Esrafili, Mehdi D; Behzadi, Hadi
2013-06-01
A density functional theory study was carried out to predict the electrostatic potentials as well as average local ionization energies on both the outer and the inner surfaces of carbon, boron-nitride (BN), boron-phosphide (BP) and silicon-carbide (SiC) single-walled nanotubes. For each nanotube, the effect of tube radius on the surface potentials and calculated average local ionization energies was investigated. It is found that SiC and BN nanotubes have much stronger and more variable surface potentials than do carbon and BP nanotubes. For the SiC, BN and BP nanotubes, there are characteristic patterns of positive and negative sites on the outer lateral surfaces. On the other hand, a general feature of all of the systems studied is that stronger potentials are associated with regions of higher curvature. According to the evaluated surface electrostatic potentials, it is concluded that, for the narrowest tubes, the water solubility of BN tubes is slightly greater than that of SiC followed by carbon and BP nanotubes.
Jin, Chunfen; Viidanoja, Jyrki; Li, Mingzhe; Zhang, Yuyang; Ikonen, Elias; Root, Andrew; Romanczyk, Mark; Manheim, Jeremy; Dziekonski, Eric; Kenttämaa, Hilkka I
2016-11-01
Direct infusion atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was compared to field ionization mass spectrometry (FI-MS) for the determination of hydrocarbon class distributions in lubricant base oils. When positive ion mode APCI with oxygen as the ion source gas was employed to ionize saturated hydrocarbon model compounds (M) in hexane, only stable [M - H] + ions were produced. Ion-molecule reaction studies performed in a linear quadrupole ion trap suggested that fragment ions of ionized hexane can ionize saturated hydrocarbons via hydride abstraction with minimal fragmentation. Hence, APCI-MS shows potential as an alternative of FI-MS in lubricant base oil analysis. Indeed, the APCI-MS method gave similar average molecular weights and hydrocarbon class distributions as FI-MS for three lubricant base oils. However, the reproducibility of APCI-MS method was found to be substantially better than for FI-MS. The paraffinic content determined using the APCI-MS and FI-MS methods for the base oils was similar. The average number of carbons in paraffinic chains followed the same increasing trend from low viscosity to high viscosity base oils for the two methods.
Equations of state and transport properties of mixtures in the warm dense regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Yong; Dai, Jiayu; Kang, Dongdong
2015-02-15
We have performed average-atom molecular dynamics to simulate the CH and LiH mixtures in the warm dense regime, and obtained equations of state and the ionic transport properties. The electronic structures are calculated by using the modified average-atom model, which have included the broadening of energy levels, and the ion-ion pair potentials of mixtures are constructed based on the temperature-dependent density functional theory. The ionic transport properties, such as ionic diffusion and shear viscosity, are obtained through the ionic velocity correlation functions. The equations of state and transport properties for carbon, hydrogen and lithium, hydrogen mixtures in a wide regionmore » of density and temperature are calculated. Through our computing the average ionization degree, average ion-sphere diameter and transition properties in the mixture, it is shown that transport properties depend not only on the ionic mass but also on the average ionization degree.« less
Forbes, Thomas P; Dixon, R Brent; Muddiman, David C; Degertekin, F Levent; Fedorov, Andrei G
2009-09-01
An initial investigation into the effects of charge separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) ion source is reported to gain understanding of ionization mechanisms and to improve analyte ionization efficiency and operation stability. In RF-only mode, AMUSE ejects, on average, an equal number of slightly positive and slightly negative charged droplets due to random charge fluctuations, providing inefficient analyte ionization. Charge separation at the nozzle orifice is achieved by the application of an external electric field. By bringing the counter electrode close to the nozzle array, strong electric fields can be applied at relatively low DC potentials. It has been demonstrated, through a number of electrode/electrical potential configurations, that increasing charge separation leads to improvement in signal abundance, signal-to-noise ratio, and signal stability.
Density effects on electronic configurations in dense plasmas
NASA Astrophysics Data System (ADS)
Faussurier, Gérald; Blancard, Christophe
2018-02-01
We present a quantum mechanical model to describe the density effects on electronic configurations inside a plasma environment. Two different approaches are given by starting from a quantum average-atom model. Illustrations are shown for an aluminum plasma in local thermodynamic equilibrium at solid density and at a temperature of 100 eV and in the thermodynamic conditions of a recent experiment designed to characterize the effects of the ionization potential depression treatment. Our approach compares well with experiment and is consistent in that case with the approach of Stewart and Pyatt to describe the ionization potential depression rather than with the method of Ecker and Kröll.
Density, Velocity and Ionization Structure in Accretion-Disc Winds
NASA Technical Reports Server (NTRS)
Sonneborn, George (Technical Monitor); Long, Knox
2004-01-01
This was a project to exploit the unique capabilities of FUSE to monitor variations in the wind- formed spectral lines of the luminous, low-inclination, cataclysmic variables(CV) -- RW Sex. (The original proposal contained two additional objects but these were not approved.) These observations were intended to allow us to determine the relative roles of density and ionization state changes in the outflow and to search for spectroscopic signatures of stochastic small-scale structure and shocked gas. By monitoring the temporal behavior of blue-ward extended absorption lines with a wide range of ionization potentials and excitation energies, we proposed to track the changing physical conditions in the outflow. We planned to use a new Monte Carlo code to calculate the ionization structure of and radiative transfer through the CV wind. The analysis therefore was intended to establish the wind geometry, kinematics and ionization state, both in a time-averaged sense and as a function of time.
Forbes, Thomas P.; Dixon, R. Brent; Muddiman, David C.; Degertekin, F. Levent; Fedorov, Andrei G.
2009-01-01
An initial investigation into the effects of charge separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) ion source is reported in order to gain understanding of ionization mechanisms and to improve analyte ionization efficiency and operation stability. In RF-only mode, AMUSE ejects on average, an equal number of slightly positive and slightly negative charged droplets due to random charge fluctuations, providing inefficient analyte ionization. Charge separation at the nozzle orifice is achieved by the application of an external electric field. By bringing the counter electrode close to the nozzle array, strong electric fields can be applied at relatively low DC potentials. It has been demonstrated, through a number of electrode/electrical potential configurations that increasing charge separation leads to improvement in signal abundance, signal-to-noise ratio, and signal stability. PMID:19525123
NASA Technical Reports Server (NTRS)
Deprince, J.; Fritzsche, S.; Kallman, T. R.; Palmeri, P.; Quinet, P.
2017-01-01
The influence of plasma environment on the atomic parameters associated with the K-vacancy states has been investigated theoretically for several iron ions. To do this, a time-averaged Debye-Huckel potential for both the electron-nucleus and electron-electron interactions has been considered in the framework of relativistic multiconfiguration Dirac-Fock computations. More particularly, the plasma screening effects on ionization potentials, K-thresholds, transition energies, and radiative rates have been estimated in the astrophysical context of accretion disks around black holes. In the present paper, we describe the behavior of those atomic parameters for Ne-, Na-, Ar-, and K-like iron ions.
Rostad, Colleen E.; Leenheer, Jerry A.
2004-01-01
Effects of methylation, molar response, multiple charging, solvents, and positive and negative ionization on molecular weight distributions of aquatic fulvic acid were investigated by electrospray ionization/mass spectrometry. After preliminary analysis by positive and negative modes, samples and mixtures of standards were derivatized by methylation to minimize ionization sites and reanalyzed.Positive ionization was less effective and produced more complex spectra than negative ionization. Ionization in methanol/water produced greater response than in acetonitrile/water. Molar response varied widely for the selected free acid standards when analyzed individually and in a mixture, but after methylation this range decreased. After methylation, the number average molecular weight of the Suwannee River fulvic acid remained the same while the weight average molecular weight decreased. These differences are probably indicative of disaggregation of large aggregated ions during methylation. Since the weight average molecular weight decreased, it is likely that aggregate formation in the fulvic acid was present prior to derivatization, rather than multiple charging in the mass spectra.
Rostad, C.E.; Leenheer, J.A.
2004-01-01
Effects of methylation, molar response, multiple charging, solvents, and positive and negative ionization on molecular weight distributions of aquatic fulvic acid were investigated by electrospray ionization/mass spectrometry. After preliminary analysis by positive and negative modes, samples and mixtures of standards were derivatized by methylation to minimize ionization sites and reanalyzed.Positive ionization was less effective and produced more complex spectra than negative ionization. Ionization in methanol/water produced greater response than in acetonitrile/water. Molar response varied widely for the selected free acid standards when analyzed individually and in a mixture, but after methylation this range decreased. After methylation, the number average molecular weight of the Suwannee River fulvic acid remained the same while the weight average molecular weight decreased. These differences are probably indicative of disaggregation of large aggregated ions during methylation. Since the weight average molecular weight decreased, it is likely that aggregate formation in the fulvic acid was present prior to derivatization, rather than multiple charging in the mass spectra. ?? 2004 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Clark, D. M.; Hall, D. F.
1980-01-01
The significance of the fraction of the mass outgassed by a negatively charged space vehicle which is ionized within the vehicle plasma sheath and electrostatically reattracted to the space vehicle was determined. The ML-12 retarding potential analyzer/temperature controlled quartz crystal microbalances (RPA/TQCMs) distinguishes between charged and neutral molecules and investigates contamination mass transport mechanism. Two long term, quick look flight data sets indicate that on the average a significant fraction of mass arriving at one RPA/TQCM is ionized. It is assumed that vehicle frame charging during these periods was approximately uniformly distributed in degree and frequency. It is shown that electrostatic reattraction of ionized molecules is an important contamination mechanism at and near geosynchronous altitudes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, Adam P.; Laskin, Julia; Laskin, Alexander
2012-07-02
The applicability of high resolution electrospray ionization mass spectrometry (HR ESI-MS) to measurements of the average oxygen to carbon ratio (O/C) in organic aerosols was investigated. Solutions with known average O/C containing up to 10 standard compounds representative of secondary organic aerosol (SOA) were analyzed and corresponding electrospray ionization efficiencies were quantified. The assumption of equal ionization efficiency commonly used in estimating O/C ratios of organic aerosols was found to be reasonably accurate. We found that the accuracy of the measured O/C ratios increases by averaging the values obtained from both (+) and (-) modes. A correlation was found betweenmore » the ratio of the ionization efficiencies in the positive and negative ESI modes with the octanol-water partition constant, and more importantly, with the compound's O/C. To demonstrate the utility of this correlation for estimating average O/C values of unknown mixtures, we analyzed the ESI (+) and ESI (-) data for SOA produced by oxidation of limonene and isoprene and compared to online O/C measurements using an aerosol mass spectrometer (AMS). This work demonstrates that the accuracy of the HR ESI-MS methods is comparable to that of the AMS, with the added benefit of molecular identification of the aerosol constituents.« less
Menssen, A.; Trevisan, C. S.; Schöffler, M. S.; ...
2016-02-15
Molecular frame photoelectron angular distributions (MFPADs) are measured in this paper in electron–ion momentum imaging experiments and compared with complex Kohn variational calculations for carbon K-shell ionization of carbon tetrafluoride (CF 4), ethane (C 2H 6) and 1,1-difluoroethylene (C 2H 2F 2). While in ethane the polarization averaged MFPADs show a tendency at low energies for the photoelectron to be emitted in the directions of the bonds, the opposite effect is seen in CF 4. A combination of these behaviors is seen in difluoroethylene where ionization from the two carbons can be distinguished experimentally because of their different K-shell ionizationmore » potentials. Excellent agreement is found between experiment and simple static-exchange or coupled two-channel theoretical calculations. Finally, however, simple electrostatics do not provide an adequate explanation of the suggestively simple angular distributions at low electron ejection energies.« less
Theory of the stopping power of fast multicharged ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yudin, G.L.
1991-12-01
The processes of Coulomb excitation and ionization of atoms by a fast charged particle moving along a classical trajectory are studied. The target electrons are described by the Dirac equation, while the field of the incident particle is described by the Lienard-Wiechert potential. The theory is formulated in the form most convenient for investigation of various characteristics of semiclassical atomic collisions. The theory of sudden perturbations, which is valid at high enough velocities for a high projectile charge, is employed to obtain probabilities and cross sections of the Coulomb excitation and ionization of atomic hydrogen by fast multiply charged ions.more » Based on the semiclassical sudden Born approximation, the ionization cross section and the average electronic energy loss of a fast ion in a single collision with an atom are investigated over a wide specific energy range from 500 keV/amu to 50 MeV/amu.« less
Transit dosimetry in IMRT with an a-Si EPID in direct detection configuration
NASA Astrophysics Data System (ADS)
Sabet, Mahsheed; Rowshanfarzad, Pejman; Vial, Philip; Menk, Frederick W.; Greer, Peter B.
