Staniewicz, Lech; Vaudey, Thomas; Degrandcourt, Christophe; Couty, Marc; Gaboriaud, Fabien; Midgley, Paul
2014-01-01
Rubber-filler composites are a key component in the manufacture of tyres. The filler provides mechanical reinforcement and additional wear resistance to the rubber, but it in turn introduces non-linear mechanical behaviour to the material which most likely arises from interactions between the filler particles, mediated by the rubber matrix. While various studies have been made on the bulk mechanical properties and of the filler network structure (both imaging and by simulations), there presently does not exist any work directly linking filler particle spacing and mechanical properties. Here we show that using STEM tomography, aided by a machine learning image analysis procedure, to measure silica particle spacings provides a direct link between the inter-particle spacing and the reduction in shear modulus as a function of strain (the Payne effect), measured using dynamic mechanical analysis. Simulations of filler network formation using attractive, repulsive and non-interacting potentials were processed using the same method and compared with the experimental data, with the net result being that an attractive inter-particle potential is the most accurate way of modelling styrene-butadiene rubber-silica composite formation. PMID:25487130
Jishkariani, Davit; Lee, Jennifer D; Yun, Hongseok; Paik, Taejong; Kikkawa, James M; Kagan, Cherie R; Donnio, Bertrand; Murray, Christopher B
2017-09-28
The collective magnetic properties of nanoparticle (NP) solid films are greatly affected by inter-particle dipole-dipole interactions and therefore the proximity of the neighboring particles. In this study, a series of dendritic ligands (generations 0 to 3, G0-G3) have been designed and used to cover the surface of magnetic NPs to control the spacings between the NP components in single lattices. The dendrons of different generations introduced here were based on the 2,2-bis(hydroxymethyl)propionic acid (Bis-MPA) scaffold and equipped with an appropriate surface binding group at one end and several fatty acid segments at the other extremity. The surface of the NPs was then modified by partial ligand exchange between the primary stabilizing surfactants and the new dendritic wedges. It was shown that this strategy permitted very precise tuning of inter-particle spacings in the range of 2.9-5.0 nm. As expected, the increase in the inter-particle spacings reduced the dipole-dipole interactions between magnetic NPs and therefore allowed changes in their magnetic permeability. The dendron size and inter-particle distance dependence was studied to reveal the dendritic effect and identify the optimal geometry and generation.
NASA Astrophysics Data System (ADS)
Nikolaev, V. S.; Timofeev, A. V.
2018-01-01
It is often suggested that inter-particle distance in stable dusty plasma structures decreases with cooling as a square root of neutral gas temperature. Deviations from this dependence (up to the increase at cryogenic temperatures) found in the experimental results for the pressures range 0.1-8.0 mbar and for the currents range 0.1-1.0 mA are given. Inter-particle distance dependences on the charge of particles, parameter of the trap and the screening length in surrounding plasma are obtained for different conditions from molecular dynamics simulations. They are well approximated by power functions in the mentioned range of parameters. It is found that under certain assumptions thermophoretical force is responsible for inter-particle distance increase at cryogenic temperatures.
NASA Astrophysics Data System (ADS)
Brisset, Julie; Colwell, Joshua; Dove, Adrienne; Maukonen, Doug
2017-07-01
In an effort to better understand the early stages of planet formation, we have developed a 1.5U payload that flew on the International Space Station (ISS) in the NanoRacks NanoLab facility between September 2014 and March 2016. This payload, named NanoRocks, ran a particle collision experiment under long-term microgravity conditions. The objectives of the experiment were (a) to observe collisions between mm-sized particles at relative velocities of < 1 cm/s and (b) to study the formation and disruption of particle clusters for different particle types and collision velocities. Four types of particles were used: mm-sized acrylic, glass, and copper beads and 0.75 mm-sized JSC-1 lunar regolith simulant grains. The particles were placed in sample cells carved out of an aluminum tray. This tray was attached to one side of the payload casing with three springs. Every 60 s, the tray was agitated, and the resulting collisions between the particles in the sample cells were recorded by the experiment camera. During the 18 months the payload stayed on ISS, we obtained 158 videos, thus recording a great number of collisions. The average particle velocities in the sample cells after each shaking event were around 1 cm/s. After shaking stopped, the inter-particle collisions damped the particle kinetic energy in less than 20 s, reducing the average particle velocity to below 1 mm/s, and eventually slowing them to below our detection threshold. As the particle velocity decreased, we observed the transition from bouncing to sticking collisions. We recorded the formation of particle clusters at the end of each experiment run. This paper describes the design and performance of the NanoRocks ISS payload.
Brisset, Julie; Colwell, Joshua; Dove, Adrienne; Maukonen, Doug
2017-07-01
In an effort to better understand the early stages of planet formation, we have developed a 1.5U payload that flew on the International Space Station (ISS) in the NanoRacks NanoLab facility between September 2014 and March 2016. This payload, named NanoRocks, ran a particle collision experiment under long-term microgravity conditions. The objectives of the experiment were (a) to observe collisions between mm-sized particles at relative velocities of < 1 cm/s and (b) to study the formation and disruption of particle clusters for different particle types and collision velocities. Four types of particles were used: mm-sized acrylic, glass, and copper beads and 0.75 mm-sized JSC-1 lunar regolith simulant grains. The particles were placed in sample cells carved out of an aluminum tray. This tray was attached to one side of the payload casing with three springs. Every 60 s, the tray was agitated, and the resulting collisions between the particles in the sample cells were recorded by the experiment camera. During the 18 months the payload stayed on ISS, we obtained 158 videos, thus recording a great number of collisions. The average particle velocities in the sample cells after each shaking event were around 1 cm/s. After shaking stopped, the inter-particle collisions damped the particle kinetic energy in less than 20 s, reducing the average particle velocity to below 1 mm/s, and eventually slowing them to below our detection threshold. As the particle velocity decreased, we observed the transition from bouncing to sticking collisions. We recorded the formation of particle clusters at the end of each experiment run. This paper describes the design and performance of the NanoRocks ISS payload.
Modeling of particle agglomeration in nanofluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishna, K. Hari; Neti, S.; Oztekin, A.
2015-03-07
Agglomeration strongly influences the stability or shelf life of nanofluid. The present computational and experimental study investigates the rate of agglomeration quantitatively. Agglomeration in nanofluids is attributed to the net effect of various inter-particle interaction forces. For the nanofluid considered here, a net inter-particle force depends on the particle size, volume fraction, pH, and electrolyte concentration. A solution of the discretized and coupled population balance equations can yield particle sizes as a function of time. Nanofluid prepared here consists of alumina nanoparticles with the average particle size of 150 nm dispersed in de-ionized water. As the pH of the colloid wasmore » moved towards the isoelectric point of alumina nanofluids, the rate of increase of average particle size increased with time due to lower net positive charge on particles. The rate at which the average particle size is increased is predicted and measured for different electrolyte concentration and volume fraction. The higher rate of agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces. The rate of agglomeration decreases due to increase in the size of nano-particle clusters thus approaching zero rate of agglomeration when all the clusters are nearly uniform in size. Predicted rates of agglomeration agree adequate enough with the measured values; validating the mathematical model and numerical approach is employed.« less
Particle tracking velocimetry using echocardiographic data resolves flow in the left ventricle
NASA Astrophysics Data System (ADS)
Sampath, Kaushik; Abd, Thura T.; George, Richard T.; Katz, Joseph
2015-11-01
Two dimensional contrast echocardiography was performed on patients with a history of left ventricular (LV) thrombus. The 636 x 434 pixels electrocardiograms were recorded using a GE Vivid 9E system with (M5S-D and 4V-D) probes in a 2-D mode at a magnification of 0.3 mm/pix. The concentration of 2-4.5 micron seed bubbles was adjusted to obtain individually discernable traces, and a data acquisition rate of 60-90 fps kept the inter-frame displacements suitable for matching traces, and calculating vectors, but yet low enough to allow a scanning depth and width of upto 13 cm and 60 degrees respectively. Particle tracking velocimetry (PTV) guided by initial particle image velocimetry (PIV) was used to obtain the velocity distributions inside the LV with vector spacing of 3-5 mm. The data quality was greatly enhanced by implementing an iterative particle specific enhancement and tracking algorithm. Data covering 20 heart beats facilitated phase averaging. The results elucidated blood flow in the intra-ventricular septal region, lateral wall region, the apex of the LV and the mitral valve region.
Photonic polymer-blend structures and method for making
Barnes, Michael D.
2004-06-29
The present invention comprises the formation of photonic polymer-blend structures having tunable optical and mechanical properties. The photonic polymer-blend structures comprise monomer units of spherical microparticles of a polymer-blend material wherein the spherical microparticles have surfaces partially merged with one another in a robust inter-particle bond having a tunable inter-particle separation or bond length sequentially attached in a desired and programmable architecture. The photonic polymer-blend structures of the present invention can be linked by several hundred individual particles sequentially linked to form complex three-dimensional structures or highly ordered two-dimensional arrays of 3D columns with 2D spacing.
Quantifying non-ergodic dynamics of force-free granular gases.
Bodrova, Anna; Chechkin, Aleksei V; Cherstvy, Andrey G; Metzler, Ralf
2015-09-14
Brownian motion is ergodic in the Boltzmann-Khinchin sense that long time averages of physical observables such as the mean squared displacement provide the same information as the corresponding ensemble average, even at out-of-equilibrium conditions. This property is the fundamental prerequisite for single particle tracking and its analysis in simple liquids. We study analytically and by event-driven molecular dynamics simulations the dynamics of force-free cooling granular gases and reveal a violation of ergodicity in this Boltzmann-Khinchin sense as well as distinct ageing of the system. Such granular gases comprise materials such as dilute gases of stones, sand, various types of powders, or large molecules, and their mixtures are ubiquitous in Nature and technology, in particular in Space. We treat-depending on the physical-chemical properties of the inter-particle interaction upon their pair collisions-both a constant and a velocity-dependent (viscoelastic) restitution coefficient ε. Moreover we compare the granular gas dynamics with an effective single particle stochastic model based on an underdamped Langevin equation with time dependent diffusivity. We find that both models share the same behaviour of the ensemble mean squared displacement (MSD) and the velocity correlations in the limit of weak dissipation. Qualitatively, the reported non-ergodic behaviour is generic for granular gases with any realistic dependence of ε on the impact velocity of particles.
Goyat, M S; Ghosh, P K
2018-04-01
Emerging ex-situ technique, ultrasonic dual mixing (UDM) offers unique and hitherto unapproachable opportunities to alter the physical and mechanical properties of polymer nanocomposites. In this study, triangular lattice-like arranged dispersion of TiO 2 nanoparticles (average size ∼ 48 nm) in the epoxy polymer has been attained via concurrent use of a probe ultra-sonicator and 4 blades pitched impeller which collectively named as UDM technique. The UDM processing of neat epoxy reveals the generation of triangular lattice-like arranged nanocavities with nanoscale inter-cavity spacing. The UDM processing of epoxy-TiO 2 nanocomposites reveals two unique features such as partial and complete entrapping of the nanoparticles by the nanocavities leading the arranged dispersion of particles in the epoxy matrix. Pristine TiO 2 nanoparticles were dispersed in the epoxy polymer at loading fractions of up to 20% by weight. The results display that the arranged dispersion of nanoparticles is very effective at enhancing the glass transition temperature (T g ) and tensile properties of the epoxy at loading fractions of 10 wt%. We quantify a direct relationship among three important parameters such as nanoparticle content, cluster size, and inter-particle spacing. Our results offer a novel understanding of these parameters on the T g and tensile properties of the epoxy nanocomposites. The tensile fracture surfaces revealed several toughening mechanisms such as particle pull-out, plastic void growth, crack deflection, crack bridging and plastic deformation. We show that a strong nanoparticle-matrix interface led to the enhanced mechanical properties due to leading toughening mechanisms such as crack deflection, plastic deformation and particle pull-out. We showed that the UDM has an inordinate prospective to alter the dispersion state of nanoparticles in viscous polymer matrices. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kozynchenko, Alexander I.; Kozynchenko, Sergey A.
2017-03-01
In the paper, a problem of improving efficiency of the particle-particle- particle-mesh (P3M) algorithm in computing the inter-particle electrostatic forces is considered. The particle-mesh (PM) part of the algorithm is modified in such a way that the space field equation is solved by the direct method of summation of potentials over the ensemble of particles lying not too close to a reference particle. For this purpose, a specific matrix "pattern" is introduced to describe the spatial field distribution of a single point charge, so the "pattern" contains pre-calculated potential values. This approach allows to reduce a set of arithmetic operations performed at the innermost of nested loops down to an addition and assignment operators and, therefore, to decrease the running time substantially. The simulation model developed in C++ substantiates this view, showing the descent accuracy acceptable in particle beam calculations together with the improved speed performance.
Generating a stationary infinite range tractor force via a multimode optical fibre
NASA Astrophysics Data System (ADS)
Ebongue, C. A.; Holzmann, D.; Ostermann, S.; Ritsch, H.
2017-06-01
Optical fibres confine and guide light almost unattenuated and thus convey light forces to polarizable nano-particles over very long distances. Radiation pressure forces arise from scattering of guided photons into free space while gradient forces are based on coherent scattering between different fibre modes or propagation directions. Interestingly, even scattering between co-propagating modes induces longitudinal forces as the transverse confinement of the light modes creates mode dependent longitudinal wave-vectors and photon momenta. We generalize a proven scattering matrix based approach to calculate single as well as inter-particle forces to include several forward and backward propagating modes. We show that an injection of the higher order mode only in a two mode fibre will induce a stationary tractor force against the injection direction, when the mode coupling to the lower order mode dominates against backscattering and free space losses. Generically this arises for non-absorbing particles at the centre of a waveguide. The model also gives improved predictions for inter-particle forces in evanescent nanofibre fields as experimentally observed recently. Surprisingly strong tractor forces can also act on whole optically bound arrays.
Sampling and Visualizing Creases with Scale-Space Particles
Kindlmann, Gordon L.; Estépar, Raúl San José; Smith, Stephen M.; Westin, Carl-Fredrik
2010-01-01
Particle systems have gained importance as a methodology for sampling implicit surfaces and segmented objects to improve mesh generation and shape analysis. We propose that particle systems have a significantly more general role in sampling structure from unsegmented data. We describe a particle system that computes samplings of crease features (i.e. ridges and valleys, as lines or surfaces) that effectively represent many anatomical structures in scanned medical data. Because structure naturally exists at a range of sizes relative to the image resolution, computer vision has developed the theory of scale-space, which considers an n-D image as an (n + 1)-D stack of images at different blurring levels. Our scale-space particles move through continuous four-dimensional scale-space according to spatial constraints imposed by the crease features, a particle-image energy that draws particles towards scales of maximal feature strength, and an inter-particle energy that controls sampling density in space and scale. To make scale-space practical for large three-dimensional data, we present a spline-based interpolation across scale from a small number of pre-computed blurrings at optimally selected scales. The configuration of the particle system is visualized with tensor glyphs that display information about the local Hessian of the image, and the scale of the particle. We use scale-space particles to sample the complex three-dimensional branching structure of airways in lung CT, and the major white matter structures in brain DTI. PMID:19834216
NASA Astrophysics Data System (ADS)
Lee, Eon S.; Polidori, Andrea; Koch, Michael; Fine, Philip M.; Mehadi, Ahmed; Hammond, Donald; Wright, Jeffery N.; Miguel, Antonio. H.; Ayala, Alberto; Zhu, Yifang
2013-04-01
This study compares the instrumental performance of three TSI water-based condensation particle counter (WCPC) models measuring particle number concentrations in close proximity (15 m) to a major freeway that has a significant level of heavy-duty diesel traffic. The study focuses on examining instrument biases and performance differences by different WCPC models under realistic field operational conditions. Three TSI models (3781, 3783, and 3785) were operated for one month in triplicate (nine units in total) in parallel with two sets of Scanning Mobility Particle Sizer (SMPS) spectrometers for the concurrent measurement of particle size distributions. Inter-model bias under different wind directions were first evaluated using 1-min raw data. Although all three WCPC models agreed well in upwind conditions (lower particle number concentrations, in the range of 103-104 particles cm-3), the three models' responses were significantly different under downwind conditions (higher particle number concentrations, above 104 particles cm-3). In an effort to increase inter-model linear correlations, we evaluated the results of using longer averaging time intervals. An averaging time of at least 15 min was found to achieve R2 values of 0.96 or higher when comparing all three models. Similar results were observed for intra-model comparisons for each of the three models. This strong linear relationship helped identify instrument bias related to particle number concentrations and particle size distributions. The TSI 3783 produced the highest particle counts, followed by TSI 3785, which reported 11% lower during downwind conditions than TSI 3783. TSI 3781 recorded particle number concentrations that were 24% lower than those observed by TSI 3783 during downwind condition. We found that TSI 3781 underestimated particles with a count median diameter less than 45 nm. Although the particle size dependency of instrument performance was found the most significant in TSI 3781, both models 3783 and 3785 showed somewhat size dependency. In addition, within each tested WCPC model, one unit was found to count significantly different and be more sensitive to particle size than the other two. Finally, exponential regression analysis was used to numerically quantify instrumental inter-model bias. Correction equations are proposed to adjust the TSI 3781 and 3785 data to the most recent model TSI 3783.
Particle atlas of World Trade Center dust
Lowers, Heather; Meeker, Gregory P.
2005-01-01
The United States Environmental Protection Agency (EPA) has begun a reassessment of the presence of World Trade Center (WTC) dust in residences, public buildings, and office spaces in New York City, New York. Background dust samples collected from residences, public buildings, and office spaces will be analyzed by multiple laboratories for the presence of WTC dust. Other laboratories are currently studying WTC dust for other purposes, such as health effects studies. To assist in inter-laboratory consistency for identification of WTC dust components, this particle atlas of phases in WTC dust has been compiled.
Zhu, Shupeng; Sartelet, Karine N; Healy, Robert M; Wenger, John C
2016-07-18
Air quality models are used to simulate and forecast pollutant concentrations, from continental scales to regional and urban scales. These models usually assume that particles are internally mixed, i.e. particles of the same size have the same chemical composition, which may vary in space and time. Although this assumption may be realistic for continental-scale simulations, where particles originating from different sources have undergone sufficient mixing to achieve a common chemical composition for a given model grid cell and time, it may not be valid for urban-scale simulations, where particles from different sources interact on shorter time scales. To investigate the role of the mixing state assumption on the formation of particles, a size-composition resolved aerosol model (SCRAM) was developed and coupled to the Polyphemus air quality platform. Two simulations, one with the internal mixing hypothesis and another with the external mixing hypothesis, have been carried out for the period 15 January to 11 February 2010, when the MEGAPOLI winter field measurement campaign took place in Paris. The simulated bulk concentrations of chemical species and the concentrations of individual particle classes are compared with the observations of Healy et al. (Atmos. Chem. Phys., 2013, 13, 9479-9496) for the same period. The single particle diversity and the mixing-state index are computed based on the approach developed by Riemer et al. (Atmos. Chem. Phys., 2013, 13, 11423-11439), and they are compared to the measurement-based analyses of Healy et al. (Atmos. Chem. Phys., 2014, 14, 6289-6299). The average value of the single particle diversity, which represents the average number of species within each particle, is consistent between simulation and measurement (2.91 and 2.79 respectively). Furthermore, the average value of the mixing-state index is also well represented in the simulation (69% against 59% from the measurements). The spatial distribution of the mixing-state index shows that the particles are not mixed in urban areas, while they are well mixed in rural areas. This indicates that the assumption of internal mixing traditionally used in transport chemistry models is well suited to rural areas, but this assumption is less realistic for urban areas close to emission sources.
He, L B; Wang, Y L; Xie, X; Han, M; Song, F Q; Wang, B J; Cheng, W L; Xu, H X; Sun, L T
2017-02-15
Gas-phase deposited Ag nanoparticle assemblies are one of the most commonly used plasmonic substrates benefiting from their remarkable advantages such as clean particle surface, tunable particle density, available inter-particle gaps, low-cost and scalable fabrication, and excellent industry compatibility. However, their performance efficiencies are difficult to optimize due to the lack of knowledge of the hotspots inside their structures. We here report a design of delicate rainbow-like Ag nanoparticle assemblies, based on which the hotspots can be revealed through a combinatorial approach. The findings show that the hotspots in gas-phase deposited Ag nanoparticle assemblies are uniquely entangled by the excitation energy and specific inter-particle gaps, differing from the matching conditions in periodic arrays. For Ag nanoparticle assemblies deposited on Formvar-filmed substrates, the mean particle size is maintained around 10 nm, while the particle density can be widely tuned. The one possessing the highest SERS efficiency (under 473 nm excitation) have a particle number density of around 7100 μm -2 . Gaps with an inter-particle spacing of around 3 nm are found to serve as SERS hotspots, and these hotspots contribute to 68% of the overall SERS intensity. For Ag nanoparticle assemblies fabricated on carbon-filmed substrates, the mean particle size can be feasibly tuned. The one possessing the highest SERS efficiency under 473 nm excitation has a particle number density of around 460 μm -2 and a mean particle size of around 42.1 nm. The construction of Ag-analyte-Ag sandwich-like nanoparticle assemblies by a two-step-deposition method slightly improves the SERS efficiency when the particle number density is low, but suppresses the SERS efficiency when the particle number density is high.
InterFace: A software package for face image warping, averaging, and principal components analysis.
Kramer, Robin S S; Jenkins, Rob; Burton, A Mike
2017-12-01
We describe InterFace, a software package for research in face recognition. The package supports image warping, reshaping, averaging of multiple face images, and morphing between faces. It also supports principal components analysis (PCA) of face images, along with tools for exploring the "face space" produced by PCA. The package uses a simple graphical user interface, allowing users to perform these sophisticated image manipulations without any need for programming knowledge. The program is available for download in the form of an app, which requires that users also have access to the (freely available) MATLAB Runtime environment.
Quantitative Measures of Chaotic Charged Particle Dynamics in the Magnetotail
NASA Astrophysics Data System (ADS)
Holland, D. L.; Martin, R. F., Jr.; Burris, C.
2017-12-01
It has long been noted that the motion of charged particles in magnetotail-like magnetic fields is chaotic, however, efforts to quantify the degree of chaos have had conflicting conclusions. In this paper we re-examine the question by focusing on quantitative measures of chaos. We first examine the percentage of orbits that enter the chaotic region of phase space and the average trapping time of those particles. We then examine the average exponential divergence rate (AEDR) of the chaotic particles between their first and last crossing of the mid-plane. We show that at resonant energies where the underlying phase space has a high degree of symmetry, only a small number of particle enter the chaotic region, but they are trapped for long periods of time and the time asymptotic value of the AEDR is very close to the average value of the AEDR. At the off-resonant energies where the phase space is highly asymmetric, the majority of the particle enter the chaotic region for fairly short periods of time and the time asymptotic value of the AEDR is much smaller than the average value. The root cause is that in the resonant case, the longest-lived orbits tend interact with the current many times and sample the entire chaotic region, whereas in the non-resonant case the longest-lived orbits only interact with the current sheet a small number of times but have very long mirrorings where the motion is nearly regular. Additionally we use an ad-hoc model where we model the current sheet as a Lorentz scattering system with each interaction with the current sheet being considered as a "collision". We find that the average kick per collision is greatest at off-resonant energies. Finally, we propose a chaos parameter as the product of the AEDR times the average chaotic particle trapping time times the percentage of orbits that are chaotic. We find that this takes on peak values at the resonant energies.
NASA Astrophysics Data System (ADS)
Derrick, J. G.; LaJeunesse, J. W.; Davison, T. M.; Borg, J. P.; Collins, G. S.
2018-04-01
The shock response of granular materials is important in a variety of contexts but the precise dynamics of grains during compaction is poorly understood. Here we use 2D mesoscale numerical simulations of the shock compaction of granular tungsten carbide to investigate the effect of internal structure within the particle bed and ‘stiction’ between grains on the shock response. An increase in the average number of contacts with other particles, per particle, tends to shift the Hugoniot to higher shock velocities, lower particle velocities and lower densities. This shift is sensitive to inter-particle shear resistance. Eulerian shock physics codes approximate friction between, and interlocking of, grains with their treatment of mixed cell strength (stiction) and here we show that this has a significant effect on the shock response. When studying the compaction of particle beds it is not common to quantify the pre-compaction internal structure, yet our results suggest that such differences should be taken into account, either by using identical beds or by averaging results over multiple experiments.
An on-chip colloidal magneto-optical grating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prikockis, M.; Wijesinghe, H.; Chen, A.
2016-04-18
Interacting nano- and micro-particles provide opportunities to create a wide range of useful colloidal and soft matter constructs. In this letter, we examine interacting superparamagnetic polymeric particles residing on designed permalloy (Ni{sub 0.8} Fe{sub 0.2}) shapes that are subject to weak time-orbiting magnetic fields. The precessing field and magnetic barriers that ensue along the outer perimeter of the shapes allow for containment concurrent with independent field-tunable ordering of the dipole-coupled particles. These remotely activated arrays with inter-particle spacing comparable to the wavelength of light yield microscopic on-chip surface gratings for beam steering and magnetically regulated light diffraction applications.
Li, Wenjun; Kezele, Irina; Collins, D Louis; Zijdenbos, Alex; Keyak, Joyce; Kornak, John; Koyama, Alain; Saeed, Isra; Leblanc, Adrian; Harris, Tamara; Lu, Ying; Lang, Thomas
2007-11-01
We have developed a general framework which employs quantitative computed tomography (QCT) imaging and inter-subject image registration to model the three-dimensional structure of the hip, with the goal of quantifying changes in the spatial distribution of bone as it is affected by aging, drug treatment or mechanical unloading. We have adapted rigid and non-rigid inter-subject registration techniques to transform groups of hip QCT scans into a common reference space and to construct composite proximal femoral models. We have applied this technique to a longitudinal study of 16 astronauts who on average, incurred high losses of hip bone density during spaceflights of 4-6 months on the International Space Station (ISS). We compared the pre-flight and post-flight composite hip models, and observed the gradients of the bone loss distribution. We performed paired t-tests, on a voxel by voxel basis, corrected for multiple comparisons using false discovery rate (FDR), and observed regions inside the proximal femur that showed the most significant bone loss. To validate our registration algorithm, we selected the 16 pre-flight scans and manually marked 4 landmarks for each scan. After registration, the average distance between the mapped landmarks and the corresponding landmarks in the target scan was 2.56 mm. The average error due to manual landmark identification was 1.70 mm.
Chemical Continuous Time Random Walks
NASA Astrophysics Data System (ADS)
Aquino, T.; Dentz, M.
2017-12-01
Traditional methods for modeling solute transport through heterogeneous media employ Eulerian schemes to solve for solute concentration. More recently, Lagrangian methods have removed the need for spatial discretization through the use of Monte Carlo implementations of Langevin equations for solute particle motions. While there have been recent advances in modeling chemically reactive transport with recourse to Lagrangian methods, these remain less developed than their Eulerian counterparts, and many open problems such as efficient convergence and reconstruction of the concentration field remain. We explore a different avenue and consider the question: In heterogeneous chemically reactive systems, is it possible to describe the evolution of macroscopic reactant concentrations without explicitly resolving the spatial transport? Traditional Kinetic Monte Carlo methods, such as the Gillespie algorithm, model chemical reactions as random walks in particle number space, without the introduction of spatial coordinates. The inter-reaction times are exponentially distributed under the assumption that the system is well mixed. In real systems, transport limitations lead to incomplete mixing and decreased reaction efficiency. We introduce an arbitrary inter-reaction time distribution, which may account for the impact of incomplete mixing. This process defines an inhomogeneous continuous time random walk in particle number space, from which we derive a generalized chemical Master equation and formulate a generalized Gillespie algorithm. We then determine the modified chemical rate laws for different inter-reaction time distributions. We trace Michaelis-Menten-type kinetics back to finite-mean delay times, and predict time-nonlocal macroscopic reaction kinetics as a consequence of broadly distributed delays. Non-Markovian kinetics exhibit weak ergodicity breaking and show key features of reactions under local non-equilibrium.
Selective encapsulation by Janus particles
NASA Astrophysics Data System (ADS)
Li, Wei; Ruth, Donovan; Gunton, James D.; Rickman, Jeffrey M.
2015-06-01
We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.
Coincidence probability as a measure of the average phase-space density at freeze-out
NASA Astrophysics Data System (ADS)
Bialas, A.; Czyz, W.; Zalewski, K.
2006-02-01
It is pointed out that the average semi-inclusive particle phase-space density at freeze-out can be determined from the coincidence probability of the events observed in multiparticle production. The method of measurement is described and its accuracy examined.
IMPETUS - Interactive MultiPhysics Environment for Unified Simulations.
Ha, Vi Q; Lykotrafitis, George
2016-12-08
We introduce IMPETUS - Interactive MultiPhysics Environment for Unified Simulations, an object oriented, easy-to-use, high performance, C++ program for three-dimensional simulations of complex physical systems that can benefit a large variety of research areas, especially in cell mechanics. The program implements cross-communication between locally interacting particles and continuum models residing in the same physical space while a network facilitates long-range particle interactions. Message Passing Interface is used for inter-processor communication for all simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Saharan Dust Particle Size And Concentration Distribution In Central Ghana
NASA Astrophysics Data System (ADS)
Sunnu, A. K.
2010-12-01
A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for atmospheric aerosols with a coarse mode diameter situated at about 3.5 μm. The experimental results reported in this study will be important in validating satellite based observations and simulation models of the African dust plume towards the Gulf of Guinea during winter.
In situ grain fracture mechanics during uniaxial compaction of granular solids
NASA Astrophysics Data System (ADS)
Hurley, R. C.; Lind, J.; Pagan, D. C.; Akin, M. C.; Herbold, E. B.
2018-03-01
Grain fracture and crushing are known to influence the macroscopic mechanical behavior of granular materials and be influenced by factors such as grain composition, morphology, and microstructure. In this paper, we investigate grain fracture and crushing by combining synchrotron x-ray computed tomography and three-dimensional x-ray diffraction to study two granular samples undergoing uniaxial compaction. Our measurements provide details of grain kinematics, contacts, average intra-granular stresses, inter-particle forces, and intra-grain crystal and fracture plane orientations. Our analyses elucidate the complex nature of fracture and crushing, showing that: (1) the average stress states of grains prior to fracture vary widely in their relation to global and local trends; (2) fractured grains experience inter-particle forces and stored energies that are statistically higher than intact grains prior to fracture; (3) fracture plane orientations are primarily controlled by average intra-granular stress and contact fabric rather than the orientation of the crystal lattice; (4) the creation of new surfaces during fracture accounts for a very small portion of the energy dissipated during compaction; (5) mixing brittle and ductile grain materials alters the grain-scale fracture response. The results highlight an application of combined x-ray measurements for non-destructive in situ analysis of granular solids and provide details about grain fracture that have important implications for theory and modeling.
Selective encapsulation by Janus particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei, E-mail: wel208@mrl.ucsb.edu; Ruth, Donovan; Gunton, James D.
2015-06-28
We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored,more » as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.« less
NASA Astrophysics Data System (ADS)
Maljaars, Jakob M.; Labeur, Robert Jan; Möller, Matthias
2018-04-01
A generic particle-mesh method using a hybridized discontinuous Galerkin (HDG) framework is presented and validated for the solution of the incompressible Navier-Stokes equations. Building upon particle-in-cell concepts, the method is formulated in terms of an operator splitting technique in which Lagrangian particles are used to discretize an advection operator, and an Eulerian mesh-based HDG method is employed for the constitutive modeling to account for the inter-particle interactions. Key to the method is the variational framework provided by the HDG method. This allows to formulate the projections between the Lagrangian particle space and the Eulerian finite element space in terms of local (i.e. cellwise) ℓ2-projections efficiently. Furthermore, exploiting the HDG framework for solving the constitutive equations results in velocity fields which excellently approach the incompressibility constraint in a local sense. By advecting the particles through these velocity fields, the particle distribution remains uniform over time, obviating the need for additional quality control. The presented methodology allows for a straightforward extension to arbitrary-order spatial accuracy on general meshes. A range of numerical examples shows that optimal convergence rates are obtained in space and, given the particular time stepping strategy, second-order accuracy is obtained in time. The model capabilities are further demonstrated by presenting results for the flow over a backward facing step and for the flow around a cylinder.
Modeling shear-induced particle ordering and deformation in a dense soft particle suspension
NASA Astrophysics Data System (ADS)
Liao, Chih-Tang; Wu, Yi-Fan; Chien, Wei; Huang, Jung-Ren; Chen, Yeng-Long
2017-11-01
We apply the lattice Boltzmann method and the bead-spring network model of deformable particles (DPs) to study shear-induced particle ordering and deformation and the corresponding rheological behavior for dense DP suspensions confined in a narrow gap under steady external shear. The particle configuration is characterized with small-angle scattering intensity, the real-space 2D local order parameter, and the particle shape factors including deformation, stretching and tilt angles. We investigate how particle ordering and deformation vary with the particle volume fraction ϕ (=0.45-0.65) and the external shear rate characterized with the capillary number Ca (=0.003-0.191). The degree of particle deformation increases mildly with ϕ but significantly with Ca. Under moderate shear rate (Ca = 0.105), the inter-particle structure evolves from string-like ordering to layered hexagonal close packing (HCP) as ϕ increases. A long wavelength particle slithering motion emerges for sufficiently large ϕ. For ϕ = 0.61, the structure maintains layered HCP for Ca = 0.031-0.143 but gradually becomes disordered for larger and smaller Ca. The correlation in particle zigzag movements depends sensitively on ϕ and particle ordering. Layer-by-layer analysis reveals how the non-slippery hard walls affect particle ordering and deformation. The shear-induced reconfiguration of DPs observed in the simulation agrees qualitatively with experimental results of sheared uniform emulsions. The apparent suspension viscosity increases with ϕ but exhibits much weaker dependence compared to hard-sphere suspensions, indicating that particle deformation and unjamming under shear can significantly reduce the viscous stress. Furthermore, the suspension shear-thins, corresponding to increased inter-DP ordering and particle deformation with Ca. This work provides useful insights into the microstructure-rheology relationship of concentrated deformable particle suspensions.
Modeling shear-induced particle ordering and deformation in a dense soft particle suspension.
Liao, Chih-Tang; Wu, Yi-Fan; Chien, Wei; Huang, Jung-Ren; Chen, Yeng-Long
2017-11-01
We apply the lattice Boltzmann method and the bead-spring network model of deformable particles (DPs) to study shear-induced particle ordering and deformation and the corresponding rheological behavior for dense DP suspensions confined in a narrow gap under steady external shear. The particle configuration is characterized with small-angle scattering intensity, the real-space 2D local order parameter, and the particle shape factors including deformation, stretching and tilt angles. We investigate how particle ordering and deformation vary with the particle volume fraction ϕ (=0.45-0.65) and the external shear rate characterized with the capillary number Ca (=0.003-0.191). The degree of particle deformation increases mildly with ϕ but significantly with Ca. Under moderate shear rate (Ca = 0.105), the inter-particle structure evolves from string-like ordering to layered hexagonal close packing (HCP) as ϕ increases. A long wavelength particle slithering motion emerges for sufficiently large ϕ. For ϕ = 0.61, the structure maintains layered HCP for Ca = 0.031-0.143 but gradually becomes disordered for larger and smaller Ca. The correlation in particle zigzag movements depends sensitively on ϕ and particle ordering. Layer-by-layer analysis reveals how the non-slippery hard walls affect particle ordering and deformation. The shear-induced reconfiguration of DPs observed in the simulation agrees qualitatively with experimental results of sheared uniform emulsions. The apparent suspension viscosity increases with ϕ but exhibits much weaker dependence compared to hard-sphere suspensions, indicating that particle deformation and unjamming under shear can significantly reduce the viscous stress. Furthermore, the suspension shear-thins, corresponding to increased inter-DP ordering and particle deformation with Ca. This work provides useful insights into the microstructure-rheology relationship of concentrated deformable particle suspensions.
A Radiation Chemistry Code Based on the Greens Functions of the Diffusion Equation
NASA Technical Reports Server (NTRS)
Plante, Ianik; Wu, Honglu
2014-01-01
Ionizing radiation produces several radiolytic species such as.OH, e-aq, and H. when interacting with biological matter. Following their creation, radiolytic species diffuse and chemically react with biological molecules such as DNA. Despite years of research, many questions on the DNA damage by ionizing radiation remains, notably on the indirect effect, i.e. the damage resulting from the reactions of the radiolytic species with DNA. To simulate DNA damage by ionizing radiation, we are developing a step-by-step radiation chemistry code that is based on the Green's functions of the diffusion equation (GFDE), which is able to follow the trajectories of all particles and their reactions with time. In the recent years, simulations based on the GFDE have been used extensively in biochemistry, notably to simulate biochemical networks in time and space and are often used as the "gold standard" to validate diffusion-reaction theories. The exact GFDE for partially diffusion-controlled reactions is difficult to use because of its complex form. Therefore, the radial Green's function, which is much simpler, is often used. Hence, much effort has been devoted to the sampling of the radial Green's functions, for which we have developed a sampling algorithm This algorithm only yields the inter-particle distance vector length after a time step; the sampling of the deviation angle of the inter-particle vector is not taken into consideration. In this work, we show that the radial distribution is predicted by the exact radial Green's function. We also use a technique developed by Clifford et al. to generate the inter-particle vector deviation angles, knowing the inter-particle vector length before and after a time step. The results are compared with those predicted by the exact GFDE and by the analytical angular functions for free diffusion. This first step in the creation of the radiation chemistry code should help the understanding of the contribution of the indirect effect in the formation of DNA damage and double-strand breaks.
Design principles for wave plate metasurfaces using plasmonic L-shaped nanoantennas
NASA Astrophysics Data System (ADS)
Tahir, Asad A.; Schulz, Sebastian A.; De Leon, Israel; Boyd, Robert W.
2017-03-01
Plasmonic L-shaped antennas are an important building block of metasurfaces and have been used to fabricate ultra-thin wave plates. In this work we present principles that can be used to design wave plates at a wavelength of choice and for diverse application requirements using arrays of L-shaped plasmonic antennas. We derive these design principles by studying the behavior of the vast parameter space of these antenna arrays. We show that there are two distinct regimes: a weak inter-particle coupling and a strong inter-particle coupling regime. We describe the behavior of the antenna array in each regime with regards to wave plate functionality, without resorting to approximate theoretical models. Our work is the first to explain these design principles and serves as a guide for designing wave plates for specific application requirements using plasmonic L-shaped antenna arrays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akkelin, S.V.; Sinyukov, Yu.M.
A method allowing analysis of the overpopulation of phase space in heavy ion collisions in a model-independent way is proposed within the hydrodynamic approach. It makes it possible to extract a chemical potential of thermal pions at freeze-out, irrespective of the form of freeze-out (isothermal) hypersurface in Minkowski space and transverse flows on it. The contributions of resonance (with masses up to 2 GeV) decays to spectra, interferometry volumes, and phase-space densities are calculated and discussed in detail. The estimates of average phase-space densities and chemical potentials of thermal pions are obtained for SPS and RHIC energies. They demonstrate thatmore » multibosonic phenomena at those energies might be considered as a correction factor rather than as a significant physical effect. The analysis of the evolution of the pion average phase-space density in chemically frozen hadron systems shows that it is almost constant or slightly increases with time while the particle density and phase-space density at each space point decreases rapidly during the system's expansion. We found that, unlike the particle density, the average phase-space density has no direct link to the freeze-out criterion and final thermodynamic parameters, being connected rather to the initial phase-space density of hadronic matter formed in relativistic nucleus-nucleus collisions.« less
A pilot study of the behavior of gas- and particle-phase ETS tracers in residences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apte, Michael; Gundel, Lara; Dod, Raymond
2002-02-01
Our previous study of environmental tobacco smoke (ETS) in a three-room environmental chamber showed that smoking history significantly influenced inter-room ETS transport, particularly of gas-phase nicotine. We conducted a three-home pilot study where smoking was limited to one room. Single-smoker residences were monitored during five one-week periods while the smoker participated in a smoking cessation program. Nicotine traced ETS particles were detected reliably in the smoking rooms (SRs) and unreliably in the non-smoking rooms (NSRs). On average, the ventilation- and volume-normalized smoking rate, 0.1 Cigarette-h{sup -1} m{sup -3}, added about 17 and 4 {micro}g m{sup -3} of ETS particles intomore » the SR and NSR, while average nicotine concentration increases were 2 and 0.06 {micro}g m{sup -3}, respectively. Thus, nicotine tracers may underestimate ETS particle exposure in a NSR (e.g., a child's bedroom) by a factor of 2 to 8. In other words, ETS exposure predicted from nicotine concentrations could be almost an order of magnitude lower than actual exposure.« less
Total particle, sulfate, and acidic aerosol emissions from kerosene space heaters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leaderer, B.P.; Boone, P.M.; Hammond, S.K.
1990-06-01
Chamber studies were conducted on four unvented kerosene space heaters to assess emissions of total particle, sulfate, and acidic aerosol. The heaters tested represented four burner designs currently in use by the public. Kerosene space heaters are a potential source of fine particles ({<=} 2.5-{mu}m diameter), sulfate, and acidic aerosol indoors. Fine particle concentrations in homes in which the heaters are used may be increased in excess of 20 {mu}g/m{sup 3} over background levels. Sulfate and acidic aerosol levels in such homes could exceed average and peak outdoor concentrations. Maltuned heaters could produce exceptionally high levels of all air contaminantsmore » measured.« less
Total particle, sulfate, and acidic aerosol emissions from kerosene space heaters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leaderer, B.P.; Boone, P.M.; Hammond, S.K.
1990-01-01
The article discusses chamber studies of four unvented kerosene space heaters to assess emissions of total particle, sulfate, and acidic aerosol. The heaters tested represented four burner designs currently in use by the public. Kerosene space heaters are a potential source of fine particles (= or < 2.5 micrometer diameter), sulfate, and acidic aerosol indoors. Fine particle concentrations in houses in which the heaters are used may be increased in excess of 20 micrograms/m3 over background levels. Sulfate and acidic aerosol levels in such houses could exceed average and peak outdoor concentrations. Maltuned heaters could produce exceptionally high levels ofmore » all air contaminants measured.« less
Bansmann, J; Kielbassa, S; Hoster, H; Weigl, F; Boyen, H G; Wiedwald, U; Ziemann, P; Behm, R J
2007-09-25
The self-organization of diblock copolymers into micellar structures in an appropriate solvent allows the deposition of well ordered arrays of pure metal and alloy nanoparticles on flat surfaces with narrow distributions in particle size and interparticle spacing. Here we investigated the influence of the materials (substrate and polymer) and deposition parameters (temperature and emersion velocity) on the deposition of metal salt loaded micelles by dip-coating from solution and on the order and inter-particle spacing of the micellar deposits and thus of the metal nanoparticle arrays resulting after plasma removal of the polymer shell. For identical substrate and polymer, variation of the process parameters temperature and emersion velocity enables the controlled modification of the interparticle distance within a certain length regime. Moreover, also the degree of hexagonal order of the final array depends sensitively on these parameters.
NASA Astrophysics Data System (ADS)
Repko, Anton; Vejpravová, Jana; Vacková, Taťana; Zákutná, Dominika; Nižňanský, Daniel
2015-09-01
We present a facile and high-yield synthesis of cobalt ferrite nanoparticles by hydrothermal hydrolysis of Co-Fe oleate in the presence of pentanol/octanol/toluene and water at 180 or 220 °C. The particle size (6-10 nm) was controlled by the composition of the organic solvent and temperature. Magnetic properties were then investigated with respect to the particle size and surface modification with citric acid or titanium dioxide (leading to hydrophilic particles). The as-prepared hydrophobic nanoparticles (coated by oleic acid) had a minimum inter-particle distance of 2.5 nm. Their apparent blocking temperature (estimated as a maximum of the zero-field-cooled magnetization) was 180 K, 280 K and 330 K for the particles with size of 6, 9 and 10.5 nm, respectively. Replacement of oleic acid on the surface by citric acid decreased inter-particle distance to less than 1 nm, and increased blocking temperature by ca. 10 K. On the other hand, coating with titanium dioxide, supported by nitrilotri(methylphosphonic acid), caused increase of the particle spacing, and lowering of the blocking temperature by ca. 20 K. The CoFe2O4@TiO2 nanoparticles were sufficiently stable in water, methanol and ethanol. The particles were also investigated by Mössbauer spectroscopy and alternating-current (AC) susceptibility measurements, and their analysis with Vögel-Fulcher and power law. Effect of different particle coating and dipolar interactions on the magnetic properties is discussed.
Gravimetric measurement of momentary drying rate of spray freeze-dried powders in vials.
Gieseler, Henning; Lee, Geoffrey
2009-09-01
The profile of drying rate versus primary drying time for a spray freeze-dried trehalose aqueous solution is much different from that determined for regular freeze-drying. Drying rate declines very rapidly, attributed to rate-limiting heat transfer through the packed bed of frozen microparticles contained in a vial. The inter-particulate spaces appear to be the cause of this rate limitation. Use of either liquid nitrogen or liquid propane as a cryogenic produced strong differences in both SFD particle morphology and drying rate using trehalose, sucrose, or mannitol. The lack of any evident correlation supports the argument that the inter-particulate voids determine drying behavior.
A model to estimate the size of nanoparticle agglomerates in gas-solid fluidized beds
NASA Astrophysics Data System (ADS)
de Martín, Lilian; van Ommen, J. Ruud
2013-11-01
The estimation of nanoparticle agglomerates' size in fluidized beds remains an open challenge, mainly due to the difficulty of characterizing the inter-agglomerate van der Waals force. The current approach is to describe micron-sized nanoparticle agglomerates as micron-sized particles with 0.1-0.2-μm asperities. This simplification does not capture the influence of the particle size on the van der Waals attraction between agglomerates. In this paper, we propose a new description where the agglomerates are micron-sized particles with nanoparticles on the surface, acting as asperities. As opposed to previous models, here the van der Waals force between agglomerates decreases with an increase in the particle size. We have also included an additional force due to the hydrogen bond formation between the surfaces of hydrophilic and dry nanoparticles. The average size of the fluidized agglomerates has been estimated equating the attractive force obtained from this method to the weight of the individual agglomerates. The results have been compared to 54 experimental values, most of them collected from the literature. Our model approximates without a systematic error the size of most of the nanopowders, both in conventional and centrifugal fluidized beds, outperforming current models. Although simple, the model is able to capture the influence of the nanoparticle size, particle density, and Hamaker coefficient on the inter-agglomerate forces.
Paya, Alexander M; Silverberg, Jesse L; Padgett, Jennifer; Bauerle, Taryn L
2015-01-01
Research in the field of plant biology has recently demonstrated that inter- and intra-specific interactions belowground can dramatically alter root growth. Our aim was to answer questions related to the effect of inter- vs. intra-specific interactions on the growth and utilization of undisturbed space by fine roots within three dimensions (3D) using micro X-ray computed tomography. To achieve this, Populus tremuloides (quaking aspen) and Picea mariana (black spruce) seedlings were planted into containers as either solitary individuals, or inter-/intra-specific pairs, allowed to grow for 2 months, and 3D metrics developed in order to quantify their use of belowground space. In both aspen and spruce, inter-specific root interactions produced a shift in the vertical distribution of the root system volume, and deepened the average position of root tips when compared to intra-specifically growing seedlings. Inter-specific interactions also increased the minimum distance between root tips belonging to the same root system. There was no effect of belowground interactions on the radial distribution of roots, or the directionality of lateral root growth for either species. In conclusion, we found that significant differences were observed more often when comparing controls (solitary individuals) and paired seedlings (inter- or intra-specific), than when comparing inter- and intra-specifically growing seedlings. This would indicate that competition between neighboring seedlings was more responsible for shifting fine root growth in both species than was neighbor identity. However, significant inter- vs. intra-specific differences were observed, which further emphasizes the importance of biological interactions in competition studies.
Effect of AFT Rotor on the Inter-Rotor Flow of an Open Rotor Propulsion System
NASA Technical Reports Server (NTRS)
Slaboch, Paul E.; Stephens, David B.; Van Zante, Dale E.
2016-01-01
The effects of the aft rotor on the inter-rotor flow field of an open rotor propulsion rig were examined. A Particle Image Velocimetry (PIV) dataset that was acquired phase locked to the front rotor position has been phase averaged based on the relative phase angle between the forward and aft rotors. The aft rotor phase was determined by feature tracking in raw PIV images through an image processing algorithm. The effect of the aft rotor potential field on the inter-rotor flow were analyzed and shown to be in good agreement with Computational Fluid Dynamics (CFD) simulations. It was shown that the aft rotor had no substantial effect on the position of the forward rotor tip vortex but did have a small effect on the circulation strength of the vortex when the rotors were highly loaded.
Shi, Shanshan; Chen, Chen; Zhao, Bin
2017-01-01
Numerous epidemiological studies explored health risks attributed to outdoor particle pollution. However, a number of these studies routinely utilized ambient concentration as a surrogate for personal exposure to ambient particles. This simplification ignored the difference between indoor and outdoor concentrations of outdoor originated particles and may bias the estimate of particle-health associations. Intending to avoid the bias, particle infiltration factor (F inf ), which describes the penetration of outdoor particles in indoor environment, and ambient exposure factor (α), which represents the fraction of outdoor particles people are truly exposed to, are utilized as modification factors to modify outdoor particle concentration. In this study, the probabilistic distributions of annually-averaged and seasonally-averaged F inf and α were assessed for residences and residents in Beijing. F inf of a single residence and α of an individual was estimated based on the mechanisms governing particle outdoor-to-indoor migration and human time-activity pattern. With this as the core deterministic model, probabilistic distributions of F inf and α were estimated via Monte Carlo Simulation. Annually-averaged F inf of PM 2.5 and PM 10 for residences in Beijing tended to be log-normally distributed as lnN(-0.74,0.14) and lnN(-0.94,0.15) with geometric mean value as 0.47 and 0.39, respectively. Annually-averaged α of PM 2.5 and PM 10 for Beijing residents also tended to be log-normally distributed as lnN(-0.59,0.12) and lnN(-0.73,0.13) with geometric mean value as 0.55 and 0.48, respectively. As for seasonally-averaged results, F inf and α of PM 2.5 and PM 10 were largest in summer and smallest in winter. The obvious difference between these modification factors and unity suggested that modifications of ambient particle concentration need to be considered in epidemiological studies to avoid misclassifications of personal exposure to ambient particles. Moreover, considering the inter-individual difference of F inf and α may lead to a brand new perspective of particle-health associations in further epidemiological study. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shock Interaction of Metal Particles in Condensed Explosive Detonation
NASA Astrophysics Data System (ADS)
Ripley, Robert; Zhang, Fan; Lien, Fue-Sang
2005-07-01
For detonation propagation in a condensed explosive with metal particles, a macro-scale physical model describing the momentum transfer between the explosive and particles has yet to be completely established. Previous 1D and 2D meso-scale modeling studies indicated that significant momentum transfer from the explosive to the particles occurs as the leading shock front crosses the particles, thus influencing the initiation and detonation structure. In this work, 3D meso-scale modeling is conducted to further study the two-phase momentum transfer during the shock diffraction and subsequent detonation in liquid nitromethane containing packed metal particles. Detonation of the condensed explosive is computed using an Arrhenius reaction model and a hybrid EOS model that combines the Mie-Gruneisen equation for reactants and the JWL equation for products. The compressible particles are modeled using the Tait EOS, where the material strength is negligible. The effect of particle packing configuration and inter-particle spacing is shown by parametric studies. Finally, a physical description of the momentum transfer is discussed.
NASA Astrophysics Data System (ADS)
Miller, Joseph D.; Jiang, Naibo; Slipchenko, Mikhail N.; Mance, Jason G.; Meyer, Terrence R.; Roy, Sukesh; Gord, James R.
2016-12-01
100-kHz particle image velocimetry (PIV) is demonstrated using a double-pulsed, burst-mode laser with a burst duration up to 100 ms. This enables up to 10,000 time-sequential vector fields for capturing a temporal dynamic range spanning over three orders of magnitude in high-speed turbulent flows. Pulse doublets with inter-pulse spacing of 2 µs and repetition rate of 100 kHz are generated using a fiber-based oscillator and amplified through an all-diode-pumped, burst-mode amplifier. A physics-based model of pulse doublet amplification in the burst-mode amplifier is developed and used to accurately predict oscillator pulse width and pulse intensity inputs required to generate equal-energy pulse doublets at 532 nm for velocity measurements. The effect of PIV particle response and high-speed-detector limitations on the spatial and temporal resolution are estimated in subsonic turbulent jets. An effective spatial resolution of 266-275 µm and temporal resolution of 10 µs are estimated from the 8 × 8 pixel correlation window and inter-doublet time spacing, respectively. This spatiotemporal resolution is sufficient for quantitative assessment of integral time and length scales in highly turbulent jets with Reynolds numbers in the range 15,000-50,000. The temporal dynamic range of the burst-mode PIV measurement is 1200, limited by the 85-ms high-energy portion of the burst and 30-kHz high-frequency noise limit.
NASA Astrophysics Data System (ADS)
Torteeka, Peerapong; Gao, Peng-Qi; Shen, Ming; Guo, Xiao-Zhang; Yang, Da-Tao; Yu, Huan-Huan; Zhou, Wei-Ping; Zhao, You
2017-02-01
Although tracking with a passive optical telescope is a powerful technique for space debris observation, it is limited by its sensitivity to dynamic background noise. Traditionally, in the field of astronomy, static background subtraction based on a median image technique has been used to extract moving space objects prior to the tracking operation, as this is computationally efficient. The main disadvantage of this technique is that it is not robust to variable illumination conditions. In this article, we propose an approach for tracking small and dim space debris in the context of a dynamic background via one of the optical telescopes that is part of the space surveillance network project, named the Asia-Pacific ground-based Optical Space Observation System or APOSOS. The approach combines a fuzzy running Gaussian average for robust moving-object extraction with dim-target tracking using a particle-filter-based track-before-detect method. The performance of the proposed algorithm is experimentally evaluated, and the results show that the scheme achieves a satisfactory level of accuracy for space debris tracking.
NASA Astrophysics Data System (ADS)
von Boetticher, Albrecht; Rickenmann, Dieter; McArdell, Brian; Kirchner, James W.
2017-04-01
Debris flows are dense flowing mixtures of water, clay, silt, sand and coarser particles. They are a common natural hazard in mountain regions and frequently cause severe damage. Modeling debris flows to design protection measures is still challenging due to the complex interactions within the inhomogeneous material mixture, and the sensitivity of the flow process to the channel geometry. The open-source, OpenFOAM-based finite-volume debris flow model debrisInterMixing (von Boetticher et al, 2016) defines rheology parameters based on the material properties of the debris flow mixture to reduce the number of free model parameters. As a simplification in this first model version, gravel was treated as a Coulomb-viscoplastic fluid, neglecting grain-to-grain collisions and the coupling between the coarser gravel grains and the interstitial fluid. Here we present an extension of that solver, accounting for the particle-to-particle and particle-to-boundary contacts with a Lagrangian Particle Simulation composed of spherical grains and a user-defined grain size distribution. The grain collisions of the Lagrangian particles add granular flow behavior to the finite-volume simulation of the continuous phases. The two-way coupling exchanges momentum between the phase-averaged flow in a finite volume cell, and among all individual particles contained in that cell, allowing the user to choose from a number of different drag models. The momentum exchange is implemented in the momentum equation and in the pressure equation (ensuring continuity) of the so-called PISO-loop, resulting in a stable 4-way coupling (particle-to-particle, particle-to-boundary, particle-to-fluid and fluid-to-particle) that represents the granular and viscous flow behavior of debris flow material. We will present simulations that illustrate the relative benefits and drawbacks of explicitly representing grain collisions, compared to the original debrisInterMixing solver.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Withers, L. P., E-mail: lpwithers@mitre.org; Narducci, F. A., E-mail: francesco.narducci@navy.mil
2015-06-15
The recent single-photon double-slit experiment of Steinberg et al., based on a weak measurement method proposed by Wiseman, showed that, by encoding the photon’s transverse momentum behind the slits into its polarization state, the momentum profile can subsequently be measured on average, from a difference of the separated fringe intensities for the two circular polarization components. They then integrated the measured average velocity field, to obtain the average trajectories of the photons enroute to the detector array. In this paper, we propose a modification of their experiment, to demonstrate that the average particle velocities and trajectories change when the modemore » of detection changes. The proposed experiment replaces a single detector by a pair of detectors with a given spacing between them. The pair of detectors is configured so that it is impossible to distinguish which detector received the particle. The pair of detectors is then analogous to the simple pair of slits, in that it is impossible to distinguish which slit the particle passed through. To establish the paradoxical outcome of the modified experiment, the theory and explicit three-dimensional formulas are developed for the bilocal probability and current densities, and for the average velocity field and trajectories as the particle wavefunction propagates in the volume of space behind the Gaussian slits. Examples of these predicted results are plotted. Implementation details of the proposed experiment are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera-Pérez, G., E-mail: guillermo.herrera@cimav.edu.mx, E-mail: damasio.morales@cimav.edu.mx; Physics of Materials Department, Centro de Investigación en Materiales Avanzados; Morales, D., E-mail: guillermo.herrera@cimav.edu.mx, E-mail: damasio.morales@cimav.edu.mx
2016-09-07
This work presents the identification of inter-band transitions in the imaginary part of the dielectric function (ε{sub 2}) derived from the Kramers–Kronig analysis for [Ba{sub 0.9}Ca{sub 0.1}](Ti{sub 0.9}Zr{sub 0.1})O{sub 3} (BCZT) nanocrystals synthesized by the modified Pechini method. The analysis started with the chemical identification of the atoms that conform BCZT in the valence loss energy region of a high energy-resolution of electron energy loss spectroscopy. The indirect band energy (E{sub g}) was determined in the dielectric response function. This result is in agreement with the UV-Vis technique, and it obtained an optical band gap of 3.16 eV. The surface andmore » volume plasmon peaks were observed at 13.1 eV and 26.2 eV, respectively. The X-ray diffraction pattern and the Rietveld refinement data of powders heat treated at 700 °C for 1 h suggest a tetragonal structure with a space group (P4 mm) with the average crystal size of 35 nm. The average particle size was determined by transmission electron microscopy.« less
Aerodynamic generation of electric fields in turbulence laden with charged inertial particles.
Di Renzo, M; Urzay, J
2018-04-26
Self-induced electricity, including lightning, is often observed in dusty atmospheres. However, the physical mechanisms leading to this phenomenon remain elusive as they are remarkably challenging to determine due to the high complexity of the multi-phase turbulent flows involved. Using a fast multi-pole method in direct numerical simulations of homogeneous turbulence laden with hundreds of millions of inertial particles, here we show that mesoscopic electric fields can be aerodynamically created in bi-disperse suspensions of oppositely charged particles. The generation mechanism is self-regulating and relies on turbulence preferentially concentrating particles of one sign in clouds while dispersing the others more uniformly. The resulting electric field varies over much larger length scales than both the mean inter-particle spacing and the size of the smallest eddies. Scaling analyses suggest that low ambient pressures, such as those prevailing in the atmosphere of Mars, increase the dynamical relevance of this aerodynamic mechanism for electrical breakdown.
NASA Astrophysics Data System (ADS)
Annamalai, Subramanian; Balachandar, S.
2016-11-01
In recent times, study of complex disperse multiphase problems involving several million particles (e.g. volcanic eruptions, spray control etc.) is garnering momentum. The objective of this work is to present an accurate model (termed generalized Faxén's theorem) to predict the hydrodynamic forces on such inclusions (particles/bubbles/droplets) without having to solve for the details of flow around them. The model is developed using acoustic theory and the force obtained as a summation of infinite series (monopole, dipole and higher sources). The first-order force is the time-dependent hydrodynamic drag force arising from the dipole component due to interaction between the gas and the inclusion at the microscale level. The second-order force however is a time-averaged differential force (contributions arise both from monopole and dipole), also known as the acoustic radiation force primarily used to levitate particles. In this work, the monopole and dipole strengths are represented in terms of particle surface and volume averages of the incoming flow properties and therefore applicable to particle sizes of the order of fluid length scale and subjected to any arbitrary flow. Moreover, this model can also be used to account for inter-particle coupling due to neighboring particles. U.S. DoE, NNSA, Advanced Simulation and Computing Program, Cooperative Agreement under PSAAP-II, Contract No. DE-NA0002378.
On improving the algorithm efficiency in the particle-particle force calculations
NASA Astrophysics Data System (ADS)
Kozynchenko, Alexander I.; Kozynchenko, Sergey A.
2016-09-01
The problem of calculating inter-particle forces in the particle-particle (PP) simulation models takes an important place in scientific computing. Such simulation models are used in diverse scientific applications arising in astrophysics, plasma physics, particle accelerators, etc., where the long-range forces are considered. The inverse-square laws such as Coulomb's law of electrostatic forces and Newton's law of universal gravitation are the examples of laws pertaining to the long-range forces. The standard naïve PP method outlined, for example, by Hockney and Eastwood [1] is straightforward, processing all pairs of particles in a double nested loop. The PP algorithm provides the best accuracy of all possible methods, but its computational complexity is O (Np2), where Np is a total number of particles involved. Too low efficiency of the PP algorithm seems to be the challenging issue in some cases where the high accuracy is required. An example can be taken from the charged particle beam dynamics where, under computing the own space charge of the beam, so-called macro-particles are used (see e.g., Humphries Jr. [2], Kozynchenko and Svistunov [3]).
Experimental study on inter-particle acoustic forces.
Garcia-Sabaté, Anna; Castro, Angélica; Hoyos, Mauricio; González-Cinca, Ricard
2014-03-01
A method for the experimental measurement of inter-particle forces (secondary Bjerknes force) generated by the action of an acoustic field in a resonator micro-channel is presented. The acoustic radiation force created by an ultrasonic standing wave moves suspended particles towards the pressure nodes and the acoustic pressure induces particle volume oscillations. Once particles are in the levitation plane, transverse and secondary Bjerknes forces become important. Experiments were carried out in a resonator filled with a suspension composed of water and latex particles of different size (5-15 μm) at different concentrations. Ultrasound was generated by means of a 2.5 MHz nominal frequency transducer. For the first time the acoustic force generated by oscillating particles acting on other particles has been measured, and the critical interaction distance in various cases has been determined. Inter-particle forces on the order of 10(-14) N have been measured by using this method.
Grivas, G; Chaloulakou, A; Kassomenos, P
2008-01-15
The present study analyzes PM(10) concentration data collected by the Greek air quality monitoring network at 8 sites over the Greater Athens Area, for the period of 2001-2004. The primary objectives were to assess the degree of compliance with the EU-legislated air quality standard for PM(10) and also provide an overall statistical examination of the factors controlling the seasonal and spatial variation of concentrations, over the wider urban agglomeration. Daily concentrations, averaged over the whole study period, ranged between 32.3 and 60.9 microg m(-3). The four-year average concentration of PM(10) at five sites exceeded the annual limit value of 40 microg m(-3), while most of the sites surpassed the allowed percentage of exceedances of the daily limit value (50 microg m(-3)), for each of the four years. The seasonal variation of PM(10) levels was not found to be uniform across the eight sites, with average cold-period concentrations being higher at four of them and warm period concentrations being significantly higher at three sites, which also displayed recurring annual variation of monthly concentrations. Concentration levels displayed moderate spatial heterogeneity. Nevertheless significant inter-site correlations were observed (ranging between 0.55 and 085). The determination of the spatial correlation levels relied mainly on site types rather than on inter-site distances. Monitoring sites were classified accordingly using cluster analysis in two groups presenting distinct spatiotemporal variation and affected by different particle formation processes. The group including urban sites was mainly affected by primary, combustion-related processes and especially vehicular traffic, as it was also deduced through the examination of the diurnal distribution of particulate levels and through factor analysis. On the contrary, suburban background sites seemed more affected by particle transport from more polluted neighboring areas and secondary particle formation through gaseous precursors, both processes aided from favoring meteorological conditions. The association of the PM(10) levels with backwards trajectories was also examined, in an attempt to account for the possible long range transport of particles in Athens. It was found that a notable part of area-wide episodic events could be attributed to trans-boundary transport of particles, with the origins of some severe dust outbreaks traced back to the Sahara desert and the Western Mediterranean.
NASA Technical Reports Server (NTRS)
Gersey, B. B.; Borak, T. B.; Guetersloh, S. B.; Zeitlin, C.; Miller, J.; Heilbronn, L.; Murakami, T.; Iwata, Y.; Chatterjee, A. (Principal Investigator)
2002-01-01
The radiation environment on board the space shuttle and the International Space Station includes high-Z and high-energy (HZE) particles that are part of the galactic cosmic radiation (GCR) spectrum. Iron-56 particles are considered to be one of the most biologically important parts of the GCR spectrum. Tissue-equivalent proportional counters (TEPCs) are used as active dosimeters on manned space flights. These TEPCs are further used to determine the average quality factor for each space mission. A TEPC simulating a 1-microm-diameter sphere of tissue was exposed as part of a particle spectrometer to (56)Fe particles at energies from 200-1000 MeV/nucleon. The response of TEPCs in terms of mean lineal energy, y(F), and dose mean lineal energy, y(D), as well as the energy deposited at different impact parameters through the detector was determined for six different incident energies of (56)Fe particles in this energy range. Calculations determined that charged-particle equilibrium was achieved for each of the six experiments. Energy depositions at different impact parameters were calculated using a radial dose distribution model, and the results were compared to experimental data.
Optimal and fast rotational alignment of volumes with missing data in Fourier space.
Shatsky, Maxim; Arbelaez, Pablo; Glaeser, Robert M; Brenner, Steven E
2013-11-01
Electron tomography of intact cells has the potential to reveal the entire cellular content at a resolution corresponding to individual macromolecular complexes. Characterization of macromolecular complexes in tomograms is nevertheless an extremely challenging task due to the high level of noise, and due to the limited tilt angle that results in missing data in Fourier space. By identifying particles of the same type and averaging their 3D volumes, it is possible to obtain a structure at a more useful resolution for biological interpretation. Currently, classification and averaging of sub-tomograms is limited by the speed of computational methods that optimize alignment between two sub-tomographic volumes. The alignment optimization is hampered by the fact that the missing data in Fourier space has to be taken into account during the rotational search. A similar problem appears in single particle electron microscopy where the random conical tilt procedure may require averaging of volumes with a missing cone in Fourier space. We present a fast implementation of a method guaranteed to find an optimal rotational alignment that maximizes the constrained cross-correlation function (cCCF) computed over the actual overlap of data in Fourier space. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Collaborative emitter tracking using Rao-Blackwellized random exchange diffusion particle filtering
NASA Astrophysics Data System (ADS)
Bruno, Marcelo G. S.; Dias, Stiven S.
2014-12-01
We introduce in this paper the fully distributed, random exchange diffusion particle filter (ReDif-PF) to track a moving emitter using multiple received signal strength (RSS) sensors. We consider scenarios with both known and unknown sensor model parameters. In the unknown parameter case, a Rao-Blackwellized (RB) version of the random exchange diffusion particle filter, referred to as the RB ReDif-PF, is introduced. In a simulated scenario with a partially connected network, the proposed ReDif-PF outperformed a PF tracker that assimilates local neighboring measurements only and also outperformed a linearized random exchange distributed extended Kalman filter (ReDif-EKF). Furthermore, the novel ReDif-PF matched the tracking error performance of alternative suboptimal distributed PFs based respectively on iterative Markov chain move steps and selective average gossiping with an inter-node communication cost that is roughly two orders of magnitude lower than the corresponding cost for the Markov chain and selective gossip filters. Compared to a broadcast-based filter which exactly mimics the optimal centralized tracker or its equivalent (exact) consensus-based implementations, ReDif-PF showed a degradation in steady-state error performance. However, compared to the optimal consensus-based trackers, ReDif-PF is better suited for real-time applications since it does not require iterative inter-node communication between measurement arrivals.
Comparison of Martian Radiation Environment with International Space Station
2003-03-13
This graphic shows the radiation dose equivalent as measured by Odyssey's Martian radiation environment experiment at Mars and by instruments aboard the International Space Station, for the 11-month period from April 2002 through February 2003. The accumulated total in Mars orbit is about two and a half times larger than that aboard the Space Station. Averaged over this time period, about 10 percent of the dose equivalent at Mars is due to solar particles, although a 30 percent contribution from solar particles was seen in July 2002, when the sun was particularly active. http://photojournal.jpl.nasa.gov/catalog/PIA04258
The effect of thermomechanical processing on second phase particle redistribution in U-10 wt%Mo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Xiaohua; Wang, Xiaowo; Joshi, Vineet V.
2018-03-01
The multi-pass hot-rolling process of an annealed uranium-10 wt% molybdenum coupon was studied by plane-strain compression finite element modeling. Two point correlation function (2PCF) was used to analyze the carbide particle distribution after each rolling reduction. The hot rolling simulation results show that the alignment of UC particles along grain boundaries will rotate during rolling until it is parallel to the rolling direction, to form stringer-like distributions which are typically observed in rolled products that contain inclusions. 2PCF analysis of simulation shows that the interparticle spacing shrinks along the normal direction. The number of major peaks of 2PCF along NDmore » decreases after large reduction. The locations of major peaks indicate the inter-stringer distances.« less
Inter-Agency Consultative Group for Space Science (IACG): Handbook of Missions and Payloads
NASA Technical Reports Server (NTRS)
1994-01-01
The ACE spacecraft design is based on the Charge Composition Explorer (CCE) built by Johns Hopkins University (JHU) and the Applied Physics Lab (APL) for the AMPTE program. ACE is designed as a spinning spacecraft with its spin axis aligned to the Earth-Sun axis. The ACE launch weight will be approx. 633 kg, including 105 kg of scientific instruments and 184 kg of propellant. Using a Delta-class expendable launch vehicle, ACE will be launched into an L1 libration point (240 R(sub e)) orbit. Telemetry will be 6.7 kbps average, using tape recorder storage with daily readout to DSN. The experiment power requirement is approximately 76 W nominal and 96 W peak. The prime objective of the ACE mission is: (1) to determine accurate elemental and isotropic abundances including solar matter, local interstellar matter and local galactic matter; (2) to study the origin of elements and evolutionary processing in galactic nucleosynthesis, galactic evolution, origin and evolution of the solar system; (3) to study coronal formation and solar-wind acceleration processes; and (4) to study particle acceleration and transport, including coronal shock acceleration, stochastic flare acceleration, interplanetary shock acceleration, and interstellar acceleration and propagation. To accomplish this objective, ACE will perform comprehensive and coordinated determinations of the elemental and isotopic composition of energetic nuclei accelerated on the Sun, in interplanetary space, and from galactic sources. These observations will span five decades in energy, from solar wind to galactic cosmic ray energies, and will cover the element range from H-1 to Zr-40. Comparison of these samples of matter will be used to study the origin and subsequent evolution of both solar system and galactic material by isolating the effects of fundamental processes that include nucleosynthesis, charged and neutral particle separation, bulk plasma acceleration, and the acceleration of suprathermal and high-energy particles.
Maradzike, Elvis; Gidofalvi, Gergely; Turney, Justin M; Schaefer, Henry F; DePrince, A Eugene
2017-09-12
Analytic energy gradients are presented for a variational two-electron reduced-density-matrix (2-RDM)-driven complete active space self-consistent field (CASSCF) method. The active-space 2-RDM is determined using a semidefinite programing (SDP) algorithm built upon an augmented Lagrangian formalism. Expressions for analytic gradients are simplified by the fact that the Lagrangian is stationary with respect to variations in both the primal and the dual solutions to the SDP problem. Orbital response contributions to the gradient are identical to those that arise in conventional CASSCF methods in which the electronic structure of the active space is described by a full configuration interaction (CI) wave function. We explore the relative performance of variational 2-RDM (v2RDM)- and CI-driven CASSCF for the equilibrium geometries of 20 small molecules. When enforcing two-particle N-representability conditions, full-valence v2RDM-CASSCF-optimized bond lengths display a mean unsigned error of 0.0060 Å and a maximum unsigned error of 0.0265 Å, relative to those obtained from full-valence CI-CASSCF. When enforcing partial three-particle N-representability conditions, the mean and maximum unsigned errors are reduced to only 0.0006 and 0.0054 Å, respectively. For these same molecules, full-valence v2RDM-CASSCF bond lengths computed in the cc-pVQZ basis set deviate from experimentally determined ones on average by 0.017 and 0.011 Å when enforcing two- and three-particle conditions, respectively, whereas CI-CASSCF displays an average deviation of 0.010 Å. The v2RDM-CASSCF approach with two-particle conditions is also applied to the equilibrium geometry of pentacene; optimized bond lengths deviate from those derived from experiment, on average, by 0.015 Å when using a cc-pVDZ basis set and a (22e,22o) active space.
Li, Tongqing; Peng, Yuxing; Zhu, Zhencai; Zou, Shengyong; Yin, Zixin
2017-05-11
Aiming at predicting what happens in reality inside mills, the contact parameters of iron ore particles for discrete element method (DEM) simulations should be determined accurately. To allow the irregular shape to be accurately determined, the sphere clump method was employed in modelling the particle shape. The inter-particle contact parameters were systematically altered whilst the contact parameters between the particle and wall were arbitrarily assumed, in order to purely assess its impact on the angle of repose for the mono-sized iron ore particles. Results show that varying the restitution coefficient over the range considered does not lead to any obvious difference in the angle of repose, but the angle of repose has strong sensitivity to the rolling/static friction coefficient. The impacts of the rolling/static friction coefficient on the angle of repose are interrelated, and increasing the inter-particle rolling/static friction coefficient can evidently increase the angle of repose. However, the impact of the static friction coefficient is more profound than that of the rolling friction coefficient. Finally, a predictive equation is established and a very close agreement between the predicted and simulated angle of repose is attained. This predictive equation can enormously shorten the inter-particle contact parameters calibration time that can help in the implementation of DEM simulations.
NASA Astrophysics Data System (ADS)
Borglin, Johan; Guldbrand, Stina; Evenbratt, Hanne; Kirejev, Vladimir; Grönbeck, Henrik; Ericson, Marica B.
2015-12-01
Gold nanoparticles can be visualized in far-field multiphoton laser-scanning microscopy (MPM) based on the phenomena of multiphoton induced luminescence (MIL). This is of interest for biomedical applications, e.g., for cancer diagnostics, as MPM allows for working in the near-infrared (NIR) optical window of tissue. It is well known that the aggregation of particles causes a redshift of the plasmon resonance, but its implications for MIL applying far-field MPM should be further exploited. Here, we explore MIL from 10 nm gold nanospheres that are chemically deposited on glass substrates in controlled coverage gradients using MPM operating in NIR range. The substrates enable studies of MIL as a function of inter-particle distance and clustering. It was shown that MIL was only detected from areas on the substrates where the particle spacing was less than one particle diameter, or where the particles have aggregated. The results are interpreted in the context that the underlying physical phenomenon of MIL is a sequential two-photon absorption process, where the first event is driven by the plasmon resonance. It is evident that gold nanospheres in this size range have to be closely spaced or clustered to exhibit detectable MIL using far-field MPM operating in the NIR region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borglin, Johan; Department of Physics, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg; Guldbrand, Stina
Gold nanoparticles can be visualized in far-field multiphoton laser-scanning microscopy (MPM) based on the phenomena of multiphoton induced luminescence (MIL). This is of interest for biomedical applications, e.g., for cancer diagnostics, as MPM allows for working in the near-infrared (NIR) optical window of tissue. It is well known that the aggregation of particles causes a redshift of the plasmon resonance, but its implications for MIL applying far-field MPM should be further exploited. Here, we explore MIL from 10 nm gold nanospheres that are chemically deposited on glass substrates in controlled coverage gradients using MPM operating in NIR range. The substrates enablemore » studies of MIL as a function of inter-particle distance and clustering. It was shown that MIL was only detected from areas on the substrates where the particle spacing was less than one particle diameter, or where the particles have aggregated. The results are interpreted in the context that the underlying physical phenomenon of MIL is a sequential two-photon absorption process, where the first event is driven by the plasmon resonance. It is evident that gold nanospheres in this size range have to be closely spaced or clustered to exhibit detectable MIL using far-field MPM operating in the NIR region.« less
Energy Distributions in Small Populations: Pascal versus Boltzmann
ERIC Educational Resources Information Center
Kugel, Roger W.; Weiner, Paul A.
