equipment, velocities from 0 ms-1 to over 3000 ms-1 can notionally be measured simultaneously, making the technique ideal for high speed flows. The processing routine is shown to be robust against large changes in the vapor pressure of the iodine cell, benefiting performance of the system in facilities where ambient conditions cannot be easily regulated. Validation of the system was performed with measurements of a model wind turbine blade boundary layer made in a 1.83 m by 1.83 m subsonic wind tunnel for which laser Doppler velocimetry (LDV) measurements were acquired alongside the CC-DGV results. CC-DGV uncertainties of ±1.30 ms-1, ±0.64 ms-1, and ±1.11 ms-1 were determined for the orthogonal stream-wise, transverse-horizontal, and transverse-vertical velocity components, and root-mean-square deviations of 2.77 ms-1 and 1.34 ms-1 from the LDV validation results were observed for Reynolds numbers of 1.5 million and 2 million, respectively. Volumetric mean velocity measurements are also presented for a supersonic jet, with velocity uncertainties of ±4.48 ms-1, ±16.93 ms-1, and ±0.50 ms-1 for the orthogonal components, and self-validation done by collapsing the data with a physical scaling.

  2. GFZ Wireless Seismic Array (GFZ-WISE), a Wireless Mesh Network of Seismic Sensors: New Perspectives for Seismic Noise Array Investigations and Site Monitoring

    PubMed Central

    Picozzi, Matteo; Milkereit, Claus; Parolai, Stefano; Jaeckel, Karl-Heinz; Veit, Ingo; Fischer, Joachim; Zschau, Jochen

    2010-01-01

    Over the last few years, the analysis of seismic noise recorded by two dimensional arrays has been confirmed to be capable of deriving the subsoil shear-wave velocity structure down to several hundred meters depth. In fact, using just a few minutes of seismic noise recordings and combining this with the well known horizontal-to-vertical method, it has also been shown that it is possible to investigate the average one dimensional velocity structure below an array of stations in urban areas with a sufficient resolution to depths that would be prohibitive with active source array surveys, while in addition reducing the number of boreholes required to be drilled for site-effect analysis. However, the high cost of standard seismological instrumentation limits the number of sensors generally available for two-dimensional array measurements (i.e., of the order of 10), limiting the resolution in the estimated shear-wave velocity profiles. Therefore, new themes in site-effect estimation research by two-dimensional arrays involve the development and application of low-cost instrumentation, which potentially allows the performance of dense-array measurements, and the development of dedicated signal-analysis procedures for rapid and robust estimation of shear-wave velocity profiles. In this work, we present novel low-cost wireless instrumentation for dense two-dimensional ambient seismic noise array measurements that allows the real–time analysis of the surface-wavefield and the rapid estimation of the local shear-wave velocity structure for site response studies. We first introduce the general philosophy of the new system, as well as the hardware and software that forms the novel instrument, which we have tested in laboratory and field studies. PMID:22319298

  3. 3D isotropic shear wave velocity structure of the lithosphere-asthenosphere system underneath the Alpine-Mediterranean Mobile belt

    NASA Astrophysics Data System (ADS)

    El-Sharkawy, Amr; Weidle, Christian; Christiano, Luigia; Lebedev, Sergei; Meier, Thomas

    2017-04-01

    The Alpine-Mediterranean mobile belt is, tectonically, one of the most complicated and active regions in the world. Since the Mesozoic, collisions between Gondwana-derived continental blocks and Eurasia, due to the closure of a number of rather small ocean basins, have shaped the Mediterranean geology. During the late Mesozoic, it was dominated by subduction zones (e.g., in Anatolia, the Dinarides, the Carpathians, the Alps, the Apennines, and the Betics), which inverted the extensional regime, consuming the previously formed oceanic lithosphere, the adjacent passive continental margins and presumably partly also continental lithosphere. The location, distribution, and evolution of these subduction zones were mainly controlled by the continental or oceanic nature, density, and thickness of the lithosphere inherited from the Mesozoic rift after the European Variscan Orogeny. Despite the numerous studies that have attempted to characterize the lithosphere-asthenosphere structure in that area, details of the lithospheric structure and dynamics, as well as flow in the asthenosphere are, however, poorly known. A 3D shear-wave velocity structure of the lithosphere-asthenosphere system in the Mediterranean is investigated using new tomographic images obtained from surface wave tomography. An automated algorithm for inter-station phase velocity measurements is applied here to obtain both Rayleigh and Love fundamental mode phase velocities. We utilize a database consisting of more than 4000 seismic events recorded by more than 2000 broadband seismic stations within the area, provided by the European Integrated Data Archive (WebDc/EIDA) and IRIS. Moreover, for the first time, data from the Egyptian National Seismological Network (ENSN), recorded by up to 25 broad band seismic stations, are also included in the analysis. For each station pair, approximately located on the same great circle path, the recorded waveforms are cross correlated and the dispersion curves of fundamental modes are calculated from the phase of the cross correlation functions weighted in the time-frequency plane. Path average dispersion curves are obtained by averaging the smooth parts of single-event dispersion curves. A careful quality control of the resulting phase velocities is performed. We calculate maps of Love and Rayleigh phase velocity at more than 100 different periods. The phase-velocity maps provide the local phase-velocity dispersion curve for each geographical grid node of the map. Each of these local dispersion curves is inverted individually for 1D shear wave velocity model using a newly implemented Particle Swarm Optimization (PSO) algorithm. The resulted 1D velocity models are then combined to construct the 3D shear-velocity model. Horizontal and vertical cross sections through the 3D isotropic model reveal significant variations in shear wave velocity with depth, and lateral changes in the crust and upper mantle structure emphasizing the processes associated with the convergence of the Eurasian and African plates. Key words: seismic tomography, Mediterranean, surface waves, particle swarm optimization.

  4. Modelling the horizontal structure of mid-latitude E(s) from its refraction effects on F-region echoes

    NASA Astrophysics Data System (ADS)

    Barnes, R. I.

    1991-02-01

    The observation of the refraction of F-region echoes presently reported implies that significant horizontal structure exists within some E(s) clouds. A modeling of the data collected with the Bribie Island HF radar indicates that wind shear variations can account for examples in which irregularities either pass through, or pass with, existing layers of E(s) which create the cloudy, nonblanketing variety of E(s). The blanketing variety of E(s) seems to have little or no horizontal structure, and most likely drifts with the same velocity as the irregularities which produce nonblanketing E(s). Irregularities with strong horizontal gradients act as diverging lenses, leading to an overestimation of cloud size via simple occulting geometry.

  5. Coordinated Control of Three-Dimensional Components of Smooth Pursuit to Rotating and Translating Textures.

    PubMed

    Edinger, Janick; Pai, Dinesh K; Spering, Miriam

    2017-01-01

    The neural control of pursuit eye movements to visual textures that simultaneously translate and rotate has largely been neglected. Here we propose that pursuit of such targets-texture pursuit-is a fully three-dimensional task that utilizes all three degrees of freedom of the eye, including torsion. Head-fixed healthy human adults (n = 8) tracked a translating and rotating random dot pattern, shown on a computer monitor, with their eyes. Horizontal, vertical, and torsional eye positions were recorded with a head-mounted eye tracker. The torsional component of pursuit is a function of the rotation of the texture, aligned with its visual properties. We observed distinct behaviors between those trials in which stimulus rotation was in the same direction as that of a rolling ball ("natural") in comparison to those with the opposite rotation ("unnatural"): Natural rotation enhanced and unnatural rotation reversed torsional velocity during pursuit, as compared to torsion triggered by a nonrotating random dot pattern. Natural rotation also triggered pursuit with a higher horizontal velocity gain and fewer and smaller corrective saccades. Furthermore, we show that horizontal corrective saccades are synchronized with torsional corrective saccades, indicating temporal coupling of horizontal and torsional saccade control. Pursuit eye movements have a torsional component that depends on the visual stimulus. Horizontal and torsional eye movements are separated in the motor periphery. Our findings suggest that translational and rotational motion signals might be coordinated in descending pursuit pathways.

  6. Infantile Nystagmus and Abnormalities of Conjugate Eye Movements in Down Syndrome.

    PubMed

    Weiss, Avery H; Kelly, John P; Phillips, James O

    2016-03-01

    Subjects with Down syndrome (DS) have an anatomical defect within the cerebellum that may impact downstream oculomotor areas. This study characterized gaze holding and gains for smooth pursuit, saccades, and optokinetic nystagmus (OKN) in DS children with infantile nystagmus (IN). Clinical data of 18 DS children with IN were reviewed retrospectively. Subjects with constant strabismus were excluded to remove any contribution of latent nystagmus. Gaze-holding, horizontal and vertical saccades to target steps, horizontal smooth pursuit of drifting targets, OKN in response to vertically or horizontally-oriented square wave gratings drifted at 15°/s, 30°/s, and 45°/s were recorded using binocular video-oculography. Seven subjects had additional optical coherence tomography imaging. Infantile nystagmus was associated with one or more gaze-holding instabilities (GHI) in each subject. The majority of subjects had a combination of conjugate horizontal jerk with constant or exponential slow-phase velocity, asymmetric or symmetric, and either monocular or binocular pendular nystagmus. Six of seven subjects had mild (Grade 0-1) persistence of retinal layers overlying the fovea, similar to that reported in DS children without nystagmus. All subjects had abnormal gains across one or more stimulus conditions (horizontal smooth pursuit, saccades, or OKN). Saccade velocities followed the main sequence. Down syndrome subjects with IN show a wide range of GHI and abnormalities of conjugate eye movements. We propose that these ocular motor abnormalities result from functional abnormalities of the cerebellum and/or downstream oculomotor circuits, perhaps due to extensive miswiring.

  7. A photoelectric technique for measuring lightning-channel propagation velocities from a mobile laboratory

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Rust, W. David

    1989-01-01

    The present device for lightning channel propagation-velocity determination employs eight photodetectors mounted behind precision horizontal slits in the focal plane of a photographic camera lens. The eight photodetector pulses, IRIG-B time, and slow and fast electric field-change waveforms are recorded on a 14-track analog tape recorder. A comparison of the present results with those obtained by a streaking camera shows no significant differences between the velocities obtained from the same strokes with the two systems; neither is there any difference in pulse characteristics or in the velocities calculated from them.

  8. Azimuthal filter to attenuate ground roll noise in the F-kx-ky domain for land 3D-3C seismic data with uneven acquisition geometry

    NASA Astrophysics Data System (ADS)

    Arevalo-Lopez, H. S.; Levin, S. A.

    2016-12-01

    The vertical component of seismic wave reflections is contaminated by surface noise such as ground roll and secondary scattering from near surface inhomogeneities. A common method for attenuating these, unfortunately often aliased, arrivals is via velocity filtering and/or multichannel stacking. 3D-3C acquisition technology provides two additional sources of information about the surface wave noise that we exploit here: (1) areal receiver coverage, and (2) a pair of horizontal components recorded at the same location as the vertical component. Areal coverage allows us to segregate arrivals at each individual receiver or group of receivers by direction. The horizontal components, having much less compressional reflection body wave energy than the vertical component, provide a template of where to focus our energies on attenuating the surface wave arrivals. (In the simplest setting, the vertical component is a scaled 90 degree phase rotated version of the radial horizontal arrival, a potential third possible lever we have not yet tried to integrate.) The key to our approach is to use the magnitude of the horizontal components to outline a data-adaptive "velocity" filter region in the w-Kx-Ky domain. The big advantage for us is that even in the presence of uneven receiver geometries, the filter automatically tracks through aliasing without manual sculpting and a priori velocity and dispersion estimation. The method was applied to an aliased synthetic dataset based on a five layer earth model which also included shallow scatterers to simulate near-surface inhomogeneities and successfully removed both the ground roll and scatterers from the vertical component (Figure 1).

  9. Spatial gravity wave characteristics obtained from multiple OH(3-1) airglow temperature time series

    NASA Astrophysics Data System (ADS)

    Wachter, Paul; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael

    2015-12-01

    We present a new approach for the detection of gravity waves in OH-airglow observations at the measurement site Oberpfaffenhofen (11.27°E, 48.08°N), Germany. The measurements were performed at the German Remote Sensing Data Center (DFD) of the German Aerospace Center (DLR) during the period from February 4th, 2011 to July 6th, 2011. In this case study the observations were carried out by three identical Ground-based Infrared P-branch Spectrometers (GRIPS). These instruments provide OH(3-1) rotational temperature time series, which enable spatio-temporal investigations of gravity wave characteristics in the mesopause region. The instruments were aligned in such a way that their fields of view (FOV) formed an equilateral triangle in the OH-emission layer at a height of 87 km. The Harmonic Analysis is applied in order to identify joint temperature oscillations in the three individual datasets. Dependent on the specific gravity wave activity in a single night, it is possible to detect up to four different wave patterns with this method. The values obtained for the waves' periods and phases are then used to derive further parameters, such as horizontal wavelength, phase velocity and the direction of propagation. We identify systematic relationships between periods and amplitudes as well as between periods and horizontal wavelengths. A predominant propagation direction towards the East and North-North-East characterizes the waves during the observation period. There are also indications of seasonal effects in the temporal development of the horizontal wavelength and the phase velocity. During late winter and early spring the derived horizontal wavelengths and the phase velocities are smaller than in the subsequent period from early April to July 2011.

  10. Using the Vertical Component of the Surface Velocity Field to Map the Locked Zone at Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Moulas, E.; Brandon, M. T.; Podladchikov, Y.; Bennett, R. A.

    2014-12-01

    At present, our understanding of the locked zone at Cascadia subduction zone is based on thermal modeling and elastic modeling of horizontal GPS velocities. The thermal model by Hyndman and Wang (1995) provided a first-order assessment of where the subduction thrust might be cold enough for stick-slip behavior. The alternative approach by McCaffrey et al. (2007) is to use a Green's function that relates horizontal surface velocities, as recorded by GPS, to interseismic elastic deformation. The thermal modeling approach is limited by a lack of information about the amount of frictional heating occurring on the thrust (Molnar and England, 1990). The GPS approach is limited in that the horizontal velocity component is fairly insensitive to the structure of the locked zone. The vertical velocity component is much more useful for this purpose. We are fortunate in that vertical velocities can now be measured by GPS to a precision of about 0.2 mm/a. The dislocation model predicts that vertical velocities should range up to about 20 percent of the subduction velocity, which means maximum values of ~7 mm/a. The locked zone is generally entirely offshore at Cascadia, except for the Olympic Peninsula region, where the underlying Juan De Fuca plate has an anomalously low dip. Previous thermal and GPS modeling, as well as tide gauge data and episodic tremors indicate the locked zone there extends about 50 to 75 km onland. This situation provides an opportunity to directly study the locked zone. With that objective in mind, we have constructed a full 3D geodynamic model of the Cascadia subduction zone. At present, the model provides a full representation of the interseismic elastic deformation due to variations of slip on the subduction thrust. The model has been benchmarked against the Savage (2D) and Okada (3D) analytical solutions. This model has an important advantage over traditional dislocation modeling in that we include temperature-sensitive viscosity for the upper and lower plates, and also use realistic constitutive models to represent the locked zone. Another important advantage is that the 3D model provides a full representation of the interseismic deformation, which is important for interpreting GPS data.

  11. The pattern of acropetal and basipetal cytoplasmic streaming velocities in Chara rhizoids and protonemata, and gravity effect on the pattern as measured by laser-Doppler-velocimetry.

    PubMed

    Ackers, D; Buchen, B; Hejnowicz, Z; Sievers, A

    2000-06-01

    The spatial pattern of acropetal and basipetal cytoplasmic streaming velocities has been studied by laser-Doppler-velocimetry (LDV) in the positively gravitropic (downward growing) rhizoids of Chara globularis Thuill. and for the first time in the negatively gravitropic (upward growing) protonemata. The LDV method proved to be precise and yielded reproducible results even when tiny differences in velocities were measured. In the apical parts of the streaming regions of both cell types, acropetal streaming was faster than basipetal streaming. Starting at the apical reversal point of streaming, the velocity increased basipetally with the distance from that point and became fairly constant close to the basal reversal point; subsequently, the velocity decreased slightly acropetally as the apical reversal point was again approached. There was no change in velocity at the basal reversal point. However, at the apical reversal point there was an abrupt decrease in velocity. The pattern of the ratio of acropetal to basipetal streaming velocity (VR) was a function of the relative distance of the site of measurement from the apical reversal point rather than a function of the absolute distance. Upon inversion of the rhizoids, the VR decreased on average by 3.8% (+/- 0.4%), indicating that the effect of gravity on the streaming velocity was merely physical and without a physiological amplification. Rhizoids that had developed on the slowly rotating horizontal axis of a clinostat, and had never experienced a constant gravity vector, were similar to normally grown rhizoids with respect to VR pattern. In protonemata, the VR pattern was not significantly different from that in rhizoids although the direction of growth was inverse. In rhizoids, oryzalin caused the polar organization of the cell to disappear and nullified the differences in streaming velocities, and cytochalasin D decreased the velocity of basipetal streaming slightly more than that of acropetal streaming. Cyclopiazonic acid, known as an inhibitor of the Ca2+-ATPase of the endoplasmic reticulum, also reduced the streaming velocities in rhizoids, but had slightly more effect on the acropetal stream. It is possible that the endogenous difference in streaming velocities in both rhizoids and protonemata is caused by differences in the cytoskeletal organization of the opposing streams and/or loading of inhibitors (like Ca2+) from the apical/subapical zone into the basipetally streaming endoplasm.