2012-08-01
In this study an amorphous silicon electronic portal imaging device (a-Si EPID) converted to direct detection configuration was investigated as a transit dosimeter for intensity modulated radiation therapy (IMRT). After calibration to dose and correction for a background offset signal, the EPID-measured absolute IMRT transit doses for 29 fields were compared to a MatriXX two-dimensional array of ionization chambers (as reference) using Gamma evaluation (3%, 3 mm). The MatriXX was first evaluated as reference for transit dosimetry. The accuracy of EPID measurements was also investigated by comparison of point dose measurements by an ionization chamber on the central axis with slab and anthropomorphic phantoms in a range of simple to complex fields. The uncertainty in ionization chamber measurements in IMRT fields was also investigated by its displacement from the central axis and comparison with the central axis measurements. Comparison of the absolute doses measured by the EPID and MatriXX with slab phantoms in IMRT fields showed that on average 96.4% and 97.5% of points had a Gamma index<1 in head and neck and prostate fields, respectively. For absolute dose comparisons with anthropomorphic phantoms, the values changed to an average of 93.6%, 93.7% and 94.4% of points with Gamma index<1 in head and neck, brain and prostate fields, respectively. Point doses measured by the EPID and ionization chamber were within 3% difference for all conditions. The deviations introduced in the response of the ionization chamber in IMRT fields were<1%. The direct EPID performance for transit dosimetry showed that it has the potential to perform accurate, efficient and comprehensive in vivo dosimetry for IMRT.
Light breeze in the local Universe
NASA Astrophysics Data System (ADS)
Concas, A.; Popesso, P.; Brusa, M.; Mainieri, V.; Erfanianfar, G.; Morselli, L.
2017-10-01
We analyze a complete spectroscopic sample of galaxies ( 600 000) drawn from Sloan Digital Sky Survey (SDSS, DR7) to look for evidence of galactic winds in the local Universe. We focus on the shape of the [OIII]λ5007 emission line as a tracer of ionizing gas outflows. We stack our spectra in a fine grid of star formation rate (SFR) and stellar mass to analyze the dependence of winds on the position of galaxies in the SFR versus mass diagram. We do not find any significant evidence of broad and shifted [OIII]λ5007 emission line which we interpret as no evidence of outflowing ionized gas in the global population. We have also classified these galaxies as star-forming or AGN-dominated according to their position in the standard BPT diagram. We show how the average [OIII]λ5007 profile changes as a function of the nature of the dominant ionizing source. We find that in the star-forming dominated source the oxygen line is symmetric and governed by the gravitational potential well. The AGN or composite AGN/star-formation activity objects, in contrast, display a prominent and asymmetric profile that can be well described by a broad Gaussian component that is blue-shifted from a narrow symmetric core. In particular, we find that the blue wings of the average [OIII]λ5007 profiles are increasingly prominent in the LINERs and Seyfert galaxies. We conclude that, through the identification of strong bulk motion as traced by the warm ionized gas, in the low-redshift Universe, "pure" star-formation activity does not seem capable of driving ionized-gas outflows, while, the presence of optically selected AGN seems to play a primary role. We discuss the implications of these results for the role of the quenching mechanism in the present-day Universe.
Electron- and photon-impact ionization of furfural
NASA Astrophysics Data System (ADS)
Jones, D. B.; Ali, E.; Nixon, K. L.; Limão-Vieira, P.; Hubin-Franskin, M.-J.; Delwiche, J.; Ning, C. G.; Colgan, J.; Murray, A. J.; Madison, D. H.; Brunger, M. J.
2015-11-01
The He(i) photoelectron spectrum of furfural has been investigated, with its vibrational structure assigned for the first time. The ground and excited ionized states are assigned through ab initio calculations performed at the outer-valence Green's function level. Triple differential cross sections (TDCSs) for electron-impact ionization of the unresolved combination of the 4a″ + 21a' highest and next-highest occupied molecular orbitals have also been obtained. Experimental TDCSs are recorded in a combination of asymmetric coplanar and doubly symmetric coplanar kinematics. The experimental TDCSs are compared to theoretical calculations, obtained within a molecular 3-body distorted wave framework that employed either an orientation average or proper TDCS average. The proper average calculations suggest that they may resolve some of the discrepancies regarding the angular distributions of the TDCS, when compared to calculations employing the orbital average.
NASA Astrophysics Data System (ADS)
Kim, Jin Seok; Hur, Min Young; Kim, Chang Ho; Kim, Ho Jun; Lee, Hae June
2018-03-01
A two-dimensional parallelized particle-in-cell simulation has been developed to simulate a capacitively coupled plasma reactor. The parallelization using graphics processing units is applied to resolve the heavy computational load. It is found that the step-ionization plays an important role in the intermediate gas pressure of a few Torr. Without the step-ionization, the average electron density decreases while the effective electron temperature increases with the increase of gas pressure at a fixed power. With the step-ionization, however, the average electron density increases while the effective electron temperature decreases with the increase of gas pressure. The cases with the step-ionization agree well with the tendency of experimental measurement. The electron energy distribution functions show that the population of electrons having intermediate energy from 4.2 to 12 eV is relaxed by the step-ionization. Also, it was observed that the power consumption by the electrons is increasing with the increase of gas pressure by the step-ionization process, while the power consumption by the ions decreases with the increase of gas pressure.
Analytical solutions for avalanche-breakdown voltages of single-diffused Gaussian junctions
NASA Astrophysics Data System (ADS)
Shenai, K.; Lin, H. C.
1983-03-01
Closed-form solutions of the potential difference between the two edges of the depletion layer of a single diffused Gaussian p-n junction are obtained by integrating Poisson's equation and equating the magnitudes of the positive and negative charges in the depletion layer. By using the closed form solution of the static Poisson's equation and Fulop's average ionization coefficient, the ionization integral in the depletion layer is computed, which yields the correct values of avalanche breakdown voltage, depletion layer thickness at breakdown, and the peak electric field as a function of junction depth. Newton's method is used for rapid convergence. A flowchart to perform the calculations with a programmable hand-held calculator, such as the TI-59, is shown.
Density functional study of double ionization energies
NASA Astrophysics Data System (ADS)
Chong, D. P.
2008-02-01
In this paper, double ionization energies (DIEs) of gas-phase atoms and molecules are calculated by energy difference method with density functional theory. To determine the best functional for double ionization energies, we first study 24 main group atoms in the second, third, and fourth periods. An approximation is used in which the electron density is first obtained from a density functional computation with the exchange-correlation potential Vxc known as statistical average of orbital potentials, after which the energy is computed from that density with 59 different exchange-correlation energy functionals Exc. For the 24 atoms, the two best Exc functional providing DIEs with average absolute deviation (AAD) of only 0.25eV are the Perdew-Burke-Ernzerhof functional modified by Hammer et al. [Phys. Rev. B 59, 6413 (1999)] and one known as the Krieger-Chen-Iafrate-Savin functional modified by Krieger et al. (unpublished). Surprisingly, none of the 20 available hybrid functionals is among the top 15 functionals for the DIEs of the 24 atoms. A similar procedure is then applied to molecules, with opposite results: Only hybrid functionals are among the top 15 functionals for a selection of 29molecules. The best Exc functional for the 29molecules is found to be the Becke 1997 functional modified by Wilson et al. [J. Chem. Phys. 115, 9233 (2001)]. With that functional, the AAD from experiment for DIEs of 29molecules is just under 0.5eV. If the two suspected values for C2H2 and Fe(CO)5 are excluded, the AAD improves to 0.32eV. Many other hybrid functionals perform almost as well.
Electron-Impact Excitation and Ionization in Air
2009-09-01
average collision frequency, is more than 100 times larger. Even in the slightly ionized regime with only 1% electrons, the frequency of electron...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and...physics-based model of nonequilibrium chemistry and radiation in hypersonic flow, it is timely to investigate and update the electron collision cross
Solar abundances as derived from solar energetic particles
NASA Technical Reports Server (NTRS)
Stone, E. C.
1989-01-01
Recent studies have shown that there are well defined average abundances of heavy (Z above 2) solar energetic particles (SEPs), with variations in the acceleration and propagation producing a systematic flare-to-flare fractionation that depends on the charge per unit mass of the ion. Correcting the average SEP abundances for this fractionation yields SEP-derived coronal abundances for 20 elements. High-resolution SEP studies have also provided isotopic abundances for five elements. SEP-derived abundances indicate that elements with high first ionization potentials (greater than 10 eV) are depleted in the corona relative to the photosphere and provide new information on the solar abundance of C and Ne-22.
SU-F-T-488: Comparison of the TG-51 and TG-51 Addendum Calibration Protocols
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaw, T; Hwang, M; Jang, S
Purpose: To quantify differences between the TG51 and TG51 addendum calibration protocols. Methods: Beam energies of 6X, 6XSRS, 10X, 15X, 23X, 6XFFF, and 10XFFF were calibrated following both the TG51 and TG51 addendum protocols using both a Farmer and a scanning ionization chamber with traceable absorbed dose-to-water calibrations. For the TG51 addendum procedure, the collimating jaws were positioned to define a 10×10cm{sup 2} radiation field, a lead foil was only used for kQ measurements of FFF energies, and a volume-averaging correction was applied based on crossline and inline dose profiles. For the TG51 procedure, the collimating jaws were set tomore » 10×10cm{sup 2} according to the digital readout, and a lead foil was used for kQ measurements of energies greater than 10MV. Results: For beam energies with a flattening filter, absorbed dose-to-water determined by the two protocols differed by 0.1%–0.3%. For FFF beam energies, differences between the protocols were up to 0.2% and 0.8% for the scanning and Farmer ionization chambers, respectively. Differences between the protocols were due to kQ determination, volume-averaging correction, and measurement of raw ionization. Differences in kQ values between the two protocols were up to 0.4% and 0.2% for the scanning and Farmer ionization chambers, respectively. Volume-averaging corrections were less than 0.1% for the scanning ionization chamber, and up to 0.4% and 0.6% for the Farmer ionization chamber in beams with a flattening filter and FFF beams, respectively. Raw ionization measurements differed up to 0.3%±0.07% due to differences in jaw settings. Conclusion: The TG51 and TG51 addendum calibration protocols differed less than 0.3% for the scanning ionization chamber. For the Farmer chamber in FFF energies, volume-averaging corrections of up to 0.6% contributed to calibration differences of up to 0.8%. Failure to verify the radiation field size can produce calibration differences of up to 0.3%.« less
A quantum chemistry study on surface reactivity of pristine and carbon-substituted AlN nanotubes
NASA Astrophysics Data System (ADS)
Mahdaviani, Amir; Esrafili, Mehdi D.; Esrafili, Ali; Behzadi, Hadi
2013-09-01
A density functional theory investigation was performed to predict the surface reactivity of pristine and carbon-substituted (6,0) single-walled aluminum nitride nanotubes (AlNNTs). The properties determined include the electrostatic potentials VS(r) and average local ionization energies ĪS(r) on the surfaces of the investigated tubes. According to computed VS(r) results, the Al/N atoms in edge or cap regions show a different reactivity pattern than those at the middle portion of the tubes. Due to the carbon-substitution at the either Al or N sites of the tubes, the negative regions associated with nitrogen atoms are stronger than before. The prediction of surface reactivity and regioselectivity using average local ionization energies has been verified by atomic hydrogen chemisorption energies calculated for AlNNTs at the B3LYP/6-31 G* level. There is an acceptable correlation between the minima of ĪS(r) and the atomic hydrogen chemisorption energies, demonstrating that ĪS(r) provides an effective means for rapidly and economically assessing the relative reactivities of finite sized AlNNTs.
Indoor External Radiation Risk in Densely Populated Regions of Southern Nigeria
NASA Astrophysics Data System (ADS)
Ife-Adediran, Oluwatobi O.; Uwadiae, Iyobosa B.
2018-02-01
It is known that certain types of building materials contain significant concentrations of natural radionuclides; consequently, exposure to indoor background radiation is from the combined radioactivity from the soil as well as building materials; indoor exposures therefore have higher radiation hazard potentials than outdoor exposures in this regard and hence, need to be monitored. In this paper, an evaluation of background ionizing radiation from different buildings in Lagos and Ibadan, Southwestern Nigeria was carried out to determine the exposure rate of the general public to indoor ionizing radiation. 630 in situ measurements from the different buildings were taken using a Geiger Muller counter (model GQ-320 Plus). The indoor dose rates (i.e., 50-120 nGy/h) were within the world average values while the Annual Effective Dose for most of the buildings were above the world average AED for indoor gamma exposure from building materials. The mean AED for Lagos and Ibadan due to indoor exposures were 0.37 and 0.39 mSv/y with Excess Lifetime Cancer Risk of 0.99E-3 and 1.05E-3, respectively.
Indoor External Radiation Risk in Densely Populated Regions of Southern Nigeria
NASA Astrophysics Data System (ADS)
Ife-Adediran, Oluwatobi O.; Uwadiae, Iyobosa B.