2010-01-01
The theoretical distributions of a limited amount of energy among small numbers of particles with discrete, evenly-spaced quantum levels are examined systematically. The average populations of energy states reveal the pattern of Pascal's triangle. An exact formula for the probability that a particle will be in any given energy state is derived.…
Thickness Dependence of Magnetic Blocking in Granular Metallic Thin Films
NASA Astrophysics Data System (ADS)
Wang, J.-Q.; Zhao, Z.-D.; Whittenburg, S. L.
2002-03-01
Inter-particle interaction among single domain nano-size magnetic particles embedded in nonmagnetic matrix was studied. Attention was paid to concentrated Cu-Co granular thin films with a fixed magnetic volume fraction. By analyzing theoretical models and comparing with experimental results, we studied a dimensional constraint on the magnetic properties and found that as the film thickness reduces toward thin limit the inter-particle interaction plays important roles in modifying magnetic behavior. Experimental evidence showed that the peak temperature of the susceptibility for Cu80Co20 granular thin films strongly depends on the film thickness in the range of 0 120 nm (1). It was also observed that the spontaneous magnetization of the Co phase varies with the thickness though particle size remains constant. We calculated the dipolar interaction energy among magnetic particles including far-neighbor interaction for films with different thickness values. The calculation revealed that the interaction energy varies across the film from edge to edge and the average interaction energy is strongly dependent on film thickness. Good quantitative agreement of the calculated energy curve with the experimental blocking curve was achieved after taking the magnetization variation into account. In the calculation it is assumed the existence of 100 nm sized domain structures in granular film as demonstrate (2) by previous studies. *supported by DoD/DARPA grant No. MDA972-97-1-003. (1) L. M. Malkinski, J.-Q. Wang, et al, Appl. Phys. Lett. 75, 844 (1999). (2) A. Gavrin, et al, Appl. Phys. Lett. 66, 1683 (1995); Y. J. Chen, et al, Appl. Phys. Lett. 72, 2472 (1998).
The Splashback Radius of Halos from Particle Dynamics. I. The SPARTA Algorithm
NASA Astrophysics Data System (ADS)
Diemer, Benedikt
2017-07-01
Motivated by the recent proposal of the splashback radius as a physical boundary of dark-matter halos, we present a parallel computer code for Subhalo and PARticle Trajectory Analysis (SPARTA). The code analyzes the orbits of all simulation particles in all host halos, billions of orbits in the case of typical cosmological N-body simulations. Within this general framework, we develop an algorithm that accurately extracts the location of the first apocenter of particles after infall into a halo, or splashback. We define the splashback radius of a halo as the smoothed average of the apocenter radii of individual particles. This definition allows us to reliably measure the splashback radii of 95% of host halos above a resolution limit of 1000 particles. We show that, on average, the splashback radius and mass are converged to better than 5% accuracy with respect to mass resolution, snapshot spacing, and all free parameters of the method.
Propulsion and hydrodynamic particle transport of magnetically twisted colloidal ribbons
NASA Astrophysics Data System (ADS)
Massana-Cid, Helena; Martinez-Pedrero, Fernando; Navarro-Argemí, Eloy; Pagonabarraga, Ignacio; Tierno, Pietro
2017-10-01
We describe a method to trap, transport and release microscopic particles in a viscous fluid using the hydrodynamic flow field generated by a magnetically propelled colloidal ribbon. The ribbon is composed of ferromagnetic microellipsoids that arrange with their long axis parallel to each other, a configuration that is energetically favorable due to their permanent magnetic moments. We use an external precessing magnetic field to torque the anisotropic particles forming the ribbon, and to induce propulsion of the entire structure due to the hydrodynamic coupling with the close substrate. The propulsion speed of the ribbon can be controlled by varying the driving frequency, or the amplitude of the precessing field. The latter parameter is also used to reduce the average inter particle distance and to induce the twisting of the ribbon due to the increase in the attraction between the rotating ellipsoids. Furthermore, non magnetic particles are attracted or repelled with the hydrodynamic flow field generated by the propelling ribbon. The proposed method may be used in channel free microfluidic applications, where the precise trapping and transport of functionalized particles via non invasive magnetic fields is required.
NASA Astrophysics Data System (ADS)
Bukosky, Scott; Hammons, Joshua; Han, Jinkyu; Freyman, Megan; Lee, Elaine; Cook, Caitlyn; Kuntz, Joshua; Worsley, Marcus; Han, Thomas Yong; Ristenpart, William; Pascall, Andrew
2017-11-01
Amorphous photonic crystals (APCs) formed via electrophoretic deposition (EPD) exhibit non-iridescent, angle-independent, structural colors believed to arise from changes in the particle-particle interactions and inter-particle spacing, representing a potential new paradigm for display technologies. However, particle dynamics on nanometer length scales that govern the displayed color, crystallinity, and other characteristics of the photonic structures, are not well understood. In this work, in-situ USAXS/SAXS studies of three-dimensional colloidal particle arrays were performed in order to identify their structural response to applied external electric fields. These results were compared to simultaneously acquired UV-Vis spectra to tie the overall electrically induced structure of the APCs directly to the observed changes in visible color. The structural evolution of the APCs provides new information regarding the correlation between nano-scale particle-particle interactions and the corresponding optical response. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-736068.
Strain induced plasmon tuning in planar square-shaped aluminum nanoparticles array
NASA Astrophysics Data System (ADS)
Mokkath, Junais Habeeb
2018-06-01
Metal nanoparticle aggregate is an exciting platform for manipulating light-matter interactions at the nanoscale, thanks to the optically driven free electrons couple electrically across the inter-particle gap region. We use time dependent density functional theory calculations to investigate the optical response modulations in planar square-shaped aluminum nanoparticles array via morphology deformation (varying the inter-particle gap distance in the range of 2-20 Å) separately along one and two directions. We report the surprising observation that irrespective of the different morphology deformations, there exists a unique inter-particle gap distance of 12 Å for which, a maximum optical field enhancement can be achieved. We remark that plasmonic interaction between metal nanoparticles in an aggregate is controlled to a large extent by the size of the inter-particle gap distance. We believe that our quantum mechanical calculations will inspire and contribute to the design, control, and exploitation of aluminum based plasmonic devices.
Li, Tongqing; Peng, Yuxing; Zhu, Zhencai; Zou, Shengyong; Yin, Zixin
2017-01-01
Aiming at predicting what happens in reality inside mills, the contact parameters of iron ore particles for discrete element method (DEM) simulations should be determined accurately. To allow the irregular shape to be accurately determined, the sphere clump method was employed in modelling the particle shape. The inter-particle contact parameters were systematically altered whilst the contact parameters between the particle and wall were arbitrarily assumed, in order to purely assess its impact on the angle of repose for the mono-sized iron ore particles. Results show that varying the restitution coefficient over the range considered does not lead to any obvious difference in the angle of repose, but the angle of repose has strong sensitivity to the rolling/static friction coefficient. The impacts of the rolling/static friction coefficient on the angle of repose are interrelated, and increasing the inter-particle rolling/static friction coefficient can evidently increase the angle of repose. However, the impact of the static friction coefficient is more profound than that of the rolling friction coefficient. Finally, a predictive equation is established and a very close agreement between the predicted and simulated angle of repose is attained. This predictive equation can enormously shorten the inter-particle contact parameters calibration time that can help in the implementation of DEM simulations. PMID:28772880
NASA Astrophysics Data System (ADS)
Vélez-García, Gregorio M.; Ortman, Kevin C.; Eberle, Aaron P. R.; Wapperom, Peter; Baird, Donald G.
2008-07-01
A 2D coupled Hele-Shaw flow approximation for predicting the flow-induced orientation of high aspect ratio particles in injection molded composite parts is presented. For a highly concentrated short glass fiber PBT suspension, the impact of inter-particle interactions and the orientation at the gate is investigated for a center-gated disk using material parameters determined from rheometry. Experimental orientation is determined from confocal laser micrographs using the methods of ellipses. The constitutive equations are discretized using discontinuous Galerkin Finite Elements. Model predictions are significantly improved by using a localized orientation measured experimentally at the gate region instead of random or averaged gapwise measured orientation assumed in previous studies. The predicted profile in different radial positions can be related to the layered structure along the gapwise direction. Model modifications including interactions have lower impact than the initial conditions.
NASA Astrophysics Data System (ADS)
Hopkins, J.; Balch, W. M.; Henson, S.; Poulton, A. J.; Drapeau, D.; Bowler, B.; Lubelczyk, L.
2016-02-01
Coccolithophores, the single celled phytoplankton that produce an outer covering of calcium carbonate coccoliths, are considered to be the greatest contributors to the global oceanic particulate inorganic carbon (PIC) pool. The reflective coccoliths scatter light back out from the ocean surface, enabling PIC concentration to be quantitatively estimated from ocean color satellites. Here we use datasets of AQUA MODIS PIC concentration from 2003-2014 (using the recently-revised PIC algorithm), as well as statistics on coccolithophore vertical distribution derived from cruises throughout the world ocean, to estimate the average global (surface and integrated) PIC standing stock and its associated inter-annual variability. In addition, we divide the global ocean into Longhurst biogeochemical provinces, update the PIC biomass statistics and identify those regions that have the greatest inter-annual variability and thus may exert the greatest influence on global PIC standing stock and the alkalinity pump.
Particle transport in low-energy ventilation systems. Part 1: theory of steady states.
Bolster, D T; Linden, P F
2009-04-01
Many modern low-energy ventilation schemes, such as displacement or natural ventilation, take advantage of temperature stratification in a space, extracting the warmest air from the top of the room. The adoption of these energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. In this work we study the steady state transport of particulate contaminants in a displacement-ventilated space. Representing heat sources as ideal sources of buoyancy, analytical models are developed that allow us to compare the average efficiency of contaminant removal between traditional and modern low-energy systems. We found that on average traditional and low-energy systems are similar in overall pollutant removal efficiency, although quite different vertical distributions of contaminant can exist, thus affecting individual exposure. While the main focus of this work is on particles where the dominant mode of deposition is by gravitational settling, we also discuss additional deposition mechanisms and show that the qualitative observations we make carry over to cases where such mechanisms must be included. We illustrate that while average concentration of particles for traditional mixing systems and low energy displacement systems are similar, local concentrations can vary significantly with displacement systems. Depending on the source of the particles this can be better or worse in terms of occupant exposure and engineers should take due diligence accordingly when designing ventilation systems.
On the stability of dust orbits in mean-motion resonances perturbed by from an interstellar wind
NASA Astrophysics Data System (ADS)
Pástor, Pavol
2014-09-01
Circumstellar dust particles can be captured in a mean-motion resonance (MMR) with a planet and simultaneously be affected by non-gravitational effects. It is possible to describe the secular variations of a particle orbit in the MMR analytically using averaged resonant equations. We derive the averaged resonant equations from the equations of motion in near-canonical form. The secular variations of the particle orbit depending on the orientation of the orbit in space are taken into account. The averaged resonant equations can be derived/confirmed also from Lagrange's planetary equations. We apply the derived theory to the case when the non-gravitational effects are the Poynting-Robertson effect, the radial stellar wind, and an interstellar wind. The analytical and numerical results obtained are in excellent agreement. We found that the types of orbits correspond to libration centers of the conservative problem. The averaged resonant equations can lead to a system of equations which holds for stationary points in a subset of resonant variables. Using this system we show analytically that for the considered non-gravitational effects, all stationary points should correspond to orbits which are stationary in interplanetary space after an averaging over a synodic period. In an exact resonance, the stationary orbits are stable. The stability is achieved by a periodic repetition of the evolution during the synodic period. Numerical solutions of this system show that there are no stationary orbits for either the exact or non-exact resonances.
An experimental study of phase transitions in a complex plasma
NASA Astrophysics Data System (ADS)
Smith, Bernard Albert Thomas, II
In semiconductor manufacturing, contamination due to particulates significantly decreases the yield and quality of device fabrication, therefore increasing the cost of production. Dust particle clouds can be found in almost all plasma processing environments including both plasma etching devices and in plasma deposition processes. Dust particles suspended within such plasmas will acquire an electric charge from collisions with free electrons in the plasma. If the ratio of inter-particle potential energy to the average kinetic energy is sufficient, the particles will form either a "liquid" structure with short range ordering or a crystalline structure with long range ordering. Otherwise, the dust particle system will remain in a gaseous state. Many experiments have been conducted over the past decade on such complex plasmas to discover the character of the systems formed, but more work is needed to fully understand these structures. This paper describes the processes involved in setting up the CASPER GEC RF Reference Cell and the modifications necessary to examine complex plasmas. Research conducted to characterize the system is outlined to demonstrate that the CASPER Cell behaves as other GEC Cells. In addition, further research performed shows the behavior of the complex plasma system in the CASPER Cell is similar to complex plasmas studied by other groups in this field. Along the way analysis routines developed specifically for this system are described. New research involving polydisperse dust distributions is carried out in the system once the initial characterization is finished. Next, a system to externally vary the DC bias in the CASPER Cell is developed and characterized. Finally, new research conducted to specifically examine how the complex plasma system reacts to a variable DC bias is reported. Specifically, the response of the interparticle spacing to various system parameters (including the external DC bias) is examined. Also, a previously unreported phenomenon, namely layer splitting, is examined.
Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent.
Mason, Sherri A; Garneau, Danielle; Sutton, Rebecca; Chu, Yvonne; Ehmann, Karyn; Barnes, Jason; Fink, Parker; Papazissimos, Daniel; Rogers, Darrin L
2016-11-01
Municipal wastewater effluent has been proposed as one pathway for microplastics to enter the aquatic environment. Here we present a broad study of municipal wastewater treatment plant effluent as a pathway for microplastic pollution to enter receiving waters. A total of 90 samples were analyzed from 17 different facilities across the United States. Averaging all facilities and sampling dates, 0.05 ± 0.024 microparticles were found per liter of effluent. Though a small value on a per liter basis, even minor municipal wastewater treatment facilities process millions of liters of wastewater each day, yielding daily discharges that ranged from ∼50,000 up to nearly 15 million particles. Averaging across the 17 facilities tested, our results indicate that wastewater treatment facilities are releasing over 4 million microparticles per facility per day. Fibers and fragments were found to be the most common type of particle within the effluent; however, some fibers may be derived from non-plastic sources. Considerable inter- and intra-facility variation in discharge concentrations, as well as the relative proportions of particle types, was observed. Statistical analysis suggested facilities serving larger populations discharged more particles. Results did not suggest tertiary filtration treatments were an effective means of reducing discharge. Assuming that fragments and pellets found in the effluent arise from the 'microbeads' found in many cosmetics and personal care products, it is estimated that between 3 and 23 billion (with an average of 13 billion) of these microplastic particles are being released into US waterways every day via municipal wastewater. This estimate can be used to evaluate the contribution of microbeads to microplastic pollution relative to other sources (e.g., plastic litter and debris) and pathways (e.g., stormwater) of discharge. Published by Elsevier Ltd.
Arditi, Aries; Cho, Jianna
2015-01-01
Using lower-case fonts varying only in serif size (0%, 5%, and 10% cap height), we assessed legibility using size thresholds and reading speed. Five percentage serif fonts were slightly more legible than sans serif, but the average inter-letter spacing increase that serifs themselves impose, predicts greater enhancement than we observed. RSVP and continuous reading speeds showed no effect of serifs. When text is small or distant, serifs may, then, produce a tiny legibility increase due to the concomitant increase in spacing. However, our data exhibited no difference in legibility between typefaces that differ only in the presence or absence of serifs. PMID:16099015
Goyat, M S; Rana, S; Halder, Sudipta; Ghosh, P K
2018-01-01
Optimized ultrasonic assisted dispersion of un-functionalized titanium dioxide (TiO 2 ) nanoparticles (0.5-20wt%) into epoxy resin is reported. The investigation shows that there is a direct relation among nanoparticles content, inter-particle spacing and cluster size of the particles on the glass transition temperature (T g ) and tensile properties of the prepared nanocomposites. A significant improvement in tensile strength and modulus with minimal detrimental effect on the toughness was observed for the prepared composites, where compared to pristine epoxy resins, about 26% and 18% improvement in tensile strength and strain-to-break %, respectively, was observed for 10wt% particles loading, whereas a maximum improvement of about 54% for tensile toughness was observed for 5wt% particles loaded resins. The investigations found that a strong particle-matrix interface results in the enhancement of the mechanical properties due to leading toughening mechanisms such as crack deflection, particle pull out and plastic deformation. Copyright © 2017 Elsevier B.V. All rights reserved.
Hotspot-mediated non-dissipative and ultrafast plasmon passage
NASA Astrophysics Data System (ADS)
Roller, Eva-Maria; Besteiro, Lucas V.; Pupp, Claudia; Khorashad, Larousse Khosravi; Govorov, Alexander O.; Liedl, Tim
2017-08-01
Plasmonic nanoparticles hold great promise as photon handling elements and as channels for coherent transfer of energy and information in future all-optical computing devices. Coherent energy oscillations between two spatially separated plasmonic entities via a virtual middle state exemplify electron-based population transfer, but their realization requires precise nanoscale positioning of heterogeneous particles. Here, we show the assembly and optical analysis of a triple-particle system consisting of two gold nanoparticles with an inter-spaced silver island. We observe strong plasmonic coupling between the spatially separated gold particles, mediated by the connecting silver particle, with almost no dissipation of energy. As the excitation energy of the silver island exceeds that of the gold particles, only quasi-occupation of the silver transfer channel is possible. We describe this effect both with exact classical electrodynamic modelling and qualitative quantum-mechanical calculations. We identify the formation of strong hotspots between all particles as the main mechanism for the lossless coupling and thus coherent ultrafast energy transfer between the remote partners. Our findings could prove useful for quantum gate operations, as well as for classical charge and information transfer processes.
Highly-resolved numerical simulations of bed-load transport in a turbulent open-channel flow
NASA Astrophysics Data System (ADS)
Vowinckel, Bernhard; Kempe, Tobias; Nikora, Vladimir; Jain, Ramandeep; Fröhlich, Jochen
2015-11-01
The study presents the analysis of phase-resolving Direct Numerical Simulations of a horizontal turbulent open-channel flow laden with a large number of spherical particles. These particles have a mobility close to their threshold of incipient motion andare transported in bed-load mode. The coupling of the fluid phase with the particlesis realized by an Immersed Boundary Method. The Double-Averaging Methodology is applied for the first time convolutingthe data into a handy set of quantities averaged in time and space to describe the most prominent flow features.In addition, a systematic study elucidatesthe impact of mobility and sediment supply on the pattern formation of particle clusters ina very large computational domain. A detailed description of fluid quantities links the developed particle patterns to the enhancement of turbulence and to a modified hydraulic resistance. Conditional averaging isapplied toerosion events providingthe processes involved inincipient particle motion. Furthermore, the detection of moving particle clusters as well as their surrounding flow field is addressedby a a moving frameanalysis. Funded by German Research Foundation (DFG), project FR 1593/5-2, computational time provided by ZIH Dresden, Germany, and JSC Juelich, Germany.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheesh, V. D.; Vinesh, A.; Lakshmi, N.
Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} has been prepared by self combustion method and studied using X-ray diffraction, Moessbauer spectroscopy and DC magnetization techniques. X-ray diffractogram shows highly crystalline nano sized sample with no impurity phases. The room temperature Moessbauer and magnetization measurements show the co-existence of superparamagnetic and ferrimagnetic particles in the sample. The presence of inter particle interaction is confirmed from the {delta}M(H) curve at 20K. The dependence of magnetic moment below blocking temperature in the field cooling curve indicates that the inter particle interaction is weak in the as prepared sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
I. J. van Rooyen; E. Olivier; J. H Neethlin
Electron microscopy examinations of selected coated particles from the first advanced gas reactor experiment (AGR-1) at Idaho National Laboratory (INL) provided important information on fission product distribution and chemical composition. Furthermore, recent research using STEM analysis led to the discovery of Ag at SiC grain boundaries and triple junctions. As these Ag precipitates were nano-sized, high resolution transmission electron microscopy (HRTEM) examination was used to provide more information at the atomic level. This paper describes some of the first HRTEM results obtained by examining a particle from Compact 4-1-1, which was irradiated to an average burnup of 19.26% fissions permore » initial metal atom (FIMA), a time average, volume-averaged temperature of 1072°C; a time average, peak temperature of 1182°C and an average fast fluence of 4.13 x 1021 n/cm2. Based on gamma analysis, it is estimated that this particle may have released as much as 10% of its available Ag-110m inventory during irradiation. The HRTEM investigation focused on Ag, Pd, Cd and U due to the interest in Ag transport mechanisms and possible correlation with Pd, Ag and U previously found. Additionally, Compact 4-1-1 contains fuel particles fabricated with a different fuel carrier gas composition and lower deposition temperatures for the SiC layer relative to the Baseline fabrication conditions, which are expected to reduce the concentration of SiC defects resulting from uranium dispersion. Pd, Ag, and Cd were found to co-exist in some of the SiC grain boundaries and triple junctions whilst U was found to be present in the micron-sized precipitates as well as separately in selected areas at grain boundaries. This study confirmed the presence of Pd both at inter- and intragranular positions; in the latter case specifically at stacking faults. Small Pd nodules were observed at a distance of about 6.5 micron from the inner PyC/SiC interface.« less
Inertial floaters in stratified turbulence
NASA Astrophysics Data System (ADS)
Sozza, A.; De Lillo, F.; Boffetta, G.
2018-01-01
We investigate numerically the dynamics and statistics of inertial particles transported by stratified turbulence, in the case of particle density intermediate in the average density profile of the fluid. Under these conditions, particles tend to form a thin layer around the corresponding fluid isopycnal. The thickness of the resulting layer is determined by a balance between buoyancy (which attracts the particle to the isopycnal) and inertia (which prevents them from following it exactly). By means of extensive numerical simulations, we explore the parameter space of the system and we find that in a range of parameters particles form fractal clusters within the layer.
Physical and hydraulic properties of baked ceramic aggregates used for plant growth medium
NASA Technical Reports Server (NTRS)
Steinberg, Susan L.; Kluitenberg, Gerard J.; Jones, Scott B.; Daidzic, Nihad E.; Reddi, Lakshmi N.; Xiao, Ming; Tuller, Markus; Newman, Rebecca M.; Or, Dani; Alexander, J. Iwan. D.
2005-01-01
Baked ceramic aggregates (fritted clay, arcillite) have been used for plant research both on the ground and in microgravity. Optimal control of water and air within the root zone in any gravity environment depends on physical and hydraulic properties of the aggregate, which were evaluated for 0.25-1-mm and 1-2-mm particle size distributions. The maximum bulk densities obtained by any packing technique were 0.68 and 0.64 g cm-3 for 0.25-1-mm and 1-2-mm particles, respectively. Wettable porosity obtained by infiltration with water was approximately 65%, substantially lower than total porosity of approximately 74%. Aggregate of both particle sizes exhibited a bimodal pore size distribution consisting of inter-aggregate macropores and intra-aggregate micropores, with the transition from macro- to microporosity beginning at volumetric water content of approximately 36% to 39%. For inter-aggregate water contents that support optimal plant growth there is 45% change in water content that occurs over a relatively small matric suction range of 0-20 cm H2O for 0.25-1-mm and 0 to -10 cm H2O for 1-2-mm aggregate. Hysteresis is substantial between draining and wetting aggregate, which results in as much as a approximately 10% to 20% difference in volumetric water content for a given matric potential. Hydraulic conductivity was approximately an order of magnitude higher for 1-2-mm than for 0.25-1-mm aggregate until significant drainage of the inter-aggregate pore space occurred. The large change in water content for a relatively small change in matric potential suggests that significant differences in water retention may be observed in microgravity as compared to earth.
Katepalli, Hari; John, Vijay T; Tripathi, Anubhav; Bose, Arijit
2017-01-01
Using fumed and spherical silica particles of similar hydrodynamic size, we investigated the effects of particle shape and inter-particle interactions on the formation, stability and rheology of bromohexadecane-in-water Pickering emulsions. The interparticle interactions were varied from repulsive to attractive by modifying the salt concentration in the aqueous phase. Optical microscope images revealed smaller droplet sizes for the fumed silica stabilized emulsions. All the emulsions remained stable for several weeks. Cryo-SEM images of the emulsion droplets showed a hexagonally packed single layer of particles at oil-water interfaces in emulsions stabilized with silica spheres, irrespective of the nature of the inter-particle interactions. Thus, entropic, excluded volume interactions dominate the fate of spherical particles at oil-water interfaces. On the other hand, closely packed layers of particles were observed at oil-water interfaces for the fumed silica stabilized emulsions for both attractive and repulsive interparticle interactions. At the high salt concentrations, attractive inter-particles interactions led to aggregation of fumed silica particles, and multiple layers of these particles were then observed on the droplet surfaces. A network of fumed silica particles was also observed between the emulsion droplets, suggesting that enthalpic interactions are responsible for the determining particle configurations at oil-water interfaces as well as in the aqueous phase. Steady shear viscosity measurements over a range of shear stresses, as well as oscillatory shear measurements at 1Hz confirm the presence of a network in fumed silica suspensions and emulsions, and the lack of such a network when spherical particles are used. The fractal structure of fumed silica leads to several contact points and particle interlocking in the water as well as on the bromohexadecane-water interfaces, with corresponding effects on the structure and rheology of the emulsions. The attenuation of droplet motion due to the formation of a particle network can be exploited for stabilizing emulsions and for modulating their rheology. Copyright © 2016 Elsevier Inc. All rights reserved.
Proportioning and performance evaluation of self-consolidating concrete
NASA Astrophysics Data System (ADS)
Wang, Xuhao
A well-proportioned self-consolidating concrete (SCC) mixture can be achieved by controlling the aggregate system, paste quality, and paste quantity. The work presented in this dissertation involves an effort to study and improve particle packing of the concrete system and reduce the paste quantity while maintaining concrete quality and performance. This dissertation is composed of four papers resulting from the study: (1) Assessing Particle Packing Based Self-Consolidating Concrete Mix Design; (2) Using Paste-To-Voids Volume Ratio to Evaluate the Performance of Self-Consolidating Concrete Mixtures; (3) Image Analysis Applications on Assessing Static Stability and Flowability of Self-Consolidating Concrete, and (4) Using Ultrasonic Wave Propagation to Monitor Stiffening Process of Self-Consolidating Concrete. Tests were conducted on a large matrix of SCC mixtures that were designed for cast-in-place bridge construction. The mixtures were made with different aggregate types, sizes, and different cementitious materials. In Paper 1, a modified particle-packing based mix design method, originally proposed by Brouwers (2005), was applied to the design of self-consolidating concrete (SCC) mixs. Using this method, a large matrix of SCC mixes was designed to have a particle distribution modulus (q) ranging from 0.23 to 0.29. Fresh properties (such as flowability, passing ability, segregation resistance, yield stress, viscosity, set time and formwork pressure) and hardened properties (such as compressive strength, surface resistance, shrinkage, and air structure) of these concrete mixes were experimentally evaluated. In Paper 2, a concept that is based on paste-to-voids volume ratio (Vpaste/Vvoids) was employed to assess the performance of SCC mixtures. The relationship between excess paste theory and Vpaste/Vvoids was investigated. The workability, flow properties, compressive strength, shrinkage, and surface resistivity of SCC mixtures were determined at various ages. Statistical analyses, response surface models and Tukey Honestly Significant Difference (HSD) tests, were conducted to relate the mix design parameters to the concrete performance. The work discussed in Paper 3 was to apply a digital image processing (DIP) method associated with a MATLAB algorithm to evaluate cross sectional images of self-consolidating concrete (SCC). Parameters, such as inter-particle spacing between coarse aggregate particles and average mortar to aggregate ratio defined as average mortar thickness index (MTI), were derived from DIP method and applied to evaluate the static stability and develop statistical models to predict flowability of SCC mixtures. The last paper investigated technologies available to monitor changing properties of a fresh mixture, particularly for use with self-consolidating concrete (SCC). A number of techniques were used to monitor setting time, stiffening and formwork pressure of SCC mixtures. These included longitudinal (P-wave) ultrasonic wave propagation, penetrometer based setting time, semi-adiabatic calorimetry, and formwork pressure. The first study demonstrated that the concrete mixes designed using the modified Brouwers mix design algorithm and particle packing concept had a potential to reduce up to 20% SCMs content compared to existing SCC mix proportioning methods and still maintain good performance. The second paper concluded that slump flow of the SCC mixtures increased with Vpaste/Vvoids at a given viscosity of mortar. Compressive trength increases with increasing Vpaste/Vvoids up to a point (~150%), after which the strength becomes independent of Vpaste/Vvoids, even slightly decreases. Vpaste/Vvoids has little effect on the shrinkage mixtures, while SCC mixtures tend to have a higher shrinkage than CC for a given Vpaste/Vvoids. Vpaste/Vvoids has little effects on surface resistivity of SCC mixtures. The paste quality tends to have a dominant effect. Statistical analysis is an efficient tool to identify the significance of influence factors on concrete performance. In third paper, proposed DIP method and MATLAB algorithm can be successfully used to derive inter-particle spacing and MTI, and quantitatively evaluate the static stability in hardened SCC samples. These parameters can be applied to overcome the limitations and challenges of existing theoretical frames and construct statistical models associated with rheological parameters to predict flowability of SCC mixtures. The outcome of this study can be of practical value for providing an efficient and useful tool in designing mixture proportions of SCC. Last paper compared several concrete performance measurement techniques, the P-wave test and calorimetric measurements can be efficiently used to monitor the stiffening and setting of SCC mixtures.
Effects of Small Addition of Ti on Strength and Microstructure of a Cu-Ni-Si Alloy
NASA Astrophysics Data System (ADS)
Watanabe, Chihiro; Takeshita, Satoshi; Monzen, Ryoichi
2015-06-01
The effect of addition of 0.04 or 0.2 mass pct Ti on the mechanical properties of a Cu-2.0 mass pct Ni-0.5 mass pct Si alloy has been investigated. The addition of 0.04 mass pct Ti enhances the strength of the Cu-Ni-Si alloy without reducing its electrical conductivity. This increase in strength is caused by the decrease in inter-precipitate spacing of δ-Ni2Si precipitates. The addition of trace Ti reduces the equilibrium concentration of Ni and Si atoms in the alloy bearing the δ precipitates, resulting in an increase in the volume fraction of δ precipitates and decrease in the inter-precipitate spacing. However, the addition of 0.2 mass pct Ti to the Cu-Ni-Si alloy decreases the strength of the alloy. The reduction in strength is attributed to the decrease in the volume fraction of δ precipitates caused by the reduction in Ni and Si atoms in the Cu matrix resulting from the formation of Ni16Si7Ti6 particles.
Finite size of hadrons and Bose-Einstein correlations
NASA Astrophysics Data System (ADS)
Bialas, A.; Zalewski, K.
2013-11-01
It is observed that the finite size of hadrons produced in high energy collisions implies that their positions are correlated, since the probability to find two hadrons on top of each other is highly reduced. It is then shown that this effect can naturally explain the values of the correlation function below one, observed at LEP and LHC for pairs of identical pions. to emphasize the role of inter-hadron correlations in the explanation of the observed negative values of C(p1,p2)-1 and to point out that a natural source of such inter-hadron correlations can be provided by the finite sizes of the produced hadrons. Several comments are in order.(i) Our use of the Θ-function to parametrize the excluded volume correlations is clearly only a crude approximation. For a precise description of data almost certainly a more sophisticated parametrization of the effect will be needed. In particular, note that with our parametrization the correlation in space-time does not affect the single-particle and two-particle non-symmetrized momentum distributions. The same comment applies to our use of Gaussians.(ii) It has been recently found [6,7] that in pp collisions at LHC, the volume of the system (as determined from the fitted HBT parameters) depends weakly on the multiplicity of the particles produced in the collision. This suggests that large multiplicity in an event is due to a longer emission time. If true, this should be also reflected in the HBT measurements and it may be interesting to investigate this aspect of the problem in more detail.(iii) To investigate further the space and/or time correlations between the emitted particles more information is needed. It would be interesting to study the minima in the correlation functions separately for the “side”, “out” and “long” directions. Such studies may allow to determine the size of the “excluded volume” and compare it with other estimates [14,15]. We also feel that with the present accuracy and statistics of data, measurements of three-particle B-E correlations represent the potential to provide some essential information helping to understand what is really going on.
NASA Astrophysics Data System (ADS)
Fujimoto, Masaki
In order to open the new horizon of research in the Plasma Universe, SCOPE will perform simultaneous multi-scale observations that enables data-based study on the key space plasma processes from the cross-scale coupling point of view. The key processes to be studied are magnetic reconnection under various boundary conditions, shocks in space plasma, collisionless plasma mixing at the boundaries, and physics of current sheets embedded in complex magnetic geometries. The orbit is equatorial, 10x25 Re, such that in-situ observations of the above key processes are possible. The SCOPE mission is made up of a pair of mother-daughter spacecraft and a three spacecraft formation. The spacecraft pair will zoom-in to the microphysics while the spacecraft formation will observe macro-scale dynamics surrouding the key region to be studied by the mother-daughter pair. The mother spacecraft is equipped with a full suite of particle detector including ultra-high sampling cycle electron detector. The daughter spacecraft remains near ( 10km) the mother spacecraft and the spacecraft-pair will focus on wave-particle interaction utilizing inter-spacecraft communication. The inter-spacecraft distance of the for-mation varies from below 100km to above 3000km so that surrounding dynamics at various scales (electron, ion and MHD) can be studied. While the core part of the mission is planned to be a CSA-JAXA (Canada-Japan) collaboration, further international collaborations to en-hance the science return of the mission are welcome.
Normal stresses in shear thickening granular suspensions.
Pan, Zhongcheng; de Cagny, Henri; Habibi, Mehdi; Bonn, Daniel
2017-05-24
When subjected to shear, granular suspensions exhibit normal stresses perpendicular to the shear plane but the magnitude and sign of the different components of the normal stresses are still under debate. By performing both oscillatory and rotational rheology measurements on shear thickening granular suspensions and systematically varying the particle diameters and the gap sizes between two parallel-plates, we show that a transition from a positive to a negative normal stress can be observed. We find that frictional interactions which determine the shear thickening behavior of suspensions contribute to the positive normal stresses. Increasing the particle diameters or decreasing the gap sizes leads to a growing importance of hydrodynamic interactions, which results in negative normal stresses. We determine a relaxation time for the system, set by both the pore and the gap sizes, that governs the fluid flow through the inter-particle space. Finally, using a two-fluid model we determine the relative contributions from the particle phase and the liquid phase.
Thermodynamic properties of water in confined environments: a Monte Carlo study
NASA Astrophysics Data System (ADS)
Gladovic, Martin; Bren, Urban; Urbic, Tomaž
2018-05-01
Monte Carlo simulations of Mercedes-Benz water in a crowded environment were performed. The simulated systems are representative of both composite, porous or sintered materials and living cells with typical matrix packings. We studied the influence of overall temperature as well as the density and size of matrix particles on water density, particle distributions, hydrogen bond formation and thermodynamic quantities. Interestingly, temperature and space occupancy of matrix exhibit a similar effect on water properties following the competition between the kinetic and the potential energy of the system, whereby temperature increases the kinetic and matrix packing decreases the potential contribution. A novel thermodynamic decomposition approach was applied to gain insight into individual contributions of different types of inter-particle interactions. This decomposition proved to be useful and in good agreement with the total thermodynamic quantities especially at higher temperatures and matrix packings, where higher-order potential-energy mixing terms lose their importance.
A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale
NASA Astrophysics Data System (ADS)
Li, Ling; Shen, Luming; Nguyen, Giang D.; El-Zein, Abbas; Maggi, Federico
2018-01-01
A smoothed particle hydrodynamics (SPH) framework is developed for modelling multiphase interactions at meso-scale, including the liquid-solid interaction induced deformation of the solid phase. With an inter-particle force formulation that mimics the inter-atomic force in molecular dynamics, the proposed framework includes the long-range attractions between particles, and more importantly, the short-range repulsive forces to avoid particle clustering and instability problems. Three-dimensional numerical studies have been conducted to demonstrate the capabilities of the proposed framework to quantitatively replicate the surface tension of water, to model the interactions between immiscible liquids and solid, and more importantly, to simultaneously model the deformation of solid and liquid induced by the multiphase interaction. By varying inter-particle potential magnitude, the proposed SPH framework has successfully simulated various wetting properties ranging from hydrophobic to hydrophilic surfaces. The simulation results demonstrate the potential of the proposed framework to genuinely study complex multiphase interactions in wet granular media.
Nonlinear simulation of the fishbone instability
NASA Astrophysics Data System (ADS)
Idouakass, Malik; Faganello, Matteo; Berk, Herbert; Garbet, Xavier; Benkadda, Sadruddin; PIIM Team; IFS Team; IRFM Team
2014-10-01
We propose to extend the Odblom-Breizman precessional fishbone model to account for both the MagnetoHydroDynamic (MHD) nonlinearity at the q = 1 surface and the nonlinear response of the energetic particles contained within the q = 1 surface. This electromagnetic mode, whose excitation, damping and frequency chirping are determined by the self-consistent interaction between an energetic trapped particle population and the bulk plasma evolution, can induce effective transport and losses for the energetic particles, being them alpha-particles in next-future fusion devices or heated particles in present Tokamaks. The model is reduced to its simplest form, assuming a reduced MHD description for the bulk plasma and a two-dimensional phase-space evolution (gyro and bounce averaged) for deeply trapped energetic particles. Numerical simulations have been performed in order to characterize the mode chirping and saturation, in particular looking at the interplay between the development of phase-space structures and the system dissipation associated to the MHD non-linearities at the resonance locations.
Mutha, Heena K; Lu, Yuan; Stein, Itai; Cho, H Jeremy; Suss, Matthew; Laoui, Tahar; Thompson, Carl; Wardle, Brian; Wang, Evelyn
2016-12-13
Vertically aligned one-dimensional nanostructure arrays are promising in many applications such as electrochemical systems, solar cells, and electronics, taking advantage of high surface area per unit volume, nanometer length scale packing, and alignment leading to high conductivity. However, many devices need to optimize arrays for device performance by selecting an appropriate morphology. Developing a simple, non-invasive tool for understanding the role of pore volume distribution and interspacing would aid in the optimization of nanostructure morphologies in electrodes. In this work, we combined electrochemical impedance spectroscopy (EIS) with capacitance measurements and porous electrode theory to conduct in situ porosimetry of vertically-aligned carbon nanotubes (VA-CNTs) non-destructively. We utilized the EIS measurements with a pore size distribution model to quantify the average and dispersion of inter-CNT spacing (Γ), stochastically, in carpets that were mechanically densified from 1.7 × 1010 tubes/cm2 to 4.5 × 1011 tubes/cm2. Our analysis predicts that the inter-CNT spacing ranges from over 100 ± 50 nm in sparse carpets to sub 10 ± 5 nm in packed carpets. Our results suggest that waviness of CNTs leads to variations in the inter-CNT spacing, which can be significant in sparse carpets. This methodology can be used to predict the performance of many nanostructured devices, including supercapacitors, batteries, solar cells, and semiconductor electronics. Copyright 2016 IOP Publishing Ltd.
Applications of Space-Filling-Curves to Cartesian Methods for CFD
NASA Technical Reports Server (NTRS)
Aftosmis, Michael J.; Berger, Marsha J.; Murman, Scott M.
2003-01-01
The proposed paper presents a variety novel uses of Space-Filling-Curves (SFCs) for Cartesian mesh methods in 0. While these techniques will be demonstrated using non-body-fitted Cartesian meshes, most are applicable on general body-fitted meshes -both structured and unstructured. We demonstrate the use of single O(N log N) SFC-based reordering to produce single-pass (O(N)) algorithms for mesh partitioning, multigrid coarsening, and inter-mesh interpolation. The intermesh interpolation operator has many practical applications including warm starts on modified geometry, or as an inter-grid transfer operator on remeshed regions in moving-body simulations. Exploiting the compact construction of these operators, we further show that these algorithms are highly amenable to parallelization. Examples using the SFC-based mesh partitioner show nearly linear speedup to 512 CPUs even when using multigrid as a smoother. Partition statistics are presented showing that the SFC partitions are, on-average, within 10% of ideal even with only around 50,000 cells in each subdomain. The inter-mesh interpolation operator also has linear asymptotic complexity and can be used to map a solution with N unknowns to another mesh with M unknowns with O(max(M,N)) operations. This capability is demonstrated both on moving-body simulations and in mapping solutions to perturbed meshes for finite-difference-based gradient design methods.
Computational methods for diffusion-influenced biochemical reactions.
Dobrzynski, Maciej; Rodríguez, Jordi Vidal; Kaandorp, Jaap A; Blom, Joke G
2007-08-01
We compare stochastic computational methods accounting for space and discrete nature of reactants in biochemical systems. Implementations based on Brownian dynamics (BD) and the reaction-diffusion master equation are applied to a simplified gene expression model and to a signal transduction pathway in Escherichia coli. In the regime where the number of molecules is small and reactions are diffusion-limited predicted fluctuations in the product number vary between the methods, while the average is the same. Computational approaches at the level of the reaction-diffusion master equation compute the same fluctuations as the reference result obtained from the particle-based method if the size of the sub-volumes is comparable to the diameter of reactants. Using numerical simulations of reversible binding of a pair of molecules we argue that the disagreement in predicted fluctuations is due to different modeling of inter-arrival times between reaction events. Simulations for a more complex biological study show that the different approaches lead to different results due to modeling issues. Finally, we present the physical assumptions behind the mesoscopic models for the reaction-diffusion systems. Input files for the simulations and the source code of GMP can be found under the following address: http://www.cwi.nl/projects/sic/bioinformatics2007/
Bie, B. X.; Huang, J. Y.; Su, B.; ...
2016-03-30
Dynamic tensile experiments are conducted on 15% and 30% in weight percentage B 4C/Al composites with a split Hopkinson tension bar, along with high-speed synchrotron x-ray digital image correlation (XDIC) to map strain fields at μ m and μ s scales. As manifested by bulk-scale stress – strain curves, a higher particle content leads to a higher yield strength but lower ductility. Strain field mapping by XDIC demonstrates that tension deformation and tensile fracture, as opposed to shear and shear failure, dominate deformation and failure of the composites. The fractographs of recovered samples show consistent features. The particle-matrix interfaces aremore » nucleation sites for strain localizations, and their propagation and coalescence are diffused by the Al matrix. The reduced spacing between strain localization sites with increasing particle content, facilitates their coalescence and leads to decreased ductility. Furthermore, designing a particle-reinforced, metallic-matrix composite with balanced strength and ductility should consider optimizing the inter-particle distance as a key par« less
Experimental evaluation of battery cells for space-based radar application
NASA Technical Reports Server (NTRS)
Maskell, Craig A.; Metcalfe, John R.
1994-01-01
A test program was conducted to characterize five space-quality nickel-hydrogen (NiH2) battery cells. A subset of those tests was also done on five commercial nickel-cadmium (NiCd) cells, for correlation to the characteristics of an Energy Storage Unit Simulator. The test program implemented the recommendations of a 1991 study, as reported to IECEC-92. The findings of the tests are summarized, and expected impacts on the performance of the electrical power system (EPS) of a large space-based radar (SBR) surveillance satellite are derived. The main characteristics examined and compared were terminal voltage (average and transient) and capacity through discharge, equivalent series resistance, derived inductance and capacitance, charge return efficiency, and inter-pulse charge effectiveness.
Kawata, Masaaki; Sato, Chikara
2007-06-01
In determining the three-dimensional (3D) structure of macromolecular assemblies in single particle analysis, a large representative dataset of two-dimensional (2D) average images from huge number of raw images is a key for high resolution. Because alignments prior to averaging are computationally intensive, currently available multireference alignment (MRA) software does not survey every possible alignment. This leads to misaligned images, creating blurred averages and reducing the quality of the final 3D reconstruction. We present a new method, in which multireference alignment is harmonized with classification (multireference multiple alignment: MRMA). This method enables a statistical comparison of multiple alignment peaks, reflecting the similarities between each raw image and a set of reference images. Among the selected alignment candidates for each raw image, misaligned images are statistically excluded, based on the principle that aligned raw images of similar projections have a dense distribution around the correctly aligned coordinates in image space. This newly developed method was examined for accuracy and speed using model image sets with various signal-to-noise ratios, and with electron microscope images of the Transient Receptor Potential C3 and the sodium channel. In every data set, the newly developed method outperformed conventional methods in robustness against noise and in speed, creating 2D average images of higher quality. This statistically harmonized alignment-classification combination should greatly improve the quality of single particle analysis.
Optical binding of two microparticles levitated in vacuum
NASA Astrophysics Data System (ADS)
Arita, Yoshihiko; Wright, Ewan M.; Dholakia, Kishan
2017-04-01
Optical binding refers to an optically mediated inter-particle interaction that creates new equilibrium positions for closely spaced particles [1-5]. Optical binding of mesoscopic particles levitated in vacuum can pave the way towards the realisation of a large scale quantum bound array in cavity-optomechanics [6-9]. Recently we have demonstrated trapping and rotation of two mesoscopic particles in vacuum using a spatial-light-modulator-based approach to trap more than one particle, induce controlled rotation of individual particles, and mediate interparticle separation [10]. By trapping and rotating two vaterite particles, we observe intensity modulation of the scattered light at the sum and difference frequencies with respect to the individual rotation rates. This first demonstration of optical interference between two microparticles in vacuum has lead to a platform to explore optical binding. Here we demonstrate for the first time optically bound two microparticles mediated by light scattering in vacuum. We investigate autocorrelations between the two normal modes of oscillation, which are determined by the centre-of-mass and the relative positions of the two-particle system. In situ determination of the optical restoring force acting on the bound particles are based on measurement of the oscillation frequencies of the autocorrelation functions of the two normal modes, thereby providing a powerful and original platform to explore multiparticle entanglement in cavity-optomechanics.
Effect of wet grinding on structural properties of ball clay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purohit, A., E-mail: anuradha.purohit34@gmail.com; Chander, S.; Dhaka, M. S.
2015-05-15
In this paper, the effect of wet grinding on structural properties of ball clay is undertaken. The wet grinding treatment was performed employing ball and vibro mills for different time spells of 2, 4, 8 and 16 hours. The structural properties were carried out using X-ray diffraction (XRD). The structure of ground samples is found to be simple cubic. The crystallographic parameters are calculated and slight change in lattice constant, inter planner spacing and particle size is observed with grinding treatment. The results are in agreement with the available literature.
"Hypothetical" Heavy Particles Dynamics in LES of Turbulent Dispersed Two-Phase Channel Flow
NASA Technical Reports Server (NTRS)
Gorokhovski, M.; Chtab, A.
2003-01-01
The extensive experimental study of dispersed two-phase turbulent flow in a vertical channel has been performed in Eaton's research group in the Mechanical Engineering Department at Stanford University. In Wang & Squires (1996), this study motivated the validation of LES approach with Lagrangian tracking of round particles governed by drag forces. While the computed velocity of the flow have been predicted relatively well, the computed particle velocity differed strongly from the measured one. Using Monte Carlo simulation of inter-particle collisions, the computation of Yamamoto et al. (2001) was specifically performed to model Eaton's experiment. The results of Yamamoto et al. (2001) improved the particle velocity distribution. At the same time, Vance & Squires (2002) mentioned that the stochastic simualtion of inter-particle collisions is too expensive, requiring significantly more CPU resources than one needs for the gas flow computation. Therefore, the need comes to account for the inter-particle collisions in a simpler and still effective way. To present such a model in the framework of LES/Lagrangian particle approach, and to compare the calculated results with Eaton's measurement and modeling of Yamamoto is the main objective of the present paper.
NASA Astrophysics Data System (ADS)
Turco, R. P.; Toon, O. B.; Whitten, R. C.; Cicerone, R. J.
1982-08-01
Estimates are made showing that, as a consequence of rocket activity in the earth's upper atmosphere in the Shuttle era, average ice nuclei concentrations in the upper atmosphere could increase by a factor of two, and that an aluminum dust layer weighing up to 1000 tons might eventually form in the lower atmosphere. The concentrations of Space Shuttle ice nuclei (SSIN) in the upper troposphere and lower stratosphere were estimated by taking into account the composition of the particles, the extent of surface poisoning, and the size of the particles. Calculated stratospheric size distributions at 20 km with Space Shuttle particulate injection, calculated SSIN concentrations at 10 and 20 km altitude corresponding to different water vapor/ice supersaturations, and predicted SSIN concentrations in the lower stratosphere and upper troposphere are shown.
Applying quality by design (QbD) concept for fabrication of chitosan coated nanoliposomes.
Pandey, Abhijeet P; Karande, Kiran P; Sonawane, Raju O; Deshmukh, Prashant K
2014-03-01
In the present investigation, a quality by design (QbD) strategy was successfully applied to the fabrication of chitosan-coated nanoliposomes (CH-NLPs) encapsulating a hydrophilic drug. The effects of the processing variables on the particle size, encapsulation efficiency (%EE) and coating efficiency (%CE) of CH-NLPs (prepared using a modified ethanol injection method) were investigated. The concentrations of lipid, cholesterol, drug and chitosan; stirring speed, sonication time; organic:aqueous phase ratio; and temperature were identified as the key factors after risk analysis for conducting a screening design study. A separate study was designed to investigate the robustness of the predicted design space. The particle size, %EE and %CE of the optimized CH-NLPs were 111.3 nm, 33.4% and 35.2%, respectively. The observed responses were in accordance with the predicted response, which confirms the suitability and robustness of the design space for CH-NLP formulation. In conclusion, optimization of the selected key variables will help minimize the problems related to size, %EE and %CE that are generally encountered when scaling up processes for NLP formulations. The robustness of the design space will help minimize both intra-batch and inter-batch variations, which are quite common in the pharmaceutical industry.
Optimal Shape in Electromagnetic Scattering by Small Aspherical Particles
NASA Astrophysics Data System (ADS)
Kostinski, A. B.; Mongkolsittisilp, A.
2013-12-01
We consider the question of optimal shape for scattering by randomly oriented particles, e.g., shape causing minimal extinction among those of equal volume. Guided by the isoperimetric property of a sphere, relevant in the geometrical optics limit of scattering by large particles, we examine an analogous question in the low frequency (electrostatics) approximation, seeking to disentangle electric and geometric contributions. To that end, we survey the literature on shape functionals and focus on ellipsoids, giving a simple proof of spherical optimality for the coated ellipsoidal particle. Monotonic increase with asphericity in the low frequency regime for orientation-averaged induced dipole moments and scattering cross-sections is also established. Additional physical insight is obtained from the Rayleigh-Gans (transparent) limit and eccentricity expansions. We propose linking low and high frequency regime in a single minimum principle valid for all size parameters, provided that reasonable size distributions wash out the resonances for inter-mediate size parameters. This proposal is further supported by the sum rule for integrated extinction. Implications for spectro-polarimetric scattering are explicitly considered.
EBQ code: Transport of space-charge beams in axially symmetric devices
NASA Astrophysics Data System (ADS)
Paul, A. C.
1982-11-01
Such general-purpose space charge codes as EGUN, BATES, WODF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present.
Multiple Scattering of Electromagnetic Waves in Discrete Random Media.
1984-12-31
amplitudes Y and Z: (ka(2 - Kal[ < BM>j --=" YN , ( --) 2Kah,(2ka)jq(2Kal)](13) <c;i>,= Z.. e ... + 24c x2( gMx - 1lhq(2kaxlj( 2Kax) dx (15) Equation...written in terms of the T-matrix of clusters of particles which are then averaged over the positions and relative spacing of the particles in the cluster
NASA Astrophysics Data System (ADS)
Sen, Debasis; Biswas, Priyanka; Melo, J. S.
2018-04-01
Evaporation-induced assembly of constituent particles in tiny dispersion droplet allows an efficient way to realize nano-structured micro-granules with potential for various applications. Morphology of the granules, obtained by such one-step dispersion to granular transformation, is decided by several physicochemical conditions. Here we demonstrate that the inter-particle interaction plays a crucial role in deciding the assembled morphology. Resultant granules are investigated by complementary techniques, Electron microscopy and small-angle scattering.
Hot spot-mediated non-dissipative and ultrafast plasmon passage.
Roller, Eva-Maria; Besteiro, Lucas V; Pupp, Claudia; Khorashad, Larousse Khosravi; Govorov, Alexander O; Liedl, Tim
2017-08-01
Plasmonic nanoparticles hold great promise as photon handling elements and as channels for coherent transfer of energy and information in future all-optical computing devices.1-5 Coherent energy oscillations between two spatially separated plasmonic entities via a virtual middle state exemplify electron-based population transfer, but their realization requires precise nanoscale positioning of heterogeneous particles.6-10 Here, we show the assembly and optical analysis of a triple particle system consisting of two gold nanoparticles with an inter-spaced silver island. We observe strong plasmonic coupling between the spatially separated gold particles mediated by the connecting silver particle with almost no dissipation of energy. As the excitation energy of the silver island exceeds that of the gold particles, only quasi-occupation of the silver transfer channel is possible. We describe this effect both with exact classical electrodynamic modeling and qualitative quantum-mechanical calculations. We identify the formation of strong hot spots between all particles as the main mechanism for the loss-less coupling and thus coherent ultra-fast energy transfer between the remote partners. Our findings could prove useful for quantum gate operations, but also for classical charge and information transfer processes.
Cosmogenic-nuclide production by primary cosmic-ray protons
NASA Technical Reports Server (NTRS)
Reedy, R. C.
1985-01-01
The production rates of cosmogenic nuclides were calculated for the primary protons in the galactic and solar cosmic rays. At 1 AU, the long-term average fluxes of solar protons usually produce many more atoms of cosmogenic nuclide than the primary protons in the galactic cosmic rays (GCR). Because the particle fluxes inside meteorites and other large objects in space include many secondary neutrons, the production rates and ratios inside large objects are often very different from those by just the primary GCR protons. It is possible to determine if a small object, was small in space or broken from a meteorite. Because heliospherical modulation and other interactions change the GCR particle spectrum, the production of cosmogenic nuclides by the GCR particles outside the heliosphere will be different from that by modulated GCR primaries.
Microscopic Lagrangian description of warm plasmas. III - Nonlinear wave-particle interaction
NASA Technical Reports Server (NTRS)
Galloway, J. J.; Crawford, F. W.
1977-01-01
The averaged-Lagrangian method is applied to nonlinear wave-particle interactions in an infinite, homogeneous, magnetic-field-free plasma. The specific example of Langmuir waves is considered, and the combined effects of four-wave interactions and wave-particle interactions are treated. It is demonstrated how the latter lead to diffusion in velocity space, and the quasilinear diffusion equation is derived. The analysis is generalized to the random phase approximation. The paper concludes with a summary of the method as applied in Parts 1-3 of the paper.
Plasmon resonant cavities in vertical nanowire arrays
Bora, Mihail; Bond, Tiziana C.; Fasenfest, Benjamin J.; Behymer, Elaine M.
2014-07-15
Tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides are presented. Resonances can be observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides can satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors of over 10.sup.3 are possible due to plasmon focusing in the inter-wire space.
The abundances of hydrogen, helium, oxygen, and iron accelerated in large solar particle events
NASA Technical Reports Server (NTRS)
Mazur, J. E.; Mason, G. M.; Klecker, B.; Mcguire, R. E.
1993-01-01
Energy spectra measured in 10 large flares with the University of Maryland/Max-Planck-Institut sensors on ISEE I and Goddard Space Flight Center sensors on IMP 8 allowed us to determine the average H, He, O, and Fe abundances as functions of energy in the range of about 0.3-80 MeV/nucleon. Model fits to the spectra of individual events using the predictions of a steady state stochastic acceleration model with rigidity-dependent diffusion provided a means of interpolating small portions of the energy spectra not measured with the instrumentation. Particles with larger mass-to-charge ratios were relatively less abundant at higher energies in the flare-averaged composition. The Fe/O enhancement at low SEP energies was less than the Fe/O ratios observed in He-3-rich flares. Unlike the SEP composition averaged above 5 MeV/nucleon, the average SEP abundances above 0.3 MeV/nucleon were similar to the average solar wind.
Shannon entropies and Fisher information of K-shell electrons of neutral atoms
NASA Astrophysics Data System (ADS)
Sekh, Golam Ali; Saha, Aparna; Talukdar, Benoy
2018-02-01
We represent the two K-shell electrons of neutral atoms by Hylleraas-type wave function which fulfils the exact behavior at the electron-electron and electron-nucleus coalescence points and, derive a simple method to construct expressions for single-particle position- and momentum-space charge densities, ρ (r) and γ (p) respectively. We make use of the results for ρ (r) and γ (p) to critically examine the effect of correlation on bare (uncorrelated) values of Shannon information entropies (S) and of Fisher information (F) for the K-shell electrons of atoms from helium to neon. Due to inter-electronic repulsion the values of the uncorrelated Shannon position-space entropies are augmented while those of the momentum-space entropies are reduced. The corresponding Fisher information are found to exhibit opposite behavior in respect of this. Attempts are made to provide some plausible explanation for the observed response of S and F to electronic correlation.
The "Alfvén" proposal for the European Space Agency M5 Mission Call
NASA Astrophysics Data System (ADS)
Berthomier, M.; Fazakerley, A. N.
2017-12-01
The Alfvén mission objective is to elucidate the particle acceleration processes and their consequences for electromagnetic radiation and energy transport in strongly magnetised plasmas. The Earth's Auroral Acceleration Region is a unique laboratory for investigating these processes. The only way to distinguish between the models describing acceleration processes at the heart of Magnetosphere-Ionosphere Coupling is to combine high-time resolution in situ measurements (as pioneered by FAST), multi-point measurements (as pioneered by CLUSTER), and auroral arc imaging in one mission. Charged particle acceleration in strongly magnetized plasmas requires the conversion of electromagnetic energy into magnetic-field-aligned particle kinetic energy. Alfvén will measure for the first time the occurrence and distribution of small scale parallel electric fields in space and time. In order to determine the relative efficiency of the different conversion mechanisms, Alfvén will also measure the corresponding particle energy fluxes locally and into the aurora. Alfvén will discover how electromagnetic radiation is generated in the acceleration region and how it escapes. Alfvén will make key measurements of Auroral Kilometric Radiation needed to test competing models of wave generation, mode conversion and escape from their source region. These will reveal the mode conversion processes and which information is ultimately carried by the polarization of radio waves reaching free space. Alfvén will discover the global impact of particle acceleration on the dynamic coupling between a magnetized object and its plasma environment. Dual spacecraft measurements offer the unique opportunity to unambiguously determine which part of the energy flowing into the ionosphere is eventually dissipated in this collisional plasma and which part is transmitted to outflowing ions of ionospheric origin. The Alfvén mission design involves use of two simple identical spacecraft, a comprehensive suite of inter-calibrated particles and fields instruments, cutting edge auroral imaging, easily accessible orbits that frequently visit the region of scientific interest and straightforward operations.
Spatial Control of Condensation using Chemical Micropatterns
NASA Astrophysics Data System (ADS)
Murphy, Kevin; Hansen, Ryan; Nath, Saurabh; Retterer, Scott; Collier, Patrick; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team; CenterNanophase Materials Sciences Team
2015-11-01
Surfaces exhibiting wettability patterns can spatially control the nucleation of condensation to enable enhanced fog harvesting and phase-change heat transfer. To date, studies of patterned condensation have utilized a combination of chemical and topographical features, making it difficult to isolate the effects of intrinsic wettability versus surface roughness on spatially controlling the condensate. Here, we fabricate chemical micropatterns consisting of hydrophilic silicon oxide and a smooth hydrophobic silane monolayer to isolate the effects of changes in intrinsic wettability on the spatial control of condensation. Complete spatial control, defined as every nucleation and growth event occurring exclusively on the hydrophilic features, was observed even for supercooled droplets at high water vapor supersaturation. However, this complete spatial control was found to break down beyond a critical spacing that depended upon the extent of supersaturation. The average diameter of condensate was found to be smaller for the chemically micropatterned surfaces compared to a uniformly hydrophobic surface. Control of inter-droplet spacing between supercooled condensate through chemical patterning can be employed to minimize the growth of inter-droplet frost on cold surfaces.
Optimization of stress relief heat treatment of PHWR pressure tubes (Zr 2.5Nb alloy)
NASA Astrophysics Data System (ADS)
Choudhuri, Gargi; Srivastava, D.; Gurumurthy, K. R.; Shah, B. K.
2008-12-01
The micro-structure of cold worked Zr-2.5%Nb pressure tube material consists of elongated grains of α-zirconium enclosed by a thin film of β-zirconium phase. This β-Zr phase is unstable and on heating, progressively decomposes to α-Zr phase and β-phase enriched with Nb and ultimately form β Nb. Meta-stable ω-phase precipitates as an intermediate step during decomposition depending on the heat treatment schedule, β→α+β→α+ω+β→α+β→α+β Morphological changes occur in the β-zirconium phase during the decomposition. The continuous ligaments of β Zr phase turn into a discontinuous array of particles followed by globulization of the β-phase. The morphological changes impose a significant effect on the creep rate and on the delayed hydride cracking velocity due to reduction in the hydrogen diffusion coefficient in α Zr. If the continuity of β-phase is disrupted by heat treatment, the effective diffusion coefficient decreases with a concomitant reduction in DHC velocity. The pressure tubes for the Indian PHWRs are made by a process of hot extrusion followed by cold pilgering in two stages and an intermediate annealing. Autoclaving at 400 °C for 36 h ensures stress relieving of the finished tubes. In the present studies, autoclaving duration at 400 °C was varied from 24 h to 96 h at 12 h-steps and the micro-structural changes in the β-phase were observed by TEM. Dislocation density, hardness and the micro-structural features such as thickness of β-phase, inter-particle spacing and volume fraction of the phases were measured at each stage. Autoclaving for a longer duration was found to change the morphology of β-phase and increase the inter-particle spacing. Progressive changes in the aspect ratio of the β-phase and their size and distribution are documented and reported. These micro-structural modifications are expected to decrease DHC velocity during reactor operation.
Artificial magnetic field for the space station (Protecting space stations in future space missions)
NASA Astrophysics Data System (ADS)
Ahmadi Tara, Miss
Problem Explanation Strong solar storms and cosmic rays make great disturbances for equip-ment outside the magnetosphere. Also these disturbances are so harmful for biological process of living cells. If one decides to stay more outside the Earth, one's healthy is in a great danger. To investigate space station situation against strong solar storms, 5 recent strong solar storms have been selected. Dst of these storms are more than -300 nT. Each one of these storms has an accurate danger percentage. These data has been shown in Tab I. Tab I. strong solar storms during 1989-2003 and their danger percentage for space equipments and astronauts on outside the magnetic field As has been shown in Tab I. these strong storms are so dangerous and make problem for human outside the Earth layers. Basic on [13] solar activities in next century will be more than this century. That paper shows that the average number of sunspots in this century is less than 77 and this average will be more than 150 sunspots in a century. So we have only 70 years to prepare a suitable space station in other wise building this centre wills has many problem such as health security and long travels. Method explanation Only method to face with energetic particles is magnetic field. Space station is bereft of strong magnetic field to protect herself from energetic particles that released from the Sun and other types of stars in other galaxies (cosmic rays). Therefore the existence of an artificial magnetic field is necessary, this is not important that this field will be for the space station or its inner space because this field performs as magnetosphere. It does not allow energetic particles to enter the field. Also this field loads up to solar magnetic field as magnetosphere. Position of this artificial field is not important because basic on the simulations this field could repulse 85.6Modeling Important feature of this artificial field is its situation against solar magnetic field, i.e. these fields always are anti-aligned because artificial field could change direction by itself basic on the situation of Sun. Relationship between artificial field and solar storm has two types: 1) Artifi-cial field loads up to solar storm's magnetic field and makes magnetic reconnection 2) artificial field repulses energetic solar particles. These below equations show situation of artificial field against magnetic reconnection with magnetic field of solar storm and repulsing particles. Basic on the volume of repulsed particles the strength of field could be: Each one of these storms has an accurate danger percentage. These data has been shown in Tab I. Tab I. strong solar storms during 1989-2003 and their danger percentage for space equipments and astronauts on outside the magnetic field As has been shown in Tab I. these strong storms are so dangerous and make problem for human outside the Earth layers. Basic on [13] solar activities in next century will be more than this century. That paper shows that the average number of sunspots in this century is less than 77 and this average will be more than 150 sunspots in a century. So we have only 70 years to prepare a suitable space station in other wise building this centre wills has many problem such as health security and long travels. Method explanation Only method to face with energetic particles is magnetic field. Space station is bereft of strong magnetic field to protect herself from energetic particles that released from the Sun and other types of stars in other galaxies (cosmic rays). Therefore the existence of an artificial magnetic field is necessary, this is not important that this field will be for the space station or its inner space because this field performs as magnetosphere. It does not allow energetic particles to enter the field. Also this field loads up to solar magnetic field as magnetosphere. Position of this artificial field is not important because basic on the simulations this field could repulse 85.6Modeling Important feature of this artificial field is its situation against solar magnetic field, i.e. these fields always are anti-aligned because artificial field could change direction by itself basic on the situation of Sun. Relationship between artificial field and solar storm has two types: 1) Artificial field loads up to solar storm's magnetic field and makes magnetic reconnection 2) ar-tificial field repulses energetic solar particles. These below equations show situation of artificial field against magnetic reconnection with magnetic field of solar storm and repulsing particles. Basic on the volume of repulsed particles the strength of field could be: General equation of artificial field: Equations of artificial field basic on the magnetic reconnection: Also equation of balance of electrical energy is: That , V and P are denoting respectively density, velocity and pressure. is plasma energy density. J= current density, Bo =artificial magnetic field, B,E=plasma magnetic and electric field. Vs=volume of a sphere with r radius and =resistance General equation of artificial field: Equations of artificial field basic on the magnetic reconnec-tion: Also equation of balance of electrical energy is: That , V and P are denoting respectively density, velocity and pressure. is plasma energy density. J= current density, Bo =artificial magnetic field, B,E=plasma magnetic and electric field. Vs=volume of a sphere with r radius and =resistance Results Tab II. Danger percentage of 5 strong solar storms for equipment and astronauts in the future space station within the influence on artificial field As has been shown in Tab II artificial magnetic field could pass great dangers of solar storms and protect space station wherever of free space. FIG.2) Upper panel shows X-ray flux at two wavelengths 0.5-4 ˚ and 1-8 ˚. Lower Panel shows Proton flux in various energy levels received on the Moon's A A surface from solar storm 2000(obtained from simulation) 0-14(UT) obtained from outside the field, 14-7(UT) obtained from receiver in the field, 7-0(UT) obtained from receiver behind in-strument Conclusion In this brief paper, I describe a way to protect future space station from energetic particles. This field could reduce damage of solar storms and cosmic rays that arrived to the space station outside the Earth magnetic field. This field performs as magnetosphere for space station. It could change its situation and make easy live on the space station. This strong magnetic field must be generated by low-temperature superconductors. They are suit-able material to use at generating a strong magnetic field. These materials could be used in the structure of spacecrafts during long duration space travels in future
Lima, Tiago; Carvalho, Ágata; Carvalho, Vasco
2012-01-01
ABSTRACT Objectives The aim of this study was to assess the clinical outcomes achieved with Computer-Assisted Design/Computer-Assisted Manufacturing implant abutments in the anterior maxilla. Material and Methods Nineteen patients with a mean age of 41 (range form 26 to 63) years, treated with 21 single tooth implants and 21 Computer-Assisted Design/Computer-Assisted Manufacturing (CAD/CAM) abutments in the anterior maxillary region were included in this study. The patients followed 4 criteria of inclusion: (1) had a single-tooth implant in the anterior maxilla, (2) had a CAD/CAM abutment, (3) had a contralateral natural tooth, (4) the implant was restored and in function for at least 6 months up to 2 years. Cases without contact point were excluded. Presence/absence of the interproximal papilla, inter tooth-implant distance (ITD) and distance from the base of the contact point to dental crest bone of adjacent tooth (CPB) were accessed. Results Forty interproximal spaces were evaluated, with an average mesial CPB of 5.65 (SD 1.65) mm and distal CPB of 4.65 (SD 1.98) mm. An average mesial ITD of 2.49 (SD 0.69) mm and an average distal ITD of 1.89 (SD 0.63) mm were achieved. Papilla was present in all the interproximal spaces accessed. Conclusions The restoration of dental implants using CAD/CAM abutments is a predictable treatment with improved aesthetic results. These type of abutments seem to help maintaining a regular papillary filling although the variations of the implant positioning or the restoration teeth relation. PMID:24422016
NASA Technical Reports Server (NTRS)
Murr, L. E.; Rivas, J. M.; Quinones, S.; Niou, C.-S.; Advani, A. H.; Marquez, B.
1993-01-01
Debris particles extracted from a small sampling region on the leading edge of the Long Duration Exposure Facility (LDEF) spacecraft have been examined by analytical transmission electron microscopy and the elemental frequency observed by energy-dispersive X-ray spectrometry and compared with upper atmosphere (Earth) particle elemental frequency and the average elemental compositions of interplanetary dust particles. A much broader elemental distribution was observed for the exposed spacecraft surface debris milieu. Numerous metal microfragment analyses, particularly aluminum and stainless steel, were compared with scanning electron microscope observations-of impact crater features, and the corresponding elemental spectra on selected LDEF aluminium tray clamps and stainless steel bolts. The compositions and melt features for these impact craters and ejecta have been shown to be consistent with microcrystalline debris fragments in the case of aluminum, and these observations suggest an ever changing debris milieu on exposed surfaces for space craft and space system materials.
NASA Technical Reports Server (NTRS)
Sakaguchi, T.; Doke, T.; Hayashi, T.; Kikuchi, J.; Hasebe, N.; Kashiwagi, T.; Takashima, T.; Takahashi, K.; Nakano, T.; Nagaoka, S.;
1997-01-01
The real-time measurement of radiation environment was made with an improved real-time radiation monitoring device (RRMD)-II onboard Space Shuttle STS-79 (S/MM#4: 4th Shuttle MIR Mission, at an inclination angle of 51.6 degrees and an altitude of 250-400km) for 199 h during 17-25 September, 1996. The observation of the detector covered the linear energy transfer (LET) range of 3.5-6000 keV/micrometer. The Shuttle orbital profile in this mission was equivalent to that of the currently planned Space Station, and provided an opportunity to investigate variations in count rate and dose equivalent rate depending on altitude, longitude, and latitude in detail. Particle count rate and dose equivalent rate were mapped geographically during the mission. Based on the map of count rate, an analysis was made by dividing whole region into three regions: South Atlantic Anomaly (SAA) region, high latitude region and other regions. The averaged absorbed dose rate during the mission was 39.3 microGy/day for a LET range of 3.5-6000 keV/micrometer. The corresponding average dose equivalent rates during the mission are estimated to be 293 microSv/day with quality factors from International Commission on Radiological Protection (ICRP)-Pub. 60 and 270 microSv/day with quality factors from ICRP-Pub. 26. The effective quality factors for ICRP-Pub. 60 and 26 are 7.45 and 6.88, respectively. From the present data for particles of LET > 3.5keV/micrometer, we conclude that the average dose equivalent rate is dominated by the contribution of galactic cosmic ray (GCR) particles. The dose-detector depth dependence was also investigated.
A Convex Formulation for Magnetic Particle Imaging X-Space Reconstruction.
Konkle, Justin J; Goodwill, Patrick W; Hensley, Daniel W; Orendorff, Ryan D; Lustig, Michael; Conolly, Steven M
2015-01-01
Magnetic Particle Imaging (mpi) is an emerging imaging modality with exceptional promise for clinical applications in rapid angiography, cell therapy tracking, cancer imaging, and inflammation imaging. Recent publications have demonstrated quantitative mpi across rat sized fields of view with x-space reconstruction methods. Critical to any medical imaging technology is the reliability and accuracy of image reconstruction. Because the average value of the mpi signal is lost during direct-feedthrough signal filtering, mpi reconstruction algorithms must recover this zero-frequency value. Prior x-space mpi recovery techniques were limited to 1d approaches which could introduce artifacts when reconstructing a 3d image. In this paper, we formulate x-space reconstruction as a 3d convex optimization problem and apply robust a priori knowledge of image smoothness and non-negativity to reduce non-physical banding and haze artifacts. We conclude with a discussion of the powerful extensibility of the presented formulation for future applications.
Hyperspherical Slater determinant approach to few-body fractional quantum Hall states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Bin, E-mail: yanbin@purdue.edu; Wooten, Rachel E.; Daily, Kevin M.
2017-05-15
In a recent study (Daily et al., 2015), a hyperspherical approach has been developed to study few-body fractional quantum Hall states. This method has been successfully applied to the exploration of few boson and fermion problems in the quantum Hall region, as well as the study of inter-Landau level collective excitations (Rittenhouse et al., 2016; Wooten et al., 2016). However, the hyperspherical method as it is normally implemented requires a subsidiary (anti-)symmetrization process, which limits its computational effectiveness. The present work overcomes these difficulties and extends the power of this method by implementing a representation of the hyperspherical many-body basismore » space in terms of Slater determinants of single particle eigenfunctions. A clear connection between the hyperspherical representation and the conventional single particle picture is presented, along with a compact operator representation of the theoretical framework. - Highlights: • A hyperspherical method has been implemented to study the quantum Hall effect. • The hyperspherical many-body basis space is represented with Slater determinants. • Example numerical studies of the 4- and 8-electron systems are presented.« less
Applications of Space-Filling-Curves to Cartesian Methods for CFD
NASA Technical Reports Server (NTRS)
Aftosmis, M. J.; Murman, S. M.; Berger, M. J.
2003-01-01
This paper presents a variety of novel uses of space-filling-curves (SFCs) for Cartesian mesh methods in CFD. While these techniques will be demonstrated using non-body-fitted Cartesian meshes, many are applicable on general body-fitted meshes-both structured and unstructured. We demonstrate the use of single theta(N log N) SFC-based reordering to produce single-pass (theta(N)) algorithms for mesh partitioning, multigrid coarsening, and inter-mesh interpolation. The intermesh interpolation operator has many practical applications including warm starts on modified geometry, or as an inter-grid transfer operator on remeshed regions in moving-body simulations Exploiting the compact construction of these operators, we further show that these algorithms are highly amenable to parallelization. Examples using the SFC-based mesh partitioner show nearly linear speedup to 640 CPUs even when using multigrid as a smoother. Partition statistics are presented showing that the SFC partitions are, on-average, within 15% of ideal even with only around 50,000 cells in each sub-domain. The inter-mesh interpolation operator also has linear asymptotic complexity and can be used to map a solution with N unknowns to another mesh with M unknowns with theta(M + N) operations. This capability is demonstrated both on moving-body simulations and in mapping solutions to perturbed meshes for control surface deflection or finite-difference-based gradient design methods.
Dudina, Dina V.; Bokhonov, Boris B.; Mukherjee, Amiya K.