  12. Experimental Study on Flow Boiling of Carbon Dioxide in a Horizontal Microfin Tube

    NASA Astrophysics Data System (ADS)

    Kuwahara, Ken; Ikeda, Soshi; Koyama, Shigeru

    This paper deals with the experimental study on flow boiling heat transfer of carbon dioxide in a micro-fin tube. The geometrical parameters of micro-fin tube used in this study are 6.07 mm in outer diameter, 5.24 mm in average inner diameter, 0.256 mm in fin height, 20.4 in helix angle, 52 in number of grooves and 2.35 in area expansion ratio. Flow patterns and heat transfer coefficients were measured at 3-5 MPa in pressure, 300-540 kg/(m2s) in mass velocity and -5 to 15 °C in CO2 temperature. Flow patterns of wavy flow, slug flow and annular flow were observed. The measured heat transfer coefficients of micro-fin tube were 10-40 kW/(m2K). Heat transfer coefficients were strongly influenced by pressure.

  13. Effect of Aerodynamic Design on Glider Performance

    NASA Technical Reports Server (NTRS)

    Lippisch, A

    1935-01-01

    The performance of a glider is determined by means of the velocity polar, which represents the connection between horizontal and sinking speed. The mean sinking speed for a given speed range can be determined on the basis of the velocity polar. These data form the basis for the most propitious design of a performance-type glider with a view to long-distance flight.

  14. Three-dimensional organization of vestibular-related eye movements to off-vertical axis rotation and linear translation in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Angelaki, D. E.

    1999-01-01

    During linear accelerations, compensatory reflexes should continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined during linear accelerations produced by constant velocity off-vertical axis yaw rotations and translational motion in darkness. With off-vertical axis rotations, sinusoidally modulated eye-position and velocity responses were observed in all three components, with the vertical and torsional eye movements predominating the response. Peak torsional and vertical eye positions occurred when the head was oriented with the lateral visual axis of the right eye directed orthogonal to or aligned with the gravity vector, respectively. No steady-state horizontal nystagmus was obtained with any of the rotational velocities (8-58 degrees /s) tested. During translational motion, delivered along or perpendicular to the lateral visual axis, vertical and torsional eye movements were elicited. No significant horizontal eye movements were observed during lateral translation at frequencies up to 3 Hz. These responses suggest that, in pigeons, all linear accelerations generate eye movements that are compensatory to the direction of actual or perceived tilt of the head relative to gravity. In contrast, no translational horizontal eye movements, which are known to be compensatory to lateral translational motion in primates, were observed under the present experimental conditions.

  15. Wind Measurements from Arc Scans with Doppler Wind Lidar

    DOE PAGES

    Wang, H.; Barthelmie, R. J.; Clifton, Andy; ...

    2015-11-25

    When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of itsmore » high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.« less

  16. Study of the filtration performance of a plain wave fabric filter using response surface methodology.

    PubMed

    Qian, Fuping; Wang, Haigang

    2010-04-15

    The gas-solid two-phase flows in the plain wave fabric filter were simulated by computational fluid dynamics (CFD) technology, and the warps and wefts of the fabric filter were made of filaments with different dimensions. The numerical solutions were carried out using commercial computational fluid dynamics (CFD) code Fluent 6.1. The filtration performances of the plain wave fabric filter with different geometry parameters and operating condition, including the horizontal distance, the vertical distance and the face velocity were calculated. The effects of geometry parameters and operating condition on filtration efficiency and pressure drop were studied using response surface methodology (RSM) by means of the statistical software (Minitab V14), and two second-order polynomial models were obtained with regard to the effect of the three factors as stated above. Moreover, the models were modified by dismissing the insignificant terms. The results show that the horizontal distance, vertical distance and the face velocity all play an important role in influencing the filtration efficiency and pressure drop of the plane wave fabric filters. The horizontal distance of 3.8 times the fiber diameter, the vertical distance of 4.0 times the fiber diameter and Reynolds number of 0.98 are found to be the optimal conditions to achieve the highest filtration efficiency at the same face velocity, while maintaining an acceptable pressure drop. 2009 Elsevier B.V. All rights reserved.

  17. Dynamics of Trees of Fragmenting Granules in the Quiet Sun: Hinode/SOT Observations Compared to Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Malherbe, J.-M.; Roudier, T.; Stein, R.; Frank, Z.

    2018-01-01

    We compare horizontal velocities, vertical magnetic fields, and the evolution of trees of fragmenting granules (TFG, also named families of granules) derived in the quiet Sun at disk center from observations at solar minimum and maximum of the Solar Optical Telescope (SOT on board Hinode) and results of a recent 3D numerical simulation of the magneto-convection. We used 24-hour sequences of a 2D field of view (FOV) with high spatial and temporal resolution recorded by the SOT Broad band Filter Imager (BFI) and Narrow band Filter Imager (NFI). TFG were evidenced by segmentation and labeling of continuum intensities. Horizontal velocities were obtained from local correlation tracking (LCT) of proper motions of granules. Stokes V provided a proxy of the line-of-sight magnetic field (BLOS). The MHD simulation (performed independently) produced granulation intensities, velocity, and magnetic field vectors. We discovered that TFG also form in the simulation and show that it is able to reproduce the main properties of solar TFG: lifetime and size, associated horizontal motions, corks, and diffusive index are close to observations. The largest (but not numerous) families are related in both cases to the strongest flows and could play a major role in supergranule and magnetic network formation. We found that observations do not reveal any significant variation in TFG between solar minimum and maximum.

  18. Percolation flux and Transport velocity in the unsaturated zone, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Yang, I.C.

    2002-01-01

    The percolation flux for borehole USW UZ-14 was calculated from 14C residence times of pore water and water content of cores measured in the laboratory. Transport velocity is calculated from the depth interval between two points divided by the difference in 14C residence times. Two methods were used to calculate the flux and velocity. The first method uses the 14C data and cumulative water content data directly in the incremental intervals in the Paintbrush nonwelded unit and the Topopah Spring welded unit. The second method uses the regression relation for 14C data and cumulative water content data for the entire Paintbrush nonwelded unit and the Topopah Spring Tuff/Topopah Spring welded unit. Using the first method, for the Paintbrush nonwelded unit in boreholeUSW UZ-14 percolation flux ranges from 2.3 to 41.0 mm/a. Transport velocity ranges from 1.2 to 40.6 cm/a. For the Topopah Spring welded unit percolation flux ranges from 0.9 to 5.8 mm/a in the 8 incremental intervals calculated. Transport velocity ranges from 1.4 to 7.3 cm/a in the 8 incremental intervals. Using the second method, average percolation flux in the Paintbrush nonwelded unit for 6 boreholes ranges from 0.9 to 4.0 mm/a at the 95% confidence level. Average transport velocity ranges from 0.6 to 2.6 cm/a. For the Topopah Spring welded unit and Topopah Spring Tuff, average percolation flux in 5 boreholes ranges from 1.3 to 3.2 mm/a. Average transport velocity ranges from 1.6 to 4.0 cm/a. Both the average percolation flux and average transport velocity in the PTn are smaller than in the TS/TSw. However, the average minimum and average maximum values for the percolation flux in the TS/TSw are within the PTn average range. Therefore, differences in the percolation flux in the two units are not significant. On the other hand, average, average minimum, and average maximum transport velocities in the TS/TSw unit are all larger than the PTn values, implying a larger transport velocity for the TS/TSw although there is a small overlap.

  19. Numerical Study of Heat Transfer during Artificial Ground Freezing Combined with Groundwater Flow based on in-situ Measurement

    NASA Astrophysics Data System (ADS)

    Hu, R.; Liu, Q.

    2016-12-01

    For civil engineering projects, especially in the subsurface with groundwater, the artificial ground freezing (AGF) method has been widely used. Commonly, a refrigerant is circulated through a pre-buried pipe network to form a freezing wall to support the construction. In many cases, the temperature change is merely considered as a result of simple heat conduction. However, the influence of the water-ice phase change on the flow properties should not be neglected, if large amount of groundwater with high flow velocities is present. In this work, we perform a 2D modelling (software: Comsol Multiphysics) of an AFG project of a metro tunnel in Southern China, taking groundwater flow into account. The model is validated based on in-situ measurement of groundwater flow and temperature. We choose a cross section of this horizontal AGF project and set up a model with horizontal groundwater flow normal to the axial of the tunnel. The Darcy velocity is a coupling variable and related to the temperature field. During the phase change of the pore water and the decrement of permeability in freezing zone, we introduce a variable of effective hydraulic conductivity which is described by a function of temperature change. The energy conservation problem is solved by apparent heat capacity method and the related parameter change is described by a step function (McKenzie, et. al. 2007). The results of temperature contour maps combined with groundwater flow velocity at different times indicate that the freezing wall appears in an asymmetrical shape along the groundwater flow direction. It forms slowly and on the upstream side the thickness of the freezing wall is thinner than that on the downstream side. The closure time of the freezing wall increases at the middle of the both up and downstream sides. The average thickness of the freezing wall on the upstream side is mostly affected by the groundwater flow velocity. With the successful validation of this model, this numerical simulation could provide guidance in this AGF project in the future. ReferenceJeffrey M. McKenzie, et. al. Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs. Advances in Water Resources 30 966-983 (2007).

  20. Estimating Effective Seismic Anisotropy Of Coal Seam Gas Reservoirs from Sonic Log Data Using Orthorhombic Buckus-style Upscaling

    NASA Astrophysics Data System (ADS)

    Gross, Lutz; Tyson, Stephen

    2015-04-01

    Fracture density and orientation are key parameters controlling productivity of coal seam gas reservoirs. Seismic anisotropy can help to identify and quantify fracture characteristics. In particular, wide offset and dense azimuthal coverage land seismic recordings offers the opportunity for recovery of anisotropy parameters. In many coal seam gas reservoirs (eg. Walloon Subgroup in the Surat Basin, Queensland, Australia (Esterle et al. 2013)) the thickness of coal-beds and interbeds (e.g mud-stone) are well below the seismic wave length (0.3-1m versus 5-15m). In these situations, the observed seismic anisotropy parameters represent effective elastic properties of the composite media formed of fractured, anisotropic coal and isotropic interbed. As a consequence observed seismic anisotropy cannot directly be linked to fracture characteristics but requires a more careful interpretation. In the paper we will discuss techniques to estimate effective seismic anisotropy parameters from well log data with the objective to improve the interpretation for the case of layered thin coal beds. In the first step we use sonic log data to reconstruct the elasticity parameters as function of depth (at the resolution of the sonic log). It is assumed that within a sample fractures are sparse, of the same size and orientation, penny-shaped and equally spaced. Following classical fracture model this can be modeled as an elastic horizontally transversely isotropic (HTI) media (Schoenberg & Sayers 1995). Under the additional assumption of dry fractures, normal and tangential fracture weakness is estimated from slow and fast shear wave velocities of the sonic log. In the second step we apply Backus-style upscaling to construct effective anisotropy parameters on an appropriate length scale. In order to honor the HTI anisotropy present at each layer we have developed a new extension of the classical Backus averaging for layered isotropic media (Backus 1962) . Our new method assumes layered HTI media with constant anisotropy orientation as recovered in the first step. It leads to an effective horizontal orthorhombic elastic model. From this model Thomsen-style anisotropy parameters are calculated to derive azimuth-dependent normal move out (NMO) velocities (see Grechka & Tsvankin 1998). In our presentation we will show results of our approach from sonic well logs in the Surat Basin to investigate the potential of reconstructing S-wave velocity anisotropy and fracture density from azimuth dependent NMO velocities profiles.

  1. Design and performance of a horizontal mooring for upper-ocean research

    USGS Publications Warehouse

    Grosenbaugh, Mark; Anderson, Steven; Trask, Richard; Gobat, Jason; Paul, Walter; Butman, Bradford; Weller, Robert

    2002-01-01

    This paper describes the design and performance of a two-dimensional moored array for sampling horizontal variability in the upper ocean. The mooring was deployed in Massachusetts Bay in a water depth of 84 m for the purpose of measuring the horizontal structure of internal waves. The mooring was instrumented with three acoustic current meters (ACMs) spaced along a 170-m horizontal cable that was stretched between two subsurface buoys 20 m below the sea surface. Five 25-m-long vertical instrument strings were suspended from the horizontal cable. A bottom-mounted acoustic Doppler current profiler (ADCP) was deployed nearby to measure the current velocity throughout the water column. Pressure sensors mounted on the subsurface buoys and the vertical instrument strings were used to measure the vertical displacements of the array in response to the currents. Measurements from the ACMs and the ADCP were used to construct time-dependent, two-dimensional current fields. The current fields were used as input to a numerical model that calculated the deformation of the array with respect to the nominal zero-current configuration. Comparison of the calculated vertical offsets of the downstream subsurface buoy and downstream vertical instrument string with the pressure measurements were used to verify the numerical code. These results were then used to estimate total deformation of the array due to the passage of the internal waves. Based on the analysis of the three internal wave events with the highest measured vertical offsets, it is concluded that the geometry of the main structure (horizontal cable and anchor legs) was kept to within ±2.0 m, and the geometry of the vertical instrument strings was kept to within ±4.0 m except for one instance when the current velocity reached 0.88 m s−1.

  2. Dependence of sea-surface microwave emissivity on friction velocity as derived from SMMR/SASS

    NASA Technical Reports Server (NTRS)

    Wentz, F. J.; Christensen, E. J.; Richardson, K. A.

    1981-01-01

    The sea-surface microwave emissivity is derived using SMMR brightness temperatures and SASS inferred friction velocities for three North Pacific Seasat passes. The results show the emissivity increasing linearly with friction velocity with no obvious break between the foam-free and foam regimes up to a friction velocity of about 70 cm/sec (15 m/sec wind speed). For horizontal polarization the sensitivity of emissivity to friction velocity greatly increases with frequency, while for vertical polarization the sensitivity is much less and is independent of frequency. This behavior is consistent with two-scale scattering theory. A limited amount of high friction velocity data above 70 cm/sec suggests an additional increase in emissivity due to whitecapping.

  3. Large-scale magnetic field perturbation arising from the 18 May 1980 eruption from Mount St. Helens, Washington

    USGS Publications Warehouse

    Mueller, R.J.; Johnston, M.J.S.

    1989-01-01

    A traveling magnetic field disturbance generated by the 18 may 1980 eruption of Mount St. Helens at 1532 UT was detected on an 800-km linear array of recording magnetometers installed along the San Andreas fault system in California, from San Francisco to the Salton Sea. Arrival times of the disturbance field, from the most northern of these 24 magnetometers (996 km south of the volcano) to the most southern (1493 km S23?? E), are consistent with the generation of a traveling ionospheric disturbance stimulated by the blast pressure wave in the atmosphere. The first arrivals at the north and the south ends of the array occurred at 26 and 48 min, respectively, after the initial eruption. Apparent average wave velocity through the array is 309 ?? 14 m s-1 but may have approached 600 m s-1 close to the volcano. The horizontal phase and the group velocity of ??? 300 m s-1 at periods of 70-80 min, and the attenuation with distance, strongly suggest that the magnetic field perturbations at distances of 1000-1500 km are caused by gravity mode acoustic-gravity waves propagating at F-region heights in the ionosphere. ?? 1989.

  4. Mixing liquid-liquid stratified flows using transverse jets in cross flows

    NASA Astrophysics Data System (ADS)

    Wright, Stuart; Matar, Omar K.; Markides, Christos N.

    2017-11-01

    Low pipeline velocities in horizontal liquid-liquid flows lead to gravitationally-induced stratification. This results in flow situations that have no point where average properties can be measured. Inline mixing limits the stratification effect by forming unstable liquid-liquid dispersions. An experimental system is used to measure the mixing performance of various jet-in-cross-flow (JICF) configurations as examples of active inline mixers. The test section consists of a 8.5-m long ETFE pipe with a 50-mm diameter, which is refractive index-matched to both a 10 cSt silicone oil and a 51 wt% glycerol solution. This practice allows advanced laser-based optical techniques, namely PLIF and PIV/PTV, to be applied to these flows in order to measure the phase fractions and velocity fields, respectively. A volume of a fluid (VOF) CFD code is then used to simulate simple jet geometries and to demonstrate the breakup and dispersion capabilities of JICFs in stratified pipeline flows by predicting their mixing efficiency. These simulation results are contrasted with the experimental results to examine the effectiveness of these simulations in predicting the dispersion and breakup. Funding from Cameron/Schlumberger, and the TMF Consortium gratefully acknowledged.