2018-05-01
It is known that certain types of building materials contain significant concentrations of natural radionuclides; consequently, exposure to indoor background radiation is from the combined radioactivity from the soil as well as building materials; indoor exposures therefore have higher radiation hazard potentials than outdoor exposures in this regard and hence, need to be monitored. In this paper, an evaluation of background ionizing radiation from different buildings in Lagos and Ibadan, Southwestern Nigeria was carried out to determine the exposure rate of the general public to indoor ionizing radiation. 630 in situ measurements from the different buildings were taken using a Geiger Muller counter (model GQ-320 Plus). The indoor dose rates (i.e., 50-120 nGy/h) were within the world average values while the Annual Effective Dose for most of the buildings were above the world average AED for indoor gamma exposure from building materials. The mean AED for Lagos and Ibadan due to indoor exposures were 0.37 and 0.39 mSv/y with Excess Lifetime Cancer Risk of 0.99E-3 and 1.05E-3, respectively.
[The study on the characteristics and particle densities of lightning discharge plasma].
Wang, Jie; Yuan, Ping; Zhang, Hua-ming; Shen, Xiao-zhi
2008-09-01
According to the wavelengths, relative intensities and transition parameters of lines in cloud-to-ground lightning spectra obtained by a slit-less spectrograph in Qinghai province and Xizang municipality, and by theoretical calculations of plasma, the average temperature and electron density for individual lightning discharge channel were calculated, and then, using Saha equations, electric charge conservation equations and particle conservation equations, the particle densities of every ionized-state, the mass density, pressure and the average ionization degree were obtained. Moreover, the average ionization degree and characteristics of particle distributions in each lightning discharge channel were analyzed. Local thermodynamic equilibrium and an optically thin emitting gas were assumed in the calculations. The result shows that the characteristics of lightning discharge plasma have strong relationships with lightning intensities. For a certain return stroke channel, both temperatures and electron densities of different positions show tiny trend of falling away with increasing height along the discharge channel. Lightning channels are almost completely ionized, and the first ionized particles occupy the main station while N II has the highest particle density. On the other hand, the relative concentrations of N II and O II are near a constant in lightning channels with different intensities. Generally speaking, the more intense the lightning discharge, the higher are the values of channel temperature, electron density and relative concentrations of highly ionized particles, but the lower the concentration of the neutral atoms. After considering the Coulomb interactions between positive and negative particles in the calculations, the results of ionization energies decrease, and the particle densities of atoms and first ionized ions become low while high-ionized ions become high. At a temperature of 28000 K, the pressure of the discharge channel due to electrons, atoms and ions is about 10 atmospheric pressure, and it changes for different lightning stroke with different intensity. The mass density of channel is lower and changes from 0.01 to 0.1 compared to the mass density of air at standard temperature and pressure (STP).
Heating the warm ionized medium
NASA Technical Reports Server (NTRS)
Reynolds, R. J.; Cox, D. P.
1992-01-01
If photoelectric heating by grains within the diffuse ionized component of the interstellar medium is 10 exp -25 ergs/s per H atom, the average value within diffuse H I regions, then grain heating equals or exceeds photoionization heating of the ionized gas. This supplemental heat source would obviate the need for energetic ionizing photons to balance the observed forbidden-line cooling and could be responsible in part for enhanced intensities of some of the forbidden lines.
Seo, K H; Mitchell, B W; Holt, P S; Gast, R K
2001-01-01
The bactericidal effect of high levels of negative ions was studied using a custom-built electrostatic space charge device. To investigate whether the ion-enriched air exerted a bactericidal effect, an aerosol containing Salmonella Enteritidis (SE) was pumped into a sealed plastic chamber. Plates of XLT4 agar were attached to the walls, top, and bottom of the chamber and exposed to the aerosol for 3 h with and without the ionizer treatment. The plates were then removed from the chamber, incubated at 37 degrees C for 24 h, and colonies were counted. An average of greater than 10(3) CFU/plate were observed on plates exposed to the aerosol without the ionizer treatment (control) compared with an average of less than 53 CFU/plate on the ionizer-treated plates. In another series of experiments, the SE aerosol was pumped for 3 h into an empty chamber containing only the ionizer and allowed to collect on the internal surfaces. The inside surfaces of the chamber were then rinsed with 100 ml phosphate-buffered saline that was then plated onto XLT4 plates. While the rinse from the control chamber contained colony counts greater than 400 CFU/ml of wash, no colonies were found in the rinse from the ionizer-treatment chamber. These results indicate that high levels of negative air ions can have a significant impact on the airborne microbial load, and that most of this effect is through direct killing of the organisms. This technology, which also causes significant reduction in airborne dust, has already been successfully applied for poultry hatching cabinets and caged layer rooms. Other potential applications include any enclosed space such as food processing areas, medical institutions, the workplace, and the home, where reduction of airborne and surface pathogens is desired.
Azangwe, Godfrey; Grochowska, Paulina; Georg, Dietmar; Izewska, Joanna; Hopfgartner, Johannes; Lechner, Wolfgang; Andersen, Claus E; Beierholm, Anders R; Helt-Hansen, Jakob; Mizuno, Hideyuki; Fukumura, Akifumi; Yajima, Kaori; Gouldstone, Clare; Sharpe, Peter; Meghzifene, Ahmed; Palmans, Hugo
2014-07-01
The aim of the present study is to provide a comprehensive set of detector specific correction factors for beam output measurements for small beams, for a wide range of real time and passive detectors. The detector specific correction factors determined in this study may be potentially useful as a reference data set for small beam dosimetry measurements. Dose response of passive and real time detectors was investigated for small field sizes shaped with a micromultileaf collimator ranging from 0.6 × 0.6 cm(2) to 4.2 × 4.2 cm(2) and the measurements were extended to larger fields of up to 10 × 10 cm(2). Measurements were performed at 5 cm depth, in a 6 MV photon beam. Detectors used included alanine, thermoluminescent dosimeters (TLDs), stereotactic diode, electron diode, photon diode, radiophotoluminescent dosimeters (RPLDs), radioluminescence detector based on carbon-doped aluminium oxide (Al2O3:C), organic plastic scintillators, diamond detectors, liquid filled ion chamber, and a range of small volume air filled ionization chambers (volumes ranging from 0.002 cm(3) to 0.3 cm(3)). All detector measurements were corrected for volume averaging effect and compared with dose ratios determined from alanine to derive a detector correction factors that account for beam perturbation related to nonwater equivalence of the detector materials. For the detectors used in this study, volume averaging corrections ranged from unity for the smallest detectors such as the diodes, 1.148 for the 0.14 cm(3) air filled ionization chamber and were as high as 1.924 for the 0.3 cm(3) ionization chamber. After applying volume averaging corrections, the detector readings were consistent among themselves and with alanine measurements for several small detectors but they differed for larger detectors, in particular for some small ionization chambers with volumes larger than 0.1 cm(3). The results demonstrate how important it is for the appropriate corrections to be applied to give consistent and accurate measurements for a range of detectors in small beam geometry. The results further demonstrate that depending on the choice of detectors, there is a potential for large errors when effects such as volume averaging, perturbation and differences in material properties of detectors are not taken into account. As the commissioning of small fields for clinical treatment has to rely on accurate dose measurements, the authors recommend the use of detectors that require relatively little correction, such as unshielded diodes, diamond detectors or microchambers, and solid state detectors such as alanine, TLD, Al2O3:C, or scintillators.
Avalanche multiplication and impact ionization in amorphous selenium photoconductive target
NASA Astrophysics Data System (ADS)
Park, Wug-Dong; Tanioka, Kenkichi
2014-03-01
The avalanche multiplication factor and the hole ionization coefficient in the amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) target depend on the electric field. The phenomenon of avalanche multiplication and impact ionization in the 0.4-µm-thick a-Se HARP target is investigated. The hot carrier energy in the 0.4-µm-thick a-Se HARP target increases linearly as the target voltage increases. The energy relaxation length of hot carriers in the a-Se photoconductor of the 0.4-µm-thick HARP target saturates as the electric field increases. The average energy Eav of a hot carrier and the energy relaxation length λE in the a-Se photoconductor of the 0.4-µm-thick HARP target at 1 × 108 V/m were 0.25 eV and 2.5 nm, respectively. In addition, the hole ionization coefficient β and the avalanche multiplication factor M are derived as a function of the electric field, the average energy of a hot carrier, and the impact ionization energy. The experimental hole ionization coefficient β and the avalanche multiplication factor M in the 0.4-µm-thick a-Se HARP target agree with the theoretical results.
Time-Dependent Photoionization of Gaseous Nebulae: The Pure Hydrogen Case
NASA Technical Reports Server (NTRS)
Garcia, J.; Elhoussieny, E. E.; Bautista, M. A.; Kallman, Timothy R.
2013-01-01
We study the problem of time-dependent photoionization of low density gaseous nebulae subjected to sudden changes in the intensity of ionizing radiation. To this end, we write a computer code that solves the full timedependent energy balance, ionization balance, and radiation transfer equations in a self-consistent fashion for a simplified pure hydrogen case. It is shown that changes in the ionizing radiation yield ionizationthermal fronts that propagate through the cloud, but the propagation times and response times to such fronts vary widely and nonlinearly from the illuminated face of the cloud to the ionization front (IF). IFthermal fronts are often supersonic, and in slabs initially in pressure equilibrium such fronts yield large pressure imbalances that are likely to produce important dynamical effects in the cloud. Further, we studied the case of periodic variations in the ionizing flux. It is found that the physical conditions of the plasma have complex behaviors that differ from any steady-state solution. Moreover, even the time average of ionization and temperature is different from any steady-state case. This time average is characterized by overionization and a broader IF with respect to the steady-state solution for a mean value of the radiation flux. Around the time average of physical conditions there is a large dispersion in instantaneous conditions, particularly across the IF, which increases with the period of radiation flux variations. Moreover, the variations in physical conditions are asynchronous along the slab due to the combination of nonlinear propagation times for thermal frontsIFs and equilibration times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motie, Iman; Bokaeeyan, Mahyar, E-mail: Mehyar9798@gmail.com
2015-02-15
A close analysis of dust charging process in the presence of radio frequency (RF) discharge on low pressure and fully ionized plasma for both weak and strong discharge's electric field is considered. When the electromagnetic waves pass throughout fully ionized plasma, the collision frequency of the plasma is derived. Moreover, the disturbed distribution function of plasma particles in the presence of the RF discharge is obtained. In this article, by using the Krook model, we separate the distribution function in two parts, the Maxwellian part and the perturbed part. The perturbed part of distribution can make an extra current, so-calledmore » the accretion rate of electron (or ion) current, towards a dust particle as a function of the average electron-ion collision frequency. It is proven that when the potential of dust grains increases, the accretion rate of electron current experiences an exponential reduction. Furthermore, the accretion rate of electron current for a strong electric field is relatively smaller than that for a weak electric field. The reasons are elaborated.« less
NASA Astrophysics Data System (ADS)
Dan, Li; Guo, Li-Xin; Li, Jiang-Ting; Chen, Wei; Yan, Xu; Huang, Qing-Qing
2017-09-01
The expression of complex dielectric permittivity for non-magnetized fully ionized dusty plasma is obtained based on the kinetic equation in the Fokker-Planck-Landau collision model and the charging equation of the statistical theory. The influences of density, average size of dust grains, and balanced charging of the charge number of dust particles on the attenuation properties of electromagnetic waves in fully ionized dusty plasma are investigated by calculating the attenuation constant. In addition, the attenuation characteristics of weakly ionized and fully ionized dusty plasmas are compared. Results enriched the physical mechanisms of microwave attenuation for fully ionized dusty plasma and provide a theoretical basis for future studies.
Enhanced ionization efficiency in TIMS analyses of plutonium and americium using porous ion emitters
Baruzzini, Matthew L.; Hall, Howard L.; Watrous, Matthew G.; ...
2016-12-05
Investigations of enhanced sample utilization in thermal ionization mass spectrometry (TIMS) using porous ion emitter (PIE) techniques for the analyses of trace quantities of americium and plutonium were performed. Repeat ionization efficiency (i.e., the ratio of ions detected to atoms loaded on the filament) measurements were conducted on sample sizes ranging from 10–100 pg for americium and 1–100 pg for plutonium using PIE and traditional (i.e., a single, zone-refined rhenium, flat filament ribbon with a carbon ionization enhancer) TIMS filament sources. When compared to traditional filaments, PIEs exhibited an average boost in ionization efficiency of ~550% for plutonium and ~1100%more » for americium. A maximum average efficiency of 1.09% was observed at a 1 pg plutonium sample loading using PIEs. Supplementary trials were conducted using newly developed platinum PIEs to analyze 10 pg mass loadings of plutonium. As a result, platinum PIEs exhibited an additional ~134% boost in ion yield over standard PIEs and ~736% over traditional filaments at the same sample loading level.« less
A theoretical study of the adiabatic and vertical ionization potentials of water.