2016-01-01
A need to deeper understand the influence of electric current on the structure and properties of metallic materials consolidated by Spark Plasma Sintering (SPS) stimulates research on inter-particle interactions, bonding and necking processes in low-pressure or pressureless conditions as favoring technique-specific local effects when electric current passes through the underdeveloped inter-particle contacts. Until now, inter-particle interactions during pressureless SPS have been studied mainly for particles of the same material. In this work, we focused on the interactions between particles of dissimilar materials in mixtures of micrometer-sized Fe and Al powders forming porous compacts during pressureless SPS at 500–650 °C. Due to the chemical interaction between Al and Fe, necks of conventional shape did not form between the dissimilar particles. At the early interaction stages, the Al particles acquired shell morphology. It was shown that this morphology change was not related to the influence of electric current but was due to the Kirkendall effect in the Fe–Al system and particle rearrangement in a porous compact. No experimental evidence of melting or melt ejection during pressureless SPS of the Fe–Al mixtures or Fe and Al powders sintered separately was observed. Porous FeAl-based compacts could be obtained from Fe-40at.%Al mixtures by pressureless SPS at 650 °C. PMID:28773498
Testing approximate predictions of displacements of cosmological dark matter halos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munari, Emiliano; Monaco, Pierluigi; Borgani, Stefano
We present a test to quantify how well some approximate methods, designed to reproduce the mildly non-linear evolution of perturbations, are able to reproduce the clustering of DM halos once the grouping of particles into halos is defined and kept fixed. The following methods have been considered: Lagrangian Perturbation Theory (LPT) up to third order, Truncated LPT, Augmented LPT, MUSCLE and COLA. The test runs as follows: halos are defined by applying a friends-of-friends (FoF) halo finder to the output of an N-body simulation. The approximate methods are then applied to the same initial conditions of the simulation, producing formore » all particles displacements from their starting position and velocities. The position and velocity of each halo are computed by averaging over the particles that belong to that halo, according to the FoF halo finder. This procedure allows us to perform a well-posed test of how clustering of the matter density and halo density fields are recovered, without asking to the approximate method an accurate reconstruction of halos. We have considered the results at z =0,0.5,1, and we have analysed power spectrum in real and redshift space, object-by-object difference in position and velocity, density Probability Distribution Function (PDF) and its moments, phase difference of Fourier modes. We find that higher LPT orders are generally able to better reproduce the clustering of halos, while little or no improvement is found for the matter density field when going to 2LPT and 3LPT. Augmentation provides some improvement when coupled with 2LPT, while its effect is limited when coupled with 3LPT. Little improvement is brought by MUSCLE with respect to Augmentation. The more expensive particle-mesh code COLA outperforms all LPT methods, and this is true even for mesh sizes as large as the inter-particle distance. This test sets an upper limit on the ability of these methods to reproduce the clustering of halos, for the cases when these objects are reconstructed at the object-by-object level.« less
Testing approximate predictions of displacements of cosmological dark matter halos
NASA Astrophysics Data System (ADS)
Munari, Emiliano; Monaco, Pierluigi; Koda, Jun; Kitaura, Francisco-Shu; Sefusatti, Emiliano; Borgani, Stefano
2017-07-01
We present a test to quantify how well some approximate methods, designed to reproduce the mildly non-linear evolution of perturbations, are able to reproduce the clustering of DM halos once the grouping of particles into halos is defined and kept fixed. The following methods have been considered: Lagrangian Perturbation Theory (LPT) up to third order, Truncated LPT, Augmented LPT, MUSCLE and COLA. The test runs as follows: halos are defined by applying a friends-of-friends (FoF) halo finder to the output of an N-body simulation. The approximate methods are then applied to the same initial conditions of the simulation, producing for all particles displacements from their starting position and velocities. The position and velocity of each halo are computed by averaging over the particles that belong to that halo, according to the FoF halo finder. This procedure allows us to perform a well-posed test of how clustering of the matter density and halo density fields are recovered, without asking to the approximate method an accurate reconstruction of halos. We have considered the results at z=0,0.5,1, and we have analysed power spectrum in real and redshift space, object-by-object difference in position and velocity, density Probability Distribution Function (PDF) and its moments, phase difference of Fourier modes. We find that higher LPT orders are generally able to better reproduce the clustering of halos, while little or no improvement is found for the matter density field when going to 2LPT and 3LPT. Augmentation provides some improvement when coupled with 2LPT, while its effect is limited when coupled with 3LPT. Little improvement is brought by MUSCLE with respect to Augmentation. The more expensive particle-mesh code COLA outperforms all LPT methods, and this is true even for mesh sizes as large as the inter-particle distance. This test sets an upper limit on the ability of these methods to reproduce the clustering of halos, for the cases when these objects are reconstructed at the object-by-object level.
Quantum canonical ensemble: A projection operator approach
NASA Astrophysics Data System (ADS)
Magnus, Wim; Lemmens, Lucien; Brosens, Fons
2017-09-01
Knowing the exact number of particles N, and taking this knowledge into account, the quantum canonical ensemble imposes a constraint on the occupation number operators. The constraint particularly hampers the systematic calculation of the partition function and any relevant thermodynamic expectation value for arbitrary but fixed N. On the other hand, fixing only the average number of particles, one may remove the above constraint and simply factorize the traces in Fock space into traces over single-particle states. As is well known, that would be the strategy of the grand-canonical ensemble which, however, comes with an additional Lagrange multiplier to impose the average number of particles. The appearance of this multiplier can be avoided by invoking a projection operator that enables a constraint-free computation of the partition function and its derived quantities in the canonical ensemble, at the price of an angular or contour integration. Introduced in the recent past to handle various issues related to particle-number projected statistics, the projection operator approach proves beneficial to a wide variety of problems in condensed matter physics for which the canonical ensemble offers a natural and appropriate environment. In this light, we present a systematic treatment of the canonical ensemble that embeds the projection operator into the formalism of second quantization while explicitly fixing N, the very number of particles rather than the average. Being applicable to both bosonic and fermionic systems in arbitrary dimensions, transparent integral representations are provided for the partition function ZN and the Helmholtz free energy FN as well as for two- and four-point correlation functions. The chemical potential is not a Lagrange multiplier regulating the average particle number but can be extracted from FN+1 -FN, as illustrated for a two-dimensional fermion gas.
Poloidal motion of trapped particle orbits in real-space coordinates
NASA Astrophysics Data System (ADS)
Nemov, V. V.; Kasilov, S. V.; Kernbichler, W.; Leitold, G. O.
2008-05-01
The bounce averaged poloidal drift velocity of trapped particles in stellarators is an important quantity in the framework of optimization of stellarators because it allows us to analyze the possibility for closure of contours of the second adiabatic invariant and therefore for improvement of α-particle confinement in such a device. Here, a method is presented to compute such a drift velocity directly in real space coordinates through integration along magnetic field lines. This has the advantage that one is not limited to the usage of magnetic coordinates and can use the magnetic field produced by coil currents and more importantly also results of three-dimensional magnetohydrodynamic finite beta equilibrium codes, such as PIES [A. H. Reiman and H. S. Greenside, J. Comput. Phys. 75, 423 (1988)] and HINT [Y. Suzuki et al., Nucl. Fusion 46, L19 (2006)].
Electrostatic 2D assembly of bionanoparticles on a cationic lipid monolayer.
NASA Astrophysics Data System (ADS)
Kewalramani, Sumit; Wang, Suntao; Fukuto, Masafumi; Yang, Lin; Niu, Zhongwei; Nguyen, Giang; Wang, Qian
2010-03-01
We present a grazing-incidence small-angle X-ray scattering (GISAXS) study on 2D assembly of cowpea mosaic virus (CPMV) under a mixed cationic-zwitterionic (DMTAP^+-DMPC) lipid monolayer at the air-water interface. The inter-particle and particle-lipid electrostatic interactions were varied by controlling the subphase pH and the membrane charge density. GISAXS data show that 2D crystals of CPMV are formed above a threshold membrane charge density and only in a narrow pH range just above CPMV's isoelectric point, where the charge on CPMV is expected to be weakly negative. The particle density for the 2D crystals is similar to that for the densest lattice plane in the 3D crystals of CPMV. The results show that the 2D crystallization is achieved in the part of the phase space where the electrostatic interactions are expected to maximize the adsorption of CPMV onto the lipid membrane. This electrostatics-based strategy for controlling interfacial nanoscale assembly should be generally applicable to other nanoparticles.
Satellite Remote Sensing: Aerosol Measurements
NASA Technical Reports Server (NTRS)
Kahn, Ralph A.
2013-01-01
Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.
Annealing cycles and the self-organization of functionalized colloids
NASA Astrophysics Data System (ADS)
Dias, Cristóvão S.; Araújo, Nuno A. M.; Telo da Gama, Margarida M.
2018-01-01
The self-assembly of functionalized (patchy) particles with directional interactions into target structures is still a challenge, despite the significant experimental advances in their synthesis. Self-assembly pathways are typically characterized by high energy barriers that hinder access to stable (equilibrium) structures. A possible strategy to tackle this challenge is to perform annealing cycles. By periodically switching on and off the inter-particle bonds, one expects to smooth-out the kinetic pathways and favor the assembly of targeted structures. Preliminary results have shown that the efficiency of annealing cycles depends strongly on their frequency. Here, we study numerically how this frequency-dependence scales with the strength of the directional interactions (size of the patch σ). We use analytical arguments to show that the scaling results from the statistics of a random walk in configurational space.
Nearest-Neighbor Distances and Aggregative Effects in Turbulence
NASA Astrophysics Data System (ADS)
Lanerolle, Lyon W. J.; Rothschild, B. J.; Yeung, P. K.
2000-11-01
The dispersive nature of turbulence which causes fluid elements to move apart (on average) is well known. Here we study another facet of turbulent mixing relevant to marine population dynamics - on how small organisms (approximated by fluid particles) are brought close to each other and allowed to interact. The crucial role played by the small scales in this process allows us to use direct numerical simulations of stationary isotropic turbulence, here with Taylor-scale Reynolds numbers (R_λ) from 38 to 91. We study the evolution of the Nearest-Neighbor Distances (NND) for collections of fluid particles initially located randomly in space satisfying Poisson-type distributions with mean values from 0.5 to 2.0 Kolmogorov length scales. Our results show that as particles begin to disperse on average, some also begin to aggregate in space. In particular, we find that (i) a significant proportion of particles are closer to each other than if their NNDs were randomly distributed, (ii) aggregative effects become stronger with R_λ, and (iii) although the mean value of NND grows monotonically with time in Kolmogorov variables, the growth rates are slower at higher R_λ. These results may assist in explaining the ``patchiness'' in plankton distributions observed in biological oceanography. Further details are given in B. J. Rothschild et al., The Biophysical Interpretation of Spatial Effects of Small-scale Turbulent Flow in the Ocean (paper in prep.).
Color accuracy and reproducibility in whole slide imaging scanners
Shrestha, Prarthana; Hulsken, Bas
2014-01-01
Abstract We propose a workflow for color reproduction in whole slide imaging (WSI) scanners, such that the colors in the scanned images match to the actual slide color and the inter-scanner variation is minimum. We describe a new method of preparation and verification of the color phantom slide, consisting of a standard IT8-target transmissive film, which is used in color calibrating and profiling the WSI scanner. We explore several International Color Consortium (ICC) compliant techniques in color calibration/profiling and rendering intents for translating the scanner specific colors to the standard display (sRGB) color space. Based on the quality of the color reproduction in histopathology slides, we propose the matrix-based calibration/profiling and absolute colorimetric rendering approach. The main advantage of the proposed workflow is that it is compliant to the ICC standard, applicable to color management systems in different platforms, and involves no external color measurement devices. We quantify color difference using the CIE-DeltaE2000 metric, where DeltaE values below 1 are considered imperceptible. Our evaluation on 14 phantom slides, manufactured according to the proposed method, shows an average inter-slide color difference below 1 DeltaE. The proposed workflow is implemented and evaluated in 35 WSI scanners developed at Philips, called the Ultra Fast Scanners (UFS). The color accuracy, measured as DeltaE between the scanner reproduced colors and the reference colorimetric values of the phantom patches, is improved on average to 3.5 DeltaE in calibrated scanners from 10 DeltaE in uncalibrated scanners. The average inter-scanner color difference is found to be 1.2 DeltaE. The improvement in color performance upon using the proposed method is apparent with the visual color quality of the tissue scans. PMID:26158041
EFFECT OF BODY SIZE ON BREATHING PATTERN AND FINE PARTICLE DEPOSITION IN CHILDREN
Inter-child variability in breathing patterns may contribute to variability in fine particle, lung deposition and morbidity in children associated with those particles. Fractional deposition (DF) of fine particles (2um monodisperse, carnauba wax particles) was measured in healthy...
Overview of the ISS Radiation Environment Observed during the ESA EXPOSE-R2 Mission in 2014-2016
NASA Astrophysics Data System (ADS)
Dachev, T. P.; Bankov, N. G.; Tomov, B. T.; Matviichuk, Yu. N.; Dimitrov, Pl. G.; Häder, D.-P.; Horneck, G.
2017-11-01
The radiation risk radiometer-dosimeter (R3D)-R2 solid-state detector performed radiation measurements at the European Space Agency EXPOSE-R2 platform outside of the Russian "Zvezda" module at the International Space Station (ISS) from 24 October 2014 to 11 January 2016. The ISS orbital parameters were average altitude of 415 km and 51.6° inclination. We developed special software and used experimentally obtained formulas to determine the radiation flux-to-dose ratio from the R3DR2 Liulin-type deposited-energy spectrometer. We provide for the first time simultaneous, long-term estimates of radiation dose external to the ISS for four source categories: (i) galactic cosmic ray particles and their secondary products; (ii) protons in the South Atlantic Anomaly region of the inner radiation belt (IRB); (iii) relativistic electrons and/or bremsstrahlung in the outer radiation belt (ORB); and (iv) solar energetic particle (SEP) events. The latter category is new in this study. Additionally, in this study, secondary particles (SP) resulting from energetic particle interaction with the detector and nearby materials are identified. These are observed continuously at high latitudes. The detected SPs are identified using the same sorting requirements as SEP protons. The IRB protons provide the highest consistent hourly dose, while the ORB electrons and SEPs provide the most extreme hourly doses. SEPs were observed 11 times during the study interval. The R3DR2 data support calculation of average equivalent doses. The 30 day and 1 year average equivalent doses are much smaller than the skin and eyes doses recommendations by the National Council on Radiation Protection (Report 132), which provides radiation protection guidance for Low Earth Orbit.
Wavelet investigation of preferential concentration in particle-laden turbulence
NASA Astrophysics Data System (ADS)
Bassenne, Maxime; Urzay, Javier; Schneider, Kai; Moin, Parviz
2017-11-01
Direct numerical simulations of particle-laden homogeneous-isotropic turbulence are employed in conjunction with wavelet multi-resolution analyses to study preferential concentration in both physical and spectral spaces. Spatially-localized energy spectra for velocity, vorticity and particle-number density are computed, along with their spatial fluctuations that enable the quantification of scale-dependent probability density functions, intermittency and inter-phase conditional statistics. The main result is that particles are found in regions of lower turbulence spectral energy than the corresponding mean. This suggests that modeling the subgrid-scale turbulence intermittency is required for capturing the small-scale statistics of preferential concentration in large-eddy simulations. Additionally, a method is defined that decomposes a particle number-density field into the sum of a coherent and an incoherent components. The coherent component representing the clusters can be sparsely described by at most 1.6% of the total number of wavelet coefficients. An application of the method, motivated by radiative-heat-transfer simulations, is illustrated in the form of a grid-adaptation algorithm that results in non-uniform meshes refined around particle clusters. It leads to a reduction of the number of control volumes by one to two orders of magnitude. PSAAP-II Center at Stanford (Grant DE-NA0002373).
First in Space: The Army’s Role in U.S. Space Efforts, 1938-1958
2017-06-09
National Aeronautics and Space Administration ( NASA ) attempted to consolidate early space and missile efforts, inter-service rivalries coupled with...Redstone, Jupiter, ARPA, NASA 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON...Agency (ARPA) and the National Aeronautics and Space Administration ( NASA ) attempted to consolidate early space and missile efforts, inter- service
Understanding and exploiting nanoscale surface heterogeneity for particle and cell manipulation
NASA Astrophysics Data System (ADS)
Kalasin, Surachate
This thesis explores the impact of surface heterogeneities on colloidal interactions and translates concepts to biointerfacial systems, for instance, microfluidic and biomedical devices. The thesis advances a model system, originally put forth by Kozlova: Tunable electrostatic surface heterogeneity is produced by adsorbing small amounts of cationic polyelectrolyte on a silica flat. The resulting positive electrostatic patches possess a density that is tuned from a saturated carpet down to average spacings on the order of a few hundred nanometers. At these length-scales, multiple adhesive elements (from tens to thousands) are present in the area of contact between a particle and a surface, a distinguishing feature of the thesis. Much of the literature addressing surface "heterogeneity" engineers surfaces with micron-scale features, almost always larger than the contact area between a particle and a second surface. With a nanoscale heterogeneity model, this thesis reports and quantitatively explains particle interaction behavior not typical of homogeneous interfaces. This includes (1) an adhesion threshold, a minimum average surface density of cationic patches needed for particle capture, (previously observed by Kozlova); (2) a crossover, from salt-destabilized to salt-stabilized interactions between heterogeneous surfaces with net-negative charge; (3) a shift of the adhesion threshold with shear, reducing adhesion; (4) a crossover from shear-enhanced to shear-hindered particle adhesion; (5) a range of surface compositions and processing parameters that sustain particle rolling; and (6) conditions where particles arrest immediately on contact. Through variations in ionic strength and particle size, the particle-surface contact area is systematically varied relative to the heterogeneity lengthscale. This provides a semi-quantitative explanation for the shifting of the adhesion threshold, in terms of the statistical probability of a particle being able to find a surface region sufficiently attractive for capture. Though neglecting hydrodynamics, the resulting (kappa-1a)1/2 power law scaling for the density of patches at the adhesion threshold roughly captures the general shape of the data. The study also reveals that at high ionic strength, particle-surface interactions are most influenced by the patchy surface heterogeneity; however, at low ionic strengths, the system becomes most sensitive to the average system properties. Thus for heterogeneous interfaces, the extent to which heterogeneity is influential depends on other factors (particle size, ionic strength). While this comprises a crossover from heterogeneity-dominated to mean field behavior, it is worth noting that even in the mean field regime, the spacing between patches always exceeds the Debye length, making the regions of different surface charge always distinct. Comparison with the simulations of Duffadar and Davis reveals that the criterion for particle capture is a nearly constant number of cationic patches per unit area of contact between a particle and a heterogeneous collector. The heterogeneous surface model displays a shear crossover seen with bacteria and other complex systems: At low shear, particle capture is enhanced, while at higher shears it is reduced. This behavior, sometimes rationalized in terms of the complex energy landscapes of biological bonds, is clearly explained in the heterogeneity model. For weakly adhesive systems engaging only a few adhesive elements or receptors, shear compromises the ability of a few bonds to capture particles. For more strongly adhesive systems, shear increases particle transport. The convolution of this competition leads to the non-monotonic effect of shear seen in biology. The complex variety of particle behaviors combined with the large number of independently variable parameters, each with different scaling of interfacial forces, necessitates a state-space approach to mapping regimes interactions and motion signatures. Following the approach taken by biophysicists for describing the interactions of leukocytes with the endothelial vasculature near an injury, the state spaces in this thesis map regimes of free particle motion, immediate firm arrest, and persistent rolling against macroscopic average patch density, Debye length, particle size, and shear rate. Surprisingly, the electrostatic heterogeneity state space resembles that for selectin-mediated leukocyte motion, and reasons are put forth. This finding is important because it demonstrates how synthetic nanoscale constructs can be exploited to achieve the selective cell capture mechanism previously attributed only to specialized cell adhesion molecules. This thesis initiates studies that extend these fundamental principles, developed for a tunable and well-characterized synthetic model to biological systems. For instance, it is demonstrated that general behaviors seen with the electrostatic model are observed when fibrinogen proteins are substituted for the electrostatic patches. This shows that the nature of the attractions is immaterial to adhesion, and that the effect of added salt primarily alters the range of the electrostatic repulsion and, correspondingly, the contact area. Also, studies with Staphylococcus aureus run parallel to those employing 1 mum silica spheres, further translating the concepts. Inaugural studies with mammalian cells, in the future work section, indicate that application of the surface heterogeneity approach to cell manipulation holds much future promise.
Space use by 4 strains of laying hens to perch, wing flap, dust bathe, stand and lie down.
Riddle, Elizabeth R; Ali, Ahmed B A; Campbell, Dana L M; Siegford, Janice M
2018-01-01
The laying hen industry is implementing aviary systems intended to improve welfare by providing hens with more space and resources to perform species-specific behaviors. To date, limited research has examined spatial requirements of various strains of laying hens for performing key behaviors and none has been conducted within an alternative housing system. This study investigated the amount of space used by 4 strains of laying hens (Hy-Line Brown [HB], Bovans Brown [BB], DeKalb White [DW], and Hy-Line W36) to perform 5 different behaviors in the litter area of a commercial-style aviary. Hens were recorded standing [S], lying [L], perching [P], wing flapping [WF], and dust bathing [DB] on an open-litter area with an outer perch between 12:00 and 15:00 at peak lay (28 wk of age). Still images of each behavior were analyzed using ImageJ software for 16 hens per strain, and maximum hen length and width were used to calculate total area occupied per hen for each behavior. Brown hens required, on average, 89.6cm2 more space for S (P≤0.021) and 81.5cm2 more space for L (P≤0.013) than white hens. White hens used, on average, 572cm2 more space to perform WF than brown hens (P≤0.024) while brown hens used 170.3cm2 more space for DB than white hens (P≤0.022). On average, hens of all strains were wider while perching than the 15cm commonly recommended per hen (e.g., DW: 18.03; HB: 21.89cm), and brown hens required, on average, 3.38cm more space while perching than white hens (P≤0.01). Brown and white hens occupy different amounts of space when performing key behaviors. These differences, along with factors such as behavioral synchrony, clustering, and preferred inter-bird distances associated with these behaviors, should be considered when creating industry guidelines, crafting legislation and designing and stocking laying hen facilities to ensure hens can fulfill their behavioral needs.
Space use by 4 strains of laying hens to perch, wing flap, dust bathe, stand and lie down
Campbell, Dana L. M.
2018-01-01
The laying hen industry is implementing aviary systems intended to improve welfare by providing hens with more space and resources to perform species-specific behaviors. To date, limited research has examined spatial requirements of various strains of laying hens for performing key behaviors and none has been conducted within an alternative housing system. This study investigated the amount of space used by 4 strains of laying hens (Hy-Line Brown [HB], Bovans Brown [BB], DeKalb White [DW], and Hy-Line W36) to perform 5 different behaviors in the litter area of a commercial-style aviary. Hens were recorded standing [S], lying [L], perching [P], wing flapping [WF], and dust bathing [DB] on an open-litter area with an outer perch between 12:00 and 15:00 at peak lay (28 wk of age). Still images of each behavior were analyzed using ImageJ software for 16 hens per strain, and maximum hen length and width were used to calculate total area occupied per hen for each behavior. Brown hens required, on average, 89.6cm2 more space for S (P≤0.021) and 81.5cm2 more space for L (P≤0.013) than white hens. White hens used, on average, 572cm2 more space to perform WF than brown hens (P≤0.024) while brown hens used 170.3cm2 more space for DB than white hens (P≤0.022). On average, hens of all strains were wider while perching than the 15cm commonly recommended per hen (e.g., DW: 18.03; HB: 21.89cm), and brown hens required, on average, 3.38cm more space while perching than white hens (P≤0.01). Brown and white hens occupy different amounts of space when performing key behaviors. These differences, along with factors such as behavioral synchrony, clustering, and preferred inter-bird distances associated with these behaviors, should be considered when creating industry guidelines, crafting legislation and designing and stocking laying hen facilities to ensure hens can fulfill their behavioral needs. PMID:29304059
Steady state rheology from homogeneous and locally averaged simple shear simulations
NASA Astrophysics Data System (ADS)
Shi, Hao; Luding, Stefan; Magnanimo, Vanessa
2017-06-01
Granular materials and particulate matter are ubiquitous in our daily life and they display interesting bulk behaviors from static to dynamic, solid to fluid or gas like states, or even all these states together. To understand how the micro structure and inter-particle forces influence the macroscopic bulk behavior is still a great challenge today. This short paper presents stress controlled homogeneous simple shear results in a 3D cuboidal box using MercuryDPM software. An improved rheological model is proposed for macroscopic friction, volume fraction and coordination number as a function of inertial number and pressure. In addition, the results are compared with the locally averaged data from steady state shear bands in a split bottom ring shear cell and very good agreement is observed in low to intermediate inertia regime at various confining pressure but not for high inertia collisional granular flow.
Structural and magnetic studies of nanocrystalline Y{sub 2}Ir{sub 2}O{sub 7}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedi, Vinod Kumar, E-mail: vinodd@iitk.ac.in; Mukhopadhyay, Soumik
2015-06-24
In this paper, we discuss synthesis of Y{sub 2}Ir{sub 2}O{sub 7} nanoparticles via chemical solution process. Structural analysis shows single cubic phase with Fd-3m space group symmetry. The particle size and distribution were studied by Transmission Electron Microscopy experiments. The average particle size turns out to be 50nm, which is in good agreement with the XRD results. Magnetic characterization shows no evidence of long range ordering even in presence of strong correlations.
A snapshot attractor view of the advection of inertial particles in the presence of history force
NASA Astrophysics Data System (ADS)
Guseva, Ksenia; Daitche, Anton; Tél, Tamás
2017-06-01
We analyse the effect of the Basset history force on the sedimentation or rising of inertial particles in a two-dimensional convection flow. We find that the concept of snapshot attractors is useful to understand the extraordinary slow convergence due to long-term memory: an ensemble of particles converges exponentially fast towards a snapshot attractor, and this attractor undergoes a slow drift for long times. We demonstrate for the case of a periodic attractor that the drift of the snapshot attractor can be well characterized both in the space of the fluid and in the velocity space. For the case of quasiperiodic and chaotic dynamics we propose the use of the average settling velocity of the ensemble as a distinctive measure to characterize the snapshot attractor and the time scale separation corresponding to the convergence towards the snapshot attractor and its own slow dynamics.
Poloidal motion of trapped particle orbits in real-space coordinates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemov, V. V.; Kasilov, S. V.; Kernbichler, W.
The bounce averaged poloidal drift velocity of trapped particles in stellarators is an important quantity in the framework of optimization of stellarators because it allows us to analyze the possibility for closure of contours of the second adiabatic invariant and therefore for improvement of {alpha}-particle confinement in such a device. Here, a method is presented to compute such a drift velocity directly in real space coordinates through integration along magnetic field lines. This has the advantage that one is not limited to the usage of magnetic coordinates and can use the magnetic field produced by coil currents and more importantlymore » also results of three-dimensional magnetohydrodynamic finite beta equilibrium codes, such as PIES [A. H. Reiman and H. S. Greenside, J. Comput. Phys. 75, 423 (1988)] and HINT [Y. Suzuki et al., Nucl. Fusion 46, L19 (2006)].« less
Diffusion of multiple species with excluded-volume effects.
Bruna, Maria; Chapman, S Jonathan
2012-11-28
Stochastic models of diffusion with excluded-volume effects are used to model many biological and physical systems at a discrete level. The average properties of the population may be described by a continuum model based on partial differential equations. In this paper we consider multiple interacting subpopulations/species and study how the inter-species competition emerges at the population level. Each individual is described as a finite-size hard core interacting particle undergoing brownian motion. The link between the discrete stochastic equations of motion and the continuum model is considered systematically using the method of matched asymptotic expansions. The system for two species leads to a nonlinear cross-diffusion system for each subpopulation, which captures the enhancement of the effective diffusion rate due to excluded-volume interactions between particles of the same species, and the diminishment due to particles of the other species. This model can explain two alternative notions of the diffusion coefficient that are often confounded, namely collective diffusion and self-diffusion. Simulations of the discrete system show good agreement with the analytic results.
Investigation of energy transfer in terbium doped Y 2SiO5 phosphor particles
NASA Astrophysics Data System (ADS)
Salis, M.; Carbonaro, C. M.; Corpino, R.; Anedda, A.; Ricci, P. C.
2012-07-01
The kinetics of luminescence of sol-gel synthesized terbium doped Y 2SiO5 (YSO) phosphor particles is investigated in detail with reference to Tb concentration in the 0.001%-10% range. By increasing the dopant concentration, the luminescence profile changes from a blue to a green peaked emission spectrum because of the energy transfer among centers. The inter-center energy transfer mechanism is well accounted for by the Inokuti-Hirayama (IH) kinetic model which is based on a statistical average of inter-center distance dependent decay modes of the donor luminescence. The distribution of the decay modes is implemented from the Förster-Dexter resonance theory of energy transfer by assuming a rate constant for the energy transfer by multipolar interactions between donors and acceptors. However, the experimental results recorded in the low concentration limit show the presence of green emission contributions in the luminescence spectrum which cannot be related to the Tb concentration; for this reason an additional internal energy transfer mechanism, occurring among levels of the same center, is proposed to account for the recorded emission properties. Thus, a new and more exhaustive model which includes both the internal and external energy transfer processes is considered; the proposed model allows a better explanation of the spectroscopic features of Tb related centers in YSO crystals and discloses the critical concentration and the quantum yields of the different energy transfer mechanisms.
Bond, L; Schulz, B; VanMeter, T; Martin, R C G
2017-02-01
Irreversible electroporation (IRE) uses multiple needles and a series of electrical pulses to create pores in cell membranes and cause cell apoptosis. One of the demands of IRE is the precise needle spacing required. Two-dimensional intraoperative ultrasound (2-D iUS) is currently used to measure inter-needle distances but requires significant expertise. This study evaluates the potential of three-dimensional (3-D) image guidance for placing IRE needles and calculating needle spacing. A prospective clinical evaluation of a 3-D needle localization system (Explorer™) was evaluated in consecutive patients from April 2012 through June 2013 for unresectable pancreatic adenocarcinoma. 3-D reconstructions of patients' anatomy were generated from preoperative CT images, which were aligned to the intraoperative space. Thirty consecutive patients with locally advanced pancreatic cancer were treated with IRE. The needle localization system setup added an average of 6.5 min to each procedure. The 3-D needle localization system increased surgeon confidence and ultimately reduced needle placement time. IRE treatment efficacy is highly dependent on accurate needle spacing. The needle localization system evaluated in this study aims to mitigate these issues by providing the surgeon with additional visualization and data in 3-D. The Explorer™ system provides valuable guidance information and inter-needle distance calculations. Copyright © 2016 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.
Phase-Space Approach to the Tunnel Effect: A New Semiclassical Traversal Time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xavier, A.L. Jr.; de Aguiar, M.A.
1997-11-01
We determine the semiclassical coherent-state propagator for a particle going through one-dimensional evolution in a simple barrier potential. The described semiclassical method makes use of complex trajectories which, by its turn, enables the definition of (real) traversal times in the complexified phase space. We then discuss the behavior of this time for a wave packet whose average energy is below the barrier height. {copyright} {ital 1997} {ital The American Physical Society}
Controlling microstructure and mechanical properties of the new microelectronic interconnect alloys
NASA Astrophysics Data System (ADS)
Mutuku, Francis M.
An in-depth understanding of the physics of solidification could lead to the optimization of the properties of micro-electronic interconnects. Sn is the base material in the billions of interconnects in devices such as smart phones. These interconnects are formed by melting and solidifying a solder alloy (e.g. SnAgCu) in situ. But Sn has a low symmetry structure, Sn nucleation from the solder melt is complex and the morphology of the Sn and Sn alloys precipitates that form during solidification can vary tremendously (along with resultant mechanical properties). The effect of processing parameters on the solidification behavior, microstructure, and properties must be carefully addressed. Strong evidence adduced in this study shows that under many conditions, when cooling near eutectic SnAgCu from the melt, Ag3Sn nucleates before beta-Sn. The difficulty in the nucleation of beta-Sn provides a window of time between the nucleation of Ag3Sn precipitates and of beta-Sn solidification within which the Ag3Sn precipitate morphology can be manipulated. Thus distinct variations in precipitate number density, and inter-particle spacing were observed for different thermal histories, e.g. for different cooling rates. The average number density of Ag3Sn particles and the area of the pseudo-eutectic phase were observed to increase with increase in the Ag concentration, and with increase in the cooling rate. The shear strength and shear fatigue life increased with increase in the area fraction of the pseudo-eutectic phase. Upon aging of SnAgCu solder joints at an elevated temperature, the Ag3Sn particles coarsened, and became less effective in impeding dislocation motion. Consequently, the shear strength and shear fatigue performance degraded. On the other hand, alloys with constituents that formed solid solutions in Sn, such as small concentrations of Bi or Sb registered less degradation in both shear strength and shear fatigue life upon aging.
Solar-flare-induced Forbush decreases - Dependence on shock wave geometry
NASA Technical Reports Server (NTRS)
Thomas, B. T.; Gall, R.
1984-01-01
It is argued that the principal mechanism for the association of Forbush decreases with the passage of a solar flare shock wave is prolonged containment of cosmic ray particles behind the flare compression region, which acts as a semipermeable obstacle to particle motion along the field lines, leading to additional adiabatic cooling of the particles. Liouville's theorem is used to calculate the instantaneous distribution function at 1 AU for each particle arriving at the earth. By averaging over a large number of individual estimates, a representative estimate of the omnidirectional phase space density and the corresponding particle intensity is obtained. The energy change of individual particles at the shocks is found to be small in comparison to the energy lost by adiabatic cooling of the cosmic rays between the shock wave and the sun. The effects of particle rigidity, diffusion coefficient, and flare longitude on the magnitude of the Forbush decrease are quantitatively investigated.
NASA Astrophysics Data System (ADS)
Berkovits, Richard
2018-03-01
The properties of the low-lying eigenvalues of the entanglement Hamiltonian and their relation to the localization length of a disordered interacting one-dimensional many-particle system are studied. The average of the first entanglement Hamiltonian level spacing is proportional to the ground-state localization length and shows the same dependence on the disorder and interaction strength as the localization length. This is the result of the fact that entanglement is limited to distances of order of the localization length. The distribution of the first entanglement level spacing shows a Gaussian-type behavior as expected for level spacings much larger than the disorder broadening. For weakly disordered systems (localization length larger than sample length), the distribution shows an additional peak at low-level spacings. This stems from rare regions in some samples which exhibit metalliclike behavior of large entanglement and large particle-number fluctuations. These intermediate microemulsion metallic regions embedded in the insulating phase are discussed.
NASA Technical Reports Server (NTRS)
Baeza, Mario; Sharma, Hemant; Borrok, David; Ren, Mingua; Pannell, Keith
2011-01-01
From data concerning the degradation of the CO2 removal system in the International Space Station (ISS) two important features were apparent: (1) The atmosphere within the International Space Station (ISS) contained many organic compounds including alcohols, halocarbons, aldehydes, esters, and ketones, inter alia. Various cyclosiloxanes Dn, hexamethylcyclotrisiloxane (D3) and its higher homologs (D4) and (D5) are also present presumably due to offgassing. (2) Screens within the zeolite-containing canisters, used for the removal of CO2, exhibited partial clogging due to zeolitic fragments (dust) along with "sticky" residues, that in toto significantly reduced the efficiency of the CO2 removal process. Samples of the ISS fresh zeolite, used zeolite, filter clogging zeolite particles and residual polymeric materials were examined using, inter alia, NMR, EM and HRSEM. These data were compared to equivalent samples obtained prior and subsequent to Dn polymerization experiments performed in our laboratories using the clean ISS zeolite samples as catalyst. Polysiloxane materials produced were essentially equivalent in the two cases and the EM images demonstrate a remarkable similarity between the ISS filter zeolite samples and the post-polymerization zeolite material from our experiments. In this regard even the changes in the Al/Si ratio from the virgin zeolite material to the filter samples and the post-polymerization laboratory samples samples is noteworthy. This research was supported by a contract from the Boeing Company
NASA Technical Reports Server (NTRS)
Fries, M.; Abell, P.; Brisset, J.; Britt, D.; Colwell, J.; Durda, D.; Dove, A.; Graham, L.; Hartzell, C.; John, K.;
2016-01-01
The Strata-1 experiment will study the evolution of asteroidal regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). Many asteroids feature low bulk densities, which implies high values of porosity and a mechanical structure composed of loosely bound particles, (i.e. the "rubble pile" model), a prime example of a granular medium. Even the higher-density, mechanically coherent asteroids feature a significant surface layer of loose regolith. These bodies are subjected to a variety of forces and will evolve in response to very small perturbations such as micrometeoroid impacts, planetary flybys, and the YORP effect. Our understanding of this dynamical evolution and the inter-particle forces involved would benefit from long-term observations of granular materials exposed to small vibrations in microgravity. A detailed understanding of asteroid mechanical evolution is needed in order to predict the surface characteristics of as-of-yet unvisited bodies, to understand the larger context of samples collected by missions such as OSIRIS-REx and Hayabusa 1 and 2, and to mitigate risks for both manned and unmanned missions to asteroidal bodies. Understanding regolith dynamics will inform designs of how to land and set anchors, safely sample/move material on asteroidal surfaces, process large volumes of material for in situ resource utilization (ISRU) purposes, and, in general, predict behavior of large and small particles on disturbed asteroid surfaces.
Tunable gas adsorption in graphene oxide framework
NASA Astrophysics Data System (ADS)
Razmkhah, Mohammad; Moosavi, Fatemeh; Taghi Hamed Mosavian, Mohammad; Ahmadpour, Ali
2018-06-01
Effect of length of linker inter-space was studied on the adsorption capacity of CO2 by graphene oxide framework (GOF). Effect of linker inter-space of 14, 11, and 8 Å was studied here. The linker inter-space of 11 Å showed the highest CO2 adsorption capacity. A dual-site Langmuir model was observed for adsorption of CO2 and CH4 into the GOF. According to radial distribution function (RDF), facial and central atoms of linker are the dual-site predicted by Langmuir model. Two distinguishable sites of adsorption and parallel orientation of CO2 are the main reasons of high adsorption capacity in 11 Å linker inter-space. Gas-adsorbent affinity obtains the orientation of CO2 near the linker. The affinity in the 11 Å linker inter-space is the highest. Thus, it forces the CO2 to lay parallel and orient more localized than the other GOFs. In addition, CH4 resulted higher working capacity than CO2 in 14 Å. This occurs because of the change in gas-adsorbent affinity by changing pressure. An entrance adsorption occurs out of the pore of the GOF. This adsorption is not as stable as deep adsorption.
Dynamic simulations of the inhomogeneous sedimentation of rigid fibres
NASA Astrophysics Data System (ADS)
Butler, Jason E.; Shaqfeh, Eric S. G.
2002-10-01
We have simulated the dynamics of suspensions of fibres sedimenting in the limit of zero Reynolds number. In these simulations, the dominant inter-particle force arises from hydrodynamic interactions between the rigid, non-Brownian fibres. The simulation algorithm uses slender-body theory to model the linear and rotational velocities of each fibre. To include far-field interactions between the fibres, the line distribution of force on each fibre is approximated by making a Legendre polynomial expansion of the disturbance velocity on the fibre, where only the first two terms of the expansion are retained in the calculation. Thus, the resulting linear force distribution can be specified completely by a centre-of-mass force, a couple, and a stresslet. Short-range interactions between particles are included using a lubrication approximation, and an infinite suspension is simulated by using periodic boundary conditions. Our numerical results confirm that the sedimentation of these non-spherical, orientable particles differs qualitatively from the sedimentation of spherical particles. The simulations demonstrate that an initially homogeneous, settling suspension develops clusters, or streamers, which are particle rich surrounded by clarified fluid. The instability which causes the heterogeneous structure arises solely from hydrodynamic interactions which couple the particle orientation and the sedimentation rate in particle clusters. Depending upon the concentration and aspect ratio, the formation of clusters of particles can enhance the sedimentation rate of the suspension to a value in excess of the maximum settling speed of an isolated particle. The suspension of fibres tends to orient with gravity during the sedimentation process. The average velocities and orientations, as well as their distributions, compare favourably with previous experimental measurements.
NASA Astrophysics Data System (ADS)
Volkov, K. N.; Denisikhin, S. V.; Emel'yanov, V. N.; Teterina, I. V.
2017-09-01
The flow of combustion products containing condensed-phase particles over the recessed vectorable nozzle of a solid-propellant rocket motor was investigated with the use of the Reynolds-averaged Navier-Stokes equations, equations of the k-ɛ model of turbulence, and the Lagrange approach. The fields of flows of combustion products and the mechanical trajectories of condensed-phase particles in the charge channel, the prenozzle space, and the nozzle unit of this motor were calculated for different angles of swing of the nozzle. The formation of vortices in the gas flow in the neighborhood of the downstream cover of the nozzle and their influence on the movement of particles different in size were considered.
Fang, Guor-Cheng; Chiang, Hung-Che; Chen, Yu-Cheng; Xiao, You-Fu; Wu, Chia-Ming; Kuo, Yu-Chen
2015-04-01
The purpose of this study is to characterize metallic elements associated with atmospheric particulate matter in the dry deposition plate, total suspended particulate, fine particles, and coarse particles at Taichung Harbor and Gong Ming Junior High School (airport) in central Taiwan at a sampling site from June 2013 to August 2013. The results indicated that: (1) the average concentrations of the metallic elements Cr and Cd were highest at the Gong Ming Junior High School (airport), and the average concentrations of the metallic elements Ni, Cu, and Pb were highest at the Taichung Harbor sampling site. (2) The high smelting industry density and export/import rate of heavily loaded cargos were the main reasons leading to these findings. (3) The average metallic element dry deposition and metallic element PM(2.5-10) all followed the order of Pb > Cr > Cu > Ni > Cd at the two sampling sites. However, the average metallic elements Cu and Pb were found to have the highest dry deposition velocities and concentrations in PM(2.5) for the two sampling sites in this study. (4) The correlation coefficients of ambient air particle dry deposition and concentration with wind speed at the airport were higher than those from the harbor sampling site. The wind and broad open spaces at Taichung Airport were the possible reasons for the increasing correlation coefficients for ambient air particle concentration and dry deposition with wind speed at the Taichung Airport sampling site.
Microscopy of the interacting Harper-Hofstadter model in the few-body limit
NASA Astrophysics Data System (ADS)
Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Schittko, Robert; Menke, Tim; Borgnia, Dan; Preiss, Philipp; Grusdt, Fabian; Kaufman, Adam; Greiner, Markus
2017-04-01
The interplay of magnetic fields and interacting particles can lead to exotic phases of matter exhibiting topological order and high degrees of spatial entanglement. While these phases were discovered in a solid-state setting, recent techniques have enabled the realization of gauge fields in systems of ultracold neutral atoms, offering a new experimental paradigm for studying these novel states of matter. This complementary platform holds promise for exploring exotic physics in fractional quantum Hall systems due to the microscopic manipulation and precision possible in cold atom systems. However, these experiments thus far have mostly explored the regime of weak interactions. Here, we show how strong interactions can modify the propagation of particles in a 2 × N , real-space ladder governed by the Harper-Hofstadter model. We observe inter-particle interactions affect the populating of chiral bands, giving rise to chiral dynamics whose multi-particle correlations indicate both bound and free-particle character. The novel form of interaction-induced chirality observed in these experiments demonstrates the essential ingredients for future investigations of highly entangled topological phases of many-body systems. We are supported by Grants from the National Science Foundation, Gordon and Betty Moore Foundation's EPiQS Initiative, an Air Force Office of Scientific Research MURI program, an Army Research Office MURI program, and the NSF GRFP (MNR).
Zachary, Chase E; Jiao, Yang; Torquato, Salvatore
2011-05-01
We extend the results from the first part of this series of two papers by examining hyperuniformity in heterogeneous media composed of impenetrable anisotropic inclusions. Specifically, we consider maximally random jammed (MRJ) packings of hard ellipses and superdisks and show that these systems both possess vanishing infinite-wavelength local-volume-fraction fluctuations and quasi-long-range pair correlations scaling as r(-(d+1)) in d Euclidean dimensions. Our results suggest a strong generalization of a conjecture by Torquato and Stillinger [Phys. Rev. E 68, 041113 (2003)], namely, that all strictly jammed saturated packings of hard particles, including those with size and shape distributions, are hyperuniform with signature quasi-long-range correlations. We show that our arguments concerning the constrained distribution of the void space in MRJ packings directly extend to hard-ellipse and superdisk packings, thereby providing a direct structural explanation for the appearance of hyperuniformity and quasi-long-range correlations in these systems. Additionally, we examine general heterogeneous media with anisotropic inclusions and show unexpectedly that one can decorate a periodic point pattern to obtain a hard-particle system that is not hyperuniform with respect to local-volume-fraction fluctuations. This apparent discrepancy can also be rationalized by appealing to the irregular distribution of the void space arising from the anisotropic shapes of the particles. Our work suggests the intriguing possibility that the MRJ states of hard particles share certain universal features independent of the local properties of the packings, including the packing fraction and average contact number per particle.
Low Temperature Regolith Bricks for In-Situ Structural Material
NASA Technical Reports Server (NTRS)
Grossman, Kevin; Sakthivel, Tamil S.; Mantovani, James; Seal, Sudipta
2016-01-01
Current technology for producing in-situ structural materials on future missions to Mars or the moon relies heavily on energy-intensive sintering processes to produce solid bricks from regolith. This process requires heating the material up to temperatures in excess of 1000 C and results in solid regolith pieces with compressive strengths in the range of 14000 to 28000 psi, but are heavily dependent on the porosity of the final material and are brittle. This method is currently preferred over a low temperature cementation process to prevent consumption of precious water and other non-renewable materials. A high strength structural material with low energy requirements is still needed for future colonization of other planets. To fulfill these requirements, a nano-functionalization process has been developed to produce structural bricks from regolith simulant and shows promising mechanical strength results. Functionalization of granular silicate particles into alkoxides using a simple low temperature chemical process produces a high surface area zeolite particles that are held together via inter-particle oxygen bonding. Addition of water in the resulting zeolite particles produces a sol-gel reaction called "inorganic polymerization" which gives a strong solid material after a curing process at 60 C. The aqueous solution by-product of the reaction is currently being investigated for its reusability; an essential component of any ISRU technology. For this study, two batches of regolith bricks are synthesized from JSC-1A; the first batch from fresh solvents and chemicals, the second batch made from the water solution by-product of the first batch. This is done to determine the feasibility of recycling necessary components of the synthesis process, mainly water. Characterization including BET surface area, SEM, and EDS has been done on the regolith bricks as well as the constituent particles,. The specific surface area of 17.53 sq m/g (average) of the granular regolith material was obtained from nitrogen adsorption isotherm measurement. The size, shape and textures of regolith from SEM shows that the particles are 25-50 micrometers in size and mostly irregular in shape (Figure 1a). The elemental composition of regolith was identified from EDS analysis showed the presence of Si, Al, Fe, Na, Mg, Ca, Ti, O and C (see figure 1b). Each set of cylindrical brick samples were prepared by low energy process, and cured for 21 and 28 days, respectively to compare their compressive strength. Figure 1c, and d shows the JSC-1A brick and the compressive strength measurements. The results from the 21 day cured bricks (2 bricks) have been done and yielded an aver-age strength of 3050 psi, considerably higher than Portland cement mortars (Type IV and V). This promising technology provides the benefits of construction material similar to concrete, with a low complexity, low energy synthesis process and the likelihood of complete reusability of precious resources. Compressive strength using this method can be improved by increasing the surface area of the particles, using bi-modal particle size distribution, and adding certain additives to increase inter-particle forces.
NASA Astrophysics Data System (ADS)
Park, Y.; Ree, J. H.; Hirose, T.
2016-12-01
Mirror-like fault surfaces (or fault mirror: FM) have recently been suggested as a precursor of unstable slip (thus indicative of seismic slip). Frictional aging of fault surfaces (increase in static friction during interseismic period) is a common phenomenon of fault surfaces, resulting from increase in contact area or in bond strength between asperities with time. Despite the importance of FM in earthquake faulting, the frictional-aging behavior of FM has never been studied. To understand the frictional-aging behavior of FM, slide-hold-slide friction experiments were done on carbonate FM and powdered gouge of former carbonate FM (PG hereafter) using low-to-high-velocity-rotary-shear apparatus, at a slip rate of 1 μm s-1 a normal stress of 1.5 MPa, room temperature and room humidity condition. The sheared PG specimens showed a logarithmic positive relationship between static friction and holding time, consistent with Dieterich-type healing behavior. In contrast, the sheared FM specimens showed little effect of holding time on static friction. The slip surface of FM specimens consists of densely-packed and sintered nano-particles while that of PG specimens is composed of loose nano-particles. It has been known that yield strength of a material increases dramatically with size-decreasing grains being nano-particles. Since FM is a layer of densely-packed and sintered nanoparticles, enhanced strength of FM may inhibit growth of real contact area of fault surfaces during hold time. Furthermore, sintered particles composing FM have less pore space than loose gouge layer, and thus there would be a less chance of strengthening by pore space reduction, inter-particle meniscus formation or water adsorption onto the particles surface in the FM layer. Our preliminary result suggests that carbonate FM's may impede the recovery of fault strength during interseismic period, resulting in less possibility of earthquake nucleation. Reduced frictional healing may be a common phenomenon of FM's in other materials too once they are composed of sintered nano-particles.
NASA Astrophysics Data System (ADS)
Ma, Xiaoping; Langelier, Brian; Gault, Baptiste; Subramanian, Sundaresa
2017-05-01
The role of Nb in normalized and tempered Ti-bearing 13Cr5Ni2Mo super martensitic stainless steel is investigated through in-depth characterization of the bimodal chemistry and size of Nb-rich precipitates/atomic clusters and Nb in solid solution. Transmission electron microscopy and atom probe tomography are used to analyze the samples and clarify precipitates/atom cluster interactions with dislocations and austenite grain boundaries. The effect of 0.1 wt pct Nb addition on the promotion of (Ti, Nb)N-Nb(C,N) composite precipitates, as well as the retention of Nb in solution after cooling to room temperature, are analyzed quantitatively. (Ti, Nb)N-Nb(C,N) composite precipitates with average diameters of approximately 24 ± 8 nm resulting from epitaxial growth of Nb(C,N) on pre-existing (Ti,Nb)N particles, with inter-particle spacing on the order of 205 ± 68 nm, are found to be associated with mean austenite grain size of 28 ± 10 µm in the sample normalized at 1323 K (1050 °C). The calculated Zener limiting austenite grain size of 38 ± 13 µm is in agreement with the experimentally observed austenite grain size distribution. 0.08 wt pct Nb is retained in the as-normalized condition, which is able to promote Nb(C, N) atomic clusters at dislocations during tempering at 873 K (600 °C) for 2 hours, and increases the yield strength by 160 MPa, which is predicted to be close to maximum increase in strengthening effect. Retention of solute Nb before tempering also leads to it preferentially combing with C and N to form Nb(C, N) atom clusters, which suppresses the occurrence of Cr- and Mo-rich carbides during tempering.
Study of transionospheric signal scintillation: Quasi- particle approach
NASA Astrophysics Data System (ADS)
Lyle, Ruthie D.
1998-07-01
A quasi-particle approach is applied to study amplitude scintillation of transionospheric signals caused by Bottomside Sinusoidal (BSS) irregularities. The quasi- particle method exploits wave-particle duality, viewing the wave as a distribution of quasi-particles. This is accomplished by transforming the autocorrelation of the wave function into a Wigner distribution function, which serves as a distribution of quasi-particles in the (/vec r,/ /vec k) phase space. The quasi-particle distribution at any instant of time represents the instantaneous state of the wave. Scattering of the signal by the ionospheric irregularities is equivalent to the evolution of the quasi-particle distribution, due to the collision of the quasi-particles with objects arising from the presence of the BSS irregularities. Subsequently, the perturbed quasi-particle distribution facilitates the computation of average space time propagation properties of the wave. Thus, the scintillation index S4 is determined. Incorporation of essential BSS features in the analysis is accomplished by analytically modeling the power spectrum of the BSS irregularities measured in-situ by the low orbiting Atmosphere-E (AE - E) Satellite. The effect of BSS irregularities on transionospheric signals has been studied. The numerical results agree well with multi-satellite scintillation observations made at Huancayo Peru in close time correspondence with BSS irregularities observed by the AE - E satellite over a few nights (December 8-11, 1979). During this period, the severity of the scintillation varied from moderate to intense, S4 = 0.1-0.8.
USDA-ARS?s Scientific Manuscript database
An inter-laboratory trial was conducted to validate the operation of the CottonscanTM technology as useful technique for determining the average fiber linear density of cotton. A significant inter-laboratory trial was completed and confirmed that the technology is quite acceptable. For fibers fin...
Plume particle collection and sizing from static firing of solid rocket motors
NASA Technical Reports Server (NTRS)
Sambamurthi, Jay K.
1995-01-01
A unique dart system has been designed and built at the NASA Marshall Space Flight Center to collect aluminum oxide plume particles from the plumes of large scale solid rocket motors, such as the space shuttle RSRM. The capability of this system to collect clean samples from both the vertically fired MNASA (18.3% scaled version of the RSRM) motors and the horizontally fired RSRM motor has been demonstrated. The particle mass averaged diameters, d43, measured from the samples for the different motors, ranged from 8 to 11 mu m and were independent of the dart collection surface and the motor burn time. The measured results agreed well with those calculated using the industry standard Hermsen's correlation within the standard deviation of the correlation . For each of the samples analyzed from both MNASA and RSRM motors, the distribution of the cumulative mass fraction of the plume oxide particles as a function of the particle diameter was best described by a monomodal log-normal distribution with a standard deviation of 0.13 - 0.15. This distribution agreed well with the theoretical prediction by Salita using the OD3P code for the RSRM motor at the nozzle exit plane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fachruddin, Imam, E-mail: imam.fachruddin@sci.ui.ac.id; Salam, Agus
2016-03-11
A new momentum-space formulation for scattering of two spin-half particles, both either identical or unidentical, is formulated. As basis states the free linear-momentum states are not expanded into the angular-momentum states, the system’s spin states are described by the product of the spin states of the two particles, and the system’s isospin states by the total isospin states of the two particles. We evaluate the Lippmann-Schwinger equations for the T-matrix elements in these basis states. The azimuthal behavior of the potential and of the T-matrix elements leads to a set of coupled integral equations for the T-matrix elements in twomore » variables only, which are the magnitude of the relative momentum and the scattering angle. Some symmetry relations for the potential and the T-matrix elements reduce the number of the integral equations to be solved. A set of six spin operators to express any interaction of two spin-half particles is introduced. We show the spin-averaged differential cross section as being calculated in terms of the solution of the set of the integral equations.« less
Aerosol Sampling Experiment on the International Space Station
NASA Technical Reports Server (NTRS)
Meyer, Marit E.
2017-01-01
The International Space Station (ISS) is a unique indoor environment which serves as both home and workplace to the astronaut crew. There is currently no particulate monitoring, although particulate matter requirements exist. An experiment to collect particles in the ISS cabin was conducted recently. Two different aerosol samplers were used for redundancy and to collect particles in two size ranges spanning from 10 nm to hundreds of micrometers. The Active Sampler is a battery operated thermophoretic sampler with an internal pump which draws in air and collects particles directly on a transmission electron microscope grid. This commercial-off-the-shelf device was modified for operation in low gravity. The Passive Sampler has five sampling surfaces which were exposed to air for different durations in order to collect at least one sample with an optimal quantity of particles for microscopy. These samples were returned to Earth for analysis with a variety of techniques to obtain long-term average concentrations and identify particle emission sources. Results are compared with the inventory of ISS aerosols which was created based on sparse data and the literature. The goal of the experiment is to obtain data on indoor aerosols on ISS for future particulate monitor design and development.
Measurement of Reconstructed Charged Particle Multiplicities of Neutrino Interactions in MicroBooNE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafique, Aleena
2017-09-25
Here, we compare the observed charged particle multiplicity distributions in the MicroBooNE liquid argon time projection chamber from neutrino interactions in a restricted final state phase space to predictions of this distribution from several GENIE models. The measurement uses a data sample consisting of neutrino interactions with a final state muon candidate fully contained within the MicroBooNE detector. These data were collected in 2015-2016 with the Fermilab Booster Neutrino Beam (BNB), which has an average neutrino energy of 800 MeV, using an exposure corresponding to 5e19 protons-on-target. The analysis employs fully automatic event selection and charged particle track reconstruction andmore » uses a data-driven technique to determine the contribution to each multiplicity bin from neutrino interactions and cosmic-induced backgrounds. The restricted phase space employed makes the measurement most sensitive to the higher-energy charged particles expected from primary neutrino-argon collisions and less sensitive to lower energy protons expected to be produced in final state interactions of collision products with the target argon nucleus.« less
Radiative acceleration in Schwarzschild space-times
NASA Astrophysics Data System (ADS)
Keane, A. J.; Barrett, R. K.; Simmons, J. F. L.
2001-03-01
We examine the radial motion of a material particle in the intense radiation field of a static spherically symmetric compact object with spherical emitting surface outside the Schwarzschild radius. This paper generalizes previous work which dealt with radial motion in the Thomson limit, where the radiation force is simply proportional to the radiative flux. In the general case the average time component of the 4-momentum transferred to the particle is not negligible compared with its rest mass. Consequently, we find that the frequency dependence of the radiation force owing to Compton scattering for highly energetic photons gives rise to an increase in the effective mass of the test particle. In this work we outline the effects of this frequency dependence and compare these with the results in the Thomson limit. We present the frequency dependent saturation velocity curves for a range of stellar luminosities and radiation frequencies and present the resulting phase-space diagrams corresponding to the radial test particle trajectories. In particular, the stable equilibrium points which exist in the Thomson limit are found to be absent in the general case.
NASA Astrophysics Data System (ADS)
Emelyanov, V. N.; Teterina, I. V.; Volkov, K. N.; Garkushev, A. U.
2017-06-01
Metal particles are widely used in space engineering to increase specific impulse and to supress acoustic instability of intra-champber processes. A numerical analysis of the internal injection-driven turbulent gas-particle flows is performed to improve the current understanding and modeling capabilities of the complex flow characteristics in the combustion chambers of solid rocket motors (SRMs) in presence of forced pressure oscillations. The two-phase flow is simulated with a combined Eulerian-Lagrangian approach. The Reynolds-averaged Navier-Stokes equations and transport equations of k - ε model are solved numerically for the gas. The particulate phase is simulated through a Lagrangian deterministic and stochastic tracking models to provide particle trajectories and particle concentration. The results obtained highlight the crucial significance of the particle dispersion in turbulent flowfield and high potential of statistical methods. Strong coupling between acoustic oscillations, vortical motion, turbulent fluctuations and particle dynamics is observed.
Space Weathering Investigations Enabled by NASA's Virtual Heliophysical Observatories
NASA Technical Reports Server (NTRS)
Cooper, John F.; King, Joseph H.; Papitashvili, Natalia E.; Lal, Nand; Sittler, Edward C.; Sturner, Steven J.; Hills, Howard K.; Lipatov, Alexander S.; Kovalick, Tamara J.; Johnson, Rita C.;
2012-01-01
Structural and chemical impact of the heliospheric space environment on exposed planetary surfaces and interplanetary dust grains may be generally defined as space weathering . In the inner solar system, from the asteroid belt inwards towards the Sun, the surface regolith structures of airless bodies are primarily determined by cumulative meteoritic impacts over billions of years, but the molecular composition to meters in depth can be substantially modified by irradiation effects. Plasma ions at eV to keV energies may both erode uppermost surfaces by sputtering, and implant or locally produce exogenic material, e.g. He-3 and H2O, while more energetic ions drive molecular change through electronic ionization. Galactic cosmic ray ions and more energetic solar ions can impact chemistry to meters in depth. High energy cosmic ray interactions produce showers of secondary particles and energetic photons that present hazards for robotic and human exploration missions but also enable detection of potentially useable resources such as water ice, oxygen, and many other elements. Surface sputtering also makes ejected elemental and molecular species accessible for in-situ compositional analysis by spacecraft with ion and neutral mass spectrometers. Modeling of relative impacts for these various space weathering processes requires knowledge of the incident species-resolved ion flux spectra at plasma to cosmic ray energies and as integrated over varying time scales. Although the main drivers for investigations of these processes come from NASA's planetary science and human exploration programs, the NASA heliophysics program provides the requisite data measurement and modeling resources to enable specification of the field & plasma and energetic particle irradiation environments for application to space weather and surface weathering investigations. The Virtual Heliospheric Observatory (VHO), Virtual Energetic Particle Observatory (VEPO), Lunar Solar Origins Exploration (LunaSOX), and Space Physics Data Facility (SPDF) services now provide a wide range of inner heliospheric spacecraft data that can be applied to space weathering of potential exploration destinations including the Moon, asteroids, and the moons of Mars, as well to radiation hazard assessment for the spacecraft and human explorers. For example, the new VEPO service for time-averaging of multi-source ion flux spectra enables the specification of composite flux spectra from a variety of ongoing and legacy missions for applications to surface interaction modeling. Apollo to Artemis data resources of LunaSOX enable specific space weathering investigations for the Moon, while VHO more generally covers the space field and plasma environments of the inner and outer solar system from the sunward-most perihelia of the twin Helios spacecraft to the ongoing heliosheath passages of the twin Voyagers. Composite multi-source spectra from VEPO can also be applied to the continuing compilation of accumulated 1-AU fluence spectra, mostly contributed by solar wind plasma and energetic particle events, for determination of time-averaged particle compositional and kinetic energy output from the Sun and for modeling of long-term irradiation impacts on planetary surfaces.
NASA Astrophysics Data System (ADS)
Keilbach, D.; Drews, C.; Berger, L.; Marsch, E.; Wimmer-Schweingruber, R. F.
2017-12-01
Using a test particle approach we have investigated, how an oxygen pickup ion torus velocity distribution is modified by continuous and intermittent alfvènic waves on timescales, where the gyro trajectory of each particle can be traced.We have therefore exposed the test particles to mono frequent waves, which expanded through the whole simulation in time and space. The general behavior of the pitch angle distribution is found to be stationary and a nonlinear function of the wave frequency, amplitude and the initial angle between wave elongation and field-perpendicular particle velocity vector. The figure shows the time-averaged pitch angle distributions as a function of the Doppler shifted wave frequency (where the Doppler shift was calculated with respect to the particles initial velocity) for three different wave amplitudes (labeled in each panel). The background field is chosen to be 5 nT and the 500 test particles were initially distributed on a torus with 120° pitch angle at a solar wind velocity of 450 km/s. Each y-slice of the histogram (which has been normalized to it's respective maximum) represents an individual run of the simulation.The frequency-dependent behavior of the test particles is found to be classifiable into the regimes of very low/high frequencies and frequencies close to first order resonance. We have found, that only in the latter regime the particles interact strongly with the wave, where in the time averaged histograms a branch structure is found, which was identified as a trace of particles co-moving with the wave phase. The magnitude of pitch angle change of these particles is as well as the frequency margin, where the branch structure is found, an increasing function with the wave amplitude.We have also investigated the interaction with mono frequent intermittent waves. Exposed to such waves a torus distribution is scattered in pitch angle space, whereas the pitch angle distribution is broadened systematically over time similar to pitch angle diffusion.The framework of our simulations is a first step toward understanding wave particle interactions at the most basic level and is readily expandable to e.g. the inclusion of multiple wave frequencies, intermittent wave activity, gradients in the background magnetic field or collisions with solar wind particles.
NASA Astrophysics Data System (ADS)
Choi, Jiwoong; Leblanc, Lawrence; Choi, Sanghun; Haghighi, Babak; Hoffman, Eric; Lin, Ching-Long
2017-11-01
The goal of this study is to assess inter-subject variability in delivery of orally inhaled drug products to small airways in asthmatic lungs. A recent multiscale imaging-based cluster analysis (MICA) of computed tomography (CT) lung images in an asthmatic cohort identified four clusters with statistically distinct structural and functional phenotypes associating with unique clinical biomarkers. Thus, we aimed to address inter-subject variability via inter-cluster variability. We selected a representative subject from each of the 4 asthma clusters as well as 1 male and 1 female healthy controls, and performed computational fluid and particle simulations on CT-based airway models of these subjects. The results from one severe and one non-severe asthmatic cluster subjects characterized by segmental airway constriction had increased particle deposition efficiency, as compared with the other two cluster subjects (one non-severe and one severe asthmatics) without airway constriction. Constriction-induced jets impinging on distal bifurcations led to excessive particle deposition. The results emphasize the impact of airway constriction on regional particle deposition rather than disease severity, demonstrating the potential of using cluster membership to tailor drug delivery. NIH Grants U01HL114494 and S10-RR022421, and FDA Grant U01FD005837. XSEDE.
Inter-comparison of three-dimensional models of volcanic plumes
Suzuki, Yujiro; Costa, Antonio; Cerminara, Matteo; Esposti Ongaro, Tomaso; Herzog, Michael; Van Eaton, Alexa; Denby, Leif
2016-01-01
We performed an inter-comparison study of three-dimensional models of volcanic plumes. A set of common volcanological input parameters and meteorological conditions were provided for two kinds of eruptions, representing a weak and a strong eruption column. From the different models, we compared the maximum plume height, neutral buoyancy level (where plume density equals that of the atmosphere), and level of maximum radial spreading of the umbrella cloud. We also compared the vertical profiles of eruption column properties, integrated across cross-sections of the plume (integral variables). Although the models use different numerical procedures and treatments of subgrid turbulence and particle dynamics, the inter-comparison shows qualitatively consistent results. In the weak plume case (mass eruption rate 1.5 × 106 kg s− 1), the vertical profiles of plume properties (e.g., vertical velocity, temperature) are similar among models, especially in the buoyant plume region. Variability among the simulated maximum heights is ~ 20%, whereas neutral buoyancy level and level of maximum radial spreading vary by ~ 10%. Time-averaging of the three-dimensional (3D) flow fields indicates an effective entrainment coefficient around 0.1 in the buoyant plume region, with much lower values in the jet region, which is consistent with findings of small-scale laboratory experiments. On the other hand, the strong plume case (mass eruption rate 1.5 × 109 kg s− 1) shows greater variability in the vertical plume profiles predicted by the different models. Our analysis suggests that the unstable flow dynamics in the strong plume enhances differences in the formulation and numerical solution of the models. This is especially evident in the overshooting top of the plume, which extends a significant portion (~ 1/8) of the maximum plume height. Nonetheless, overall variability in the spreading level and neutral buoyancy level is ~ 20%, whereas that of maximum height is ~ 10%. This inter-comparison study has highlighted the different capabilities of 3D volcanic plume models, and identified key features of weak and strong plumes, including the roles of jet stability, entrainment efficiency, and particle non-equilibrium, which deserve future investigation in field, laboratory, and numerical studies.
Effect of long-range repulsive Coulomb interactions on packing structure of adhesive particles.
Chen, Sheng; Li, Shuiqing; Liu, Wenwei; Makse, Hernán A
2016-02-14
The packing of charged micron-sized particles is investigated using discrete element simulations based on adhesive contact dynamic model. The formation process and the final obtained structures of ballistic packings are studied to show the effect of interparticle Coulomb force. It is found that increasing the charge on particles causes a remarkable decrease of the packing volume fraction ϕ and the average coordination number 〈Z〉, indicating a looser and chainlike structure. Force-scaling analysis shows that the long-range Coulomb interaction changes packing structures through its influence on particle inertia before they are bonded into the force networks. Once contact networks are formed, the expansion effect caused by repulsive Coulomb forces are dominated by short-range adhesion. Based on abundant results from simulations, a dimensionless adhesion parameter Ad*, which combines the effects of the particle inertia, the short-range adhesion and the long-range Coulomb interaction, is proposed and successfully scales the packing results for micron-sized particles within the latest derived adhesive loose packing (ALP) regime. The structural properties of our packings follow well the recent theoretical prediction which is described by an ensemble approach based on a coarse-grained volume function, indicating some kind of universality in the low packing density regime of the phase diagram regardless of adhesion or particle charge. Based on the comprehensive consideration of the complicated inter-particle interactions, our findings provide insight into the roles of short-range adhesion and repulsive Coulomb force during packing formation and should be useful for further design of packings.
Building a database for statistical characterization of ELMs on DIII-D
NASA Astrophysics Data System (ADS)
Fritch, B. J.; Marinoni, A.; Bortolon, A.
2017-10-01
Edge localized modes (ELMs) are bursty instabilities which occur in the edge region of H-mode plasmas and have the potential to damage in-vessel components of future fusion machines by exposing the divertor region to large energy and particle fluxes during each ELM event. While most ELM studies focus on average quantities (e.g. energy loss per ELM), this work investigates the statistical distributions of ELM characteristics, as a function of plasma parameters. A semi-automatic algorithm is being used to create a database documenting trigger times of the tens of thousands of ELMs for DIII-D discharges in scenarios relevant to ITER, thus allowing statistically significant analysis. Probability distributions of inter-ELM periods and energy losses will be determined and related to relevant plasma parameters such as density, stored energy, and current in order to constrain models and improve estimates of the expected inter-ELM periods and sizes, both of which must be controlled in future reactors. Work supported in part by US DoE under the Science Undergraduate Laboratory Internships (SULI) program, DE-FC02-04ER54698 and DE-FG02- 94ER54235.
Branching points in the low-temperature dipolar hard sphere fluid
NASA Astrophysics Data System (ADS)
Rovigatti, Lorenzo; Kantorovich, Sofia; Ivanov, Alexey O.; Tavares, José Maria; Sciortino, Francesco
2013-10-01
In this contribution, we investigate the low-temperature, low-density behaviour of dipolar hard-sphere (DHS) particles, i.e., hard spheres with dipoles embedded in their centre. We aim at describing the DHS fluid in terms of a network of chains and rings (the fundamental clusters) held together by branching points (defects) of different nature. We first introduce a systematic way of classifying inter-cluster connections according to their topology, and then employ this classification to analyse the geometric and thermodynamic properties of each class of defects, as extracted from state-of-the-art equilibrium Monte Carlo simulations. By computing the average density and energetic cost of each defect class, we find that the relevant contribution to inter-cluster interactions is indeed provided by (rare) three-way junctions and by four-way junctions arising from parallel or anti-parallel locally linear aggregates. All other (numerous) defects are either intra-cluster or associated to low cluster-cluster interaction energies, suggesting that these defects do not play a significant part in the thermodynamic description of the self-assembly processes of dipolar hard spheres.
Eyjafjallajokull Volcano Plume Particle-Type Characterization from Space-Based Multi-angle Imaging
NASA Technical Reports Server (NTRS)
Kahn, Ralph A.; Limbacher, James
2012-01-01
The Multi-angle Imaging SpectroRadiometer (MISR) Research Aerosol algorithm makes it possible to study individual aerosol plumes in considerable detail. From the MISR data for two optically thick, near-source plumes from the spring 2010 eruption of the Eyjafjallaj kull volcano, we map aerosol optical depth (AOD) gradients and changing aerosol particle types with this algorithm; several days downwind, we identify the occurrence of volcanic ash particles and retrieve AOD, demonstrating the extent and the limits of ash detection and mapping capability with the multi-angle, multi-spectral imaging data. Retrieved volcanic plume AOD and particle microphysical properties are distinct from background values near-source, as well as for overwater cases several days downwind. The results also provide some indication that as they evolve, plume particles brighten, and average particle size decreases. Such detailed mapping offers context for suborbital plume observations having much more limited sampling. The MISR Standard aerosol product identified similar trends in plume properties as the Research algorithm, though with much smaller differences compared to background, and it does not resolve plume structure. Better optical analogs of non-spherical volcanic ash, and coincident suborbital data to validate the satellite retrieval results, are the factors most important for further advancing the remote sensing of volcanic ash plumes from space.
Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events
Debnath, Dipsikha; Gainer, James S.; Kilic, Can; ...
2017-06-19
We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain q ~→χ ~ 0 2→ℓ ~→χ ~ 0 1 , we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant massesmore » squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, Σ¯ , which is the average RSD per unit area, calculated over the hypothesized boundary. We show that the location of the Σ¯ maximum correlates very well with the true values of the new particle masses. Our approach represents the natural extension of the one-dimensional kinematic endpoint method to the relevant three dimensions of invariant mass phase space.« less
Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debnath, Dipsikha; Gainer, James S.; Kilic, Can
We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain q ~→χ ~ 0 2→ℓ ~→χ ~ 0 1 , we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant massesmore » squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, Σ¯ , which is the average RSD per unit area, calculated over the hypothesized boundary. We show that the location of the Σ¯ maximum correlates very well with the true values of the new particle masses. Our approach represents the natural extension of the one-dimensional kinematic endpoint method to the relevant three dimensions of invariant mass phase space.« less
Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events
NASA Astrophysics Data System (ADS)
Debnath, Dipsikha; Gainer, James S.; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao
2017-06-01
We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain \\tilde{q}\\to {\\tilde{χ}}_2^0\\to \\tilde{ℓ}\\to {\\tilde{χ}}_1^0 , we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, \\overline{Σ} , which is the average RSD per unit area, calculated over the hypothesized boundary. We show that the location of the \\overline{Σ} maximum correlates very well with the true values of the new particle masses. Our approach represents the natural extension of the one-dimensional kinematic endpoint method to the relevant three dimensions of invariant mass phase space.
Space radiation shielding studies for astronaut and electronic component risk assessment
NASA Astrophysics Data System (ADS)
Fuchs, Jordan; Gersey, Brad; Wilkins, Richard
The space radiation environment is comprised of a complex and variable mix of high energy charged particles, gamma rays and other exotic species. Elements of this radiation field may also interact with intervening matter (such as a spaceship wall) and create secondary radiation particles such as neutrons. Some of the components of the space radiation environment are highly penetrating and can cause adverse effects in humans and electronic components aboard spacecraft. Developing and testing materials capable of providing effective shielding against the space radiation environment presents special challenges to researchers. Researchers at the Cen-ter for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View AM University (PVAMU) perform accelerator based experiments testing the effectiveness of various materials for use as space radiation shields. These experiments take place at the NASA Space Radiation Laboratory at Brookhaven National Laboratory, the proton synchrotron at Loma Linda University Medical Center, and the Los Alamos Neutron Science Center at Los Alamos National Laboratory where charged particles and neutrons are produced at energies similar to those found in the space radiation environment. The work presented in this paper constitutes the beginning phase of an undergraduate research project created to contribute to this ongoing space radiation shielding project. Specifically, this student project entails devel-oping and maintaining a database of information concerning the historical data from shielding experiments along with a systematic categorization and storage system for the actual shielding materials. The shielding materials referred to here range in composition from standard materi-als such as high density polyethylene and aluminum to exotic multifunctional materials such as spectra-fiber infused composites. The categorization process for each material includes deter-mination of the density thickness of individual samples and a clear labeling and filing method that allows immediate cross referencing with other material samples during the experimental design process. Density thickness measurements will be performed using a precision scale that will allow for the fabrication of sets of standard density thicknesses of selected materials for ready use in shielding experiments. The historical data from previous shielding experiments consists primarily of measurements of absorbed dose, dose equivalent and dose distributions from a Tissue Equivalent Proportional Counter (TEPC) as measured downstream of various thicknesses of the materials while being irradiated in one of the aforementioned particle beams. This data has been digitally stored and linked to the composition of each material and may be easily accessed for shielding effectiveness inter-comparisons. This work was designed to facili-tate and increase the efficiency of ongoing space radiation shielding research performed at the CRESSE as well as serve as a way to educate new generations of space radiation researchers.
Numerical Investigation of Two-Phase Flows With Charged Droplets in Electrostatic Field
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook
1996-01-01
A numerical method to solve two-phase turbulent flows with charged droplets in an electrostatic field is presented. The ensemble-averaged Navier-Stokes equations and the electrostatic potential equation are solved using a finite volume method. The transitional turbulence field is described using multiple-time-scale turbulence equations. The equations of motion of droplets are solved using a Lagrangian particle tracking scheme, and the inter-phase momentum exchange is described by the Particle-In-Cell scheme. The electrostatic force caused by an applied electrical potential is calculated using the electrostatic field obtained by solving a Laplacian equation and the force exerted by charged droplets is calculated using the Coulombic force equation. The method is applied to solve electro-hydrodynamic sprays. The calculated droplet velocity distributions for droplet dispersions occurring in a stagnant surrounding are in good agreement with the measured data. For droplet dispersions occurring in a two-phase flow, the droplet trajectories are influenced by aerodynamic forces, the Coulombic force, and the applied electrostatic potential field.
Patient-specific model of a scoliotic torso for surgical planning
NASA Astrophysics Data System (ADS)
Harmouche, Rola; Cheriet, Farida; Labelle, Hubert; Dansereau, Jean
2013-03-01
A method for the construction of a patient-specific model of a scoliotic torso for surgical planning via inter-patient registration is presented. Magnetic Resonance Images (MRI) of a generic model are registered to surface topography (TP) and X-ray data of a test patient. A partial model is first obtained via thin-plate spline registration between TP and X-ray data of the test patient. The MRIs from the generic model are then fit into the test patient using articulated model registration between the vertebrae of the generic model's MRIs in prone position and the test patient's X-rays in standing position. A non-rigid deformation of the soft tissues is performed using a modified thin-plate spline constrained to maintain bone rigidity and to fit in the space between the vertebrae and the surface of the torso. Results show average Dice values of 0:975 +/- 0:012 between the MRIs following inter-patient registration and the surface topography of the test patient, which is comparable to the average value of 0:976 +/- 0:009 previously obtained following intra-patient registration. The results also show a significant improvement compared to rigid inter-patient registration. Future work includes validating the method on a larger cohort of patients and incorporating soft tissue stiffness constraints. The method developed can be used to obtain a geometric model of a patient including bone structures, soft tissues and the surface of the torso which can be incorporated in a surgical simulator in order to better predict the outcome of scoliosis surgery, even if MRI data cannot be acquired for the patient.