  5. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2002-11-18

    During the sixth quarter of this research project the research team developed a method and the experimental procedures for acquiring the data needed for ultrasonic tomography of rock core samples under triaxial stress conditions as outlined in Task 10. Traditional triaxial compression experiments, where compressional and shear wave velocities are measured, provide little or no information about the internal spatial distribution of mechanical damage within the sample. The velocities measured between platen-to-platen or sensor-to-sensor reflects an averaging of all the velocities occurring along that particular raypath across the boundaries of the rock. The research team is attempting to develop andmore » refine a laboratory equivalent of seismic tomography for use on rock samples deformed under triaxial stress conditions. Seismic tomography, utilized for example in crosswell tomography, allows an imaging of the velocities within a discrete zone within the rock. Ultrasonic or acoustic tomography is essentially the extension of that field technology applied to rock samples deforming in the laboratory at high pressures. This report outlines the technical steps and procedures for developing this technology for use on weak, soft chalk samples. Laboratory tests indicate that the chalk samples exhibit major changes in compressional and shear wave velocities during compaction. Since chalk is the rock type responsible for the severe subsidence and compaction in the North Sea it was selected for the first efforts at tomographic imaging of soft rocks. Field evidence from the North Sea suggests that compaction, which has resulted in over 30 feet of subsidence to date, is heterogeneously distributed within the reservoir. The research team will attempt to image this very process in chalk samples. The initial tomographic studies (Scott et al., 1994a,b; 1998) were accomplished on well cemented, competent rocks such as Berea sandstone. The extension of the technology to weaker samples is more difficult but potentially much more rewarding. The chalk, since it is a weak material, also attenuates wave propagation more than other rock types. Three different types of sensors were considered (and tested) for the tomographic imaging project: 600 KHz PZT, 1 MHz PZT, and PVDF film sensors. 600 KHz PZT crystals were selected because they generated a sufficiently high amplitude pulse to propagate across the damaged chalk. A number of different configurations were considered for placement of the acoustic arrays. It was decided after preliminary testing that the most optimum arrangement of the acoustic sensors was to place three arrays of sensors, with each array containing twenty sensors, around the sample. There would be two horizontal arrays to tomographically image two circular cross-sectional planes through the rock core sample. A third array would be vertically oriented to provide a vertical cross-sectional view of the sample. A total of 260 acoustic raypaths would be shot and acquired in the horizontal acoustic array to create each horizontal tomographic image. The sensors can be used as both acoustic sources or as acoustic each of the 10 pulsers to the 10 receivers.« less

  6. Three-dimensional surface deformation derived from airborne interferometric UAVSAR: Application to the Slumgullion Landslide

    USGS Publications Warehouse

    Delbridge, Brent G.; Burgmann, Roland; Fielding, Eric; Hensley, Scott; Schulz, William

    2016-01-01

    In order to provide surface geodetic measurements with “landslide-wide” spatial coverage, we develop and validate a method for the characterization of 3-D surface deformation using the unique capabilities of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) airborne repeat-pass radar interferometry system. We apply our method at the well-studied Slumgullion Landslide, which is 3.9 km long and moves persistently at rates up to ∼2 cm/day. A comparison with concurrent GPS measurements validates this method and shows that it provides reliable and accurate 3-D surface deformation measurements. The UAVSAR-derived vector velocity field measurements accurately capture the sharp boundaries defining previously identified kinematic units and geomorphic domains within the landslide. We acquired data across the landslide during spring and summer and identify that the landslide moves more slowly during summer except at its head, presumably in response to spatiotemporal variations in snowmelt infiltration. In order to constrain the mechanics controlling landslide motion from surface velocity measurements, we present an inversion framework for the extraction of slide thickness and basal geometry from dense 3-D surface velocity fields. We find that the average depth of the Slumgullion Landslide is 7.5 m, several meters less than previous depth estimates. We show that by considering a viscoplastic rheology, we can derive tighter theoretical bounds on the rheological parameter relating mean horizontal flow rate to surface velocity. Using inclinometer data for slow-moving, clay-rich landslides across the globe, we find a consistent value for the rheological parameter of 0.85 ± 0.08.

  7. Laminar forced convection from a rotating horizontal cylinder in cross flow

    NASA Astrophysics Data System (ADS)

    Chandran, Prabul; Venugopal, G.; Jaleel, H. Abdul; Rajkumar, M. R.

    2017-04-01

    The influence of non-dimensional rotational velocity, flow Reynolds number and Prandtl number of the fluid on laminar forced convection from a rotating horizontal cylinder subject to constant heat flux boundary condition is numerically investigated. The numerical simulations have been conducted using commercial Computational Fluid Dynamics package CFX available in ANSYS Workbench 14. Results are presented for the non-dimensional rotational velocity α ranging from 0 to 4, flow Reynolds number from 25 to 40 and Prandtl number of the fluid from 0.7 to 5.4. The rotational effects results in reduction in heat transfer compared to heat transfer from stationary heated cylinder due to thickening of boundary layer as consequence of the rotation of the cylinder. Heat transfer rate increases with increase in Prandtl number of the fluid.

  8. Comparison of body segmental kinematic characteristics between children with cerebral palsy performing sit-to-stand with and without a walker.

    PubMed

    Thanapan, Puthamaluk; Prasertsukdee, Saipin; Vachalathiti, Roongtiwa

    2013-03-01

    The study investigated how the subjects, 18 children with spastic diplegia aged 7-14 years, attained sit-to-stand (STS). The children were divided into two groups and three STS conditions: 1) those who could attain STS independently (I-STS), 2) those who could not attain STS independently (D-STS), and 3) subjects from the D-STS condition who could successfully attain STS with the walker (W-STS). The results showed that I-STS had more mean maximum horizontal location of the upper body and knee than the hip. All body segments of D-STS followed the same model as the I-STS condition, but they moved with less magnitude than I-STS. W-STS presented both pattern and magnitudes relatively similar to I-STS. Furthermore, I-STS showed the highest mean maximum horizontal and vertical velocities of body segments, when compared with the other STS conditions. W-STS performed the mean maximum horizontal and vertical linear velocities of all selected segments close to D-STS did.

  9. Assimilation of Satellite to Improve Cloud Simulation in Wrf Model

    NASA Astrophysics Data System (ADS)

    Park, Y. H.; Pour Biazar, A.; McNider, R. T.

    2012-12-01

    A simple approach has been introduced to improve cloud simulation spatially and temporally in a meteorological model. The first step for this approach is to use Geostationary Operational Environmental Satellite (GOES) observations to identify clouds and estimate the clouds structure. Then by comparing GOES observations to model cloud field, we identify areas in which model has under-predicted or over-predicted clouds. Next, by introducing subsidence in areas with over-prediction and lifting in areas with under-prediction, erroneous clouds are removed and new clouds are formed. The technique estimates a vertical velocity needed for the cloud correction and then uses a one dimensional variation schemes (1D_Var) to calculate the horizontal divergence components and the consequent horizontal wind components needed to sustain such vertical velocity. Finally, the new horizontal winds are provided as a nudging field to the model. This nudging provides the dynamical support needed to create/clear clouds in a sustainable manner. The technique was implemented and tested in the Weather Research and Forecast (WRF) Model and resulted in substantial improvement in model simulated clouds. Some of the results are presented here.

  10. Improving LADCP Velocity Profiles with External Attitude Sensors

    NASA Astrophysics Data System (ADS)

    Thurnherr, A. M.; Goszczko, I.

    2016-12-01

    Data collected with Acoustic Doppler Current Profilers installed on CTD rosettes and lowered through the water column (LADCP systems) are routinely used to derive full-depth profiles of ocean velocity. In addition to the uncertainties arising from random noise in the along-beam velocity measurements, LADCP derived velocities are commonly contaminated by bias errors due to imperfectly measured instrument attitude (pitch, roll and heading). Of particular concern are the heading measurements because it is not usually feasible to calibrate the internal ADCP compasses with the instruments installed on a CTD rosette, away from the magnetic disturbances of the ship as well as the current-carrying winch wire. Heading data from dual-headed LADCP systems, which consist of upward and downward-pointing ADCPs installed on the same rosette, commonly indicate heading-dependent compass errors with amplitudes exceeding 10 degrees. In an attempt to reduce LADCP velocity errors, over 200 full-depth profiles were collected during several recent projects, including GO-SHIP, DIMES and ECOGIG, with an inexpensive (<$200) external magnetometer/accelerometer package. The resulting data permit full compass calibrations (for both hard- and soft-iron effects) from in-situ profile data and yields improved pitch and roll measurements. Results indicate greatly reduced inconsistencies between the data from the two ADCPs (horizontal-velocity processing residuals), as well as smaller biases in vertical -velocity (w) measurements. In addition, the external magnetometer package allows processing of some LADCP data collected in regions where the horizontal magnitude of the earth's magnetic field is insufficient for the ADCPs internal compasses to work at all.

  11. Velocity gradients and reservoir volumes lessons in computational sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, P.W.

    1995-12-31

    The sensitivity of reservoir volume estimation from depth converted geophysical time maps to the velocity gradients employed is investigated through a simple model study. The computed volumes are disconcertingly sensitive to gradients, both horizontal and vertical. The need for an accurate method of time to depth conversion is well demonstrated by the model study in which errors in velocity are magnified 40 fold in the computation of the volume. Thus if +/- 10% accuracy in the volume is desired, we must be able to estimate the velocity at the water contact with 0.25% accuracy. Put another way, if the velocitymore » is 8000 feet per second at the well then we have only +/- 20 feet per second leeway in estimating the velocity at the water contact. Very moderate horizontal and vertical gradients would typically indicate a velocity change of a few hundred feet per second if they are in the same direction. Clearly the interpreter needs to by very careful. A methodology is demonstrated which takes into account all the information that is available, velocities, tops, depositional and lithologic spatial patterns, and common sense. It is assumed that through appropriate use of check shot and other time-depth information, that the interpreter has correctly tied the reflection picks to the well tops. Such ties are ordinarily too soft for direct time-depth conversion to give adequate depth ties. The proposed method uses a common compaction law as its basis and incorporates time picks, tops and stratigraphic maps into the depth conversion process. The resulting depth map ties the known well tops in an optimum fashion.« less

  12. Experimental Study on the Flow Regimes and Pressure Gradients of Air-Oil-Water Three-Phase Flow in Horizontal Pipes

    PubMed Central

    Al-Hadhrami, Luai M.; Shaahid, S. M.; Tunde, Lukman O.; Al-Sarkhi, A.

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645

  13. Experimental study on the flow regimes and pressure gradients of air-oil-water three-phase flow in horizontal pipes.

    PubMed

    Al-Hadhrami, Luai M; Shaahid, S M; Tunde, Lukman O; Al-Sarkhi, A

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20 °C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed.

  14. WIYN open cluster study. LIX. Radial velocity membership of the evolved population of the old open cluster NGC 6791

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tofflemire, Benjamin M.; Gosnell, Natalie M.; Mathieu, Robert D.

    2014-10-01

    The open cluster NGC 6791 has been the focus of much recent study due to its intriguing combination of old age and high metallicity (∼8 Gyr, [Fe/H] = +0.30), as well as its location within the Kepler field. As part of the WIYN Open Cluster Study, we present precise (σ = 0.38 km s{sup –1}) radial velocities for proper motion candidate members of NGC 6791 from Platais et al. Our survey, extending down to g' ∼ 16.8, is comprised of the evolved cluster population, including blue stragglers, giants, and horizontal branch stars. Of the 280 proper-motion-selected stars above our magnitudemore » limit, 93% have at least one radial velocity measurement and 79% have three measurements over the course of at least 200 days, sufficient for secure radial-velocity-determined membership of non-velocity-variable stars. The Platais et al. proper motion catalog includes 12 anomalous horizontal branch candidates blueward of the red clump, of which we find only 4 to be cluster members. Three fall slightly blueward of the red clump and the fourth is consistent with being a blue straggler. The cleaned color-magnitude diagram shows a richly populated red giant branch and a blue straggler population. Half of the blue stragglers are in binaries. From our radial velocity measurement distribution, we find the cluster's radial velocity dispersion to be σ {sub c} = 0.62 ± 0.10 km s{sup –1}. This corresponds to a dynamical mass of ∼4600 M {sub ☉}.« less

  15. Analysis of strong ground motions and site effects at Kantipath, Kathmandu, from 2015 Mw 7.8 Gorkha, Nepal, earthquake and its aftershocks

    NASA Astrophysics Data System (ADS)

    Dhakal, Yadab P.; Kubo, Hisahiko; Suzuki, Wataru; Kunugi, Takashi; Aoi, Shin; Fujiwara, Hiroyuki

    2016-04-01

    Strong ground motions from the 2015 Mw 7.8 Gorkha, Nepal, earthquake and its eight aftershocks recorded by a strong-motion seismograph at Kantipath (KATNP), Kathmandu, were analyzed to assess the ground-motion characteristics and site effects at this location. Remarkably large elastic pseudo-velocity responses exceeding 300 cm/s at 5 % critical damping were calculated for the horizontal components of the mainshock recordings at peak periods of 4-5 s. Conversely, the short-period ground motions of the mainshock were relatively weak despite the proximity of the site to the source fault. The horizontal components of all large-magnitude (Mw ≥ 6.3) aftershock recordings showed peak pseudo-velocity responses at periods of 3-4 s. Ground-motion prediction equations (GMPEs) describing the Nepal Himalaya region have not yet been developed. A comparison of the observational data with GMPEs for Japan showed that with the exception of the peak ground acceleration (PGA) of the mainshock, the observed PGAs and peak ground velocities at the KATNP site are generally well described by the GMPEs for crustal and plate interface events. A comparison of the horizontal-to-vertical ( H/ V) spectral ratios for the S-waves of the mainshock and aftershock recordings suggested that the KATNP site experienced a considerable nonlinear site response, which resulted in the reduced amplitudes of short-period ground motions. The GMPEs were found to underestimate the response values at the peak periods (approximately 4-5 s) of the large-magnitude events. The deep subsurface velocity model of the Kathmandu basin has not been well investigated. Therefore, a one-dimensional velocity model was constructed for the deep sediments beneath the recording station based on an analysis of the H/ V spectral ratios for S-wave coda from aftershock recordings, and it was revealed that the basin sediments strongly amplified the long-period components of the ground motions of the mainshock and large-magnitude aftershocks.

  16. Multifractal Analysis of the Small Time-Scale Boundary-Layer Characteristics of the Wind: the Anisotropy and Extremes

    NASA Astrophysics Data System (ADS)

    Fitton, G. F.; Tchiguirinskaia, I.; Schertzer, D. J.; Lovejoy, S.

    2012-12-01

    Under various physical conditions (mean temperature and velocity gradients, stratification and rotation) atmospheric turbulent flows remain intrinsically anisotropic. The immediate vicinity of physical boundaries rises to a greater complexity of the anisotropy effects. In this paper we address the issue of the scaling anisotropy of the wind velocity fields within the atmospheric boundary layer (ABL). Under the universal multifractal (UM) framework we compare the small time-scale (0.1 to 1,000 seconds) boundary-layer characteristics of the wind for two different case studies. The first case study consisted of a single mast located within a wind farm in Corsica, France. Three sonic anemometers were installed on the mast at 22, 23 and 43m, measuring three-dimensional wind velocity data at 10Hz. Wakes, complex terrain and buoyancy forces influenced the measurements. The second case study (GROWIAN experiment in Germany) consisted of an array of propeller anemometers measuring wind speed inflow data at 2.5Hz over flat terrain. The propeller anemometers were positioned vertically at 10, 50, 75, 100, 125 and 150m with four horizontal measurements taken at 75, 100 and 125m. The spatial distribution allowed us to calculate the horizontal and vertical shear structure functions of the horizontal wind. Both case studies are within a kilometre from the sea. For the first case study (10Hz measurements in a wind farm test site) the high temporal resolution of the data meant we observed Kolmogorov scaling from 0.2 seconds (with intermittency correction) right up to 1,000 seconds at which point a scaling break occurred. After the break we observed a scaling power law of approximately 2, which is in agreement with Bolgiano-Obukhov scaling theory with intermittency correction. However, for the second case study (2.5Hz on flat terrain) we only observed Kolmogorov scaling from 6.4 seconds (also with intermittency correction). The spectra of horizontal velocity components remain anisotropic over high frequencies, where u1 most scales as Bolgiano-Obukhov and u2 scales as Kolmogorov. The scaling law of the vertical shears of the horizontal wind in the array varied from Kolmogorov to Bolgiano-Obukhov with height depending on the condition of stability. We interpret the results with the UM anisotropic model that greatly enhances our understanding of the ABL structure. Comparing the two case studies we found in both cases the multifractality parameter of about 1.6, which remains close to the estimates obtained for the free atmosphere. From the UM parameters, the exponent of the power law of the distribution of the extremes can be predicted. Over small scales, this exponent is of about 7.5 for the wind velocity, which is a crucial result for applications within the field of wind energy.

  17. Angle-of-Arrival Fluctuations of Light Propagating through the Intermittent Nocturnal Atmospheric Surface Layer

    NASA Astrophysics Data System (ADS)

    Muschinski, A.; Hu, K.; Root, L. M.; Tichkule, S.; Wijesundara, S. N.