Feller, David; Davidson, Ernest R
2018-06-21
Theoretical predictions of the three lowest adiabatic and vertical ionization potentials of water were obtained from the Feller-Peterson-Dixon approach. This approach combines multiple levels of coupled cluster theory with basis sets as large as aug-cc-pV8Z in some cases and various corrections up to and including full configuration interaction theory. While agreement with experiment for the adiabatic ionization potential of the lowest energy 2 B 1 state was excellent, differences for other states were much larger, sometimes exceeding 10 kcal/mol (0.43 eV). Errors of this magnitude are inconsistent with previous benchmark work on 52 adiabatic ionization potentials, where a root mean square of 0.20 kcal/mol (0.009 eV) was found. Difficulties in direct comparisons between theory and experiment for vertical ionization potentials are discussed. With regard to the differences found for the 2 A 1 / 2 Π u and 2 B 2 adiabatic ionization potentials, a reinterpretation of the experimental spectrum appears justified.
Damjanović, Ana; Brooks, Bernard R; García-Moreno, Bertrand
2011-04-28
Molecular dynamics simulations were used to examine the effects of ionization of internal groups on the structures of eighteen variants of staphylococcal nuclease (SNase) with internal Lys, Asp, or Glu. In most cases the RMSD values of internal ionizable side chains were larger when the ionizable moieties were charged than when they were neutral. Calculations of solvent-accessible surface area showed that the internal ionizable side chains were buried in the protein interior when they were neutral and moved toward crevices and toward the protein-water interface when they were charged. The only exceptions are Lys-36, Lys-62, and Lys-103, which remained buried even after charging. With the exception of Lys-38, the number of internal water molecules surrounding the ionizable group increased upon charging: the average number of water oxygen atoms within the first hydration shell increased by 1.7 for Lys residues, by 5.2 for Asp residues, and by 3.2 for Glu residues. The polarity of the microenvironment of the ionizable group also increased when the groups were charged: the average number of polar atoms of any kind within the first hydration shell increased by 2.7 for Lys residues, by 4.8 for Asp residues, and by 4.0 for Glu residues. An unexpected correlation was observed between the absolute value of the shifts in pK(a) values measured experimentally, and several parameters of structural relaxation: the net difference in the polarity of the microenvironment of the charged and neutral forms of the ionizable groups, the net difference in hydration of the charged and neutral forms of the ionizable groups, and the difference in RMSD values of the charged and neutral forms of the ionizable groups. The effects of ionization of internal groups on the conformation of the backbone were noticeable but mostly small and localized to the area immediately next to the internal ionizable moiety. Some variants did exhibit local unfolding.
Hohmann, Mareike V; Ágoston, Péter; Wachau, André; Bayer, Thorsten J M; Brötz, Joachim; Albe, Karsten; Klein, Andreas
2011-08-24
The ionization potentials of In(2)O(3) films grown epitaxially by magnetron sputtering on Y-stabilized ZrO(2) substrates with (100) and (111) surface orientation are determined using photoelectron spectroscopy. Epitaxial growth is verified using x-ray diffraction. The observed ionization potentials, which directly affect the work functions, are in good agreement with ab initio calculations using density functional theory. While the (111) surface exhibits a stable surface termination with an ionization potential of ∼ 7.0 eV, the surface termination and the ionization potential of the (100) surface depend strongly on the oxygen chemical potential. With the given deposition conditions an ionization potential of ∼ 7.7 eV is obtained, which is attributed to a surface termination stabilized by oxygen dimers. This orientation dependence also explains the lower ionization potentials observed for In(2)O(3) compared to Sn-doped In(2)O(3) (ITO) (Klein et al 2009 Thin Solid Films 518 1197-203). Due to the orientation dependent ionization potential, a polycrystalline ITO film will exhibit a laterally varying work function, which results in an inhomogeneous charge injection into organic semiconductors when used as electrode material. The variation of work function will become even more pronounced when oxygen plasma or UV-ozone treatments are performed, as an oxidation of the surface is only possible for the (100) surface. The influence of the deposition technique on the formation of stable surface terminations is also discussed. © 2011 IOP Publishing Ltd
Axelson, Olav; Fredrikson, Mats; Akerblom, Gustav; Hardell, Lennart
2002-03-01
Concerns in Sweden about indoor radon around 1980 prompted measurements of gamma-radiation from the facades of houses to identify those constructed of uranium-containing alum shale concrete, with potentially high radon concentrations. To evaluate any possible risk of acute lymphocytic leukemia from exposure to elevated gamma-radiation in these homes, we identified the acute lymphocytic leukemia cases less than 20 years of age in Sweden during 1980-1989 as well as eight controls per case from the population registry, matching on age, gender, and county. Using the existing measurements, exposure was assessable for 312 cases and 1,418 controls from 151 properly measured municipalities. A conditional logistic odds ratio of 1.4 (95% confidence interval = 1.0-1.9) was obtained for those ever having lived in alum shale concrete houses, with the average exposure exceeding 0.10 microsieverts per hour. Comparing those who ever lived in alum shale concrete houses (divided by higher and lower annual average exposure) with those who never lived in such houses, we found a weak dose-response relation. The results suggest some risk of acute lymphocytic leukemia from indoor ionizing radiation among children and young adults.
Pseudopotentials for quantum Monte Carlo studies of transition metal oxides
Krogel, Jaron T.; Santana Palacio, Juan A.; Reboredo, Fernando A.
2016-02-22
Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentialsmore » to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.« less
NASA Astrophysics Data System (ADS)
Jabes, B. Shadrack; Bratko, Dusan; Luzar, Alenka
2018-06-01
Solubilization of nanoparticles facilitates nanomaterial processing and enables new applications. An effective method to improve dispersibility in water is provided by ionic functionalization. We explore how the necessary extent of functionalization depends on the particle geometry. Using molecular dynamics/umbrella sampling simulations, we determine the effect of the solute curvature on solvent-averaged interactions among ionizing graphitic nanoparticles in aqueous dispersion. We tune the hydrophilicity of molecular-brush coated fullerenes, carbon nanotubes, and graphane platelets by gradually replacing a fraction of the methyl end groups of the alkyl coating by the ionizing -COOK or -NH3Cl groups. To assess the change in nanoparticles' dispersibility in water, we determine the potential-of-mean-force profiles at varied degrees of ionization. When the coating comprises only propyl groups, the attraction between the hydrophobic particles intensifies from spherical to cylindrical to planar geometry. This is explained by the increasing fraction of surface groups that can be brought into contact and the reduced access to water molecules, both following the above sequence. When ionic groups are added, however, the dispersibility increases in the opposite order, with the biggest effect in the planar geometry and the smallest in the spherical geometry. These results highlight the important role of geometry in nanoparticle solubilization by ionic functionalities, with about twice higher threshold surface charge necessary to stabilize a dispersion of spherical than planar particles. At 25%-50% ionization, the potential of mean force reaches a plateau because of the counterion condensation and saturated brush hydration. Moreover, the increase in the fraction of ionic groups can weaken the repulsion through counterion correlations between adjacent nanoparticles. High degrees of ionization and concomitant ionic screening gradually reduce the differences among surface interactions in distinct geometries until an essentially curvature-independent dispersion environment is created. Insights into tuning nanoparticle interactions can guide the synthesis of a broad class of nonpolar nanoparticles, where solubility is achieved by ionic functionalization.
Measurement of the first ionization potential of astatine by laser ionization spectroscopy
Rothe, S.; Andreyev, A. N.; Antalic, S.; Borschevsky, A.; Capponi, L.; Cocolios, T. E.; De Witte, H.; Eliav, E.; Fedorov, D. V.; Fedosseev, V. N.; Fink, D. A.; Fritzsche, S.; Ghys, L.; Huyse, M.; Imai, N.; Kaldor, U.; Kudryavtsev, Yuri; Köster, U.; Lane, J. F. W.; Lassen, J.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Nishio, K.; Pauwels, D.; Pershina, V.; Popescu, L.; Procter, T. J.; Radulov, D.; Raeder, S.; Rajabali, M. M.; Rapisarda, E.; Rossel, R. E.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; Van den Bergh, P.; Van Duppen, P.; Venhart, M.; Wakabayashi, Y.; Wendt, K. D. A.
2013-01-01
The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine. PMID:23673620
Voinov, Maxim A; Smirnov, Alex I
2015-01-01
Electrostatic interactions are known to play a major role in the myriad of biochemical and biophysical processes. Here, we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that are based on an observation of reversible protonation of nitroxides by electron paramagnetic resonance (EPR). Two types of probes are described: (1) methanethiosulfonate derivatives of protonatable nitroxides for highly specific covalent modification of the cysteine's sulfhydryl groups and (2) spin-labeled phospholipids with a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and degree of rotational averaging, thus, allowing the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, the local electrostatic potential to be determined. Due to their small molecular volume, these probes cause a minimal perturbation to the protein or lipid system. Covalent attachment secures the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR, and also the methods to analyze the EPR spectra by simulations are outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide range of ca. 2.5-7.0 pH units, making them suitable to study a broad range of biophysical phenomena, especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for probe calibration, and examples of lipid bilayer surface potential studies, are also described. © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Telnov, Dmitry A.; Heslar, John T.; Chu, Shih-I.
2011-11-01
In the framework of the time-dependent density functional theory, we have performed 3D calculations of multiphoton ionization of Li and Be atoms by strong near-infrared laser fields. The results for the intensity-dependent probabilities of single and double ionization are presented. We make use of the time-dependent Krieger-Li-Iafrate exchange-correlation potential with self-interaction correction (TD-KLI-SIC). Such a potential possesses an integer discontinuity which improves description of the ionization process. However, we have found that the discontinuity of the TD-KLI-SIC potential is not sufficient to reproduce characteristic feature of double ionization.
Equation-of-State Scaling Factors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scannapieco, Anthony J.
2016-06-28
Equation-of-State scaling factors are needed when using a tabular EOS in which the user de ned material isotopic fractions di er from the actual isotopic fractions used by the table. Additionally, if a material is dynamically changing its isotopic structure, then an EOS scaling will again be needed, and will vary in time and location. The procedure that allows use of a table to obtain information about a similar material with average atomic mass Ms and average atomic number Zs is described below. The procedure is exact for a fully ionized ideal gas. However, if the atomic number is replacemore » by the e ective ionization state the procedure can be applied to partially ionized material as well, which extends the applicability of the scaling approximation continuously from low to high temperatures.« less
Analytical instruments, ionization sources, and ionization methods
Atkinson, David A.; Mottishaw, Paul
2006-04-11
Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrović, V. M.; Miladinović, T. B., E-mail: tanja.miladinovic@gmail.com
2016-05-15
Within the framework of the Ammosov–Delone–Krainov theory, we consider the angular and energy distribution of outgoing electrons due to ionization by a circularly polarized electromagnetic field. A correction of the ground ionization potential by the ponderomotive and Stark shift is incorporated in both distributions. Spatial dependence is analyzed.
NASA Astrophysics Data System (ADS)
Marchi, F.; Pentericci, L.; Guaita, L.; Ribeiro, B.; Castellano, M.; Schaerer, D.; Hathi, N. P.; Lemaux, B. C.; Grazian, A.; Le Fèvre, O.; Garilli, B.; Maccagni, D.; Amorin, R.; Bardelli, S.; Cassata, P.; Fontana, A.; Koekemoer, A. M.; Le Brun, V.; Tasca, L. A. M.; Thomas, R.; Vanzella, E.; Zamorani, G.; Zucca, E.
2017-05-01
Context. Determining the average fraction of Lyman continuum (LyC) photons escaping high redshift galaxies is essential for understanding how reionization proceeded in the z> 6 Universe. Aims: We want to measure the LyC signal from a sample of sources in the Chandra Deep Field South (CDFS) and COSMOS fields for which ultra-deep VIMOS spectroscopy as well as multi-wavelength Hubble Space Telescope (HST) imaging are available. Methods: We select a sample of 46 galaxies at z 4 from the VIMOS Ultra Deep Survey (VUDS) database, such that the VUDS spectra contain the LyC part, that is, the rest-frame range 880-910 Å. Taking advantage of the HST imaging, we apply a careful cleaning procedure and reject all the sources showing nearby clumps with different colours, that could potentially be lower-redshift interlopers. After this procedure, the sample is reduced to 33 galaxies. We measure the ratio between ionizing flux (LyC at 895 Å) and non-ionizing emission (at 1500 Å) for all individual sources. We also produce a normalized stacked spectrum of all sources. Results: Assuming an intrinsic average Lν(1470) /Lν(895) of 3, we estimate the individual and average relative escape fraction. We do not detect ionizing radiation from any individual source, although we identify a possible LyC emitter with very high Lyα equivalent width (EW). From the stacked spectrum and assuming a mean transmissivity for the sample, we measure a relative escape fraction . We also look for correlations between the limits in the LyC flux and source properties and find a tentative correlation between LyC flux and the EW of the Lyα emission line. Conclusions: Our results imply that the LyC flux emitted by V = 25-26 star-forming galaxies at z 4 is at most very modest, in agreement with previous upper limits from studies based on broad and narrow band imaging. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791.