Inter-nesting movements and habitat-use of adult female Kemp’s ridley turtles in the Gulf of Mexico
Shaver, Donna J.; Hart, Kristen M.; Fujisaki, Ikuko; Bucklin, David N.; Iverson, Autumn; Rubio, Cynthia; Backof, Thomas F.; Burchfield, Patrick M.; Gonzales Diaz Miron, Raul de Jesus; Dutton, Peter H.; Frey, Amy; Peña, Jaime; Gamez, Daniel Gomez; Martinez, Hector J.; Ortiz, Jaime
2017-01-01
Species vulnerability is increased when individuals congregate in restricted areas for breeding; yet, breeding habitats are not well defined for many marine species. Identification and quantification of these breeding habitats are essential to effective conservation. Satellite telemetry and switching state-space modeling (SSM) were used to define inter-nesting habitat of endangered Kemp’s ridley turtles (Lepidochelys kempii) in the Gulf of Mexico. Turtles were outfitted with satellite transmitters after nesting at Padre Island National Seashore, Texas, USA, from 1998 through 2013 (n = 60); Rancho Nuevo, Tamaulipas, Mexico, during 2010 and 2011 (n = 11); and Tecolutla, Veracruz, Mexico, during 2012 and 2013 (n = 11). These sites span the range of nearly all nesting by this species. Inter-nesting habitat lies in a narrow band of nearshore western Gulf of Mexico waters in the USA and Mexico, with mean water depth of 14 to 19 m within a mean distance to shore of 6 to 11 km as estimated by 50% kernel density estimate, α-Hull, and minimum convex polygon methodologies. Turtles tracked during the inter-nesting period moved, on average, 17.5 km/day and a mean total distance of 398 km. Mean home ranges occupied were 725 to 2948 km2. Our results indicate that these nearshore western Gulf waters represent critical inter-nesting habitat for this species, where threats such as shrimp trawling and oil and gas platforms also occur. Up to half of all adult female Kemp’s ridleys occupy this habitat for weeks to months during each nesting season. Because inter-nesting habitat for this species is concentrated in nearshore waters of the western Gulf of Mexico in both Mexico and the USA, international collaboration is needed to protect this essential habitat and the turtles occurring within it.
Inter-nesting movements and habitat-use of adult female Kemp's ridley turtles in the Gulf of Mexico.
Shaver, Donna J; Hart, Kristen M; Fujisaki, Ikuko; Bucklin, David; Iverson, Autumn R; Rubio, Cynthia; Backof, Thomas F; Burchfield, Patrick M; de Jesus Gonzales Diaz Miron, Raul; Dutton, Peter H; Frey, Amy; Peña, Jaime; Gomez Gamez, Daniel; Martinez, Hector J; Ortiz, Jaime
2017-01-01
Species vulnerability is increased when individuals congregate in restricted areas for breeding; yet, breeding habitats are not well defined for many marine species. Identification and quantification of these breeding habitats are essential to effective conservation. Satellite telemetry and switching state-space modeling (SSM) were used to define inter-nesting habitat of endangered Kemp's ridley turtles (Lepidochelys kempii) in the Gulf of Mexico. Turtles were outfitted with satellite transmitters after nesting at Padre Island National Seashore, Texas, USA, from 1998 through 2013 (n = 60); Rancho Nuevo, Tamaulipas, Mexico, during 2010 and 2011 (n = 11); and Tecolutla, Veracruz, Mexico, during 2012 and 2013 (n = 11). These sites span the range of nearly all nesting by this species. Inter-nesting habitat lies in a narrow band of nearshore western Gulf of Mexico waters in the USA and Mexico, with mean water depth of 14 to 19 m within a mean distance to shore of 6 to 11 km as estimated by 50% kernel density estimate, α-Hull, and minimum convex polygon methodologies. Turtles tracked during the inter-nesting period moved, on average, 17.5 km/day and a mean total distance of 398 km. Mean home ranges occupied were 725 to 2948 km2. Our results indicate that these nearshore western Gulf waters represent critical inter-nesting habitat for this species, where threats such as shrimp trawling and oil and gas platforms also occur. Up to half of all adult female Kemp's ridleys occupy this habitat for weeks to months during each nesting season. Because inter-nesting habitat for this species is concentrated in nearshore waters of the western Gulf of Mexico in both Mexico and the USA, international collaboration is needed to protect this essential habitat and the turtles occurring within it.
NASA Astrophysics Data System (ADS)
Jimenez-Ramos, M. C.; Eriksson, M.; García-López, J.; Ranebo, Y.; García-Tenorio, R.; Betti, M.; Holm, E.
2010-09-01
In order to validate and to gain confidence in two micro-beam techniques: particle induced X-ray emission with nuclear microprobe technique (μ-PIXE) and synchrotron radiation induced X-ray fluorescence in a confocal alignment (confocal SR μ-XRF) for characterization of microscopic particles containing actinide elements (mixed plutonium and uranium) a comparative study has been performed. Inter-comparison of the two techniques is essential as the X-ray production cross-sections for U and Pu are different for protons and photons and not well defined in the open literature, especially for Pu. The particles studied consisted of nuclear weapons material, and originate either in the so called Palomares accident in Spain, 1966 or in the Thule accident in Greenland, 1968. In the determination of the average Pu/U mass ratios (not corrected by self-absorption) in the analysed microscopic particles the results from both techniques show a very good agreement. In addition, the suitability of both techniques for the analysis with good resolution (down to a few μm) of the Pu/U distribution within the particles has been proved. The set of results obtained through both techniques has allowed gaining important information concerning the characterization of the remaining fissile material in the areas affected by the aircraft accidents. This type of information is essential for long-term impact assessments of contaminated sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heikkinen, J. A.; Nora, M.
2011-02-15
Gyrokinetic equations of motion, Poisson equation, and energy and momentum conservation laws are derived based on the reduced-phase-space Lagrangian and inverse Kruskal iteration introduced by Pfirsch and Correa-Restrepo [J. Plasma Phys. 70, 719 (2004)]. This formalism, together with the choice of the adiabatic invariant J=
Sandeep, Chitta Sai; Senetakis, Kostas
2018-01-31
In the study we experimentally examine the influence of elastic properties and surface morphology on the inter-particle friction of natural soil grains. The experiments are conducted with a custom-built micromechanical apparatus and the database is enhanced by testing engineered-reference grains. Naturally-occurring geological materials are characterized by a wide spectrum of mechanical properties (e.g., Young's modulus) and surface morphology (e.g., roughness), whereas engineered grains have much more consistent characteristics. Comparing to engineered materials, geological materials are found to display more pronounced initial plastic behavior during compression. Under the low normal load range applied in the study, between 1 and 5 N, we found that the frictional force is linearly correlated with the applied normal load, but we acknowledge that the data are found more scattered for natural soil grains, especially for rough and weathered materials which have inconsistent characteristics. The inter-particle coefficient of friction is found to be inversely correlated with the Young's modulus and the surface roughness. These findings are important in geophysical and petroleum engineering contents, since a number of applications, such as landslides and granular flows, hydraulic fracturing using proppants, and weathering process of cliffs, among others, can be simulated using discrete numerical methods. These methods employ contact mechanics properties at the grain scale and the inter-particle friction is one of these critical components. It is stressed in our study that friction is well correlated with the elastic and morphological characteristics of the grains.
47 CFR 25.279 - Inter-satellite service.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Technical Operations § 25.279 Inter-satellite service. (a) Any satellite communicating with other space stations may use frequencies in the inter-satellite service as indicated in § 2.106 of this chapter. This...
47 CFR 25.279 - Inter-satellite service.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Technical Operations § 25.279 Inter-satellite service. (a) Any satellite communicating with other space stations may use frequencies in the inter-satellite service as indicated in § 2.106 of this chapter. This...
47 CFR 25.279 - Inter-satellite service.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Technical Operations § 25.279 Inter-satellite service. (a) Any satellite communicating with other space stations may use frequencies in the inter-satellite service as indicated in § 2.106 of this chapter. This...
47 CFR 25.279 - Inter-satellite service.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Technical Operations § 25.279 Inter-satellite service. (a) Any satellite communicating with other space stations may use frequencies in the inter-satellite service as indicated in § 2.106 of this chapter. This...
47 CFR 25.279 - Inter-satellite service.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Technical Operations § 25.279 Inter-satellite service. (a) Any satellite communicating with other space stations may use frequencies in the inter-satellite service as indicated in § 2.106 of this chapter. This...
NASA Astrophysics Data System (ADS)
Seidov, D.; Haupt, B. J.
2003-12-01
The role of sea surface salinity (SSS) contrasts in maintaining vigorous global ocean thermohaline circulation (THC) is revisited. Relative importance of different generalizations of sea surface conditions in climate studies is explored. In numerical experiments using an ocean general circulation model, we have aggregated the observed sea surface temperature (SST) and SSS in several different ways: we used observed unchanged SST with SSS taken as constant (34.25 psu) everywhere; SST unchanged, and SSS zonally averaged globally, i.e., in the whole World Ocean; SST averaged globally, and SSS unchanged; SST zonally averaged globally and SSS zonally averaged basin-wide in individual basins, i.e., in the Atlantic, Indian, Pacific, and Southern Oceans separately; and, finally, both SST and SSS zonally averaged in individual basins. Global zonal averaging removes all longitudinal differences in sea surface climatology among ocean basins. However, latitudinal profiles of zonally averaged parameters preserve the main character of large-scale equator-to-pole sea surface variability. Basin-wide zonal averaging does an even better job of preserving latitudinal distributions within each basin. The results of the experiments could hardly be anticipated a priory. Surprisingly, SST could be used as a 2-D field, or as a zonally-averaged field without much difference in the THC dynamics. Moreover, SST could be averaged either globally, or basin-wide, and it also did not change the overall character of THC. At the same time, THC responded vigorously to how the SSS has been changed. It appeared that the THC structure with the globally averaged SST and basin-wide averaged SSS was very close to the one obtained in the control run (control run operates with 2-D observed SST and SSS). Our main conclusion is that ocean-wide inter-basin sea surface salinity contrasts serve as the major controlling element in global thermohaline circulation. Thermal inter-basin contrasts, as well as longitudinal variation in SSS, are less important than latitudinal thermal gradients and inter-basin salinity contrasts. Details of SSS also decrease in importance as soon as its inter-basin contrasts are retained. This is especially important for paleoclimate and future climate simulations, as only the large-scale inter-basin contrasts of the sea surface conditions really matter.
NASA Astrophysics Data System (ADS)
Zhou, Yanlai; Guo, Shenglian; Hong, Xingjun; Chang, Fi-John
2017-10-01
China's inter-basin water transfer projects have gained increasing attention in recent years. This study proposes an intelligent water allocation methodology for establishing optimal inter-basin water allocation schemes and assessing the impacts of water transfer projects on water-demanding sectors in the Hanjiang River Basin of China. We first analyze water demands for water allocation purpose, and then search optimal water allocation strategies for maximizing the water supply to water-demanding sectors and mitigating the negative impacts by using the Standard Genetic Algorithm (SGA) and Adaptive Genetic Algorithm (AGA), respectively. Lastly, the performance indexes of the water supply system are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: the AGA with adaptive crossover and mutation operators could increase the average annual water transfer from the Hanjiang River by 0.79 billion m3 (8.8%), the average annual water transfer from the Changjiang River by 0.18 billion m3 (6.5%), and the average annual hydropower generation by 0.49 billion kW h (5.4%) as well as reduce the average annual unmet water demand by 0.40 billion m3 (9.7%), as compared with the those of the SGA. We demonstrate that the proposed intelligent water allocation schemes can significantly mitigate the negative impacts of inter-basin water transfer projects on the reliability, vulnerability and resilience of water supply to the demanding sectors in water-supplying basins. This study has a direct bearing on more intelligent and effectual water allocation management under various scenarios of inter-basin water transfer projects.
Yielding in a strongly aggregated colloidal gel: 2D simulations and theory
NASA Astrophysics Data System (ADS)
Roy, Saikat; Tirumkudulu, Mahesh
2015-11-01
We investigated the micro-structural details and the mechanical response under uniaxial compression of the strongly aggregating gel starting from low to high packing fraction.The numerical simulations account for short-range inter-particle attractions, normal and tangential deformation at particle contacts,sliding and rolling friction, and preparation history. It is observed that in the absence of rolling resistance(RR),the average coordination number varies only slightly with compaction whereas it is significant in the presence of RR. The particle contact distribution is isotropic throughout the consolidation process. In both cases, the yield strain is constant with the volume fraction. The modulus values are very similar at different attraction, and with and without RR implying that the elastic modulus does not scale with attraction.The modulus was found to be a weak function of the preparation history. The increase in yield stress with volume fraction is a consequence of the increased elastic modulus of the network. However, the yield stress scales similarly both with and without RR. The power law exponent of 5.4 is in good agreement with previous simulation results. A micromechanical theory is also proposed to describe the stress versus strain relation for the gelled network.
Acceleration of charged particles by crossed cyclotron waves, Resonant Moments Method
NASA Astrophysics Data System (ADS)
Ponomarjov, M.; Carati, D.
A mechanism for enhanced acceleration of charged particles in crossing radio frequency or micro waves propagating at different angles with respect to an external magnetic field is investigated. This mechanism consists in introducing low amplitude secondary waves in order to improve the parallel momentum transfer from the high amplitude primary wave to charged particles. The use of two parallel counter-propagating waves has recently been considered (Gell and Nakach, 1999) and numerical tests (Louies et al, 2001) have shown that the two-wave scheme may lead to higher averaged parallel velocity. On the other hand, it has been concluded that it may be more effective to accelerate electrons when the waves propagate obliquely to the external magnetic field (Karimabadi and Angelopoulos 1989, Cohen et al 1991). The idea considered here is similar although no constraint is imposed on the refraction indices of the primary and the secondary waves. The theoretical analysis of the acceleration mechanism is based on the Resonance Moments Method (RMM) in which moments of the velocity distribution are computed by using an averages over the resonant layers (RL)i only instead of a complete phase-space average. The quantities obtained using this approach, referred to as Resonant Moments (RM), suggest the existence of optimal angles of propagation for the primary and secondary waves as long as the maximization of the parallel flux of charged particles is considered. The fraction of charged particles that are close to the resonance conditions, that correspond to the RL, becomes then as important as the time these particles remain resonant. The secondary wave tends to maintain a pseudo-equilibrium velocity distribution by continuously re-filling the RL. Our suggestions are confirmed by direct numerical simulations for a populations of 105 relativistic electrons. The secondary wave yields a clear increase (up to one order of magnitude) of the average parallel velocity of the particles. It is a quite promising result since the amplitude of the secondary wave is ten times lower the one of the first wave. Qualitative results give one of the enhanced acceleration mechanisms of the charged particles (including relativistic electrons in planetary magnetospheres) by the crossed cyclotron waves in ambient magnetic field.
Aminopropyl-Silica Hybrid Particles as Supports for Humic Acids Immobilization.
Sándor, Mónika; Nistor, Cristina Lavinia; Szalontai, Gábor; Stoica, Rusandica; Nicolae, Cristian Andi; Alexandrescu, Elvira; Fazakas, József; Oancea, Florin; Donescu, Dan
2016-01-08
A series of aminopropyl-functionalized silica nanoparticles were prepared through a basic two step sol-gel process in water. Prior to being aminopropyl-functionalized, silica particles with an average diameter of 549 nm were prepared from tetraethyl orthosilicate (TEOS), using a Stöber method. In a second step, aminopropyl-silica particles were prepared by silanization with 3-aminopropyltriethoxysilane (APTES), added drop by drop to the sol-gel mixture. The synthesized amino-functionalized silica particles are intended to be used as supports for immobilization of humic acids (HA), through electrostatic bonds. Furthermore, by inserting beside APTES, unhydrolysable mono-, di- or trifunctional alkylsilanes (methyltriethoxy silane (MeTES), trimethylethoxysilane (Me₃ES), diethoxydimethylsilane (Me₂DES) and 1,2-bis(triethoxysilyl)ethane (BETES)) onto silica particles surface, the spacing of the free amino groups was intended in order to facilitate their interaction with HA large molecules. Two sorts of HA were used for evaluating the immobilization capacity of the novel aminosilane supports. The results proved the efficient functionalization of silica nanoparticles with amino groups and showed that the immobilization of the two tested types of humic acid substances was well achieved for all the TEOS/APTES = 20/1 (molar ratio) silica hybrids having or not having the amino functions spaced by alkyl groups. It was shown that the density of aminopropyl functions is low enough at this low APTES fraction and do not require a further spacing by alkyl groups. Moreover, all the hybrids having negative zeta potential values exhibited low interaction with HA molecules.
Collisional dissipation in Vlasov turbulence
NASA Astrophysics Data System (ADS)
Pezzi, O.; Perrone, D.; Servidio, S.; Valentini, F.; Sorriso-Valvo, L.; Zouganelis, Y.; Veltri, P.
2017-12-01
A puzzling aspect of solar-wind dynamics consists in the empirical evidence that it is hotter than expected for an adiabatic expanding gas. The cooling of the expanding solar wind is less efficient than it should be, then a key question is how does the solar wind energy turn into heat and keep it hot. Understanding the mechanisms of energy dissipation into heat from the Sun in such a collision-free system represents a key challenge not only in space plasma physics but also from a general thermodynamic perspective. Indeed, any mechanism which does not take into account collisions lacks the final part of the heating process description, related to the irreversible degradation of information. In the solar wind collisions are considered far too weak to produce significant effects on plasma behavior. However, the presence of strong out-of-equilibrium phase space structures, whose signature has been highlighted by in-situ spacecraft measurements and by means of kinetic numerical simulations, could enhance the inter-particle collisions and convert the non-equilibrium features into heat. Here, by focusing on a spatially homogeneous force-free weakly collisional plasma, it is shown that several characteristic times are recovered during the collisional relaxation of fine velocity structures and, hence, fine velocity structures are dissipated by collisions in a time much shorter compared to global non-Maxwellian features, as temperature anisotropies. This indicates that plasma collisionality can locally increase due to the strong velocity space deformation of the particle velocity distribution function (VDF). To quantify the effect of collisions in a turbulent scenario, a hybrid Vlasov-Maxwell simulation has been performed to generate the typical turbulent kinetic plasma regime, characterized by the presence of coherent structures, such as vortices and current sheets, where the ion distribution function is found to be strongly deformed. A direct measure of the collisional dissipation confirms that VDF deformations are significantly related to the enhancement of the plasma collisionality. Finally, the use of the collisional operator in an already developed turbulence allows us to investigate the inter-play of collisions, which tend to restore the thermal equilibrium, and other collisionless physical processes.
NASA Astrophysics Data System (ADS)
Kolle, Mathias; Li, Ling; Kolle, Stefan; Weaver, James; Ortiz, Christine; Aizenberg, Joanna
2013-03-01
Many terrestrial biological organisms have evolved a variety of micro- and nanostructures that provide unique optical signatures including distinctive, dynamic coloration, high reflectivity or superior whiteness. Recently, photonic structures have also been found in the shells or spines of marine animals. Life under water imposes very distinct constraints on organisms relying on visual communication and on the designs and the materials involved in aquatic photonic structures. Here, we present a bio-mineralized calcium carbonate - based crystalline photonic system buried in the shell of the blue-rayed limpet Ansates pellucida. The structure consists of a layered stack of calcite lamellae with uniform thickness and inter-lamella spacing. This arrangement lies at the origin of the blue-green iridescence of the organism's characteristic stripes, which is caused by multilayer interference. The multilayer is supported by a disordered array of spherical particles with an average diameter of 300nm, likely serving to enhance the contrast of the blue stripes. We present a full structural and optical characterization of this bio-mineralised marine photonic system, supported by optical FDTD modeling. The authors gratefully acknowledge financial support by the Air Force Office of Scientific Research under Award No. FA9550-09-1-0669-DOD35CAP. M. Kolle is grateful for support from the Alexander von Humboldt - Foundation.
On the role of adhesion in single-file dynamics
NASA Astrophysics Data System (ADS)
Fouad, Ahmed M.; Noel, John A.
2017-08-01
For a one-dimensional interacting system of Brownian particles with hard-core interactions (a single-file model), we study the effect of adhesion on both the collective diffusion (diffusion of the entire system with respect to its center of mass) and the tracer diffusion (diffusion of the individual tagged particles). For the case with no adhesion, all properties of these particle systems that are independent of particle labeling (symmetric in all particle coordinates and velocities) are identical to those of non-interacting particles (Lebowitz and Percus, 1967). We clarify this last fact twice. First, we derive our analytical predictions that show that the probability-density functions of single-file (ρsf) and ordinary (ρord) diffusion are identical, ρsf =ρord, predicting a nonanomalous (ordinary) behavior for the collective single-file diffusion, where the average second moment with respect to the center of mass, < x(t) 2 > , is calculated from ρ for both diffusion processes. Second, for single-file diffusion, we show, both analytically and through large-scale simulations, that < x(t) 2 > grows linearly with time, confirming the nonanomalous behavior. This nonanomalous collective behavior comes in contrast to the well-known anomalous sub-diffusion behavior of the individual tagged particles (Harris, 1965). We introduce adhesion to single-file dynamics as a second inter-particle interaction rule and, interestingly, we show that adding adhesion does reduce the magnitudes of both < x(t) 2 > and the mean square displacement per particle Δx2; but the diffusion behavior remains intact independent of adhesion in both cases. Moreover, we study the dependence of both the collective diffusion constant D and the tracer diffusion constant DT on the adhesion coefficient α.
Entanglement Entropy of Eigenstates of Quantum Chaotic Hamiltonians.
Vidmar, Lev; Rigol, Marcos
2017-12-01
In quantum statistical mechanics, it is of fundamental interest to understand how close the bipartite entanglement entropy of eigenstates of quantum chaotic Hamiltonians is to maximal. For random pure states in the Hilbert space, the average entanglement entropy is known to be nearly maximal, with a deviation that is, at most, a constant. Here we prove that, in a system that is away from half filling and divided in two equal halves, an upper bound for the average entanglement entropy of random pure states with a fixed particle number and normally distributed real coefficients exhibits a deviation from the maximal value that grows with the square root of the volume of the system. Exact numerical results for highly excited eigenstates of a particle number conserving quantum chaotic model indicate that the bound is saturated with increasing system size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tzeng, Liang
1984-05-01
Hadronic production of charmed particles in association with muons from semileptonic decay or. these short lived particles has been observed in a high resolution streamer cham her experiment performed at Fermi National Accelerator Laboratory in 1982. The incident beam was a collimated high energy neutron beam with an average energy or 280 Gev. The streamer cham her was triggered on the detection or the prom pt muon from the charm decay. Two toroids were installed at the downstream end or the muon spectrometer for analyzing the muon momentum. In the operation of the streamer chamber, we achieved a streamer size or 50 μm and a run track width or 120 μm in space. The streamer chamber optical system had a demagnification factor of about 1.5 from space to film. The minimum separation between two measurable tracks was about 150 μm on the film. With a special miss-distance analysis or the streamer chamber pictures. 17.32 ± 4.73 charm signal events were obtained. Using the assumption ofmore » $$A^{2/3}$$ dependenre for the production cross section and several different $$D-\\bar{D}$$ production models, the nucleonnucleon charm production cross section, averaged over the neutron spectrum, is estimated to be between 13 to 20 μb (with the average value equal to 17.69 ± 6.80 μb).« less
Inter- and Intra-Chromosomal Aberrations in Human Cells Exposed in vitro to Space-like Radiations
NASA Technical Reports Server (NTRS)
Hada, Megumi; Cucinotta, F. A.; Gonda, S. R.; Wu, H.
2005-01-01
Energetic heavy ions pose a great health risk to astronauts in extended ISS and future exploration missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied chromosome aberrations in human lymphocytes and fibroblasts induced by both low- and high-LET radiation using FISH and multicolor fluorescence in situ hybridization (mFISH) techniques. In this study, we exposed human cells in vitro to gamma rays and energetic particles of varying types and energies and dose rates, and analyzed chromosomal damages using the multicolor banding in situ hybridization (mBAND) procedure. Confluent human epithelial cells and lymphocytes were exposed to energetic heavy ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory (Upton, NY) or Cs-137 gamma radiation source at the Baylor College (Houston, TX). After colcemid and Calyculin A treatment, cells were fixed and painted with XCyte3 mBAND kit (MetaSystems) and chromosome aberrations were analyzed with mBAND analysis system (MetaSystems). With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). The possible relationship between the frequency of inter- and intra-chromosomal exchanges and the track structure of radiation is discussed. The work was supported by the NASA Space Radiation Health Program.
Propulsion and trapping of microparticles by active cilia arrays.
Bhattacharya, Amitabh; Buxton, Gavin A; Usta, O Berk; Balazs, Anna C
2012-02-14
We model the transport of a microscopic particle via a regular array of beating elastic cilia, whose tips experience an adhesive interaction with the particle's surface. At optimal adhesion strength, the average particle velocity is maximized. Using simulations spanning a range of cilia stiffness and cilia-particle adhesion strength, we explore the parameter space over which the particle can be "released", "propelled", or "trapped" by the cilia. We use a lower-order model to predict parameters for which the cilia are able to "propel" the particle. This is the first study that shows how both stiffness and adhesion strength are crucial for manipulation of particles by active cilia arrays. These results can facilitate the design of synthetic cilia that integrate adhesive and hydrodynamic interactions to selectively repel or trap particulates. Surfaces that are effective at repelling particulates are valuable for antifouling applications, while surfaces that can trap and, thus, remove particulates from the solution are useful for efficient filtration systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, T.A.
1992-12-01
The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows.more » A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.« less
Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, T.A.
1992-12-01
The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows.more » A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.« less
Optical satellite communications in Europe
NASA Astrophysics Data System (ADS)
Sodnik, Zoran; Lutz, Hanspeter; Furch, Bernhard; Meyer, Rolf
2010-02-01
This paper describes optical satellite communication activities based on technology developments, which started in Europe more than 30 years ago and led in 2001 to the world-first optical inter-satellite communication link experiment (SILEX). SILEX proved that optical communication technologies can be reliably mastered in space and in 2006 the Japanese Space Agency (JAXA) joined the optical inter-satellite experiment from their own satellite. Since 2008 the German Space Agency (DLR) is operating an inter-satellite link between the NFIRE and TerraSAR-X satellites based on a second generation of laser communication technology, which will be used for the new European Data Relay Satellite (EDRS) system to be deployed in 2013.
Enhanced magnetization in VxFe3-xO4 nanoparticles
NASA Astrophysics Data System (ADS)
Pool, V. L.; Kleb, M. T.; Chorney, C. L.; Arenholz, E.; Idzerda, Y. U.
2015-12-01
Nanoparticles of VxFe3-xO4 with up to 33% vanadium doping (x=0 to 1) and a 9 nm diameter are investigated in order to determine the site preference of the vanadium and the magnetic behavior of the nanoparticles. The iron and vanadium L23-edge X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (MCD) spectra are used to identify that vanadium initially substitutes into the tetrahedral iron site as V3+ and that the average iron moment is observed to increase with vanadium concentration up to 12.5% (x=.375). When the vanadium incorporation exceeds 12.5%, the XAS and MCD show that the vanadium begins substituting as V2+ in the octahedral coordination. This coincides with a rapid reduction of the average moment to zero by 25% (x=.75). The frequency-dependent alternating-current magnetic susceptibility (ACMS) displays a substantial increase in blocking temperature with vanadium concentration and indicated substantial variation in the strength of inter-particle interactions.
Stationary swarming motion of active Brownian particles in parabolic external potential
NASA Astrophysics Data System (ADS)
Zhu, Wei Qiu; Deng, Mao Lin
2005-08-01
We investigate the stationary swarming motion of active Brownian particles in parabolic external potential and coupled to its mass center. Using Monte Carlo simulation we first show that the mass center approaches to rest after a sufficient long period of time. Thus, all the particles of a swarm have identical stationary motion relative to the mass center. Then the stationary probability density obtained by using the stochastic averaging method for quasi integrable Hamiltonian systems in our previous paper for the motion in 4-dimensional phase space of single active Brownian particle with Rayleigh friction model in parabolic potential is used to describe the relative stationary motion of each particle of the swarm and to obtain more probability densities including that for the total energy of the swarm. The analytical results are confirmed by comparing with those from simulation and also shown to be consistent with the existing deterministic exact steady-state solution.
Impact of subgrid fluid turbulence on inertial particles subject to gravity
NASA Astrophysics Data System (ADS)
Rosa, Bogdan; Pozorski, Jacek
2017-07-01
Two-phase turbulent flows with the dispersed phase in the form of small, spherical particles are increasingly often computed with the large-eddy simulation (LES) of the carrier fluid phase, coupled to the Lagrangian tracking of particles. To enable further model development for LES with inertial particles subject to gravity, we consider direct numerical simulations of homogeneous isotropic turbulence with a large-scale forcing. Simulation results, both without filtering and in the a priori LES setting, are reported and discussed. A full (i.e. a posteriori) LES is also performed with the spectral eddy viscosity. Effects of gravity on the dispersed phase include changes in the average settling velocity due to preferential sweeping, impact on the radial distribution function and radial relative velocity, as well as direction-dependent modification of the particle velocity variance. The filtering of the fluid velocity, performed in spectral space, is shown to have a non-trivial impact on these quantities.
Ponderomotive Force in the Presence of Electric Fields
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Krivorutsky, E. N.
2013-01-01
This paper presents averaged equations of particle motion in an electromagnetic wave of arbitrary frequency with its wave vector directed along the ambient magnetic field. The particle is also subjected to an E cross B drift and a background electric field slowly changing in space and acting along the magnetic field line. The fields, wave amplitude, and the wave vector depend on the coordinate along the magnetic field line. The derivations of the ponderomotive forces are done by assuming that the drift velocity in the ambient magnetic field is comparable to the particle velocity. Such a scenario leads to new ponderomotive forces, dependent on the wave magnetic field intensity, and, as a result, to the additional energy exchange between the wave and the plasma particles. It is found that the parallel electric field can lead to the change of the particle-wave energy exchange rate comparable to that produced by the previously discussed ponderomotive forces.
NASA Astrophysics Data System (ADS)
Zhang, Jing-Yi; Ming, Min; Jiang, Yuan-Ze; Duan, Hui-Zong; Yeh, Hsien-Chi
2018-06-01
Laser link acquisition is a key technology for inter-satellite laser ranging and laser communication. In this paper, we present an acquisition scheme based on the differential power sensing method with dual-way scanning, which will be used in the next-generation gravity measurement mission proposed in China, called Space Advanced Gravity Measurements (SAGM). In this scheme, the laser beams emitted from two satellites are power-modulated at different frequencies to enable the signals of the two beams to be measured distinguishably, and their corresponding pointing angles are determined by using the differential power sensing method. As the master laser beam and the slave laser beam are decoupled, the dual-way scanning method, in which the laser beams of both the master and the slave satellites scan uncertainty cones simultaneously and independently, can be used, instead of the commonly used single-way scanning method, in which the laser beam of one satellite scans and that of the other one stares. Therefore, the acquisition time is reduced significantly. Numerical simulation and experiments of the acquisition process are performed using the design parameters of the SAGM mission. The results show that the average acquisition time is less than 10 s for a scanning range of 1-mrad radius with a success rate of more than 99%.
Anomalous, non-Gaussian tracer diffusion in crowded two-dimensional environments
NASA Astrophysics Data System (ADS)
Ghosh, Surya K.; Cherstvy, Andrey G.; Grebenkov, Denis S.; Metzler, Ralf
2016-01-01
A topic of intense current investigation pursues the question of how the highly crowded environment of biological cells affects the dynamic properties of passively diffusing particles. Motivated by recent experiments we report results of extensive simulations of the motion of a finite sized tracer particle in a heterogeneously crowded environment made up of quenched distributions of monodisperse crowders of varying sizes in finite circular two-dimensional domains. For given spatial distributions of monodisperse crowders we demonstrate how anomalous diffusion with strongly non-Gaussian features arises in this model system. We investigate both biologically relevant situations of particles released either at the surface of an inner domain or at the outer boundary, exhibiting distinctly different features of the observed anomalous diffusion for heterogeneous distributions of crowders. Specifically we reveal an asymmetric spreading of tracers even at moderate crowding. In addition to the mean squared displacement (MSD) and local diffusion exponent we investigate the magnitude and the amplitude scatter of the time averaged MSD of individual tracer trajectories, the non-Gaussianity parameter, and the van Hove correlation function. We also quantify how the average tracer diffusivity varies with the position in the domain with a heterogeneous radial distribution of crowders and examine the behaviour of the survival probability and the dynamics of the tracer survival probability. Inter alia, the systems we investigate are related to the passive transport of lipid molecules and proteins in two-dimensional crowded membranes or the motion in colloidal solutions or emulsions in effectively two-dimensional geometries, as well as inside supercrowded, surface adhered cells.
Investigating the settling dynamics of cohesive silt particles with particle-resolving simulations
NASA Astrophysics Data System (ADS)
Sun, Rui; Xiao, Heng; Sun, Honglei
2018-01-01
The settling of cohesive sediment is ubiquitous in aquatic environments, and the study of the settling process is important for both engineering and environmental reasons. In the settling process, the silt particles show behaviors that are different from non-cohesive particles due to the influence of inter-particle cohesive force. For instance, the flocs formed in the settling process of cohesive silt can loosen the packing, and thus the structural densities of cohesive silt beds are much smaller than that of non-cohesive sand beds. While there is a consensus that cohesive behaviors depend on the characteristics of sediment particles (e.g., Bond number, particle size distribution), little is known about the exact influence of these characteristics on the cohesive behaviors. In addition, since the cohesive behaviors of the silt are caused by the inter-particle cohesive forces, the motions of and the contacts among silt particles should be resolved to study these cohesive behaviors in the settling process. However, studies of the cohesive behaviors of silt particles in the settling process based on particle-resolving approach are still lacking. In the present work, three-dimensional settling process is investigated numerically by using CFD-DEM (Computational Fluid Dynamics-Discrete Element Method). The inter-particle collision force, the van der Waals force, and the fluid-particle interaction forces are considered. The numerical model is used to simulate the hindered settling process of silt based on the experimental setup in the literature. The results obtained in the simulations, including the structural densities of the beds, the characteristic lines, and the particle terminal velocity, are in good agreement with the experimental observations in the literature. To the authors' knowledge, this is the first time that the influences of non-dimensional Bond number and particle polydispersity on the structural densities of silt beds have been investigated separately. The results demonstrate that the cohesive behavior of silt in the settling process is attributed to both the cohesion among silt particles themselves and the particle polydispersity. To guide to the macro-scale modeling of cohesive silt sedimentation, the collision frequency functions obtained in the numerical simulations are also presented based on the micromechanics of particles. The results obtained by using CFD-DEM indicate that the binary collision theory over-estimated the particle collision frequency in the flocculation process at high solid volume fraction.
The charged particle veto system of the cosmic ray electron synchrotron telescope
NASA Astrophysics Data System (ADS)
Geske, Matthew T.
The Cosmic Ray Electron Synchrotron Telescope is a balloon-borne detector designed to measure cosmic electrons at energies from 2 to 50 TeV. CREST completed a successful 10-day Antarctic flight which launched on December 25, 2011. CREST utilizes a novel detection method, searching for the synchrotron radiation emitted by the interaction of TeV-energy electrons with the geomagnetic field. The main detector component for CREST is a 32 x 32 square array of BaF 2 crystal detectors coupled to photomultiplier tubes, with an inter-crystal spacing of 7.5 cm. This document describes the design, construction and flight of the CREST experiment. A special focus is put upon the charged particle veto system, and its use in the analysis of the CREST results. The veto system, consisting of a series of 27 large slabs of organic plastic scintillator read out through photomultiplier tubes, is designed as a passive mechanism for rejecting charged particle events that could contaminate the X-ray signal from synchrotron radiation. The CREST veto system has 99.15% geometric coverage, with individual detector components exhibiting a mean detection efficiency of 99.7%. In whole, the veto system provides a charged particle rejection factor of better than 7 x 103.
Cloud-based design of high average power traveling wave linacs
NASA Astrophysics Data System (ADS)
Kutsaev, S. V.; Eidelman, Y.; Bruhwiler, D. L.; Moeller, P.; Nagler, R.; Barbe Welzel, J.
2017-12-01
The design of industrial high average power traveling wave linacs must accurately consider some specific effects. For example, acceleration of high current beam reduces power flow in the accelerating waveguide. Space charge may influence the stability of longitudinal or transverse beam dynamics. Accurate treatment of beam loading is central to the design of high-power TW accelerators, and it is especially difficult to model in the meter-scale region where the electrons are nonrelativistic. Currently, there are two types of available codes: tracking codes (e.g. PARMELA or ASTRA) that cannot solve self-consistent problems, and particle-in-cell codes (e.g. Magic 3D or CST Particle Studio) that can model the physics correctly but are very time-consuming and resource-demanding. Hellweg is a special tool for quick and accurate electron dynamics simulation in traveling wave accelerating structures. The underlying theory of this software is based on the differential equations of motion. The effects considered in this code include beam loading, space charge forces, and external magnetic fields. We present the current capabilities of the code, provide benchmarking results, and discuss future plans. We also describe the browser-based GUI for executing Hellweg in the cloud.
Inter-proximal enamel reduction in contemporary orthodontics.
Pindoria, J; Fleming, P S; Sharma, P K
2016-12-16
Inter-proximal enamel reduction has gained increasing prominence in recent years being advocated to provide space for orthodontic alignment, to refine contact points and to potentially improve long-term stability. An array of techniques and products are available ranging from hand-held abrasive strips to handpiece mounted burs and discs. The indications for inter-proximal enamel reduction and the importance of formal space analysis, together with the various techniques and armamentarium which may be used to perform it safely in both the labial and buccal segments are outlined.
NASA Technical Reports Server (NTRS)
Hargraves, W. R.; Delulio, E. B.; Justus, C. G.
1977-01-01
The Global Reference Atmospheric Model is used along with the revised perturbation statistics to evaluate and computer graph various atmospheric statistics along a space shuttle reference mission and abort trajectory. The trajectory plots are height vs. ground range, with height from ground level to 155 km and ground range along the reentry trajectory. Cross sectional plots, height vs. latitude or longitude, are also generated for 80 deg longitude, with heights from 30 km to 90 km and latitude from -90 deg to +90 deg, and for 45 deg latitude, with heights from 30 km to 90 km and longitudes from 180 deg E to 180 deg W. The variables plotted are monthly average pressure, density, temperature, wind components, and wind speed and standard deviations and 99th inter-percentile range for each of these variables.
Effects of Zr Addition on Strengthening Mechanisms of Al-Alloyed High-Cr ODS Steels.
Ren, Jian; Yu, Liming; Liu, Yongchang; Liu, Chenxi; Li, Huijun; Wu, Jiefeng
2018-01-12
Oxide dispersion strengthened (ODS) steels with different contents of zirconium (denoted as 16Cr ODS, 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS) were fabricated to investigate the effects of Zr on strengthening mechanism of Al-alloyed 16Cr ODS steel. Electron backscatter diffraction (EBSD) results show that the mean grain size of ODS steels could be decreased by Zr addition. Transmission electron microscope (TEM) results indicate that Zr addition could increase the number density but decrease the mean diameter and inter-particle spacing of oxide particles. Furthermore, it is also found that in addition to Y-Al-O nanoparticles, Y-Zr-O oxides with finer size were observed in 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS steels. These changes in microstructure significantly increase the yield strength (YS) and ultimate tensile strength (UTS) of ODS steels through mechanisms of grain boundary strengthening and dispersion strengthening.
Effects of Zr Addition on Strengthening Mechanisms of Al-Alloyed High-Cr ODS Steels
Ren, Jian; Yu, Liming; Liu, Yongchang; Liu, Chenxi; Li, Huijun; Wu, Jiefeng
2018-01-01
Oxide dispersion strengthened (ODS) steels with different contents of zirconium (denoted as 16Cr ODS, 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS) were fabricated to investigate the effects of Zr on strengthening mechanism of Al-alloyed 16Cr ODS steel. Electron backscatter diffraction (EBSD) results show that the mean grain size of ODS steels could be decreased by Zr addition. Transmission electron microscope (TEM) results indicate that Zr addition could increase the number density but decrease the mean diameter and inter-particle spacing of oxide particles. Furthermore, it is also found that in addition to Y-Al-O nanoparticles, Y-Zr-O oxides with finer size were observed in 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS steels. These changes in microstructure significantly increase the yield strength (YS) and ultimate tensile strength (UTS) of ODS steels through mechanisms of grain boundary strengthening and dispersion strengthening. PMID:29329260
NASA Technical Reports Server (NTRS)
Seda, Jorge F. (Inventor); Dunbar, Lawrence W. (Inventor); Gliebe, Philip R. (Inventor); Szucs, Peter N. (Inventor); Brauer, John C. (Inventor); Johnson, James E. (Inventor); Moniz, Thomas (Inventor); Steinmetz, Gregory T. (Inventor)
2003-01-01
An aircraft gas turbine engine assembly includes an inter-turbine frame axially located between high and low pressure turbines. Low pressure turbine has counter rotating low pressure inner and outer rotors with low pressure inner and outer shafts which are at least in part rotatably disposed co-axially within a high pressure rotor. Inter-turbine frame includes radially spaced apart radially outer first and inner second structural rings disposed co-axially about a centerline and connected by a plurality of circumferentially spaced apart struts. Forward and aft sump members having forward and aft central bores are fixedly joined to axially spaced apart forward and aft portions of the inter-turbine frame. Low pressure inner and outer rotors are rotatably supported by a second turbine frame bearing mounted in aft central bore of aft sump member. A mount for connecting the engine to an aircraft is located on first structural ring.
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Chappell, Lori J.; Wang, Minli; Kim, Myung-Hee
2011-01-01
The uncertainties in estimating the health risks from galactic cosmic rays (GCR) and solar particle events (SPE) are a major limitation to the length of space missions and the evaluation of potential risk mitigation approaches. NASA limits astronaut exposures to a 3% risk of exposure induced cancer death (REID), and protects against uncertainties in risks projections using an assessment of 95% confidence intervals after propagating the error from all model factors (environment and organ exposure, risk coefficients, dose-rate modifiers, and quality factors). Because there are potentially significant late mortality risks from diseases of the circulatory system and central nervous system (CNS) which are less well defined than cancer risks, the cancer REID limit is not necessarily conservative. In this report, we discuss estimates of lifetime risks from space radiation and new estimates of model uncertainties are described. The key updates to the NASA risk projection model are: 1) Revised values for low LET risk coefficients for tissue specific cancer incidence, with incidence rates transported to an average U.S. population to estimate the probability of Risk of Exposure Induced Cancer (REIC) and REID. 2) An analysis of smoking attributable cancer risks for never-smokers that shows significantly reduced lung cancer risk as well as overall cancer risks from radiation compared to risk estimated for the average U.S. population. 3) Derivation of track structure based quality functions depends on particle fluence, charge number, Z and kinetic energy, E. 4) The assignment of a smaller maximum in quality function for leukemia than for solid cancers. 5) The use of the ICRP tissue weights is shown to over-estimate cancer risks from SPEs by a factor of 2 or more. Summing cancer risks for each tissue is recommended as a more accurate approach to estimate SPE cancer risks. 6) Additional considerations on circulatory and CNS disease risks. Our analysis shows that an individual s history of smoking exposure has a larger impact on GCR risk estimates than amounts of radiation shielding or age at exposure (amongst adults). Risks for never-smokers compared to the average U.S. population are estimated to be reduced between 30% and 60% dependent on model assumptions. Lung cancer is the major contributor to the reduction for never-smokers, with additional contributions from circulatory diseases and cancers of the stomach, liver, bladder, oral cavity and esophagus, and leukemia. The relative contribution of CNS risks to the overall space radiation detriment is potentially increased for never-smokers such as most astronauts. Problems in estimating risks for former smokers and the influence of second-hand smoke are discussed. Compared to the LET approximation, the new track structure derived radiation quality functions lead to a reduced risk for relativistic energy particles and increased risks for intermediate energy particles. Revised estimates for the number of safe days in space at solar minimum for heavy shielding conditions are described for never-smokers and the average U.S. population. Results show that missions to near Earth asteroids (NEA) or Mars violate NASA's radiation safety standards with the current levels of uncertainties. Greater improvements in risk estimates for never-smokers are possible, and would be dependent on improved understanding of risk transfer models, and elucidating the role of space radiation on the various stages of disease formation (e.g. initiation, promotion, and progression).
Conservative bin-to-bin fractional collisions
NASA Astrophysics Data System (ADS)
Martin, Robert
2016-11-01
Particle methods such as direct simulation Monte Carlo (DSMC) and particle-in-cell (PIC) are commonly used to model rarefied kinetic flows for engineering applications because of their ability to efficiently capture non-equilibrium behavior. The primary drawback to these methods relates to the poor convergence properties due to the stochastic nature of the methods which typically rely heavily on high degrees of non-equilibrium and time averaging to compensate for poor signal to noise ratios. For standard implementations, each computational particle represents many physical particles which further exacerbate statistical noise problems for flow with large species density variation such as encountered in flow expansions and chemical reactions. The stochastic weighted particle method (SWPM) introduced by Rjasanow and Wagner overcome this difficulty by allowing the ratio of real to computational particles to vary on a per particle basis throughout the flow. The DSMC procedure must also be slightly modified to properly sample the Boltzmann collision integral accounting for the variable particle weights and to avoid the creation of additional particles with negative weight. In this work, the SWPM with necessary modification to incorporate the variable hard sphere (VHS) collision cross section model commonly used in engineering applications is first incorporated into an existing engineering code, the Thermophysics Universal Research Framework. The results and computational efficiency are compared to a few simple test cases using a standard validated implementation of the DSMC method along with the adapted SWPM/VHS collision using an octree based conservative phase space reconstruction. The SWPM method is then further extended to combine the collision and phase space reconstruction into a single step which avoids the need to create additional computational particles only to destroy them again during the particle merge. This is particularly helpful when oversampling the collision integral when compared to the standard DSMC method. However, it is found that the more frequent phase space reconstructions can cause added numerical thermalization with low particle per cell counts due to the coarseness of the octree used. However, the methods are expected to be of much greater utility in transient expansion flows and chemical reactions in the future.
Rapid determination of particle velocity from space-time images using the Radon transform
Drew, Patrick J.; Blinder, Pablo; Cauwenberghs, Gert; Shih, Andy Y.; Kleinfeld, David
2016-01-01
Laser-scanning methods are a means to observe streaming particles, such as the flow of red blood cells in a blood vessel. Typically, particle velocity is extracted from images formed from cyclically repeated line-scan data that is obtained along the center-line of the vessel; motion leads to streaks whose angle is a function of the velocity. Past methods made use of shearing or rotation of the images and a Singular Value Decomposition (SVD) to automatically estimate the average velocity in a temporal window of data. Here we present an alternative method that makes use of the Radon transform to calculate the velocity of streaming particles. We show that this method is over an order of magnitude faster than the SVD-based algorithm and is more robust to noise. PMID:19459038
Vogeler, Iris; Mackay, Alec; Vibart, Ronaldo; Rendel, John; Beautrais, Josef; Dennis, Samuel
2016-09-15
Farm system and nutrient budget models are increasingly being used in analysis to inform on farm decision making and evaluate land use policy options at regional scales. These analyses are generally based on the use of average annual pasture yields. In New Zealand (NZ), like in many countries, there is considerable inter-annual variation in pasture growth rates, due to climate. In this study a modelling approach was used to (i) include inter-annual variability as an integral part of the analysis and (ii) test the approach in an economic analysis of irrigation in a case study within the Hawkes Bay Region of New Zealand. The Agricultural Production Systems Simulator (APSIM) was used to generate pasture dry matter yields (DMY) for 20 different years and under both dryland and irrigation. The generated DMY were linked to outputs from farm-scale modelling for both Sheep and Beef Systems (Farmaxx Pro) and Dairy Systems (Farmax® Dairy Pro) to calculate farm production over 20 different years. Variation in DMY and associated livestock production due to inter-annual variation in climate was large, with a coefficient of variations up to 20%. Irrigation decreased this inter-annual variation. On average irrigation, with unlimited available water, increased income by $831 to 1195/ha, but when irrigation was limited to 250mm/ha/year income only increased by $525 to 883/ha. Using pasture responses in individual years to capturing the inter-annual variation, rather than the pasture response averaged over 20years resulted in lower financial benefits. In the case study income from irrigation based on an average year were 10 to >20% higher compared with those obtained from individual years. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cooper, J. F.; Papitashvili, N. E.
2016-12-01
The surfaces of Mercury, the Moon, the moons of Mars, the asteroids, and other small bodies of the inner solar system have been directly weathered for millions to billions of years by solar wind, energetic particle, and solar ultraviolet irradiation. Surface regolith layers to meters in depth are formed by impacts of smaller bodies and micrometeoroids. Sample return missions to small bodies, such as Osiris-REx to the asteroid Bennu, are intended to recover information on the early history of solar system formation, but must contend with the long-term space weathering effects that perturb the original structure and composition of the affected bodies. Solar wind plasma ions at keV energies penetrate only to sub-micron depths, while more energetic solar & heliospheric particles up to MeV energies reach centimeter depths, and higher-energy galactic cosmic rays to GeV energies fully penetrate through the impact regolith. The weathering effects vary with energy and penetration depth from ion implantation and erosive sputtering at solar wind energies to chemical and structural evolution driven by MeV - GeV particles. The energy versus depth dependence of such effects is weighted by the differential flux distributions of the incident particles as measured near the orbits of the affected bodies over long periods of time. Our Virtual Energetic Particle Observatory (http://vepo.gsfc.nasa.gov/) enables simultaneous access to multiple data sets from 1973 through the present in the form of differential flux spectral plots and downloadable data tables. The most continuous VEPO coverage exists for geospace data sources at 1 AU from the Interplanetary Monitoring Platform 8 (IMP-8), launched in 1973, through the present 1-AU constellation including the ACE, WIND, SOHO, and Stereo-A/B spacecraft. Other mission data, e.g. more occasionally from Pioneer-10/11, Helios-1/2, Voyager-1/2, and Ulysses, extend heliospheric coverage from the orbit of Mercury to that of Mars, the asteroid belt, and beyond. Using data from the VEPO services, we show the time-averaged spectra of protons and helium during 1973 - 2016 from Mercury to Mars. The main contributors on solar cycle time scales at keV to MeV energies are large solar flare and ICME events. These time-averaged spectra can then be used for space weathering models of the inner solar system.
Application of real-time radiation dosimetry using a new silicon LET sensor
NASA Technical Reports Server (NTRS)
Doke, T.; Hayashi, T.; Kikuchi, J.; Nagaoka, S.; Nakano, T.; Sakaguchi, T.; Terasawa, K.; Badhwar, G. D.
1999-01-01
A new type of real-time radiation monitoring device, RRMD-III, consisting of three double-sided silicon strip detectors (DSSDs), has been developed and tested on-board the Space Shuttle mission STS-84. The test succeeded in measuring the linear energy transfer (LET) distribution over the range of 0.2 keV/micrometer to 600 keV/micrometer for 178 h. The Shuttle cruised at an altitude of 300 to 400 km and an inclination angle of 51.6 degrees for 221.3 h, which is equivalent to the International Space Station orbit. The LET distribution obtained for particles was investigated by separating it into galactic cosmic ray (GCR) particles and trapped particles in the South Atlantic Anomaly (SAA) region. The result shows that the contribution in dose-equivalent due to GCR particles is almost equal to that from trapped particles. The total absorbed dose rate during the mission was 0.611 mGy/day; the effective quality factor, 1.64; and the dose equivalent rate, 0.998 mSv/day. The average absorbed dose rates are 0.158 mGy/min for GCR particles and 3.67 mGy/min for trapped particles. The effective quality factors are 2.48 for GCR particles and 1.19 for trapped particles. The absorbed doses obtained by the RRMD-III and a conventional method using TLD (Mg(2)SiO(4)), which was placed around the RRMD-III were compared. It was found that the TLDs showed a lower efficiency, just 58% of absorbed dose registered by the RRMD-III.
SPARSE—A subgrid particle averaged Reynolds stress equivalent model: testing with a priori closure
Davis, Sean L.; Sen, Oishik; Udaykumar, H. S.
2017-01-01
A Lagrangian particle cloud model is proposed that accounts for the effects of Reynolds-averaged particle and turbulent stresses and the averaged carrier-phase velocity of the subparticle cloud scale on the averaged motion and velocity of the cloud. The SPARSE (subgrid particle averaged Reynolds stress equivalent) model is based on a combination of a truncated Taylor expansion of a drag correction function and Reynolds averaging. It reduces the required number of computational parcels to trace a cloud of particles in Eulerian–Lagrangian methods for the simulation of particle-laden flow. Closure is performed in an a priori manner using a reference simulation where all particles in the cloud are traced individually with a point-particle model. Comparison of a first-order model and SPARSE with the reference simulation in one dimension shows that both the stress and the averaging of the carrier-phase velocity on the cloud subscale affect the averaged motion of the particle. A three-dimensional isotropic turbulence computation shows that only one computational parcel is sufficient to accurately trace a cloud of tens of thousands of particles. PMID:28413341
SPARSE-A subgrid particle averaged Reynolds stress equivalent model: testing with a priori closure.
Davis, Sean L; Jacobs, Gustaaf B; Sen, Oishik; Udaykumar, H S
2017-03-01
A Lagrangian particle cloud model is proposed that accounts for the effects of Reynolds-averaged particle and turbulent stresses and the averaged carrier-phase velocity of the subparticle cloud scale on the averaged motion and velocity of the cloud. The SPARSE (subgrid particle averaged Reynolds stress equivalent) model is based on a combination of a truncated Taylor expansion of a drag correction function and Reynolds averaging. It reduces the required number of computational parcels to trace a cloud of particles in Eulerian-Lagrangian methods for the simulation of particle-laden flow. Closure is performed in an a priori manner using a reference simulation where all particles in the cloud are traced individually with a point-particle model. Comparison of a first-order model and SPARSE with the reference simulation in one dimension shows that both the stress and the averaging of the carrier-phase velocity on the cloud subscale affect the averaged motion of the particle. A three-dimensional isotropic turbulence computation shows that only one computational parcel is sufficient to accurately trace a cloud of tens of thousands of particles.
Effect of surfactant types and their concentration on the structural characteristics of nanoclay
NASA Astrophysics Data System (ADS)
Zawrah, M. F.; Khattab, R. M.; Saad, E. M.; Gado, R. A.
2014-03-01
A series of organo-modified nanoclays was synthesized using three different surfactants having different alkyl chain lengths and concentrations [0.5-5.0 cation exchange capacity (CEC)]. These surfactants were Ethanolamine (EA), Cetyltrimethylammoniumbromide (CTAB) and Tetraoctadecylammoniumbromide (TO). The obtained modified nanoclays were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM) and compared with unmodified nanoclay. The results of XRD analysis indicated that the basal d-spacing has increased with increasing alkyl chain length and surfactant concentration. From the obtained microstructures of these organo-modified nanoclays, the mechanism of surfactant adsorption was proposed. At relatively low loading of surfactant, most of surfactant entered the spacing by an ion-exchange mechanism and is adsorbed onto the interlayer cation sites. When the concentration of the surfactant exceeds the CEC of clay, the surfactant molecules then adhere to the surface adsorbed surfactant. Some surfactants entered the interlayers, whereas the others were attached to the clay surface. When the concentration of surfactant increased further beyond 2.0 CEC, the surfactants might occupy the inter-particle space within the house-of-cards aggregate structure.
Collisional tests and an extension of the TEMPEST continuum gyrokinetic code
NASA Astrophysics Data System (ADS)
Cohen, R. H.; Dorr, M.; Hittinger, J.; Kerbel, G.; Nevins, W. M.; Rognlien, T.; Xiong, Z.; Xu, X. Q.
2006-04-01
An important requirement of a kinetic code for edge plasmas is the ability to accurately treat the effect of colllisions over a broad range of collisionalities. To test the interaction of collisions and parallel streaming, TEMPEST has been compared with published analytic and numerical (Monte Carlo, bounce-averaged Fokker-Planck) results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential and mirror ratio, and the required velocity space resolution is modest. We also describe progress toward extension of (4-dimensional) TEMPEST into a ``kinetic edge transport code'' (a kinetic counterpart of UEDGE). The extension includes averaging of the gyrokinetic equations over fast timescales and approximating the averaged quadratic terms by diffusion terms which respect the boundaries of inaccessable regions in phase space. F. Najmabadi, R.W. Conn and R.H. Cohen, Nucl. Fusion 24, 75 (1984); T.D. Rognlien and T.A. Cutler, Nucl. Fusion 20, 1003 (1980).
Stochastic particle acceleration at shocks in the presence of braided magnetic fields.
NASA Astrophysics Data System (ADS)
Kirk, J. G.; Duffy, P.; Gallant, Y. A.
1996-10-01
The theory of diffusive acceleration of energetic particles at shock fronts assumes charged particles undergo spatial diffusion in a uniform magnetic field. If, however, the magnetic field is not uniform, but has a stochastic or braided structure, the transport of charged particles across the average direction of the field is more complicated. Assuming quasi-linear behaviour of the field lines, the particles undergo sub-diffusion on short time scales. We derive the propagator for such motion, which differs from the Gaussian form relevant for diffusion, and apply it to a configuration with a plane shock front whose normal is perpendicular to the average field direction. Expressions are given for the acceleration time as a function of the diffusion coefficient of the wandering magnetic field lines and the spatial diffusion coefficient of the charged particles parallel to the local field. In addition we calculate the spatial dependence of the particle density in both the upstream and downstream plasmas. In contrast to the diffusive case, the density of particles at the shock front is lower than it is far downstream. This is a consequence of the partial trapping of particles by structures in the magnetic field. As a result, the spectrum of accelerated particles is a power-law in momentum which is steeper than in the diffusive case. For a phase-space density f{prop.to}p^-s^, we find s=s_diff_[1+1/(2ρ_c_)], where ρ_c_ is the compression ratio of the shock front and s_diff_ is the standard result of diffusive acceleration: s_diff_=3ρ_c_/(ρ_c_-1). A strong shock in a monatomic ideal gas yields a spectrum of s=4.5. In the case of electrons, this corresponds to a radio synchrotron spectral index of α=0.75.
The effect of thermomechanical processing on second phase particle redistribution in U-10 wt%Mo
NASA Astrophysics Data System (ADS)
Hu, Xiaohua; Wang, Xiaowo; Joshi, Vineet V.; Lavender, Curt A.
2018-03-01
The multi-pass hot-rolling process of an annealed uranium-10 wt% molybdenum (U10Mo) coupon was studied by plane-strain compression finite element modeling. As-cast U10Mo typically contains second phase particles such as uranium carbides (UC) and silicides along the grain boundaries. The volume fraction of UC is typically large, while the other phases can be redissolved in the matrix by certain heat treatments. The UC particle distribution is important due to its influence on the recrystallization processes (particle stimulated nucleation) that occur during annealing between rolling passes. Unfavorable particle distribution and fracture after rolling can affect the grain size and also influence the fuel performance in the reactor. A statistical method, i.e., the two-point correlation function (2PCF), was used to analyze the carbide particle distribution after each rolling reduction. The hot rolling simulation results show that the alignment of UC particles along grain boundaries will rotate during rolling until it is parallel to the rolling direction, to form stringer-like distributions which are typically observed in rolled products that contain inclusions. 2PCF analysis shows that the interparticle spacing shrinks along the normal direction (ND) and increases along the rolling direction (RD). The simulated particle distribution is very similar to that measured experimentally for similar rolling reductions. The magnitudes of major peaks of 2PCF along the ND decrease after large reduction. The locations of major peaks indicate the inter-stringer distances. Many more small peaks appear for the 2PCF along the RD, and this is related to the neighboring particles within stringers, which are along the RD.
NASA Astrophysics Data System (ADS)
Imhoff, P. T.; Nakhli, S. A. A.; Mills, G.; Yudi, Y.; Abera, K.; Williams, R.; Manahiloh, K. N.; Willson, C. S.
2017-12-01
Biochar has been proposed as an amendment to stormwater infiltration media to enhance pollutant capture (metals, organics) or transformation (e.g., nitrate). Because stormwater media must maintain sufficient infiltration capacity, it is critical that biochar amendment not reduce saturated hydraulic conductivity. We present experimental measurements of saturated hydraulic conductivity for mixtures of wood biochar, sieved to various size fractions, and uniform sands or bioretention media (mixtures of sand, clay, and sawdust). While the influence of biochar on the inter particle pore volume of the mixtures explained most changes in hydraulic conductivity, for mixtures containing large biochar particles results were unexpected. For example, while large biochar particles (2 - 4.75 mm) increased inter particle porosity from 0.35 to 0.48 for a sand/biochar mixture, hydraulic conductivity decreased from 820 ± 90 cm/h to 323 ± 2 cm/h. To understand this and other unusual data, biochar was doped with 3% CsCl, mixed with uniform sand using different packing techniques, and analyzed with X-ray computed tomography to assess biochar distribution and pore structure. Depending on packing technique, biochar particles were either segregated or uniformly mixed, which influenced pore structure. Biochar content and inter particle pore volume determined from X-ray images were in excellent agreement with experimental data (< 5% difference). Grain-based algorithms were then used to generate physically-representative pore networks, and single-phase permeability models were employed to estimate saturated hydraulic conductivity of sand and biochar-amended sand packings for specimens prepared with different packing techniques. Results from these analyses will be presented and compared with experimental measurements to elucidate the mechanisms by which large biochar particles alter the saturated hydraulic conductivity of engineered media.
NASA Technical Reports Server (NTRS)
Mason, G. M.; Gloeckler, G.; Fisk, L. A.; Hovestadt, D.
1980-01-01
The abundances of the major elements over the range H-Fe in solar flare energetic particles near 1 MeV/nucleon were surveyed for a large number of flares during the period 1973-1977; observations were carried out by the IMP 8 spacecraft in interplanetary space. The survey considered two types of solar flare events: (1) large events from which the average boundaries were deduced, and (2) events which have significant abundance differences from average. In addition, two He-3-rich events with abundance features that are different from previous examples are reported: one case with no enhancements of heavy ions, and a second case in which, compared to O, the heavy-ion enhancements are confined to the charge range Si-Fe rather than the usual case in which all elements Ne-Fe are enriched.
Inertial focusing dynamics in spiral microchannels
Martel, Joseph M.; Toner, Mehmet
2012-01-01
This report details a comprehensive study of inertial focusing dynamics and particle behavior in low aspect ratio (h/w ∼ 1/1 to 1/8) spiral microchannels. A continuum of particle streak behavior is shown with longitudinal, cross-sectional, and velocity resolution, yielding a large analyzed parameter space. The dataset is then summarized and compared to prior results from both straight microchannels and other low aspect ratio spiral microchannel designs. Breakdown of focusing into a primary and secondary fluorescent streak is observed in the lowest aspect ratio channels at high average downstream velocities. Streak movement away from the theoretically predicted near inner wall equilibrium position towards the center of the channel at high average downstream velocities is also detailed as a precursor to breakdown. State diagrams detail the overall performance of each device including values of the required channel lengths and the range of velocities over which quality focusing can be achieved. PMID:22454556
A study of the energy dependence of the underlying event in proton-antiproton collisions
Aaltonen, T.
2015-11-23
We study charged particle production (p T > 0.5 GeV/c, |η| < 0.8) in proton-antiproton collisions at 300 GeV, 900 GeV, and 1.96 TeV. We use the direction of the charged particle with the largest transverse momentum in each event to define three regions of η-Φspace; “toward”, “away”, and “transverse”. Furthermore, the average number and the average scalar p T sum of charged particles in the transverse region are sensitive to the modeling of the “underlying event”. The transverse region is divided into a MAX and MIN transverse region, which helps separate the “hard component” (initial and final-state radiation) frommore » the “beam-beam remnant” and multiple parton interaction components of the scattering. We found that the center-of-mass energy dependence of the various components of the event are studied in detail. The data presented here can be used to constrain and improve QCD Monte Carlo models, resulting in more precise predictions at the LHC energies of 13 and 14 TeV.« less
Impact of End-of-Life manoeuvres on the collision risk in protected regions
NASA Astrophysics Data System (ADS)
Frey, Stefan; Lemmens, Stijn; Bastida Virgili, Benjamin; Flohrer, Tim; Gass, Volker
2017-09-01
The Inter-Agency Space Debris Coordination Committee (IADC) Space Debris Mitigation Guidelines, issued in 2002 and revised in 2007, address the post mission disposal of objects in orbit. After their mission, objects crossing the Low Earth Orbit (LEO) should have a remaining lifetime in orbit not exceeding 25 years. Objects near the Geostationary Orbit (GEO) region should be placed in an orbit that remains outside of the GEO protected region. In this paper, the impact of satellites and rocket bodies performing End-of-Life (EOL) orbital manoeuvres on the collision risk in the LEO and GEO protected regions is investigated. The cases of full or partial compliance with the IADC post mission disposal guideline are studied. ESA's Meteoroid and Space Debris Terrestrial Environment Reference (MASTER) model is used to compare the space debris flux rate of the object during the remaining lifetime estimated for the pre-EOL-manoeuvre and for the post-EOL-manoeuvre orbit. The study shows that, on average, the probability of collision can be significantly decreased by performing an EOL-manoeuver.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesavento, J B; Morgan, D; Bermingham, R
Nanolipoprotein particles (NLPs) are small 10-20 nm diameter assemblies of apolipoproteins and lipids. At Lawrence Livermore National Laboratory (LLNL), they have constructed multiple variants of these assemblies. NLPs have been generated from a variety of lipoproteins, including apolipoprotein Al, apolipophorin III, apolipoprotein E4 22K, and MSP1T2 (nanodisc, Inc.). Lipids used included DMPC (bulk of the bilayer material), DMPE (in various amounts), and DPPC. NLPs were made in either the absence or presence of the detergent cholate. They have collected electron microscopy data as a part of the characterization component of this research. Although purified by size exclusion chromatography (SEC), samplesmore » are somewhat heterogeneous when analyzed at the nanoscale by negative stained cryo-EM. Images reveal a broad range of shape heterogeneity, suggesting variability in conformational flexibility, in fact, modeling studies point to dynamics of inter-helical loop regions within apolipoproteins as being a possible source for observed variation in NLP size. Initial attempts at three-dimensional reconstructions have proven to be challenging due to this size and shape disparity. They are pursuing a strategy of computational size exclusion to group particles into subpopulations based on average particle diameter. They show here results from their ongoing efforts at statistically and computationally subdividing NLP populations to realize greater homogeneity and then generate 3D reconstructions.« less
Aminopropyl-Silica Hybrid Particles as Supports for Humic Acids Immobilization
Sándor, Mónika; Nistor, Cristina Lavinia; Szalontai, Gábor; Stoica, Rusandica; Nicolae, Cristian Andi; Alexandrescu, Elvira; Fazakas, József; Oancea, Florin; Donescu, Dan
2016-01-01
A series of aminopropyl-functionalized silica nanoparticles were prepared through a basic two step sol-gel process in water. Prior to being aminopropyl-functionalized, silica particles with an average diameter of 549 nm were prepared from tetraethyl orthosilicate (TEOS), using a Stöber method. In a second step, aminopropyl-silica particles were prepared by silanization with 3-aminopropyltriethoxysilane (APTES), added drop by drop to the sol-gel mixture. The synthesized amino-functionalized silica particles are intended to be used as supports for immobilization of humic acids (HA), through electrostatic bonds. Furthermore, by inserting beside APTES, unhydrolysable mono-, di- or trifunctional alkylsilanes (methyltriethoxy silane (MeTES), trimethylethoxysilane (Me3ES), diethoxydimethylsilane (Me2DES) and 1,2-bis(triethoxysilyl)ethane (BETES)) onto silica particles surface, the spacing of the free amino groups was intended in order to facilitate their interaction with HA large molecules. Two sorts of HA were used for evaluating the immobilization capacity of the novel aminosilane supports. The results proved the efficient functionalization of silica nanoparticles with amino groups and showed that the immobilization of the two tested types of humic acid substances was well achieved for all the TEOS/APTES = 20/1 (molar ratio) silica hybrids having or not having the amino functions spaced by alkyl groups. It was shown that the density of aminopropyl functions is low enough at this low APTES fraction and do not require a further spacing by alkyl groups. Moreover, all the hybrids having negative zeta potential values exhibited low interaction with HA molecules. PMID:28787834
NASA Astrophysics Data System (ADS)
Jono, Takashi; Arai, Katsuyoshi
2017-11-01
The Optical Inter-orbit Communications Engineering Test Satellite (OICETS) was successfully launched on 23th August 2005 and thrown into a circular orbit at the altitude of 610 km. The main mission is to demonstrate the free-space inter satellite laser communications with the cooperation of the Advanced Relay and Technology Mission (ARTEMIS) geostationary satellite developed by the European Space Agency. This paper presents the overview of the OICETS and laser terminal, a history of international cooperation between Japan Aerospace Exploration Agency (JAXA) and ESA and typical results of the inter-orbit laser communication experiment carried out with ARTEMIS.
Modeling and predicting intertidal variations of the salinity field in the Bay/Delta
Knowles, Noah; Uncles, Reginald J.
1995-01-01
One approach to simulating daily to monthly variability in the bay is the development of intertidal model using tidally-averaged equations and a time step on the order of the day. An intertidal numerical model of the bay's physics, capable of portraying seasonal and inter-annual variability, would have several uses. Observations are limited in time and space, so simulation could help fill the gaps. Also, the ability to simulate multi-year episodes (eg, an extended drought) could provide insight into the response of the ecosystem to such events. Finally, such a model could be used in a forecast mode wherein predicted delta flow is used as model input, and predicted salinity distribution is output with estimates days and months in advance. This note briefly introduces such a tidally-averaged model (Uncles and Peterson, in press) and a corresponding predictive scheme for baywide forecasting.
Measurement of LET distribution and dose equivalent on board the space shuttle STS-65
NASA Technical Reports Server (NTRS)
Hayashi, T.; Doke, T.; Kikuchi, J.; Takeuchi, R.; Hasebe, N.; Ogura, K.; Nagaoka, S.; Kato, M.; Badhwar, G. D.
1996-01-01
Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD)" utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 microSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5 degrees) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15-200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.
Measurement of LET distribution and dose equivalent on board the space shuttle STS-65.
Hayashi, T; Doke, T; Kikuchi, J; Takeuchi, R; Hasebe, N; Ogura, K; Nagaoka, S; Kato, M; Badhwar, G D
1996-11-01
Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD)" utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 microSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5 degrees) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15-200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.
Selective Laser Sintering of Nano Al2O3 Infused Polyamide
Warnakula, Anthony; Singamneni, Sarat
2017-01-01
Nano Al2O3 polyamide composites are evaluated for processing by selective laser sintering. A thermal characterization of the polymer composite powders allowed us to establish the possible initial settings. Initial experiments are conducted to identify the most suitable combinations of process parameters. Based on the results of the initial trials, more promising ranges of different process parameters could be identified. The post sintering characterization showed evidence of sufficient inter-particle sintering and intra-layer coalescence. While the inter-particle coalescence gradually improved, the porosity levels slightly decreased with increasing laser power. The nano-filler particles tend to agglomerate around the beads along the solid tracks, possibly due to Van der Walls forces. The tensile stress results showed an almost linear increase with increasing nano-filler content. PMID:28773220
NASA Astrophysics Data System (ADS)
Tsujiuchi, Y.; Makino, Y.
A composite film of soya phosphatidylcohline (soya PC) and bacteriorhodopsin (BR) was fabricated by the multilayer molecular thin film method using fatty acid and lipid on a quartz substrate. Direct Force Microscopy (DFM), UV absorption spectra and IR absorption spectra of the film were characterized on the detail of surface structure of the film. The DFM data revealed that many rhombus (diamond-shaped) particles were observed in the film. The spectroscopic data exhibited the yield of M-intermediate of BR in the film. On our modelling of molecular configuration indicate that the coexistence of the strong inter-molecular interaction and the strong inter-molecular interaction between BR trimmers attributed to form the particles.
Evaluation of Low-Gravity Smoke Particulate for Spacecraft Fire Detection
NASA Technical Reports Server (NTRS)
Urban, David; Ruff, Gary A.; Mulholland George; Meyer, Marit; Yuan, Zeng guang; Cleary, Thomas; Yang, Jiann; Greenberg, Paul; Bryg, Victoria
2013-01-01
Tests were conducted on the International Space Station to evaluate the smoke particulate size from materials and conditions that are typical of those expected in spacecraft fires. Five different materials representative of those found in spacecraft (Teflon, Kapton, cotton, silicone rubber and Pyrell) were heated to temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow. The air flow past the sample during the heating period ranged from quiescent to 8 cm/s. The effective transport time to the measurement instruments was varied from 11 to 800 seconds to simulate different smoke transport conditions in spacecraft. The resultant aerosol was evaluated by three instruments which measured different moments of the particle size distribution. These moment diagnostics were used to determine the particle number concentration (zeroth moment), the diameter concentration (first moment), and the mass concentration (third moment). These statistics were combined to determine the diameter of average mass and the count mean diameter and by assuming a log-normal distribution, the geometric mean diameter and the geometric standard deviations were also calculated. Smoke particle samples were collected on TEM grids using a thermal precipitator for post flight analysis. The TEM grids were analyzed to determine the particle morphology and shape parameters. The different materials produced particles with significantly different morphologies. Overall the majority of the average smoke particle sizes were found to be in the 200 to 400 nanometer range with the quiescent cases and the cases with increased transport time typically producing with substantially larger particles. The results varied between materials but the smoke particles produced in low gravity were typically twice the size of particles produced in normal gravity. These results can be used to establish design requirements for future spacecraft smoke detectors.
NASA Astrophysics Data System (ADS)
Yang, Chen; Liang, Pei; Tang, Lisha; Zhou, Yongfeng; Cao, Yanting; Wu, Yanxiong; Zhang, De; Dong, Qianmin; Huang, Jie; He, Peng
2018-04-01
As a means of chemical identification and analysis, Surface enhanced Raman spectroscopy (SERS), with the advantages of high sensitivity and selectivity, non-destructive, high repeatability and in situ detection etc., has important significance in the field of composition detection, environmental science, biological medicine etc. Physical model of coupling effect between different semiconductor substrates and noble metal particles were investigated by using 3D-FDTD method. Mechanism and the effects of excitation wavelength, particle spacing and semiconductor substrate types on the SERS effect were discussed. The results showed that the optimal excitation wavelengths of three noble metals of Ag, Au, Cu, were located at 510, 600 and 630 nm, respectively; SERS effect of Ag, Au, Cu increases with the decreasing of the inter distance of particles, while the distance of the NPs reaches the critical value of 3 nm, the strength of SERS effect will be greatly enhanced. For the four different types of substrate of Ge, Si, SiO2 (glass) and Al2O3, the SERS effect of Ag on SiO2 > Ge > Al2O3 > Si. For Au and Cu nanoparticles, the SERS effect of them on oxide substrate is stronger than that on non-oxide substrate. In order to verify FDTD simulations, taking silver nanoparticles as an example, and silver nanoparticles prepared by chemical method were spinning coating on the four different substrates with R6G as probe molecules. The results show that the experimental results are consistent with FDTD theoretical simulations, and the SERS enhancement effect of Ag-SiO2 substrate is best. The results of this study have important theoretical significance to explain the variations of SERS enhancement on different noble metals, which is also an important guide for the preparation of SERS substrates, especially for the microfluidics. The better Raman effect can be realized by choosing proper substrate type, particle spacing and excitation wavelength, result in expanding the depth and width of SERS application.
Shielding from Solar Particle Event Exposures in Deep Space
NASA Technical Reports Server (NTRS)
Wilson, John W.; Cucinotta, F. A.; Shinn, J. L.; Simonsen, L. C.; Dubey, R. R.; Jordan, W. R.; Jones, T. D.; Chang, C. K.; Kim, M. Y.
1999-01-01
The physical composition and intensities of solar particle event exposures or sensitive astronaut tissues are examined under conditions approximating an astronaut in deep space. Response functions for conversion of particle fluence into dose and dose equivalent averaged over organ tissue, are used to establish significant fluence levels and the expected dose and dose rates of the most important events from past observations. The BRYNTRN transport code is used to evaluate the local environment experienced by sensitive tissues and used to evaluate bioresponse models developed for use in tactical nuclear warfare. The present results will help to the biophysical aspects of such exposure in the assessment of RBE and dose rate effects and their impact on design of protection systems for the astronauts. The use of polymers as shielding material in place of an equal mass of aluminum would prowide a large safety factor without increasing the vehicle mass. This safety factor is sufficient to provide adequate protection if a factor of two larger event than has ever been observed in fact occurs during the mission.