    2010-12-01

    Mean values and fluctuations of angles-of-arrival (AOAs) of light emitted from astronomical or terrestrial sources and observed through a telescope equipped with a CCD camera carry quantitative information about certain statistics of the wind and temperature field, integrated along the propagation path. While scintillometry (i.e., the retrieval of atmospheric quantities from light intensity fluctuations) has been a popular technique among micrometeorologists for many years, there have been relatively few attempts to utilize AOA observations to probe the atmospheric surface layer (ASL). Here we report results from a field experiment that we conducted at the Boulder Atmospheric Observatory (BAO) site near Erie, CO, in June 2010. During the night of 15/16 June, the ASL was characterized by intermittent turbulence and intermittent gravity-wave events. We measured temperature and wind with 12 sonics (R.M. Young, Model 81000, sampling rate 31 Hz) mounted on two portable towers at altitudes between 1.45 m and 4.84 m AGL; air pressure with two quartz-crystal barometers (Paroscientific, 10 Hz); and AOAs by means of a CCD camera (Lumenera, Model 075M, thirty 640x480 frames per second) attached to a 14-inch, Schmidt-Cassegrain telescope (Meade, Model LX200GPS) pointing at a rectangular array of four test lights (LEDs, vertical spacing 8 cm, horizontal spacing 10 cm) located at a distance of 182 m. The optical path was horizontal and 1.7 m above flat ground. The two towers were located 2 m away from the optical path. In our presentation, we focus on AOA retrievals of the following quantities: temporal fluctuations of the path-averaged, vertical temperature gradient; mean values and fluctuations of the path-averaged, lateral wind velocity; and mean values and fluctuations of the path-averaged temperature turbulence structure parameter. We compare the AOA retrievals with the collocated and simultaneous point measurements obtained with the sonics, and we analyze our observations in the framework of the Monin-Obukhov theory. The AOA techniques enable us to detect temporal fluctuations of the path-averaged vertical temperature gradient (estimated over a height increment defined by the telescope's aperture diameter) down to a few millikelvins per meter, which probably cannot be achieved with sonics. Extremely small wind velocities can also be resolved. Therefore, AOA techniques are well suited for observations of the nocturnal surface layer under quiet conditions. AOA retrieval techniques have major advantages over scintillometric techniques because AOAs can be understood within the framework of the weak-scattering theory or even geometrical optics (the eikonal-fluctuation theory), while the well-known "saturation effect" makes the weak-scattering theory invalid for intensity fluctuations in the majority of cases of practical relevance.

  18. Low-velocity zone and topography as a source of site amplification effect on Tarzana hill, California

    USGS Publications Warehouse

    Graizer, V.

    2009-01-01

    Tarzana station is located in the foothills of the Santa Monica Mountains in California near the crest of a low (<20 m) natural hill with gentle slopes. The hill is about 500 m in length by 130 m in width and is formed of extremely weathered shale at the surface to fresh at depth. Average S-wave is about 250 m/s in the top 17-18 m, and S- and P-wave velocities significantly increase below this depth. According to the NEHRP classification based on VS30???300 m/s it is a site class D. Strong-motion instrumentation at Tarzana consisted of an accelerograph at the top of the hill, a downhole instrument at 60 m depth, and an accelerograph at the base of the hill. More than 20 earthquakes were recorded by at least three instruments at Tarzana from 1998 till 2003. Comparisons of recordings and Fourier spectra indicate strong directional resonance in a direction perpendicular to the strike of the hill. The dominant peaks in ground motion amplification on the top of the hill relative to the base are at frequencies ???3.6 and 8-9 Hz for the horizontal components. Our hypothesis is that the hill acts like a wave trap. This results in an amplification at predominant frequencies f=V/4 h (h is layer's thickness) at f???3.6 Hz for S-waves (using average VS17=246 m/s and h=17 m) and f???7.9 Hz for P-waves (using average VP17=535 m/s and h=17 m). As was shown by Bouchon and Barker [Seismic response of a hill: the example of Tarzana, California. Bull Seism Soc Am 1996;86(1A):66-72], topography of this hill amplifies and polarizes ground motion in the frequency range of 3-5 Hz. Hill acts as a magnifying polarizing glass: It polarizes ground motion in the direction perpendicular to the strike of the hill and also amplifies ground motions that had been also amplified by a low-velocity layer.

  19. Firing properties of rat lateral mammillary single units: head direction, head pitch, and angular head velocity.

    PubMed

    Stackman, R W; Taube, J S

    1998-11-01

    Many neurons in the rat anterodorsal thalamus (ADN) and postsubiculum (PoS) fire selectively when the rat points its head in a specific direction in the horizontal plane, independent of the animal's location and ongoing behavior. The lateral mammillary nuclei (LMN) are interconnected with both the ADN and PoS and, therefore, are in a pivotal position to influence ADN/PoS neurophysiology. To further understand how the head direction (HD) cell signal is generated, we recorded single neurons from the LMN of freely moving rats. The majority of cells discharged as a function of one of three types of spatial correlates: (1) directional heading, (2) head pitch, or (3) angular head velocity (AHV). LMN HD cells exhibited higher peak firing rates and greater range of directional firing than that of ADN and PoS HD cells. LMN HD cells were modulated by angular head velocity, turning direction, and anticipated the rat's future HD by a greater amount of time (approximately 95 msec) than that previously reported for ADN HD cells (approximately 25 msec). Most head pitch cells discharged when the rostrocaudal axis of the rat's head was orthogonal to the horizontal plane. Head pitch cell firing was independent of the rat's location, directional heading, and its body orientation (i.e., the cell discharged whenever the rat pointed its head up, whether standing on all four limbs or rearing). AHV cells were categorized as fast or slow AHV cells depending on whether their firing rate increased or decreased in proportion to angular head velocity. These data demonstrate that LMN neurons code direction and angular motion of the head in both horizontal and vertical planes and support the hypothesis that the LMN play an important role in processing both egocentric and allocentric spatial information.

  20. Seaglider surveys at Ocean Station Papa: Diagnosis of upper-ocean heat and salt balances using least squares with inequality constraints

    NASA Astrophysics Data System (ADS)

    Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.

    2017-06-01

    Heat and salt balances in the upper 200 m are examined using data from Seaglider spatial surveys June 2008 to January 2010 surrounding a NOAA surface mooring at Ocean Station Papa (OSP; 50°N, 145°W). A least-squares approach is applied to repeat Seaglider survey and moored measurements to solve for unknown or uncertain monthly three-dimensional circulation and vertical diffusivity. Within the surface boundary layer, the estimated heat and salt balances are dominated throughout the surveys by turbulent flux, vertical advection, and for heat, radiative absorption. When vertically integrated balances are considered, an estimated upwelling of cool water balances the net surface input of heat, while the corresponding large import of salt across the halocline due to upwelling and diffusion is balanced by surface moisture input and horizontal import of fresh water. Measurement of horizontal gradients allows the estimation of unresolved vertical terms over more than one annual cycle; diffusivity in the upper-ocean transition layer decreases rapidly to the depth of the maximum near-surface stratification in all months, with weak seasonal modulation in the rate of decrease and profile amplitude. Vertical velocity is estimated to be on average upward but with important monthly variations. Results support and expand existing evidence concerning the importance of horizontal advection in the balances of heat and salt in the Gulf of Alaska, highlight time and depth variability in difficult-to-measure vertical transports in the upper ocean, and suggest avenues of further study in future observational work at OSP.

  1. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications

    USGS Publications Warehouse

    Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane

    2012-01-01

    Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK' 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from and . Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction, bottom stress, breaking acceleration, horizontal advection and horizontal vortex forces dominate the momentum balance. The simulation results for the bar/rip channel morphology case clearly show the ability of the modeling system to reproduce horizontal and vertical circulation patterns similar to those found in laboratory studies and to numerical simulations using the radiation stress representation. The vortex force term is found to be more important at locations where strong flow vorticity interacts with the wave-induced Stokes flow field. Outside the surf zone, the three-dimensional model simulations of wave-induced flows for non-breaking waves closely agree with flow observations from MVCO, with the vertical structure of the simulated flow varying as a function of the vertical viscosity as demonstrated by Lentz et al. (2008).

  2. Prognostic residual mean flow in an ocean general circulation model and its relation to prognostic Eulerian mean flow

    DOE PAGES

    Saenz, Juan A.; Chen, Qingshan; Ringler, Todd

    2015-05-19

    Recent work has shown that taking the thickness-weighted average (TWA) of the Boussinesq equations in buoyancy coordinates results in exact equations governing the prognostic residual mean flow where eddy–mean flow interactions appear in the horizontal momentum equations as the divergence of the Eliassen–Palm flux tensor (EPFT). It has been proposed that, given the mathematical tractability of the TWA equations, the physical interpretation of the EPFT, and its relation to potential vorticity fluxes, the TWA is an appropriate framework for modeling ocean circulation with parameterized eddies. The authors test the feasibility of this proposition and investigate the connections between the TWAmore » framework and the conventional framework used in models, where Eulerian mean flow prognostic variables are solved for. Using the TWA framework as a starting point, this study explores the well-known connections between vertical transfer of horizontal momentum by eddy form drag and eddy overturning by the bolus velocity, used by Greatbatch and Lamb and Gent and McWilliams to parameterize eddies. After implementing the TWA framework in an ocean general circulation model, we verify our analysis by comparing the flows in an idealized Southern Ocean configuration simulated using the TWA and conventional frameworks with the same mesoscale eddy parameterization.« less

  3. Head-Shaking Nystagmus Depends on Gravity

    PubMed Central

    Marti, Sarah; Straumann, Dominik

    2005-01-01

    In acute unilateral peripheral vestibular deficit, horizontal spontaneous nystagmus (SN) increases when patients lie on their affected ear. This phenomenon indicates an ipsilesional reduction of otolith function that normally suppresses asymmetric semicircular canal signals. We asked whether head-shaking nystagmus (HSN) in patients with chronic unilateral vestibular deficit following vestibular neuritis is influenced by gravity in the same way as SN in acute patients. Using a three-dimensional (3-D) turntable, patients (N = 7) were placed in different whole-body positions along the roll plane and oscillated (1 Hz, ±10°) about their head-fixed vertical axis. Eye movements were recorded with 3-D magnetic search coils. HSN was modulated by gravity: When patients lay on their affected ear, slow-phase eye velocity significantly increased upon head shaking and consisted of a horizontal drift toward the affected ear (average: 1.2°/s ±0.5 SD), which was added to the gravity-independent and directionally nonspecific SN. In conclusion, HSN in patients with chronic unilateral peripheral vestibular deficit is best elicited when they are lying on their affected ear. This suggests a gravity-dependent mechanism similar to the one observed for SN in acute patients, i.e., an asymmetric suppression of vestibular nystagmus by the unilaterally impaired otolith organs. PMID:15735939

  4. A variational assimilation method for satellite and conventional data: Development of basic model for diagnosis of cyclone systems

    NASA Technical Reports Server (NTRS)

    Achtemeier, G. L.; Ochs, H. T., III; Kidder, S. Q.; Scott, R. W.; Chen, J.; Isard, D.; Chance, B.

    1986-01-01

    A three-dimensional diagnostic model for the assimilation of satellite and conventional meteorological data is developed with the variational method of undetermined multipliers. Gridded fields of data from different type, quality, location, and measurement source are weighted according to measurement accuracy and merged using least squares criteria so that the two nonlinear horizontal momentum equations, the hydrostatic equation, and an integrated continuity equation are satisfied. The model is used to compare multivariate variational objective analyses with and without satellite data with initial analyses and the observations through criteria that were determined by the dynamical constraints, the observations, and pattern recognition. It is also shown that the diagnoses of local tendencies of the horizontal velocity components are in good comparison with the observed patterns and tendencies calculated with unadjusted data. In addition, it is found that the day-night difference in TOVS biases are statistically different (95% confidence) at most levels. Also developed is a hybrid nonlinear sigma vertical coordinate that eliminates hydrostatic truncation error in the middle and upper troposphere and reduces truncation error in the lower troposphere. Finally, it is found that the technique used to grid the initial data causes boundary effects to intrude into the interior of the analysis a distance equal to the average separation between observations.

  5. Large eddy simulation of turbine wakes using higher-order methods

    NASA Astrophysics Data System (ADS)

    Deskos, Georgios; Laizet, Sylvain; Piggott, Matthew D.; Sherwin, Spencer

    2017-11-01

    Large eddy simulations (LES) of a horizontal-axis turbine wake are presented using the well-known actuator line (AL) model. The fluid flow is resolved by employing higher-order numerical schemes on a 3D Cartesian mesh combined with a 2D Domain Decomposition strategy for an efficient use of supercomputers. In order to simulate flows at relatively high Reynolds numbers for a reasonable computational cost, a novel strategy is used to introduce controlled numerical dissipation to a selected range of small scales. The idea is to mimic the contribution of the unresolved small-scales by imposing a targeted numerical dissipation at small scales when evaluating the viscous term of the Navier-Stokes equations. The numerical technique is shown to behave similarly to the traditional eddy viscosity sub-filter scale models such as the classic or the dynamic Smagorinsky models. The results from the simulations are compared to experimental data for a Reynolds number scaled by the diameter equal to ReD =1,000,000 and both the time-averaged stream wise velocity and turbulent kinetic energy (TKE) are showing a good overall agreement. At the end, suggestions for the amount of numerical dissipation required by our approach are made for the particular case of horizontal-axis turbine wakes.

  6. THE SUN’S PHOTOSPHERIC CONVECTION SPECTRUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathaway, David H.; Teil, Thibaud; Kitiashvili, Irina

    2015-10-01

    Spectra of the cellular photospheric flows are determined from full-disk Doppler velocity observations acquired by the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory spacecraft. Three different analysis methods are used to separately determine spectral coefficients representing the poloidal flows, the toroidal flows, and the radial flows. The amplitudes of these spectral coefficients are constrained by simulated data analyzed with the same procedures as the HMI data. We find that the total velocity spectrum rises smoothly to a peak at a wavenumber of about 120 (wavelength of about 35 Mm), which is typical of supergranules. The spectrummore » levels off out to wavenumbers of about 400, and then rises again to a peak at a wavenumber of about 3500 (wavelength of about 1200 km), which is typical of granules. The velocity spectrum is dominated by the poloidal flow component (horizontal flows with divergence but no curl) at wavenumbers above 30. The toroidal flow component (horizontal flows with curl but no divergence) dominates at wavenumbers less than 30. The radial flow velocity is only about 3% of the total flow velocity at the lowest wavenumbers, but increases in strength to become about 50% at wavenumbers near 4000. The spectrum compares well with the spectrum of giant cell flows at the lowest wavenumbers and with the spectrum of granulation from a 3D radiative-hydrodynamic simulation at the highest wavenumbers.« less

  7. Three types of gas hydrate reservoirs in the Gulf of Mexico identified in LWD data

    USGS Publications Warehouse

    Lee, Myung Woong; Collett, Timothy S.

    2011-01-01

    High quality logging-while-drilling (LWD) well logs were acquired in seven wells drilled during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II in the spring of 2009. These data help to identify three distinct types of gas hydrate reservoirs: isotropic reservoirs in sands, vertical fractured reservoirs in shale, and horizontally layered reservoirs in silty shale. In general, most gas hydratebearing sand reservoirs exhibit isotropic elastic velocities and formation resistivities, and gas hydrate saturations estimated from the P-wave velocity agree well with those from the resistivity. However, in highly gas hydrate-saturated sands, resistivity-derived gas hydrate-saturation estimates appear to be systematically higher by about 5% over those estimated by P-wave velocity, possibly because of the uncertainty associated with the consolidation state of gas hydrate-bearing sands. Small quantities of gas hydrate were observed in vertical fractures in shale. These occurrences are characterized by high formation resistivities with P-wave velocities close to those of water-saturated sediment. Because the formation factor varies significantly with respect to the gas hydrate saturation for vertical fractures at low saturations, an isotropic analysis of formation factor highly overestimates the gas hydrate saturation. Small quantities of gas hydrate in horizontal layers in shale are characterized by moderate increase in P-wave velocities and formation resistivities and either measurement can be used to estimate gas hydrate saturations.

  8. Drop Shapes Versus Fall Velocities in Rain: 2 Contrasting Examples

    NASA Technical Reports Server (NTRS)

    Thurai, M.; Bringi, V. N.; Petersen, W. A.; Carey, L. D.; Gatlin, P. N.; Tokay, A.

    2011-01-01

    Rainfall retrievals from polarimetric radar measurements require the knowledge of four fundamental rain microstructure parameters, namely, drop size distribution, drop shape distribution, canting angles and drop fall velocities. Some recent measurements of all four parameters in natural rain are summarized in [1]. In this paper, we perform an in-depth analysis of two events, using two co-located 2D video disdrometers (2DVD; see [2]) both with high calibration accuracy, and a C-band polarimetric radar [3], located 15 km away. The two events, which occurred 7 days apart (on the 18th and the 25th of Dec 2009), had moderate-to-intense rainfall rates, but the second event had an embedded convection line within the storm. The line had passed over the 2DVD site, thus enabling the shapes and fall velocities to be determined as the line crossed the site. The first event was also captured in a similar manner by both the 2DVDs as well as the C-band radar. Drop fall velocity measurements for, say, the 3 mm drops show noticeable differences between the two events. Whereas for the first event, the velocity distribution showed a narrow and symmetric distribution, with a mode at the expected value (7.95 m/s, as given by the formula in [4]), the second event produced a wider distribution with a significant skewness towards lower velocities (although its mode too was close to the expected value). Moreover, the slower 3 mm drops in the second event occurred when the convection line was directly over the 2DVD site (03:35-03:45 utc), and not before nor after. A similar trend was observed in terms of the horizontal dimensions of the 3 mm drops, i.e. large fluctuations during the same time period, but not outside the period. Vertical dimensions of the drops also fluctuated but not to the same extent. Interestingly, the horizontal dimensions tended towards larger values during the 10-minute period, implying an increase in drop oblateness, which in turn indicates the possibility of the horizontal mode oscillation, one of the three fundamental modes of drop oscillations [5], albeit the most difficult one to excite.