Propagation characteristics of electromagnetic waves in dusty plasma with full ionization
NASA Astrophysics Data System (ADS)
Dan, Li; Guo, Li-Xin; Li, Jiang-Ting
2018-01-01
This study investigates the propagation characteristics of electromagnetic (EM) waves in fully ionized dusty plasmas. The propagation characteristics of fully ionized plasma with and without dust under the Fokker-Planck-Landau (FPL) and Bhatnagar-Gross-Krook (BGK) models are compared to those of weakly ionized plasmas by using the propagation matrix method. It is shown that the FPL model is suitable for the analysis of the propagation characteristics of weakly collisional and fully ionized dusty plasmas, as is the BGK model. The influence of varying the dust parameters on the propagation properties of EM waves in the fully ionized dusty plasma was analyzed using the FPL model. The simulation results indicated that the densities and average radii of dust grains influence the reflection and transmission coefficients of fully ionized dusty plasma slabs. These results may be utilized to analyze the effects of interaction between EM waves and dusty plasmas, such as those associated with hypersonic vehicles.
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry; Chu, Shih-I.
2012-06-01
We present a self-interaction-free (SIC) time-dependent density-functional theory (TDDFT) for the treatment of double ionization processes of many-electron systems. The method is based on the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential (OEP) theory and the incorporation of an explicit self-interaction correction (SIC) term. In the framework of the time-dependent density functional theory, we have performed 3D calculations of double ionization of He and Be atoms by strong near-infrared laser fields. We make use of the exchange-correlation potential with the integer discontinuity which improves the description of the double ionization process. We found that proper description of the double ionization requires the TDDFT exchange-correlation potential with the discontinuity with respect to the variation of the spin particle numbers (SPN) only. The results for the intensity-dependent probabilities of single and double ionization are presented and reproduce the famous ``knee'' structure.
Single and double multiphoton ionization of Li and Be atoms by strong laser fields
NASA Astrophysics Data System (ADS)
Telnov, Dmitry; Heslar, John; Chu, Shih-I.
2011-05-01
The time-dependent density functional theory with self-interaction correction and proper asymptotic long-range potential is extended for nonperturbative treatment of multiphoton single and double ionization of Li and Be atoms by strong 800 nm laser fields. We make use of the time-dependent Krieger-Li-Iafrate (TDKLI) exchange-correlation potential with the integer discontinuity which improves the description of the double ionization process. However, we have found that the discontinuity of the TDKLI potential is not sufficient to reproduce the characteristic feature of double ionization. This may happen because the discontinuity of the TDKLI potential is related to the spin particle numbers only and not to the total particle number. Introducing a discontinuity with respect to the total particle number to the exchange-correlation potential, we were able to obtain the knee structure in the intensity dependence of the double ionization probability of Be. This work was partially supported by DOE and NSF and by NSC-Taiwan.
SU-C-207-02: A Method to Estimate the Average Planar Dose From a C-Arm CBCT Acquisition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Supanich, MP
2015-06-15
Purpose: The planar average dose in a C-arm Cone Beam CT (CBCT) acquisition had been estimated in the past by averaging the four peripheral dose measurements in a CTDI phantom and then using the standard 2/3rds peripheral and 1/3 central CTDIw method (hereafter referred to as Dw). The accuracy of this assumption has not been investigated and the purpose of this work is to test the presumed relationship. Methods: Dose measurements were made in the central plane of two consecutively placed 16cm CTDI phantoms using a 0.6cc ionization chamber at each of the 4 peripheral dose bores and in themore » central dose bore for a C-arm CBCT protocol. The same setup was scanned with a circular cut-out of radiosensitive gafchromic film positioned between the two phantoms to capture the planar dose distribution. Calibration curves for color pixel value after scanning were generated from film strips irradiated at different known dose levels. The planar average dose for red and green pixel values was calculated by summing the dose values in the irradiated circular film cut out. Dw was calculated using the ionization chamber measurements and film dose values at the location of each of the dose bores. Results: The planar average dose using both the red and green pixel color calibration curves were within 10% agreement of the planar average dose estimated using the Dw method of film dose values at the bore locations. Additionally, an average of the planar average doses calculated using the red and green calibration curves differed from the ionization chamber Dw estimate by only 5%. Conclusion: The method of calculating the planar average dose at the central plane of a C-arm CBCT non-360 rotation by calculating Dw from peripheral and central dose bore measurements is a reasonable approach to estimating the planar average dose. Research Grant, Siemens AG.« less
Smooth H I Low Column Density Outskirts in Nearby Galaxies
NASA Astrophysics Data System (ADS)
Ianjamasimanana, R.; Walter, Fabian; de Blok, W. J. G.; Heald, George H.; Brinks, Elias
2018-06-01
The low column density gas at the outskirts of galaxies as traced by the 21 cm hydrogen line emission (H I) represents the interface between galaxies and the intergalactic medium, i.e., where galaxies are believed to get their supply of gas to fuel future episodes of star formation. Photoionization models predict a break in the radial profiles of H I at a column density of ∼5 × 1019 cm‑2 due to the lack of self-shielding against extragalactic ionizing photons. To investigate the prevalence of such breaks in galactic disks and to characterize what determines the potential edge of the H I disks, we study the azimuthally averaged H I column density profiles of 17 nearby galaxies from the H I Nearby Galaxy Survey and supplemented in two cases with published Hydrogen Accretion in LOcal GAlaxieS data. To detect potential faint H I emission that would otherwise be undetected using conventional moment map analysis, we line up individual profiles to the same reference velocity and average them azimuthally to derive stacked radial profiles. To do so, we use model velocity fields created from a simple extrapolation of the rotation curves to align the profiles in velocity at radii beyond the extent probed with the sensitivity of traditional integrated H I maps. With this method, we improve our sensitivity to outer-disk H I emission by up to an order of magnitude. Except for a few disturbed galaxies, none show evidence of a sudden change in the slope of the H I radial profiles: the alleged signature of ionization by the extragalactic background.
Microwave Driven Magnetic Plasma Accelerator Studies (CYCLOPS)
NASA Technical Reports Server (NTRS)
Crimi, G. F.; Eckert, A. C.; Miller, D. B.
1967-01-01
A microwave-driven cyclotron resonance plasma acceleration device was investigated using argon, krypton, xenon, and mercury as propellants. Limited ranges of propellant flow rate, input power, and magnetic field strength were used. Over-all efficiencies (including the 65% efficiency of the input polarizer) less than 10% were obtained for specific impulse values between 500 and 1500 sec. Power transfer efficiencies, however, approached 100% of the input power available in the right-hand component of the incident circularly polarized radiation. Beam diagnostics using Langmuir probes, cold gas mapping, r-f mapping and ion energy analyses were performed in conjunction with an engine operating in a pulsed mode. Measurements of transverse electron energies at the position of cyclotron resonant absorption yielded energy values more than an order of magnitude lower than anticipated. The measured electron energies were, however, consistent with the low values of average ion energy measured by retarding potential techniques. The low values of average ion energy were also consistent with the measured thrust values. It is hypothesized that ionization and radiation limit the electron kinetic energy to low-values thus limiting the energy which is finally transferred to the ion. Thermalization by electron-electron collision was also identified as an additional loss mechanism. The use of light alkali metals, which have relatively few low lying energy levels to excite, with the input power to mass ratio selected so as to limit the electron energies to less than the second ionization potential, is suggested. It is concluded, however, that the over-all efficiency for such propellants would be less than 40 per cent.
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.
2013-05-01
We present a self-interaction-free time-dependent density-functional theory (TDDFT) for the treatment of double-ionization processes of many-electron systems. The method is based on the extension of the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential (OEP) theory and the incorporation of an explicit self-interaction correction (SIC) term. In the framework of the time-dependent density functional theory, we have performed three-dimensional (3D) calculations of double ionization of He and Be atoms by intense near-infrared laser fields. We make use of the exchange-correlation potential with the integer discontinuity which improves the description of the double-ionization process. We found that a proper description of the double ionization requires the TDDFT exchange-correlation potential with the discontinuity with respect to the variation of the total particle number (TPN). The results for the intensity-dependent rates of double ionization of He and Be atoms are presented.
NASA Astrophysics Data System (ADS)
Dzifčáková, E.; Dudík, J.; Mackovjak, Š.
2016-05-01
Context. Coronal heating is currently thought to proceed via the mechanism of nanoflares, small-scale and possibly recurring heating events that release magnetic energy. Aims: We investigate the effects of a periodic high-energy electron beam on the synthetic spectra of coronal Fe ions. Methods: Initially, the coronal plasma is assumed to be Maxwellian with a temperature of 1 MK. The high-energy beam, described by a κ-distribution, is then switched on every period P for the duration of P/ 2. The periods are on the order of several tens of seconds, similar to exposure times or cadences of space-borne spectrometers. Ionization, recombination, and excitation rates for the respective distributions are used to calculate the resulting non-equilibrium ionization state of Fe and the instantaneous and period-averaged synthetic spectra. Results: Under the presence of the periodic electron beam, the plasma is out of ionization equilibrium at all times. The resulting spectra averaged over one period are almost always multithermal if interpreted in terms of ionization equilibrium for either a Maxwellian or a κ-distribution. Exceptions occur, however; the EM-loci curves appear to have a nearly isothermal crossing-point for some values of κs. The instantaneous spectra show fast changes in intensities of some lines, especially those formed outside of the peak of the respective EM(T) distributions if the ionization equilibrium is assumed. Movies 1-5 are available in electronic form at http://www.aanda.org
Kohigashi, Tsuyoshi; Otsuka, Yoichi; Shimazu, Ryo; Matsumoto, Takuya; Iwata, Futoshi; Kawasaki, Hideya; Arakawa, Ryuichi
2016-01-01
Mass spectrometry imaging (MSI) with ambient sampling and ionization can rapidly and easily capture the distribution of chemical components in a solid sample. Because the spatial resolution of MSI is limited by the size of the sampling area, reducing sampling size is an important goal for high resolution MSI. Here, we report the first use of a nanopipette for sampling and ionization by tapping-mode scanning probe electrospray ionization (t-SPESI). The spot size of the sampling area of a dye molecular film on a glass substrate was decreased to 6 μm on average by using a nanopipette. On the other hand, ionization efficiency increased with decreasing solvent flow rate. Our results indicate the compatibility between a reduced sampling area and the ionization efficiency using a nanopipette. MSI of micropatterns of ink on a glass and a polymer substrate were also demonstrated. PMID:28101441
NASA Technical Reports Server (NTRS)
Mehdipour, M.; Kaastra, J. S.; Kallman, T.
2016-01-01
Atomic data and plasma models play a crucial role in the diagnosis and interpretation of astrophysical spectra, thus influencing our understanding of the Universe. In this investigation we present a systematic comparison of the leading photoionization codes to determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionization equilibrium. We carry out our computations using the Cloudy, SPEX, and XSTAR photoionization codes, and compare their derived thermal and ionization states for various ionizing spectral energy distributions. We examine the resulting absorption-line spectra from these codes for the case of ionized outflows in active galactic nuclei. By comparing the ionic abundances as a function of ionization parameter, we find that on average there is about 30 deviation between the codes in where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in is smaller at about 10 on average. The comparison of the absorption-line spectra in the X-ray band shows that there is on average about 30 deviation between the codes in the optical depth of the lines produced at log 1 to 2, reducing to about 20 deviation at log 3. We also simulate spectra of the ionized outflows with the current and upcoming high-resolution X-ray spectrometers, on board XMM-Newton, Chandra, Hitomi, and Athena. From these simulations we obtain the deviation on the best-fit model parameters, arising from the use of different photoionization codes, which is about 10 to40. We compare the modeling uncertainties with the observational uncertainties from the simulations. The results highlight the importance of continuous development and enhancement of photoionization codes for the upcoming era of X-ray astronomy with Athena.
Thierbach, Adrian; Neiss, Christian; Gallandi, Lukas; Marom, Noa; Körzdörfer, Thomas; Görling, Andreas
2017-10-10
An accurate yet computationally very efficient and formally well justified approach to calculate molecular ionization potentials is presented and tested. The first as well as higher ionization potentials are obtained as the negatives of the Kohn-Sham eigenvalues of the neutral molecule after adjusting the eigenvalues by a recently [ Görling Phys. Rev. B 2015 , 91 , 245120 ] introduced potential adjustor for exchange-correlation potentials. Technically the method is very simple. Besides a Kohn-Sham calculation of the neutral molecule, only a second Kohn-Sham calculation of the cation is required. The eigenvalue spectrum of the neutral molecule is shifted such that the negative of the eigenvalue of the highest occupied molecular orbital equals the energy difference of the total electronic energies of the cation minus the neutral molecule. For the first ionization potential this simply amounts to a ΔSCF calculation. Then, the higher ionization potentials are obtained as the negatives of the correspondingly shifted Kohn-Sham eigenvalues. Importantly, this shift of the Kohn-Sham eigenvalue spectrum is not just ad hoc. In fact, it is formally necessary for the physically correct energetic adjustment of the eigenvalue spectrum as it results from ensemble density-functional theory. An analogous approach for electron affinities is equally well obtained and justified. To illustrate the practical benefits of the approach, we calculate the valence ionization energies of test sets of small- and medium-sized molecules and photoelectron spectra of medium-sized electron acceptor molecules using a typical semilocal (PBE) and two typical global hybrid functionals (B3LYP and PBE0). The potential adjusted B3LYP and PBE0 eigenvalues yield valence ionization potentials that are in very good agreement with experimental values, reaching an accuracy that is as good as the best G 0 W 0 methods, however, at much lower computational costs. The potential adjusted PBE eigenvalues result in somewhat less accurate ionization energies, which, however, are almost as accurate as those obtained from the most commonly used G 0 W 0 variants.