Active dynamics of colloidal particles in time-varying laser speckle patterns
Bianchi, Silvio; Pruner, Riccardo; Vizsnyiczai, Gaszton; Maggi, Claudio; Di Leonardo, Roberto
2016-01-01
Colloidal particles immersed in a dynamic speckle pattern experience an optical force that fluctuates both in space and time. The resulting dynamics presents many interesting analogies with a broad class of non-equilibrium systems like: active colloids, self propelled microorganisms, transport in dynamical intracellular environments. Here we show that the use of a spatial light modulator allows to generate light fields that fluctuate with controllable space and time correlations and a prescribed average intensity profile. In particular we generate ring-shaped random patterns that can confine a colloidal particle over a quasi one-dimensional random energy landscape. We find a mean square displacement that is diffusive at both short and long times, while a superdiffusive or subdiffusive behavior is observed at intermediate times depending on the value of the speckles correlation time. We propose two alternative models for the mean square displacement in the two limiting cases of a short or long speckles correlation time. A simple interpolation formula is shown to account for the full phenomenology observed in the mean square displacement across the entire range from fast to slow fluctuating speckles. PMID:27279540
Simulation of deterministic energy-balance particle agglomeration in turbulent liquid-solid flows
NASA Astrophysics Data System (ADS)
Njobuenwu, Derrick O.; Fairweather, Michael
2017-08-01
An efficient technique to simulate turbulent particle-laden flow at high mass loadings within the four-way coupled simulation regime is presented. The technique implements large-eddy simulation, discrete particle simulation, a deterministic treatment of inter-particle collisions, and an energy-balanced particle agglomeration model. The algorithm to detect inter-particle collisions is such that the computational costs scale linearly with the number of particles present in the computational domain. On detection of a collision, particle agglomeration is tested based on the pre-collision kinetic energy, restitution coefficient, and van der Waals' interactions. The performance of the technique developed is tested by performing parametric studies on the influence of the restitution coefficient (en = 0.2, 0.4, 0.6, and 0.8), particle size (dp = 60, 120, 200, and 316 μm), Reynolds number (Reτ = 150, 300, and 590), and particle concentration (αp = 5.0 × 10-4, 1.0 × 10-3, and 5.0 × 10-3) on particle-particle interaction events (collision and agglomeration). The results demonstrate that the collision frequency shows a linear dependency on the restitution coefficient, while the agglomeration rate shows an inverse dependence. Collisions among smaller particles are more frequent and efficient in forming agglomerates than those of coarser particles. The particle-particle interaction events show a strong dependency on the shear Reynolds number Reτ, while increasing the particle concentration effectively enhances particle collision and agglomeration whilst having only a minor influence on the agglomeration rate. Overall, the sensitivity of the particle-particle interaction events to the selected simulation parameters is found to influence the population and distribution of the primary particles and agglomerates formed.
Corlin, Laura; Woodin, Mark; Hart, Jaime E; Simon, Matthew C; Gute, David M; Stowell, Joanna; Tucker, Katherine L; Durant, John L; Brugge, Doug
2018-04-05
Few longitudinal studies have examined the association between ultrafine particulate matter (UFP, particles < 0.1 μm aerodynamic diameter) exposure and cardiovascular disease (CVD) risk factors. We used data from 791 adults participating in the longitudinal Boston Puerto Rican Health Study (Massachusetts, USA) between 2004 and 2015 to assess whether UFP exposure was associated with blood pressure and high sensitivity C-reactive protein (hsCRP, a biomarker of systemic inflammation). Residential annual average UFP exposure (measured as particle number concentration, PNC) was assigned using a model accounting for spatial and temporal trends. We also adjusted PNC values for participants' inhalation rate to obtain the particle inhalation rate (PIR) as a secondary exposure measure. Multilevel linear models with a random intercept for each participant were used to examine the association of UFP with blood pressure and hsCRP. Overall, in adjusted models, an inter-quartile range increase in PNC was associated with increased hsCRP (β = 6.8; 95% CI = - 0.3, 14.0%) but not with increased systolic blood pressure (β = 0.96; 95% CI = - 0.33, 2.25 mmHg), pulse pressure (β = 0.70; 95% CI = - 0.27, 1.67 mmHg), or diastolic blood pressure (β = 0.55; 95% CI = - 0.20, 1.30 mmHg). There were generally stronger positive associations among women and never smokers. Among men, there were inverse associations of PNC with systolic blood pressure and pulse pressure. In contrast to the primary findings, an inter-quartile range increase in the PIR was positively associated with systolic blood pressure (β = 1.03; 95% CI = 0.00, 2.06 mmHg) and diastolic blood pressure (β = 1.01; 95% CI = 0.36, 1.66 mmHg), but not with pulse pressure or hsCRP. We observed that exposure to PNC was associated with increases in measures of CVD risk markers, especially among certain sub-populations. The exploratory PIR exposure metric should be further developed.
A microsatellite genetic linkage map of black rockfish ( Sebastes schlegeli)
NASA Astrophysics Data System (ADS)
Chu, Guannan; Jiang, Liming; He, Yan; Yu, Haiyang; Wang, Zhigang; Jiang, Haibin; Zhang, Quanqi
2014-12-01
Ovoviviparous black rockfish ( Sebastes schlegeli) is an important marine fish species for aquaculture and fisheries in China. Genetic information of this species is scarce because of the lack of microsatellite markers. In this study, a large number of microsatellite markers of black rockfish were isolated by constructing microsatellite-enriched libraries. Female- and male-specific genetic linkage maps were constructed using 435 microsatellite markers genotyped in a full-sib family of the fish species. The female linkage map contained 140 microsatellite markers, in which 23 linkage groups had a total genetic length of 1334.1 cM and average inter-marker space of 13.3 cM. The male linkage map contained 156 microsatellite markers, in which 25 linkage groups had a total genetic length of 1359.6 cM and average inter-marker distance of 12.4 cM. The genome coverage of the female and male linkage maps was 68.6% and 69.3%, respectively. The female-to-male ratio of the recombination rate was approximately 1.07:1 in adjacent microsatellite markers. This paper presents the first genetic linkage map of microsatellites in black rockfish. The collection of polymorphic markers and sex-specific linkage maps of black rockfish could be useful for further investigations on parental assignment, population genetics, quantitative trait loci mapping, and marker-assisted selection in related breeding programs.
Yoshimura, Masato; Chen, Nai Chi; Guan, Hong Hsiang; Chuankhayan, Phimonphan; Lin, Chien Chih; Nakagawa, Atsushi; Chen, Chun Jung
2016-07-01
Molecular averaging, including noncrystallographic symmetry (NCS) averaging, is a powerful method for ab initio phase determination and phase improvement. Applications of the cross-crystal averaging (CCA) method have been shown to be effective for phase improvement after initial phasing by molecular replacement, isomorphous replacement, anomalous dispersion or combinations of these methods. Here, a two-step process for phase determination in the X-ray structural analysis of a new coat protein from a betanodavirus, Grouper nervous necrosis virus, is described in detail. The first step is ab initio structure determination of the T = 3 icosahedral virus-like particle using NCS averaging (NCSA). The second step involves structure determination of the protrusion domain of the viral molecule using cross-crystal averaging. In this method, molecular averaging and solvent flattening constrain the electron density in real space. To quantify these constraints, a new, simple and general indicator, free fraction (ff), is introduced, where ff is defined as the ratio of the volume of the electron density that is freely changed to the total volume of the crystal unit cell. This indicator is useful and effective to evaluate the strengths of both NCSA and CCA. Under the condition that a mask (envelope) covers the target molecule well, an ff value of less than 0.1, as a new rule of thumb, gives sufficient phasing power for the successful construction of new structures.
Perpendicular diffusion of a dilute beam of charged particles in the PK-4 dusty plasma
NASA Astrophysics Data System (ADS)
Liu, Bin; Goree, John
2015-09-01
We study the random walk of a dilute beam of projectile dust particles that drift through a target dusty plasma. This random walk is a diffusion that occurs mainly due to Coulomb collisions with target particles that have a different size. In the direction parallel to the drift, projectiles exhibit mobility-limited motion with a constant average velocity. We use a 3D molecular dynamics (MD) simulation of the dust particle motion to determine the diffusion and mobility coefficients for the dilute beam. The dust particles are assumed to interact with a shielded Coulomb repulsion. They also experience gas drag. The beam particles are driven by a prescribed net force that is not applied to the target particles; in the experiments this net force is due to an imbalance of the electric and ion drag forces. This simulation is motivated by microgravity experiments, with the expectation that the scattering of projectiles studied here will be observed in upcoming PK-4 experiments on the International Space Station. Supported by NASA and DOE.
1- and 2-particle Microrheology of Hyaluronic Acid
NASA Astrophysics Data System (ADS)
Sagan, Austin; Kearns, Sarah; Ross, David; Das, Moumita; Thurston, George; Franklin, Scott
2015-03-01
Hyaluronic acid (also called HA or Hyaluronan) is a high molecular weight polysaccaride ubiquitous in the extracellular matrix of soft tissue such as cartilage, skin, the eye's vitreous gel and synovial fluid. It has been shown to play an important role in mechanotransduction, cell migration and proliferation, and in tissue morphodynamics. We present a confocal microrheology study of hyaluronic acid of varying concentrations. The mean squared displacement (MSD) of sub-micron colloidal tracer particles is tracked in two dimensions and shows a transition from diffusive motion at low concentrations to small-time trapping by the protein network as the concentration increases. Correlations between particle motion can be used to determine an effective mean-squared displacement which deviates from the single-particle MSD as the fluid becomes less homogeneous. The real and effective mean-squared displacements are used to probe the local and space-averaged frequency dependent rheological properties of the fluid as the concentration changes.
Wang, Qian; Chen, Xiaoguang; Zhu, Lin; Yan, Jiuchun; Lai, Zhiwei; Zhao, Pizhi; Bao, Juncheng; Lv, Guicai; You, Chen; Zhou, Xiaoyu; Zhang, Jian; Li, Yuntao
2017-01-01
Al-50Si alloys were joined by rapid ultrasound-induced transient-liquid-phase bonding method using Zn foil as interlayer at 390°C in air, below the melt point of interlayer. The fracture of oxide films along the edge of Si particles led to contact and inter-diffusion between aluminum substrate and Zn interlayer, and liquefied Zn-Al alloys were developed. The width of Zn-Al alloys gradually decreased with increasing the ultrasonic vibration time due to liquid squeezing out and accelerated diffusion. A stage of isothermal solidification existed, and the completion time was significantly shortened. In the liquid metal, the acoustic streaming and ultrasonic cavitations were induced. As the process developed, much more Si particles, which were particulate-reinforced phases of Al-50Si, gradually migrated to the center of soldering seam. The highest average shear strength of joints reached to 94.2MPa, and the fracture mainly occurred at the base metal. Copyright © 2016 Elsevier B.V. All rights reserved.
Reliability of doming and toe flexion testing to quantify foot muscle strength.
Ridge, Sarah Trager; Myrer, J William; Olsen, Mark T; Jurgensmeier, Kevin; Johnson, A Wayne
2017-01-01
Quantifying the strength of the intrinsic foot muscles has been a challenge for clinicians and researchers. The reliable measurement of this strength is important in order to assess weakness, which may contribute to a variety of functional issues in the foot and lower leg, including plantar fasciitis and hallux valgus. This study reports 3 novel methods for measuring foot strength - doming (previously unmeasured), hallux flexion, and flexion of the lesser toes. Twenty-one healthy volunteers performed the strength tests during two testing sessions which occurred one to five days apart. Each participant performed each series of strength tests (doming, hallux flexion, and lesser toe flexion) four times during the first testing session (twice with each of two raters) and two times during the second testing session (once with each rater). Intra-class correlation coefficients were calculated to test for reliability for the following comparisons: between raters during the same testing session on the same day (inter-rater, intra-day, intra-session), between raters on different days (inter-rater, inter-day, inter-session), between days for the same rater (intra-rater, inter-day, inter-session), and between sessions on the same day by the same rater (intra-rater, intra-day, inter-session). ICCs showed good to excellent reliability for all tests between days, raters, and sessions. Average doming strength was 99.96 ± 47.04 N. Average hallux flexion strength was 65.66 ± 24.5 N. Average lateral toe flexion was 50.96 ± 22.54 N. These simple tests using relatively low cost equipment can be used for research or clinical purposes. If repeated testing will be conducted on the same participant, it is suggested that the same researcher or clinician perform the testing each time for optimal reliability.
Deblurring of Class-Averaged Images in Single-Particle Electron Microscopy.
Park, Wooram; Madden, Dean R; Rockmore, Daniel N; Chirikjian, Gregory S
2010-03-01
This paper proposes a method for deblurring of class-averaged images in single-particle electron microscopy (EM). Since EM images of biological samples are very noisy, the images which are nominally identical projection images are often grouped, aligned and averaged in order to cancel or reduce the background noise. However, the noise in the individual EM images generates errors in the alignment process, which creates an inherent limit on the accuracy of the resulting class averages. This inaccurate class average due to the alignment errors can be viewed as the result of a convolution of an underlying clear image with a blurring function. In this work, we develop a deconvolution method that gives an estimate for the underlying clear image from a blurred class-averaged image using precomputed statistics of misalignment. Since this convolution is over the group of rigid body motions of the plane, SE(2), we use the Fourier transform for SE(2) in order to convert the convolution into a matrix multiplication in the corresponding Fourier space. For practical implementation we use a Hermite-function-based image modeling technique, because Hermite expansions enable lossless Cartesian-polar coordinate conversion using the Laguerre-Fourier expansions, and Hermite expansion and Laguerre-Fourier expansion retain their structures under the Fourier transform. Based on these mathematical properties, we can obtain the deconvolution of the blurred class average using simple matrix multiplication. Tests of the proposed deconvolution method using synthetic and experimental EM images confirm the performance of our method.
Exploring the statistics of magnetic reconnection X-points in kinetic particle-in-cell turbulence
NASA Astrophysics Data System (ADS)
Haggerty, C. C.; Parashar, T. N.; Matthaeus, W. H.; Shay, M. A.; Yang, Y.; Wan, M.; Wu, P.; Servidio, S.
2017-10-01
Magnetic reconnection is a ubiquitous phenomenon in turbulent plasmas. It is an important part of the turbulent dynamics and heating of space and astrophysical plasmas. We examine the statistics of magnetic reconnection using a quantitative local analysis of the magnetic vector potential, previously used in magnetohydrodynamics simulations, and now employed to fully kinetic particle-in-cell (PIC) simulations. Different ways of reducing the particle noise for analysis purposes, including multiple smoothing techniques, are explored. We find that a Fourier filter applied at the Debye scale is an optimal choice for analyzing PIC data. Finally, we find a broader distribution of normalized reconnection rates compared to the MHD limit with rates as large as 0.5 but with an average of approximately 0.1.
Nikolakakis, I; Aragon, O B; Malamataris, S
1998-07-01
The purpose of this study was to compare some indicators of capsule-filling performance, as measured by tapped density under different conditions, and elucidate possible quantitative relationships between variation of capsule fill-weight (%CV) and gravitational and inter-particle forces (attractive or frictional) derived from measurements of particle size, true density, low compression and tensile strength. Five common pharmaceutical diluents (lactose, maize starch, talc, Emcocel and Avicel) were investigated and two capsule-filling methods (pouring powder and dosator nozzle) were employed. It was found that for the pouring-type method the appropriateness of Hausner's ratio (HR), Carr's compressibility index (CC%) and Kawakita's constant (alpha) as indicators of capsule fill-weight variation decreases in the order alpha > CC% > HR; the appropriateness of these indicators also decreases with increasing cylinder size and with impact velocity during tapping. For the dosator-type method the appropriateness of the indicators decreases in the order HR > CC% > alpha, the opposite of that for the pouring-type method; the appropriateness of the indicators increases with decreasing cylinder size and impact velocity. The relationship between %CV and the ratio of inter-particle attractive to gravitational forces calculated from measurements of particle size and true density (Fvdw/Wp) was more significant for the pouring-type capsule-filling method. For the dosator-type method a significant relationship (1% level) was found between %CV and the product of Fvdw/Wp and a function expressing the increase, with packing density (p(f)), in the ratio of frictional to attractive inter-particle forces derived from compression (P) and tensile-strength (T) testing, d(log(P/T))/d(p(f)). The value of tapped density in predictions of capsule-filling performance is affected by the testing conditions in a manner depending on the filling method applied. For the pouring-type method predictions can be based on the ratio of attractive (inter-particle) to gravitational forces, whereas for the dosator-type method the contribution of frictional and attractive forces should, because of packing density change, also be taken into account.
Bergeron, Catherine; Fleet, Richard; Tounkara, Fatoumata Korika; Lavallée-Bourget, Isabelle; Turgeon-Pelchat, Catherine
2017-12-28
Rural emergency departments (EDs) are an important gateway to care for the 20% of Canadians who reside in rural areas. Less than 15% of Canadian rural EDs have access to a computed tomography (CT) scanner. We hypothesized that a significant proportion of inter-facility transfers from rural hospitals without CT scanners are for CT imaging. Our objective was to assess inter-facility transfers for CT imaging in a rural ED without a CT scanner. We selected a rural ED that offers 24/7 medical care with admission beds but no CT scanner. Descriptive statistics were collected from 2010 to 2015 on total ED visits and inter-facility transfers. Data was accessible through hospital and government databases. Between 2010 and 2014, there were respectively 13,531, 13,524, 13,827, 12,883, and 12,942 ED visits, with an average of 444 inter-facility transfers. An average of 33% (148/444) of inter-facility transfers were to a rural referral centre with a CT scan, with 84% being for CT scan. Inter-facility transfers incur costs and potential delays in patient diagnosis and management, yet current databases could not capture transfer times. Acquiring a CT scan may represent a reasonable opportunity for the selected rural hospital considering the number of required transfers.
Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring
NASA Astrophysics Data System (ADS)
Crilley, Leigh R.; Shaw, Marvin; Pound, Ryan; Kramer, Louisa J.; Price, Robin; Young, Stuart; Lewis, Alastair C.; Pope, Francis D.
2018-02-01
A fast-growing area of research is the development of low-cost sensors for measuring air pollutants. The affordability and size of low-cost particle sensors makes them an attractive option for use in experiments requiring a number of instruments such as high-density spatial mapping. However, for these low-cost sensors to be useful for these types of studies their accuracy and precision need to be quantified. We evaluated the Alphasense OPC-N2, a promising low-cost miniature optical particle counter, for monitoring ambient airborne particles at typical urban background sites in the UK. The precision of the OPC-N2 was assessed by co-locating 14 instruments at a site to investigate the variation in measured concentrations. Comparison to two different reference optical particle counters as well as a TEOM-FDMS enabled the accuracy of the OPC-N2 to be evaluated. Comparison of the OPC-N2 to the reference optical instruments shows some limitations for measuring mass concentrations of PM1, PM2.5 and PM10. The OPC-N2 demonstrated a significant positive artefact in measured particle mass during times of high ambient RH (> 85 %) and a calibration factor was developed based upon κ-Köhler theory, using average bulk particle aerosol hygroscopicity. Application of this RH correction factor resulted in the OPC-N2 measurements being within 33 % of the TEOM-FDMS, comparable to the agreement between a reference optical particle counter and the TEOM-FDMS (20 %). Inter-unit precision for the 14 OPC-N2 sensors of 22 ± 13 % for PM10 mass concentrations was observed. Overall, the OPC-N2 was found to accurately measure ambient airborne particle mass concentration provided they are (i) correctly calibrated and (ii) corrected for ambient RH. The level of precision demonstrated between multiple OPC-N2s suggests that they would be suitable devices for applications where the spatial variability in particle concentration was to be determined.
Universal clustering of dark matter in phase space
NASA Astrophysics Data System (ADS)
Zavala, Jesús; Afshordi, Niayesh
2016-03-01
We have recently introduced a novel statistical measure of dark matter clustering in phase space, the particle phase-space average density (P2SAD). In a two-paper series, we studied the structure of P2SAD in the Milky Way-size Aquarius haloes, constructed a physically motivated model to describe it, and illustrated its potential as a powerful tool to predict signals sensitive to the nanostructure of dark matter haloes. In this work, we report a remarkable universality of the clustering of dark matter in phase space as measured by P2SAD within the subhaloes of host haloes across different environments covering a range from dwarf-size to cluster-size haloes (1010-1015 M⊙). Simulations show that the universality of P2SAD holds for more than seven orders of magnitude, over a 2D phase space, covering over three orders of magnitude in distance/velocity, with a simple functional form that can be described by our model. Invoking the universality of P2SAD, we can accurately predict the non-linear power spectrum of dark matter at small scales all the way down to the decoupling mass limit of cold dark matter particles. As an application, we compute the subhalo boost to the annihilation of dark matter in a wide range of host halo masses.
Engineering nanoscale surface features to sustain microparticle rolling in flow.
Kalasin, Surachate; Santore, Maria M
2015-05-26
Nanoscopic features of channel walls are often engineered to facilitate microfluidic transport, for instance when surface charge enables electro-osmosis or when grooves drive mixing. The dynamic or rolling adhesion of flowing microparticles on a channel wall holds potential to accomplish particle sorting or to selectively transfer reactive species or signals between the wall and flowing particles. Inspired by cell rolling under the direction of adhesion molecules called selectins, we present an engineered platform in which the rolling of flowing microparticles is sustained through the incorporation of entirely synthetic, discrete, nanoscale, attractive features into the nonadhesive (electrostatically repulsive) surface of a flow channel. Focusing on one example or type of nanoscale feature and probing the impact of broad systematic variations in surface feature loading and processing parameters, this study demonstrates how relatively flat, weakly adhesive nanoscale features, positioned with average spacings on the order of tens of nanometers, can produce sustained microparticle rolling. We further demonstrate how the rolling velocity and travel distance depend on flow and surface design. We identify classes of related surfaces that fail to support rolling and present a state space that identifies combinations of surface and processing variables corresponding to transitions between rolling, free particle motion, and arrest. Finally we identify combinations of parameters (surface length scales, particle size, flow rates) where particles can be manipulated with size-selectivity.
The heavy-ion compositional signature in He-3-rich solar particle events
NASA Technical Reports Server (NTRS)
Mason, G. M.; Reames, D. V.; Von Rosenvinge, T. T.; Klecker, B.; Hovestadt, D.
1986-01-01
A survey of the approx. 1 MeV/nucleon heavy ion abundances in 66 He-3-rich solar particle events was performed using the Max-Planck-Institut/University of Maryland and Goddard Space Flight Center instruments on the ISEE-3 spacecraft. The observations were carried out in interplanetary space over the period 1978 October through 1982 June. Earlier observations were confirmed which show an enrichment of heavy ions in He-3-rich events, relative to the average solar energetic particle composition in large particle events. For the survey near 1.5 MeV/nucleon the enrichments compared to large solar particle events are approximately He4:C:O:Ne:Mg:Si:Fe = 0.44:0.66:1.:3.4:3.5:4.1:9.6. Surprising new results emerging from the present broad survey are that the heavy ion enrichment pattern is the same within a factor of approx. 2 for almost all cases, and the degree of heavy ion enrichment is uncorrelated with the He-3 enrichment. Overall, the features established appear to be best explained by an acceleration mechanism in which the He-3 enrichment process is not responsible for the heavy ion enrichment, but rather the heavy ion enrichment is a measure of the ambient coronal composition at the sites where the He-3-rich events occur.
The heavy ion compositional signature in 3He-rich solar particle events
NASA Technical Reports Server (NTRS)
Mason, G. M.; Reames, D. V.; Klecker, B.; Hovestadt, D.; Vonrosenvinge, T. T.
1985-01-01
A survey of the approx. 1 MeV/nucleon heavy ion abundances in 66 He3-rich solar particle events was performed using the Max-Planck-Institut/University of Maryland and Goddard Space Flight Center instruments on the ISEE-3 spacecraft. The observations were carried out in interplanetary space over the period 1978 October through 1982 June. Earlier observations were confirmed which show an enrichment of heavy ions in HE3-rich events, relative to the average solar energetic particle composition in large particle events. For the survey near 1.5 MeV/nucleon the enrichments compared to large solar particle events are approximately He4:C:O:Ne:Mg:Si:Fe = 0.44:0.66:1.:3.4:3.5:4.1:9.6. Surprising new results emerging from the present broad survey are that the heavy ion enrichment pattern is the same within a factor of approx. 2 for almost all cases, and the degree of heavy ion enrichment is uncorrelated with the He3 enrichment. Overall, the features established appear to be best explained by an acceleration mechanism in which the He3 enrichment process is not responsible for the heavy ion enrichment, but rather the heavy ion enrichment is a measure of the ambient coronal composition at the sites where the He3-rich events occur.
Charged particle dynamics in the presence of non-Gaussian Lévy electrostatic fluctuations
Del-Castillo-Negrete, Diego B.; Moradi, Sara; Anderson, Johan
2016-09-01
Full orbit dynamics of charged particles in a 3-dimensional helical magnetic field in the presence of -stable Levy electrostatic fluctuations and linear friction modeling collisional Coulomb drag is studied via Monte Carlo numerical simulations. The Levy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space resulting from intermittent electrostatic turbulence. The probability distribution functions of energy, particle displacements, and Larmor radii are computed and showed to exhibit a transition from exponential decay, in the case of Gaussian fluctuations, to power law decay in the case of Levy fluctuations. The absolute value ofmore » the power law decay exponents are linearly proportional to the Levy index. Furthermore, the observed anomalous non-Gaussian statistics of the particles' Larmor radii (resulting from outlier transport events) indicate that, when electrostatic turbulent fluctuations exhibit non-Gaussian Levy statistics, gyro-averaging and guiding centre approximations might face limitations and full particle orbit effects should be taken into account.« less
Charged particle dynamics in the presence of non-Gaussian Lévy electrostatic fluctuations
NASA Astrophysics Data System (ADS)
Moradi, Sara; del-Castillo-Negrete, Diego; Anderson, Johan
2016-09-01
Full orbit dynamics of charged particles in a 3-dimensional helical magnetic field in the presence of α-stable Lévy electrostatic fluctuations and linear friction modeling collisional Coulomb drag is studied via Monte Carlo numerical simulations. The Lévy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space resulting from intermittent electrostatic turbulence. The probability distribution functions of energy, particle displacements, and Larmor radii are computed and showed to exhibit a transition from exponential decay, in the case of Gaussian fluctuations, to power law decay in the case of Lévy fluctuations. The absolute value of the power law decay exponents is linearly proportional to the Lévy index α. The observed anomalous non-Gaussian statistics of the particles' Larmor radii (resulting from outlier transport events) indicate that, when electrostatic turbulent fluctuations exhibit non-Gaussian Lévy statistics, gyro-averaging and guiding centre approximations might face limitations and full particle orbit effects should be taken into account.
The effects of radiation on angiogenesis.
Grabham, Peter; Sharma, Preety
2013-10-26
The average human body contains tens of thousands of miles of vessels that permeate every tissue down to the microscopic level. This makes the human vasculature a prime target for an agent like radiation that originates from a source and passes through the body. Exposure to radiation released during nuclear accidents and explosions, or during cancer radiotherapy, is well known to cause vascular pathologies because of the ionizing effects of electromagnetic radiations (photons) such as gamma rays. There is however, another type of less well-known radiation - charged ion particles, and these atoms stripped of electrons, have different physical properties to the photons of electromagnetic radiation. They are either found in space or created on earth by particle collider facilities, and are of significant recent interest due to their enhanced effectiveness and increasing use in cancer radiotherapy, as well as a health risk to the growing number of people spending time in the space environment. Although there is to date, relatively few studies on the effects of charged particles on the vascular system, a very different picture of the biological effects of these particles compared to photons is beginning to emerge. These under researched biological effects of ion particles have a large impact on the health consequences of exposure. In this short review, we will discuss the effects of charged particles on an important biological process of the vascular system, angiogenesis, which creates and maintains the vasculature and is highly important in tumor vasculogenesis.
The effects of radiation on angiogenesis
2013-01-01
The average human body contains tens of thousands of miles of vessels that permeate every tissue down to the microscopic level. This makes the human vasculature a prime target for an agent like radiation that originates from a source and passes through the body. Exposure to radiation released during nuclear accidents and explosions, or during cancer radiotherapy, is well known to cause vascular pathologies because of the ionizing effects of electromagnetic radiations (photons) such as gamma rays. There is however, another type of less well-known radiation – charged ion particles, and these atoms stripped of electrons, have different physical properties to the photons of electromagnetic radiation. They are either found in space or created on earth by particle collider facilities, and are of significant recent interest due to their enhanced effectiveness and increasing use in cancer radiotherapy, as well as a health risk to the growing number of people spending time in the space environment. Although there is to date, relatively few studies on the effects of charged particles on the vascular system, a very different picture of the biological effects of these particles compared to photons is beginning to emerge. These under researched biological effects of ion particles have a large impact on the health consequences of exposure. In this short review, we will discuss the effects of charged particles on an important biological process of the vascular system, angiogenesis, which creates and maintains the vasculature and is highly important in tumor vasculogenesis. PMID:24160185
Aggregation Pattern Transitions by Slightly Varying the Attractive/Repulsive Function
Cheng, Zhao; Zhang, Hai-Tao; Chen, Michael Z. Q.; Zhou, Tao; Valeyev, Najl V.
2011-01-01
Among collective behaviors of biological swarms and flocks, the attractive/repulsive (A/R) functional links between particles play an important role. By slightly changing the cutoff distance of the A/R function, a drastic transition between two distinct aggregation patterns is observed. More precisely, a large cutoff distance yields a liquid-like aggregation pattern where the particle density decreases monotonously from the inside to the outwards within each aggregated cluster. Conversely, a small cutoff distance produces a crystal-like aggregation pattern where the distance between each pair of neighboring particles remains constant. Significantly, there is an obvious spinodal in the variance curve of the inter-particle distances along the increasing cutoff distances, implying a legible transition pattern between the liquid-like and crystal-like aggregations. This work bridges the aggregation phenomena of physical particles and swarming of organisms in nature upon revealing some common mechanism behind them by slightly varying their inter-individual attractive/repulsive functions, and may find its potential engineering applications, for example, in the formation design of multi-robot systems and unmanned aerial vehicles (UAVs). PMID:21799776
Inter-nesting movements and habitat-use of adult female Kemp’s ridley turtles in the Gulf of Mexico
Hart, Kristen M.; Fujisaki, Ikuko; Bucklin, David; Iverson, Autumn R.; Rubio, Cynthia; Backof, Thomas F.; Burchfield, Patrick M.; de Jesus Gonzales Diaz Miron, Raul; Dutton, Peter H.; Frey, Amy; Peña, Jaime; Gomez Gamez, Daniel; Martinez, Hector J.; Ortiz, Jaime
2017-01-01
Species vulnerability is increased when individuals congregate in restricted areas for breeding; yet, breeding habitats are not well defined for many marine species. Identification and quantification of these breeding habitats are essential to effective conservation. Satellite telemetry and switching state-space modeling (SSM) were used to define inter-nesting habitat of endangered Kemp’s ridley turtles (Lepidochelys kempii) in the Gulf of Mexico. Turtles were outfitted with satellite transmitters after nesting at Padre Island National Seashore, Texas, USA, from 1998 through 2013 (n = 60); Rancho Nuevo, Tamaulipas, Mexico, during 2010 and 2011 (n = 11); and Tecolutla, Veracruz, Mexico, during 2012 and 2013 (n = 11). These sites span the range of nearly all nesting by this species. Inter-nesting habitat lies in a narrow band of nearshore western Gulf of Mexico waters in the USA and Mexico, with mean water depth of 14 to 19 m within a mean distance to shore of 6 to 11 km as estimated by 50% kernel density estimate, α-Hull, and minimum convex polygon methodologies. Turtles tracked during the inter-nesting period moved, on average, 17.5 km/day and a mean total distance of 398 km. Mean home ranges occupied were 725 to 2948 km2. Our results indicate that these nearshore western Gulf waters represent critical inter-nesting habitat for this species, where threats such as shrimp trawling and oil and gas platforms also occur. Up to half of all adult female Kemp’s ridleys occupy this habitat for weeks to months during each nesting season. Because inter-nesting habitat for this species is concentrated in nearshore waters of the western Gulf of Mexico in both Mexico and the USA, international collaboration is needed to protect this essential habitat and the turtles occurring within it. PMID:28319178
Instability of the sliding Luttinger liquid
NASA Astrophysics Data System (ADS)
Fleurov, V.; Kagalovsky, V.; Lerner, I. V.; Yurkevich, I. V.
2018-05-01
We revise a phase diagram for the sliding Luttinger liquid (SLL) of coupled one-dimensional quantum wires packed in two- or three-dimensional arrays in the absence of a magnetic field. We analyse whether physically justifiable (reasonable) inter-wire interactions, i.e. either the screened Coulomb or ‘Coulomb-blockade’ type interactions, stabilise the SLL phase. Calculating the scaling dimensions of the most relevant perturbations (the inter-wire single-particle hybridisation, charge-density wave, and superconducting inter-wire couplings), we find that their combination always destroys the SLL phase for the repulsive intra-wire interaction. However, suppressing the inter-wire tunnelling of repulsive fermions (when the charge-density wave is the only remaining perturbation), one can observe a stability region emerging due to the inter-wire forward scattering interaction.
Electric-field-induced association of colloidal particles
NASA Astrophysics Data System (ADS)
Fraden, Seth; Hurd, Alan J.; Meyer, Robert B.
1989-11-01
Dilute suspensions of micron diameter dielectric spheres confined to two dimensions are induced to aggregate linearly by application of an electric field. The growth of the average cluster size agrees well with the Smoluchowski equation, but the evolution of the measured cluster size distribution exhibits significant departures from theory at large times due to the formation of long linear clusters which effectively partition space into isolated one-dimensional strips.
Fate of small charred particles in soils - importance of aggregation
NASA Astrophysics Data System (ADS)
Mueller, C. W.; Pechenkina, N.; Grünz, G.; Kölbl, A.; Steffens, M.; Heister, K.; Kögel-Knabner, I.
2009-04-01
Historic and recent fires affect a broad range of terrestrial ecosystems and are reflected in the composition of soil organic matter (SOM). Although the assignments of different sources and pools of black carbon (BC) are still under debate, the importance of BC for carbon (C) storage, nutrient supply and contaminant sorption is well recognized. Nevertheless, how processes of encapsulation of BC into aggregates may influence fate and properties of BC still needs further research. We observed small highly aromatic particulate OM (oPOMsmall, <20 µm) exclusively occluded within aggregates in a range of soils. As these particles were absent in the inter-aggregate soil space the question of the importance of soil aggregation for the fate of these particles is raised. In the presented study we analysed intact soil aggregates and the distribution of highly aromatic micro-scale charred particles and mineral bound SOM in Haplic Chernozems from Central Russia. We fractionated the soils by means of density to obtain particulate and mineral bound SOM fractions. The chemical composition of the obtained fractions was studied by solid-state 13C-NMR spectroscopy and energy dispersive X-ray spectroscopy (EDX). For visualization of the particles and aggregates we used scanning electron microscopy (SEM) and nano-scale secondary ion mass spectrometry (NanoSIMS). The importance of oxides for aggregate formation was elucidated by analyses of extractable Fe. Furthermore, we incubated the oPOMsmall fraction at 20°C in batch experiments to study the aggregate formation of charred particles with time. To track the fate of OM on new formed aggregates, we used a labelled amino acid mixture (min. 98 atom% 13C and 15N) as readily bioavailable OM input and isotopic tracer. The matrix of the intact soil aggregates, embedded in epoxy resin, was dominated by densely packed clay particles. At all depths particulate SOM was quantitatively dominated by the aromatic oPOM fractions, inter-aggregate POM was almost absent at higher depths. The oPOMsmall showed mainly amorphous structures and very few plant tissue structures as revealed by SEM. The oPOMsmall fraction showed a drastic increase in the content of aromatic C with depth along with decreasing aliphatic C in the thick A horizons. Almost the entire OM of the oPOMsmall fraction was composed of aromatic C compounds in the AB horizons. The incubation experiment with particles from the oPOMsmall fraction revealed a fast aggregate formation in water within a few days. With the isotopic sensitivity of the NanoSIMS 50, we were able to show spatial heterogeneous enrichments in 13C and 15N on new formed aggregates of aromatic particles.
NASA Astrophysics Data System (ADS)
Besselink, R.; Stawski, T. M.; Van Driessche, A. E. S.; Benning, L. G.
2016-12-01
Densely packed surface fractal aggregates form in systems with high local volume fractions of particles with very short diffusion lengths, which effectively means that particles have little space to move. However, there are no prior mathematical models, which would describe scattering from such surface fractal aggregates and which would allow the subdivision between inter- and intraparticle interferences of such aggregates. Here, we show that by including a form factor function of the primary particles building the aggregate, a finite size of the surface fractal interfacial sub-surfaces can be derived from a structure factor term. This formalism allows us to define both a finite specific surface area for fractal aggregates and the fraction of particle interfacial sub-surfaces at the perimeter of an aggregate. The derived surface fractal model is validated by comparing it with an ab initio approach that involves the generation of a "brick-in-a-wall" von Koch type contour fractals. Moreover, we show that this approach explains observed scattering intensities from in situ experiments that followed gypsum (CaSO4 ṡ 2H2O) precipitation from highly supersaturated solutions. Our model of densely packed "brick-in-a-wall" surface fractal aggregates may well be the key precursor step in the formation of several types of mosaic- and meso-crystals.
Chen, Gin-Shin; Pan, Chia-Ching; Lin, Yu-Li; Cheng, Jung-Sung
2014-03-01
The electroacoustic conversion efficiency of the ultrasonic transducer is a critical performance index for high-power applications. The material properties, volume fraction (VF) and aspect ratio (AR) are typically regarded as the design parameters of the piezocomposite transducer. We hypothesized that the spacing between piezoelectric rods was also a dominant factor. Therefore, the inter-rod coupling effects on the efficiency of 1-3 piezocomposite ultrasonic transducers were investigated in this study. The efficiencies of six flat and three curved 1.0 MHz PZT4 epoxy composite transducers with different geometric parameters were measured. Finite element transient analyses of the inter-rod electrical-mechanical coupling in the composites were carried out to explain the measured results. The experimental results showed that for 0.47 AR, the 79% VF transducers had lower efficiency than the 64% VF and 53% VF transducers. For 0.19 AR, the efficiency of the 59% VF transducer was not greater than the efficiency of the 39% VF transducer. Numerical analyses demonstrated that the positive peak voltage induced by the coupling of the side rods was more than twice the level induced by the coupling of the diagonal rods for any spacing. The diagonal coupling voltage peak did not change for spacings larger than 0.2 mm. Moreover, for spacings of 0.05 and 0.1 mm, the inter-rod coupling caused 24% and 20% waveform shifts of the driving voltage, respectively, while the 0.2 mm spacing coupling caused a 14% reduction in the amplitude of the driving voltage. As a result, the asymmetry of the driving voltage degraded the efficiency of the composite transducers and became more severe when the spacing was decreased. We concluded that the efficiency loss induced by inter-rod coupling as a function of spacing should be considered when designing piezocomposite transducers. Copyright © 2013 Elsevier B.V. All rights reserved.
Harmonic decomposition of magneto-optical signal from suspensions of superparamagnetic nanoparticles
NASA Astrophysics Data System (ADS)
Patterson, Cody; Syed, Maarij; Takemura, Yasushi
2018-04-01
Magnetic nanoparticles (MNPs) are widely used in biomedical applications. Characterizing dilute suspensions of superparamagnetic iron oxide nanoparticles (SPIONs) in bio-relevant media is particularly valuable for magnetic particle imaging, hyperthermia, drug delivery, etc. Here, we study dilute aqueous suspensions of single-domain magnetite nanoparticles using an AC Faraday rotation (FR) setup. The setup uses an oscillating magnetic field (800 Hz) which generates a multi-harmonic response. Each harmonic is collected and analyzed using the Fourier components of the theoretical signal determined by a Langevin-like magnetization. With this procedure, we determine the average magnetic moment per particle μ , particle number density n, and Verdet constant of the sample. The fitted values of μ and n are shown to be consistent across each harmonic. Additionally, we present the results of these parameters as n is varied. The large values of μ reveal the possibility of clustering as reported in other literature. This suggests that μ is representative of the average magnetic moment per cluster of nanoparticles. Multiple factors, including the external magnetic field, surfactant degradation, and laser absorption, can contribute to dynamic and long-term aggregation leading to FR signals that represent space- and time-averaged sample parameters. Using this powerful analysis procedure, future studies are aimed at determining the clustering mechanisms in this AC system and characterizing SPION suspensions at different frequencies and viscosities.
Electrically Guided Assembly of Colloidal Particles
NASA Astrophysics Data System (ADS)
Ristenpart, W. D.; Aksay, I. A.; Saville, D. A.
2002-11-01
In earlier work it was shown that the strength and frequency of an applied electric field alters the dynamic arrangement of particles on an electrode. Two-dimensional 'gas,' 'liquid' and 'solid' arrangements were formed, depending on the field strength and frequency. Since the particles are similarly charged, yet migrate over large distances under the influence of steady or oscillatory fields, it is clear that both hydrodynamic and electrical processes are involved. Here we report on an extensive study of electrically induced ordering in a parallel electrode cell. First, we discuss the kinetics of aggregation in a DC field as measured using video microscopy and digital image analysis. Rate constants were determined as a function of applied electric field strength and particle zeta potential. The kinetic parameters are compared to models based on electrohydrodynamic and electroosmotic fluid flow mechanisms Second, using monodisperse micron-sized particles, we examined the average interparticle spacing over a wide range of applied frequencies and field strengths. Variation of these parameters allows formation of closely-spaced arrangements and ordered arrays of widely separated particles. We find that there is a strong dependence on frequency, but there is surprisingly little influence of the electric field strength past a small threshold. Last, we present experiments with binary suspensions of similarly sized particles with negative but unequal surface potentials. A long-range lateral attraction is observed in an AC field. Depending on the frequency, this attractive interaction results in a diverse set of aggregate morphologies, including superstructured hexagonal lattices. These results are discussed in terms of induced dipole-dipole interactions and electrohydrodynamic flow. Finally, we explore the implications for practical applications.
NASA Technical Reports Server (NTRS)
Mckay, D. S.; Rietmeijer, F. J. M.; Schramm, L. S.; Barrett, R. A.; Zook, H. A.; Blanford, G. E.
1986-01-01
The physical properties of impact features observed in the Solar Max main electronics box (MEB) thermal blanket generally suggest an origin by hypervelocity impact. The chemistry of micrometeorite material suggests that a wide variety of projectile materials have survived impact with retention of varying degrees of pristinity. Impact features that contain only spacecraft paint particles are on average smaller than impact features caused by micrometeorite impacts. In case both types of materials co-occur, it is belevied that the impact feature, generally a penetration hole, was caused by a micrometeorite projectile. The typically smaller paint particles were able to penetrate though the hole in the first layer and deposit in the spray pattern on the second layer. It is suggested that paint particles have arrived with a wide range of velocities relative to the Solar Max satellite. Orbiting paint particles are an important fraction of materials in the near-Earth environment. In general, the data from the Solar Max studies are a good calibration for the design of capture cells to be flown in space and on board Space Station. The data also suggest that development of multiple layer capture cells in which the projectile may retain a large degree of pristinity is a feasible goal.
Yang, Chao; Deng, Shengjue; Lin, Chunfu; Lin, Shiwei; Chen, Yongjun; Li, Jianbao; Wu, Hui
2016-11-10
TiNb 24 O 62 is explored as a new anode material for lithium-ion batteries. Microsized TiNb 24 O 62 particles (M-TiNb 24 O 62 ) are fabricated through a simple solid-state reaction method and porous TiNb 24 O 62 microspheres (P-TiNb 24 O 62 ) are synthesized through a facile solvothermal method for the first time. TiNb 24 O 62 exhibits a Wadsley-Roth shear structure with a structural unit composed of a 3 × 4 octahedron-block and a 0.5 tetrahedron at the block-corner. P-TiNb 24 O 62 with an average sphere size of ∼2 μm is constructed by nanoparticles with an average size of ∼100 nm, forming inter-particle pores with a size of ∼8 nm and inter-sphere pores with a size of ∼55 nm. Such desirable porous microspheres are an ideal architecture for enhancing the electrochemical performances by shortening the transport distance of electrons/Li + -ions and increasing the reaction area. Consequently, P-TiNb 24 O 62 presents outstanding electrochemical performances in terms of specific capacity, rate capability and cyclic stability. The reversible capacities of P-TiNb 24 O 62 are, respectively, as large as 296, 277, 261, 245, 222, 202 and 181 mA h g -1 at 0.1, 0.5, 1, 2, 5, 10 and 20 C, which are obviously larger than those of M-TiNb 24 O 62 (258, 226, 210, 191, 166, 147 and 121 mA h g -1 ). At 10 C, the capacity of P-TiNb 24 O 62 still remains at 183 mA h g -1 over 500 cycles with a decay of only 0.02% per cycle, whereas the corresponding values of M-TiNb 24 O 62 are 119 mA h g -1 and 0.04%. These impressive results indicate that P-TiNb 24 O 62 can be a promising anode material for lithium-ion batteries of electric vehicles.
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Kuo, Kwo-Sen; Mehta, Amita V.; Yang, Song
2007-01-01
We examine, in detail, Indian Summer Monsoon rainfall processes using modernhigh quality satellite precipitation measurements. The focus here is on measurements derived from three NASA cloud and precipitation satellite missionslinstruments (TRMM/PR&TMI, AQUNAMSRE, and CLOUDSATICPR), and a fourth TRMM Project-generated multi-satellite precipitation measurement dataset (viz., TRMM standard algorithm 3b42) -- all from a period beginning in 1998 up to the present. It is emphasized that the 3b42 algorithm blends passive microwave (PMW) radiometer-based precipitation estimates from LEO satellites with infi-ared (IR) precipitation estimates from a world network of CEO satellites (representing -15% of the complete space-time coverage) All of these observations are first cross-calibrated to precipitation estimates taken from standard TRMM combined PR-TMI algorithm 2b31, and second adjusted at the large scale based on monthly-averaged rain-gage measurements. The blended approach takes advantage of direct estimates of precipitation from the PMW radiometerequipped LEO satellites -- but which suffer fi-om sampling limitations -- in combination with less accurate IR estimates from the optical-infrared imaging cameras on GEO satellites -- but which provide continuous diurnal sampling. The advantages of the current technologies are evident in the continuity and coverage properties inherent to the resultant precipitation datasets that have been an outgrowth of these stable measuring and retrieval technologies. There is a wealth of information contained in the current satellite measurements of precipitation regarding the salient precipitation properties of the Indian Summer Monsoon. Using different datasets obtained from the measuring systems noted above, we have analyzed the observations cast in the form of: (1) spatially distributed means and variances over the hierarchy of relevant time scales (hourly I diurnally, daily, monthly, seasonally I intra-seasonally, and inter-annually), (2) time series at these different time scales taken as area-averages over the hierarchy of relevant space scales (Indian sub-Division, Indian sub-continent, and Circumambient Indian Ocean), (3) principal autocorrelation and cross-correlation structures over various monsoon space-time domains, (4) diurnally modulated amplitude-phase properties of rain rates over different monsoon space-time domains, (5) foremost rain rate probability distributions intrinsic to monsoon precipitation, and (6) behavior of extreme events including occurrences of flood and drought episodes throughout the course of inter-annual monsoon processes.
ERIC Educational Resources Information Center
Lally, Vic; Sclater, Madeleine
2012-01-01
The aim of the Inter-Life Project was to investigate the use of virtual worlds and creative practices to support the acquisition of transition skills for young people to enhance their management of important life events. In particular, the authors have been investigating the role of the Inter-Life virtual worlds in supporting the development of…
NASA Technical Reports Server (NTRS)
Peterson, L. E.; Cucinotta, F. A.; Wilson, J. W. (Principal Investigator)
1999-01-01
Estimating uncertainty in lifetime cancer risk for human exposure to space radiation is a unique challenge. Conventional risk assessment with low-linear-energy-transfer (LET)-based risk from Japanese atomic bomb survivor studies may be inappropriate for relativistic protons and nuclei in space due to track structure effects. This paper develops a Monte Carlo mixture model (MCMM) for transferring additive, National Institutes of Health multiplicative, and multiplicative excess cancer incidence risks based on Japanese atomic bomb survivor data to determine excess incidence risk for various US astronaut exposure profiles. The MCMM serves as an anchor point for future risk projection methods involving biophysical models of DNA damage from space radiation. Lifetime incidence risks of radiation-induced cancer for the MCMM based on low-LET Japanese data for nonleukemia (all cancers except leukemia) were 2.77 (90% confidence limit, 0.75-11.34) for males exposed to 1 Sv at age 45 and 2.20 (90% confidence limit, 0.59-10.12) for males exposed at age 55. For females, mixture model risks for nonleukemia exposed separately to 1 Sv at ages of 45 and 55 were 2.98 (90% confidence limit, 0.90-11.70) and 2.44 (90% confidence limit, 0.70-10.30), respectively. Risks for high-LET 200 MeV protons (LET=0.45 keV/micrometer), 1 MeV alpha-particles (LET=100 keV/micrometer), and 600 MeV iron particles (LET=180 keV/micrometer) were scored on a per particle basis by determining the particle fluence required for an average of one particle per cell nucleus of area 100 micrometer(2). Lifetime risk per proton was 2.68x10(-2)% (90% confidence limit, 0.79x10(-3)%-0. 514x10(-2)%). For alpha-particles, lifetime risk was 14.2% (90% confidence limit, 2.5%-31.2%). Conversely, lifetime risk per iron particle was 23.7% (90% confidence limit, 4.5%-53.0%). Uncertainty in the DDREF for high-LET particles may be less than that for low-LET radiation because typically there is very little dose-rate dependence. Probability density functions for high-LET radiation quality and dose-rate may be preferable to conventional risk assessment approaches. Nuclear reactions and track structure effects in tissue may not be properly estimated by existing data using in vitro models for estimating RBEs. The method used here is being extended to estimate uncertainty in spacecraft shielding effectiveness in various space radiation environments.
Trait-based Modeling of Larval Dispersal in the Gulf of Maine
NASA Astrophysics Data System (ADS)
Jones, B.; Richardson, D.; Follows, M. J.; Hill, C. N.; Solow, A.; Ji, R.
2016-02-01
Population connectivity of marine species is the inter-generational movement of individuals among geographically separated subpopulations and is a crucial determinant of population dynamics, community structure, and optimal management strategies. For many marine species, population connectivity is largely determined by the dispersal patterns that emerge from a pelagic larval phase. These dispersal patterns are a result of interactions between the physical environment, adult spawning strategy, and larval ecology. Using a generalized trait-based model that represents the adult spawning strategy as a distribution of larval releases in time and space and the larval trait space with the pelagic larval duration, vertical swimming behavior, and settlement habitat preferences, we simulate dispersal patterns in the Gulf of Maine and surrounding regions. We implement this model as an individual-based simulation that tracks Lagrangian particles on a graphics processing unit as they move through hourly archived output from the Finite-Volume Community Ocean Model. The particles are released between the Hudson Canyon and Nova Scotia and the release distributions are determined using a novel method that minimizes the number of simulations required to achieve a predetermined level of precision for the connectivity matrices. The simulated larvae have a variable pelagic larval duration and exhibit multiple forms of dynamic depth-keeping behavior. We describe how these traits influence the dispersal trajectories and connectivity patterns among regions in the northwest Atlantic. Our description includes the probability of successful recruitment, patchiness of larval distributions, and the variability of these properties in time and space under a variety of larval dispersal strategies.
Streaming motions and kinematic distances to molecular clouds
NASA Astrophysics Data System (ADS)
Ramón-Fox, F. G.; Bonnell, Ian A.
2018-02-01
We present high-resolution smoothed particle hydrodynamics simulations of a region of gas flowing in a spiral arm and identify dense gas clouds to investigate their kinematics with respect to a Milky Way model. We find that, on average, the gas in the arms can have a net radial streaming motion of vR ≈ -9 km s-1 and rotate ≈ 6 km s-1 slower than the circular velocity. This translates to average peculiar motions towards the Galaxy centre and opposite to Galactic rotation. These results may be sensitive to the assumed spiral arm perturbation, which is ≈ 3 per cent of the disc potential in our model. We compare the actual distance and the kinematic estimate and we find that streaming motions introduce systematic offsets of ≈1 kpc. We find that the distance error can be as large as ±2 kpc, and the recovered cloud positions have distributions that can extend significantly into the inter-arm regions. We conclude that this poses a difficulty in tracing spiral arm structure in molecular cloud surveys.
Boson peak, heterogeneity and intermediate-range order in binary SiO2-Al2O3 glasses.
Ando, Mariana F; Benzine, Omar; Pan, Zhiwen; Garden, Jean-Luc; Wondraczek, Katrin; Grimm, Stephan; Schuster, Kay; Wondraczek, Lothar
2018-03-29
In binary aluminosilicate liquids and glasses, heterogeneity on intermediate length scale is a crucial factor for optical fiber performance, determining the lower limit of optical attenuation and Rayleigh scattering, but also clustering and precipitation of optically active dopants, for example, in the fabrication of high-power laser gain media. Here, we consider the low-frequency vibrational modes of such materials for assessing structural heterogeneity on molecular scale. We determine the vibrational density of states VDoS g(ω) using low-temperature heat capacity data. From correlation with low-frequency Raman spectroscopy, we obtain the Raman coupling coefficient. Both experiments allow for the extraction of the average dynamic correlation length as a function of alumina content. We find that this value decreases from about 3.9 nm to 3.3 nm when mildly increasing the alumina content from zero (vitreous silica) to 7 mol%. At the same time, the average inter-particle distance increases slightly due to the presence of oxygen tricluster species. In accordance with Loewensteinian dynamics, this proves that mild alumina doping increases structural homogeneity on molecular scale.
NASA Astrophysics Data System (ADS)
Ponomarjov, Maxim; Carati, Daniele
2004-11-01
Three-dimensional electromagnetic wave configurations are proposed for accelerating charged particles in an external magnetic field. A primary wave responsible for the acceleration is coupled to a secondary wave generating the chaotic motion of the particles. The wave vectors and the magnetic field are not supposed to be co-planar and create a fully three dimensional system. This configuration produces faster acceleration with low amplitude. The idea considered here is similar to Refs. [1-2] although no constraint is imposed on the refraction indices. The theoretical analysis of the acceleration mechanism is based on the Resonance Moments Method (RMM) in which the velocity distribution and its moments are approximated by using an average over the resonant layers (RL)i only instead of a complete phase-space averages. The quantities obtained using this approach, referred to as Resonant Moments (RM), suggest the existence of optimal angles of propagation for the primary and secondary waves as long as the maximization of the parallel flux of charged particles is considered The secondary wave tends to maintain a pseudo-equilibrium velocity distribution by continuously re-filling the RL. Our suggestions are confirmed by direct numerical simulations of particle trajectories. The parameters for these simulations are relevant to magnetic plasma fusion experiments in electron cyclotron resonance heating and electron acceleration in planetary magnetospheres. Although measures of the distributions clearly show a departure from thermal equilibrium, the stochastization effect of the secondary wave yields a clear increase (up to one order of magnitude) of the average parallel velocity of the particles. It is a quite promising result since the amplitude of the secondary wave is ten times lower the one of the first wave. 1 H. Karimabadi and V. Angelopoulos, Phys. Rev. Lett., 62, 2342 (1989). 2 B. I. Cohen, R. H Cohen, W. M. Nevins, and T. D. Rognlien, Rev. Mod. Phys., 63, 949 (1991).
The right time to learn: mechanisms and optimization of spaced learning
Smolen, Paul; Zhang, Yili; Byrne, John H.
2016-01-01
For many types of learning, spaced training, which involves repeated long inter-trial intervals, leads to more robust memory formation than does massed training, which involves short or no intervals. Several cognitive theories have been proposed to explain this superiority, but only recently have data begun to delineate the underlying cellular and molecular mechanisms of spaced training, and we review these theories and data here. Computational models of the implicated signalling cascades have predicted that spaced training with irregular inter-trial intervals can enhance learning. This strategy of using models to predict optimal spaced training protocols, combined with pharmacotherapy, suggests novel ways to rescue impaired synaptic plasticity and learning. PMID:26806627
Bead mediated separation of microparticles in droplets.
Wang, Sida; Sung, Ki-Joo; Lin, Xiaoxia Nina; Burns, Mark A
2017-01-01
Exchange of components such as particles and cells in droplets is important and highly desired in droplet microfluidic assays, and many current technologies use electrical or magnetic fields to accomplish this process. Bead-based microfluidic techniques offer an alternative approach that uses the bead's solid surface to immobilize targets like particles or biological material. In this paper, we demonstrate a bead-based technique for exchanging droplet content by separating fluorescent microparticles in a microfluidic device. The device uses posts to filter surface-functionalized beads from a droplet and re-capture the filtered beads in a new droplet. With post spacing of 7 μm, beads above 10 μm had 100% capture efficiency. We demonstrate the efficacy of this system using targeted particles that bind onto the functionalized beads and are, therefore, transferred from one solution to another in the device. Binding capacity tests performed in the bulk phase showed an average binding capacity of 5 particles to each bead. The microfluidic device successfully separated the targeted particles from the non-targeted particles with up to 98% purity and 100% yield.
Bead mediated separation of microparticles in droplets
Sung, Ki-Joo; Lin, Xiaoxia Nina; Burns, Mark A.
2017-01-01
Exchange of components such as particles and cells in droplets is important and highly desired in droplet microfluidic assays, and many current technologies use electrical or magnetic fields to accomplish this process. Bead-based microfluidic techniques offer an alternative approach that uses the bead’s solid surface to immobilize targets like particles or biological material. In this paper, we demonstrate a bead-based technique for exchanging droplet content by separating fluorescent microparticles in a microfluidic device. The device uses posts to filter surface-functionalized beads from a droplet and re-capture the filtered beads in a new droplet. With post spacing of 7 μm, beads above 10 μm had 100% capture efficiency. We demonstrate the efficacy of this system using targeted particles that bind onto the functionalized beads and are, therefore, transferred from one solution to another in the device. Binding capacity tests performed in the bulk phase showed an average binding capacity of 5 particles to each bead. The microfluidic device successfully separated the targeted particles from the non-targeted particles with up to 98% purity and 100% yield. PMID:28282412
Nonequilibrium localization and the interplay between disorder and interactions.
Mascarenhas, Eduardo; Bragança, Helena; Drumond, R; Aguiar, M C O; França Santos, M
2016-05-18
We study the nonequilibrium interplay between disorder and interactions in a closed quantum system. We base our analysis on the notion of dynamical state-space localization, calculated via the Loschmidt echo. Although real-space and state-space localization are independent concepts in general, we show that both perspectives may be directly connected through a specific choice of initial states, namely, maximally localized states (ML-states). We show numerically that in the noninteracting case the average echo is found to be monotonically increasing with increasing disorder; these results are in agreement with an analytical evaluation in the single particle case in which the echo is found to be inversely proportional to the localization length. We also show that for interacting systems, the length scale under which equilibration may occur is upper bounded and such bound is smaller the greater the average echo of ML-states. When disorder and interactions, both being localization mechanisms, are simultaneously at play the echo features a non-monotonic behaviour indicating a non-trivial interplay of the two processes. This interplay induces delocalization of the dynamics which is accompanied by delocalization in real-space. This non-monotonic behaviour is also present in the effective integrability which we show by evaluating the gap statistics.
CFD-DEM Onset of Motion Analysis for Application to Bed Scour Risk Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitek, M. A.; Lottes, S. A.
This CFD study with DEM was done as a part of the Federal Highway Administration’s (FHWA’s) effort to improve scour design procedures. The Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) model, available in CD-Adapco’s StarCCM+ software, was used to simulate multiphase systems, mainly those which combine fluids and solids. In this method the motion of discrete solids is accounted for by DEM, which applies Newton's laws of motion to every particle. The flow of the fluid is determined by the local averaged Navier–Stokes equations that can be solved using the traditional CFD approach. The interactions between the fluid phase and solidsmore » phase are modeled by use of Newton's third law. The inter-particle contact forces are included in the equations of motion. Soft-particle formulation is used, which allows particles to overlap. In this study DEM was used to model separate sediment grains and spherical particles laying on the bed with the aim to analyze their movement due to flow conditions. Critical shear stress causing the incipient movement of the sediment was established and compared to the available experimental data. An example of scour around a cylindrical pier is considered. Various depths of the scoured bed and flow conditions were taken into account to gain a better understanding of the erosion forces existing around bridge foundations. The decay of these forces with increasing scour depth was quantified with a ‘decay function’, which shows that particles become increasingly less likely to be set in motion by flow forces as a scour hole increases in depth. Computational and experimental examples of the scoured bed around a cylindrical pier are presented.« less
NASA Astrophysics Data System (ADS)
Fox-Dobbs, K.; Wheatley, P. V.; Koch, P. L.
2006-12-01
Stable isotope analyses of modern and fossil biogenic tissues are routinely used to reconstruct present and past vertebrate foodwebs. Accurate isotopic dietary reconstructions require a consumer and tissue specific understanding of how isotopes are sorted, or fractionated, between trophic levels. In this project we address the need for carnivore specific isotope variables derived from populations that are ecologically well- characterized. Specifically, we investigate the trophic difference in carbon isotope values between mammalian carnivore (wolf) bone bioapatite and herbivore (prey) bone bioapatite. We also compare bone bioapatite and collagen carbon isotope values collected from the same individuals. We analyzed bone specimens from two modern North American grey wolf (Canis lupus) populations (Isle Royale National Park, Michigan and Yellowstone National Park, Wyoming), and the ungulate herbivores that are their primary prey (moose and elk, respectively). Because the diets of both wolf populations are essentially restricted to a single prey species, there were no confounding effects due to carnivore diet variability. We measured a trophic difference of approximately -1.3 permil between carnivore (lower value) and herbivore (higher value) bone bioapatite carbon isotope values, and an average inter-tissue difference of 5.1 permil between carnivore bone collagen (lower value) and bioapatite (higher value) carbon isotope values. Both of these isotopic differences differ from previous estimates derived from a suite of African carnivores; our carnivore-herbivore bone bioapatite carbon isotope spacing is smaller (-1.3 vs. -4.0 permil), and our carnivore collagen-bioapatite carbon difference is larger (5.1 vs. 3.0 permil). These discrepancies likely result from comparing values measured from a single hypercarnivore (wolf) to average values calculated from several carnivore species, some of which are insectivorous or partly omnivorous. The trophic and inter-tissue differences we measured for wolves are applicable to future isotopic studies of consumers with purely carnivorous diets. For example, we collected bone bioapatite and collagen carbon isotope data from late Pleistocene grey wolf fossils from eastern Beringia (Fairbanks, Alaska), and used the modern inter-tissue difference presented here to verify bioapatite preservation. We then compared the wolves to herbivores (horse and caribou) from the same locality, and found the difference in their bone bioapatite carbon isotope values corresponded to the modern carnivore-herbivore trophic spacing given above. We therefore were able to conclude that horse and caribou were part of Beringian wolf diet.
NASA Astrophysics Data System (ADS)
Schlickeiser, R.
2012-01-01
A systematic calculation of the electromagnetic properties (Poynting vector, electromagnetic energy, and pressure) of the collective transverse fluctuations in unmagnetized plasmas with velocity-anisotropic plasma particle distributions functions is presented. Time-averaged electromagnetic properties for monochromatic weakly damped wave-like fluctuations and space-averaged electromagnetic properties for monochromatic weakly propagating and aperiodic fluctuations are calculated. For aperiodic fluctuations, the Poynting vector as well as the sum of the space-averaged electric and magnetic field energy densities vanish. However, aperiodic fluctuations possess a positive pressure given by its magnetic energy density. This finite pressure density pa of aperiodic fluctuations has important consequences for the dynamics of cosmic unmagnetized plasmas such as the intergalactic medium after reionization. Adopting the standard cosmological evolution model, we show that this additional pressure changes the expansion law of the universe leading to further deceleration. Negative vacuum pressure counterbalances this deceleration to an accelerating universe provided that the negative vacuum pressure is greater than 1.5pa, which we estimate to be of the order 2.1 . 10-16 dyn cm-2.
Modeling the Stability of Topological Matter in Optical Lattices
2013-05-18
that vortex attachment to each particle helps screen the otherwise strong inter- particle repulsion by tuning the size of correlation holes. Figure 3...electric and ferromagnetic order in complex multiferroic materi - als presents a set of compelling fundamental condensed matter physics problems with... particle interactions and heating. I will examine interacting atoms in square optical lattices with spin orbit coupling, and more generally, gauge fields
NASA Astrophysics Data System (ADS)
Zhang, Rui; Yao, Yi-bin; Hu, Yue-ming; Song, Wei-wei
2017-12-01
The Global Navigation Satellite System presents a plausible and cost-effective way of computing the total electron content (TEC). But TEC estimated value could be seriously affected by the differential code biases (DCB) of frequency-dependent satellites and receivers. Unlike GPS and other satellite systems, GLONASS adopts a frequency-division multiplexing access mode to distinguish different satellites. This strategy leads to different wavelengths and inter-frequency biases (IFBs) for both pseudo-range and carrier phase observations, whose impacts are rarely considered in ionospheric modeling. We obtained observations from four groups of co-stations to analyze the characteristics of the GLONASS receiver P1P2 pseudo-range IFB with a double-difference method. The results showed that the GLONASS P1P2 pseudo-range IFB remained stable for a period of time and could catch up to several meters, which cannot be absorbed by the receiver DCB during ionospheric modeling. Given the characteristics of the GLONASS P1P2 pseudo-range IFB, we proposed a two-step ionosphere modeling method with the priori IFB information. The experimental analysis showed that the new algorithm can effectively eliminate the adverse effects on ionospheric model and hardware delay parameters estimation in different space environments. During high solar activity period, compared to the traditional GPS + GLONASS modeling algorithm, the absolute average deviation of TEC decreased from 2.17 to 2.07 TECu (TEC unit); simultaneously, the average RMS of GPS satellite DCB decreased from 0.225 to 0.219 ns, and the average deviation of GLONASS satellite DCB decreased from 0.253 to 0.113 ns with a great improvement in over 55%.
Li, Tsung-Chang; Yuan, Chung-Shin; Huang, Hu-Ching; Lee, Chon-Lin; Wu, Shui-Ping; Tong, Chuan
2016-01-01
The spatiotemporal distribution and chemical composition of atmospheric fine particles in areas around the Taiwan Strait were firstly investigated. Fine particles (PM2.5) were simultaneously collected at two sites on the west-side, one site at an offshore island, and three sites on the east-side of the Taiwan Strait in 2013–2014. Field sampling results indicated that the average PM2.5 concentrations at the west-side sampling sites were generally higher than those at the east-side sampling sites. In terms of chemical composition, the most abundant water-soluble ionic species of PM2.5 were SO42−, NO3−, and NH4+, while natural crustal elements dominated the metallic content of PM2.5, and the most abundant anthropogenic metals of PM2.5 were Pb, Ni and Zn. Moreover, high OC/EC ratios of PM2.5 were commonly observed at the west-side sampling sites, which are located at the downwind of major stationary sources. Results from CMB receptor modeling showed that the major sources of PM2.5 were anthropogenic sources and secondary aerosols at the both sides, and natural sources dominated PM2.5 at the offshore site. A consistent decrease of secondary sulfate and nitrate contribution to PM2.5 suggested the transportation of aged particles from the west-side to the east-side of the Taiwan Strait. PMID:26973085
Airborne Evaluation and Demonstration of a Time-Based Airborne Inter-Arrival Spacing Tool
NASA Technical Reports Server (NTRS)
Lohr, Gary W.; Oseguera-Lohr, Rosa M.; Abbott, Terence S.; Capron, William R.; Howell, Charles T.
2005-01-01
An airborne tool has been developed that allows an aircraft to obtain a precise inter-arrival time-based spacing interval from the preceding aircraft. The Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic Dependent Surveillance-Broadcast (ADS-B) data to compute speed commands for the ATAAS-equipped aircraft to obtain this inter-arrival spacing behind another aircraft. The tool was evaluated in an operational environment at the Chicago O'Hare International Airport and in the surrounding terminal area with three participating aircraft flying fixed route area navigation (RNAV) paths and vector scenarios. Both manual and autothrottle speed management were included in the scenarios to demonstrate the ability to use ATAAS with either method of speed management. The results on the overall delivery precision of the tool, based on a target spacing of 90 seconds, were a mean of 90.8 seconds with a standard deviation of 7.7 seconds. The results for the RNAV and vector cases were, respectively, M=89.3, SD=4.9 and M=91.7, SD=9.0.
The statistical average of optical properties for alumina particle cluster in aircraft plume
NASA Astrophysics Data System (ADS)
Li, Jingying; Bai, Lu; Wu, Zhensen; Guo, Lixin
2018-04-01
We establish a model for lognormal distribution of monomer radius and number of alumina particle clusters in plume. According to the Multi-Sphere T Matrix (MSTM) theory, we provide a method for finding the statistical average of optical properties for alumina particle clusters in plume, analyze the effect of different distributions and different detection wavelengths on the statistical average of optical properties for alumina particle cluster, and compare the statistical average optical properties under the alumina particle cluster model established in this study and those under three simplified alumina particle models. The calculation results show that the monomer number of alumina particle cluster and its size distribution have a considerable effect on its statistical average optical properties. The statistical average of optical properties for alumina particle cluster at common detection wavelengths exhibit obvious differences, whose differences have a great effect on modeling IR and UV radiation properties of plume. Compared with the three simplified models, the alumina particle cluster model herein features both higher extinction and scattering efficiencies. Therefore, we may find that an accurate description of the scattering properties of alumina particles in aircraft plume is of great significance in the study of plume radiation properties.
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.
2007-01-01
In this paper the effect of nanoparticles A12O3 and A13-X compounds (X= Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their chemical stability and low diffusions rates in aluminum matrix at high temperatures. The strengthening mechanism for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. Samples were prepared from A12O3 nanoparticle preforms, which were produced using ceramic injection molding process and pressure infiltrated by molten aluminum. A12O3 nanoparticles can also be homogeneously mixed with aluminum powder and consolidated into samples through hot pressing and sintering. On the other hand, the Al3-X nanoparticles are produced as precipitates via in situ reactions with molten aluminum alloys using conventional casting techniques. The degree of alloy strengthening using nanoparticles will depend on the materials, particle size, shape, volume fraction, and mean inter-particle spacing.
Incomplete Thermalization from Trap-Induced Integrability Breaking: Lessons from Classical Hard Rods
NASA Astrophysics Data System (ADS)
Cao, Xiangyu; Bulchandani, Vir B.; Moore, Joel E.
2018-04-01
We study a one-dimensional gas of hard rods trapped in a harmonic potential, which breaks integrability of the hard-rod interaction in a nonuniform way. We explore the consequences of such broken integrability for the dynamics of a large number of particles and find three distinct regimes: initial, chaotic, and stationary. The initial regime is captured by an evolution equation for the phase-space distribution function. For any finite number of particles, this hydrodynamics breaks down and the dynamics becomes chaotic after a characteristic timescale determined by the interparticle distance and scattering length. The system fails to thermalize over the timescale studied (1 04 natural units), but the time-averaged ensemble is a stationary state of the hydrodynamic evolution. We close by discussing logical extensions of the results to similar systems of quantum particles.
Soot Particle Studies - Instrument Inter-Comparison – Project Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cross, E.; Sedlacek, A.; Onasch, T. B.
2010-03-06
An inter-comparison study of instruments designed to measure the microphysical and optical properties of soot particles was completed. The following mass-based instruments were tested: Couette Centrifugal Particle Mass Analyzer (CPMA), Time-of-Flight Aerosol Mass Spectrometer - Scanning Mobility Particle Sizer (AMS-SMPS), Single Particle Soot Photometer (SP2), Soot Particle-Aerosol Mass Spectrometer (SP-AMS) and Photoelectric Aerosol Sensor (PAS2000CE). Optical instruments measured absorption (photoacoustic, interferometric, and filter-based), scattering (in situ), and extinction (light attenuation within an optical cavity). The study covered an experimental matrix consisting of 318 runs that systematically tested the performance of instruments across a range of parameters including: fuel equivalence ratiomore » (1.8 {le} {phi} {le} 5), particle shape (mass-mobility exponent (D{sub f m}), 2.0 {le} D{sub f m} {le} 3.0), particle mobility size (30 {le} d{sub m} {le} 300 nm), black carbon mass (0.07 {le} m{sub BC} {le} 4.2 fg) and particle chemical composition. In selected runs, particles were coated with sulfuric acid or dioctyl sebacate (DOS) (0.5 {le} {Delta}r{sub ve} {le} 201 nm) where {Delta}r{sub ve} is the change in the volume equivalent radius due to the coating material. The effect of non-absorbing coatings on instrument response was determined. Changes in the morphology of fractal soot particles were monitored during coating and denuding processes and the effect of particle shape on instrument response was determined. The combination of optical and mass based measurements was used to determine the mass specific absorption coefficient for denuded soot particles. The single scattering albedo of the particles was also measured. An overview of the experiments and sample results are presented.« less
Sampling errors for a nadir viewing instrument on the International Space Station
NASA Astrophysics Data System (ADS)
Berger, H. I.; Pincus, R.; Evans, F.; Santek, D.; Ackerman, S.; Ackerman, S.
2001-12-01
In an effort to improve the observational charactarization of ice clouds in the earth's atmosphere, we are developing a sub-millimeter wavelength radiometer which we propose to fly on the International Space Station for two years. Our goal is to accurately measure the ice water path and mass-weighted particle size at the finest possible temporal and spatial resolution. The ISS orbit precesses, sampling through the dirunal cycle every 16 days, but technological constraints limit our instrument to a single pixel viewed near nadir. We discuss sampling errors associated with this instrument/platform configuration. We use as "truth" the ISCCP dataset of pixel-level cloud optical retrievals, which acts as a proxy for ice water path; this dataset is sampled according to the orbital characteristics of the space station, and the statistics computed from the sub-sampled population are compared with those from the full dataset. We explore the tradeoffs in average sampling error as a function of the averaging time and spatial scale, and explore the possibility of resolving the dirunal cycle.
Reversible Control of Anisotropic Electrical Conductivity using Colloidal Microfluidic Networks
2007-04-17
field with the induced charges on each electrode result in AC electroosmotic force and steady fluid flow (nonzero time averaged) with a velocity...direction of the AC electroosmotic force (flow is unidirectional). From the work of Green and co- workers, we can write the particle displacement due to... AC voltage-frequency phase space allows us to probe a wide range of colloidal configurations that resemble “capacitive” and “resistive” networks in
Improvement of Risk Assessment from Space Radiation Exposure for Future Space Exploration Missions
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Atwell, Bill; Ponomarev, Artem L.; Nounu, Hatem; Hussein, Hesham; Cucinotta, Francis A.
2007-01-01
Protecting astronauts from space radiation exposure is an important challenge for mission design and operations for future exploration-class and long-duration missions. Crew members are exposed to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). If sufficient protection is not provided the radiation risk to crew members from SPEs could be significant. To improve exposure risk estimates and radiation protection from SPEs, detailed variations of radiation shielding properties are required. A model using a modern CAD tool ProE (TM), which is the leading engineering design platform at NASA, has been developed for this purpose. For the calculation of radiation exposure at a specific site, the cosine distribution was implemented to replicate the omnidirectional characteristic of the 4 pi particle flux on a surface. Previously, estimates of doses to the blood forming organs (BFO) from SPEs have been made using an average body-shielding distribution for the bone marrow based on the computerized anatomical man model (CAM). The development of an 82-point body-shielding distribution at BFOs made it possible to estimate the mean and variance of SPE doses in the major active marrow regions. Using the detailed distribution of bone marrow sites and implementation of cosine distribution of particle flux is shown to provide improved estimates of acute and cancer risks from SPEs.