  9. Magnetic Footpoint Velocities: A Combination Of Minimum Energy Fit AndLocal Correlation Tracking

    NASA Astrophysics Data System (ADS)

    Belur, Ravindra; Longcope, D.

    2006-06-01

    Many numerical and time dependent MHD simulations of the solar atmosphererequire the underlying velocity fields which should be consistent with theinduction equation. Recently, Longcope (2004) introduced a new techniqueto infer the photospheric velocity field from sequence of vector magnetogramswhich are in agreement with the induction equation. The method, the Minimum Energy Fit (MEF), determines a set of velocities and selects the velocity which is smallest overall flow speed by minimizing an energy functional. The inferred velocity can be further constrained by information aboutthe velocity inferred from other techniques. With this adopted techniquewe would expect that the inferred velocity will be close to the photospheric velocity of magnetic footpoints. Here, we demonstrate that the inferred horizontal velocities from LCT can be used to constrain the MEFvelocities. We also apply this technique to actual vector magnetogramsequences and compare these velocities with velocities from LCT alone.This work is supported by DoD MURI and NSF SHINE programs.

  10. Single-particle dispersion in stably stratified turbulence

    NASA Astrophysics Data System (ADS)

    Sujovolsky, N. E.; Mininni, P. D.; Rast, M. P.

    2018-03-01

    We present models for single-particle dispersion in vertical and horizontal directions of stably stratified flows. The model in the vertical direction is based on the observed Lagrangian spectrum of the vertical velocity, while the model in the horizontal direction is a combination of a continuous-time eddy-constrained random walk process with a contribution to transport from horizontal winds. Transport at times larger than the Lagrangian turnover time is not universal and dependent on these winds. The models yield results in good agreement with direct numerical simulations of stratified turbulence, for which single-particle dispersion differs from the well-studied case of homogeneous and isotropic turbulence.

  11. A New Paradigm for Supergranulation Derived from Large-Distance Time-Distance Helioseismology: Pancakes

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas L.; Hanasoge, Shravan M.

    2012-01-01

    With large separations (10-24 deg heliocentric), it has proven possible to cleanly separate the horizontal and vertical components of supergranular flow with time-distance helioseismology. These measurements require very broad filters in the k-$\\omega$ power spectrum as apparently supergranulation scatters waves over a large area of the power spectrum. By picking locations of supergranulation as peaks in the horizontal divergence signal derived from f-mode waves, it is possible to simultaneously obtain average properties of supergranules and a high signal/noise ratio by averaging over many cells. By comparing ray-theory forward modeling with HMI measurements, an average supergranule model with a peak upflow of 240 m/s at cell center at a depth of 2.3 Mm and a peak horizontal outflow of 700 m/s at a depth of 1.6 Mm. This upflow is a factor of 20 larger than the measured photospheric upflow. These results may not be consistent with earlier measurements using much shorter separations (<5 deg heliocentric). With a 30 Mm horizontal extent and a few Mm in depth, the cells might be characterized as thick pancakes.

  12. Field measurements of mean and turbulent airflow over a barchan sand dune

    NASA Astrophysics Data System (ADS)

    Weaver, Corinne M.; Wiggs, Giles F. S.

    2011-05-01

    Advances in our knowledge of the aeolian processes governing sand dune dynamics have been restricted by a reliance on measures of time-averaged airflow, such as shear velocity ( u*). It has become clear that such measures are incapable of explaining the complete dynamics of sediment transport across dune surfaces. Past evidence from wind tunnel and modelling studies has suggested that in some regions on a dune's surface the sediment transport might be better explained through investigations of the turbulent nature of the airflow. However, to date there have been no field studies providing data on the turbulent characteristics of the airflow around dunes with which to support or refute such hypotheses. The field investigation presented here provides mean and turbulent airflow measurements across the centre-line of a barchan sand dune in Namibia. Data were collected using arrays of sonic anemometers and were compared with sand flux data measured using wedge-shaped traps. Results support previously published data derived from wind tunnels and numerical models. The decline in mean wind velocity at the upwind toe of the dune is shown to coincide with a rise in turbulence, whilst mean velocity acceleration on the upper slope corresponds with a general decline in measured turbulence. Analysis of the components of Reynold shear stress ( -u'¯w'¯) and normal stresses ( u¯ and w2 ¯) supports the notion that the development of flow turbulence along the dune centre-line is likely to be associated with the interplay between streamline curvature and mean flow deceleration/acceleration. It is suggested that, due to the nature of its calculation, turbulence intensity is a measure of less practical use than direct assessments of the individual components of Reynolds stress, particularly the instantaneous horizontal streamwise component ( u2 ¯) and shear stress ( -uw¯). Whilst, increases in Reynolds shear stress and the horizontal streamwise component of stress in the toe region of the dune may effectively explain the maintenance of sand flux in a region of declining mean velocity, they have much less explanatory power for sand flux on the upper windward slope and in the crestal region of the dune. Here, it is suggested that mean flow acceleration is likely to provide the most significant driving force on sand flux, possibly augmented by a rise in the horizontal streamwise component of Reynolds stress ( u2 ¯) in the crest/brink region. Therefore, although wind turbulence is considered to be of fundamental importance in explaining the sediment transport dynamics across the dune's surface it is recognised that the interaction between mean flow deceleration/acceleration, streamline curvature and individual components of Reynolds stress is complex and the identification of a single element of flow that offers a panacea for accounting for sand flux and dune dynamics is difficult to find.

  13. Land motion estimates from GPS at tide gauges: a geophysical evaluation

    NASA Astrophysics Data System (ADS)

    Bouin, M. N.; Wöppelmann, G.

    2010-01-01

    Space geodesy applications have mainly been limited to horizontal deformations due to a number of restrictions on the vertical component accuracy. Monitoring vertical land motion is nonetheless of crucial interest in observations of long-term sea level change or postglacial rebound measurements. Here, we present a global vertical velocity field obtained with more than 200 permanent GPS stations, most of them colocated with tide gauges (TGs). We used a state of the art, homogeneous processing strategy to ensure that the reference frame was stable throughout the observation period of almost 10 yr. We associate realistic uncertainties to our vertical rates, taking into account the time-correlation noise in the time-series. The results are compared with two independent geophysical vertical velocity fields: (1) vertical velocity estimates using long-term TG records and (2) postglacial model predictions from the ICE-5G (VM2) adjustment. The quantitative agreement of the GPS vertical velocities with the `internal estimates' of vertical displacements using the TG record is very good, with a mean difference of -0.13 +/- 1.64 mm yr-1 on more than 100 sites. For 84 per cent of the GPS stations considered, the vertical velocity is confirmed by the TG estimate to within 2 mm yr-1. The overall agreement with the glacial isostatic adjustment (GIA) model is good, with discrepancy patterns related either to a local misfit of the model or to active tectonics. For 72 per cent of the sites considered, the predictions of the GIA model agree with the GPS results to within two standard deviations. Most of the GPS velocities showing discrepancies with respect to the predictions of the GIA model are, however, consistent with previously published space geodesy results. We, in turn, confirm the value of 1.8 +/- 0.5 mm yr-1 for the 20th century average global sea level rise, and conclude that GPS is now a robust tool for vertical land motion monitoring which is accurate at least at 1 mm yr-1.

  14. Numerical simulation study on the distribution law of smoke flow velocity in horizontal tunnel fire

    NASA Astrophysics Data System (ADS)

    Liu, Yejiao; Tian, Zhichao; Xue, Junhua; Wang, Wencai

    2018-02-01

    According to the fluid similarity theory, the simulation experiment system of mining tunnel fire is established. The grid division of experimental model roadway is carried on by GAMBIT software. By setting the boundary and initial conditions of smoke flow during fire period in FLUENT software, using RNG k-Ɛ two-equation turbulence model, energy equation and SIMPLE algorithm, the steady state numerical simulation of smoke flow velocity in mining tunnel is done to obtain the distribution law of smoke flow velocity in tunnel during fire period.

  15. Three Dimensional P-Wave Velocity Structure Beneath Eastern Turkey by Local Earthquake Tomography (LET) Method

    NASA Astrophysics Data System (ADS)

    Teoman, U. M.; Turkelli, N.; Gok, R.

    2005-12-01

    Recently, crustal structure and the tectonic evolution of Eastern Turkey region was extensively studied in the context of Eastern Turkey Seismic Experiment (ETSE) from late 1999 to August 2001. Collision of the Arabian and Eurasian plates has been occurring along East Anatolian Fault Zone (EAFZ) and the Bitlis Suture, which made Eastern Turkey an ideal platform for scientific research. High quality local earthquake data from the ETSE seismic network were used in order to determine the 3-D P-wave velocity structure of upper crust for Eastern Turkey. Within the 32-station network, 524 well locatable earthquakes with azimuthal gaps < 200° and number of P-wave observations > 8 (corresponding to 6842 P-phase readings) were selected from the initial data set and simultaneously inverted. 1-D reference velocity model was derived by an iterative 1-D velocity inversion including the updated hypocenters and the station delays. The following 3-D tomographic inversion was iteratively performed by SIMULPS14 algorithm in a ``damped least-squares'' sense using the appropriate ray tracing technique, model parametrization and control parameters. As far as resolution is concerned, S waves were not included in this study due to strong attenuation, insufficient number of S phase readings and higher picking errors with respect to P phases. Several tests with the synthetic data were conducted to assess the solution quality, suggesting that the velocity structure is well resolved down to ~17km. Overall,resulting 3-D P-wave velocity model led to a more reliable hypocenter determination indicated by reduced event scattering and a significant reduction of %50 both in variance and residual (rms) values.With the influence of improved velocity model, average location errors did not exceed ~1.5km in horizontal and ~4km in vertical directions. Tomographic images revealed the presence of lateral velocity variations in Eastern Turkey. Existence of relatively low velocity zones (5.6 < Vp < 6.0 km/sec) along most of the vertical profiles possibly indicates the influence of major tectonic structures such as North Anatolian Fault Zone (NAFZ), East Anatolian Fault Zone (EAFZ) and the Bitlis thrust belt correlated with the seismicity. Low velocity anomalies extend deeper along EAFZ down to ~15km compared to a depth of ~10km along NAFZ. Arabian plate is generally marked by relatively higher velocities (Vp > 6.2 km/sec) in 10-15 km depth range.

  16. Estimation of mesospheric vertical winds from a VHF meteor radar at King Sejong Station, Antarctica (62.2S, 58.8W)

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Lee, C.; Kim, J.; Jee, G.

    2013-12-01

    For the first time, vertical winds near the mesopause region were estimated from radial velocities of meteor echoes detected by a VHF meteor radar at King Sejong Station (KSS) in 2011 and 2012. Since the radar usually detects more than a hundred echoes every hour in an altitude bin of 88 - 92 km, much larger than other radars, we were able to fit measured radial velocities of these echoes with a 6 component model that consists of horizontal winds, spatial gradients of horizontal winds and vertical wind. The conventional method of deriving horizontal winds from meteor echoes utilizes a 2 component model, assuming that vertical winds and spatial gradients of horizontal winds are negligible. We analyzed the radar data obtained for 8400 hours in 2012 and 8100 hours in 2011. We found that daily mean values of vertical winds are mostly within +/- 1 m/s, whereas those of zonal winds are a few tens m/s mostly eastward. The daily mean vertical winds sometimes stay positive or negative for more than 20 days, implying that the atmosphere near the mesopause experiences episodically a large scale low and high pressure environments, respectively, like the tropospheric weather system. By conducting Lomb-normalized periodogram analysis, we also found that the vertical winds have diurnal, semidiurnal and terdiurnal tidal components with about equal significance, in contrast to horizontal winds that show a dominant semidiurnal one. We will discuss about uncertainties of the estimated vertical wind and possible reasons of its tidal and daily variations.

  17. Symmetry Breaking Drift of Particles Settling in Homogeneous Shear Turbulence

    NASA Astrophysics Data System (ADS)

    van Hinsberg, M. A. T.; Clercx, H. J. H.; Toschi, Federico

    2016-08-01

    We investigate the influence of shear on the gravitational settling of heavy inertial particles in homogeneous shear turbulence (HST). In addition to the well-known enhanced settling velocity, observed for heavy inertial particles in homogeneous isotropic turbulence (HIT), a horizontal drift velocity is also observed in the shearing direction due to the presence of a nonzero mean vorticity (introducing symmetry breaking due to the mean shear). This drift velocity is due to the combination of shear, gravity, and turbulence, and all three of these elements are needed for this effect to occur. We extend the mechanism responsible for the enhanced settling velocity in HIT to the case of HST. Two separate regimes are observed, characterized by positive or negative drift velocity, depending on the particle settling velocity.

  18. Progression of mechanical properties during on-field sprint running after returning to sports from a hamstring muscle injury in soccer players.

    PubMed

    Mendiguchia, J; Samozino, P; Martinez-Ruiz, E; Brughelli, M; Schmikli, S; Morin, J-B; Mendez-Villanueva, A

    2014-07-01

    The objectives of this study were to examine the consequences of an acute hamstring injury on performance and mechanical properties of sprint-running at the time of returning to sports and after the subsequent ~2 months of regular soccer training after return. 28 semi-professional male soccer players, 14 with a recent history of unilateral hamstring injury and 14 without prior injury, participated in the study. All players performed two 50-m maximal sprints when cleared to return to play (Test 1), and 11 injured players performed the same sprint test about 2 months after returning to play (Test 2). Sprint performance (i. e., speed) was measured via a radar gun and used to derive linear horizontal force-velocity relationships from which the following variables obtained: theoretical maximal velocity (V(0)), horizontal force (F(H0)) and horizontal power (Pmax). Upon returning to sports the injured players were moderately slower compared to the uninjured players. F H0 and Pmax were also substantially lower in the injured players. At Test 2, the injured players showed a very likely increase in F(H0) and Pmax concomitant with improvements in early acceleration performance. Practitioners should consider assessing and training horizontal force production during sprint running after acute hamstring injuries in soccer players before they return to sports. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Improved momentum-transfer theory for ion mobility. 1. Derivation of the fundamental equation.

    PubMed

    Siems, William F; Viehland, Larry A; Hill, Herbert H

    2012-11-20

    For the first time the fundamental ion mobility equation is derived by a bottom-up procedure, with N real atomic ion-atomic neutral collisions replaced by N repetitions of an average collision. Ion drift velocity is identified as the average of all pre- and postcollision velocities in the field direction. To facilitate velocity averaging, collisions are sorted into classes that "cool" and "heat" the ion. Averaging over scattering angles establishes mass-dependent relationships between pre- and postcollision velocities for the cooling and heating classes, and a combined expression for drift velocity is obtained by weighted addition according to relative frequencies of the cooling and heating encounters. At zero field this expression becomes identical to the fundamental low-field ion mobility equation. The bottom-up derivation identifies the low-field drift velocity as 3/4 of the average precollision ion velocity in the field direction and associates the passage from low-field to high-field conditions with the increasing dominance of "cooling" collisions over "heating" collisions. Most significantly, the analysis provides a direct path for generalization to fields of arbitrary strength.

  20. Wave-current interactions in three dimensions: why 3D radiation stresses are not practical

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice

    2017-04-01

    The coupling of ocean circulation and wave models is based on a wave-averaged mass and momentum conservation equations. Whereas several equivalent equations for the evolution of the current momentum have been proposed, implemented, and used, the possibility to formulate practical equations for the total momentum, which is the sum of the current and wave momenta, has been obscured by a series of publications. In a recent update on previous derivations, Mellor (J. Phys. Oceanogr. 2015) proposed a new set of wave-forced total momentum equations. Here we show that this derivation misses a term that integrates to zero over the vertical. This is because he went from his depth-integrated eq. (28) to the 3D equation (30) by simply removing the integral, but any extra zero-integrating term can be added. Corrected for this omission, the equations of motion are equivalent to the earlier equations by Mellor (2003) which are correct when expressed in terms of wave-induced pressure, horizontal velocity and vertical displacement. Namely the total momentum evolution is driven by the horizontal divergence of a horizontal momentum flux, ----- --- ∂^s- Sαβ = ^uα^uβ + δαβ ∂ς (^p- g^s) (1) and the vertical divergence of a vertical flux, Sαz = (p^-g^s)∂^s/∂xα, (2) where p is the wave-induced non-hydrostatic pressure, s is the wave-induced vertical displacement, and u^ α is the horizontal wave-induced velocity in direction α. So far, so good. Problems arise when p and s are evaluated. Indeend, Ardhuin et al. (J. Phys. Oceanogr. 2008) showed that, over a sloping bottom ∂Sαβ/∂xβ is of order of the slope, hence a consistent wave forcing requires an estimation of Sαz that must be estimated to first order in the bottom slope. For this, Airy wave theory, i.e. cosh(kz-+-kh) p ≃ ga cosh (kD ) cosψ, (3) is not enough. Ardhuin et al. (2008) has shown that using an exact solution of the Laplace equations the vertical flux can indeed be computed. The alternative of neglecting completely Sαz, as suggested by Mellor (2011) for small slopes, will always generate spurious currents because of the unbalanced forcing ∂Sαβ/∂xβ. Fortunately, there are many explicit versions of the wave-averaged equations without the wave momentum in them (Suzuki and Fox-Kemper 2016), with or without vortex force which are all consistent with the exact 3D equations of Andrews and McIntyre (1978). There is thus no need to stumble again and again on this fundamental problem of vertical momentum flux, which is a flux of wave momentum. The problem simply goes away by writing the equations for the current momentum only, without the problematic wave momentum. The current and wave momentum are coupled by forcing terms, and the wave momentum can be solved in 2D, the vertical distribution of momentum being maintained by the complex flux Sαz.