Ionizing potential waves and high-voltage breakdown streamers.
NASA Technical Reports Server (NTRS)
Albright, N. W.; Tidman, D. A.
1972-01-01
The structure of ionizing potential waves driven by a strong electric field in a dense gas is discussed. Negative breakdown waves are found to propagate with a velocity proportional to the electric field normal to the wavefront. This causes a curved ionizing potential wavefront to focus down into a filamentary structure, and may provide the reason why breakdown in dense gases propagates in the form of a narrow leader streamer instead of a broad wavefront.
A Corona Discharge Initiated Electrochemical Electrospray Ionization Technique
Lloyd, John R.; Hess, Sonja
2009-01-01
We report here the development of a corona discharge (CD) initiated electrochemical (EC) electrospray ionization (ESI) technique using a standard electrospray ion source. This is a new ionization technique distinct from ESI, electrochemistry inherent to ESI, APCI, and techniques using hydroxyl radicals produced under atmospheric pressure conditions. By maximizing the observable CD at the tip of a stainless steel ESI capillary, efficient electrochemical oxidation of electrochemically active compounds is observed. For electrochemical oxidation to be observed, the ionization potential of the analyte must be lower than Fe. Ferrocene labeled compounds were chosen as the electrochemically active moiety. The electrochemical cell in the ESI source was robust and generated ions with selectivity according to the ionization potential of the analytes and up to zeptomolar sensitivity. Our results indicate that CD initiated electrochemical ionization has the potential to become a powerful technique to increase the dynamic range, sensitivity and selectivity of ESI experiments. Synopsis Using a standard ESI source a corona discharge initiated electrochemical ionization technique was established resulting from the electrochemistry occurring at the CD electrode surface. PMID:19747843
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, M.F.; Richardson, D.E.; Lichtenberger, D.L.
1994-04-01
The gas-phase free energies of ionization, [Delta]G[sub i][degrees] for Cp*[sub 2]Mn, Cp*[sub 2]Fe, Cp*[sub 2]Ni, Cp*[sub 2]Os, Cp[sub 2]Cr, and Cp[sub 2]Co (Cp = [eta][sup 5]-cyclopentadienyl, Cp[sup *] = [eta][sup 5]-pentamethylcyclopentadienyl) have been determined by using the electron-transfer equilibrium (ETE) technique and Fourier transform ion cyclotron resonance mass spectrometry. The high-resolution valence photoelectron spectra of bis(benzene)chromium(0), Bz[sub 2]Cr, Cp*[sub 2]Os, and Cp*[sub 2]Ru have also been measured. Most of the [Delta]G[sub i][degrees] values are referenced to the estimated [Delta]G[sub i][degrees] value of Bz[sub 2]Cr, for which the narrow first ionization band at 5.473 [+-] 0.005 eV is assigned as themore » adiabatic ionization potential. The [Delta]S[sub i][degrees] for ionization of Bz[sub 2]Cr is assumed to be equal to the electronic entropy change, [Delta]S[sub elec][degrees] (=1.4 cal mol[sup [minus]1] K[sup [minus]1]), and the difference between the integrated heat capacities for Bz[sub 2]Cr and Bz[sub 2]Cr[sup +] is also assumed to be negligible near room temperature [Delta]H[sub i,0][degrees] [approx] [Delta]H[sub i,350][degrees], leading to [Delta]G[sub i][degrees] (Bz[sub 2]-Cr) = 125.6 [+-] 1.0 kcal mol[sup [minus]1]. Through the use of thermochemical cycles, estimates are given for the average heterolytic and homolytic M-Cp bond disruption enthalpies of Cp[sub 2]Cr[sup +/0] and Cp[sub 2]Co[sup +/0]. 46 refs., 7 figs., 4 tabs.« less
Atomic and Molecular Systems in Intense Ultrashort Laser Pulses
NASA Astrophysics Data System (ADS)
Saenz, A.
2008-07-01
The full quantum mechanical treatment of atomic and molecular systems exposed to intense laser pulses is a so far unsolved challenge, even for systems as small as molecular hydrogen. Therefore, a number of simplified qualitative and quantitative models have been introduced in order to provide at least some interpretational tools for experimental data. The assessment of these models describing the molecular response is complicated, since a comparison to experiment requires often a number of averages to be performed. This includes in many cases averaging of different orientations of the molecule with respect to the laser field, focal volume effects, etc. Furthermore, the pulse shape and even the peak intensity is experimentally not known with very high precision; considering, e.g., the exponential intensity dependence of the ionization signal. Finally, experiments usually provide only relative yields. As a consequence of all these averagings and uncertainties, it is possible that different models may successfully explain some experimental results or features, although these models disagree substantially, if their predictions are compared before averaging. Therefore, fully quantum-mechanical approaches at least for small atomic and molecular systems are highly desirable and have been developed in our group. This includes efficient codes for solving the time-dependent Schrodinger equation of atomic hydrogen, helium or other effective one- or two-electron atoms as well as for the electronic motion in linear (effective) one-and two-electron diatomic molecules like H_2.Very recently, a code for larger molecular systems that adopts the so-called single-active electron approximation was also successfully implemented and applied. In the first part of this talk popular models describing intense laser-field ionization of atoms and their extensions to molecules are described. Then their validity is discussed on the basis of quantum-mechanical calculations. Finally, some peculiar molecular strong-field effects and the possibility of strong-field control mechanisms will be demonstrated. This includes phenomena like enhanced ionization and bond softening as well as the creation of vibrational wavepacket in the non-ionized electronic ground state of H_2 by creating a Schrodinger-cat state between the ionized and the non-ionized molecules. The latter, theoretically predicted phenomenon was very recently experimentally observed and lead to the real-time observation of the so far fastest molecular motion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, S. X., E-mail: shu@lle.rochester.edu; Goncharov, V. N.; McCrory, R. L.
2016-04-15
Using quantum molecular-dynamics (QMD) methods based on the density functional theory, we have performed first-principles investigations of the ionization and thermal conductivity of polystyrene (CH) over a wide range of plasma conditions (ρ = 0.5 to 100 g/cm{sup 3} and T = 15 625 to 500 000 K). The ionization data from orbital-free molecular-dynamics calculations have been fitted with a “Saha-type” model as a function of the CH plasma density and temperature, which gives an increasing ionization as the CH density increases even at low temperatures (T < 50 eV). The orbital-free molecular dynamics method is only used to gauge the average ionization behavior of CH under the average-atommore » model in conjunction with the pressure-matching mixing rule. The thermal conductivities (κ{sub QMD}) of CH, derived directly from the Kohn–Sham molecular-dynamics calculations, are then analytically fitted with a generalized Coulomb logarithm [(lnΛ){sub QMD}] over a wide range of plasma conditions. When compared with the traditional ionization and thermal conductivity models used in radiation–hydrodynamics codes for inertial confinement fusion simulations, the QMD results show a large difference in the low-temperature regime in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic deuterium–tritium targets with CH ablators on OMEGA and the National Ignition Facility using the QMD-derived ionization and thermal conductivity of CH have predicted ∼20% variation in target performance in terms of hot-spot pressure and neutron yield (gain) with respect to traditional model simulations.« less
Ionization of biomolecular targets by ion impact: input data for radiobiological applications
NASA Astrophysics Data System (ADS)
de Vera, Pablo; Abril, Isabel; Garcia-Molina, Rafael; Solov'yov, Andrey V.
2013-06-01
In this work we review and further develop a semiempirical model recently proposed for the ion impact ionization of complex biological media. The model is based on the dielectric formalism, and makes use of a semiempirical parametrization of the optical energy-loss function of bioorganic compounds, allowing the calculation of single and total ionization cross sections and related quantities for condensed biological targets, such as liquid water, DNA and its components, proteins, lipids, carbohydrates or cell constituents. The model shows a very good agreement with experimental data for water, adenine and uracil, and allows the comparison of the ionization efficiency of different biological targets, and also the average kinetic energy of the ejected secondary electrons.
Absorption and dissociative photoionization cross sections of NH3 from 80 to 1120 A
NASA Technical Reports Server (NTRS)
Samson, James A. R.; Haddad, G. N.; Kilcoyne, L. D.
1987-01-01
The total absorption, photoionization, and dissociative photoionization cross sections of ammonia have been measured from 80 to 1120 A. All possible fragment ions have been observed including doubly ionized ammonia. The absolute ionization efficiencies have also been measured in this spectral range. The appearance potentials of the fragment ions have been measured and are compared with the calculated appearance potentials derived from published heats of formation and ionization potentials of the fragments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chong
The electrical potential difference has been estimated across the mixing region of two plasmas with different degrees of ionization. The estimation has been carried out in two different contexts of a charge neutral mixing region and a charge non-neutral sheath. Ion energy gained due to the potential difference has also been estimated. In both analyses, ion energy gain is proportional to the degree of ionization, and a fairly large ionization appears to be needed for overcoming the potential energy barrier of strongly coupled plasmas.
Renormalization group method based on the ionization energy theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arulsamy, Andrew Das, E-mail: sadwerdna@gmail.com; School of Physics, University of Sydney, Sydney, New South Wales 2006
2011-03-15
Proofs are developed to explicitly show that the ionization energy theory is a renormalized theory, which mathematically exactly satisfies the renormalization group formalisms developed by Gell-Mann-Low, Shankar and Zinn-Justin. However, the cutoff parameter for the ionization energy theory relies on the energy-level spacing, instead of lattice point spacing in k-space. Subsequently, we apply the earlier proofs to prove that the mathematical structure of the ionization-energy dressed electron-electron screened Coulomb potential is exactly the same as the ionization-energy dressed electron-phonon interaction potential. The latter proof is proven by means of the second-order time-independent perturbation theory with the heavier effective mass condition,more » as required by the electron-electron screened Coulomb potential. The outcome of this proof is that we can derive the heat capacity and the Debye frequency as a function of ionization energy, which can be applied in strongly correlated matter and nanostructures.« less
Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth
2016-09-07
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sissay, Adonay; Abanador, Paul; Mauger, François
2016-09-07
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagatingmore » the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.« less
Solar coronal and photospheric abundances from solar energetic particle measurements
NASA Technical Reports Server (NTRS)
Breneman, H.; Stone, E. C.
1985-01-01
Solar energetic particle (SEP) elemental abundance data from the Cosmic Ray Subsystem (CRS) aboard the Voyager 1 and 2 spacecraft are used to derive unfractionated coronal and photospheric abundances for elements with 3 = or Z or = 30. The ionic charge-to-mass ratio (Q/M) is the principal organizing parameter for the fractionation of SEPs by acceleration and propagation processes and for flare-to-flare variability, making possible a single-parameter Q/M-dependent correction to the average SEP abundances to obtain unfractionated coronal abundances. A further correction based on first ionization potential allows the determination of unfractionated photospheric abundances.
Hampton, Christina Y.; Forbes, Thomas P.; Varady, Mark J.; Meacham, J. Mark; Fedorov, Andrei G.; Degertekin, F. Levent; Fernández, Facundo M.
2008-01-01
The analytical characterization of a novel ion source for mass spectrometry named Array of Micromachined UltraSonic Electrosprays (AMUSE) is presented here. This is a fundamentally different type of ion generation device, consisting of three major components: 1) a piezoelectric transducer that creates ultrasonic waves at one of the resonant frequencies of the sample-filled device, 2) an array of pyramidally-shaped nozzles micromachined on a silicon wafer, and 3) a spacer which prevents contact between the array and transducer ensuring the transfer of acoustic energy to the sample. A high pressure gradient generated at the apices of the nozzle pyramids forces the periodic ejection of multiple droplet streams from the device. With this device, the processes of droplet formation and droplet charging are separated, hence, the limitations of conventional electrospray-type ion sources, including the need for high charging potentials and the addition of organic solvent to decrease surface tension can be avoided. In this work, a Venturi device is coupled with AMUSE in order to increase desolvation, droplet focusing, and signal stability. Results show that ionization of model peptides and small tuning molecules is possible with DC charging potentials of 100 VDC or less. Ionization in RF-only mode (without DC biasing) was also possible. It was observed that, when combined with AMUSE, the Venturi device provides a 10-fold gain in signal-to-noise ratio for 90% aqueous sample solutions. Further reduction in the diameter of the orifices of the micromachined arrays, led to an additional signal gain of at least 3 orders of magnitude, a 2- to 10-fold gain in the signal-to-noise ratio, and an improvement in signal stability from 47% to 8.5% RSD. The effectiveness of this device for the soft ionization of model proteins in aqueous media, such as cytochrome C was also examined, yielding spectra with an average charge state of 8.8 when analyzed with a 100 VDC charging potential. Ionization of model proteins was also possible in RF-only mode. PMID:17914864
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yuan; Gottwald, T.; Mattolat, C.