NASA Astrophysics Data System (ADS)
Zhang, Junwei; Hong, Xuezhi; Liu, Jie; Guo, Changjian
2018-04-01
In this work, we investigate and experimentally demonstrate an orthogonal frequency division multiplexing (OFDM) based high speed wavelength-division multiplexed (WDM) visible light communication (VLC) system using an inter-block data precoding and superimposed pilots (DP-SP) based channel estimation (CE) scheme. The residual signal-to-pilot interference (SPI) can be eliminated by using inter-block data precoding, resulting in a significant improvement in estimated accuracy and the overall system performance compared with uncoded SP based CE scheme. We also study the power allocation/overhead problem of the training for DP-SP, uncoded SP and conventional preamble based CE schemes, from which we obtain the optimum signal-to-pilot power ratio (SPR)/overhead percentage for all above cases. Intra-symbol frequency-domain averaging (ISFA) is also adopted to further enhance the accuracy of CE. By using the DP-SP based CE scheme, aggregate data rates of 1.87-Gbit/s and 1.57-Gbit/s are experimentally demonstrated over 0.8-m and 2-m indoor free space transmission, respectively, using a commercially available red, green and blue (RGB) light emitting diode (LED) with WDM. Experimental results show that the DP-SP based CE scheme is comparable to the conventional preamble based CE scheme in term of received Q factor and data rate while entailing a much smaller overhead-size.
VARIATION OF LUNG DEPOSITION OF MICRON SIZE PARTICLES WITH LUNG VOLUME AND BREATHING PATTERN
Lung volume and breathing pattern are the source of inter-and intra-subject variability of lung deposition of inhaled particles. Controlling these factors may help optimize delivery of aerosol medicine to the target site within the lung. In the present study we measured total lu...
Yoshimura, Masato; Chen, Nai-Chi; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Lin, Chien-Chih; Nakagawa, Atsushi; Chen, Chun-Jung
2016-01-01
Molecular averaging, including noncrystallographic symmetry (NCS) averaging, is a powerful method for ab initio phase determination and phase improvement. Applications of the cross-crystal averaging (CCA) method have been shown to be effective for phase improvement after initial phasing by molecular replacement, isomorphous replacement, anomalous dispersion or combinations of these methods. Here, a two-step process for phase determination in the X-ray structural analysis of a new coat protein from a betanodavirus, Grouper nervous necrosis virus, is described in detail. The first step is ab initio structure determination of the T = 3 icosahedral virus-like particle using NCS averaging (NCSA). The second step involves structure determination of the protrusion domain of the viral molecule using cross-crystal averaging. In this method, molecular averaging and solvent flattening constrain the electron density in real space. To quantify these constraints, a new, simple and general indicator, free fraction (ff), is introduced, where ff is defined as the ratio of the volume of the electron density that is freely changed to the total volume of the crystal unit cell. This indicator is useful and effective to evaluate the strengths of both NCSA and CCA. Under the condition that a mask (envelope) covers the target molecule well, an ff value of less than 0.1, as a new rule of thumb, gives sufficient phasing power for the successful construction of new structures. PMID:27377380
Active ideal sedimentation: exact two-dimensional steady states.
Hermann, Sophie; Schmidt, Matthias
2018-02-28
We consider an ideal gas of active Brownian particles that undergo self-propelled motion and both translational and rotational diffusion under the influence of gravity. We solve analytically the corresponding Smoluchowski equation in two space dimensions for steady states. The resulting one-body density is given as a series, where each term is a product of an orientation-dependent Mathieu function and a height-dependent exponential. A lower hard wall is implemented as a no-flux boundary condition. Numerical evaluation of the suitably truncated analytical solution shows the formation of two different spatial regimes upon increasing Peclet number. These regimes differ in their mean particle orientation and in their variation of the orientation-averaged density with height.
Self-Assembly of Molecular Threads into Reversible Gels
NASA Astrophysics Data System (ADS)
Sayar, Mehmet; Stupp, Samuel I.
2001-03-01
Reversible gels formed by low concentrations of molecular gelators that self-assemble into fibers with molecular width and extremely long length have been studied via Monte Carlo simulations. The gelators of interest have two kinds of interactions, one governs self-assembly into fibers and the other provides inter-fiber connectivity to drive the formation of a network. The off-lattice Monte Carlo simulation presented here is based on a point particle representation of gelators. In this model each particle can form only two strong bonds, that enable linear fiber formation, but a variable number of weak bonds which provide inter-fiber connectivity. The gel formation has been studied as a function of concentration of monomers, the strength of interactions, number of bonding sites per particle for weak interactions, and the stiffness of the fibers. The simulation results are compared with two experimental systems synthesized in our group in order to understand gelation mechanisms.
Optical parameters of the tunable Bragg reflectors in squid.
Ghoshal, Amitabh; Demartini, Daniel G; Eck, Elizabeth; Morse, Daniel E
2013-08-06
Cephalopods (e.g. octopus, squid and cuttlefish) dynamically tune the colour and brightness of their skin for camouflage and communication using specialized skin cells called iridocytes. We use high-resolution microspectrophotometry to investigate individual tunable Bragg structures (consisting of alternating reflectin protein-containing, high-refractive index lamellae and low-refractive index inter-lamellar spaces) in live and chemically fixed iridocytes of the California market squid, Doryteuthis opalescens. This subcellular, single-stack microspectrophotometry allows for spectral normalization, permitting use of a transfer-matrix model of Bragg reflectance to calculate all the parameters of the Bragg stack-the refractive indices, dimensions and numbers of the lamellae and inter-lamellar spaces. Results of the fitting analyses show that eight or nine pairs of low- and high-index layers typically contribute to the observed reflectivity in live cells, whereas six or seven pairs of low- and high-index layers typically contribute to the reflectivity in chemically fixed cells. The reflectin-containing, high-index lamellae of live cells have a refractive index proportional to the peak reflectivity, with an average of 1.405 ± 0.012 and a maximum around 1.44, while the reflectin-containing lamellae in fixed tissue have a refractive index of 1.413 ± 0.015 suggesting a slight increase of refractive index in the process of fixation. As expected, incremental changes in refractive index contribute to the greatest incremental changes in reflectivity for those Bragg stacks with the most layers. The excursions in dimensions required to tune the measured reflected wavelength from 675 (red) to 425 nm (blue) are a decrease from ca 150 to 80 nm for the high-index lamellae and from ca 120 to 50 nm for the low-index inter-lamellar spaces. Fixation-induced dimensional changes also are quantified, leading us to suggest that further microspectrophotometric analyses of this iridocyte system can be used as a model system to quantify the effects of various methods of tissue fixation. The microspectrophotometry technique described can be expected to provide deeper insights into the molecular and physical mechanisms governing other biophotonically active cells and structures.
Optical parameters of the tunable Bragg reflectors in squid
Ghoshal, Amitabh; DeMartini, Daniel G.; Eck, Elizabeth; Morse, Daniel E.
2013-01-01
Cephalopods (e.g. octopus, squid and cuttlefish) dynamically tune the colour and brightness of their skin for camouflage and communication using specialized skin cells called iridocytes. We use high-resolution microspectrophotometry to investigate individual tunable Bragg structures (consisting of alternating reflectin protein-containing, high-refractive index lamellae and low-refractive index inter-lamellar spaces) in live and chemically fixed iridocytes of the California market squid, Doryteuthis opalescens. This subcellular, single-stack microspectrophotometry allows for spectral normalization, permitting use of a transfer-matrix model of Bragg reflectance to calculate all the parameters of the Bragg stack—the refractive indices, dimensions and numbers of the lamellae and inter-lamellar spaces. Results of the fitting analyses show that eight or nine pairs of low- and high-index layers typically contribute to the observed reflectivity in live cells, whereas six or seven pairs of low- and high-index layers typically contribute to the reflectivity in chemically fixed cells. The reflectin-containing, high-index lamellae of live cells have a refractive index proportional to the peak reflectivity, with an average of 1.405 ± 0.012 and a maximum around 1.44, while the reflectin-containing lamellae in fixed tissue have a refractive index of 1.413 ± 0.015 suggesting a slight increase of refractive index in the process of fixation. As expected, incremental changes in refractive index contribute to the greatest incremental changes in reflectivity for those Bragg stacks with the most layers. The excursions in dimensions required to tune the measured reflected wavelength from 675 (red) to 425 nm (blue) are a decrease from ca 150 to 80 nm for the high-index lamellae and from ca 120 to 50 nm for the low-index inter-lamellar spaces. Fixation-induced dimensional changes also are quantified, leading us to suggest that further microspectrophotometric analyses of this iridocyte system can be used as a model system to quantify the effects of various methods of tissue fixation. The microspectrophotometry technique described can be expected to provide deeper insights into the molecular and physical mechanisms governing other biophotonically active cells and structures. PMID:23740489
Atmospheric radiation flight dose rates
NASA Astrophysics Data System (ADS)
Tobiska, W. K.
2015-12-01
Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.
Particle acceleration at shocks in the presence of a braided magnetic field
NASA Astrophysics Data System (ADS)
Kirk, J. G.; Duffy, P.; Gallant, Y. A.
1997-05-01
The theory of first order Fermi acceleration at shock fronts assumes charged particles undergo spatial diffusion in a uniform magnetic field. If, however, the magnetic field is not uniform, but has a stochastic or braided structure, the transport of charged particles across the average direction of the field is more complicated. Assuming quasi-linear behaviour of the field lines, the particles undergo sub-diffusion (
NASA Astrophysics Data System (ADS)
Luo, Xiao-Tao; Yang, Er-Juan; Shang, Fu-Lin; Yang, Guan-Jun; Li, Chen-Xin; Li, Chang-Jiu
2014-10-01
20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.
2017-11-30
jsc2017e136054 - On a snowy night at Red Square in Moscow, Expedition 54-55 crewmember Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. Shkaplerov, Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) and Scott Tingle of NASA will launch from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-07 spacecraft Dec. 17 for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.
NASA Astrophysics Data System (ADS)
Regnier, David; Lacroix, Denis; Scamps, Guillaume; Hashimoto, Yukio
2018-03-01
In a mean-field description of superfluidity, particle number and gauge angle are treated as quasiclassical conjugated variables. This level of description was recently used to describe nuclear reactions around the Coulomb barrier. Important effects of the relative gauge angle between two identical superfluid nuclei (symmetric collisions) on transfer probabilities and fusion barrier have been uncovered. A theory making contact with experiments should at least average over different initial relative gauge-angles. In the present work, we propose a new approach to obtain the multiple pair transfer probabilities between superfluid systems. This method, called phase-space combinatorial (PSC) technique, relies both on phase-space averaging and combinatorial arguments to infer the full pair transfer probability distribution at the cost of multiple mean-field calculations only. After benchmarking this approach in a schematic model, we apply it to the collision 20O+20O at various energies below the Coulomb barrier. The predictions for one pair transfer are similar to results obtained with an approximated projection method, whereas significant differences are found for two pairs transfer. Finally, we investigated the applicability of the PSC method to the contact between nonidentical superfluid systems. A generalization of the method is proposed and applied to the schematic model showing that the pair transfer probabilities are reasonably reproduced. The applicability of the PSC method to asymmetric nuclear collisions is investigated for the 14O+20O collision and it turns out that unrealistically small single- and multiple pair transfer probabilities are obtained. This is explained by the fact that relative gauge angle play in this case a minor role in the particle transfer process compared to other mechanisms, such as equilibration of the charge/mass ratio. We conclude that the best ground for probing gauge-angle effects in nuclear reaction and/or for applying the proposed PSC approach on pair transfer is the collisions of identical open-shell spherical nuclei.
Mind the gap: Increased inter-letter spacing as a means of improving reading performance.
Dotan, Shahar; Katzir, Tami
2018-06-05
Theeffects of text display, specificallywithin-word spacing, on children's reading at different developmental levels has barely been investigated.This study explored the influence of manipulating inter-letter spacing on reading performance (accuracy and rate) of beginner Hebrew readers compared with older readers and of low-achieving readers compared with age-matched high-achieving readers.A computer-based isolated word reading task was performed by 132 first and third graders. Words were displayed under two spacing conditions: standard spacing (100%) and increased spacing (150%). Words were balanced for length and frequency across conditions. Results indicated that increased spacing contributed to reading accuracy without affecting reading rate. Interestingly, all first graders benefitted fromthe spaced condition. Thiseffect was found only in long words but not in short words. Among third graders, only low-achieving readers gained in accuracy fromthespaced condition. Thetheoretical and clinical effects ofthefindings are discussed. Copyright © 2018 Elsevier Inc. All rights reserved.
A new method for measuring lung deposition efficiency of airborne nanoparticles in a single breath
NASA Astrophysics Data System (ADS)
Jakobsson, Jonas K. F.; Hedlund, Johan; Kumlin, John; Wollmer, Per; Löndahl, Jakob
2016-11-01
Assessment of respiratory tract deposition of nanoparticles is a key link to understanding their health impacts. An instrument was developed to measure respiratory tract deposition of nanoparticles in a single breath. Monodisperse nanoparticles are generated, inhaled and sampled from a determined volumetric lung depth after a controlled residence time in the lung. The instrument was characterized for sensitivity to inter-subject variability, particle size (22, 50, 75 and 100 nm) and breath-holding time (3-20 s) in a group of seven healthy subjects. The measured particle recovery had an inter-subject variability 26-50 times larger than the measurement uncertainty and the results for various particle sizes and breath-holding times were in accordance with the theory for Brownian diffusion and values calculated from the Multiple-Path Particle Dosimetry model. The recovery was found to be determined by residence time and particle size, while respiratory flow-rate had minor importance in the studied range 1-10 L/s. The instrument will be used to investigate deposition of nanoparticles in patients with respiratory disease. The fast and precise measurement allows for both diagnostic applications, where the disease may be identified based on particle recovery, and for studies with controlled delivery of aerosol-based nanomedicine to specific regions of the lungs.
Methods of approaching decoherence in the flavor sector due to space-time foam
NASA Astrophysics Data System (ADS)
Mavromatos, N. E.; Sarkar, Sarben
2006-08-01
In the first part of this work we discuss possible effects of stochastic space-time foam configurations of quantum gravity on the propagation of “flavored” (Klein-Gordon and Dirac) neutral particles, such as neutral mesons and neutrinos. The formalism is not the usually assumed Lindblad one, but it is based on random averages of quantum fluctuations of space-time metrics over which the propagation of the matter particles is considered. We arrive at expressions for the respective oscillation probabilities between flavors which are quite distinct from the ones pertaining to Lindblad-type decoherence, including in addition to the (expected) Gaussian decay with time, a modification to oscillation behavior, as well as a power-law cutoff of the time-profile of the respective probability. In the second part we consider space-time foam configurations of quantum-fluctuating charged-black holes as a way of generating (parts of) neutrino mass differences, mimicking appropriately the celebrated Mikheyev-Smirnov-Wolfenstein (MSW) effects of neutrinos in stochastically fluctuating random media. We pay particular attention to disentangling genuine quantum-gravity effects from ordinary effects due to the propagation of a neutrino through ordinary matter. Our results are of interest to precision tests of quantum-gravity models using neutrinos as probes.
Modeling Solar Energetic Particle Transport near a Wavy Heliospheric Current Sheet
NASA Astrophysics Data System (ADS)
Battarbee, Markus; Dalla, Silvia; Marsh, Mike S.
2018-02-01
Understanding the transport of solar energetic particles (SEPs) from acceleration sites at the Sun into interplanetary space and to the Earth is an important question for forecasting space weather. The interplanetary magnetic field (IMF), with two distinct polarities and a complex structure, governs energetic particle transport and drifts. We analyze for the first time the effect of a wavy heliospheric current sheet (HCS) on the propagation of SEPs. We inject protons close to the Sun and propagate them by integrating fully 3D trajectories within the inner heliosphere in the presence of weak scattering. We model the HCS position using fits based on neutral lines of magnetic field source surface maps (SSMs). We map 1 au proton crossings, which show efficient transport in longitude via HCS, depending on the location of the injection region with respect to the HCS. For HCS tilt angles around 30°–40°, we find significant qualitative differences between A+ and A‑ configurations of the IMF, with stronger fluences along the HCS in the former case but with a distribution of particles across a wider range of longitudes and latitudes in the latter. We show how a wavy current sheet leads to longitudinally periodic enhancements in particle fluence. We show that for an A+ IMF configuration, a wavy HCS allows for more proton deceleration than a flat HCS. We find that A‑ IMF configurations result in larger average fluences than A+ IMF configurations, due to a radial drift component at the current sheet.
Seasonal movement and home range of the Mariana Common Moorhen
Takano, L.L.; Haig, S.M.
2004-01-01
Adult Mariana Common Moorhens (Gallinula chloropus guami) were radio-marked on Guam (n = 25) and Saipan (n = 18) to determine home range, inter- and intraseasonal space use, and movement patterns among the Mariana Islands of Guam, Saipan, Tinian, and Rota. Birds were tracked throughout the dry and wet seasons in 2000 and 2001. During the dry season, no interisland movements were detected and most birds remained at a single wetland. However, some radio-marked adults on Guam (48%) and Saipan (11%) dispersed from their capture site to other wetland sites. Inter-and intraisland movements increased during the wet season. Interisland movement from Saipan to Tinian occurred at the onset of the wet season, although no birds were observed moving off Guam. Radio-marked adults on Guam (71%) and Saipan (70%) dispersed from their capture site to other wetlands. On Guam, moorhens moved farther in the wet season than the dry season. During the wet season frequency of movement among sites was inversely proportional to the average distance between wetlands. Guam moorhens used rivers more often during the wet season. Among nine dispersing adult moorhens captured during the wet season on Fena Reservoir, Guam, 67% returned to Fena Reservoir during the 2001 dry season. Home-range estimates on Guam averaged 3.1 ?? 4.8 ha (SD) and did not differ significantly between sexes or seasons. However, during the dry season, females exhibited significantly smaller mean core areas than males.
Seasonal movement and home range of the Mariana Common Moorhen
Takano, Leilani L.; Haig, Susan M.
2004-01-01
Adult Mariana Common Moorhens (Gallinula chloropus guami) were radio-marked on Guam (n = 25) and Saipan (n = 18) to determine home range, inter- and intraseasonal space use, and movement patterns among the Mariana Islands of Guam, Saipan, Tinian, and Rota. Birds were tracked throughout the dry and wet seasons in 2000 and 2001. During the dry season, no interisland movements were detected and most birds remained at a single wetland. However, some radio-marked adults on Guam (48%) and Saipan (11%) dispersed from their capture site to other wetland sites. Inter-and intraisland movements increased during the wet season. Interisland movement from Saipan to Tinian occurred at the onset of the wet season, although no birds were observed moving off Guam. Radio-marked adults on Guam (71%) and Saipan (70%) dispersed from their capture site to other wetlands. On Guam, moorhens moved farther in the wet season than the dry season. During the wet season frequency of movement among sites was inversely proportional to the average distance between wetlands. Guam moorhens used rivers more often during the wet season. Among nine dispersing adult moorhens captured during the wet season on Fena Reservoir, Guam, 67% returned to Fena Reservoir during the 2001 dry season. Home-range estimates on Guam averaged 3.1 ± 4.8 ha (SD) and did not differ significantly between sexes or seasons. However, during the dry season, females exhibited significantly smaller mean core areas than males.
Patange Subba Rao, Sheethal Prasad; Lewis, James; Haddad, Ziad; Paringe, Vishal; Mohanty, Khitish
2014-10-01
The aim of the study was to evaluate inter-observer reliability and intra-observer reproducibility between the three-column classification and Schatzker classification systems using 2D and 3D CT models. Fifty-two consecutive patients with tibial plateau fractures were evaluated by five orthopaedic surgeons. All patients were classified into Schatzker and three-column classification systems using x-rays and 2D and 3D CT images. The inter-observer reliability was evaluated in the first round and the intra-observer reliability was determined during the second round 2 weeks later. The average intra-observer reproducibility for the three-column classification was from substantial to excellent in all sub classifications, as compared with Schatzker classification. The inter-observer kappa values increased from substantial to excellent in three-column classification and to moderate in Schatzker classification The average values for three-column classification for all the categories are as follows: (I-III) k2D = 0.718, 95% CI 0.554-0.864, p < 0.0001 and average 3D = 0.874, 95% CI 0.754-0.890, p < 0.0001. For Schatzker classification system, the average values for all six categories are as follows: (I-VI) k2D = 0.536, 95% CI 0.365-0.685, p < 0.0001 and average k3D = 0.552 95% CI 0.405-0.700, p < 0.0001. The values are statistically significant. Statistically significant inter-observer values in both rounds were noted with the three-column classification, making it statistically an excellent agreement. The intra-observer reproducibility for the three-column classification improved as compared with the Schatzker classification. The three-column classification seems to be an effective way to characterise and classify fractures of tibial plateau.
Inter-annual Variability of Snowfall in the Lower Peninsula of Michigan, USA
NASA Astrophysics Data System (ADS)
Meng, L.
2016-12-01
Winter snowfall, particularly lake-effect snowfall, impacts all aspects of Michigan life in the wintertime, from motorsports and tourism to impacting the day-to-day lives of residents. Understanding the inter-annual variability of winter snowfall will provide sound basis for local community safety management and improve weather forecasting. This study attempts to understand the trend in winter snowfall and the influencing factors of winter snowfall variability in the Lower Peninsula of Michigan (LPM) using station snowfall measurements and statistical analysis. Our study demonstrates that snowfall has significantly increased from 1932 to 2015. Correlation analysis suggests that regionally average air temperatures have a strong negative relationship with snowfall in LPM. On average, approximately 27% of inter-annual variability in snowfall can be explained by regionally average air temperatures. ENSO events are also negatively related to snowfall in LPM and can explain 8% of inter-annual variability. North Atlantic Oscillation (NAO) does not have strong influence on snowfall. Composite analysis demonstrates that on annual basis, more winter snowfall occurs during the years with higher maximum ice cover (MIC) than during the years with lower MIC in Lake Michigan. Higher MIC is often associated with lower air temperatures which are negatively related to winter snowfall. This study could provide insight on future snow related climate model improvement and weather forecasting.
Mari, Lorenzo; Bonaventura, Luca; Storto, Andrea; Melià, Paco; Gatto, Marino; Masina, Simona
2017-01-01
Protecting key hotspots of marine biodiversity is essential to maintain ecosystem services at large spatial scales. Protected areas serve not only as sources of propagules colonizing other habitats, but also as receptors, thus acting as protected nurseries. To quantify the geographical extent and the temporal persistence of ecological benefits resulting from protection, we investigate larval connectivity within a remote archipelago, characterized by a strong spatial gradient of human impact from pristine to heavily exploited: the Northern Line Islands (NLIs), including part of the Pacific Remote Islands Marine National Monument (PRI-MNM). Larvae are described as passive Lagrangian particles transported by oceanic currents obtained from a oceanographic reanalysis. We compare different simulation schemes and compute connectivity measures (larval exchange probabilities and minimum/average larval dispersal distances from target islands). To explore the role of PRI-MNM in protecting marine organisms with pelagic larval stages, we drive millions of individual-based simulations for various Pelagic Larval Durations (PLDs), in all release seasons, and over a two-decades time horizon (1991–2010). We find that connectivity in the NLIs is spatially asymmetric and displays significant intra- and inter-annual variations. The islands belonging to PRI-MNM act more as sinks than sources of larvae, and connectivity is higher during the winter-spring period. In multi-annual analyses, yearly averaged southward connectivity significantly and negatively correlates with climatological anomalies (El Niño). This points out a possible system fragility and susceptibility to global warming. Quantitative assessments of large-scale, long-term marine connectivity patterns help understand region-specific, ecologically relevant interactions between islands. This is fundamental for devising scientifically-based protection strategies, which must be space- and time-varying to cope with the challenges posed by the concurrent pressures of human exploitation and global climate change. PMID:28809937
Mari, Lorenzo; Bonaventura, Luca; Storto, Andrea; Melià, Paco; Gatto, Marino; Masina, Simona; Casagrandi, Renato
2017-01-01
Protecting key hotspots of marine biodiversity is essential to maintain ecosystem services at large spatial scales. Protected areas serve not only as sources of propagules colonizing other habitats, but also as receptors, thus acting as protected nurseries. To quantify the geographical extent and the temporal persistence of ecological benefits resulting from protection, we investigate larval connectivity within a remote archipelago, characterized by a strong spatial gradient of human impact from pristine to heavily exploited: the Northern Line Islands (NLIs), including part of the Pacific Remote Islands Marine National Monument (PRI-MNM). Larvae are described as passive Lagrangian particles transported by oceanic currents obtained from a oceanographic reanalysis. We compare different simulation schemes and compute connectivity measures (larval exchange probabilities and minimum/average larval dispersal distances from target islands). To explore the role of PRI-MNM in protecting marine organisms with pelagic larval stages, we drive millions of individual-based simulations for various Pelagic Larval Durations (PLDs), in all release seasons, and over a two-decades time horizon (1991-2010). We find that connectivity in the NLIs is spatially asymmetric and displays significant intra- and inter-annual variations. The islands belonging to PRI-MNM act more as sinks than sources of larvae, and connectivity is higher during the winter-spring period. In multi-annual analyses, yearly averaged southward connectivity significantly and negatively correlates with climatological anomalies (El Niño). This points out a possible system fragility and susceptibility to global warming. Quantitative assessments of large-scale, long-term marine connectivity patterns help understand region-specific, ecologically relevant interactions between islands. This is fundamental for devising scientifically-based protection strategies, which must be space- and time-varying to cope with the challenges posed by the concurrent pressures of human exploitation and global climate change.
Constructing statistically unbiased cortical surface templates using feature-space covariance
NASA Astrophysics Data System (ADS)
Parvathaneni, Prasanna; Lyu, Ilwoo; Huo, Yuankai; Blaber, Justin; Hainline, Allison E.; Kang, Hakmook; Woodward, Neil D.; Landman, Bennett A.
2018-03-01
The choice of surface template plays an important role in cross-sectional subject analyses involving cortical brain surfaces because there is a tendency toward registration bias given variations in inter-individual and inter-group sulcal and gyral patterns. In order to account for the bias and spatial smoothing, we propose a feature-based unbiased average template surface. In contrast to prior approaches, we factor in the sample population covariance and assign weights based on feature information to minimize the influence of covariance in the sampled population. The mean surface is computed by applying the weights obtained from an inverse covariance matrix, which guarantees that multiple representations from similar groups (e.g., involving imaging, demographic, diagnosis information) are down-weighted to yield an unbiased mean in feature space. Results are validated by applying this approach in two different applications. For evaluation, the proposed unbiased weighted surface mean is compared with un-weighted means both qualitatively and quantitatively (mean squared error and absolute relative distance of both the means with baseline). In first application, we validated the stability of the proposed optimal mean on a scan-rescan reproducibility dataset by incrementally adding duplicate subjects. In the second application, we used clinical research data to evaluate the difference between the weighted and unweighted mean when different number of subjects were included in control versus schizophrenia groups. In both cases, the proposed method achieved greater stability that indicated reduced impacts of sampling bias. The weighted mean is built based on covariance information in feature space as opposed to spatial location, thus making this a generic approach to be applicable to any feature of interest.
Averós, Xavier; Lorea, Areta; Beltrán de Heredia, Ignacia; Arranz, Josune; Ruiz, Roberto; Estevez, Inma
2014-01-01
Space availability is essential to grant the welfare of animals. To determine the effect of space availability on movement and space use in pregnant ewes (Ovis aries), 54 individuals were studied during the last 11 weeks of gestation. Three treatments were tested (1, 2, and 3 m2/ewe; 6 ewes/group). Ewes' positions were collected for 15 minutes using continuous scan samplings two days/week. Total and net distance, net/total distance ratio, maximum and minimum step length, movement activity, angular dispersion, nearest, furthest and mean neighbour distance, peripheral location ratio, and corrected peripheral location ratio were calculated. Restriction in space availability resulted in smaller total travelled distance, net to total distance ratio, maximum step length, and angular dispersion but higher movement activity at 1 m2/ewe as compared to 2 and 3 m2/ewe (P<0.01). On the other hand, nearest and furthest neighbour distances increased from 1 to 3 m2/ewe (P<0.001). Largest total distance, maximum and minimum step length, and movement activity, as well as lowest net/total distance ratio and angular dispersion were observed during the first weeks (P<0.05) while inter-individual distances increased through gestation. Results indicate that movement patterns and space use in ewes were clearly restricted by limitations of space availability to 1 m2/ewe. This reflected in shorter, more sinuous trajectories composed of shorter steps, lower inter-individual distances and higher movement activity potentially linked with higher restlessness levels. On the contrary, differences between 2 and 3 m2/ewe, for most variables indicate that increasing space availability from 2 to 3 m2/ewe would appear to have limited benefits, reflected mostly in a further increment in the inter-individual distances among group members. No major variations in spatial requirements were detected through gestation, except for slight increments in inter-individual distances and an initial adaptation period, with ewes being restless and highly motivated to explore their new environment.
NASA Astrophysics Data System (ADS)
Ye, Danzhao
In the present work, the first observation of superdeformation in the mass region A ~eq190 is reported. A rotational band of twelve transitions with an average energy spacing of 37 keV, an average dynamic moment of inertia, {cal J}^{(2)}, of 110 hbar^2MeV^ {-1}, and an average transition quadrupole moment of 18 +/- 3 eb has been observed in ^{191}Hg. In addition, a strongly populated superdeformed band in ^ {192}Hg, two excited superdeformed bands in ^{191}Hg and a superdeformed band in ^{190}Hg have also been discovered. All superdeformed bands found in the Hg isotopes possess similar properties such as the average energy spacings, the average moments of inertia, the average transition quadrupole moments etc.... The observations are in excellent agreement with results of cranked Strutinsky calculations which indicate that the superdeformed nuclei correspond to ellipsoidal shapes with an axis ratio of ~1.65:1. Based on the data and comparisons with cranked Woods-Saxon calculations, a microscopic configuration is proposed for each superdeformed band and the role of specific orbitals is discussed. The "doubly magic" character of the superdeformed band in ^{192}Hg is highlighted and the importance of pairing correlations in the limit of very large deformations is addressed. In an attempt to understand the striking observation that "twinned" bands and quantized incremental alignments occur in some of the superdeformed bands of the Hg isotopes, some qualitative arguments within the framework of the strong coupling limit of the rotational model are presented. Based on the same data, the level scheme of ^{191}Hg has been extended to considerably higher spins and many new level structures have been established. Structures of distinct single-particle character have been observed for the first time in this mass region. Through a detailed comparison with cranked shell model calculations, possible quasiparticle configurations are discussed for all the observed rotational bands. The shape-driving effects of high-j orbitals are clarified. Evidence for the onset of triaxiality is also presented.
Tracking Simulation of Third-Integer Resonant Extraction for Fermilab's Mu2e Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Chong Shik; Amundson, James; Michelotti, Leo
2015-02-13
The Mu2e experiment at Fermilab requires acceleration and transport of intense proton beams in order to deliver stable, uniform particle spills to the production target. To meet the experimental requirement, particles will be extracted slowly from the Delivery Ring to the external beamline. Using Synergia2, we have performed multi-particle tracking simulations of third-integer resonant extraction in the Delivery Ring, including space charge effects, physical beamline elements, and apertures. A piecewise linear ramp profile of tune quadrupoles was used to maintain a constant averaged spill rate throughout extraction. To study and minimize beam losses, we implemented and introduced a number ofmore » features, beamline element apertures, and septum plane alignments. Additionally, the RF Knockout (RFKO) technique, which excites particles transversely, is employed for spill regulation. Combined with a feedback system, it assists in fine-tuning spill uniformity. Simulation studies were carried out to optimize the RFKO feedback scheme, which will be helpful in designing the final spill regulation system.« less
Relativistic ponderomotive Hamiltonian of a Dirac particle in a vacuum laser field
Ruiz, D. E.; Ellison, C. L.; Dodin, I. Y.
2015-12-16
Here, we report a point-particle ponderomotive model of a Dirac electron oscillating in a high-frequency field. Starting from the Dirac Lagrangian density, we derive a reduced phase-space Lagrangian that describes the relativistic time-averaged dynamics of such a particle in a geometrical-optics laser pulse propagating in vacuum. The pulse is allowed to have an arbitrarily large amplitude provided that radiation damping and pair production are negligible. The model captures the Bargmann-Michel-Telegdi (BMT) spin dynamics, the Stern-Gerlach spin-orbital coupling, the conventional ponderomotive forces, and the interaction with large-scale background fields (if any). Agreement with the BMT spin precession equation is shown numerically.more » The commonly known theory in which ponderomotive effects are incorporated in the particle effective mass is reproduced as a special case when the spin-orbital coupling is negligible. This model could be useful for studying laser-plasma interactions in relativistic spin-1/2 plasmas.« less
NASA Astrophysics Data System (ADS)
Cai, Jizhe; Naraghi, Mohammad
2016-08-01
In this work, a comprehensive multi-resolution two-dimensional (2D) resistor network model is proposed to analyze the electrical conductivity of hybrid nanomaterials made of insulating matrix with conductive particles such as CNT reinforced nanocomposites and thick film resistors. Unlike existing approaches, our model takes into account the impenetrability of the particles and their random placement within the matrix. Moreover, our model presents a detailed description of intra-particle conductivity via finite element analysis, which to the authors’ best knowledge has not been addressed before. The inter-particle conductivity is assumed to be primarily due to electron tunneling. The model is then used to predict the electrical conductivity of electrospun carbon nanofibers as a function of microstructural parameters such as turbostratic domain alignment and aspect ratio. To simulate the microstructure of single CNF, randomly positioned nucleation sites were seeded and grown as turbostratic particles with anisotropic growth rates. Particle growth was in steps and growth of each particle in each direction was stopped upon contact with other particles. The study points to the significant contribution of both intra-particle and inter-particle conductivity to the overall conductivity of hybrid composites. Influence of particle alignment and anisotropic growth rate ratio on electrical conductivity is also discussed. The results show that partial alignment in contrast to complete alignment can result in maximum electrical conductivity of whole CNF. High degrees of alignment can adversely affect conductivity by lowering the probability of the formation of a conductive path. The results demonstrate approaches to enhance electrical conductivity of hybrid materials through controlling their microstructure which is applicable not only to carbon nanofibers, but also many other types of hybrid composites such as thick film resistors.
Simulations of electrically induced particle structuring on spherical drop surface
NASA Astrophysics Data System (ADS)
Hu, Yi; Vlahovska, Petia; Miksis, Michael
2016-11-01
Recent experiments (Ouriemi and Vlahovska, 2014) show intriguing surface patterns when a uniform electric field is applied to a droplet covered with colloidal particles. Depending on the particle properties and the electrical field intensity, particles organize into an equatorial belt, pole-to-pole chains, or dynamic vortices. Here we present a model to simulate the collective particle dynamics, which accounts for the electrohydrodynamic flow and particle dielectrophoresis due to the non-uniformity of local electrical field. In stronger electric fields, particles are expected to undergo Quincke rotation, inducing rotating clusters through inter-particle hydrodynamical interaction. We discuss how the field intensity influences the width, orientation and periodicity of the particle clusters. Our results provide insight into the various particle assembles discovered in the experiments.
NASA Astrophysics Data System (ADS)
Samara, M.; Michell, R.; Khazanov, G. V.; Grubbs, G. A., II
2017-12-01
Magnetosphere-Ionosphere coupling is exhibited in reflected primary and secondary electrons which constitute the second step in the formation of the total precipitating electron distribution. While they have largely been missing from the current theoretical studies of particle precipitation, ground based observations point to the existence of a reflected electron population. We present evidence that pulsating aurora is caused by electrons bouncing back and forth between the two hemispheres. This means that these electrons are responsible for some of the total light in the aurora, a possibility that has largely been ignored in theoretical models. Pulsating auroral events imaged optically at high time resolution present direct observational evidence in agreement with the inter-hemispheric electron bouncing predicted by the SuperThermal Electron Trans-port (STET) model. Immediately following each of the `pulsation-on' times are equally spaced, and subsequently fainter pulsations, which can be explained by the primary precipitating electrons reflecting upwards from the ionosphere, traveling to the opposite hemisphere, and reflecting upwards again. The high time-resolution of these data, combined with the short duration of the `pulsation-on' time ( 1 s) and the relatively long spacing between pulsations ( 6 to 9 s) made it possible to observe the faint optical pulses caused by the reflected electrons coming from the opposite hemisphere. These results are significant and have broad implications because they highlight that the formation of the auroral electron distributions within regions of diffuse and pulsating aurora contain contributions from reflected primary and secondary electrons. These processes can ultimately lead to larger fluxes than expected when considering only the primary injection of magnetospheric electrons.
A pore-size classification for peat bogs derived from unsaturated hydraulic properties
NASA Astrophysics Data System (ADS)
Weber, Tobias Karl David; Iden, Sascha Christian; Durner, Wolfgang
2017-12-01
In ombrotrophic peatlands, the moisture content of the acrotelm (vadoze zone) controls oxygen diffusion rates, redox state, and the turnover of organic matter. Thus, variably saturated flow processes determine whether peatlands act as sinks or sources of atmospheric carbon, and modelling these processes is crucial to assess effects of changed environmental conditions on the future development of these ecosystems. We show that the Richards equation can be used to accurately describe the moisture dynamics under evaporative conditions in variably saturated peat soil, encompassing the transition from the topmost living moss layer to the decomposed peat as part of the vadose zone. Soil hydraulic properties (SHP) were identified by inverse simulation of evaporation experiments on samples from the entire acrotelm. To obtain consistent descriptions of the observations, the traditional van Genuchten-Mualem model was extended to account for non-capillary water storage and flow. We found that the SHP of the uppermost moss layer reflect a pore-size distribution (PSD) that combines three distinct pore systems of the Sphagnum moss. For deeper samples, acrotelm pedogenesis changes the shape of the SHP due to the collapse of inter-plant pores and an infill with smaller particles. This leads to gradually more homogeneous and bi-modal PSDs with increasing depth, which in turn can serve as a proxy for increasing state of pedogenesis in peatlands. From this, we derive a nomenclature and size classification for the pore spaces of Sphagnum mosses and define inter-, intra-, and inner-plant pore spaces, with effective pore diameters of > 300, 300-30, and 30-10 µm, respectively.
NASA Astrophysics Data System (ADS)
Sato, T.; Endo, A.; Niita, K.
2013-07-01
For the estimation of the radiation risk for astronauts, not only the organ absorbed doses but also their mean quality factors must be evaluated. Three functions have been proposed by different organizations for expressing the radiation quality, including the Q(L), Q(y), and QNASA(Z, E) relationships as defined in International Committee of Radiological Protection (ICRP) Publication 60, International Commission on Radiation Units and Measurements (ICRU) Report 40, and National Aeronautics and Space Administration (NASA) TP-2011-216155, respectively. The Q(L) relationship is the most simple and widely used for space dosimetry, but the use of the latter two functions enables consideration of the difference in the track structure of various charged particles during the risk estimation. Therefore, we calculated the mean quality factors in organs and tissues in ICRP/ICRU reference voxel phantoms for the isotropic exposure to various mono-energetic particles using the three Q-functions. The Particle and Heavy Ion Transport code System PHITS was employed to simulate the particle motions inside the phantoms. The effective dose equivalents and the phantom-averaged effective quality factors for the astronauts were then estimated from the calculated mean quality factors multiplied by the fluence-to-dose conversion coefficients and cosmic-ray fluxes inside a spacecraft. It was found from the calculations that QNASA generally gives the largest values for the phantom-averaged effective quality factors among the three Q-functions for neutron, proton, and lighter-ion irradiation, whereas Q(L) provides the largest values for heavier-ion irradiation. Overall, the introduction of QNASA instead of Q(L) or Q(y) in astronaut dosimetry results in the increase the effective dose equivalents because the majority of the doses are composed of the contributions from protons and neutrons, although this tendency may change by the calculation conditions.
NASA Astrophysics Data System (ADS)
Farahat, A.; El-Askary, H. M.; Kalashnikova, O. V.; Garay, M. J.
2016-12-01
Several space-borne and ground based sensors can provide long-standing monitoring of aerosols characteristics, but inconsistencies among different sensors reduce data reliability and lead to uncertainty in analysing long-term data. In this study, we perform statistical inter-comparison of the Aerosol Optical Depth (AOD) among MISR, MODIS/Terra, MODIS/Aqua and Aerosol Robotic Network (AERONET) over seven sites located in the Middle East and North Africa during the period (1995 -2015). The sites are categorized into two regions based on their geographic location and possible dominate particles composition. Compared to MISR, MODIS and AERONET AOD data retrievals indicate larger uncertainty over all sites with a larger daily variability in MODIS measurements. In general, MISR and MODIS AOD matches during high dust seasons but MODIS tends to under estimate the AOD values on low dust seasons. While Terra measurements give a negative trend over the time series at the dust-dominated sites, Aqua, MISR and AERONET show a positive trend. In general, MODIS/Aqua displays stable measurements over the time line at the dust dominated sites. MODIS/Terra, MODIS/Aqua and MISR display a positive trend over Cairo_EMA site while AERONET shows a negative trend over the time line. Terra was found to overestimate AOD during 2002 - 2004 and underestimates it after 2004. We also observe a deviation between Aqua and Terra regardless of the region and data sampling. Excluding Bahrain and Cairo_EMA for low data retrievals the performance of MODIS tends to be similar over all region with 68 % of the retrieved AOD values fall within the confidence range of the AERONET matched data, within global averaged level (> 66 %). MISR indicated better data performance with 72 % falls within the same confidence range. Complimentary MISR and MODIS data was found to provide a better picture of dust storms evolution over Arabian Peninsula and the Middle East. Acknowledgement The authors would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at the King Fahd University of Petroleum and Minerals (KFUPM) for funding this work through project No. IN141051.
Applications of amorphous track models in radiation biology
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Nikjoo, H.; Goodhead, D. T.; Wilson, J. W. (Principal Investigator)
1999-01-01
The average or amorphous track model uses the response of a system to gamma-rays and the radial distribution of dose about an ion's path to describe survival and other cellular endpoints from proton, heavy ion, and neutron irradiation. This model has been used for over 30 years to successfully fit many radiobiology data sets. We review several extensions of this approach that address objections to the original model, and consider applications of interest in radiobiology and space radiation risk assessment. In the light of present views of important cellular targets, the role of target size as manifested through the relative contributions from ion-kill (intra-track) and gamma-kill (inter-track) remains a critical question in understanding the success of the amorphous track model. Several variations of the amorphous model are discussed, including ones that consider the radial distribution of event-sizes rather than average electron dose, damage clusters rather than multiple targets, and a role for repair or damage processing.
Clearance of inhaled bio-persistent elongated particles (EPs) from the lungs and their associated translocation to pleural and other extra-pulmonary tissues involves a number of inter-related and coincidental physicochemical and physiological processes. These can result in EP dis...
Core Stage Inter-Tank Umbilical (CSITU) Lift at ML
2017-10-11
A heavy-lift crane and rigging are used to lift the Core Stage Inter-tank Umbilical (CSITU) up to about the 140-foot level of the mobile launcher (ML) tower at NASA's Kennedy Space Center in Florida. The CSITU is moved into place for a fit check of the attachment hardware. The umbilical will then be lowered down and installed permanently on the ML at a later date. The CSITU is a swing-arm umbilical that will connect to the Space Launch System core stage inter-tank. It will provide conditioned air, pressurized gases and power and data connection to the core stage. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angelin Jeba, K.; Latha, M. M., E-mail: lathaisaac@yahoo.com; Jain, Sudhir R.
2015-11-15
The nonlinear dynamics of intra- and inter-spine interaction models of alpha-helical proteins is investigated by proposing a Hamiltonian using the first quantized operators. Hamilton's equations of motion are derived, and the dynamics is studied by constructing the trajectories and phase space plots in both cases. The phase space plots display a chaotic behaviour in the dynamics, which opens questions about the relationship between the chaos and exciton-exciton and exciton-phonon interactions. This is verified by plotting the Lyapunov characteristic exponent curves.
2012-09-27
Expedition 33/34 Flight Engineer Kevin Ford of NASA plants a flower at the Kremlin Wall in Moscow where Russian space icons are interred September 25, 2012 as he, Flight Engineer Evgeny Tarelkin and Soyuz Commander Oleg Novitskiy participated in traditional ceremonies leading to their launch to the International Space Station October 23 in the Soyuz TMA-06M spacecraft from the Baikonur Cosmodrome in Kazakhstan for a five-month mission. In the background, the backup crew, Pavel Vinogradov, Chris Cassidy of NASA and Alexander Misurkin also planted flowers at the Wall, where Russian space icons are interred. NASA/Stephanie Stoll
Dust in Cometary Comae: Present Understanding of the Structure and Composition of Dust Particles
NASA Technical Reports Server (NTRS)
Levasseur-Regourd, A. C.; Zolensky, M.; Lasue, J.
2007-01-01
In situ probing of a very few cometary comae has shown that dust particles present a low albedo and a low density, and that they consist of both rocky material and refractory organics. Remote observations of solar light scattered by cometary dust provide information on the properties of dust particles in the coma of a larger set of comets. The observations of the linear polarization in the coma indicate that the dust particles are irregular, with a size greater (on the average) than about one micron. Besides, they suggest, through numerical and experimental simulations, that both compact grains and fluffy aggregates (with a power law of the size distribution in the -2.6 to -3 range), and both rather transparent silicates and absorbing organics are present in the coma. Recent analysis of the cometary dust samples collected by the Stardust mission provide a unique ground truth and confirm, for comet 81P/Wild 2, the results from remote sensing observations. Future space missions to comets should, in the next decade, lead to a more precise characterization of the structure and composition of cometary dust particles.
NASA Astrophysics Data System (ADS)
Sugino, Tomohiro; Yokobori, Shin-Ichi; Yang, Yinjie; Kawaguchi, Yuko; Okudaira, Kyoko; Tabata, Makoto; Kawai, Hideyuki; Hasegawa, Sunao; Yamagishi, Akihiko
Microbes have been collected at the altitude up to about 70 km in the sampling experiment done by several groups[1]. We have also collected high altitude microbes, by using an airplane and balloons[2][3][4][5]. We collected new deinococcal strain (Deinococcus aetherius and Deinococ-cus aerius) and several strains of spore-forming bacilli from stratosphere[2][4][5]. However, microbe sampling in space has never been reported. On the other hand, "Panspermia" hy-pothesis, where terrestrial life is originated from outside of Earth, has been proposed[6][7][8][9]. Recent report suggesting existence of the possible microbe fossils in the meteorite of Mars origin opened the serious debate on the possibility of migration of life embedded in meteorites (and cosmic dusts)[10][11]. If we were able to find terrestrial microbes in space, it would suggest that the terrestrial life can travel between astronomical bodies. We proposed a mission "Tanpopo: Astrobiology Exposure and Micrometeoroid Capture Experiments" to examine possible inter-planetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module of the International Space Station (ISS)[12]. Two of six sub themes in this mission are directly related to interplanetary migration of microbes. One is the direct capturing experi-ment of microbes (probably within the particles such as clay) in space by the exposed ultra-low density aerogel. Another is the exposure experiment to examine survivability of the microbes in harsh space environment. They will tell us the possibility of interplanetary migration of microbes (life) from Earth to outside of Earth (or vise versa). In this report, we will report whether aerogel that have been used for the collection of space debris and cosmic dusts can be used for microbe sampling in space. We will discuss how captured particles by aerogel can be detected with DNA-specific fluorescent dye, and how to distinguish microbes from other mate-rials (i.e. aerogel and particles such as clay). The surface of micro-particles captured by aerogel is often vitrified. The non-specific fluorescent light is often observed from vitrified materials. Therefore, we need to distinguish fluorescent light of stained microbes from that of vitrified ma-terials. We are going to use two types of differences (wavelength dependence and attenuation rate of fluorescent) between stained microbes with DNA-specific fluorescent dye and other ma-terials such as clay and aerogel. Fluorescent light of stained microbes shows attenuation faster than that of vitrified materials. Fluorescent light of vitrified materials shows broader range of emission spectra than that of stained microbes. In addition, we simulated the high-speed collision experiment of micro-particles to the aerogel with the two stage light gas gun (ca. 4 km/s). The micro-particles containing pre-stained and dried cells of Deinococcus radiodurans mixed with clay material were used for the collision experiment, and the captured particles were observed with fluorescence microscope. This experiment suggests that the captured microbes can be detected and be distinguished from clay materials. Reference [1] Yang, Y. et al. (2009) Biol. Sci. Space, 23, 151-163. [2] Yang, Y., et al. (2008) Biol. Sci. Space 22:18-25. [3] Yang, Y., et al. (2008) JAXA-RR-08-001: 34-42. [4] Yang, Y., et al. (2009) Internatl. J. Syst. Evol. Bacteriol., 59: 1862-1866. [5] Yang, Y. et al. (2010) Internatl. J. Syst. Evol. Bacteriol. (in press). [6] Arrhenius, S. (1908) Worlds in the Making-the Evolution of the Universe (translation to English by H. Borns) Harper and Brothers Publishers, New York. [7]Crick, F. (1981) Life Itself. Simon Schuster, New York. [8] W.L. Nicholson et al., Microbiol. Mol. Biol. Rev. 64 (2000) 548. [9] G. Horneck et al., Orig. Life Evol. Biosph. 31 (2001) 527. [10] Chyba, C. and C. Sagan (1992) Nature 355: 125-132. [11] Sandford, S. A., et al. (2006) Science 314: 1720-1724. [12] Yamagishi, A., et al. (2008) International Symposium on Space Technology and Science (ISTS) Web Paper Archives. 2008-k-05.
Versatile theranostics agents designed by coating ferrite nanoparticles with biocompatible polymers
NASA Astrophysics Data System (ADS)
Zahraei, M.; Marciello, M.; Lazaro-Carrillo, A.; Villanueva, A.; Herranz, F.; Talelli, M.; Costo, R.; Monshi, A.; Shahbazi-Gahrouei, D.; Amirnasr, M.; Behdadfar, B.; Morales, M. P.
2016-06-01
Three biocompatible polymers, polyethylene glycol (PEG), dextran and chitosan, have been used in this work to control the colloidal stability of magnetic nanoparticles (14 ± 5 nm in diameter) and to vary the aggregation state in order to study their effect on relaxometric and heating properties. Two different coating strategies have been deeply developed; one based on the formation of an amide bond between citric acid coated nanoparticles (NPs) and amine groups present on the polymer surface and the other based on the NP encapsulation. Relaxometric properties revealed that proton relaxation rates strongly depend on the coating layer hydrophilicity and the aggregation state of the particles due to the presence of magnetic interactions. Thus, while PEG coating reduces particle aggregation by increasing inter-particle spacing leading to reduction of both T1 and T2 relaxation, dextran and chitosan lead to an increase mainly in T2 values due to the aggregation of particles in bigger clusters where they are in close contact. Dextran and chitosan coated NPs have also shown a remarkable heating effect during the application of an alternating magnetic field. They have proved to be potential candidates as theranostic agents for cancer diagnosis and treatment. Finally, cytotoxicity of PEG conjugated NPs, which seem to be ideal for intravenous administration because of their small hydrodynamic size, was investigated resulting in high cell viability even at 0.2 mg Fe ml-1 after 24 h of incubation. This suspension can be used as drug/biomolecule carrier for in vivo applications.
Underwater Light Regimes in Rivers from Multiple Measurement Approaches
NASA Astrophysics Data System (ADS)
Gardner, J.; Ensign, S.; Houser, J.; Doyle, M.
2017-12-01
Underwater light regimes are complex over space and time. Light in rivers is less understood compared to other aquatic systems, yet light is often the limiting resource and a fundamental control of many biological and physical processes in riverine systems. We combined multiple measurement approaches (fixed-site and flowpath) to understand underwater light regimes. We measured vertical light profiles over time (fixed-site) with stationary buoys and over space and time (flowpath) with Lagrangian neutrally buoyant sensors in two different large US rivers; the Upper Mississippi River in Wisconsin, USA and the Neuse River in North Carolina, USA. Fixed site data showed light extinction coefficients, and therefore the depth of the euphotic zone, varied up to three-fold within a day. Flowpath data revealed the stochastic nature of light regimes from the perspective of a neutrally buoyant particle as it moves throughout the water column. On average, particles were in the euphotic zone between 15-50% of the time. Combining flowpath and fixed-site data allowed spatial disaggregation of a river reach to determine if changes in the light regime were due to space or time as well as development of a conceptual model of the dynamic euphotic zone of rivers.
Wang, Feng; Hong, Xuhai; Wang, Jian; Kim, Kwang S
2011-04-21
Recently we developed a theoretical model of ion-atom collisions, which was made on the basis of a time-dependent density functional theory description of the electron dynamics and a classical treatment of the heavy particle motion. Taking advantage of the real-space grid method, we introduce a "coordinate space translation" technique to allow one to focus on a certain space of interest such as the region around the projectile or the target. Benchmark calculations are given for collisions between proton and oxygen over a wide range of impact energy. To extract the probability of charge transfer, the formulation of Lüdde and Dreizler [J. Phys. B 16, 3973 (1983)] has been generalized to ensemble-averaging application in the particular case of O((3)P). Charge transfer total cross sections are calculated, showing fairly good agreements between experimental data and present theoretical results.
Method for closing a drift between adjacent in situ oil shale retorts
Hines, Alex E.
1984-01-01
A row of horizontally spaced-apart in situ oil shale retorts is formed in a subterranean formation containing oil shale. Each row of retorts is formed by excavating development drifts at different elevations through opposite side boundaries of a plurality of retorts in the row of retorts. Each retort is formed by explosively expanding formation toward one or more voids within the boundaries of the retort site to form a fragmented permeable mass of formation particles containing oil shale in each retort. Following formation of each retort, the retort development drifts on the advancing side of the retort are closed off by covering formation particles within the development drift with a layer of crushed oil shale particles having a particle size smaller than the average particle size of oil shale particles in the adjacent retort. In one embodiment, the crushed oil shale particles are pneumatically loaded into the development drift to pack the particles tightly all the way to the top of the drift and throughout the entire cross section of the drift. The closure between adjacent retorts provided by the finely divided oil shale provides sufficient resistance to gas flow through the development drift to effectively inhibit gas flow through the drift during subsequent retorting operations.
Radial diffusion in magnetodiscs. [charged particle motion in planetary or stellar magnetosphere
NASA Technical Reports Server (NTRS)
Birmingham, T. J.
1985-01-01
The orbits of charged particles in magnetodiscs are considered. The bounce motion is assumed adiabatic except for transits of a small equatorial region of weak magnetic field strength and high field curvature. Previous theory and modeling have shown that particles scatter randomly in pitch angle with each passage through the equator. A peaked distribution thus diffuses in pitch angle on the time scale of many bounces. It is argued in this paper that spatial diffusion is a further consequence when the magnetodisc has a longitudinal asymmetry. A general expression for DLL, the diffusion of equatorial crossing radii, is derived. DLL is evaluated explicitly for ions in Jupiter's 20-35 radii magnetodisc, assumed to be represented by Connerney et al.'s (1982) Voyager model plus a small image dipole asymmetry. Rates are energy, species, and space dependent but can average as much as a few tenths of a planetary radius per bounce period.
Commerical Crew Program - SpaceX
2016-06-28
The inter-stage of a SpaceX Falcon 9 rocket inside the company's manufacturing facility. SpaceX is developing its Crew Dragon spacecraft and Falcon 9 rocket in partnership with NASA's Commercial Crew Program to carry astronauts to and from the International Space Station.
NASA Astrophysics Data System (ADS)
Bressloff, P. C.; Bressloff, N. W.
2000-02-01
Orientation tuning in a ring of pulse-coupled integrate-and-fire (IF) neurons is analyzed in terms of spontaneous pattern formation. It is shown how the ring bifurcates from a synchronous state to a non-phase-locked state whose spike trains are characterized by quasiperiodic variations of the inter-spike intervals (ISIs) on closed invariant circles. The separation of these invariant circles in phase space results in a localized peak of activity as measured by the time-averaged firing rate of the neurons. This generates a sharp orientation tuning curve that can lock to a slowly rotating, weakly tuned external stimulus. For fast synapses, breakup of the quasiperiodic orbits occurs leading to high spike time variability suggestive of chaos.
NASA Astrophysics Data System (ADS)
Kah, L. C.; Kronyak, R. E.; Van Beek, J.; Nachon, M.; Mangold, N.; Thompson, L. M.; Wiens, R. C.; Grotzinger, J. P.; Schieber, J.
2015-12-01
The Murray formation in its type section at Pahrump Hills, consists of approximately 14 meters of recessive-weathering mudstone interbedded with decimeter-scale cross-bedded sandstone in the upper portions of the exposed section. Mudstone textures vary from massive, to poorly laminated, to well laminated. Unusual 3-dimensional crystal clusters and dendrites occur in the lowermost part of the section and are erosionally resistant with respect to the host rock. Crystal clusters consist of elongate lathes that occur within individual blocks of the fractured substrate. Individual lathes show tabular morphologies with a pseudo-rectangular cross-section and the three dimensional morphology of the crystal clusters cross-cut host rock lamination with little or no deformation. Dendritic structures are typically larger and show predominantly planar growth aligned with bedding planes. Individual lathes within the dendrites are elongate and pseudo-rectangular in cross-section. Unlike crystal clusters, dendritic morphologies appear to nucleate at bedrock fractures and near mineralized veins. Here we show evidence that crystal clusters and dendrites are post-depositional, potentially burial diagenetic features. Association of features with through-going fractures suggests that fractures may have been a primary transport pathway for ions responsible for dendrite growth. Even where dendrites do not occur, enhanced cementation suggests that fluids permeated the rock matrix. We suggest that growth of clusters proceeded as inter-particle crystal growth, wherein mineral growth within inter-particle spaces resulted in cementation and porosity loss, with little further effect on the rock matrix. Crystal clusters and dendrites are most likely to form when mineral saturation states are highest, for instance with initial intrusion of fracture-borne fluids and mixing with ambient pore fluids, and thus emphasize the importance of fractures in ion transport during late diagenesis.
Observations of the Space-time Structure of Flow, Vorticity and Stress over Orbital-scale Ripples
NASA Astrophysics Data System (ADS)
Hare, J.; Hay, A. E.; Cheel, R. A.; Zedel, L. J.
2012-12-01
Results are presented from a laboratory investigation of the spatial and temporal structure at turbulence-resolving scales of the flow, vorticity and stress over equilibrium orbital-scale sand ripples. The ripples were created in 0.153 mm median diameter sand, at 10 s period and an excursion of 0.5 m, using the oscillating tray apparatus described in Hay et al. (JGR-Oceans, 2012). Vertical profiles of velocity above the bed were obtained at 40 Hz and 3 mm vertical resolution using a wide-band coherent Doppler profiler (MFDop). Through runs at different positions of the MFDop relative to a particular ripple crest, phase-averaged measures of the flow over a full ripple wavelength were obtained as a function of phase during the forcing cycle. These measurements are used to determine the formation of the lee vortex and the position of the point of reattachment. Estimates of the phase-averaged bottom stress (obtained using the vertical integral of the defect acceleration, the Reynolds stress and the law-of-the-wall) as a function of position along the ripple profile are inter-compared.Phase-averaged horizontal velocity over one ripple where the black line indicates the sediment-water interface. Phase-averaged vertical velocity over one ripple where the black line indicates the sediment-water interface.
NASA Astrophysics Data System (ADS)
Pope, Robyn; Tuffen, Hugh; Owen, Jacqueline; James, Mike; Wadsworth, Fabian
2016-04-01
Sintering of magmatic particles profoundly influences the permeability, strength and compaction of fragmented magma in conduits and pyroclastic deposits. It involves initial rounding and agglutination of particles, with formation of inter-particle necks, followed by progressive viscous collapse of pores. The sintering behaviour of ash particles within tuffisite veins, which may mediate shallow outgassing in silicic eruptions, is of particular interest. Experimental studies on homogeneous synthetic glasses[1] have shown sintering rates to be time, temperature and grainsize-dependent, reflecting the influence of melt viscosity and pore-melt interfacial tension. A key objective is to reconstruct the temperature-time path of naturally sintered samples, so here we investigate the sintering of natural, angular ash fragments, to explore whether similar simple relationships emerge for more complex particle morphologies and internal textures. A glass-rich ballistic rhyolite bomb from the Cordón Caulle 2011-2012 eruption was ground and sieved to create various grainsizes of angular ash particles. The bomb contains 70 wt.% SiO2, 0.25 wt.% H2O, and ~30 vol.% crystal phases, as phenocrysts and microlites of plagioclase and pyroxenes. Particles were spread thinly over a sapphire surface in an N2-purged heated stage, and heated to 900, 1000 and 1100 °C, corresponding to melt viscosities of 105.4-107.7 Pa.s. Images were collected every 10-600 s during isothermal sintering over tens of minutes to hours. Quantitative image analysis using ImageJ allowed quantification of evolving particle size and shape (diameter and roundness) and inter-particle neck width. The rate of particle rounding was expected to be highest for smallest particles, and to decrease through time, but unlike synthetic glass bead experiments, no simple trends emerged. When the temporal evolution of particle roundness was tracked, some particles showed an unexpected, systematic increase in rounding rate with time (type A), whereas others showed the expected decrease (type B), or an increase followed by a decrease (type C). The relationship between evolving particle roundness and diameter showed similarly diverse trends, and no distinction could be made between type A, B and C based on initial roundness, size or other characteristic. The development of inter-particle necks was quantified via measurements of the rate of neck width evolution. These rates proved broadly similar for different grain sizes at a given temperature, suggesting that the initial grain size was not the primary controlling factor on neck width growth. Our results highlight both the complexity of sintering in multiphase magmas with irregular particle shapes, and the difficulty of adequately using two-dimensional imagery to characterise evolving three-dimensional morphologies. Future work should employ tomographic techniques to characterise four-dimensional sintering, and analyse large particle populations to overcome the stochastic effects of variable particle texture and morphology. [1] Vasseur J et al. 2013, GRL 40, 5658-5664.
NASA Astrophysics Data System (ADS)
Zhang, J. Y.; Jiang, Y.
2017-10-01
To ensure satisfactory dynamic performance of controllers in time-delayed power systems, a WAMS-based control strategy is investigated in the presence of output feedback delay. An integrated approach based on Pade approximation and particle swarm optimization (PSO) is employed for parameter configuration of PSS. The coordination configuration scheme of power system controllers is achieved by a series of stability constraints at the aim of maximizing the minimum damping ratio of inter-area mode of power system. The validity of this derived PSS is verified on a prototype power system. The findings demonstrate that the proposed approach for control design could damp the inter-area oscillation and enhance the small-signal stability.
Mechanical krill models for studying coordinated swimming
NASA Astrophysics Data System (ADS)
Montague, Alice; Lai, Hong Kuan; Samaee, Milad; Santhanakrishnan, Arvind
2016-11-01
The global biomass of Homo sapiens is about a third of the biomass of Euphausia superba, commonly known as the Antarctic krill. Krill participate in organized social behavior. Propulsive jets generated by individual krill in a school have been suggested to be important in providing hydrodynamic sensory cues. The importance of body positions and body angles on the wakes generated is challenging to study in free swimming krill. Our solution to study the flow fields of multiple krill was to develop mechanical krill robots. We designed krillbots using mostly 3D printed parts that are actuated by stepper motors. The krillbot limb lengths, angles, inter-limb spacing and pleopod stroke frequency were dynamically scaled using published data on free-swimming krill kinematics. The vertical and horizontal spacing between krillbots, as well as the body angle, are adjustable. In this study, we conducted particle image velocimetry (PIV) measurements with two tethered krillbots in a flow tank with no background flow. One krillbot was placed above and behind the other. Both krillbots were at a zero-degree body angle. Wake-body interactions visualized from PIV data will be presented.
Intra- and Inter-Fractional Variation Prediction of Lung Tumors Using Fuzzy Deep Learning
Park, Seonyeong; Lee, Suk Jin; Weiss, Elisabeth
2016-01-01
Tumor movements should be accurately predicted to improve delivery accuracy and reduce unnecessary radiation exposure to healthy tissue during radiotherapy. The tumor movements pertaining to respiration are divided into intra-fractional variation occurring in a single treatment session and inter-fractional variation arising between different sessions. Most studies of patients’ respiration movements deal with intra-fractional variation. Previous studies on inter-fractional variation are hardly mathematized and cannot predict movements well due to inconstant variation. Moreover, the computation time of the prediction should be reduced. To overcome these limitations, we propose a new predictor for intra- and inter-fractional data variation, called intra- and inter-fraction fuzzy deep learning (IIFDL), where FDL, equipped with breathing clustering, predicts the movement accurately and decreases the computation time. Through the experimental results, we validated that the IIFDL improved root-mean-square error (RMSE) by 29.98% and prediction overshoot by 70.93%, compared with existing methods. The results also showed that the IIFDL enhanced the average RMSE and overshoot by 59.73% and 83.27%, respectively. In addition, the average computation time of IIFDL was 1.54 ms for both intra- and inter-fractional variation, which was much smaller than the existing methods. Therefore, the proposed IIFDL might achieve real-time estimation as well as better tracking techniques in radiotherapy. PMID:27170914
NASA Astrophysics Data System (ADS)
Chernyak, Vladimir Y.; Chertkov, Michael; Bierkens, Joris; Kappen, Hilbert J.
2014-01-01
In stochastic optimal control (SOC) one minimizes the average cost-to-go, that consists of the cost-of-control (amount of efforts), cost-of-space (where one wants the system to be) and the target cost (where one wants the system to arrive), for a system participating in forced and controlled Langevin dynamics. We extend the SOC problem by introducing an additional cost-of-dynamics, characterized by a vector potential. We propose derivation of the generalized gauge-invariant Hamilton-Jacobi-Bellman equation as a variation over density and current, suggest hydrodynamic interpretation and discuss examples, e.g., ergodic control of a particle-within-a-circle, illustrating non-equilibrium space-time complexity.
Multispacecraft observations of the east-west asymmetry of solar energetic storm particle events
NASA Technical Reports Server (NTRS)
Sarris, E. T.; Krimigis, S. M.
1985-01-01
Energetic proton observations have been obtained by instruments aboard the IMP-7 and -8 spacecraft and Voyager-1 and -2 deep space probes, in order to study the generation of solar flare Energetic Storm Particle Events (ESP) events at widely separated locations on the same shock front which are presumably characterized, on average, by different IMF shock front configurations for solar flare sites. Energetic proton observations indicate that substantial differences in the ESP proton intensity enhancements are detected at these energies for locations on the shock front with wide heliolongitude separations. The present results indicate that acceleration of ESP protons to more than 500 keV takes place at the quasi-perpendicular shock front domain, consistent with the 'shock drift' acceleration mechanism.
PAH concentrations simulated with the AURAMS-PAH chemical transport model over Canada and the USA
NASA Astrophysics Data System (ADS)
Galarneau, E.; Makar, P. A.; Zheng, Q.; Narayan, J.; Zhang, J.; Moran, M. D.; Bari, M. A.; Pathela, S.; Chen, A.; Chlumsky, R.
2013-07-01
The off-line Eulerian AURAMS chemical transport model was adapted to simulate the atmospheric fate of seven PAHs: phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene + triphenylene, and benzo[a]pyrene. The model was then run for the year 2002 with hourly output on a~grid covering southern Canada and the continental USA with 42 km horizontal grid spacing. Model predictions were compared to ~ 5000 24 h average PAH measurements from 45 sites, eight of which also provided data on particle/gas partitioning which had been modelled using two alternative schemes. This is the first known regional modelling study for PAHs over a North American domain and the first modelling study at any scale to compare alternative particle/gas partitioning schemes against paired field measurements. Annual average modelled total (gas + particle) concentrations were statistically indistinguishable from measured values for fluoranthene, pyrene and benz[a]anthracene whereas the model underestimated concentrations of phenanthrene, anthracene and chrysene + triphenylene. Significance for benzo[a]pyrene performance was close to the statistical threshold and depended on the particle/gas partitioning scheme employed. On a day-to-day basis, the model simulated total PAH concentrations to the correct order of magnitude the majority of the time. Model performance differed substantially between measurement locations and the limited available evidence suggests that the model spatial resolution was too coarse to capture the distribution of concentrations in densely populated areas. A more detailed analysis of the factors influencing modelled particle/gas partitioning is warranted based on the findings in this study.
Improving ECG Classification Accuracy Using an Ensemble of Neural Network Modules
Javadi, Mehrdad; Ebrahimpour, Reza; Sajedin, Atena; Faridi, Soheil; Zakernejad, Shokoufeh
2011-01-01
This paper illustrates the use of a combined neural network model based on Stacked Generalization method for classification of electrocardiogram (ECG) beats. In conventional Stacked Generalization method, the combiner learns to map the base classifiers' outputs to the target data. We claim adding the input pattern to the base classifiers' outputs helps the combiner to obtain knowledge about the input space and as the result, performs better on the same task. Experimental results support our claim that the additional knowledge according to the input space, improves the performance of the proposed method which is called Modified Stacked Generalization. In particular, for classification of 14966 ECG beats that were not previously seen during training phase, the Modified Stacked Generalization method reduced the error rate for 12.41% in comparison with the best of ten popular classifier fusion methods including Max, Min, Average, Product, Majority Voting, Borda Count, Decision Templates, Weighted Averaging based on Particle Swarm Optimization and Stacked Generalization. PMID:22046232
Analyses of risks associated with radiation exposure from past major solar particle events
NASA Technical Reports Server (NTRS)
Weyland, Mark D.; Atwell, William; Cucinotta, Francis A.; Wilson, John W.; Hardy, Alva C.
1991-01-01
Radiation exposures and cancer induction/mortality risks were investigated for several major solar particle events (SPE's). The SPE's included are: February 1956, November 1960, August 1972, October 1989, and the September, August, and October 1989 events combined. The three 1989 events were treated as one since all three could affect a single lunar or Mars mission. A baryon transport code was used to propagate particles through aluminum and tissue shield materials. A free space environment was utilized for all calculations. Results show the 30-day blood forming organs (BFO) limit of 25 rem was surpassed by all five events using 10 g/sq cm of shielding. The BFO limit is based on a depth dose of 5 cm of tissue, while a more detailed shield distribution of the BFO's was utilized. A comparison between the 5 cm depth dose and the dose found using the BFO shield distribution shows that the 5 cm depth value slightly higher than the BFO dose. The annual limit of 50 rem was exceeded by the August 1972, October 1989, and the three combined 1989 events with 5 g/sq cm of shielding. Cancer mortality risks ranged from 1.5 to 17 percent at 1 g/sq cm and 0.5 to 1.1 percent behind 10 g/sq cm of shielding for five events. These ranges correspond to those for a 45 year old male. It is shown that secondary particles comprise about 1/3 of the total risk at 10 g/sq cm of shielding. Utilizing a computerized Space Shuttle shielding model to represent a typical spacecraft configuration in free space at the August 1972 SPE, average crew doses exceeded the BFO dose limit.
A single-source photon source model of a linear accelerator for Monte Carlo dose calculation
Glatting, Gerhard; Wenz, Frederik; Fleckenstein, Jens
2017-01-01
Purpose To introduce a new method of deriving a virtual source model (VSM) of a linear accelerator photon beam from a phase space file (PSF) for Monte Carlo (MC) dose calculation. Materials and methods A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden) and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs) for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC) between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses. Results The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate) for the evaluated fields. Conclusion A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm. PMID:28886048
A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.
Nwankwo, Obioma; Glatting, Gerhard; Wenz, Frederik; Fleckenstein, Jens
2017-01-01
To introduce a new method of deriving a virtual source model (VSM) of a linear accelerator photon beam from a phase space file (PSF) for Monte Carlo (MC) dose calculation. A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden) and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs) for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC) between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses. The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate) for the evaluated fields. A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.
Intercomparison of radiation measurements on STS-63.
Badhwar, G D; Atwell, W; Cash, B; Weyland, M; Petrov, V M; Tchernykh, I V; Akatov YuA; Shurshakov, V A; Arkhangelsky, V V; Kushin, V V; Klyachin, N A; Benton, E V; Frank, A L; Benton, E R; Frigo, L A; Dudkin, V E; Potapov YuV; Vana, N; Schoner, W; Fugger, M
1996-11-01
A joint NASA Russia study of the radiation environment inside the Space Shuttle was performed on STS-63. This was the second flight under the Shuttle-Mir Science Program (Phase 1). The Shuttle was launched on 2 February 1995, in a 51.65 degrees inclination orbit and landed at Kennedy Space Center on 11 February 1995, for a total flight duration of 8.27 days. The Shuttle carried a complement of both passive and active detectors distributed throughout the Shuttle volume. The crew exposure varied from 1962 to 2790 microGy with an average of 2265.8 microGy or 273.98 microGy/day. Crew exposures varied by a factor of 1.4, which is higher than usual for STS mission. The flight altitude varied from 314 to 395 km and provided a unique opportunity to obtain dose variation with altitude. Measurements of the average east-west dose variation were made using two active solid state detectors. The dose rate in the Spacehab locker, measured using a tissue equivalent proportional counter (TEPC), was 413.3 microGy/day, consistent with measurements made using thermoluminescent detectors (TLDs) in the same locker. The average quality factor was 2.33, and although it was higher than model calculations, it was consistent with values derived from high temperature peaks in TLDs. The dose rate due to galactic cosmic radiation was 110.6 microGy/day and agreed with model calculations. The dose rate from trapped particles was 302.7 microGy/day, nearly a factor of 2 lower than the prediction of the AP8 model. The neutrons in the intermediate energy range of 1-20 MeV contributed 13 microGy/day and 156 microSv/day, respectively. Analysis of data from the charged particle spectrometer has not yet been completed.
NASA Astrophysics Data System (ADS)
Wang, Dong; Zhao, Yang; Yang, Fangfang; Tsui, Kwok-Leung
2017-09-01
Brownian motion with adaptive drift has attracted much attention in prognostics because its first hitting time is highly relevant to remaining useful life prediction and it follows the inverse Gaussian distribution. Besides linear degradation modeling, nonlinear-drifted Brownian motion has been developed to model nonlinear degradation. Moreover, the first hitting time distribution of the nonlinear-drifted Brownian motion has been approximated by time-space transformation. In the previous studies, the drift coefficient is the only hidden state used in state space modeling of the nonlinear-drifted Brownian motion. Besides the drift coefficient, parameters of a nonlinear function used in the nonlinear-drifted Brownian motion should be treated as additional hidden states of state space modeling to make the nonlinear-drifted Brownian motion more flexible. In this paper, a prognostic method based on nonlinear-drifted Brownian motion with multiple hidden states is proposed and then it is applied to predict remaining useful life of rechargeable batteries. 26 sets of rechargeable battery degradation samples are analyzed to validate the effectiveness of the proposed prognostic method. Moreover, some comparisons with a standard particle filter based prognostic method, a spherical cubature particle filter based prognostic method and two classic Bayesian prognostic methods are conducted to highlight the superiority of the proposed prognostic method. Results show that the proposed prognostic method has lower average prediction errors than the particle filter based prognostic methods and the classic Bayesian prognostic methods for battery remaining useful life prediction.
DREAM: An Efficient Methodology for DSMC Simulation of Unsteady Processes
NASA Astrophysics Data System (ADS)
Cave, H. M.; Jermy, M. C.; Tseng, K. C.; Wu, J. S.
2008-12-01
A technique called the DSMC Rapid Ensemble Averaging Method (DREAM) for reducing the statistical scatter in the output from unsteady DSMC simulations is introduced. During post-processing by DREAM, the DSMC algorithm is re-run multiple times over a short period before the temporal point of interest thus building up a combination of time- and ensemble-averaged sampling data. The particle data is regenerated several mean collision times before the output time using the particle data generated during the original DSMC run. This methodology conserves the original phase space data from the DSMC run and so is suitable for reducing the statistical scatter in highly non-equilibrium flows. In this paper, the DREAM-II method is investigated and verified in detail. Propagating shock waves at high Mach numbers (Mach 8 and 12) are simulated using a parallel DSMC code (PDSC) and then post-processed using DREAM. The ability of DREAM to obtain the correct particle velocity distribution in the shock structure is demonstrated and the reduction of statistical scatter in the output macroscopic properties is measured. DREAM is also used to reduce the statistical scatter in the results from the interaction of a Mach 4 shock with a square cavity and for the interaction of a Mach 12 shock on a wedge in a channel.
Raut, Akshay S; Parker, Charles B; Stoner, Brian R; Glass, Jeffrey T
2012-06-01
Electrochemical charge storage characteristics of vertically aligned multi-walled carbon nanotubes (MWCNTs) as a function of varying diameter and spacing are reported. It was observed that the specific capacitance of the MWCNTs increased as both diameter and inter-tube spacing decreased. The MWCNT films with 229 nm inter-MWCNT spacing exhibited specific capacitance of 228 F/g versus 70 F/g for 506 nm spacing, when tested in a non-aqueous electrolyte. Further, a trend in specific capacitance versus pore size is proposed. Coupled with previously reported trends observed in the sub-10 nm pore size regime, this is expected to offer better understanding of electrochemical behavior of porous carbon materials over a wide range of pore sizes.