  1. A Regional Seismic Travel Time Model for North America

    DTIC Science & Technology

    2010-09-01

    velocity at the Moho, the mantle velocity gradient, and the average crustal velocity. After tomography across Eurasia, rigorous tests find that Pn...velocity gradient, and the average crustal velocity. After tomography across Eurasia rigorous tests find that Pn travel time residuals are reduced...and S-wave velocity in the crustal layers and in the upper mantle. A good prior model is essential because the RSTT tomography inversion is invariably

  2. Directional motion of impacting drops on dual-textured surfaces.

    PubMed

    Vaikuntanathan, V; Sivakumar, D

    2012-09-01

    In this work, we analyze the directional movement of impacting liquid drops on dual-textured solid surfaces comprising two different surface morphologies: a textured surface and a smooth surface. The dynamics of liquid drops impacting onto the junction line between the two parts of the dual-textured surfaces is studied experimentally for varying drop impact velocity. The dual-textured surfaces used here featured a variation in their textures' geometrical parameters as well as their surface chemistry. Two types of liquid drop differing in their surface tension were used. The impact process develops a net horizontal drop velocity towards the higher-wettability surface portion and results in a bulk movement of the impacting drop liquid. The final distance moved by the impacting drop from the junction line decreases with increasing impacting drop Weber number We. A fully theoretical model, employing a balance of forces acting at the drop contact line as well as energy conservation, is formulated to determine the variation, with We, of net horizontal drop velocity and subsequent movement of the impacting drop on the dual-textured surfaces.

  3. Numerical Investigation of Ice Slurry Flow in a Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Rawat, K. S.; Pratihar, A. K.

    2018-02-01

    In the last decade, phase changing material slurry (PCMS) gained much attention as a cooling medium due to its high energy storage capacity and transportability. However the flow of PCM slurry is a complex phenomenon as it affected by various parameters, i.e. fluid properties, velocity, particle size and concentration etc.. In the present work ice is used as a PCM and numerical investigation of heterogeneous slurry flow has been carried out using Eulerian KTGF model in a horizontal pipe. Firstly the present model is validated with existing experiment results available in the literature, and then model is applied to the present problem. Results show that, flow is almost homogeneous for ethanol based ice slurry with particle diameter of 0.1 mm at the velocity of 1 m/s. It is also found that ice particle distribution is more uniform at higher velocity, concentration of ice and ethanol in slurry. Results also show that ice concentration increases on the top of the pipe, and the effect of particle wall collision is more significant at higher particle diameter.

  4. Predicting airborne particle deposition by a modified Markov chain model for fast estimation of potential contaminant spread

    NASA Astrophysics Data System (ADS)

    Mei, Xiong; Gong, Guangcai

    2018-07-01

    As potential carriers of hazardous pollutants, airborne particles may deposit onto surfaces due to gravitational settling. A modified Markov chain model to predict gravity induced particle dispersion and deposition is proposed in the paper. The gravity force is considered as a dominant weighting factor to adjust the State Transfer Matrix, which represents the probabilities of the change of particle spatial distributions between consecutive time steps within an enclosure. The model performance has been further validated by particle deposition in a ventilation chamber and a horizontal turbulent duct flow in pre-existing literatures. Both the proportion of deposited particles and the dimensionless deposition velocity are adopted to characterize the validation results. Comparisons between our simulated results and the experimental data from literatures show reasonable accuracy. Moreover, it is also found that the dimensionless deposition velocity can be remarkably influenced by particle size and stream-wise velocity in a typical horizontal flow. This study indicates that the proposed model can predict the gravity-dominated airborne particle deposition with reasonable accuracy and acceptable computing time.

  5. Turbulence characteristics of velocity and scalars in an internal boundary-layer above a lake

    NASA Astrophysics Data System (ADS)

    Sahlee, E.; Rutgersson, A.; Podgrajsek, E.

    2012-12-01

    We analyze turbulence measurements, including methane, from a small island in a Swedish lake. The turbulence structure was found to be highly influenced by the surrounding land during daytime. Variance spectra of both horizontal velocity and scalars during both unstable and stable stratification displayed a low frequency peak. The energy at lower frequencies displayed a daily variation, increasing in the morning and decreasing in the afternoon. We interpret this behavior as a sign of spectral lag, where the low frequency energy, large eddies, originate from the convective boundary layer above the surrounding land. When the air is advected over the lake the small eddies rapidly equilibrates with new surface forcing. However, the larger eddies remain for an appreciable distance and influence the turbulence in the developing lake boundary layer. The variance of the horizontal velocity is increased by these large eddies however, momentum fluxes and scalar variances and fluxes appear unaffected. The drag coefficient, Stanton number and Dalton number used to parameterize the momentum flux, heat flux and latent heat flux respectively all compare very well with parameterizations developed for open ocean conditions.

  6. A Variational Assimilation Method for Satellite and Conventional Data: a Revised Basic Model 2B

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.; Scott, Robert W.; Chen, J.

    1991-01-01

    A variational objective analysis technique that modifies observations of temperature, height, and wind on the cyclone scale to satisfy the five 'primitive' model forecast equations is presented. This analysis method overcomes all of the problems that hindered previous versions, such as over-determination, time consistency, solution method, and constraint decoupling. A preliminary evaluation of the method shows that it converges rapidly, the divergent part of the wind is strongly coupled in the solution, fields of height and temperature are well-preserved, and derivative quantities such as vorticity and divergence are improved. Problem areas are systematic increases in the horizontal velocity components, and large magnitudes of the local tendencies of the horizontal velocity components. The preliminary evaluation makes note of these problems but detailed evaluations required to determine the origin of these problems await future research.

  7. Aerodynamic analysis of a horizontal axis wind turbine by use of helical vortex theory, volume 2: Computer program users manual

    NASA Technical Reports Server (NTRS)

    Keith, T. G., Jr.; Afjeh, A. A.; Jeng, D. R.; White, J. A.

    1985-01-01

    A description of a computer program entitled VORTEX that may be used to determine the aerodynamic performance of horizontal axis wind turbines is given. The computer code implements a vortex method from finite span wind theory and determines the induced velocity at the rotor disk by integrating the Biot-Savart law. It is assumed that the trailing helical vortex filaments form a wake of constant diameter (the rigid wake assumption) and travel downstream at the free stream velocity. The program can handle rotors having any number of blades which may be arbitrarily shaped and twisted. Many numerical details associated with the program are presented. A complete listing of the program is provided and all program variables are defined. An example problem illustrating input and output characteristics is solved.

  8. Bleustein-Gulyaev wave propagation characteristics in KNbO3 and PKN crystals

    NASA Astrophysics Data System (ADS)

    Dvoesherstov, M. Y.; Cherednick, V. I.; Chirimanov, A. P.; Petrov, S. G.

    1999-09-01

    In this paper, theoretical investigation is shown for cuts and propagation directions on KNbO3, PKN substrates where the Bleustein-Gulyaev waves exist. The KNbO3 and PKN crystals Y-cut X-propagating relate to the condition in which the stiffened shear horizontal wave and pure mechanical Rayleigh wave are present. In this symmetry orientation the sagittal and transverse particle displacements also uncouple. In this situation, the potential is coupled to the shear horizontal displacements only. Electromechanical coupling coefficients K2 has a sufficiently large value of above 53 percent with a phase velocity of V equals 3.918 km/s for KNbO3 crystals and factor K2 has a large value of above 23.6 percent and phase velocity V equals 3.054 km/s for PKN crystals.

  9. A giant planet around a metal-poor star of extragalactic origin.

    PubMed

    Setiawan, Johny; Klement, Rainer J; Henning, Thomas; Rix, Hans-Walter; Rochau, Boyke; Rodmann, Jens; Schulze-Hartung, Tim

    2010-12-17

    Stars in their late stage of evolution, such as horizontal branch stars, are still largely unexplored for planets. We detected a planetary companion around HIP 13044, a very metal-poor star on the red horizontal branch, on the basis of radial velocity observations with a high-resolution spectrograph at the 2.2-meter Max-Planck Gesellschaft-European Southern Observatory telescope. The star's periodic radial velocity variation of P = 16.2 days caused by the planet can be distinguished from the periods of the stellar activity indicators. The minimum mass of the planet is 1.25 times the mass of Jupiter and its orbital semimajor axis is 0.116 astronomical units. Because HIP 13044 belongs to a group of stars that have been accreted from a disrupted satellite galaxy of the Milky Way, the planet most likely has an extragalactic origin.

  10. High Velocity Horizontal Motions at the Edge of Sunspot Penumbrae

    NASA Astrophysics Data System (ADS)

    Hagenaar-Daggett, Hermance J.; Shine, R.

    2010-05-01

    The outer edges of sunspot penumbrae have long been noted as a region of interesting dynamics including formation of MMFs, extensions and retractions of the penumbral tips, fast moving (2-3 km/s) bright features dubbed"streakers", and localized regions of high speed downflows interpreted as Evershed "sinks". Using 30s cadence movies of high spatial resolution G band and Ca II H images taken by the Hinode SOT/FPP instrument from 5-7 Jan 2007, we have been investigating the penumbra around a sunspot in AR 10933. In addition to the expected phenomena, we also see occasional small dark crescent-shaped features with high horizontal velocities (6.5 km/s) in G band movies. These appear to be emitted from penumbral tips. They travel about 1.5 Mm developing a bright wake that evolves into a slower moving (1-2 km/s) bright feature. In some cases, there may be an earlier outward propagating disturbance within the penumbra. We have also analyzed available Fe 6302 Stokes V images to obtain information on the magnetic field. Although only lower resolution 6302 images made with a slower cadence are available for these particular data sets, we can establish that the features have the opposite magnetic polarity of the sunspot. This observation may be in agreement with simulations showing that a horizontal flux tube develops crests that move outward with a velocity as large as 10 km/s. This work was supported by NASA contract NNM07AA01C.

  11. Investigation of a laser Doppler velocimeter system to measure the flow field around a large scale V/STOL aircraft in ground effect

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Brashears, M. R.; Jordan, A. J.; Shrider, K. R.; Vought, C. D.

    1979-01-01

    The flow field measured around a hovering 70 percent scale vertical takeoff and landing (V/STOL) aircraft model is described. The velocity measurements were conducted with a ground based laser Doppler velocimeter. The remote sensing instrumentation and experimental tests of the velocity surveys are discussed. The distribution of vertical velocity in the fan jet and fountain; the radial velocity in the wall jet and the horizontal velocity along the aircraft underside are presented for different engine rpms and aircraft height above ground. Results show that it is feasible to use a mobile laser Doppler velocimeter to measure the flow field generated by a large scale V/STOL aircraft operating in ground effect.

  12. Multiple-Array Detection, Association and Location of Infrasound and Seismo-Acoustic Events - Utilization of Ground-Truth Information

    DTIC Science & Technology

    2009-09-30

    signals detected by infrasound arrays were discriminated as surface explosions, not earthquakes , and are marked by yellow...velocity, and amplitude of detected signals at each array . Horizontal propagation velocity of infrasound signals , also called celerity, is used not only...REPRINT 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MULTIPLE- ARRAY DETECTION , ASSOCIATION AND LOCATION OF INFRASOUND AND SEISMO-ACOUSTIC

  13. Seismic Tomography of Siyazan - Shabran Oil and Gas Region Of Azerbaijan by Data of The Seismic Stations

    NASA Astrophysics Data System (ADS)

    Yetirmishli, Gurban; Guliyev, Ibrahim; Mammadov, Nazim; Kazimova, Sabina; Ismailova, Saida

    2016-04-01

    The main purpose of the research was to build a reliable 3D model of the structure of seismic velocities in the earth crust on the territory of Siyazan-Shabran region of Azerbaijan, using the data of seismic telemetry stations spanning Siyazan-Shabran region (Siyazan, Altiagaj, Pirgulu, Guba, Khinalig, Gusar), including 7 mobile telemetry seismic stations. Interest to the problem of research seismic tomography caused by applied environmental objectives, such as the assessment of geological risks, engineering evaluation (stability and safety of wells), the task of exploration and mining operations. In the study region are being actively developed oil fields, and therefore, there is a risk of technogenic earthquakes. It was performed the calculation of first arrival travel times of P and S waves and the corresponding ray paths. Calculate 1D velocity model which is the initial model as a set of horizontal layers (velocity may be constant or changed linearly with depth on each layer, gaps are possible only at the boundaries between the layers). Have been constructed and analyzed the horizontal sections of the three-dimensional velocity model at different depths of the investigated region. By the empirical method was proposed density model of the sedimentary rocks at depths of 0-8 km.

  14. Field intercomparison of channel master ADCP with RiverSonde Radar for measuring river discharge

    USGS Publications Warehouse

    Spain, P.; Marsden, R.; Barrick, D.; Teague, C.; Ruhl, C.

    2005-01-01

    The RiverSonde radar makes non-contact measurement of a horizontal swath of surface velocity across a river section. This radar, which has worked successfully at several rivers in the Western USA, has shown encouraging correlation with simultaneous measurements of average currents at one level recorded by an acoustic travel-time system. This work reports a field study intercomparing data sets from a 600 kHz Channel Master ADCP with the RiverSonde radar. The primary goal was to begin to explore the robustness of the radar data as a reliable index of discharge. This site Is at Three Mile Slough in Northern California, USA. The larger intent of the work is to examine variability in space and time of the radar's surface currents compared with subsurface flows across the river section. Here we examine data from a couple of periods with strong winds. ?? 2005 IEEE.

  15. Gravitational modulation of thermosolutal convection during directional solidification

    NASA Astrophysics Data System (ADS)

    Murray, B. T.; Coriell, S. R.; McFadden, G. B.; Wheeler, A. A.; Saunders, B. V.

    1993-03-01

    During directional solidification of a binary alloy at constant velocity, thermosolutal convection may occur due to the temperature and solute gradients associated with the solidification process. For vertical growth in an ideal furnace (lacking horizontal gradients) a quiescent state is possible. The effect of a time-periodic vertical gravitational acceleration (or equivalently vibration) on the onset of thermosolutal convection is calculated based on linear stability using Floquet theory. Numerical calculations for the onset of instability have been carried out for a semiconductor alloy with Schmidt number of 10 and Prandtl number of 0.1 with primary emphasis on large modulation frequencies in a microgravity environment for which the background gravitational acceleration is negligible. The numerical results demonstrate that there is a significant difference in stability depending on whether a heavier or lighter solute is rejected. For large modulation frequencies, the stability behavior can be described by either the method of averaging or an asymptotic resonant mode analysis.

  16. Acquisition of Robotic Giant-swing Motion Using Reinforcement Learning and Its Consideration of Motion Forms

    NASA Astrophysics Data System (ADS)

    Sakai, Naoki; Kawabe, Naoto; Hara, Masayuki; Toyoda, Nozomi; Yabuta, Tetsuro

    This paper argues how a compact humanoid robot can acquire a giant-swing motion without any robotic models by using Q-Learning method. Generally, it is widely said that Q-Learning is not appropriated for learning dynamic motions because Markov property is not necessarily guaranteed during the dynamic task. However, we tried to solve this problem by embedding the angular velocity state into state definition and averaging Q-Learning method to reduce dynamic effects, although there remain non-Markov effects in the learning results. The result shows how the robot can acquire a giant-swing motion by using Q-Learning algorithm. The successful acquired motions are analyzed in the view point of dynamics in order to realize a functionally giant-swing motion. Finally, the result shows how this method can avoid the stagnant action loop at around the bottom of the horizontal bar during the early stage of giant-swing motion.

  17. Turbulent Superstructures in Rayleigh-Bénard convection at different Prandtl number

    NASA Astrophysics Data System (ADS)

    Schumacher, Jörg; Pandey, Ambrish; Ender, Martin; Westermann, Rüdiger; Scheel, Janet D.

    2017-11-01

    Large-scale patterns of the temperature and velocity field in horizontally extended cells can be considered as turbulent superstructures in Rayleigh-Bénard convection (RBC). These structures are obtained once the turbulent fluctuations are removed by a finite-time average. Their existence has been reported for example in Bailon-Cuba et al.. This large-scale order obeys a strong similarity with the well-studied patterns from the weakly nonlinear regime at lower Rayleigh number in RBC. In the present work we analyze the superstructures of RBC at different Prandtl number for Prandtl values between Pr = 0.005 for liquid sodium and 7 for water. The characteristic evolution time scales, the typical spatial extension of the rolls and the properties of the defects of the resulting superstructure patterns are analyzed. Data are obtained from well-resolved spectral element direct numerical simulations. The work is supported by the Priority Programme SPP 1881 of the Deutsche Forschungsgemeinschaft.

  18. A unified analysis of crustal motion in Southern California, 1970-2004: The SCEC crustal motion map

    NASA Astrophysics Data System (ADS)

    Shen, Z.-K.; King, R. W.; Agnew, D. C.; Wang, M.; Herring, T. A.; Dong, D.; Fang, P.