We obtained multi-step resonance ionization spectroscopy of cobalt using a hot-cavity laser ion source and three Ti:Sapphire lasers. Furthermore, the photoionization spectra revealed members of five new autoionizing Rydberg series that originate from three different lower levels of 3d 74s5s h 4F 9/2, 3d 74s4d f 4G 11/2, and 3d 74s4d f 4H 13/2 and converge to the first four excited states of singly ionized Co. Our analyses of the Rydberg series yield 63564.689 0.036 cm -1 as the first ionization potential of Co, which is an order of magnitude more accurate than the previous estimation. Using a three-step resonancemore » ionization scheme that employs an autoinizing Rydberg state in the last transition, we obtained an overall ionization efficiency of about 18% for Co.« less
Liu, Yuan; Gottwald, T.; Mattolat, C.; ...
2017-03-20
We obtained multi-step resonance ionization spectroscopy of cobalt using a hot-cavity laser ion source and three Ti:Sapphire lasers. Furthermore, the photoionization spectra revealed members of five new autoionizing Rydberg series that originate from three different lower levels of 3d 74s5s h 4F 9/2, 3d 74s4d f 4G 11/2, and 3d 74s4d f 4H 13/2 and converge to the first four excited states of singly ionized Co. Our analyses of the Rydberg series yield 63564.689 0.036 cm -1 as the first ionization potential of Co, which is an order of magnitude more accurate than the previous estimation. Using a three-step resonancemore » ionization scheme that employs an autoinizing Rydberg state in the last transition, we obtained an overall ionization efficiency of about 18% for Co.« less
NASA Technical Reports Server (NTRS)
Ogilvie, K. W.; Coplan, M. A.
1995-01-01
Advances in instrumentation have resulted in the determination of the average abundances of He, C, N, O, Ne, Mg, Si, S, and Fe in the solar wind to approximately 10%. Comparisons with solar energetic particle (SEP) abundances and galactic cosmic ray abundances have revealed many similarities, especially when compared with solar photospheric abundances. It is now well established that fractionation in the corona results in an overabundance (with respect to the photosphere) of elements with first ionization potentials less than 10 eV. These observations have in turn led to the development of fractionation models that are reasonably successful in reproducing the first ionization (FIP) effect. Under some circumstances it has been possible to relate solar wind observations to particular source regions in the corona. The magnetic topologies of the source regions appear to have a strong influence on the fractionation of elements. Comparisons with spectroscopic data are particularly useful in classifying the different topologies. Ions produced from interstellar neutral atoms are also found in the solar wind. These ions are picked up by the solar wind after ionization by solar radiation or charge exchange and can be identified by their velocity in the solar wind. The pick-up ions provide most of the pressure in the interplanetary medium at large distances. Interstellar abundances can be derived from the observed fluxes of solar wind pick-up ions.
Slavícek, Petr; Winter, Bernd; Faubel, Manfred; Bradforth, Stephen E; Jungwirth, Pavel
2009-05-13
Vertical ionization energies of the nucleosides cytidine and deoxythymidine in water, the lowest ones amounting in both cases to 8.3 eV, are obtained from photoelectron spectroscopy measurements in aqueous microjets. Ab initio calculations employing a nonequilibrium polarizable continuum model quantitatively reproduce the experimental spectra and provide molecular interpretation of the individual peaks of the photoelectron spectrum, showing also that lowest ionization originates from the base. Comparison of calculated vertical ionization potentials of pyrimidine bases, nucleosides, and nucleotides in water and in the gas phase underlines the dramatic effect of bulk hydration on the electronic structure. In the gas phase, the presence of sugar and, in particular, of phosphate has a strong effect on the energetics of ionization of the base. Upon bulk hydration, the ionization potential of the base in contrast becomes rather insensitive to the presence of the sugar and phosphate, which indicates a remarkable screening ability of the aqueous solvent. Accurate aqueous-phase vertical ionization potentials provide a significant improvement to the corrected gas-phase values used in the literature and represent important information in assessing the threshold energies for photooxidation and oxidation free energies of solvent-exposed DNA components. Likewise, such energetic data should allow improved assessment of delocalization and charge-hopping mechanisms in DNA ionized by radiation.
Experimental Determination of the Ionization Energy in TlBr
NASA Astrophysics Data System (ADS)
Hitomi, Keitaro; Onodera, Toshiyuki; Kim, Seong-Yun; Shoji, Tadayoshi; Ishii, Keizo
2015-06-01
The average ionization energy required to excite an electron-hole pair in TlBr was estimated to be 5.50 ± 0.05 eV by comparing the peak position of 59.5-keV gamma rays obtained from four pixels of a pixelated TlBr detector to the peak position obtained from a Si PIN photodiode at room temperature.
OH+ and H2O+: Probes of the Molecular Hydrogen Fraction and Cosmic-Ray Ionization Rate
NASA Astrophysics Data System (ADS)
Indriolo, Nick; Neufeld, D. A.; Gerin, M.; PRISMAS; WISH
2014-01-01
The fast ion-molecule chemistry that occurs in the interstellar medium (ISM) is initiated by cosmic-ray ionization of both atomic and molecular hydrogen. Species that are near the beginning of the network of interstellar chemistry such as the oxygen-bearing ions OH+ and H2O+ can be useful probes of the cosmic-ray ionization rate. This parameter is of particular interest as, to some extent, it controls the abundances of several molecules. Using observations of OH+ and H2O+ made with HIFI on board Herschel, we have inferred the cosmic-ray ionization rate of atomic hydrogen in multiple distinct clouds along 12 Galactic sight lines. These two molecules also allow us to determine the molecular hydrogen fraction (amount of hydrogen nuclei in H2 versus H) as OH+ and H2O+ abundances are dependent on the competition between dissociative recombination with electrons and hydrogen abstraction reactions involving H2. Our observations of OH+ and H2O+ indicate environments where H2 accounts for less than 10% of the available hydrogen nuclei, suggesting that these species primarily reside in the diffuse, atomic ISM. Average ionization rates in this gas are on the order of a few times 10-16 s-1, with most values in specific clouds above or below this average by a factor of 3 or so. This result is in good agreement with the most up-to-date determination of the distribution of cosmic-ray ionization rates in diffuse molecular clouds as inferred from observations of H3+.
NASA Astrophysics Data System (ADS)
Ali, Amjad; Shabbir Naz, G.; Saleem Shahzad, M.; Kouser, R.; Aman-ur-Rehman; Nasim, M. H.
2018-03-01
The energy states of the bound electrons in high energy density systems (HEDS) are significantly affected due to the electric field of the neighboring ions. Due to this effect bound electrons require less energy to get themselves free and move into the continuum. This phenomenon of reduction in potential is termed as ionization potential depression (IPD) or the continuum lowering (CL). The foremost parameter to depict this change is the average charge state, therefore accurate modeling for CL is imperative in modeling atomic data for computation of radiative and thermodynamic properties of HEDS. In this paper, we present an improved model of CL in the screened hydrogenic model with l-splitting (SHML) proposed by G. Faussurier and C. Blancard, P. Renaudin [High Energy Density Physics 4 (2008) 114] and its effect on average charge state. We propose the level charge dependent calculation of CL potential energy and inclusion of exchange and correlation energy in SHML. By doing this, we made our model more relevant to HEDS and free from CL empirical parameter to the plasma environment. We have implemented both original and modified model of SHML in our code named OPASH and benchmark our results with experiments and other state-of-the-art simulation codes. We compared our results of average charge state for Carbon, Beryllium, Aluminum, Iron and Germanium against published literature and found a very reasonable agreement between them.
Theoretical determination of one-electron redox potentials for DNA bases, base pairs, and stacks.
Paukku, Y; Hill, G
2011-05-12
Electron affinities, ionization potentials, and redox potentials for DNA bases, base pairs, and N-methylated derivatives are computed at the DFT/M06-2X/6-31++G(d,p) level of theory. Redox properties of a guanine-guanine stack model are explored as well. Reduction and oxidation potentials are in good agreement with the experimental ones. Electron affinities of base pairs were found to be negative. Methylation of canonical bases affects the ionization potentials the most. Base pair formation and base stacking lower ionization potentials by 0.3 eV. Pairing of guanine with the 5-methylcytosine does not seem to influence the redox properties of this base pair much.
On the development and global oscillations of cometary ionospheres
NASA Technical Reports Server (NTRS)
Houpis, H. L. F.; Mendis, D. A.
1981-01-01
Representing the cometary ionosphere by a single fluid model characterized by an average ionization time scale, both the ionosphere's development as a comet approaches the sun and its response to sudden changes in solar wind conditions are investigated. Three different nuclear sizes (small, average, very large) and three different modes of energy addition to the atmosphere (adiabatic, isothermal, suprathermal) are considered. It is found that the crucial parameter determining both the nature and the size of the ionosphere is the average ionization time scale within the ionosphere. Two different scales are identified. It is noted that the ionosphere can also be characterized by the relative sizes of three different scale lengths: the neutral standoff distance from the nucleus, the ion standoff distance from the nucleus, and the nuclear distance at which the ions and the neutrals decouple collisionally.
Dosimetry for Small and Nonstandard Fields
NASA Astrophysics Data System (ADS)
Junell, Stephanie L.
The proposed small and non-standard field dosimetry protocol from the joint International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine working group introduces new reference field conditions for ionization chamber based reference dosimetry. Absorbed dose beam quality conversion factors (kQ factors) corresponding to this formalism were determined for three different models of ionization chambers: a Farmer-type ionization chamber, a thimble ionization chamber, and a small volume ionization chamber. Beam quality correction factor measurements were made in a specially developed cylindrical polymethyl methacrylate (PMMA) phantom and a water phantom using thermoluminescent dosimeters (TLDs) and alanine dosimeters to determine dose to water. The TLD system for absorbed dose to water determination in high energy photon and electron beams was fully characterized as part of this dissertation. The behavior of the beam quality correction factor was observed as it transfers the calibration coefficient from the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) 60Co reference beam to the small field calibration conditions of the small field formalism. TLD-determined beam quality correction factors for the calibration conditions investigated ranged from 0.97 to 1.30 and had associated standard deviations from 1% to 3%. The alanine-determined beam quality correction factors ranged from 0.996 to 1.293. Volume averaging effects were observed with the Farmer-type ionization chamber in the small static field conditions. The proposed small and non-standard field dosimetry protocols new composite-field reference condition demonstrated its potential to reduce or remove ionization chamber volume dependancies, but the measured beam quality correction factors were not equal to the standard CoP's kQ, indicating a change in beam quality in the small and non-standard field dosimetry protocols new composite-field reference condition relative to the standard broad beam reference conditions. The TLD- and alanine-determined beam quality correction factors in the composite-field reference conditions were approximately 3% greater and differed by more than one standard deviation from the published TG-51 kQ values for all three chambers.
First results on Ge resonant laser photoionization in hollow cathode lamp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarpa, Daniele, E-mail: daniele.scarpa@lnl.infn.it; Andrighetto, Alberto; Barzakh, Anatoly
2016-02-15
In the framework of the research and development activities of the SPES project regarding the optimization of the radioactive beam production, a dedicated experimental study has been recently started in order to investigate the possibility of in-source ionization of germanium using a set of tunable dye lasers. Germanium is one of the beams to be accelerated by the SPES ISOL facility, which is under construction at Legnaro INFN Laboratories. The three-step, two color ionization schemes have been tested using a Ge hollow cathode lamp. The slow and the fast optogalvanic signals were detected and averaged by an oscilloscope as amore » proof of the laser ionization inside the lamp. As a result, several wavelength scans across the resonances of ionization schemes were collected with the fast optogalvanic signal. Some comparisons of ionization efficiency for different ionization schemes were made. Furthermore, saturation curves of the first excitation transitions have been obtained. This investigation method and the setup built in the laser laboratory of the SPES project can be applied for the photo-ionization scheme studies also for the other possible radioactive elements.« less
Alekseeva, N P; Alekseev, A O; Vakhtin, Iu B; Kravtsov, V Iu; Kuzovatov, S N; Skorikova, T I
2008-01-01
Distributions of nuclear morphology anomalies in transplantable rabdomiosarcoma RA-23 cell populations were investigated under effect of ionizing radiation from 0 to 45 Gy. Internuclear bridges, nuclear protrusions and dumbbell-shaped nuclei were accepted for morphological anomalies. Empirical distributions of the number of anomalies per 100 nuclei were used. The adequate model of reentrant binomial distribution has been found. The sum of binomial random variables with binomial number of summands has such distribution. Averages of these random variables were named, accordingly, internal and external average reentrant components. Their maximum likelihood estimations were received. Statistical properties of these estimations were investigated by means of statistical modeling. It has been received that at equally significant correlation between the radiation dose and the average of nuclear anomalies in cell populations after two-three cellular cycles from the moment of irradiation in vivo the irradiation doze significantly correlates with internal average reentrant component, and in remote descendants of cell transplants irradiated in vitro - with external one.