2017-11-30
jsc2017e136060 - On a snowy night at Red Square in Moscow, Expedition 54-55 crewmember Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. Kanai, Scott Tingle of NASA and Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) will launch from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-07 spacecraft Dec. 17 for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.
A new method for measuring lung deposition efficiency of airborne nanoparticles in a single breath
Jakobsson, Jonas K. F.; Hedlund, Johan; Kumlin, John; Wollmer, Per; Löndahl, Jakob
2016-01-01
Assessment of respiratory tract deposition of nanoparticles is a key link to understanding their health impacts. An instrument was developed to measure respiratory tract deposition of nanoparticles in a single breath. Monodisperse nanoparticles are generated, inhaled and sampled from a determined volumetric lung depth after a controlled residence time in the lung. The instrument was characterized for sensitivity to inter-subject variability, particle size (22, 50, 75 and 100 nm) and breath-holding time (3–20 s) in a group of seven healthy subjects. The measured particle recovery had an inter-subject variability 26–50 times larger than the measurement uncertainty and the results for various particle sizes and breath-holding times were in accordance with the theory for Brownian diffusion and values calculated from the Multiple-Path Particle Dosimetry model. The recovery was found to be determined by residence time and particle size, while respiratory flow-rate had minor importance in the studied range 1–10 L/s. The instrument will be used to investigate deposition of nanoparticles in patients with respiratory disease. The fast and precise measurement allows for both diagnostic applications, where the disease may be identified based on particle recovery, and for studies with controlled delivery of aerosol-based nanomedicine to specific regions of the lungs. PMID:27819335
Hirschfeld, T.B.
1985-09-30
A chemoresistive gas sensor is provided which has improved sensitivity. A layer of organic semiconductor is disposed between two electrodes which, in turn, are connected to a voltage source. High conductivity material is dispersed within the layer of organic semiconductor in the form of very small particles, or islands. The average interisland spacing is selected so that the predominant mode of current flow is by way of electron tunneling. Adsorption of gaseous contaminant onto the layer of organic semiconductor modulates the tunneling current in a quantitative manner.
Hirschfeld, Tomas B.
1987-01-01
A chemoresistive gas sensor is provided which has improved sensitivity. A layer of organic semiconductor is disposed between two electrodes which, in turn, are connected to a voltage source. High conductivity material is dispersed within the layer of organic semiconductor in the form of very small particles, or islands. The average interisland spacing is selected so that the predominant mode of current flow is by way of electron funneling. Adsorption of gaseous contaminant onto the layer of organic semiconductor modulates the tunneling current in a quantitative manner.
Hirschfeld, T.B.
1987-06-23
A chemoresistive gas sensor is provided which has improved sensitivity. A layer of organic semiconductor is disposed between two electrodes which, in turn, are connected to a voltage source. High conductivity material is dispersed within the layer of organic semiconductor in the form of very small particles, or islands. The average interisland spacing is selected so that the predominant mode of current flow is by way of electron funneling. Adsorption of gaseous contaminant onto the layer of organic semiconductor modulates the tunneling current in a quantitative manner. 2 figs.
NASA Astrophysics Data System (ADS)
Ospina-Londoño, D. A.; Fulla, M. R.; Marín, J. H.
2013-03-01
In this work it is considered a versatile model to study two different ionization processes starting from a D20 homonuclear hydrogenic molecule confined in double concentric quantum donuts. Very narrow quantum donut circular cross sections are considered to separate the radial and angular variables in the D20 Hamiltonian by using the well-known adiabatic approximation D20 total energy as a function of the inter donor spacing and the outer donut center line radius is calculated. The salient features of an artificial D20 hydrogenic molecule such as the dissociation energy and the equilibrium length are strongly dependent on the quantum donut geometrical parameters. By increasing systematically the quantum donut outer center line radius, it is possible to understand a first ionization process: D20→D2++e-. A second ionization process D20→D-+D+ can be carried out by fixing the first donor position and gradually moving away the second one. The results obtained in this study are in good agreement with those previously obtained in the limiting cases of very large inter donor separation. The model proposed here is computationally economical and provides a realistic description of both ionization processes and the few-particle system confined in double concentric quantum donuts.
Method and apparatus for reliable inter-antenna baseline determination
NASA Technical Reports Server (NTRS)
Wilson, John M. (Inventor)
2001-01-01
Disclosed is a method for inter-antenna baseline determination that uses an antenna configuration comprising a pair of relatively closely spaced antennas and other pairs of distant antennas. The closely spaced pair provides a short baseline having an integer ambiguity that may be searched exhaustively to identify the correct set of integers. This baseline is then used as a priori information to aid the determination of longer baselines that, once determined, may be used for accurate run time attitude determination.
Modeling the evolution of lithium-ion particle contact distributions using a fabric tensor approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stershic, A. J.; Simunovic, S.; Nanda, J.
2015-08-25
Electrode microstructure and processing can strongly influence lithium-ion battery performance such as capacity retention, power, and rate. Battery electrodes are multi-phase composite structures wherein conductive diluents and binder bond active material to a current collector. The structure and response of this composite network during repeated electrochemical cycling directly affects battery performance characteristics. We propose the fabric tensor formalism for describing the structure and evolution of the electrode microstructure. Fabric tensors are directional measures of particulate assemblies based on inter-particle connectivity, relating to the structural and transport properties of the electrode. Fabric tensor analysis is applied to experimental data-sets for positivemore » electrode made of lithium nickel manganese cobalt oxide, captured by X-ray tomography for several compositions and consolidation pressures. We show that fabric tensors capture the evolution of inter-particle contact distribution and are therefore good measures for the internal state of and electronic transport within the electrode. The fabric tensor analysis is also applied to Discrete Element Method (DEM) simulations of electrode microstructures using spherical particles with size distributions from the tomography. Furthermore, these results do not follow the experimental trends, which indicates that the particle size distribution alone is not a sufficient measure for the electrode microstructures in DEM simulations.« less
Stochastically gated local and occupation times of a Brownian particle
NASA Astrophysics Data System (ADS)
Bressloff, Paul C.
2017-01-01
We generalize the Feynman-Kac formula to analyze the local and occupation times of a Brownian particle moving in a stochastically gated one-dimensional domain. (i) The gated local time is defined as the amount of time spent by the particle in the neighborhood of a point in space where there is some target that only receives resources from (or detects) the particle when the gate is open; the target does not interfere with the motion of the Brownian particle. (ii) The gated occupation time is defined as the amount of time spent by the particle in the positive half of the real line, given that it can only cross the origin when a gate placed at the origin is open; in the closed state the particle is reflected. In both scenarios, the gate randomly switches between the open and closed states according to a two-state Markov process. We derive a stochastic, backward Fokker-Planck equation (FPE) for the moment-generating function of the two types of gated Brownian functional, given a particular realization of the stochastic gate, and analyze the resulting stochastic FPE using a moments method recently developed for diffusion processes in randomly switching environments. In particular, we obtain dynamical equations for the moment-generating function, averaged with respect to realizations of the stochastic gate.
NASA Astrophysics Data System (ADS)
Pál, Edit; Hornok, Viktória; Kun, Robert; Chernyshev, Vladimir; Seemann, Torben; Dékány, Imre; Busse, Matthias
2012-08-01
Zinc oxide particles with different morphologies were prepared by hydrothermal method at 60-90 °C. The structure formation was controlled by the addition rate and temperature of hydrolyzing agent, while the particles size (10 nm-2.5 μm) was influenced by the preparation (hydrothermal) temperature. Scanning electron microscopy studies showed that raspberry-, prism- and flower-like ZnO particles were prepared, whose average size decreased with increasing reaction temperature. X-ray diffraction investigations confirmed that ZnO particles with hexagonal crystal structure formed in all syntheses. The raspberry-, prism- and flower-like ZnO particles showed a weak UV-emission in the range of 390-395 nm and strong visible emission with a maximum at 586, 593 and 598 nm, respectively. Morphology effect on electrical and water vapour sensing properties of ZnO samples was investigated by impedance spectroscopy and quartz crystal microbalance, respectively. The absolute impedance of raspberry-, prism- and flower-like ZnO particles was found to be strong dependent on the morphology. Space-charge-limited conductivity transport mechanism was proved by the oscillatory behaviour of impedance. Humidity sensor tests also revealed morphology and specific surface area dependency on the sensitivity and water vapour adsorption property.
NASA Astrophysics Data System (ADS)
Yin, Y.; Sonka, M.
2010-03-01
A novel method is presented for definition of search lines in a variety of surface segmentation approaches. The method is inspired by properties of electric field direction lines and is applicable to general-purpose n-D shapebased image segmentation tasks. Its utility is demonstrated in graph construction and optimal segmentation of multiple mutually interacting objects. The properties of the electric field-based graph construction guarantee that inter-object graph connecting lines are non-intersecting and inherently covering the entire object-interaction space. When applied to inter-object cross-surface mapping, our approach generates one-to-one and all-to-all vertex correspondent pairs between the regions of mutual interaction. We demonstrate the benefits of the electric field approach in several examples ranging from relatively simple single-surface segmentation to complex multiobject multi-surface segmentation of femur-tibia cartilage. The performance of our approach is demonstrated in 60 MR images from the Osteoarthritis Initiative (OAI), in which our approach achieved a very good performance as judged by surface positioning errors (average of 0.29 and 0.59 mm for signed and unsigned cartilage positioning errors, respectively).
Solar energetic particles and space weather
NASA Astrophysics Data System (ADS)
Reames, Donald V.; Tylka, Allan J.; Ng, Chee K.
2001-02-01
The solar energetic particles (SEPs) of consequence to space weather are accelerated at shock waves driven out from the Sun by fast coronal mass ejections (CMEs). In the large events, these great shocks fill half of the heliosphere. SEP intensity profiles change appearance with longitude. Events with significant intensities of >10 MeV protons occur at an average rate of ~13 yr-1 near solar maximum and several events with high intensities of >100 MeV protons occur each decade. As particles stream out along magnetic field lines from a shock near the Sun, they generate waves that scatter subsequent particles. At high intensities, wave growth throttles the flow below the ``streaming limit.'' However, if the shock maintains its strength, particle intensities can rise above this limit to a peak when the shock itself passes over the observer creating a `delayed' radiation hazard, even for protons with energies up to ~1 GeV. The streaming limit makes us blind to the intensities at the oncoming shock, however, heavier elements such as He, O, and Fe probe the shape of the wave spectrum, and variation in abundances of these elements allow us to evade the limit and probe conditions at the shock, with the aid of detailed modeling. At high energies, spectra steepen to form a spectral `knee.' The location of the proton spectral knee can vary from ~10 MeV to ~1 GeV, depending on shock conditions, greatly affecting the radiation hazard. Hard spectra are a serious threat to astronauts, placing challenging requirements for shielding, especially on long-duration missions to the moon or Mars. .
Solar Energetic Particles and Space Weather
NASA Technical Reports Server (NTRS)
Reames, Donald V.; Tylka, Allan J.; Ng, Chee K.
2001-01-01
The solar energetic particles (SEPs) of consequence to space weather are accelerated at shock waves driven out from the Sun by fast coronal mass ejections (CMEs). In the large events, these great shocks fill half of the heliosphere. SEP intensity profiles change appearance with longitude. Events with significant intensities of greater than ten MeV protons occur at an average rate of approx. 13 per year near solar maximum and several events with high intensities of > 100 McV protons occur each decade. As particles stream out along magnetic field lines from a shock near the Sun, they generate waves that scatter subsequent particles. At high intensities, wave growth throttles the flow below the 'streaming limit.' However, if the shock maintains its strength, particle intensities can rise above this limit to a peak when the shock itself passes over the observer creating a 'delayed' radiation hazard, even for protons with energies up to approx. one GeV. The streaming limit makes us blind to the intensities at the oncoming shock, however, heavier elements such as He, O, and Fe probe the shape of the wave spectrum, and variation in abundances of these elements allow us to evade the limit and probe conditions at the shock, with the aid of detailed modeling. At high energies, spectra steepen to form a spectral 'knee'. The location of the proton spectral knee can vary from approx. ten MeV to approx. one GeV, depending on shock conditions, greatly affecting the radiation hazard. Hard spectra are a serious threat to astronauts, placing challenging requirements for shielding, especially on long-duration missions to the moon or Mars.
Brownian dynamics simulations on a hypersphere in 4-space
NASA Astrophysics Data System (ADS)
Nissfolk, Jarl; Ekholm, Tobias; Elvingson, Christer
2003-10-01
We describe an algorithm for performing Brownian dynamics simulations of particles diffusing on S3, a hypersphere in four dimensions. The system is chosen due to recent interest in doing computer simulations in a closed space where periodic boundary conditions can be avoided. We specifically address the question how to generate a random walk on the 3-sphere, starting from the solution of the corresponding diffusion equation, and we also discuss an efficient implementation based on controlled approximations. Since S3 is a closed manifold (space), the average square displacement during a random walk is no longer proportional to the elapsed time, as in R3. Instead, its time rate of change is continuously decreasing, and approaches zero as time becomes large. We show, however, that the effective diffusion coefficient can still be obtained from the time dependence of the square displacement.
The Effect of Topography on the Exposure of Airless Bodies to Space Radiation: Phobos Case Study
NASA Astrophysics Data System (ADS)
Stubbs, T. J.; Wang, Y.; Guo, J.; Schwadron, N.; Cooper, J. F.; Wimmer-Schweingruber, R. F.; Spence, H. E.; Jordan, A.; Sturner, S. J.; Glenar, D. A.; Wilson, J. K.
2017-12-01
The surfaces of airless bodies, such as the Moon and Phobos (innermost Martian moon), are directly exposed to the surrounding space environment, including energetic particle radiation from both the ever-present flux of galactic cosmic rays (GCRs) and episodic bursts of solar energetic particles (SEPs). Characterizing this radiation exposure is critical to our understanding of the evolution of these bodies from space weathering processes, such as radiation damage of regolith, radiolysis of organics and volatiles, and dielectric breakdown. Similarly, this also has important implications for the long-term radiation exposure of future astronauts and equipment on the surface. In this study, the focus is the influence of Phobian topography on the direct exposure of Phobos to space radiation. For a given point on its surface, this exposure depends on: (i) the solid angle subtended by the sky, (ii) the solid angle of the sky blocked by Mars, and (iii) the energy and angular distributions of ambient energetic particle populations. The sky solid angle, determined using the elevation of the local horizon calculated from a digital elevation model (DEM), can be significantly reduced around topographic lows, such as crater floors, or increased near highs like crater rims. The DEM used in this study was produced using images from the Mars Express High Resolution Stereo Camera (HRSC), and has the highest available spatial resolution ( 100m). The proximity of Phobos to Mars means the Martian disk appears large in the Phobian sky, but this only effects the moon's near side due its tidally locked orbit. Only isotropic distributions of energetic particles are initially considered, which is typically a reasonable assumption for GCRs and sometimes for SEPs. Observations of the radiation environments on Mars by Curiosity's Radiation Assessment Detector (RAD), and the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter (LRO) at the Moon, will be used to estimate the average, annual radiation dose at the orbit of Phobos. These three elements will be combined to produce a map of radiation exposure on the surface of Phobos, which will be used to assess the implications for space weathering and future human exploration.
Compaction shock dissipation in low density granular explosive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Pratap T.; Gonthier, Keith A., E-mail: gonthier@me.lsu.edu; Chakravarthy, Sunada
The microstructure of granular explosives can affect dissipative heating within compaction shocks that can trigger combustion and initiate detonation. Because initiation occurs over distances that are much larger than the mean particle size, homogenized (macroscale) theories are often used to describe local thermodynamic states within and behind shocks that are regarded as the average manifestation of thermodynamic fields at the particle scale. In this paper, mesoscale modeling and simulation are used to examine how the initial packing density of granular HMX (C{sub 4}H{sub 8}N{sub 8}O{sub 8}) C{sub 4}H{sub 8}N{sub 8}O{sub 8} having a narrow particle size distribution influences dissipation withinmore » resolved, planar compaction shocks. The model tracks the evolution of thermomechanical fields within large ensembles of particles due to pore collapse. Effective shock profiles, obtained by averaging mesoscale fields over space and time, are compared with those given by an independent macroscale compaction theory that predicts the variation in effective thermomechanical fields within shocks due to an imbalance between the solid pressure and a configurational stress. Reducing packing density is shown to reduce the dissipation rate within shocks but increase the integrated dissipated work over shock rise times, which is indicative of enhanced sensitivity. In all cases, dissipated work is related to shock pressure by a density-dependent power law, and shock rise time is related to pressure by a power law having an exponent of negative one.« less
NASA Astrophysics Data System (ADS)
Gillis-Davis, J. J.; Blewett, D. T.; Lawrence, D. J.; Izenberg, N. R.; McClintock, W. E.; Holsclaw, G. M.; Domingue, D. L.
2009-12-01
Production and accumulation of submicroscopic metallic iron (SMFe) is a principal mechanism by which surfaces of airless silicate bodies in the Solar System, exposed to the space weathering environment, experience spectral modification. Micrometeorite impact vaporization and solar-wind sputtering produce coatings of vapor-deposited SMFe. Both processes can be more intense on Mercury and, as a result, more efficient at creating melt and vapor. In addition, Ostwald ripening may cause SMFe particles to grow larger due to the high surface temperatures on Mercury (as great as 450°C). Spectral effects on the ultraviolet-visible-near-infrared continuum change with the amount and size of SMFe present. Thus, the physical properties and abundance of iron in Mercury’s regolith can be understood by comparing spectral data from controlled space-weathering experiments with spectra from MESSENGER’s Mercury Atmospheric and Surface Composition Spectrometer (MASCS). Knowledge of SMFe size and abundance may provide information on the space weathering conditions under which it was produced or subsequently modified. Reflectance spectra of laboratory-produced samples with varying SMFe grain sizes (average grain sizes of 8, 15, 35, and 40 nm) and iron compositions (from 0.005 to 3.8 wt% Fe as SMFe) are compared with MASCS disk-integrated reflectance from the first flyby of Mercury and will be compared with observations of spectral end members targeted for the third flyby. We compare spectra from 300 nm to 1400 nm wavelength, scaled to 1 at 700 nm, from the laboratory and MASCS. This comparison between laboratory and remote-sensing spectra reveals an excellent match with observations of Mercury for samples with an average iron metal grain size of 8 nm and 1.65 wt% FeO and 15 nm and 0.13 wt% Fe. These average grain sizes of the SMFe component are larger than the average grain size determined for lunar soil samples using transmission electron microscopy (3 nm in rims and 10-15 nm in agglutinates) but are smaller than values obtained from lunar spectra with the methods used here (15-25 nm). We can also infer that silicates in Mercury's high reflectance plains are potentially iron poor, precluding thick vapor deposits coating - both spectral data sets lack a 1-μm absorption and the experimental iron particles are suspended in an iron-free silica gel. Thus, our conclusion on the basis of spectral comparison is that SMFe on Mercury is potentially smaller than on the Moon and that Ostwald ripening is not a major influence on the surface of Mercury. The absence of pronounced darkening of the equatorial regions of Mercury in images from Mariner 10 and MESSENGER's Mercury Dual Imaging System supports also suggest an apparent lack of Ostwald ripening.
RADECS Short Course Session I: The Space Radiation Environment
NASA Technical Reports Server (NTRS)
Xapsos, Michael; Bourdarie, Sebastien
2007-01-01
The presented slides and accompanying paper focus on radiation in the space environment. Since space exploration has begun it has become evident that the space environment is a highly aggressive medium. Beyond the natural protection provided by the Earth's atmosphere, various types of radiation can be encountered. Their characteristics (energy and nature), origins and distributions in space are extremely variable. This environment degrades electronic systems and on-board equipment in particular and creates radiobiological hazards during manned space flights. Based on several years of space exploration, a detailed analysis of the problems on satellites shows that the part due to the space environment is not negligible. It appears that the malfunctions are due to problems linked to the space environment, electronic problems, design problems, quality problems, other issues, and unexplained reasons. The space environment is largely responsible for about 20% of the anomalies occurring on satellites and a better knowledge of that environment could only increase the average lifetime of space vehicles. This naturally leads to a detailed study of the space environment and of the effects that it induces on space vehicles and astronauts. Sources of radiation in the space environment are discussed here and include the solar activity cycle, galactic cosmic rays, solar particle events, and Earth radiation belts. Future challenges for space radiation environment models are briefly addressed.
Recent progress in the microscopic description of small and large amplitude collective motion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacroix, D., E-mail: lacroix@ipno.in2p3.fr; Tanimura, Y.; Ayik, S.
2015-10-15
Dynamical mean-field theory has recently attracted much interests to provide a unified framework for the description of many aspects of nuclear dynamics [1, 2, 3, 4, 5] (for recent reviews see [6, 7]). In particular, the inclusion of pairing correlation has opened new perspectives [8, 9, 10, 11, 12]. A summary of recent applications including giant resonances and transfer reactions will be made in this talk [13, 14, 15, 16]. While new progresses have been made with the use of sophisticated effective interactions and the development of symmetry unrestricted applications, mean-field dynamics suffer from the poor treatment of quantum fluctuationsmore » in collective space. As a consequence, these theories are successful in describing average properties of many different experimental observations but generally fail to account realistically for the width of experimental distribution. The increase of predictive power of dynamical mean-field theory is facing the difficulty of going beyond the independent particle or quasi-particle picture. Nevertheless, in the last decade, novel methods have been proposed to prepare the next generation of microscopic mean-field codes able to account for both average properties and fluctuations around the average. A review of recent progresses in this direction as well as recent applications to heavy-ion collisions will be given [17, 18].« less
Stochastic analysis of surface roughness models in quantum wires
NASA Astrophysics Data System (ADS)
Nedjalkov, Mihail; Ellinghaus, Paul; Weinbub, Josef; Sadi, Toufik; Asenov, Asen; Dimov, Ivan; Selberherr, Siegfried
2018-07-01
We present a signed particle computational approach for the Wigner transport model and use it to analyze the electron state dynamics in quantum wires focusing on the effect of surface roughness. Usually surface roughness is considered as a scattering model, accounted for by the Fermi Golden Rule, which relies on approximations like statistical averaging and in the case of quantum wires incorporates quantum corrections based on the mode space approach. We provide a novel computational approach to enable physical analysis of these assumptions in terms of phase space and particles. Utilized is the signed particles model of Wigner evolution, which, besides providing a full quantum description of the electron dynamics, enables intuitive insights into the processes of tunneling, which govern the physical evolution. It is shown that the basic assumptions of the quantum-corrected scattering model correspond to the quantum behavior of the electron system. Of particular importance is the distribution of the density: Due to the quantum confinement, electrons are kept away from the walls, which is in contrast to the classical scattering model. Further quantum effects are retardation of the electron dynamics and quantum reflection. Far from equilibrium the assumption of homogeneous conditions along the wire breaks even in the case of ideal wire walls.
3D Analysis of Porosity in a Ceramic Coating Using X-ray Microscopy
NASA Astrophysics Data System (ADS)
Klement, Uta; Ekberg, Johanna; Kelly, Stephen T.
2017-02-01
Suspension plasma spraying (SPS) is a new, innovative plasma spray technique using a feedstock consisting of fine powder particles suspended in a liquid. Using SPS, ceramic coatings with columnar microstructures have been produced which are used as topcoats in thermal barrier coatings. The microstructure contains a wide pore size range consisting of inter-columnar spacings, micro-pores and nano-pores. Hence, determination of total porosity and pore size distribution is a challenge. Here, x-ray microscopy (XRM) has been applied for describing the complex pore space of the coatings because of its capability to image the (local) porosity within the coating in 3D at a resolution down to 50 nm. The possibility to quantitatively segment the analyzed volume allows analysis of both open and closed porosity. For an yttria-stabilized zirconia coating with feathery microstructure, both open and closed porosity were determined and it could be revealed that 11% of the pore volumes (1.4% of the total volume) are closed pores. The analyzed volume was reconstructed to illustrate the distribution of open and closed pores in 3D. Moreover, pore widths and pore volumes were determined. The results on the complex pore space obtained by XRM are discussed in connection with other porosimetry techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; Shi, F; Tian, Z
2014-06-01
Purpose: Abdominal compression (AC) has been widely used to reduce pancreas motion due to respiration for pancreatic cancer patients undergoing stereotactic body radiotherapy (SBRT). However, the inter-fractional and intra-fractional patient motions may degrade the treatment. The purpose of this work is to study daily CBCT projections and 4DCT to evaluate the inter-fractional and intra-fractional pancreatic motions. Methods: As a standard of care at our institution, 4D CT scan was performed for treatment planning. At least two CBCT scans were performed for daily treatment. Retrospective studies were performed on patients with implanted internal fiducial markers or surgical clips. The initial motionmore » pattern was obtained by extracting marker positions on every phase of 4D CT images. Daily motions were presented by marker positions on CBCT scan projection images. An adaptive threshold segmentation algorithm was used to extract maker positions. Both marker average positions and motion ranges were compared among three sets of scans, 4D CT, positioning CBCT, and conformal CBCT, for inter-fractional and intra-fractional motion variations. Results: Data from four pancreatic cancer patients were analyzed. These patients had three fiducial markers implanted. All patients were treated by an Elekta Synergy with single fraction SBRT. CBCT projections were acquired by XVI. Markers were successfully detected on most of the projection images. The inter-fractional changes were determined by 4D CT and the first CBCT while the intra-fractional changes were determined by multiple CBCT scans. It is found that the average motion range variations are within 2 mm, however, the average marker positions may drift by 6.5 mm. Conclusion: The patients respiratory motion variation for pancreas SBRT with AC was evaluated by detecting markers from CBCT projections and 4DCT, both the inter-fraction and intra-fraction motion range change is small but the drift of marker positions may be comparable to motion ranges.« less
Staggered Mesh Ewald: An extension of the Smooth Particle-Mesh Ewald method adding great versatility
Cerutti, David S.; Duke, Robert E.; Darden, Thomas A.; Lybrand, Terry P.
2009-01-01
We draw on an old technique for improving the accuracy of mesh-based field calculations to extend the popular Smooth Particle Mesh Ewald (SPME) algorithm as the Staggered Mesh Ewald (StME) algorithm. StME improves the accuracy of computed forces by up to 1.2 orders of magnitude and also reduces the drift in system momentum inherent in the SPME method by averaging the results of two separate reciprocal space calculations. StME can use charge mesh spacings roughly 1.5× larger than SPME to obtain comparable levels of accuracy; the one mesh in an SPME calculation can therefore be replaced with two separate meshes, each less than one third of the original size. Coarsening the charge mesh can be balanced with reductions in the direct space cutoff to optimize performance: the efficiency of StME rivals or exceeds that of SPME calculations with similarly optimized parameters. StME may also offer advantages for parallel molecular dynamics simulations because it permits the use of coarser meshes without requiring higher orders of charge interpolation and also because the two reciprocal space calculations can be run independently if that is most suitable for the machine architecture. We are planning other improvements to the standard SPME algorithm, and anticipate that StME will work synergistically will all of them to dramatically improve the efficiency and parallel scaling of molecular simulations. PMID:20174456
Space Availability in Confined Sheep during Pregnancy, Effects in Movement Patterns and Use of Space
Averós, Xavier; Lorea, Areta; Beltrán de Heredia, Ignacia; Arranz, Josune; Ruiz, Roberto; Estevez, Inma
2014-01-01
Space availability is essential to grant the welfare of animals. To determine the effect of space availability on movement and space use in pregnant ewes (Ovis aries), 54 individuals were studied during the last 11 weeks of gestation. Three treatments were tested (1, 2, and 3 m2/ewe; 6 ewes/group). Ewes' positions were collected for 15 minutes using continuous scan samplings two days/week. Total and net distance, net/total distance ratio, maximum and minimum step length, movement activity, angular dispersion, nearest, furthest and mean neighbour distance, peripheral location ratio, and corrected peripheral location ratio were calculated. Restriction in space availability resulted in smaller total travelled distance, net to total distance ratio, maximum step length, and angular dispersion but higher movement activity at 1 m2/ewe as compared to 2 and 3 m2/ewe (P<0.01). On the other hand, nearest and furthest neighbour distances increased from 1 to 3 m2/ewe (P<0.001). Largest total distance, maximum and minimum step length, and movement activity, as well as lowest net/total distance ratio and angular dispersion were observed during the first weeks (P<0.05) while inter-individual distances increased through gestation. Results indicate that movement patterns and space use in ewes were clearly restricted by limitations of space availability to 1 m2/ewe. This reflected in shorter, more sinuous trajectories composed of shorter steps, lower inter-individual distances and higher movement activity potentially linked with higher restlessness levels. On the contrary, differences between 2 and 3 m2/ewe, for most variables indicate that increasing space availability from 2 to 3 m2/ewe would appear to have limited benefits, reflected mostly in a further increment in the inter-individual distances among group members. No major variations in spatial requirements were detected through gestation, except for slight increments in inter-individual distances and an initial adaptation period, with ewes being restless and highly motivated to explore their new environment. PMID:24733027
Radiographic Findings in Revision Anterior Cruciate Ligament Reconstructions from the MARS Cohort
2013-01-01
The Multicenter ACL (anterior cruciate ligament) Revision Study (MARS) group was developed to investigate revision ACL reconstruction outcomes. An important part of this is obtaining and reviewing radiographic studies. The goal for this radiographic analysis is to establish radiographic findings for a large revision ACL cohort to allow comparison with future studies. The study was designed as a cohort study. Various established radiographic parameters were measured by three readers. These included sagittal and coronal femoral and tibial tunnel position, joint space narrowing, and leg alignment. Inter- and intraobserver comparisons were performed. Femoral sagittal position demonstrated 42% were more than 40% anterior to the posterior cortex. On the sagittal tibia tunnel position, 49% demonstrated some impingement on full-extension lateral radiographs. Limb alignment averaged 43% medial to the medial edge of the tibial plateau. On the Rosenberg view (45-degree flexion view), the minimum joint space in the medial compartment averaged 106% of the opposite knee, but it ranged down to a minimum of 4.6%. Lateral compartment narrowing at its minimum on the Rosenberg view averaged 91.2% of the opposite knee, but it ranged down to a minimum of 0.0%. On the coronal view, verticality as measured by the angle from the center of the tibial tunnel aperture to the center of the femoral tunnel aperture measured 15.8 degree ± 6.9% from vertical. This study represents the radiographic findings in the largest revision ACL reconstruction series ever assembled. Findings were generally consistent with those previously demonstrated in the literature. PMID:23404491
Measurements of the dose due to cosmic rays in aircraft
NASA Astrophysics Data System (ADS)
Vuković, B.; Lisjak, I.; Radolić, V.; Vekić, B.; Planinić, J.
2006-06-01
When the primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The cosmic radiation dose aboard A320 and ATR 42 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; radon concentration in the atmosphere was measured with the Alpha Guard radon detector. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed by the flights Zagreb-Paris-Buenos Aires and reversely, when one measured cosmic radiation dose; for 26.7 h of flight, the TLD dosimeter registered the total dose of 75 μSv and the average dose rate was 2.7 μSv/h. In the same month, February 2005, a traveling to Japan (24 h flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h.
Percolation Thresholds in Angular Grain media: Drude Directed Infiltration
NASA Astrophysics Data System (ADS)
Priour, Donald
Pores in many realistic systems are not well delineated channels, but are void spaces among grains impermeable to charge or fluid flow which comprise the medium. Sparse grain concentrations lead to permeable systems, while concentrations in excess of a critical density block bulk fluid flow. We calculate percolation thresholds in porous materials made up of randomly placed (and oriented) disks, tetrahedrons, and cubes. To determine if randomly generated finite system samples are permeable, we deploy virtual tracer particles which are scattered (e.g. specularly) by collisions with impenetrable angular grains. We hasten the rate of exploration (which would otherwise scale as ncoll1 / 2 where ncoll is the number of collisions with grains if the tracers followed linear trajectories) by considering the tracer particles to be charged in conjunction with a randomly directed uniform electric field. As in the Drude treatment, where a succession of many scattering events leads to a constant drift velocity, tracer displacements on average grow linearly in ncoll. By averaging over many disorder realizations for a variety of systems sizes, we calculate the percolation threshold and critical exponent which characterize the phase transition.
Metal-semiconductor phase transition of order arrays of VO2 nanocrystals
NASA Astrophysics Data System (ADS)
Lopez, Rene; Suh, Jae; Feldman, Leonard; Haglund, Richard
2004-03-01
The study of solid-state phase transitions at nanometer length scales provides new insights into the effects of material size on the mechanisms of structural transformations. Such research also opens the door to new applications, either because materials properties are modified as a function of particle size, or because the nanoparticles interact with a surrounding matrix material, or with each other. In this paper, we describe the formation of vanadium dioxide nanoparticles in silicon substrates by pulsed laser deposition of ion beam lithographically selected sites and thermal processing. We observe the collective behavior of 50 nm diameter VO2 oblate nanoparticles, 10 nm high, and ordered in square arrays with arbitrary lattice constant. The metal-semiconductor-transition of the VO2 precipitates shows different features in each lattice spacing substrate. The materials are characterized by electron microscopy, x-ray diffraction, Rutherford backscattering. The features of the phase transition are studied via infrared optical spectroscopy. Of particular interest are the enhanced scattering and the surface plasmon resonance when the particles reach the metallic state. This resonance amplifies the optical contrast in the range of near-infrared optical communication wavelengths and it is altered by the particle-particle coupling as in the case of noble metals. In addition the VO2 nanoparticles exhibit sharp transitions with up to 50 K of hysteresis, one of the largest values ever reported for this transition. The optical properties of the VO2 nanoarrays are correlated with the size of the precipitates and their inter-particle distance. Nonlinear and ultra fast optical measurements have shown that the transition is the fastest known solid-solid transformation. The VO2 nanoparticles show the same bulk property, transforming in times shorter than 150 fs. This makes them remarkable candidates for ultrafast optical and electronic switching applications.
Interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser
NASA Astrophysics Data System (ADS)
Wang, Da-Shuai; Wu, Ge; Gao, Bo; Tian, Xiao-Jian
2013-01-01
We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by controlling the inter-cavity average dispersion and gain saturation energy, Moreover, pulse repulsive and attractive motion are also achieved with different pulse separations. Simulation results show that the phase shift plays an important role in pulse interaction, and the interaction is determined by the inter-cavity average dispersion and gain saturation energy, i.e., the strength of the interaction is proportional to the gain saturation energy, a stronger gain saturation energy will result in a higher interaction intensity. On the contrary, the increase of the inter-cavity dispersion will counterbalance some interaction force. The results also show that the interaction of a parabolic-shaped pulse pair has a larger interaction distance compared to conventional solitons.
The Charging of Composites in the Space Environment
NASA Technical Reports Server (NTRS)
Czepiela, Steven A.
1997-01-01
Deep dielectric charging and subsequent electrostatic discharge in composite materials used on spacecraft have become greater concerns since composite materials are being used more extensively as main structural components. Deep dielectric charging occurs when high energy particles penetrate and deposit themselves in the insulating material of spacecraft components. These deposited particles induce an electric field in the material, which causes the particles to move and thus changes the electric field. The electric field continues to change until a steady state is reached between the incoming particles from the space environment and the particles moving away due to the electric field. An electrostatic discharge occurs when the electric field is greater than the dielectric strength of the composite material. The goal of the current investigation is to investigate deep dielectric charging in composite materials and ascertain what modifications have to be made to the composite properties to alleviate any breakdown issues. A 1-D model was created. The space environment, which is calculated using the Environmental Workbench software, the composite material properties, and the electric field and voltage boundary conditions are input into the model. The output from the model is the charge density, electric field, and voltage distributions as functions of the depth into the material and time. Analysis using the model show that there should be no deep dielectric charging problem with conductive composites such as carbon fiber/epoxy. With insulating materials such as glass fiber/epoxy, Kevlar, and polymers, there is also no concern of deep dielectric charging problems with average day-to-day particle fluxes. However, problems can arise during geomagnetic substorms and solar particle events where particle flux levels increase by several orders of magnitude, and thus increase the electric field in the material by several orders of magnitude. Therefore, the second part of this investigation was an experimental attempt to measure the continuum electrical properties of a carbon fiber/epoxy composite, and to create a composite with tailorable conductivity without affecting its mechanical properties. The measurement of the conductivity and dielectric strength of carbon fiber/epoxy composites showed that these properties are surface layer dominated and difficult to measure. In the second experimental task, the conductivity of a glass fiber/epoxy composite was increased by 3 orders of magnitude, dielectric constant was increased approximately by a factor of 16, with minimal change to the mechanical properties, by adding conductive carbon black to the epoxy.
Inter-molecular β-sheet structure facilitates lung-targeting siRNA delivery
NASA Astrophysics Data System (ADS)
Zhou, Jihan; Li, Dong; Wen, Hao; Zheng, Shuquan; Su, Cuicui; Yi, Fan; Wang, Jue; Liang, Zicai; Tang, Tao; Zhou, Demin; Zhang, Li-He; Liang, Dehai; Du, Quan
2016-03-01
Size-dependent passive targeting based on the characteristics of tissues is a basic mechanism of drug delivery. While the nanometer-sized particles are efficiently captured by the liver and spleen, the micron-sized particles are most likely entrapped within the lung owing to its unique capillary structure and physiological features. To exploit this property in lung-targeting siRNA delivery, we designed and studied a multi-domain peptide named K-β, which was able to form inter-molecular β-sheet structures. Results showed that K-β peptides and siRNAs formed stable complex particles of 60 nm when mixed together. A critical property of such particles was that, after being intravenously injected into mice, they further associated into loose and micron-sized aggregates, and thus effectively entrapped within the capillaries of the lung, leading to a passive accumulation and gene-silencing. The large size aggregates can dissociate or break down by the shear stress generated by blood flow, alleviating the pulmonary embolism. Besides the lung, siRNA enrichment and targeted gene silencing were also observed in the liver. This drug delivery strategy, together with the low toxicity, biodegradability, and programmability of peptide carriers, show great potentials in vivo applications.
NASA Astrophysics Data System (ADS)
Castro, Luz Angelica; Hoyos, Mauricio
2016-04-01
We propose an experimental methodology to determine the secondary Bjerknes force between rigid particles. Measurements done for different particles sizes showed acoustical inter particles interactions. We use and extend the methodology presented in a previous work. The determination of this force will lead us a better understanding of the aggregation process in acoustic resonators. We report in this work, the results of two parabolic flights campaigns performed at the Airbus A300 ZERO-G (Novespace, France).
NASA Astrophysics Data System (ADS)
V. R., Arun prakash; Rajadurai, A.
2016-10-01
In this present work hybrid polymer (epoxy) matrix composite has been strengthened with surface modified E-glass fiber and iron(III) oxide particles with varying size. The particle sizes of 200 nm and <100 nm has been prepared by high energy ball milling and sol-gel methods respectively. To enhance better dispersion of particles and improve adhesion of fibers and fillers with epoxy matrix surface modification process has been done on both fiber and filler by an amino functional silane 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized iron(III) oxide particles were characterized by XRD and FTIR spectroscopy analysis. Fixed quantity of surface treated 15 vol% E-glass fiber was laid along with 0.5 and 1.0 vol% of iron(III) oxide particles into the matrix to fabricate hybrid composites. The composites were cured by an aliphatic hardener Triethylenetetramine (TETA). Effectiveness of surface modified particles and fibers addition into the resin matrix were revealed by mechanical testing like tensile testing, flexural testing, impact testing, inter laminar shear strength and hardness. Thermal behavior of composites was evaluated by TGA, DSC and thermal conductivity (Lee's disc). The scanning electron microscopy was employed to found shape and size of iron(III) oxide particles adhesion quality of fiber with epoxy matrix. Good dispersion of fillers in matrix was achieved with surface modifier APTMS. Tensile, flexural, impact and inter laminar shear strength of composites was improved by reinforcing surface modified fiber and filler. Thermal stability of epoxy resin was improved when surface modified fiber was reinforced along with hard hematite particles. Thermal conductivity of epoxy increased with increase of hematite content in epoxy matrix.
Instrument comparison for Aerosolized Titanium Dioxide
NASA Astrophysics Data System (ADS)
Ranpara, Anand
Recent toxicological studies have shown that the surface area of ultrafine particles (UFP i.e., particles with diameters less than 0.1 micrometer) has a stronger correlation with adverse health effects than does mass of these particles. Ultrafine titanium dioxide (TiO2) particles are widely used in industry, and their use is associated with adverse health outcomes, such as micro vascular dysfunctions and pulmonary damages. The primary aim of this experimental study was to compare a variety of laboratory and industrial hygiene (IH) field study instruments all measuring the same aerosolized TiO2. The study also observed intra-instrument variability between measurements made by two apparently identical devices of the same type of instrument placed side-by-side. The types of instruments studied were (1) DustTrak(TM) DRX, (2) Personal Data RAMs(TM) (PDR), (3) GRIMM, (4) Diffusion charger (DC) and (5) Scanning Mobility Particle Sizer (SMPS). Two devices of each of the four IH field study instrument types were used to measure six levels of mass concentration of fine and ultrafine TiO2 aerosols in controlled chamber tests. Metrics evaluated included real-time mass, active surface area and number/geometric surface area distributions, and off-line gravimetric mass and morphology on filters. DustTrak(TM) DRXs and PDRs were used for mass concentration measurements. DCs were used for active surface area concentration measurements. GRIMMs were used for number concentration measurements. SMPS was used for inter-instrument comparisons of surface area and number concentrations. The results indicated that two apparently identical devices of each DRX and PDR were statistically not different with each other for all the trials of both the sizes of powder (p < 5%). Mean difference between mass concentrations measured by two DustTrak DRX devices was smaller than that measured by two PDR devices. DustTrak DRX measurements were closer to the reference method, gravimetric mass concentration, than the PDRs. Two apparently identical DC devices were statistically different with each other for fine particles but not for UFP. DC devices and SMPS were statistically different with each other for both sizes of particles. Two apparently identical GRIMM devices were statistically different with each other for fine particles. For UFP, results of GRIMM device were statistically different than SMPS but not for fine particles. These observations suggest that inter-device within instrument and inter-instrument agreements depend on particle size and instrument characteristics to measure nanoparticles at different concentration levels.
2017-11-30
jsc2017e136058 - On a snowy night at Red Square in Moscow, Expedition 54-55 crewmember Scott Tingle of NASA lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. Tingle, Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) will launch from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-07 spacecraft Dec. 17 for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.
3D-micro-patterned fibrous dosage forms for immediate drug release.
Blaesi, Aron H; Saka, Nannaji
2018-03-01
At present, the most prevalent pharmaceutical dosage forms, the orally-delivered immediate-release tablets and capsules, are porous, granular solids. They disintegrate into their constituent particulates upon ingestion to release drug rapidly. The design, development, and manufacture of such granular solids, however, is inefficient due to difficulties associated with the unpredictable inter-particle interactions. Therefore, to achieve more predictable dosage form properties and processing, we have recently introduced melt-processed polymeric cellular dosage forms. The cellular forms disintegrated and released drug rapidly if the cells were predominantly interconnected. Preparation of interconnected cells, however, relies on the coalescence of gas bubbles in the melt, which is unpredictable. In the present work, therefore, new melt-processed fibrous dosage forms with contiguous void space are presented. The dosage forms are prepared by melt extrusion of the drug-excipient mixture followed by patterning the fibrous extrudate on a moving surface. It is demonstrated that the resulting fibrous structures are fully predictable by the extruder nozzle diameter and the motion of the surface. Furthermore, drug release experiments show that the disintegration time of the fibrous forms prepared in this work is of the order of that of the corresponding single fibers. The thin fibers of polyethylene glycol (excipient) and acetaminophen (drug) in turn disintegrate in a time proportional to the fiber radius and well within immediate-release specification. Finally, models of dosage form disintegration and drug release by single fibers and fibrous dosage forms are developed. It is found that drug release from fibrous forms is predictable by the physico-chemical properties of the excipient and such microstructural parameters as the fiber radius, the inter-fiber spacing, and the volume fraction of water-soluble excipient in the fibers. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Yoo Chun; Oh, Kyung Hee; Edelhauser, Henry F; Prausnitz, Mark R
2015-09-01
In this work, we tested the hypothesis that particles injected into the suprachoroidal space can be localized at the site of injection or broadly distributed throughout the suprachoroidal space by controlling polymeric formulation properties. Single hollow microneedles were inserted into the sclera of New Zealand White rabbits and injected non-biodegradable fluorescently tagged nanoparticles and microparticles suspended in polymeric formulations into the suprachoroidal space of the eye. When formulated in saline, the particles were distributed over 29-42% of the suprachoroidal space immediately after injection. To spread particles over larger areas of the choroidal surface, addition of hyaluronic acid to make moderately non-Newtonian solutions increased particle spread to up to 100% of the suprachoroidal space. To localize particles at the site of injection adjacent to the ciliary body, strongly non-Newtonian polymer solutions localized particles to 8.3-20% of the suprachoroidal space, which exhibited a small increase in area over the course of two months. This study demonstrates targeted particle delivery within the suprachoroidal space using polymer formulations that spread particles over the whole choroidal surface or localized them adjacent to the ciliary body after injection. Copyright © 2015 Elsevier B.V. All rights reserved.
[Are inhaled dust particles harmful for our lungs?].
Brändli, O
1996-12-14
Particles with diameters ranging from less than 0.02 to more than 100 microns and in concentration up to 120 micrograms/m3 daily average TSP (total suspended particles) are measurable in the air of Swiss cities and responsible for the decrease of visibility on the Swiss Plateau and south of the Alps. The particle size shows a typical distribution: the coarse particles (> 2.5 microns mass median diameter) are mostly of natural origin (plants, pollen, earth particles) and are deposited in the upper airways. The fine particles (PM2.5 < 2.5 microns) are predominantly deposited into the alveolar space. These fine and ultrafine particles (< 0.02 microns) are produced by the burning of fossil fuels or by photochemical reactions. By bypassing the mucociliary and cellular defense mechanisms, fine particles can invade the lung parenchyma and cause an inflammatory response. The additional chemical layering of a carbon core by nitrates, sulfates and other organic materials and metals such as iron cause greater local oxidative and/or carcinogenic damage than in the vaporized state. In comparing worldwide epidemiological studies, there seems to be a cohesive and consistent relationship between increases of particle concentration and the increase of mortality (mostly among patients over 65 with concomitant lung and heart diseases and among smokers) and morbidity (bronchitis, pneumonia, COPD, and, less convincingly, asthma). An increase in daily average PM10 (particles < 10 microns) is correlated with an increase in mortality not related to accidents and suicides of 1.0% for the same and/or the following days. In Switzerland, mean annual concentrations of 14-53 micrograms/m3 TSP or 10-33 micrograms/m3 PM10, well below the national standard (annual mean TSP 70 micrograms/m3) have been measured in rural and urban areas. Even at these concentrations an increase in respiratory symptoms and a decrease in lung function, without evidence for a "safe" threshold, have been observed in the Swiss study of air pollution and lung diseases in adults (SAPALDIA). Although the noxious effects of the particles cannot be clearly separated from the effect of other pollutants (e.g. NOx, SO2, ozone) in complex pollutant mixtures, the emission standards and national standards for ambient air should be revised, in particular by adding a standard for fine particles (e.g. PM10 or PM2.5).
Interaction between Proppant Packing, Reservoir Depletion, and Fluid Flow in Pore Space
NASA Astrophysics Data System (ADS)
Fan, M.; McClure, J. E.; Han, Y.; Chen, C.
2016-12-01
In the oil and gas industry, the performance of proppant pack in hydraulically created fractures has a significant influence on fracture conductivity. A better understanding of proppant transport and deposition pattern in a hydraulic fracture is vital for effective and economical production within oil and gas reservoirs. In this research, a numerical modeling approach, combining Particle Flow Code (PFC) and GPU-enhanced lattice Boltzmann simulator (GELBS), is adopted to advance the understanding of the interaction between proppant particle packing, depletion of reservoir formation, and transport of reservoir flow through the pore space. In this numerical work flow, PFC is used to simulate effective stress increase and proppant particle movement and rearrangement under increasing mechanical loading. The pore structure of the proppant pack evolves subsequently and the geometrical data are output for lattice Boltzmann (LB) simulation of proppant pack permeability. Three different proppant packs with fixed particle concentration and 12/18, 16/30, and 20/40 mesh sizes are generated. These proppant packs are compressed with specified loading stress and their subsequent geometries are used for fluid flow simulations. The simulation results are in good agreement with experimental observations, e.g., the conductivity of proppant packs decreases with increasing effective stress. Three proppant packs with the same average diameter were generated using different coefficients of variation (COVs) for the proppant diameter (namely cov5%, cov20%, and cov30%). By using the coupled PFC-LBM work flow, the proppant pack permeability as functions of effective stress and porosity is investigated. The results show that the proppant pack with a higher proppant diameter COV has lower permeability and porosity under the same effective stress, because smaller particles fill in the pore space between bigger particles. The relationship between porosity and permeability is also consistent with the Kozeny-Carman equation. In addition, relative permeability curves are obtained using multiphase LB simulation to study non-wetting phase trapping, which will benefit production forecasting and interpretation of formation damage. This research provides an advantageous alternative to expensive laboratory experiments.
Wang, Xi; Chen, Renjie; Meng, Xia; Geng, Fuhai; Wang, Cuicui; Kan, Haidong
2013-08-01
China is one of the countries with the highest ambient particle levels in the world; however, there have been no epidemiologic studies examining the effects of fine particle (PM2.5), coarse particle (PM10-2.5) and black carbon (BC) simultaneously on morbidity outcomes. In this study, we conducted a time-series analysis to evaluate the acute effects of PM2.5, PM10-2.5, and BC on daily hospital visits in Shanghai, China. During our study period, the mean daily concentrations of PM2.5, PM10-2.5 and BC were 53.9 μg/m(3), 38.4 μg/m(3) and 3.9 μg/m(3), respectively. We found significant associations of PM2.5, PM 10-2.5, and BC with daily hospital visits. An inter-quartile range increase of the average concentrations of the current and previous days in PM2.5, PM10-2.5 and BC was associated with a 1.88% (95% CI: 0.69% to 3.06%), a 1.30% (95% CI: 0.25% to 2.34%) and a 1.33% (95% CI: 0.34% to 2.32%) increase in emergency-room visits, respectively. For outpatient visits, the corresponding estimated changes were -2.44% (95% CI: -6.62% to 1.74%), 1.09% (95% CI: -2.72% to 4.90%) and 3.34% (95% CI: 0.10% to 6.57%) respectively. The effects of BC were more robust than the effects of PM2.5 and PM10-2.5 in two-pollutant models. To our knowledge, this is the first study in China, or even in Asian developing countries, to report the effect of PM2.5, PM10-2.5, and BC simultaneously on morbidity. Our findings also suggest that BC could serve as a valuable air quality indicator that reflects the health risks of airborne particles. Copyright © 2013 Elsevier B.V. All rights reserved.
Effects of varying inter-limb spacing to limb length ratio in metachronal swimming
NASA Astrophysics Data System (ADS)
Lai, Hong Kuan; Merkel, Rachael; Santhanakrishnan, Arvind
2016-11-01
Crustaceans such as shrimp, krill and crayfish swim by rhythmic paddling of four to five pairs of closely spaced limbs. Each pair is phase-shifted in time relative to the neighboring pair, resulting in a metachronal wave that travels in the direction of animal motion. The broad goal of this study is to investigate how the mechanical design of the swimming limbs affect scalability of metachronal swimming in terms of limb-based Reynolds number (Re). A scaled robotic model of metachronal paddling was developed, consisting of four pairs of hinged acrylic plates actuated using stepper motors that were immersed in a rectangular tank containing water-glycerin fluid medium. 2D PIV measurements show that the propulsive jets transition from being primarily horizontal (thrust-producing direction) at Re of order 10 to angled vertically at Re of order 100. The ratio of inter-limb spacing to limb length among metachronal swimming organisms ranges between 0.2 to 0.65. 2D PIV will be used to examine the jets generated between adjacent limbs for varying inter-limb spacing to limb length ratios. The effect of increasing this ratio to beyond the biologically observed range will be discussed.
Sawakuchi, Gabriel O; Yukihara, Eduardo G
2012-01-21
The objective of this work is to test analytical models to calculate the luminescence efficiency of Al(2)O(3):C optically stimulated luminescence detectors (OSLDs) exposed to heavy charged particles with energies relevant to space dosimetry and particle therapy. We used the track structure model to obtain an analytical expression for the relative luminescence efficiency based on the average radial dose distribution produced by the heavy charged particle. We compared the relative luminescence efficiency calculated using seven different radial dose distribution models, including a modified model introduced in this work, with experimental data. The results obtained using the modified radial dose distribution function agreed within 20% with experimental data from Al(2)O(3):C OSLDs relative luminescence efficiency for particles with atomic number ranging from 1 to 54 and linear energy transfer in water from 0.2 up to 1368 keV µm(-1). In spite of the significant improvement over other radial dose distribution models, understanding of the underlying physical processes associated with these radial dose distribution models remain elusive and may represent a limitation of the track structure model.
Beryllium-10 and Aluminum-26 in Individual Cosmic Spherules from Antarctica
NASA Technical Reports Server (NTRS)
Nishiizumi, K.; Arnold, J. R.; Brownlee, D. E.; Caffee, M. W.; Finkel, R. C.; Harvey, R. P.
1995-01-01
We present data for the cosmogenic nuclides Be-10 and A-26 in a suite of 24 extraterrestrial spherules, collected from Antarctic moraines and deep sea sediments. All of the 10 large spherules collected in glacial till at Lewis Cliff are extraterrestrial. As in earlier work, the great majority of particles show prominent solar cosmic-ray (SCR) production of Al-26, indicating bombardment ages on the order of 106 years or even longer. These long ages are in direct contradiction to model ages for small particles in the inner Solar System and may require reconsideration of models of small particle lifetimes. A small fraction of the particles so far measured (6/42) possess cosmogenic radionuclide patterns consistent with predictions for meteoroid spall droplets. We believe that most of the spherules were bombarded in space primarily as bodies not much larger than their present size. The content of in situ produced Be-10 and Al-26 in quartz pebbles in the same moraine suggests that these spherules may have on average a significant terrestrial age.
Radiation dose to critical body organs for October 1989 proton event
NASA Technical Reports Server (NTRS)
Simonsen, Lisa C.; Atwell, William; Nealy, John E.; Cucinotta, Francis A.
1992-01-01
The Geostationary Operational Environmental Satellite (GOES-7) provides high-quality environmental data about the temporal development and energy characteristics of the protons emitted during a solar particle event. The GOES-7 time history of the hourly averaged integral proton flux for various particle kinetic energies are analyzed for the solar proton event occurring October 19-29, 1989. This event is similar to the August 1972 event that has been widely studied to estimate free-space and planetary radiation-protection requirements. By analyzing the time-history data, the dose rates, which can vary over many orders of magnitude in the early phases of the flare, can be estimated as well as the cumulative dose as a function of time. When basic transport results are coupled with detailed body organ thickness distributions calculated with the Computerized Anatomical Man and Computerized Anatomical Female models, the dose rates and cumulative doses to specific organs can be predicted. With these results, the risks of cancer incidence and mortality are estimated for astronauts in free space protected by various water shield thicknesses.
NASA Astrophysics Data System (ADS)
Gunes-Lasnet, Sev; Dufour, Jean-Francois
2012-08-01
The potential uses and benefits of wireless technologies in space are very broad. Since many years the CCSDS SOIS wireless working group has worked at the identification of key applications for which wireless would bring benefits, and at supporting the deployment of wireless in space thanks to documents, in particular a Green informative book and magenta books presenting recommended practices.The Smart Sensor Inter-Agency Research Test bench (SSIART) is being designed to provide the space Agencies and the Industry with a reference smart sensor platform to test wireless sensor technologies in reference representative applications and RF propagation environments, while promoting these technologies at the same time.
2017-11-30
jsc2017e136055 - On a snowy night at Red Square in Moscow, Expedition 54-55 backup crewmember Jeanette Epps of NASA lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. Looking on are backup crewmembers Sergey Prokopyev of the Russian Federal Space Agency (Roscosmos, left) and Alexander Gerst of the European Space Agency. They are backups to Anton Shkaplerov of Roscosmos, Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA), who will launch from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-07 spacecraft Dec. 17 for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.
NASA Astrophysics Data System (ADS)
Singh, Mehtab
2017-12-01
Optical wireless communication (OWC) systems also known as Free space optics (FSO) are capable of providing high channel bandwidth, high data transmission rates, low power consumption, and high security. OWC links are being considered in different applications such as inter-satellite links, terrestrial links, and inter-aircraft communication links. This paper investigates the impact of different system parameters such as transmission power level, operating wavelength, transmitter pointing error angle, bit transmission rate, atmospheric attenuation, antenna aperture diameter, geometric losses, the responsivity of the photodetector, and link range on the performance of inter-aircraft optical wireless communication link.
GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor
2013-07-01
It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Clustermore » spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.« less
Massa, P T; Szuchet, S; Mugnaini, E
1984-12-01
Oligodendrocytes were isolated from lamb brain. Freshly isolated cells and cultured cells, either 1- to 4-day-old unattached or 1- to 5-week-old attached, were examined by thin section and freeze-fracture electron microscopy. Freeze-fracture of freshly isolated oligodendrocytes showed globular and elongated intramembrane particles similar to those previously described in oligodendrocytes in situ. Enrichment of these particles was seen at sites of inter-oligodendrocyte contact. Numerous gap junctions and scattered linear tight junctional arrays were apparent. Gap junctions were connected to blebs of astrocytic plasma membrane sheared off during isolation, whereas tight junctions were facing extracellular space or blebs of oligodendrocytic plasma membrane. Thin sections of cultured, unattached oligodendrocytes showed rounded cell bodies touching one another at points without forming specialized cell junctions. Cells plated on polylysine-coated aclar dishes attached, emanated numerous, pleomorphic processes, and expressed galactocerebroside and myelin basic protein, characteristic markers for oligodendrocytes. Thin sections showed typical oligodendrocyte ultrastructure but also intermediate filaments not present in unattached cultures. Freeze-fracture showed intramembrane particles similar to but more numerous, and with a different fracture face repartition, than those seen in oligodendrocytes, freshly isolated or in situ. Gap junctions were small and rare. Apposed oligodendrocyte plasma membrane formed linear tight junctions which became more numerous with time in culture. Thus, cultured oligodendrocytes isolated from ovine brains develop and maintain features characteristic of mature oligodendrocytes in situ and can be used to explore formation and maintenance of tight junctions and possibly other classes of cell-cell interactions important in the process of myelination.
3D RISM theory with fast reciprocal-space electrostatics.
Heil, Jochen; Kast, Stefan M
2015-03-21
The calculation of electrostatic solute-solvent interactions in 3D RISM ("three-dimensional reference interaction site model") integral equation theory is recast in a form that allows for a computational treatment analogous to the "particle-mesh Ewald" formalism as used for molecular simulations. In addition, relations that connect 3D RISM correlation functions and interaction potentials with thermodynamic quantities such as the chemical potential and average solute-solvent interaction energy are reformulated in a way that calculations of expensive real-space electrostatic terms on the 3D grid are completely avoided. These methodical enhancements allow for both, a significant speedup particularly for large solute systems and a smoother convergence of predicted thermodynamic quantities with respect to box size, as illustrated for several benchmark systems.
Non-universal tracer diffusion in crowded media of non-inert obstacles.
Ghosh, Surya K; Cherstvy, Andrey G; Metzler, Ralf
2015-01-21
We study the diffusion of a tracer particle, which moves in continuum space between a lattice of excluded volume, immobile non-inert obstacles. In particular, we analyse how the strength of the tracer-obstacle interactions and the volume occupancy of the crowders alter the diffusive motion of the tracer. From the details of partitioning of the tracer diffusion modes between trapping states when bound to obstacles and bulk diffusion, we examine the degree of localisation of the tracer in the lattice of crowders. We study the properties of the tracer diffusion in terms of the ensemble and time averaged mean squared displacements, the trapping time distributions, the amplitude variation of the time averaged mean squared displacements, and the non-Gaussianity parameter of the diffusing tracer. We conclude that tracer-obstacle adsorption and binding triggers a transient anomalous diffusion. From a very narrow spread of recorded individual time averaged trajectories we exclude continuous type random walk processes as the underlying physical model of the tracer diffusion in our system. For moderate tracer-crowder attraction the motion is found to be fully ergodic, while at stronger attraction strength a transient disparity between ensemble and time averaged mean squared displacements occurs. We also put our results into perspective with findings from experimental single-particle tracking and simulations of the diffusion of tagged tracers in dense crowded suspensions. Our results have implications for the diffusion, transport, and spreading of chemical components in highly crowded environments inside living cells and other structured liquids.
Modeling residential exposure to secondhand tobacco smoke
NASA Astrophysics Data System (ADS)
Klepeis, Neil E.; Nazaroff, William W.
We apply a simulation model to explore the effect of a house's multicompartment character on a nonsmoker's inhalation exposure to secondhand tobacco smoke (SHS). The model tracks the minute-by-minute movement of people and pollutants among multiple zones of a residence and generates SHS pollutant profiles for each room in response to room-specific smoking patterns. In applying the model, we consider SHS emissions of airborne particles, nicotine, and carbon monoxide in two hypothetical houses, one with a typical four-room layout and one dominated by a single large space. We use scripted patterns of room-to-room occupant movement and a cohort of 5000 activity patterns sampled from a US nationwide survey. The results for scripted and cohort simulation trials indicate that the multicompartment nature of homes, manifested as inter-room differences in pollutant levels and the movement of people among zones, can cause substantial variation in nonsmoker SHS exposure.
Evolution of network architecture in a granular material under compression
NASA Astrophysics Data System (ADS)
Bassett, Danielle
As a granular material is compressed, the particles and forces within the system arrange to form complex and heterogeneous collective structures. However, capturing and characterizing the dynamic nature of the intrinsic inhomogeneity and mesoscale architecture of granular systems can be challenging. Here, we utilize multilayer networks as a framework for directly quantifying the evolution of mesoscale architecture in a compressed granular system. We examine a quasi-two-dimensional aggregate of photoelastic disks, subject to biaxial compressions through a series of small, quasistatic steps. Treating particles as network nodes and inter-particle forces as network edges, we construct a multilayer network for the system by linking together the series of static force networks that exist at each strain step. We then extract the inherent mesoscale structure from the system by using a generalization of community detection methods to multilayer networks, and we define quantitative measures to characterize the reconfiguration and evolution of this structure throughout the compression process. To test the sensitivity of the network model to particle properties, we examine whether the method can distinguish a subsystem of low-friction particles within a bath of higher-friction particles. We find that this can be done by considering the network of tangential forces, and that the community structure is better able to separate the subsystem than consideration of the local inter-particle forces alone. The results discussed throughout this study suggest that these novel network science techniques may provide a direct way to compare and classify data from systems under different external conditions or with different physical makeup. National Science Foundation (BCS-1441502, PHY-1554488, and BCS-1631550).
1987-09-01
can be reduced substantially, compared to using numerical methods to model inter - " connect parasitics. Although some accuracy might be lost with...conductor widths and spacings listed in Table 2 1 , have been employed for simulation. In the first set of the simulations, planar dielectric inter ...model, there are no restrictions on the iumber ol diele-iric and conductors. andl the shape of the conductors and the dielectric inter - a.e,, In the
Steinritz, Dirk; Möhle, Niklas; Pohl, Christine; Papritz, Mirko; Stenger, Bernhard; Schmidt, Annette; Kirkpatrick, Charles James; Thiermann, Horst; Vogel, Richard; Hoffmann, Sebastian; Aufderheide, Michaela
2013-12-05
Exposure of the respiratory tract to airborne particles (including metal-dusts and nano-particles) is considered as a serious health hazard. For a wide range of substances basic knowledge about the toxic properties and the underlying pathomechanisms is lacking or even completely missing. Legislation demands the toxicological characterization of all chemicals placed on the market until 2018 (REACH). As toxicological in vivo data are rare with regard to acute lung toxicity or exhibit distinct limitations (e.g. inter-species differences) and legislation claims the reduction of animal experiments in general ("3R" principle), profound in vitro models have to be established and characterized to meet these requirements. In this paper we characterize a recently introduced advanced in vitro exposure system (Cultex® RFS) showing a great similarity to the physiological in vivo exposure situation for the assessment of acute pulmonary toxicity of airborne materials. Using the Cultex® RFS, human lung epithelial cells (A549 cells) were exposed to different concentrations of airborne metal dusts (nano- and microscale particles) at the air-liquid-interface (ALI). Cell viability (WST-1 assay) as a parameter of toxicity was assessed 24h after exposure with special focus on the intra- and inter-laboratory (three independent laboratories) reproducibility. Our results show the general applicability of the Cultex® RFS with regard to the requirements of the ECVAM (European Centre for the Validation of Alternative Methods) principles on test validity underlining its robustness and stability. Intra- and inter-laboratory reproducibility can be considered as sufficient if predefined quality criteria are respected. Special attention must be paid to the pure air controls that turned out to be a critical parameter for a rational interpretation of the results. Our results are encouraging and future work is planned to improve the inter-laboratory reproducibility, to consolidate the results so far and to develop a valid prediction model. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
SimilarityExplorer: A visual inter-comparison tool for multifaceted climate data
J. Poco; A. Dasgupta; Y. Wei; W. Hargrove; C. Schwalm; R. Cook; E. Bertini; C. Silva
2014-01-01
Inter-comparison and similarity analysis to gauge consensus among multiple simulation models is a critical visualization problem for understanding climate change patterns. Climate models, specifically, Terrestrial Biosphere Models (TBM) represent time and space variable ecosystem processes, for example, simulations of photosynthesis and respiration, using algorithms...
NASA Astrophysics Data System (ADS)
ter Maat, G. W.; Stange, M. F.; Church, N. S.; Fabian, K.; McEnroe, S. A.
2016-12-01
Understanding the nature and stability of magnetic minerals is of fundamental importance for mineral exploration using magnetic anomalies. When the remanence direction of the rock is close to that of the inducing field, a larger-than-expected anomaly can be found due to the addition of these components. However, strong anomalies are commonly attributed to coarse magnetite, thereby considering only the induced component, which potentially leads to inaccurate interpretations of subsurface features. Here we investigate the mineralogical causes of large remanent anomalies, and the microstructures within the magnetic oxides. Microstructures formed by processes such as exsolution change the shape, size, spacing, and composition of the magnetic carriers, with implications for stability and strength of remanence. An example of such a remanent anomaly is the Stardalur volcano (Iceland), which yields a large positive anomaly (27300 nT above background). The average NRM intensity is 61 A/m, 15 times stronger than similar Icelandic basalts (Kristjansson, 2002). Samples from a deep drill core have an average susceptibility of 0.07 SI and average Koenigsberger ratio of 23, indicating remanence controls the anomaly. Magnetite is the only remanence carrier (Kristjansson, 2002) and contains a pervasive oxy-exsolution microstructure which is studied here for its influence on remanence. To characterize the effect of the shape, size, and spacing of magnetic particles, 3D reconstructions of closely-spaced grains from the Stardalur basalts were acquired using the slice-and-view focused ion beam technique. These grain geometries were modeled using the MERRILL micromagnetics software to calculate realistic magnetization structures and infer the role of domain states and interactions between particles on bulk properties, including remanence. TEM studies will characterize these microstructures at the nanometer scale, acquire chemical maps, and quantify defects potentially associated with domain wall pinning and viscous magnetization. The examination of microstructures at all length scales will give insight into the processes that yield strong remanence. The better understanding of remanence and bulk properties informs paleo- and rock magnetic studies and promises improved interpretations of magnetic surveys.
2015-11-23
With St. Basil’s Cathedral in Red Square in Moscow serving as a backdrop, Expedition 46-47 crewmembers Tim Kopra of NASA (left), Yuri Malenchenko of the Russian Federal Space Agency (Roscosmos, center) and Tim Peake of the European Space Agency (right) pose for pictures Nov. 23 after laying flowers at the Kremlin Wall where Russian space icons are interred. Peake, Malenchenko and Kopra will launch on Dec. 15 on the Soyuz TMA-19M spacecraft from the Baikonur Cosmodrome in Kazakhstan for a six-month mission on the International Space Station. NASA/Seth Marcantel
Modeling particle number concentrations along Interstate 10 in El Paso, Texas
Olvera, Hector A.; Jimenez, Omar; Provencio-Vasquez, Elias
2014-01-01
Annual average daily particle number concentrations around a highway were estimated with an atmospheric dispersion model and a land use regression model. The dispersion model was used to estimate particle concentrations along Interstate 10 at 98 locations within El Paso, Texas. This model employed annual averaged wind speed and annual average daily traffic counts as inputs. A land use regression model with vehicle kilometers traveled as the predictor variable was used to estimate local background concentrations away from the highway to adjust the near-highway concentration estimates. Estimated particle number concentrations ranged between 9.8 × 103 particles/cc and 1.3 × 105 particles/cc, and averaged 2.5 × 104 particles/cc (SE 421.0). Estimates were compared against values measured at seven sites located along I10 throughout the region. The average fractional error was 6% and ranged between -1% and -13% across sites. The largest bias of -13% was observed at a semi-rural site where traffic was lowest. The average bias amongst urban sites was 5%. The accuracy of the estimates depended primarily on the emission factor and the adjustment to local background conditions. An emission factor of 1.63 × 1014 particles/veh-km was based on a value proposed in the literature and adjusted with local measurements. The integration of the two modeling techniques ensured that the particle number concentrations estimates captured the impact of traffic along both the highway and arterial roadways. The performance and economical aspects of the two modeling techniques used in this study shows that producing particle concentration surfaces along major roadways would be feasible in urban regions where traffic and meteorological data are readily available. PMID:25313294
Impact of kerosene space heaters on indoor air quality.
Hanoune, B; Carteret, M
2015-09-01
In recent years, the use of kerosene space heaters as additional or principal heat source has been increasing, because these heaters allow a continuous control on the energy cost. These devices are unvented, and all combustion products are released into the room where the heaters are operated. The indoor air quality of seven private homes using wick-type or electronic injection-type kerosene space heaters was investigated. Concentrations of CO, CO2, NOx, formaldehyde and particulate matter (0.02-10 μm) were measured, using time-resolved instruments when available. All heaters tested are significant sources of submicron particles, NOx and CO2. The average NO2 and CO2 concentrations are determined by the duration of use of the kerosene heaters. These results stress the need to regulate the use of unvented combustion appliances to decrease the exposure of people to air contaminants. Copyright © 2014 Elsevier Ltd. All rights reserved.
The radiation protection problems of high altitude and space flight
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fry, R.J.M.
1993-04-01
This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes ofmore » transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers.« less
Particle Fluxes Over a Ponderosa Pine Plantation
NASA Astrophysics Data System (ADS)
Baker, B.; Goldstein, A.
2006-12-01
Atmospheric aerosols can affect visibility, climate, and health. Particle fluxes were measured continuously over a 15 year-old ponderosa pine plantation in the foothills of the Sierra Nevada from mid July to the end of September in the year 2005. Air at this field site is affected by both biogenic emissions from the dense forests of the surrounding area and by urban pollution transported from the Sacramento valley. It is believed that fluxes of very reactive hydrocarbons from plants to the atmosphere have an impact on the production and growth of atmospheric particles at this site. Two condensation particle counters (CPCs) were located near the top of a 12 m measurement tower, several meters above the top of the tree canopy. Particle count data was collected at 10 Hz and particle fluxes were determined using the eddy covariance method. A set of diffusion screens was added to the inlet of one of the CPCs such that the lower particle size limit for detection was increased to a diameter of approximately 40 nm. The other CPC counted particles with minimum diameters of 3 nm. Particle concentrations showed a distinct diurnal pattern with minimum daily average concentrations of 2000 particles cm-3 occurring at dawn, and average daily maximum concentrations of 5700 particles cm-3 occurring at dusk. The evening increase of particle number corresponded to the arrival of polluted air from the Sacramento region. During the day, deposition of particles to the forest canopy (daytime average of 5.8x106 particles m-2 s-1 was generally observed. Concentrations and fluxes of particles under 40 nm could be examined by subtracting the data of one CPC from the other. On average, the fraction of particles under 40 nm increased from less than 20% at dawn to more than 50% at dusk; indicating that air coming from the Sacramento region was enriched in smaller, newly formed aerosol. Daily average deposition fluxes of particles under 40 nm were 1.0x107 particles m-2 s-1. Much of this flux was due to large deposition fluxes during the final three weeks of the experiment. Deposition of particles above 40 nm averaged 1.0x106 particles m-2 s-1. Deposition velocities for the particles under 40 nm were typically between 1 and 10 mm s-1. Particle deposition was correlated most strongly with temperature, and also showed some correlation with relative humidity, particle number concentration, and ozone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballouz, Ronald-Louis; Richardson, Derek C.; Morishima, Ryuji
We study the B ring’s complex optical depth structure. The source of this structure may be the complex dynamics of the Keplerian shear and the self-gravity of the ring particles. The outcome of these dynamic effects depends sensitively on the collisional and physical properties of the particles. Two mechanisms can emerge that dominate the macroscopic physical structure of the ring: self-gravity wakes and viscous overstability. Here we study the interplay between these two mechanisms by using our recently developed particle collision method that allows us to better model the inter-particle contact physics. We find that for a constant ring surfacemore » density and particle internal density, particles with rough surfaces tend to produce axisymmetric ring features associated with the viscous overstability, while particles with smoother surfaces produce self-gravity wakes.« less
The BCS-BEC crossover: From ultra-cold Fermi gases to nuclear systems
NASA Astrophysics Data System (ADS)
Strinati, Giancarlo Calvanese; Pieri, Pierbiagio; Röpke, Gerd; Schuck, Peter; Urban, Michael
2018-04-01
This report addresses topics and questions of common interest in the fields of ultra-cold gases and nuclear physics in the context of the BCS-BEC crossover. By this crossover, the phenomena of Bardeen-Cooper-Schrieffer (BCS) superfluidity and Bose-Einstein condensation (BEC), which share the same kind of spontaneous symmetry breaking, are smoothly connected through the progressive reduction of the size of the fermion pairs involved as the fundamental entities in both phenomena. This size ranges, from large values when Cooper pairs are strongly overlapping in the BCS limit of a weak inter-particle attraction, to small values when composite bosons are non-overlapping in the BEC limit of a strong inter-particle attraction, across the intermediate unitarity limit where the size of the pairs is comparable with the average inter-particle distance. The BCS-BEC crossover has recently been realized experimentally, and essentially in all of its aspects, with ultra-cold Fermi gases. This realization, in turn, has raised the interest of the nuclear physics community in the crossover problem, since it represents an unprecedented tool to test fundamental and unanswered questions of nuclear many-body theory. Here, we focus on the several aspects of the BCS-BEC crossover, which are of broad joint interest to both ultra-cold Fermi gases and nuclear matter, and which will likely help to solve in the future some open problems in nuclear physics (concerning, for instance, neutron stars). Similarities and differences occurring in ultra-cold Fermi gases and nuclear matter will then be emphasized, not only about the relative phenomenologies but also about the theoretical approaches to be used in the two contexts. Common to both contexts is the fact that at zero temperature the BCS-BEC crossover can be described at the mean-field level with reasonable accuracy. At finite temperature, on the other hand, inclusion of pairing fluctuations beyond mean field represents an essential ingredient of the theory, especially in the normal phase where they account for precursor pairing effects. After an introduction to present the key concepts of the BCS-BEC crossover, this report discusses the mean-field treatment of the superfluid phase, both for homogeneous and inhomogeneous systems, as well as for symmetric (spin- or isospin-balanced) and asymmetric (spin- or isospin-imbalanced) matter. Pairing fluctuations in the normal phase are then considered, with their manifestations in thermodynamic and dynamic quantities. The last two Sections provide a more specialized discussion of the BCS-BEC crossover in ultra-cold Fermi gases and nuclear matter, respectively. The separate discussion in the two contexts aims at cross communicating to both communities topics and aspects which, albeit arising in one of the two fields, share a strong common interest.
Design and preliminary biomechanical analysis of artificial cervical joint complex.