    2011-11-01

    To determine crustal motions in and around southern California, we have processed and combined trilateration data collected from 1970 to 1992, VLBI data from 1979 to 1992, and GPS data from 1986 to 2004: a long temporal coverage required in part by the occurrence of several large earthquakes in this region. From a series of solutions for station positions, we have estimated interseismic velocities, coseismic displacements, and postseismic motions. Within the region from 31°N to 38°N. and east to 114°W, the final product includes estimated horizontal velocities for 1009 GPS, 190 trilateration, and 16 VLBI points, with ties between some of these used to stabilize the solution. All motions are relative to the Stable North American Reference Frame (SNARF) as realized through the velocities of 20 GPS stations. This provides a relatively dense set of horizontal velocity estimates, with well-tested errors, for the past quarter century over the plate boundary from 31°N to 36.5°N. These velocities agree well with those from the Plate Boundary Observatory, which apply to a later time period. We also estimated vertical velocities, 533 of which have errors below 2 mm/yr. Most of these velocities are less than 1 mm/yr, but they show 2-4 mm/yr subsidence in the Ventura and Los Angeles basins and in the Salton Trough. Our analysis also included estimates of coseismic and postseismic motions related to the 1992 Landers, 1994 Northridge, 1999 Hector Mine, and 2003 San Simeon earthquakes. Postseismic motions increase logarithmically over time with a time constant of about 10 days, and generally mimic the direction and relative amplitude of the coseismic offsets.

  19. Matching the oculomotor drive during head-restrained and head-unrestrained gaze shifts in monkey.

    PubMed

    Bechara, Bernard P; Gandhi, Neeraj J

    2010-08-01

    High-frequency burst neurons in the pons provide the eye velocity command (equivalently, the primary oculomotor drive) to the abducens nucleus for generation of the horizontal component of both head-restrained (HR) and head-unrestrained (HU) gaze shifts. We sought to characterize how gaze and its eye-in-head component differ when an "identical" oculomotor drive is used to produce HR and HU movements. To address this objective, the activities of pontine burst neurons were recorded during horizontal HR and HU gaze shifts. The burst profile recorded on each HU trial was compared with the burst waveform of every HR trial obtained for the same neuron. The oculomotor drive was assumed to be comparable for the pair yielding the lowest root-mean-squared error. For matched pairs of HR and HU trials, the peak eye-in-head velocity was substantially smaller in the HU condition, and the reduction was usually greater than the peak head velocity of the HU trial. A time-varying attenuation index, defined as the difference in HR and HU eye velocity waveforms divided by head velocity [alpha = (H(hr) - E(hu))/H] was computed. The index was variable at the onset of the gaze shift, but it settled at values several times greater than 1. The index then decreased gradually during the movement and stabilized at 1 around the end of gaze shift. These results imply that substantial attenuation in eye velocity occurs, at least partially, downstream of the burst neurons. We speculate on the potential roles of burst-tonic neurons in the neural integrator and various cell types in the vestibular nuclei in mediating the attenuation in eye velocity in the presence of head movements.

  20. Inversion of azimuthally dependent NMO velocity in transversely isotropic media with a tilted axis of symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grechka, V.; Tsvankin, I.

    2000-02-01

    Just as the transversely isotropic model with a vertical symmetry axis (VTI media) is typical for describing horizontally layered sediments, transverse isotropy with a tilted symmetry axis (TTI) describes dipping TI layers (such as tilted shale beds near salt domes) or crack systems. P-wave kinematic signatures in TTI media are controlled by the velocity V{sub PO} in the symmetry direction, Thomsen's anisotropic coefficients {xi} and {delta}, and the orientation (tilt {nu} and azimuth {beta}) of the symmetry axis. Here, the authors show that all five parameters can be obtained from azimuthally varying P-wave NMO velocities measured for two reflectors withmore » different dips and/or azimuths (one of the reflectors can be horizontal). The shear-wave velocity V{sub SO} in the symmetry direction, which has negligible influence on P-wave kinematic signatures, can be found only from the moveout of shear waves. Using the exact NMO equation, the authors examine the propagation of errors in observed moveout velocities into estimated values of the anisotropic parameters and establish the necessary conditions for a stable inversion procedure. Since the azimuthal variation of the NMO velocity is elliptical, each reflection event provides them with up to three constraints on the model parameters. Generally, the five parameters responsible for P-wave velocity can be obtained from two P-wave ellipses, but the feasibility of the moveout inversion strongly depends on the tilt {nu}. While most of the analysis is carried out for a single layer, the authors also extend the inversion algorithm to vertically heterogeneous TTI media above a dipping reflector using the generalized Dix equation. A synthetic example for a strongly anisotropic, stratified TTI medium demonstrates a high accuracy of the inversion.« less

  1. Passive and active floating torque during swimming.

    PubMed

    Kjendlie, Per-Ludvik; Stallman, Robert Keig; Stray-Gundersen, James

    2004-10-01

    The purpose of this study was to examine the effect of passive underwater torque on active body angle with the horizontal during front crawl swimming and to assess the effect of body size on passive torque and active body angle. Additionally, the effects of passive torque, body angle and hydrostatic lift on maximal sprinting performance were addressed. Ten boys [aged 11.7 (0.8) years] and 12 male adult [aged 21.4 (3.7) years] swimmers volunteered to participate. Their body angle with the horizontal was measured at maximal velocity, and at two submaximal velocities using an underwater video camera system. Passive torque and hydrostatic lift were measured during an underwater weighing procedure, and the center of mass and center of volume were determined. The results showed that passive torque correlated significantly with the body angle at a velocity 63% of v(max) ( alpha(63) r=-0.57), and that size-normalized passive torque correlated significantly with the alpha(63) and alpha(77) (77% of v(max)) with r=-0.59 and r=-0.54 respectively. Hydrostatic lift correlated with alpha(63) with r=-0.45. The negative correlation coefficients are suggested to be due to the adults having learned to overcome passive torque when swimming at submaximal velocities by correcting their body angle. It is concluded that at higher velocities the passive torque and hydrostatic lift do not influence body angle during swimming. At a velocity of 63% of v(max), hydrostatic lift and passive torque influences body angle. Passive torque and size-normalized passive torque increases with body size. When corrected for body size, hydrostatic lift and passive torque did not influence the maximal sprinting velocity.

  2. Differential adaptation of the linear and nonlinear components of the horizontal vestibuloocular reflex in squirrel monkeys

    NASA Technical Reports Server (NTRS)

    Clendaniel, Richard A.; Lasker, David M.; Minor, Lloyd B.; Shelhamer, M. J. (Principal Investigator)

    2002-01-01

    Previous work in squirrel monkeys has demonstrated the presence of linear and nonlinear components to the horizontal vestibuloocular reflex (VOR) evoked by high-acceleration rotations. The nonlinear component is seen as a rise in gain with increasing velocity of rotation at frequencies more than 2 Hz (a velocity-dependent gain enhancement). We have shown that there are greater changes in the nonlinear than linear component of the response after spectacle-induced adaptation. The present study was conducted to determine if the two components of the response share a common adaptive process. The gain of the VOR, in the dark, to sinusoidal stimuli at 4 Hz (peak velocities: 20-150 degrees /s) and 10 Hz (peak velocities: 20 and 100 degrees /s) was measured pre- and postadaptation. Adaptation was induced over 4 h with x0.45 minimizing spectacles. Sum-of-sines stimuli were used to induce adaptation, and the parameters of the stimuli were adjusted to invoke only the linear or both linear and nonlinear components of the response. Preadaptation, there was a velocity-dependent gain enhancement at 4 and 10 Hz. In postadaptation with the paradigms that only recruited the linear component, there was a decrease in gain and a persistent velocity-dependent gain enhancement (indicating adaptation of only the linear component). After adaptation with the paradigm designed to recruit both the linear and nonlinear components, there was a decrease in gain and no velocity-dependent gain enhancement (indicating adaptation of both components). There were comparable changes in the response to steps of acceleration. We interpret these results to indicate that separate processes drive the adaptation of the linear and nonlinear components of the response.

  3. Mud Flow Characteristics Occurred in Izuoshima Island, 2013

    NASA Astrophysics Data System (ADS)

    Takebayashi, H.; Egashira, S.; Fujita, M.

    2015-12-01

    Landslides and mud flows were occurred in the west part of the Izuoshima Island, Japan on 16 October 2013. The Izuoshima Island is a volcanic island and the land surface is covered by the volcanic ash sediment in 1m depth. Hence, the mud flow with high sediment concentration was formed. The laminar layer is formed in the debris flow from the bed to the fluid surface. On the other hand, the laminar flow is restricted near the bed in the mud flow and the turbulence flow is formed on the laminar flow layer. As a result, the equilibrium slope of the mud flow becomes smaller comparing to the debris flow. In this study, the numerical analysis mud flow model considering the effect of turbulence flow on the equilibrium slope of the mud flow is developed. Subsequently, the model is applied to the mud flow occurred in the Izuoshima Island and discussed the applicability of the model and the flow characteristics of the mud flow. The differences of the horizontal flow areas between the simulated results and the field data are compared and it was found that the outline of the horizontal shape of the flow areas is reproduced well. Furthermore, the horizontal distribution of the erosion and deposition area is reproduced by the numerical analysis well except for the residential area (Kandachi area). Kandachi area is judged as the erosion area by the field observation, but the sediment was deposited in the numerical analysis. It is considered that the 1.5hour heavy rain over 100mm/h after the mud flow makes the discrepancy. The difference of the horizontal distribution of the maximum flow surface elevation between the simulated results and the field data are compared and it was found that the simulated flow depth is overestimated slightly, because of the wider erosion area due to the coarse resolution elevation data. The averaged velocity and the depth of the mud flow was enough large to collapse the houses.

  4. A High Resolution Tampa Bay Hydrodynamic Model and its Application to Residence Time Estimation and Salt Balance Diagnosis

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Weisberg, R. H.

    2016-02-01

    A 3D, numerical circulation model, with high resolution (20 m) at important mass conveyances (inlets and rivers etc.), is developed to estimate the bulk residence time and diagnose the salt balances and salt fluxes for Tampa Bay estuary. These analyses are justified via quantitative comparisons between the simulation and observations of sea level, velocity and salinity. The non-tidal circulation is the primary agent for the flushing of Tampa Bay. Tides alone have a minor effect. Exceptions pertain to within a tidal excursion from the bay mouth and regions with multiple inlets where different tide phases aid in flushing. The fully 3D salt flux divergences (SFD) and fluxes vary spatially throughout the estuary. On experimental duration (three month) average, the total advective SFD is balanced primarily by the vertical diffusive SFD, except near the bottom of the channel where the horizontal diffusive SFD is also important. Instantaneously, the local rate of salinity change is controlled primarily by the advective SFD, with a secondary contribution by the vertical diffusive SFD everywhere and the horizontal diffusive SFD near the channel bottom. After decomposing the advective salt fluxes and their divergences into mean quantity and tidal pumping, the horizontal and vertical advective SFDs by the mean quantities are large and counterbalance, with their sum being a small but significant residual. The horizontal and vertical advective SFDs by tidal pumping are relatively small (when compared with the mean quantities) and counterbalance; but, when summed, their residual is comparable in magnitude to that by the mean quantities. So whereas the salt fluxes by tidal pumping are secondary importance to the salt fluxes by the mean quantities, their total flux divergences are of comparable importance. The salt flux 3D components vary along the Tampa Bay axis, and these findings may be typical of coastal plain estuaries given their geometrical complexities.

  5. Modelling the average velocity of propagation of the flame front in a gasoline engine with hydrogen additives

    NASA Astrophysics Data System (ADS)

    Smolenskaya, N. M.; Smolenskii, V. V.

    2018-01-01

    The paper presents models for calculating the average velocity of propagation of the flame front, obtained from the results of experimental studies. Experimental studies were carried out on a single-cylinder gasoline engine UIT-85 with hydrogen additives up to 6% of the mass of fuel. The article shows the influence of hydrogen addition on the average velocity propagation of the flame front in the main combustion phase. The dependences of the turbulent propagation velocity of the flame front in the second combustion phase on the composition of the mixture and operating modes. The article shows the influence of the normal combustion rate on the average flame propagation velocity in the third combustion phase.

  6. Time domain reflectometry measurements of solute transport across a soil layer boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nissen, H.H.; Moldrup, P.; Kachanoski, R.G.

    2000-02-01

    The mechanisms governing solute transport through layered soil are not fully understood. Solute transport at, above, and beyond the interface between two soil layers during quasi-steady-state soil water movement was investigated using time domain reflectometry (TDR). A 0.26-m sandy loam layer was packed on top of a 1.35-m fine sand layer in a soil column. Soil water content ({theta}) and bulk soil electrical conductivity (EC{sub b}) were measured by 50 horizontal and 2 vertical TDR probes. A new TDR calibration method that gives a detailed relationship between apparent relative dielectric permittivity (K{sub s}) and {theta} was applied. Two replicate solutemore » transport experiments were conducted adding a conservative tracer (CCl) to the surface as a short pulse. The convective lognormal transfer function model (CLT) was fitted to the TDR-measured time integral-normalized resident concentration breakthrough curves (BTCs). The BTCs and the average solute-transport velocities showed preferential flow occurred across the layer boundary. A nonlinear decrease in TDR-measured {theta} in the upper soil toward the soil layer boundary suggests the existence of a 0.10-m zone where water is confined towards fingered flow, creating lateral variations in the area-averaged water flux above the layer boundary. A comparison of the time integral-normalized flux concentration measured by vertical and horizontal TDR probes at the layer boundary also indicates a nonuniform solute transport. The solute dispersivity remained constant in the upper soil layer, but increased nonlinearly (and further down, linearly) with depth in the lower layer, implying convective-dispersive solute transport in the upper soil, a transition zone just below the boundary, and stochastic-convective solute transport in the remaining part of the lower soil.« less

  7. Infrasonic array observations at I53US of the 2006 Augustine Volcano eruptions

    USGS Publications Warehouse

    Wilson, C.R.; Olson, J.V.; Szuberla, Curt A.L.; McNutt, Steve; Tytgat, Guy; Drob, Douglas P.

    2006-01-01

    The recent January 2006 Augustine eruptions, from the 11th to the 28th, have produced a series of 12 infrasonic signals that were observed at the I53US array at UAF. the eruption times for the signals were provided by the Alaska Volcanic Observatory at UAF using seismic sensors and a Chaparral microphone that are installed on Augustine Island. The bearing and distance of Augustine from I53US are, respectively, 207.8 degrees and 675 km. The analysis of the signals is done with a least-squares detector/estimator that calculates, from the 28 different sensor-pairs in the array, the mean of the cross-correlation maxima (MCCM), the horizontal trace-velocity and the azimuth of arrival of the signal using a sliding-window of 2000 data points. The data were bandpass filtered from 0.03 to 0.10 Hz. The data are digitized at a rate of 20 Hz. The average values of the signal parameters for all 12 Augustine signals are as follows: MCCM=0.85 (std 0.14), Trace-velocity=0.346 (std 0.016) km/sec, Azimuth=209 (std 2) deg. The celerity for each signal was calculated using the range 675 km and the individual travel times to I53US. The average celerity for all ten eruption signals was 0.27 (std 0.02) km/sec. Ray tracing studies, using mean values of the wind speed and temperature profiles (along the path) from NRL, have shown that there was propagation to I53US by both stratospheric and thermospheric ray paths from the volcano.

  8. Determination of velocity correction factors for real-time air velocity monitoring in underground mines.

    PubMed

    Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony

    2017-12-01

    When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction factors of the sensor-measured air velocity to the average air velocity at cross sections are still lacking. A comprehensive airflow measurement was made at the Safety Research Coal Mine, Bruceton, PA, using three measuring methods including single-point reading, moving traverse, and fixed-point traverse. The air velocity distribution at each measuring station was analyzed using an air velocity contour map generated with Surfer ® . The correction factors at each measuring station for both the centerline and the sensor location were calculated and are discussed.

  9. Determination of velocity correction factors for real-time air velocity monitoring in underground mines

    PubMed Central

    Yuan, Liming; Thomas, Rick; Iannacchione, Anthony

    2017-01-01

    When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction factors of the sensor-measured air velocity to the average air velocity at cross sections are still lacking. A comprehensive airflow measurement was made at the Safety Research Coal Mine, Bruceton, PA, using three measuring methods including single-point reading, moving traverse, and fixed-point traverse. The air velocity distribution at each measuring station was analyzed using an air velocity contour map generated with Surfer®. The correction factors at each measuring station for both the centerline and the sensor location were calculated and are discussed. PMID:29201495

  10. Spectroscopic properties of a two-dimensional time-dependent Cepheid model. I. Description and validation of the model

    NASA Astrophysics Data System (ADS)

    Vasilyev, V.; Ludwig, H.-G.; Freytag, B.; Lemasle, B.; Marconi, M.