Jian, Yu; Lan-Tao, Liu; Zhao, Jian-ning; Jian-ning, Zhao
2013-06-01
To design an artificial cervical joint complex (ACJC) prosthesis for non-fusion reconstruction after cervical subtotal corpectomy, and to evaluate the biomechanical stability, preservation of segment movements and influence on adjacent inter-vertebral movements of this prosthesis. The prosthesis was composed of three parts: the upper/lower joint head and the middle artificial vertebrae made of Cobalt-Chromium-Molybdenum (Co-Cr-Mo) alloy and polyethylene with a ball-and-socket joint design resembling the multi-axial movement in normal inter-vertebral spaces. Biomechanical tests of intact spine (control), Orion locking plate system and ACJC prosthesis were performed on formalin-fixed cervical spine specimens from 21 healthy cadavers to compare stability, range of motion (ROM) of the surgical segment and ROM of adjacent inter-vertebral spaces. As for stability of the whole lower cervical spine, there was no significant difference of flexion, extension, lateral bending and torsion between intact spine group and ACJC prosthesis group. As for segment movements, difference in flexion, lateral bending or torsion between ACJC prosthesis group and control group was not statistically significant, while ACJC prosthesis group showed an increase in extension (P < 0.05) compared to that of the control group. In addition, ACJC prosthesis group demonstrated better flexion, extension and lateral bending compared to those of Orion plating system group (P < 0.05). Difference in adjacent inter-vertebral ROM of the ACJC prosthesis group was not statistically significant compared to that of the control group. After cervical subtotal corpectomy, reconstruction with ACJC prosthesis not only obtained instant stability, but also reserved segment motions effectively, without abnormal gain of mobility at adjacent inter-vertebral spaces.
NASA Astrophysics Data System (ADS)
Corradini, Patricia Gon; Pires, Felipe I.; Paganin, Valdecir A.; Perez, Joelma; Antolini, Ermete
2012-09-01
The effect of the relationship between particle size ( d), inter-particle distance ( x i ), and metal loading ( y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5-3 nm) and x i / d (>5) values, was evaluated. It was found that for y < 30 wt%, the optimum values of both d and x i / d can be always obtained. For y ≥ 30 wt%, instead, the positive effect of a thinner catalyst layer of the fuel cell electrode than that using catalysts with y < 30 wt% is concomitant to a decrease of the effective catalyst surface area due to an increase of d and/or a decrease of x i / d compared to their optimum values, with in turns gives rise to a decrease in the catalytic activity. The effect of the x i / d ratio has been successfully verified by experimental results on ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x i / d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.
Robust estimation of event-related potentials via particle filter.
Fukami, Tadanori; Watanabe, Jun; Ishikawa, Fumito
2016-03-01
In clinical examinations and brain-computer interface (BCI) research, a short electroencephalogram (EEG) measurement time is ideal. The use of event-related potentials (ERPs) relies on both estimation accuracy and processing time. We tested a particle filter that uses a large number of particles to construct a probability distribution. We constructed a simple model for recording EEG comprising three components: ERPs approximated via a trend model, background waves constructed via an autoregressive model, and noise. We evaluated the performance of the particle filter based on mean squared error (MSE), P300 peak amplitude, and latency. We then compared our filter with the Kalman filter and a conventional simple averaging method. To confirm the efficacy of the filter, we used it to estimate ERP elicited by a P300 BCI speller. A 400-particle filter produced the best MSE. We found that the merit of the filter increased when the original waveform already had a low signal-to-noise ratio (SNR) (i.e., the power ratio between ERP and background EEG). We calculated the amount of averaging necessary after applying a particle filter that produced a result equivalent to that associated with conventional averaging, and determined that the particle filter yielded a maximum 42.8% reduction in measurement time. The particle filter performed better than both the Kalman filter and conventional averaging for a low SNR in terms of both MSE and P300 peak amplitude and latency. For EEG data produced by the P300 speller, we were able to use our filter to obtain ERP waveforms that were stable compared with averages produced by a conventional averaging method, irrespective of the amount of averaging. We confirmed that particle filters are efficacious in reducing the measurement time required during simulations with a low SNR. Additionally, particle filters can perform robust ERP estimation for EEG data produced via a P300 speller. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Interactive vs. Non-Interactive Ensembles for Weather Prediction and Climate Projection
NASA Astrophysics Data System (ADS)
Duane, Gregory
2013-04-01
If the members of an ensemble of different models are allowed to interact with one another in run time, predictive skill can be improved as compared to that of any individual model or any average of indvidual model outputs. Inter-model connections in such an interactive ensemble can be trained, using historical data, so that the resulting ``supermodel" synchronizes with reality when used in weather-prediction mode, where the individual models perform data assimilation from each other (with trainable inter-model "observation error") as well as from real observations. In climate-projection mode, parameters of the individual models are changed, as might occur from an increase in GHG levels, and one obtains relevant statistical properties of the new supermodel attractor. In simple cases, it has been shown that training of the inter-model connections with the old parameter values gives a supermodel that is still predictive when the parameter values are changed. Here we inquire as to the circumstances under which supermodel performance can be expected to exceed that of the customary weighted average of model outputs. We consider a supermodel formed from quasigeostrophic channel models with different forcing coefficients, and introduce an effective training scheme for the inter-model connections. We show that the blocked-zonal index cycle is reproduced better by the supermodel than by any non-interactive ensemble in the extreme case where the forcing coefficients of the different models are very large or very small. With realistic differences in forcing coefficients, as would be representative of actual differences among IPCC-class models, the usual linearity assumption is justified and a weighted average of model outputs is adequate. It is therefore hypothesized that supermodeling is likely to be useful in situations where there are qualitative model differences, as arising from sub-gridscale parameterizations, that affect overall model behavior. Otherwise the usual ex post facto averaging will probably suffice. Previous results from an ENSO-prediction supermodel [Kirtman et al.] are re-examined in light of the hypothesis about the importance of qualitative inter-model differences.
Average crystal structure(s) of the embedded meta stable η‧-phase in the Al-Mg-Zn system
NASA Astrophysics Data System (ADS)
Bøvik Larsen, Helge; Thorkildsen, Gunnar; Natland, Sølvi; Pattison, Philip
2014-05-01
Meta stable embedded nano-sized ?-particles within a single grain extracted from an alloy having the nominal composition ? have been examined with X-ray diffraction. By applying the orientational and metric relationships that exist between the hexagonal unit cell of the ?-particles and the cubic unit cell of the Al-matrix, it has been proven possible to directly collect diffracted intensity data from the ?-particle ensemble. This has been done using synchrotron radiation and a ?-diffractometer having a scintillator point detector setup. The approach has resulted in improved data quality compared to previous experiments. The interpretation of the data set, based on a combination of Patterson syntheses, direct methods and geometrical restraints, yielded two possible average structural representations: one Al-rich with the approximate stoichiometric composition ? and one Al-depleted with approximate stoichiometric composition ?. Both structures are realized in the same space group, ?, and are most probably superimposed in the crystalline system examined. The geometries are discussed within the atomic environment approach where icosahedral or near-icosahedral configurations are encountered. Comparison with previous published models and the equilibrium structure reveals a main difference related to the distribution of the Zn-sites in the unit cell. A possible transformation path is also suggested. Various aspects and challenges regarding data collection, data reduction and data quality are specifically addressed.
NASA Astrophysics Data System (ADS)
Lusanna, Luca; Pauri, Massimo
2014-08-01
If the classical structure of space-time is assumed to define an a priori scenario for the formulation of quantum theory (QT), the coordinate representation of the solutions of the Schroedinger equation of a quantum system containing one ( N) massive scalar particle has a preferred status. Let us consider all of the solutions admitting a multipolar expansion of the probability density function (and more generally of the Wigner function) around a space-time trajectory to be properly selected. For every normalized solution there is a privileged trajectory implying the vanishing of the dipole moment of the multipolar expansion: it is given by the expectation value of the position operator . Then, the special subset of solutions which satisfy Ehrenfest's Theorem (named thereby Ehrenfest monopole wave functions (EMWF)), have the important property that this privileged classical trajectory is determined by a closed Newtonian equation of motion where the effective force is the Newtonian force plus non-Newtonian terms (of order ħ 2 or higher) depending on the higher multipoles of the probability distribution ρ. Note that the superposition of two EMWFs is not an EMWF, a result to be strongly hoped for, given the possible unwanted implications concerning classical spatial perception. These results can be extended to N-particle systems in such a way that, when N classical trajectories with all the dipole moments vanishing and satisfying Ehrenfest theorem are associated with the normalized wave functions of the N-body system, we get a natural transition from the 3 N-dimensional configuration space to the space-time. Moreover, these results can be extended to relativistic quantum mechanics. Consequently, in suitable states of N quantum particle which are EMWF, we get the "emergence" of corresponding "classical particles" following Newton-like trajectories in space-time. Note that all this holds true in the standard framework of quantum mechanics, i.e. assuming, in particular, the validity of Born's rule and the individual system interpretation of the wave function (no ensemble interpretation). These results are valid without any approximation (like ħ → 0, big quantum numbers, etc.). Moreover, we do not commit ourselves to any specific ontological interpretation of quantum theory (such as, e.g., the Bohmian one). We will argue that, in substantial agreement with Bohr's viewpoint, the macroscopic description of the preparation, certain intermediate steps and the detection of the final outcome of experiments involving massive particles are dominated by these classical "effective" trajectories. This approach can be applied to the point of view of de-coherence in the case of a diagonal reduced density matrix ρ red (an improper mixture) depending on the position variables of a massive particle and of a pointer. When both the particle and the pointer wave functions appearing in ρ red are EMWF, the expectation value of the particle and pointer position variables becomes a statistical average on a classical ensemble. In these cases an improper quantum mixture becomes a classical statistical one, thus providing a particular answer to an open problem of de-coherence about the emergence of classicality.
NASA Astrophysics Data System (ADS)
Yunker, Peter J.; Zhang, Zexin; Gratale, Matthew; Chen, Ke; Yodh, A. G.
2013-03-01
We study connections between vibrational spectra and average nearest neighbor number in disordered clusters of colloidal particles with attractive interactions. Measurements of displacement covariances between particles in each cluster permit calculation of the stiffness matrix, which contains effective spring constants linking pairs of particles. From the cluster stiffness matrix, we derive vibrational properties of corresponding "shadow" glassy clusters, with the same geometric configuration and interactions as the "source" cluster but without damping. Here, we investigate the stiffness matrix to elucidate the origin of the correlations between the median frequency of cluster vibrational modes and average number of nearest neighbors in the cluster. We find that the mean confining stiffness of particles in a cluster, i.e., the ensemble-averaged sum of nearest neighbor spring constants, correlates strongly with average nearest neighbor number, and even more strongly with median frequency. Further, we find that the average oscillation frequency of an individual particle is set by the total stiffness of its nearest neighbor bonds; this average frequency increases as the square root of the nearest neighbor bond stiffness, in a manner similar to the simple harmonic oscillator.
Summary: achievements, critical issues, and thoughts on the future.
Held, Kathryn D
2012-11-01
The number of individuals exposed to particle radiations in cancer treatment worldwide is increasing rapidly, and space agencies are developing plans for long duration, deep space missions in which humans could be exposed to significant levels of radiation from charged particles. Hence, the NCRP 47 th Annual Meeting on "Scientific and Policy Challenges of Particle Radiations in Medical Therapy and Space Missions" was a timely opportunity to showcase the current scientific knowledge regarding charged particles, enhance cross-fertilization between the oncology and space scientific communities, and identify common needs and challenges to both communities as well as ways to address those challenges. This issue of Health Physics contains papers from talks presented at that meeting and highlights provocative questions and the ample opportunities for synergism between space and particle-therapy research to further understanding of the biological impacts of particle radiations.
Spatial Statistics of Deep-Water Ambient Noise; Dispersion Relations for Sound Waves and Shear Waves
2014-09-30
marine sediments. New focus is on very fine- grained sediments (silt and clay ). OBJECTIVES 1) The scientific objective of the deep-water ambient...density, grain size and overburden pressure. A new focus is on the inter-particle cohesive forces in silts and clays and their role in controlling wave...algebraic expressions. The GS theory is the basis for new research on very fine-grained sediments (silts and clays ), in which inter-granular cohesion is
A Round Robin evaluation of AMSR-E soil moisture retrievals
NASA Astrophysics Data System (ADS)
Mittelbach, Heidi; Hirschi, Martin; Nicolai-Shaw, Nadine; Gruber, Alexander; Dorigo, Wouter; de Jeu, Richard; Parinussa, Robert; Jones, Lucas A.; Wagner, Wolfgang; Seneviratne, Sonia I.
2014-05-01
Large-scale and long-term soil moisture observations based on remote sensing are promising data sets to investigate and understand various processes of the climate system including the water and biochemical cycles. Currently, the ESA Climate Change Initiative for soil moisture develops and evaluates a consistent global long-term soil moisture data set, which is based on merging passive and active remotely sensed soil moisture. Within this project an inter-comparison of algorithms for AMSR-E and ASCAT Level 2 products was conducted separately to assess the performance of different retrieval algorithms. Here we present the inter-comparison of AMSR-E Level 2 soil moisture products. These include the public data sets from University of Montana (UMT), Japan Aerospace and Space Exploration Agency (JAXA), VU University of Amsterdam (VUA; two algorithms) and National Aeronautics and Space Administration (NASA). All participating algorithms are applied to the same AMSR-E Level 1 data set. Ascending and descending paths of scaled surface soil moisture are considered and evaluated separately in daily and monthly resolution over the 2007-2011 time period. Absolute values of soil moisture as well as their long-term anomalies (i.e. removing the mean seasonal cycle) and short-term anomalies (i.e. removing a five weeks moving average) are evaluated. The evaluation is based on conventional measures like correlation and unbiased root-mean-square differences as well as on the application of the triple collocation method. As reference data set, surface soil moisture of 75 quality controlled soil moisture sites from the International Soil Moisture Network (ISMN) are used, which cover a wide range of vegetation density and climate conditions. For the application of the triple collocation method, surface soil moisture estimates from the Global Land Data Assimilation System are used as third independent data set. We find that the participating algorithms generally display a better performance for the descending compared to the ascending paths. A first classification of the sites defined by geographical locations show that the algorithms have a very similar average performance. Further classifications of the sites by land cover types and climate regions will be conducted which might result in a more diverse performance of the algorithms.
Edge-to-center plasma density ratios in two-dimensional plasma discharges
NASA Astrophysics Data System (ADS)
Lucken, R.; Croes, V.; Lafleur, T.; Raimbault, J.-L.; Bourdon, A.; Chabert, P.
2018-03-01
Edge-to-center plasma density ratios—so-called h factors—are important parameters for global models of plasma discharges as they are used to calculate the plasma losses at the reactor walls. There are well-established theories for h factors in the one-dimensional (1D) case. The purpose of this paper is to establish h factors in two-dimensional (2D) systems, with guidance from a 2D particle-in-cell (PIC) simulation. We derive analytical solutions of a 2D fluid theory that includes the effect of ion inertia, but assumes a constant (independent of space) ion collision frequency (using an average ion velocity) across the discharge. Predicted h factors from this 2D fluid theory have the same order of magnitude and the same trends as the PIC simulations when the average ion velocity used in the collision frequency is set equal to the ion thermal velocity. The best agreement is obtained when the average ion velocity varies with pressure (but remains independent of space), going from half the Bohm velocity at low pressure, to the thermal velocity at high pressure. The analysis also shows that a simple correction of the widely-used 1D heuristic formula may be proposed to accurately incorporate 2D effects.
Zonal methods for the parallel execution of range-limited N-body simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, Kevin J.; Dror, Ron O.; Shaw, David E.
2007-01-20
Particle simulations in fields ranging from biochemistry to astrophysics require the evaluation of interactions between all pairs of particles separated by less than some fixed interaction radius. The applicability of such simulations is often limited by the time required for calculation, but the use of massive parallelism to accelerate these computations is typically limited by inter-processor communication requirements. Recently, Snir [M. Snir, A note on N-body computations with cutoffs, Theor. Comput. Syst. 37 (2004) 295-318] and Shaw [D.E. Shaw, A fast, scalable method for the parallel evaluation of distance-limited pairwise particle interactions, J. Comput. Chem. 26 (2005) 1318-1328] independently introducedmore » two distinct methods that offer asymptotic reductions in the amount of data transferred between processors. In the present paper, we show that these schemes represent special cases of a more general class of methods, and introduce several new algorithms in this class that offer practical advantages over all previously described methods for a wide range of problem parameters. We also show that several of these algorithms approach an approximate lower bound on inter-processor data transfer.« less
NASA Astrophysics Data System (ADS)
Archer, Andrew J.; Chacko, Blesson; Evans, Robert
2017-07-01
In classical density functional theory (DFT), the part of the Helmholtz free energy functional arising from attractive inter-particle interactions is often treated in a mean-field or van der Waals approximation. On the face of it, this is a somewhat crude treatment as the resulting functional generates the simple random phase approximation (RPA) for the bulk fluid pair direct correlation function. We explain why using standard mean-field DFT to describe inhomogeneous fluid structure and thermodynamics is more accurate than one might expect based on this observation. By considering the pair correlation function g(x) and structure factor S(k) of a one-dimensional model fluid, for which exact results are available, we show that the mean-field DFT, employed within the test-particle procedure, yields results much superior to those from the RPA closure of the bulk Ornstein-Zernike equation. We argue that one should not judge the quality of a DFT based solely on the approximation it generates for the bulk pair direct correlation function.
Nonlinear waves in repulsive media supported by spatially localized parity-time-symmetric potentials
NASA Astrophysics Data System (ADS)
Devassy, Lini; Jisha, Chandroth P.; Alberucci, Alessandro; Kuriakose, V. C.
2017-06-01
We study the existence, stability and dynamics of solitons in a PT-symmetric potential in the presence of a local defocusing nonlinearity. For the sake of concreteness, we refer to Bose-Einstein condensates, where defocusing nonlinearity stems from a repulsive inter-particle interaction. Two kinds of transverse profiles for the gain-loss mechanism, i.e., the imaginary part of the potential, are considered. Differently from the attractive inter-particle interaction, solitons exist only inside a narrow band of chemical potential and particle number. The existence region shrinks as the magnitude of the gain-loss is increased, with the soliton ceasing to exist above the linear exceptional point, that is, the point at which PT symmetry is broken. Using linear stability analysis together with full numerical simulations of the Gross-Pitaevskii equation, we show that solitons survive on temporal scales much longer than the diffusion time. For magnitude of gain-loss close to the exceptional point, stability depends on the transverse profile of the gain-loss mechanism and the magnitude of the nonlinear excitation.
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Nikjoo, Hooshang; Dicello, John F.; Pisacane, Vincent; Cucinotta, Francis A.
2007-01-01
The purpose of this work is to test our theoretical model for the interpretation of radiation data measured in space. During the space missions astronauts are exposed to the complex field of radiation type and kinetic energies from galactic cosmic rays (GCR), trapped protons, and sometimes solar particle events (SPEs). The tissue equivalent proportional counter (TEPC) is a simple time-dependent approach for radiation monitoring for astronauts on board the International Space Station. Another and a newer approach to Microdosimetry is the use of silicon-on-insulator (SOI) technology launched on the MidSTAR-1 mission in low Earth orbit (LEO). In the radiation protection practice, the average quality factor of a radiation field is defined as a function of linear energy transfer (LET), Q(sub ave)(LET). However, TEPC measures the average quality factor as a function of the lineal energy y, Q(sub ave)(y), defined as the average energy deposition in a volume divided by the average chord length of the volume. Lineal energy, y, deviates from LET due to energy straggling, delta-ray escape or entry, and nuclear fragments produced in the detector volume. Monte Carlo track structure simulation was employed to obtain the response of a TEPC irradiated with charged particle for an equivalent site diameter of 1 micron of wall-less counter. The calculated data of the energy absorption in the wall-less counter were compiled for various y values for several ion types at various discrete projectile energy levels. For the simulation of TEPC response from the mixed radiation environments inside a spacecraft, such as, Space Shuttle and International Space Station, the complete microdosimetric TEPC response, f( y, E, Z), were calculated with the Monte Carlo theoretical results by using the first order Lagrangian interpolation for a monovariate function at a given y value (y = 0.1 keV/micron 5000 keV/micron) at any projectile energy level (E = 0.01 MeV/u to 50,000 MeV/u) of each specific radiation type (Z = 1 to 28). Because the anomalous response has been observed at large event sizes in the experiment due to the escape of energy out of sensitive volume by delta-rays and the entry of delta-rays from the high-density wall into the low-density gas-volume cavity, Monte Carlo simulation was also made for the response of a walled-TEPC with wall thickness 2 mm and density 1 g/cm(exp 3). The radius of cavity was set to 6.35 mm and a gas density 7.874 x 10(exp -5) g/cm(exp 3). The response of the walled- and the wall-less counters were compared. The average quality factor Q(sub ave)(y) for trapped protons on STS-89 demonstrated the good agreement between the model calculations and flight TEPC data as shown. Using an integrated space radiation model (this includes the transport codes HZETRN and BRYNTRN, the quantum nuclear interaction model QMSFRG) and the resultant response distribution functions of walled-TEPC from Monte-Carlo track simulations, we compared model calculations with walled-TEPC measurements from NASA missions in LEO and made predictions for the lunar and the Mars missions. The Q(sub ave)(y) values for the trapped or the solar protons ranged from 1.9-2.5. This over-estimates the Qave(LET) values which ranged from 1.4-1.6. Both quantities increase with shield thickness due to nuclear fragmentation. The Q(sub ave)(LET) for the complete GCR spectra was found to be 3.5-4.5, while flight TEPCs measured 2.9-3.4 for Q(sub ave)(y). The GCR values are decreasing with the shield thickness. Our analysis for a proper interpretation of data supports the use of TEPCs for monitoring space radiation environment.
Engesæter, Ingvild Øvstebø; Laborie, Lene Bjerke; Lehmann, Trude Gundersen; Sera, Francesco; Fevang, Jonas; Pedersen, Douglas; Morcuende, José; Lie, Stein Atle; Engesæter, Lars Birger; Rosendahl, Karen
2012-07-01
To report on intra-observer, inter-observer, and inter-method reliability and agreement for radiological measurements used in the diagnosis of hip dysplasia at skeletal maturity, as obtained by a manual and a digital measurement technique. Pelvic radiographs from 95 participants (56 females) in a follow-up hip study of 18- to 19-year-old patients were included. Eleven radiological measurements relevant for hip dysplasia (Sharp's, Wiberg's, and Ogata's angles; acetabular roof angle of Tönnis; articulo-trochanteric distance; acetabular depth-width ratio; femoral head extrusion index; maximum teardrop width; and the joint space width in three different locations) were validated. Three observers measured the radiographs using both a digital measurement program and manually in AgfaWeb1000. Inter-method and inter- and intra-observer agreement were analyzed using the mean differences between the readings/readers, establishing the 95% limits of agreement. We also calculated the minimum detectable change and the intra-class correlation coefficient. Large variations among different radiological measurements were demonstrated. However, the variation was not related to the use of either the manual or digital measurement technique. For measurements with greater absolute values (Sharp's angle, femoral head extrusion index, and acetabular depth-width ratio) the inter- and intra-observer and inter-method agreements were better as compared to measurements with lower absolute values (acetabular roof angle, teardrop and joint space width). The inter- and intra-observer variation differs notably across different radiological measurements relevant for hip dysplasia at skeletal maturity, a fact that should be taken into account in clinical practice. The agreement between the manual and digital methods is good.
Light Isotope Abundances in Solar Energetic Particles Measured by the Space Instrument NINA
NASA Astrophysics Data System (ADS)
Bakaldin, A.; Galper, A.; Koldashov, S.; Korotkov, M.; Mikhailov, A.; Leonov, V.; Murashov, A.; Voronov, S.; Bidoli, V.; Casolino, M.; De Pascale, M.; Furano, G.; Iannucci, A.; Morselli, A.; Picozza, P.; Sparvoli, R.; Bonvicini, M.; Boezio, V.; Cirami, R.; Vacchi, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; De Marzo, C.; Adriani, O.; Papini, P.; Piccardi, S.; Spillantini, P.; Straulino, S.; Vannuccini, E.; Bartalucci, S.; Ricci, M.; Castellini, G.
2002-09-01
This article reports nine solar energetic particle (SEP) events detected by the New Instrument for Nuclear Analysis (NINA) between 1998 October and 1999 April. NINA is a silicon-based particle detector mounted on board the Russian satellite Resurs-01-4, which has flown at an altitude of about 800 km in polar inclination since 1998 July. For every solar event, the power-law 4He spectrum across the energy interval 10-50 MeV nucleon-1 was reconstructed and spectral indexes, γ, from 1.8 to 6.8 extracted. Data of 3He and 4He were used to determine the 3He/4He ratio, which for some SEP events indicated an enrichment in 3He. For the 1998 November 7 event, the ratio reached a maximum value of 0.33+/-0.06, with spectral indexes of γ=2.5+/-0.6 and γ=3.7+/-0.3 for 3He and 4He, respectively. The 3He/4He ratio averaged over the remaining events was 0.011+/-0.004. For all events, a deuterium-to-proton ratio was estimated. An upper limit on the average value over all events was 2H/1H<4×10-5 across the energy interval 9-12 MeV nucleon-1. Upper limits on the 3H/1H counting ratio for all events were determined. For the 1998 November 14 SEP event, the high flux of heavy particles detected made it possible to reconstruct the carbon, nitrogen, and oxygen flux.
NASA Astrophysics Data System (ADS)
Kodaira, S.; Tolochek, R. V.; Ambrozova, I.; Kawashima, H.; Yasuda, N.; Kurano, M.; Kitamura, H.; Uchihori, Y.; Kobayashi, I.; Hakamada, H.; Suzuki, A.; Kartsev, I. S.; Yarmanova, E. N.; Nikolaev, I. V.; Shurshakov, V. A.
2014-01-01
The dose reduction effects for space radiation by installation of water shielding material ("protective curtain") of a stack board consisting of the hygienic wipes and towels have been experimentally evaluated in the International Space Station by using passive dosimeters. The averaged water thickness of the protective curtain was 6.3 g/cm2. The passive dosimeters consisted of a combination of thermoluminescent detectors (TLDs) and plastic nuclear track detectors (PNTDs). Totally 12 passive dosimeter packages were installed in the Russian Service Module during late 2010. Half of the packages were located at the protective curtain surface and the other half were at the crew cabin wall behind or aside the protective curtain. The mean absorbed dose and dose equivalent rates are measured to be 327 μGy/day and 821 μSv/day for the unprotected packages and 224 μGy/day and 575 μSv/day for the protected packages, respectively. The observed dose reduction rate with protective curtain was found to be 37 ± 7% in dose equivalent, which was consistent with the calculation in the spherical water phantom by PHITS. The contributions due to low and high LET particles were found to be comparable in observed dose reduction rate. The protective curtain would be effective shielding material for not only trapped particles (several 10 MeV) but also for low energy galactic cosmic rays (several 100 MeV/n). The properly utilized protective curtain will effectively reduce the radiation dose for crew living in space station and prolong long-term mission in the future.
Modeling and Performance Analysis of 10 Gbps Inter-satellite Optical Wireless Communication Link
NASA Astrophysics Data System (ADS)
Singh, Mehtab
2017-12-01
Free-space optical (FSO) communication has the advantages of two of the most predominant data transmission technologies - optical fiber communication and wireless communication. Most of the technical aspects of FSO are similar to that of optical fiber communication, with major difference in the information signal propagation medium which is free space in case of FSO rather than silica glass in optical fiber communication. One of the most important applications of FSO is inter-satellite optical wireless communication (IsOWC) links which will be deployed in the future in space. The IsOWC links have many advantages over the previously existing microwave satellite communication technologies such as higher bandwidth, lower power consumption, low cost of implementation, light size, and weight. In this paper, modeling and performance analysis of a 10-Gbps inter-satellite communication link with two satellites separated at a distance of 1,200 km has been done using OPTISYSTEM simulation software. Performance has been analyzed on the basis of quality factor, signal to noise ratio (SNR), and total power of the received signal.
Assembly of ordered contigs of cosmids selected with YACs of human chromosome 13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, S.G.; Cayanis, E.; Boukhgalter, B.
1994-06-01
The authors have developed an efficient method for assembling ordered cosmid contigs aligned to mega-YACs and midi-YACs (average insert sizes of 1.0 and 0.35 Mb, respectively) and used this general method to initiate high-resolution physical mapping of human chromosome 13 (Chr 13). Chr 13-enriched midi-YAC (mYAC) and mega-YAC (MYAC) sublibraries were obtained from corresponding CEPH total human YAC libraries by selecting colonies with inter-Alu PCR probes derived from Chr 13 monochromosomal cell hybrid DNA. These sublibraries were arrayed on filters at high density. In this approach, the MYAC 13 sublibrary is screened by hybridization with cytogenetically assigned Chr 13 DNAmore » probes to select one or a small subset of MYACs. Inter-Alu PCR products from each mYAC are then hybridized to the MYAC and mYAC sublibraries to identify overlapping YACs and to an arrayed Chr 13-specific cosmid library to select corresponding cosmids. The set of selected cosmids, gridded on filters at high density, is hybridized with inter-Alu PCR products from each of the overlapping YACs to identify subsets of cosmids and also with riboprobes from each cosmid of the arrayed set ({open_quotes}cosmid matrix cross-hybridization{close_quotes}). From these data, cosmid contigs are assembled by a specifically designed computer program. Application of this method generates cosmid contigs spanning the length of a MYAC with few gaps. To provide a high-resolution map, ends of cosmids are sequenced at preselected sites to position densely spaced sequence-tagged sites. 33 refs., 7 figs., 1 tab.« less
Spatial averaging of a dissipative particle dynamics model for active suspensions
NASA Astrophysics Data System (ADS)
Panchenko, Alexander; Hinz, Denis F.; Fried, Eliot
2018-03-01
Starting from a fine-scale dissipative particle dynamics (DPD) model of self-motile point particles, we derive meso-scale continuum equations by applying a spatial averaging version of the Irving-Kirkwood-Noll procedure. Since the method does not rely on kinetic theory, the derivation is valid for highly concentrated particle systems. Spatial averaging yields stochastic continuum equations similar to those of Toner and Tu. However, our theory also involves a constitutive equation for the average fluctuation force. According to this equation, both the strength and the probability distribution vary with time and position through the effective mass density. The statistics of the fluctuation force also depend on the fine scale dissipative force equation, the physical temperature, and two additional parameters which characterize fluctuation strengths. Although the self-propulsion force entering our DPD model contains no explicit mechanism for aligning the velocities of neighboring particles, our averaged coarse-scale equations include the commonly encountered cubically nonlinear (internal) body force density.
Space reactor fuel element testing in upgraded TREAT
NASA Astrophysics Data System (ADS)
Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W. Y.
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc.; a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR); NERVA-derivative; and other concepts are discussed. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggest that full-scale PBR elements could be tested at an average energy deposition of approximately 60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of approximately 100 MW/L may be achievable.
Space reactor fuel element testing in upgraded TREAT
NASA Astrophysics Data System (ADS)
Todosow, Michael; Bezler, Paul; Ludewig, Hans; Kato, Walter Y.
1993-01-01
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ˜60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ˜100 MW/L may be achievable.
Radiation measurements aboard Spacelab 1
NASA Technical Reports Server (NTRS)
Benton, E. V.; Almasi, J.; Cassou, R.; Frank, A.; Henke, R. P.; Rowe, V.; Parnell, T. A.; Schopper, E.
1984-01-01
The radiation environment inside Spacelab 1 was measured by a set of passive radiation detectors distributed throughout the volume inside the module, in the access tunnel, and outside on the pallet. Measurements of the low linear energy transfer (LET) component obtained from the thermoluminescence detectors ranged from 102 to 190 millirads, yielding an average low LET dose rate of 11.2 millirads/day inside the module, about twice the low LET dose rate measured on previous flights of the Space Shuttle. Because of the higher inclination of the orbit (57 versus 28.5 deg for previous Shuttle flights), substantial fluxes of highly ionizing high charge and energy galactic cosmic ray particles were observed, yielding an overall average mission dose-equivalent of about 150 millirems, more than three times higher than that measured on previous Shuttle missions.
Time and size resolved Measurement of Mass Concentration at an Urban Site
NASA Astrophysics Data System (ADS)
Karg, E.; Ferron, G. A.; Heyder, J.
2003-04-01
Time- and size-resolved measurements of ambient particles are necessary for modelling of atmospheric particle transport, the interpretation of particulate pollution events and the estimation of particle deposition in the human lungs. In the size range 0.01 - 2 µm time- and size-resolved data are obtained from differential mobility and optical particle counter measurements and from gravimetric filter analyses on a daily basis (PM2.5). By comparison of the time averaged and size integrated particle volume concentration with PM2.5 data, an average density of ambient particles can be estimated. Using this density, the number concentration data can be converted in time- and size-resolved mass concentration. Such measurements were carried out at a Munich downtown crossroads. The spectra were integrated in the size ranges 10 - 100 nm, 100 - 500 nm and 500 - 2000 nm. Particles in these ranges are named ultrafine, fine and coarse particles. These ranges roughly represent freshly emitted particles, aged/accumulated particles and particles entrained by erosive processes. An average number concentration of 80000 1/cm3 (s.d. 67%), a particle volume concentration of 53 µm3/cm3 (s.d. 76%) and a PM2.5 mass concentration of 27 µg/m3 was found. These particle volume- and PM2.5 data imply an average density of 0.51 g/cm3. Average number concentration showed 95.3%, 4.7% and 0.006% of the total particle concentration in the size ranges mentioned above. Mass concentration was 14.7%, 80.2% and 5.1% of the total, assuming the average density to be valid for all particles. The variability in mass concentration was 94%, 75% and 33% for the three size ranges. Nearly all ambient particles were in the ultrafine size range, whereas most of the mass concentration was in the fine size range. However, a considerable mass fraction of nearly 15% was found in the ultrafine size range. As the sampling site was close to the road and traffic emissions were the major source of the particles, 1) the density was very low due to agglomerated and porous structures of freshly emitted combustion particles and 2) the variability was highest in the ultrafine range, obviously correlated to traffic activity and lowest in the micron size range. In conclusion, almost all ambient particles were ultrafine particles, whereas most of the particle mass was associated with fine particles. Nevertheless, a considerable mass fraction was found in the ultrafine size range. These particles had a very low density so that they can be considered as agglomerated and porous particles emitted from vehicles passing the crossroads. Therefore they showed a much higher variation in mass concentration than the fine and coarse particles.
Huang, Lihui; Fan, Zhihua (Tina); Yu, Chang Ho; Hopke, Philip K.; Lioy, Paul J.; Buckley, Brian T.; Lin, Lin; Ma, Yingjun
2013-01-01
The inter-conversion between Cr(VI), a pulmonary carcinogen, and Cr(III), an essential human nutrient, poses challenges to the measurement of Cr(VI) in airborne particles. Chamber and field tests were conducted to identify the factors affecting Cr(VI)-Cr(III) inter-conversion in the basic filter medium under typical sampling conditions. In the chamber tests, isotopically enriched 53Cr(VI) and 50Cr(III) were spiked on diesel particulate matter (DPM) and secondary organic aerosol (SOA) that were pre-collected on a basic MCE filter. The filter samples were then exposed to clean air or the air containing SO2 (50 and 160 ppb), 100 ppb O3, or 150 ppb NO2 for 24 hours at 16.7 LPM flow rate at designated temperature (20 and 31°C) and RH (40% and 70%) conditions. Exposure to 160 ppb SO2 had the greatest effect on 53Cr(VI) reduction, with 53Cr(VI) recovery of 31.7 ± 15.8% (DPM) and 42.0 ± 7.9% (SOA). DPM and SOA matrix induced 53Cr(VI) reduction when exposed to clean air while reactive oxygen species in SOA could promote 50Cr(III) oxidation. Deliquescence when RH increased from 40% to 70% led to conversion of Cr(III) in SOA, whereas oxidized organics in DPM and SOA enhanced hygroscopicity and thus facilitated Cr(VI) reduction. Field tests showed seasonal variation of Cr(VI)-Cr(III) inter-conversion during sampling. Correction of the inter-conversion using USEPA method 6800 is recommended to improve accuracy of ambient Cr(VI) measurements. PMID:23550818
NASA Astrophysics Data System (ADS)
Cheng, Zhen; Chauchat, Julien; Hsu, Tian-Jian; Calantoni, Joseph
2018-01-01
A Reynolds-averaged Euler-Lagrange sediment transport model (CFDEM-EIM) was developed for steady sheet flow, where the inter-granular interactions were resolved and the flow turbulence was modeled with a low Reynolds number corrected k - ω turbulence closure modified for two-phase flows. To model the effect of turbulence on the sediment suspension, the interaction between the turbulent eddies and particles was simulated with an eddy interaction model (EIM). The EIM was first calibrated with measurements from dilute suspension experiments. We demonstrated that the eddy-interaction model was able to reproduce the well-known Rouse profile for suspended sediment concentration. The model results were found to be sensitive to the choice of the coefficient, C0, associated with the turbulence-sediment interaction time. A value C0 = 3 was suggested to match the measured concentration in the dilute suspension. The calibrated CFDEM-EIM was used to model a steady sheet flow experiment of lightweight coarse particles and yielded reasonable agreements with measured velocity, concentration and turbulence kinetic energy profiles. Further numerical experiments for sheet flow suggested that when C0 was decreased to C0 < 3, the simulation under-predicted the amount of suspended sediment in the dilute region and the Schmidt number is over-predicted (Sc > 1.0). Additional simulations for a range of Shields parameters between 0.3 and 1.2 confirmed that CFDEM-EIM was capable of predicting sediment transport rates similar to empirical formulations. Based on the analysis of sediment transport rate and transport layer thickness, the EIM and the resulting suspended load were shown to be important when the fall parameter is less than 1.25.
NASA Astrophysics Data System (ADS)
Mohammed Anzar, Sharafudeen Thaha; Sathidevi, Puthumangalathu Savithri
2014-12-01
In this paper, we have considered the utility of multi-normalization and ancillary measures, for the optimal score level fusion of fingerprint and voice biometrics. An efficient matching score preprocessing technique based on multi-normalization is employed for improving the performance of the multimodal system, under various noise conditions. Ancillary measures derived from the feature space and the score space are used in addition to the matching score vectors, for weighing the modalities, based on their relative degradation. Reliability (dispersion) and the separability (inter-/intra-class distance and d-prime statistics) measures under various noise conditions are estimated from the individual modalities, during the training/validation stage. The `best integration weights' are then computed by algebraically combining these measures using the weighted sum rule. The computed integration weights are then optimized against the recognition accuracy using techniques such as grid search, genetic algorithm and particle swarm optimization. The experimental results show that, the proposed biometric solution leads to considerable improvement in the recognition performance even under low signal-to-noise ratio (SNR) conditions and reduces the false acceptance rate (FAR) and false rejection rate (FRR), making the system useful for security as well as forensic applications.
Astronaut EVA exposure estimates from CAD model spacesuit geometry.
De Angelis, Giovanni; Anderson, Brooke M; Atwell, William; Nealy, John E; Qualls, Garry D; Wilson, John W
2004-03-01
Ongoing assembly and maintenance activities at the International Space Station (ISS) require much more extravehicular activity (EVA) than did the earlier U.S. Space Shuttle missions. It is thus desirable to determine and analyze, and possibly foresee, as accurately as possible what radiation exposures crew members involved in EVAs will experience in order to minimize risks and to establish exposure limits that must not to be exceeded. A detailed CAD model of the U.S. Space Shuttle EVA Spacesuit, developed at NASA Langley Research Center (LaRC), is used to represent the directional shielding of an astronaut; it has detailed helmet and backpack structures, hard upper torso, and multilayer space suit fabric material. The NASA Computerized Anatomical Male and Female (CAM and CAF) models are used in conjunction with the space suit CAD model for dose evaluation within the human body. The particle environments are taken from the orbit-averaged NASA AP8 and AE8 models at solar cycle maxima and minima. The transport of energetic particles through space suit materials and body tissue is calculated by using the NASA LaRC HZETRN code for hadrons and a recently developed deterministic transport code, ELTRN, for electrons. The doses within the CAM and CAF models are determined from energy deposition at given target points along 968 directional rays convergent on the points and are evaluated for several points on the skin and within the body. Dosimetric quantities include contributions from primary protons, light ions, and electrons, as well as from secondary brehmsstrahlung and target fragments. Directional dose patterns are displayed as rays and on spherical surfaces by the use of a color relative intensity representation.
ERIC Educational Resources Information Center
Bardhan, Nilanjana
2003-01-01
Considers students' views on the need to bridge the gap between current undergraduate curricular content and the international and multi(inter)cultural complexities of today's industry. Indicates that students are far from apathetic about multicultural and international learning. Cites certain curricular and structural impediments to expanding…
An improved cooperative adaptive cruise control (CACC) algorithm considering invalid communication
NASA Astrophysics Data System (ADS)
Wang, Pangwei; Wang, Yunpeng; Yu, Guizhen; Tang, Tieqiao
2014-05-01
For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication delays and lags of the actuators to the string stability. However, whether the string stability can be guaranteed when inter-vehicle communication is invalid partially has hardly been considered. This paper presents an improved CACC algorithm based on the sliding mode control theory and analyses the range of CACC controller parameters to maintain string stability. A dynamic model of vehicle spacing deviation in a platoon is then established, and the string stability conditions under improved CACC are analyzed. Unlike the traditional CACC algorithms, the proposed algorithm can ensure the functionality of the CACC system even if inter-vehicle communication is partially invalid. Finally, this paper establishes a platoon of five vehicles to simulate the improved CACC algorithm in MATLAB/Simulink, and the simulation results demonstrate that the improved CACC algorithm can maintain the string stability of a CACC platoon through adjusting the controller parameters and enlarging the spacing to prevent accidents. With guaranteed string stability, the proposed CACC algorithm can prevent oscillation of vehicle spacing and reduce chain collision accidents under real-world circumstances. This research proposes an improved CACC algorithm, which can guarantee the string stability when inter-vehicle communication is invalid.
Optimal design of wind barriers using 3D computational fluid dynamics simulations
NASA Astrophysics Data System (ADS)
Fang, H.; Wu, X.; Yang, X.
2017-12-01
Desertification is a significant global environmental and ecological problem that requires human-regulated control and management. Wind barriers are commonly used to reduce wind velocity or trap drifting sand in arid or semi-arid areas. Therefore, optimal design of wind barriers becomes critical in Aeolian engineering. In the current study, we perform 3D computational fluid dynamics (CFD) simulations for flow passing through wind barriers with different structural parameters. To validate the simulation results, we first inter-compare the simulated flow field results with those from both wind-tunnel experiments and field measurements. Quantitative analyses of the shelter effect are then conducted based on a series of simulations with different structural parameters (such as wind barrier porosity, row numbers, inter-row spacing and belt schemes). The results show that wind barriers with porosity of 0.35 could provide the longest shelter distance (i.e., where the wind velocity reduction is more than 50%) thus are recommended in engineering designs. To determine the optimal row number and belt scheme, we introduce a cost function that takes both wind-velocity reduction effects and economical expense into account. The calculated cost function show that a 3-row-belt scheme with inter-row spacing of 6h (h as the height of wind barriers) and inter-belt spacing of 12h is the most effective.
Inter-ring rotations of AAA ATPase p97 revealed by electron cryomicroscopy
Yeung, Heidi O.; Förster, Andreas; Bebeacua, Cecilia; Niwa, Hajime; Ewens, Caroline; McKeown, Ciarán; Zhang, Xiaodong; Freemont, Paul S.
2014-01-01
The type II AAA+ protein p97 is involved in numerous cellular activities, including endoplasmic reticulum-associated degradation, transcription activation, membrane fusion and cell-cycle control. These activities are at least in part regulated by the ubiquitin system, in which p97 is thought to target ubiquitylated protein substrates within macromolecular complexes and assist in their extraction or disassembly. Although ATPase activity is essential for p97 function, little is known about how ATP binding or hydrolysis is coupled with p97 conformational changes and substrate remodelling. Here, we have used single-particle electron cryomicroscopy (cryo-EM) to study the effect of nucleotides on p97 conformation. We have identified conformational heterogeneity within the cryo-EM datasets from which we have resolved two major p97 conformations. A comparison of conformations reveals inter-ring rotations upon nucleotide binding and hydrolysis that may be linked to the remodelling of target protein complexes. PMID:24598262
Lee, Sungwon; Jee, Won-Hee; Jung, Joon-Yong; Lee, So-Yeon; Ryu, Kyeung-Sik; Ha, Kee-Yong
2015-02-01
Three-dimensional (3D) fast spin-echo sequence with variable flip-angle refocusing pulse allows retrospective alignments of magnetic resonance imaging (MRI) in any desired plane. To compare isotropic 3D T2-weighted (T2W) turbo spin-echo sequence (TSE-SPACE) with standard two-dimensional (2D) T2W TSE imaging for evaluating lumbar spine pathology at 3.0 T MRI. Forty-two patients who had spine surgery for disk herniation and had 3.0 T spine MRI were included in this study. In addition to standard 2D T2W TSE imaging, sagittal 3D T2W TSE-SPACE was obtained to produce multiplanar (MPR) images. Each set of MR images from 3D T2W TSE and 2D TSE-SPACE were independently scored for the degree of lumbar neural foraminal stenosis, central spinal stenosis, and nerve compression by two reviewers. These scores were compared with operative findings and the sensitivities were evaluated by McNemar test. Inter-observer agreements and the correlation with symptoms laterality were assessed with kappa statistics. The 3D T2W TSE and 2D TSE-SPACE had similar sensitivity in detecting foraminal stenosis (78.9% versus 78.9% in 32 foramen levels), spinal stenosis (100% versus 100% in 42 spinal levels), and nerve compression (92.9% versus 81.8% in 59 spinal nerves). The inter-observer agreements (κ = 0.849 vs. 0.451 for foraminal stenosis, κ = 0.809 vs. 0.503 for spinal stenosis, and κ = 0.681 vs. 0.429 for nerve compression) and symptoms correlation (κ = 0.449 vs. κ = 0.242) were better in 3D TSE-SPACE compared to 2D TSE. 3D TSE-SPACE with oblique coronal MPR images demonstrated better inter-observer agreements compared to 3D TSE-SPACE without oblique coronal MPR images (κ = 0.930 vs. κ = 0.681). Isotropic 3D T2W TSE-SPACE at 3.0 T was comparable to 2D T2W TSE for detecting foraminal stenosis, central spinal stenosis, and nerve compression with better inter-observer agreements and symptom correlation. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Characterization of carbonaceous species of ambient PM2.5 in Beijing, China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fumo Yang; Kebin He; Yongliang Ma
2005-07-01
One-week integrated fine particulate matter (i.e., particles {lt}2.5 {mu}m in diameter; PM2.5) samples were collected continuously with a low-flow rate sampler at a downtown site (Chegongzhuang) and a residential site (Tsinghua University) in Beijing between July 1999 and June 2000. The annual average concentrations of organic carbon (OC) and elemental carbon (EC) at the urban site were 23.9 and 8.8 {mu}g m{sup -3}, much higher than those in some cities with serious air pollution. Similar weekly variations of OC and EC concentrations were found for the two sampling sites with higher concentrations in the winter and autumn. The highest weeklymore » variations of OC and EC occurred in the winter, suggesting that combustion sources for space heating were important contributors to carbonaceous particles, along with a significant impact from variable meteorological conditions. High emissions coupled with unfavorable meteorological conditions led to the maximum weekly carbonaceous concentration the week of November 18-25, 1999. The weekly mass ratios of OC:EC ranged between 2 and 4 for most samples and averaged 2.9, probably suggesting that secondary OC (SOC) is present most weeks. The range of contemporary carbon fraction, based on the C14 analyses of eight samples collected in 2001, is 0.330-0.479. Estimated SOC accounted for {approximately}38% of the total OC at the two sites. Average OC and EC concentrations at Tsinghua University were 25% and 18%, respectively, higher than those at Chegongzhuang, which could be attributed to different local emissions of primary carbonaceous particles and gaseous precursors of SOC, as well as different summer photochemical intensities between the two locations. Main carbonaceous sources are from coal combustion, vehicles and cooking. 44 refs., 5 figs., 2 tabs.« less
Characterization of carbonaceous species of ambient PM2.5 in Beijing, China.
Yang, Fumo; He, Kebin; Ma, Yongliang; Zhang, Qiang; Cadle, Steven H; Chan, Tai; Mulawa, Patricia A
2005-07-01
One-week integrated fine particulate matter (i.e., particles <2.5 microm in diameter; PM2.5) samples were collected continuously with a low-flow rate sampler at a downtown site (Chegongzhuang) and a residential site (Tsinghua University) in Beijing between July 1999 and June 2000. The annual average concentrations of organic carbon (OC) and elemental carbon (EC) at the urban site were 23.9 and 8.8 microg m(-3), much higher than those in some cities with serious air pollution. Similar weekly variations of OC and EC concentrations were found for the two sampling sites with higher concentrations in the winter and autumn. The highest weekly variations of OC and EC occurred in the winter, suggesting that combustion sources for space heating were important contributors to carbonaceous particles, along with a significant impact from variable meteorological conditions. High emissions coupled with unfavorable meteorological conditions led to the max weekly carbonaceous concentration the week of November 18-25, 1999. The weekly mass ratios of OC:EC ranged between 2 and 4 for most samples and averaged 2.9, probably suggesting that secondary OC (SOC) is present most weeks. The range of contemporary carbon fraction, based on the C14 analyses of eight samples collected in 2001, is 0.330-0.479. Estimated SOC accounted for approximately 38% of the total OC at the two sites. Average OC and EC concentrations at Tsinghua University were 25% and 18%, respectively, higher than those at Chegongzhuang, which could be attributed to different local emissions of primary carbonaceous particles and gaseous precursors of SOC, as well as different summer photochemical intensities between the two locations.
Yigit, Cemil; Heyda, Jan; Dzubiella, Joachim
2015-08-14
We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.
Control of average spacing of OMCVD grown gold nanoparticles
NASA Astrophysics Data System (ADS)
Rezaee, Asad
Metallic nanostructures and their applications is a rapidly expanding field. Nobel metals such as silver and gold have historically been used to demonstrate plasmon effects due to their strong resonances, which occur in the visible part of the electromagnetic spectrum. Localized surface plasmon resonance (LSPR) produces an enhanced electromagnetic field at the interface between a gold nanoparticle (Au NP) and the surrounding dielectric. This enhanced field can be used for metal-dielectric interfacesensitive optical interactions that form a powerful basis for optical sensing. In addition to the surrounding material, the LSPR spectral position and width depend on the size, shape, and average spacing between these particles. Au NP LSPR based sensors depict their highest sensitivity with optimized parameters and usually operate by investigating absorption peak: shifts. The absorption peak: of randomly deposited Au NPs on surfaces is mostly broad. As a result, the absorption peak: shifts, upon binding of a material onto Au NPs might not be very clear for further analysis. Therefore, novel methods based on three well-known techniques, self-assembly, ion irradiation, and organo-meta1lic chemical vapour deposition (OMCVD) are introduced to control the average-spacing between Au NPs. In addition to covalently binding and other advantages of OMCVD grown Au NPs, interesting optical features due to their non-spherical shapes are presented. The first step towards the average-spacing control is to uniformly form self-assembled monolayers (SAMs) of octadecyltrichlorosilane (OTS) as resists for OMCVD Au NPs. The formation and optimization of the OTS SAMs are extensively studied. The optimized resist SAMs are ion-irradiated by a focused ion beam (Fill) and ions generated by a Tandem accelerator. The irradiated areas are refilled with 3-mercaptopropyl-trimethoxysilane (MPTS) to provide nucleation sites for the OMCVD Au NP growth. Each step during sample preparation is monitored by using surface characterization methods such as contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), Rutherford backscattering spectroscopy (RBS), UV-Visible spectroscopy, and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). Keywords: Absorption, Array, Average Spacing, Binary Mixture, Density, Deposition, Dose, Fm, Gold Nanoparticle, Growth, Ion Irradiation, LSPR, Nanolithography, Nearest Neighbour Distance, OMCVD, Optical Response, OTS, Polarization, Refilling, Resist, SAM, Self-assembly, SEM Image Analysis, Sensing, Surface, Thin Film, Transparent Substrate.
Pisano, Roberto; Fissore, Davide; Barresi, Antonello A; Brayard, Philippe; Chouvenc, Pierre; Woinet, Bertrand
2013-02-01
This paper shows how to optimize the primary drying phase, for both product quality and drying time, of a parenteral formulation via design space. A non-steady state model, parameterized with experimentally determined heat and mass transfer coefficients, is used to define the design space when the heat transfer coefficient varies with the position of the vial in the array. The calculations recognize both equipment and product constraints, and also take into account model parameter uncertainty. Examples are given of cycles designed for the same formulation, but varying the freezing conditions and the freeze-dryer scale. These are then compared in terms of drying time. Furthermore, the impact of inter-vial variability on design space, and therefore on the optimized cycle, is addressed. With this regard, a simplified method is presented for the cycle design, which reduces the experimental effort required for the system qualification. The use of mathematical modeling is demonstrated to be very effective not only for cycle development, but also for solving problem of process transfer. This study showed that inter-vial variability remains significant when vials are loaded on plastic trays, and how inter-vial variability can be taken into account during process design.
ERIC Educational Resources Information Center
Xie, Tongwei
2011-01-01
Purpose: This article aims to analyze inter-provincial disparities of rural education and the convergence rate, and to discuss the effects of compulsory education reform after 2001. Design/methodology/approach: The article estimates the rural average education years and education Gini coefficients of China's 31 provinces (municipalities) beside…
Transport of active ellipsoidal particles in ratchet potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ai, Bao-Quan, E-mail: aibq@scnu.edu.cn; Wu, Jian-Chun
2014-03-07
Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found that the perfect sphere particle can facilitate the rectification, while the needlelike particle destroys the directed transport. There exist optimized values of the parameters (the self-propelled velocity, the torque acting on the body) at which the average velocity takes its maximal value. For the ellipsoidal particle with not large asymmetric parameter, the average velocity decreases with increasing the rotational diffusion rate, whilemore » for the needlelike particle (very large asymmetric parameter), the average velocity is a peaked function of the rotational diffusion rate. By introducing a finite load, particles with different shapes (or different self-propelled velocities) will move to the opposite directions, which is able to separate particles of different shapes (or different self-propelled velocities)« less
Straube, Arthur V; Tierno, Pietro
2014-06-14
We study experimentally and theoretically the interactions between paramagnetic particles dispersed in water and driven above the surface of a stripe patterned magnetic garnet film. An external rotating magnetic field modulates the stray field of the garnet film and generates a translating potential landscape which induces directed particle motion. By varying the ellipticity of the rotating field, we tune the inter-particle interactions from net repulsive to net attractive. For attractive interactions, we show that pairs of particles can approach each other and form stable doublets which afterwards travel along the modulated landscape at a constant mean speed. We measure the strength of the attractive force between the moving particles and propose an analytically tractable model that explains the observations and is in quantitative agreement with experiment.
Nair, Nitish; Wentzel, Nathaniel; Jayaraman, Arthi
2011-05-21
In efforts to produce polymeric materials with tailored physical properties, significant interest has grown around the ability to control the spatial organization of nanoparticles in polymer nanocomposites. One way to achieve controlled particle arrangement is by grafting the nanoparticle surface with polymers that are compatible with the matrix, thus manipulating the interfacial interactions between the nanoparticles and the polymer matrix. Previous work has shown that the molecular weight of the grafted polymer, both at high grafting density and low grafting density, plays a key role in dictating the effective inter-particle interactions in a polymer matrix. At high grafting density nanoparticles disperse (aggregate) if the graft molecular weight is higher (lower) than the matrix molecular weight. At low grafting density the longer grafts can better shield the nanoparticle surface from direct particle-particle contacts than the shorter grafts and lead to the dispersion of the grafted particles in the matrix. Despite the importance of graft molecular weight, and evidence of non-trivial effects of polydispersity of chains grafted on flat surfaces, most theoretical work on polymer grafted nanoparticles has only focused on monodisperse grafted chains. In this paper, we focus on how bidispersity in grafted chain lengths affects the grafted chain conformations and inter-particle interactions in an implicit solvent and in a dense homopolymer polymer matrix. We first present the effects of bidispersity on grafted chain conformations in a single polymer grafted particle using purely Monte Carlo (MC) simulations. This is followed by calculations of the potential of mean force (PMF) between two grafted particles in a polymer matrix using a self-consistent Polymer Reference Interaction Site Model theory-Monte Carlo simulation approach. Monte Carlo simulations of a single polymer grafted particle in an implicit solvent show that in the bidisperse polymer grafted particles with an equal number of short and long grafts at low to medium grafting density, the short grafts are in a more coiled up conformation (lower radius of gyration) than their monodisperse counterparts to provide a larger free volume to the longer grafts so they can gain conformational entropy. The longer grafts do not show much difference in conformation from their monodisperse counterparts at low grafting density, but at medium grafting density the longer grafts exhibit less stretched conformations (lower radius of gyration) as compared to their monodisperse counterparts. In the presence of an explicit homopolymer matrix, the longer grafts are more compressed by the matrix homopolymer chains than the short grafts. We observe that the potential of mean force between bidisperse grafted particles has features of the PMF of monodisperse grafted particles with short grafts and monodisperse grafted particles with long grafts. The value of the PMF at contact is governed by the short grafts and values at large inter-particle distances are governed by the longer grafts. Further comparison of the PMF for bidisperse and monodisperse polymer grafted particles in a homopolymer matrix at varying parameters shows that the effects of matrix chain length, matrix packing fraction, grafting density, and particle curvature on the PMF between bidisperse polymer grafted particles are similar to those seen between monodisperse polymer grafted particles. © 2011 American Institute of Physics.
Dispersion in tidally averaged transport equation
Cheng, R.T.; Casulli, V.
1992-01-01
A general governing inter-tidal transport equation for conservative solutes has been derived without invoking the weakly nonlinear approximation. The governing inter-tidal transport equation is a convection-dispersion equation in which the convective velocity is a mean Lagrangian residual current, and the inter-tidal dispersion coefficient is defined by a dispersion patch. When the weakly nonlinear condition is violated, the physical significance of the Stokes' drift, as used in tidal dynamics, becomes questionable. For nonlinear problems, analytical solutions for the mean Lagrangian residual current and for the inter-tidal dispersion coefficient do not exist, they must be determined numerically. A rectangular tidal inlet with a constriction is used in the first example. The solutions of the residual currents and the computed properties of the inter-tidal dispersion coefficient are used to illuminate the mechanisms of the inter-tidal transport processes. Then, the present formulation is tested in a geometrically complex tidal estuary – San Francisco Bay, California. The computed inter-tidal dispersion coefficients are in the range between 5×104 and 5×106 cm2/sec., which are consistent with the values reported in the literature
Project SOLWIND: Space radiation exposure. [evaluation of particle fluxes
NASA Technical Reports Server (NTRS)
Stassinopoulos, E. G.
1975-01-01
A special orbital radiation study was conducted for the SOLWIND project to evaluate mission-encountered energetic particle fluxes. Magnetic field calculations were performed with a current field model, extrapolated to the tentative spacecraft launch epoch with linear time terms. Orbital flux integrations for circular flight paths were performed with the latest proton and electron environment models, using new improved computational methods. Temporal variations in the ambient electron environment are considered and partially accounted for. Estimates of average energetic solar proton fluences are given for a one year mission duration at selected integral energies ranging from E greater than 10 to E greater than 100 MeV; the predicted annual fluence is found to relate to the period of maximum solar activity during the next solar cycle. The results are presented in graphical and tabular form; they are analyzed, explained, and discussed.
On the statistical and transport properties of a non-dissipative Fermi-Ulam model
NASA Astrophysics Data System (ADS)
Livorati, André L. P.; Dettmann, Carl P.; Caldas, Iberê L.; Leonel, Edson D.
2015-10-01
The transport and diffusion properties for the velocity of a Fermi-Ulam model were characterized using the decay rate of the survival probability. The system consists of an ensemble of non-interacting particles confined to move along and experience elastic collisions with two infinitely heavy walls. One is fixed, working as a returning mechanism of the colliding particles, while the other one moves periodically in time. The diffusion equation is solved, and the diffusion coefficient is numerically estimated by means of the averaged square velocity. Our results show remarkably good agreement of the theory and simulation for the chaotic sea below the first elliptic island in the phase space. From the decay rates of the survival probability, we obtained transport properties that can be extended to other nonlinear mappings, as well to billiard problems.
Regional deposition of nasal sprays in adults: A wide ranging computational study.
Kiaee, Milad; Wachtel, Herbert; Noga, Michelle L; Martin, Andrew R; Finlay, Warren H
2018-05-01
The present work examines regional deposition within the nose for nasal sprays over a large and wide ranging parameter space by using numerical simulation. A set of 7 realistic adult nasal airway geometries was defined based on computed tomography images. Deposition in 6 regions of each nasal airway geometry (the vestibule, valve, anterior turbinate, posterior turbinate, olfactory, and nasopharynx) was determined for varying particle diameter, spray cone angle, spray release direction, particle injection speed, and particle injection location. Penetration of nasal spray particles through the airway geometries represented unintended lung exposure. Penetration was found to be relatively insensitive to injection velocity, but highly sensitive to particle size. Penetration remained at or above 30% for particles exceeding 10 μm in diameter for several airway geometries studied. Deposition in the turbinates, viewed as desirable for both local and systemic nasal drug delivery, was on average maximized for particles ranging from ~20 to 30 μm in diameter, and for low to zero injection velocity. Similar values of particle diameter and injection velocity were found to maximize deposition in the olfactory region, a potential target for nose-to-brain drug delivery. However, olfactory deposition was highly variable between airway geometries, with maximum olfactory deposition ranging over 2 orders of magnitude between geometries. This variability is an obstacle to overcome if consistent dosing between subjects is to be achieved for nose-to-brain drug delivery. Copyright © 2018 John Wiley & Sons, Ltd.
A Globally Optimal Particle Tracking Technique for Stereo Imaging Velocimetry Experiments
NASA Technical Reports Server (NTRS)
McDowell, Mark
2008-01-01
An important phase of any Stereo Imaging Velocimetry experiment is particle tracking. Particle tracking seeks to identify and characterize the motion of individual particles entrained in a fluid or air experiment. We analyze a cylindrical chamber filled with water and seeded with density-matched particles. In every four-frame sequence, we identify a particle track by assigning a unique track label for each camera image. The conventional approach to particle tracking is to use an exhaustive tree-search method utilizing greedy algorithms to reduce search times. However, these types of algorithms are not optimal due to a cascade effect of incorrect decisions upon adjacent tracks. We examine the use of a guided evolutionary neural net with simulated annealing to arrive at a globally optimal assignment of tracks. The net is guided both by the minimization of the search space through the use of prior limiting assumptions about valid tracks and by a strategy which seeks to avoid high-energy intermediate states which can trap the net in a local minimum. A stochastic search algorithm is used in place of back-propagation of error to further reduce the chance of being trapped in an energy well. Global optimization is achieved by minimizing an objective function, which includes both track smoothness and particle-image utilization parameters. In this paper we describe our model and present our experimental results. We compare our results with a nonoptimizing, predictive tracker and obtain an average increase in valid track yield of 27 percent
A high velocity impact experiment of micro-scale ice particles using laser-driven system
NASA Astrophysics Data System (ADS)
Yu, Hyeonju; Kim, Jungwook; Yoh, Jack J.
2014-11-01
A jet engine for high speed air breathing propulsion is subject to continuous wear as a result of impacts of micro-scale ice particles during a flight in the atmosphere. The inlet duct and compressor blades are exposed to on-coming frozen moisture particles that may result in the surface damage and significantly shorten the designed lifetime of the aircraft. Under such prolonged high-speed impact loading, the performance parameters such as flight instability and power loss of a jet engine can be significantly degraded. In this work, a laser-driven system was designed to accelerate micro-scale ice particles to the velocity up to Mach 2 using a Q-switched Nd:YAG laser beam at 100-600 mJ with 1064 nm wavelength and 9 ns pulse duration. The high speed images (Phantom v711) and double exposure shadowgraphs were used to calculate the average velocity of ice particles and their deceleration. Velocity Interferometer System for Any Reflector measurements were also utilized for the analysis of free surface velocity of a metal foil in order to understand the interfacial dynamics between the impacting particles and accepting metal target. The velocity of our ice particles is sufficiently fast for studying the effect of moisture particle collision on an air-breathing duct of high speed aircraft, and thus the results can provide insight into how minute space debris or micrometeorites cause damage to the orbiting spacecraft at large.
A calculation of the radiation environment on the Martian surface
NASA Astrophysics Data System (ADS)
de Wet, Wouter C.; Townsend, Lawrence W.
2017-08-01
In this work, the radiation environment on the Martian surface, as produced by galactic cosmic radiation incident on the atmosphere, is modeled using the Monte Carlo radiation transport code, High Energy Transport Code-Human Exploration and Development in Space (HETC-HEDS). This work is performed in participation of the 2016 Mars Space Radiation Modeling Workshop held in Boulder, CO, and is part of a larger collaborative effort to study the radiation environment on the surface of Mars. Calculated fluxes for neutrons, protons, deuterons, tritons, helions, alpha particles, and heavier ions up to Fe are compared with measurements taken by Radiation Assessment Detector (RAD) instrument aboard the Mars Science Laboratory over a period of 2 months. The degree of agreement between measured and calculated surface flux values over the limited energy range of the measurements is found to vary significantly depending on the particle species or group. However, in many cases the fluxes predicted by HETC-HEDS fall well within the experimental uncertainty. The calculated results for alpha particles and the heavy ion groups Z = 3-5, Z = 6-8, Z = 9-13 and Z > 24 are in the best agreement, each with an average relative difference from measured data of less than 40%. Predictions for neutrons, protons, deuterons, tritons, Helium-3, and the heavy ion group Z = 14-24 have differences from the measurements, in some cases, greater than 50%. Future updates to the secondary light particle production methods in the nuclear model within HETC-HEDS are expected to improve light ion flux predictions.
Asif, Rameez
2016-01-01
Space division multiplexing (SDM), incorporating multi-core fibers (MCFs), has been demonstrated for effectively maximizing the data capacity in an impending capacity crunch. To achieve high spectral-density through multi-carrier encoding while simultaneously maintaining transmission reach, benefits from inter-core crosstalk (XT) and non-linear compensation must be utilized. In this report, we propose a proof-of-concept unified receiver architecture that jointly compensates optical Kerr effects, intra- and inter-core XT in MCFs. The architecture is analysed in multi-channel 512 Gbit/s dual-carrier DP-16QAM system over 800 km 19-core MCF to validate the digital compensation of inter-core XT. Through this architecture: (a) we efficiently compensates the inter-core XT improving Q-factor by 4.82 dB and (b) achieve a momentous gain in transmission reach, increasing the maximum achievable distance from 480 km to 1208 km, via analytical analysis. Simulation results confirm that inter-core XT distortions are more relentless for cores fabricated around the central axis of cladding. Predominantly, XT induced Q-penalty can be suppressed to be less than 1 dB up-to −11.56 dB of inter-core XT over 800 km MCF, offering flexibility to fabricate dense core structures with same cladding diameter. Moreover, this report outlines the relationship between core pitch and forward-error correction (FEC). PMID:27270381
Variability in EIT Images of Lung Ventilation as a Function of Electrode Planes and Body Positions
Zhang, Jie; Patterson, Robert
2014-01-01
This study is aimed at investigating the variability in resistivity changes in the lung region as a function of air volume, electrode plane and body position. Six normal subjects (33.8 ± 4.7 years, range from 26 to 37 years) were studied using the Sheffield Electrical Impedance Tomography (EIT) portable system. Three transverse planes at the level of second intercostal space, the level of the xiphisternal joint, and midway between upper and lower locations were chosen for measurements. For each plane, sixteen electrodes were uniformly positioned around the thorax. Data were collected with the breath held at end expiration and after inspiring 0.5, 1.0, or 1.5 liters of air from end expiration, with the subject in both the supine and sitting position. The average resistivity change in five regions, two 8x8 pixel local regions in the right lung, entire right, entire left and total lung regions, were calculated. The results show the resistivity change averaged over electrode positions and subject positions was 7-9% per liter of air, with a slightly larger resistivity change of 10 % per liter air in the lower electrode plane. There was no significant difference (p>0.05) between supine and sitting. The two 8x8 regions show a larger inter individual variability (coefficient of variation, CV, is from 30% to 382%) compared to the entire left, entire right and total lung (CV is from 11% to 51%). The results for the global regions are more consistent. The large inter individual variability appears to be a problem for clinical applications of EIT, such as regional ventilation. The variability may be mitigated by choosing appropriate electrode plane, body position and region of interest for the analysis. PMID:25110529
Development of optoelectronic monitoring system for ear arterial pressure waveforms
NASA Astrophysics Data System (ADS)
Sasayama, Satoshi; Imachi, Yu; Yagi, Tamotsu; Imachi, Kou; Ono, Toshirou; Man-i, Masando
1994-02-01
Invasive intra-arterial blood pressure measurement is the most accurate method but not practical if the subject is in motion. The apparatus developed by Wesseling et al., based on a volume-clamp method of Penaz (Finapres), is able to monitor continuous finger arterial pressure waveforms noninvasively. The limitation of Finapres is the difficulty in measuring the pressure of a subject during work that involves finger or arm action. Because the Finapres detector is attached to subject's finger, the measurements are affected by inertia of blood and hydrostatic effect cause by arm or finger motion. To overcome this problem, the authors made a detector that is attached to subject's ear and developed and optoelectronic monitoring systems for ear arterial pressure waveform (Earpres). An IR LEDs, photodiode, and air cuff comprised the detector. The detector was attached to a subject's ear, and the space adjusted between the air cuff and the rubber plate on which the LED and photodiode were positioned. To evaluate the accuracy of Earpres, the following tests were conducted with participation of 10 healthy male volunteers. The subjects rested for about five minutes, then performed standing and squatting exercises to provide wide ranges of systolic and diastolic arterial pressure. Intra- and inter-individual standard errors were calculated according to the method of van Egmond et al. As a result, average, the averages of intra-individual standard errors for earpres appeared small (3.7 and 2.7 mmHg for systolic and diastolic pressure respectively). The inter-individual standard errors for Earpres were about the same was Finapres for both systolic and diastolic pressure. The results showed the ear monitor was reliable in measuring arterial blood pressure waveforms and might be applicable to various fields such as sports medicine and ergonomics.
Variability in EIT Images of Lung Ventilation as a Function of Electrode Planes and Body Positions.
Zhang, Jie; Patterson, Robert
2014-01-01
This study is aimed at investigating the variability in resistivity changes in the lung region as a function of air volume, electrode plane and body position. Six normal subjects (33.8 ± 4.7 years, range from 26 to 37 years) were studied using the Sheffield Electrical Impedance Tomography (EIT) portable system. Three transverse planes at the level of second intercostal space, the level of the xiphisternal joint, and midway between upper and lower locations were chosen for measurements. For each plane, sixteen electrodes were uniformly positioned around the thorax. Data were collected with the breath held at end expiration and after inspiring 0.5, 1.0, or 1.5 liters of air from end expiration, with the subject in both the supine and sitting position. The average resistivity change in five regions, two 8x8 pixel local regions in the right lung, entire right, entire left and total lung regions, were calculated. The results show the resistivity change averaged over electrode positions and subject positions was 7-9% per liter of air, with a slightly larger resistivity change of 10 % per liter air in the lower electrode plane. There was no significant difference (p>0.05) between supine and sitting. The two 8x8 regions show a larger inter individual variability (coefficient of variation, CV, is from 30% to 382%) compared to the entire left, entire right and total lung (CV is from 11% to 51%). The results for the global regions are more consistent. The large inter individual variability appears to be a problem for clinical applications of EIT, such as regional ventilation. The variability may be mitigated by choosing appropriate electrode plane, body position and region of interest for the analysis.
Vectoring of parallel synthetic jets: A parametric study
NASA Astrophysics Data System (ADS)
Berk, Tim; Gomit, Guillaume; Ganapathisubramani, Bharathram
2016-11-01
The vectoring of a pair of parallel synthetic jets can be described using five dimensionless parameters: the aspect ratio of the slots, the Strouhal number, the Reynolds number, the phase difference between the jets and the spacing between the slots. In the present study, the influence of the latter four on the vectoring behaviour of the jets is examined experimentally using particle image velocimetry. Time-averaged velocity maps are used to study the variations in vectoring behaviour for a parametric sweep of each of the four parameters independently. A topological map is constructed for the full four-dimensional parameter space. The vectoring behaviour is described both qualitatively and quantitatively. A vectoring mechanism is proposed, based on measured vortex positions. We acknowledge the financial support from the European Research Council (ERC Grant Agreement No. 277472).
NASA Technical Reports Server (NTRS)
Podboy, Gary G.; Wernet, Mark P.; Clem, Michelle M.; Fagan, Amy F.
2017-01-01
An experiment was conducted in an effort to obtain data that would provide a better understanding of the origins of broadband shock noise (BBSN). Phased array noise source location and two types of flow field data (background oriented schlieren and particle image velocimetry) were acquired on unheated, single-stream jets. Results are presented for one subsonic and four supersonic operating conditions. These data show that BBSN is created primarily in the downstream portion of the shock train with peak BBSN production occurring near where the average size of the turbulent structures is equal to the shockcell spacing. These data tend to validate theories that BBSN is created by turbulent structures that are as large or larger than the shock spacing.
Improved estimation of anomalous diffusion exponents in single-particle tracking experiments
NASA Astrophysics Data System (ADS)
Kepten, Eldad; Bronshtein, Irena; Garini, Yuval
2013-05-01
The mean square displacement is a central tool in the analysis of single-particle tracking experiments, shedding light on various biophysical phenomena. Frequently, parameters are extracted by performing time averages on single-particle trajectories followed by ensemble averaging. This procedure, however, suffers from two systematic errors when applied to particles that perform anomalous diffusion. The first is significant at short-time lags and is induced by measurement errors. The second arises from the natural heterogeneity in biophysical systems. We show how to estimate and correct these two errors and improve the estimation of the anomalous parameters for the whole particle distribution. As a consequence, we manage to characterize ensembles of heterogeneous particles even for rather short and noisy measurements where regular time-averaged mean square displacement analysis fails. We apply this method to both simulations and in vivo measurements of telomere diffusion in 3T3 mouse embryonic fibroblast cells. The motion of telomeres is found to be subdiffusive with an average exponent constant in time. Individual telomere exponents are normally distributed around the average exponent. The proposed methodology has the potential to improve experimental accuracy while maintaining lower experimental costs and complexity.
NASA Technical Reports Server (NTRS)
Link, Dwight E., Jr.; Balistreri, Steven F., Jr.
2015-01-01
The International Space Station (ISS) Environmental Control and Life Support System (ECLSS) is continuing to evolve in the post-Space Shuttle era. The ISS vehicle configuration that is in operation was designed for docking of a Space Shuttle vehicle, and designs currently under development for commercial crew vehicles require different interfaces. The ECLSS Temperature and Humidity Control Subsystem (THC) Inter-Module Ventilation (IMV) must be modified in order to support two docking interfaces at the forward end of ISS, to provide the required air exchange. Development of a new higher-speed IMV fan and extensive ducting modifications are underway to support the new Commercial Crew Vehicle interfaces. This paper will review the new ECLSS IMV development requirements, component design and hardware status, subsystem analysis and testing performed to date, and implementation plan to support Commercial Crew Vehicle docking.
Orbital debris and meteoroids: Results from retrieved spacecraft surfaces
NASA Astrophysics Data System (ADS)
Mandeville, J. C.
1993-08-01
Near-Earth space contains natural and man-made particles, whose size distribution ranges from submicron sized particles to cm sized objects. This environment causes a grave threat to space missions, mainly for future manned or long duration missions. Several experiments devoted to the study of this environment have been recently retrieved from space. Among them several were located on the NASA Long Duration Exposure Facility (LDEF) and on the Russian MIR Space Station. Evaluation of hypervelocity impact features gives valuable information on size distribution of small dust particles present in low Earth orbit. Chemical identification of projectile remnants is possible in many instances, thus allowing a discrimination between extraterrestrial particles and man-made orbital debris. A preliminary comparison of flight data with current modeling of meteoroids and space debris shows a fair agreement. However impact of particles identified as space debris on the trailing side of LDEF, not predicted by the models, could be the result of space debris in highly excentric orbits, probably associated with GTO objects.