    2017-10-01

    Context. Standard spectroscopic analyses of Cepheid variables are based on hydrostatic one-dimensional model atmospheres, with convection treated using various formulations of mixing-length theory. Aims: This paper aims to carry out an investigation of the validity of the quasi-static approximation in the context of pulsating stars. We check the adequacy of a two-dimensional time-dependent model of a Cepheid-like variable with focus on its spectroscopic properties. Methods: With the radiation-hydrodynamics code CO5BOLD, we construct a two-dimensional time-dependent envelope model of a Cepheid with Teff = 5600 K, log g = 2.0, solar metallicity, and a 2.8-day pulsation period. Subsequently, we perform extensive spectral syntheses of a set of artificial iron lines in local thermodynamic equilibrium. The set of lines allows us to systematically study effects of line strength, ionization stage, and excitation potential. Results: We evaluate the microturbulent velocity, line asymmetry, projection factor, and Doppler shifts. The microturbulent velocity, averaged over all lines, depends on the pulsational phase and varies between 1.5 and 2.7 km s-1. The derived projection factor lies between 1.23 and 1.27, which agrees with observational results. The mean Doppler shift is non-zero and negative, -1 km s-1, after averaging over several full periods and lines. This residual line-of-sight velocity (related to the "K-term") is primarily caused by horizontal inhomogeneities, and consequently we interpret it as the familiar convective blueshift ubiquitously present in non-pulsating late-type stars. Limited statistics prevent firm conclusions on the line asymmetries. Conclusions: Our two-dimensional model provides a reasonably accurate representation of the spectroscopic properties of a short-period Cepheid-like variable star. Some properties are primarily controlled by convective inhomogeneities rather than by the Cepheid-defining pulsations. Extended multi-dimensional modelling offers new insight into the nature of pulsating stars.

  11. Comparison of tracer methods to quantify hydrodynamic exchange within the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Engelhardt, I.; Piepenbrink, M.; Trauth, N.; Stadler, S.; Kludt, C.; Schulz, M.; Schüth, C.; Ternes, T. A.

    2011-03-01

    SummaryHydrodynamic exchange between surface-water and groundwater was studied at a river located within the Rhine Valley in Germany. Piezometric pressure heads and environmental tracers such as temperature, stable isotopes, chloride, X-ray contrast media, and artificial sweetener were investigated within the hyporheic zone and river water plume. Vertical profiles of environmental tracers were collected using multi-level wells within the neutral up-gradient zone, beneath the river bed, and within the horizontal proximal and distal down-gradient zone. Infiltration velocities were calculated from pressure heads, temperature fluctuations and gradients. The amount of river water within groundwater was estimated from vertical profiles of chloride, stable isotopes, and persistent pharmaceuticals. Profiles of stable isotopes and chloride reveal the existence of down-welling within the shallow hyporheic zone that is generated by river bed irregularities. Due to down-welling an above-average migration of river water into the hyporheic zone establishes even under upward hydraulic pressure gradients. The investigated environmental tracers could not distinctively display short-time-infiltration velocities representative for flood waves, while average infiltration velocities calculated over several months are uniform displayed. Based on vertical temperature profiles the down-gradient migration of the river water plume could be observed even after long periods of effluent conditions and over a distance of 200 m from the river bank. X-ray contrast media and artificial sweeteners were observed in high concentrations within the proximal zone, but were not detected at a distance of 200 m from the river bank. Using temperature as environmental tracer within the hyporheic zone may result in overestimating the migration of pollutants within the river water plume as the process of natural attenuation will be neglected. Furthermore, temperature was not able to display the effect of down-welling. Stable isotopes and chloride were found to be suitable environmental tracers to forecast the release and fate of organic contaminants within the hyporheic zone.

  12. Non-linear and plastic soil response from strong ground motion detected using the ambient seismic field

    NASA Astrophysics Data System (ADS)

    Viens, L.; Denolle, M.; Hirata, N.

    2017-12-01

    Strong ground motion can induce dynamic strains large enough for the shallow subsurface to respond non-linearly and cause permanent velocity changes during earthquakes. We investigate the behavior of the near-surface in the Tokyo metropolitan area during the 2011 Mw 9.0 Tohoku-Oki earthquake using continuous records from 234 seismometers of the Metropolitan Seismic Observation network (MeSO-net). This network, which was deployed in shallow 20-m depth boreholes, recorded horizontal accelerations up to 236 cm/s2 during the mainshock. For each MeSO-net station, we compute the near-surface response using the single-station cross-correlation technique between vertical and horizontal components, every 6 hours for 2.5 months around the main event. Comparing each near-surface response against the pre-event reference, we find seismic velocity drops up to 10% in the near-surface of the Tokyo metropolitan area during the mainshock. The amplitude of the coseismic velocity drop increases with increasing ground shaking and decreasing VS30, which is the S-wave velocity the first 30-m of the ground. Furthermore, the waveforms experience a loss of coherence that recovers exponentially over a time. This recovery rate also increases with the acceleration levels. While most of the velocity changes and waveform coherence recover within a few days, we also find permanent changes at stations that experienced liquefaction and the strongest ground motions. The ambient seismic field captures the coseismic velocity changes in the shallow structure and the following healing process, and may be used to detect permanent damage.

  13. The relation of motion sickness to the spatial-temporal properties of velocity storage

    NASA Technical Reports Server (NTRS)

    Dai, Mingjia; Kunin, Mikhail; Raphan, Theodore; Cohen, Bernard; Young, L. R. (Principal Investigator)

    2003-01-01

    Tilting the head in roll to or from the upright while rotating at a constant velocity (roll while rotating, RWR) alters the position of the semicircular canals relative to the axis of rotation. This produces vertical and horizontal nystagmus, disorientation, vertigo, and nausea. With recurrent exposure, subjects habituate and can make more head movements before experiencing overpowering motion sickness. We questioned whether promethazine lessened the vertigo or delayed the habituation, whether habituation of the vertigo was related to the central vestibular time constant, i.e., to the time constant of velocity storage, and whether the severity of the motion sickness was related to deviation of the axis of eye velocity from gravity. Sixteen subjects received promethazine and placebo in a double-blind, crossover study in two consecutive 4-day test series 1 month apart, termed series I and II. Horizontal and vertical eye movements were recorded with video-oculography while subjects performed roll head movements of approx. 45 degrees over 2 s to and from the upright position while being rotated at 138 degrees /s around a vertical axis. Motion sickness was scaled from 1 (no sickness) to an endpoint of 20, at which time the subject was too sick to continue or was about to vomit. Habituation was determined by the number of head movements that subjects made before reaching the maximum motion sickness score of 20. Head movements increased steadily in each session with repeated testing, and there was no difference between the number of head movements made by the promethazine and placebo groups. Horizontal and vertical angular vestibulo-ocular reflex (aVOR) time constants declined in each test, with the declines being closely correlated to the increase in the number of head movements. The strength of vertiginous sensation was associated with the amount of deviation of the axis of eye velocity from gravity; the larger the deviation of the eye velocity axis from gravity, the more severe the motion sickness. Thus, promethazine neither reduced the nausea associated with RWR, nor retarded or hastened habituation. The inverse relationship between the aVOR time constants and number of head movements to motion sickness, and the association of the severity of motion sickness with the extent, strength, and time of deviation of eye velocity from gravity supports the postulate that the spatiotemporal properties of velocity storage, which are processed between the nodulus and uvula of the vestibulocerebellum and the vestibular nuclei, are likely to represent the source of the conflict responsible for producing motion sickness.

  14. Locomotion on the water surface: hydrodynamic constraints on rowing velocity require a gait change

    PubMed

    Suter; Wildman

    1999-10-01

    Fishing spiders, Dolomedes triton (Araneae, Pisauridae), propel themselves across the water surface using two gaits: they row with four legs at sustained velocities below 0.2 m s(-)(1) and they gallop with six legs at sustained velocities above 0.3 m s(-)(1). Because, during rowing, most of the horizontal thrust is provided by the drag of the leg and its associated dimple as both move across the water surface, the integrity of the dimple is crucial. We used a balance, incorporating a biaxial clinometer as the transducer, to measure the horizontal thrust forces on a leg segment subjected to water moving past it in non-turbulent flow. Changes in the horizontal forces reflected changes in the status of the dimple and showed that a stable dimple could exist only under conditions that combined low flow velocity, shallow leg-segment depth and a long perimeter of the interface between the leg segment and the water. Once the dimple disintegrated, leaving the leg segment submerged, less drag was generated. Therefore, the disintegration of the dimple imposes a limit on the efficacy of rowing with four legs. The limited degrees of freedom in the leg joints (the patellar joints move freely in the vertical plane but allow only limited flexion in other planes) impose a further constraint on rowing by restricting the maximum leg-tip velocity (to approximately 33 % of that attained by the same legs during galloping). This confines leg-tip velocities to a range at which maintenance of the dimple is particularly important. The weight of the spider also imposes constraints on the efficacy of rowing: because the drag encountered by the leg-cum-dimple is proportional to the depth of the dimple and because dimple depth is proportional to the supported weight, only spiders with a mass exceeding 0.48 g can have access to the full range of hydrodynamically possible dimple depths during rowing. Finally, the maximum velocity attainable during rowing is constrained by the substantial drag experienced by the spider during the glide interval between power strokes, drag that is negligible for a galloping spider because, for most of each inter-stroke interval, the spider is airborne. We conclude that both hydrodynamic and anatomical constraints confine rowing spiders to sustained velocities lower than 0.3 m s(-)(1), and that galloping allows spiders to move considerably faster because galloping is free of these constraints.

  15. On the unified estimation of turbulence eddy dissipation rate using Doppler cloud radars and lidars: Radar and Lidar Turbulence Estimation

    DOE PAGES

    Borque, Paloma; Luke, Edward; Kollias, Pavlos

    2016-05-27

    Coincident profiling observations from Doppler lidars and radars are used to estimate the turbulence energy dissipation rate (ε) using three different data sources: (i) Doppler radar velocity (DRV), (ii) Doppler lidar velocity (DLV), and (iii) Doppler radar spectrum width (DRW) measurements. Likewise, the agreement between the derived ε estimates is examined at the cloud base height of stratiform warm clouds. Collocated ε estimates based on power spectra analysis of DRV and DLV measurements show good agreement (correlation coefficient of 0.86 and 0.78 for both cases analyzed here) during both drizzling and nondrizzling conditions. This suggests that unified (below and abovemore » cloud base) time-height estimates of ε in cloud-topped boundary layer conditions can be produced. This also suggests that eddy dissipation rate can be estimated throughout the cloud layer without the constraint that clouds need to be nonprecipitating. Eddy dissipation rate estimates based on DRW measurements compare well with the estimates based on Doppler velocity but their performance deteriorates as precipitation size particles are introduced in the radar volume and broaden the DRW values. And, based on this finding, a methodology to estimate the Doppler spectra broadening due to the spread of the drop size distribution is presented. Furthermore, the uncertainties in ε introduced by signal-to-noise conditions, the estimation of the horizontal wind, the selection of the averaging time window, and the presence of precipitation are discussed in detail.« less

  16. On the unified estimation of turbulence eddy dissipation rate using Doppler cloud radars and lidars: Radar and Lidar Turbulence Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borque, Paloma; Luke, Edward; Kollias, Pavlos

    Coincident profiling observations from Doppler lidars and radars are used to estimate the turbulence energy dissipation rate (ε) using three different data sources: (i) Doppler radar velocity (DRV), (ii) Doppler lidar velocity (DLV), and (iii) Doppler radar spectrum width (DRW) measurements. Likewise, the agreement between the derived ε estimates is examined at the cloud base height of stratiform warm clouds. Collocated ε estimates based on power spectra analysis of DRV and DLV measurements show good agreement (correlation coefficient of 0.86 and 0.78 for both cases analyzed here) during both drizzling and nondrizzling conditions. This suggests that unified (below and abovemore » cloud base) time-height estimates of ε in cloud-topped boundary layer conditions can be produced. This also suggests that eddy dissipation rate can be estimated throughout the cloud layer without the constraint that clouds need to be nonprecipitating. Eddy dissipation rate estimates based on DRW measurements compare well with the estimates based on Doppler velocity but their performance deteriorates as precipitation size particles are introduced in the radar volume and broaden the DRW values. And, based on this finding, a methodology to estimate the Doppler spectra broadening due to the spread of the drop size distribution is presented. Furthermore, the uncertainties in ε introduced by signal-to-noise conditions, the estimation of the horizontal wind, the selection of the averaging time window, and the presence of precipitation are discussed in detail.« less

  17. Observations of inner shelf cross-shore surface material transport adjacent to a coastal inlet in the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Roth, Mathias K.; MacMahan, Jamie; Reniers, Ad; Özgökmen, Tamay M.; Woodall, Kate; Haus, Brian

    2017-04-01

    Motivated by the Deepwater Horizon oil spill, the Surfzone and Coastal Oil Pathways Experiment obtained Acoustic Doppler Current Profiler (ADCP) Eulerian and GPS-drifter based Lagrangian "surface" (<1 m) flow observations in the northern Gulf of Mexico to describe the influence of small-scale river plumes on surface material transport pathways in the nearshore. Lagrangian paths are qualitatively similar to surface pathlines derived from non-traditional, near-surface ADCP velocities, but both differ significantly from depth-averaged subsurface pathlines. Near-surface currents are linearly correlated with wind velocities (r =0.76 in the alongshore and r =0.85 in the cross-shore) at the 95% confidence level, and are 4-7 times larger than theoretical estimates of wind and wave-driven surface flow in an un-stratified water column. Differences in near-surface flow are attributed to the presence of a buoyant river plume forced by winds from passing extratropical storms. Plume boundary fronts induce a horizontal velocity gradient where drifters deployed outside of the plume in oceanic water routinely converge, slow, and are re-directed. When the plume flows west parallel to the beach, the seaward plume boundary front acts as a coastal barrier that prevents 100% of oceanic drifters from beaching within 27 km of the inlet. As a result, small-scale, wind-driven river plumes in the northern Gulf of Mexico act as coastal barriers that prevent offshore surface pollution from washing ashore west of river inlets.

  18. Statistical properties of solar granulation from the SOUP instrument on Spacelab 2

    NASA Astrophysics Data System (ADS)

    Topka, K.; Title, A.; Tarbell, T.; Ferguson, S.; Shine, R.

    1988-11-01

    The Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 collected movies of solar granulation completely free from atmospheric blurring, and are not degraded by pointint jitter (the pointing stability was 0.003 sec root mean square). The movies illustrate that the solar five minute oscillation has a major role in the appearance of solar granulation and that exploding granules are a common feature of the granule evolution. Using 3-D Fourier filtering techniques the oscillations were removed and it was demonstrated that the autocorrelation lifetime of granulation is a factor of two greater in magnetic field regions than in field-free quiet sun. Horizontal velocities were measured and flow patterns were observed on the scale of meso- and super granulation. In quiet regions the mean flow velocity is 370 m/s while in the magnetic regions it is about 125 m/s. It was also found that the root mean square (RMS) fluctuating horizonal velocity field is substantially greater in quiet sun than in strong magnetic field regions. By superimposing the location of exploding granules on the average flow maps it was found that they appear almost exclusively in the center of mesogranulation size flow cells. Because of the nonuniformity of the distribution of exploding granules, the evolution of the granulation pattern in mesogranule cell centers and boundaries differs fundamentally. It is clear from this study there is neither a typical granule nor a typical granule evolution.

  19. Statistical properties of solar granulation from the SOUP instrument on Spacelab 2

    NASA Technical Reports Server (NTRS)

    Topka, K.; Title, A.; Tarbell, T.; Ferguson, S.; Shine, R.

    1988-01-01

    The Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 collected movies of solar granulation completely free from atmospheric blurring, and are not degraded by pointint jitter (the pointing stability was 0.003 sec root mean square). The movies illustrate that the solar five minute oscillation has a major role in the appearance of solar granulation and that exploding granules are a common feature of the granule evolution. Using 3-D Fourier filtering techniques the oscillations were removed and it was demonstrated that the autocorrelation lifetime of granulation is a factor of two greater in magnetic field regions than in field-free quiet sun. Horizontal velocities were measured and flow patterns were observed on the scale of meso- and super granulation. In quiet regions the mean flow velocity is 370 m/s while in the magnetic regions it is about 125 m/s. It was also found that the root mean square (RMS) fluctuating horizonal velocity field is substantially greater in quiet sun than in strong magnetic field regions. By superimposing the location of exploding granules on the average flow maps it was found that they appear almost exclusively in the center of mesogranulation size flow cells. Because of the nonuniformity of the distribution of exploding granules, the evolution of the granulation pattern in mesogranule cell centers and boundaries differs fundamentally. It is clear from this study there is neither a typical granule nor a typical granule evolution.

  20. The modified distal horizontal metatarsal osteotomy for correction of bunionette deformity.

    PubMed

    Radl, Roman; Leithner, Andreas; Koehler, Wolfgang; Scheipl, Susanne; Windhager, Reinhard

    2005-06-01

    Bunionette is a common deformity for which a number of operative procedures have been described. The objective of this study was to evaluate the results of a modified distal horizontal metatarsal osteotomy in the correction of symptomatic bunionette. Metatarsal osteotomies were done in 21 feet in 14 patients (11 females, three males) with an average age of 44 (range 20 to 67) years at the time of operation. The average followup was 32 (range 12 to 52) months. The average Lesser Toe Metatarsophalangeal-Interphalangeal Score of the American Orthopaedic Foot and Ankle Society increased from 42 points (range 24 to 50) preoperatively to 87 points (range 60 to 100) at the last followup. The fifth metatarsophalangeal angle averaged 18 degrees (5 to 38 degrees) preoperatively and 5 degrees (-5 to 26 degrees) at final followup. The 4-5 intermetatarsal angle averaged 14 degrees (10 to 20 degrees) preoperatively and 9 degrees (5 to 12 degrees) at final followup. Hardware was removed from two feet and scheduled for a third foot because of symptomatic skin irritation. The modified distal horizontal metatarsal osteotomy is a stable and reliable method for correction of bunionette. Unsatisfactory results in our patients were related to prominent hardware.

Top