Ionization-potential depression and dynamical structure factor in dense plasmas
NASA Astrophysics Data System (ADS)
Lin, Chengliang; Röpke, Gerd; Kraeft, Wolf-Dietrich; Reinholz, Heidi
2017-07-01
The properties of a bound electron system immersed in a plasma environment are strongly modified by the surrounding plasma. The modification of an essential quantity, the ionization energy, is described by the electronic and ionic self-energies, including dynamical screening within the framework of the quantum statistical theory. Introducing the ionic dynamical structure factor as the indicator for the ionic microfield, we demonstrate that ionic correlations and fluctuations play a critical role in determining the ionization potential depression. This is, in particular, true for mixtures of different ions with large mass and charge asymmetry. The ionization potential depression is calculated for dense aluminum plasmas as well as for a CH plasma and compared to the experimental data and more phenomenological approaches used so far.
Ionization potential for the 1s{sup 2}2s{sup 2} of berylliumlike systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, K.T.; Zhu, X.W.; Wang, Z.W.
1993-05-01
The 1s{sup 2}2s{sup 2}, ground state energies of beryllium- like systems are calculated with a full-core plus correlation method. A partial saturation of basis functions method is used to extrapolated a better nonrelativistic energy. The 1s{sup 2}2s{sup 2} ionization potentials are calculated by including the relativistic corrections, mass polarization and QED effects. These results are compared with the existing theoretical and experimental data in the literature. The predicted BeI, CIII, NIV, and OV ionization potentials are within the quoted experimental error. Our result for FVI, 1267606.7 cm{sup -1}, supports the recent experiment of Engstrom, 1267606(2) cm{sup -1}, over the datummore » in the existing data tables. The predicted specific mass polarization contribution to the ionization potential for BeI, 0.00688 a.u., agrees with the 0.00674(100) a.u. from the experiment of Wen. Using the calculated results of Z=4-10, 15, and 20, we extrapolated the results for other Z systems up to Z=25 for which the ionization potentials are not explicitly computed.« less
Lyman continuum leaking AGN in the SSA22 field
NASA Astrophysics Data System (ADS)
Micheva, Genoveva; Iwata, Ikuru; Inoue, Akio K.
2017-02-01
Subaru/SuprimeCam narrow-band photometry of the SSA22 field reveals the presence of four Lyman continuum (LyC) candidates among a sample of 14 active galactic nuclei (AGNs). Two show offsets and likely have stellar LyCin nature or are foreground contaminants. The remaining two LyC candidates are type I AGN. We argue that the average LyC escape fraction of high-redshift, low-luminosity AGN is not likely to be unity, as often assumed in the literature. From direct measurement we obtain the average LyC-to-UV flux density ratio and ionizing emissivity for a number of AGN classes and find it at least a factor of 2 lower than values obtained assuming fesc = 1. Comparing to recent Ly α forest measurements, AGNs at redshift z ˜ 3 make up at most ˜12 per cent and as little as ˜5 per cent of the total ionizing budget. Our results suggest that AGNs are unlikely to dominate the ionization budget of the Universe at high redshifts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Šćepanović, M., E-mail: mara.scepanovic@gmail.com; Purić, J.
2016-03-25
Stark width and shift simultaneous dependence on the upper level ionization potential and rest core charge of the emitter has been evaluated and discussed. It has been verified that the found relations, connecting Stark broadening parameters with upper level ionization potential and rest core charge of the emitters for particular electron temperature and density, can be used for prediction of Stark line width and shift data in case of ions for which observed data, or more detailed calculations, are not yet available. Stark widths and shifts published data are used to demonstrate the existence of other kinds of regularities withinmore » similar spectra of different elements and their ionization stages. The emphasis is on the Stark parameter dependence on the upper level ionization potential and on the rest core charge for the lines from similar spectra of multiply charged ions. The found relations connecting Stark widths and shift parameters with upper level ionization potential, rest core charge and electron temperature were used for a prediction of new Stark broadening data, thus avoiding much more complicated procedures.« less
Verma, Prakash; Bartlett, Rodney J
2016-07-21
Core excitation energies are computed with time-dependent density functional theory (TD-DFT) using the ionization energy corrected exchange and correlation potential QTP(0,0). QTP(0,0) provides C, N, and O K-edge spectra to about an electron volt. A mean absolute error (MAE) of 0.77 and a maximum error of 2.6 eV is observed for QTP(0,0) for many small molecules. TD-DFT based on QTP (0,0) is then used to describe the core-excitation spectra of the 22 amino acids. TD-DFT with conventional functionals greatly underestimates core excitation energies, largely due to the significant error in the Kohn-Sham occupied eigenvalues. To the contrary, the ionization energy corrected potential, QTP(0,0), provides excellent approximations (MAE of 0.53 eV) for core ionization energies as eigenvalues of the Kohn-Sham equations. As a consequence, core excitation energies are accurately described with QTP(0,0), as are the core ionization energies important in X-ray photoionization spectra or electron spectroscopy for chemical analysis.
NASA Astrophysics Data System (ADS)
Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby
2016-07-01
The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.
NASA Astrophysics Data System (ADS)
Jeong, Yeuncheol; Yushchenko, Alexander V.; Doikov, Dmytry N.
2018-03-01
The reanalysis of the previously published abundance pattern of mild barium star HD202109 (ζ Cyg) and the chemical compositions of 129 thin disk barium stars facilitated the search for possible correlations of different stellar parameters with second ionization potentials of chemical elements. Results show that three valuable correlations exist in the atmospheres of barium stars. The first is the relationship between relative abundances and second ionization potentials. The second is the age dependence of mean correlation coefficients of relative abundances vs. second ionization potentials, and the third one is the changes in correlation coefficients of relative abundances vs. second ionization potentials as a function of stellar spatial velocities and overabundances of s-process elements. These findings demonstrate the possibility of hydrogen and helium accretion from the interstellar medium on the atmospheres of barium stars.
Meschke, S; Smith, B D; Yost, M; Miksch, R R; Gefter, P; Gehlke, S; Halpin, H A
2009-04-01
A series of experiments were conducted to evaluate the effect of surface charge and air ionization on the deposition of airborne bacteria. The interaction between surface electrostatic potential and the deposition of airborne bacteria in an indoor environment was investigated using settle plates charged with electric potentials of 0, +/-2.5kV and +/-5kV. Results showed that bacterial deposition on the plates increased proportionally with increased potential to over twice the gravitational sedimentation rate at +5kV. Experiments were repeated under similar conditions in the presence of either negative or bipolar air ionization. Bipolar air ionization resulted in reduction of bacterial deposition onto the charged surfaces to levels nearly equal to gravitational sedimentation. In contrast, diffusion charging appears to have occurred during negative air ionization, resulting in an even greater deposition onto the oppositely charged surface than observed without ionization. Static charges on fomitic surfaces may attract bacteria resulting in deposition in excess of that expected by gravitational sedimentation or simple diffusion. Implementation of bipolar ionization may result in reduction of bacterial deposition. Fomitic surfaces are important vehicles for the transmission of infectious organisms. This study has demonstrated a simple strategy for minimizing charge related deposition of bacteria on surfaces.
NASA Astrophysics Data System (ADS)
Chaluvadi, Hari; Nixon, Kate; Murray, Andrew; Ning, Chuangang; Colgan, James; Madison, Don
2014-10-01
Experimental and theoretical Triply Differential Cross Sections (TDCS) will be presented for electron-impact ionization of sulfur hexafluoride (SF6) for the molecular orbital 1t1g. M3DW (molecular 3-body distorted wave) results will be compared with experiment for coplanar geometry and for perpendicular plane geometry (a plane which is perpendicular to the incident beam direction). In both cases, the final state electron energies and observation angles are symmetric and the final state electron energies range from 5 eV to 40 eV. It will be shown that there is a large difference between using the OAMO (orientation averaged molecular orbital) approximation and the proper average over all orientations and also that the proper averaged results are in much better agreement with experiment. Work supported by NSF under Grant Number PHY-1068237. Computational work was performed with Institutional resources made available through Los Alamos National Laboratory.
Accuracy of theory for calculating electron impact ionization of molecules
NASA Astrophysics Data System (ADS)
Chaluvadi, Hari Hara Kumar
The study of electron impact single ionization of atoms and molecules has provided valuable information about fundamental collisions. The most detailed information is obtained from triple differential cross sections (TDCS) in which the energy and momentum of all three final state particles are determined. These cross sections are much more difficult for theory since the detailed kinematics of the experiment become important. There are many theoretical approximations for ionization of molecules. One of the successful methods is the molecular 3-body distorted wave (M3DW) approximation. One of the strengths of the DW approximation is that it can be applied for any energy and any size molecule. One of the approximations that has been made to significantly reduce the required computer time is the OAMO (orientation averaged molecular orbital) approximation. In this dissertation, the accuracy of the M3DW-OAMO is tested for different molecules. Surprisingly, the M3DW-OAMO approximation yields reasonably good agreement with experiment for ionization of H2 and N2. On the other hand, the M3DW-OAMO results for ionization of CH4, NH3 and DNA derivative molecules did not agree very well with experiment. Consequently, we proposed the M3DW with a proper average (PA) calculation. In this dissertation, it is shown that the M3DW-PA calculations for CH4 and SF6 are in much better agreement with experimental data than the M3DW-OAMO results.
Onset of space charge effects in liquid argon ionization chambers
NASA Astrophysics Data System (ADS)
Toggerson, B.; Newcomer, A.; Rutherfoord, J.; Walker, R. B.
2009-09-01
Using a thin-gap liquid argon ionization chamber and Strontium-90 beta sources we have measured ionization currents over a wide range of gap potentials. These precision "HV plateau curves" advance the understanding of liquid argon sampling calorimeter signals, particularly at high ionization rates. The order of magnitude differences in the activities of the beta sources allow us to estimate where the ionization chamber is driven into the space-charge dominated regime.
Solar Coronal and photospheric abundances from solar energetic particle measurements
NASA Technical Reports Server (NTRS)
Breneman, H.; Stone, E. C.
1985-01-01
Solar energetic particle (SEP) elemental abundance data from the cosmic ray subsystem (CRS) aboard the Voyager 1 and 2 spacecraft are used to derive unfractionated coronal and photospheric abundances for elements with 3 Z or = 30. It is found that the ionic charge-to-mass ratio (Q/M) is the principal organizing parameter for the fractionation of SEPs by acceleration and propagation processes and for flare-to-flare variability, making possible a single-parameter Q/M-dependent correction to the average SEP abundances to obtain unfractionated coronal abundances. A further correction based on first ionization potential allows the determination of unfractionated photospheric abundances.
Solar coronal and photospheric abundances from solar energetic particle measurements
NASA Technical Reports Server (NTRS)
Breneman, H. H.; Stone, E. C.
1985-01-01
Solar energetic particle (SEP) elemental abundance data from the cosmic ray subsystem (CRS) aboard the Voyager 1 and 2 spacecraft are used to derive unfractionated coronal and photospheric abundances for elements with Z = 6-30. It is found that the ionic charge-to-mass ratio (Q/M) is the principal organizing parameter for the fractionation of SEPs by acceleration and propagation processes and for flare-to-flare variability, making possible a single-parameter Q/M-dependent correction to the average SEP abundances to obtain unfractionated coronal abundances. A further correction based on first ionization potential allows the determination of unfractionated photospheric abundances.
Interstellar PAH Emission in the 11-14 micron Region: New Insights and a Tracer of Ionized PAHs
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; Allamandola, Louis J.; Mead, Susan (Technical Monitor)
1999-01-01
The Ames infrared spectral database of isolated, neutral and ionized polycyclic aromatic hydrocarbons (PAHs) shows that aromatic CH out-of-plane bending frequencies are significantly shifted upon ionization. For non-adjacent and doubly-adjacent CH groups, the shift is pronounced and consistently toward higher frequencies. The non-adjacent modes are blueshifted by an average of 27 per cm and the doubly-adjacent modes by an average of 17 per cm. For triply- and quadruply-adjacent CH out-of-plane modes the ionization shifts are more erratic and typically more modest. As a result of these ionization shifts, both the non-adjacent and doubly-adjacent CH out-of-plane modes move out of the regions classically associated with their respective vibrations in neutral PAHs. The doubly-adjacent modes of ionized PAHs tend to fall into the frequency range traditionally associated with the non-adjacent modes, while the non-adjacent modes are shifted to frequencies above those normally attributed to out-of-plane bending vibrations. Consequently, the origin of the interstellar infrared emission feature near 11.2 microns, traditionally attributed to the out-of-plane bending of non-adjacent CH groups on PAHs is rendered ambiguous. Instead, this feature likely reflects contributions from both non-adjacent CH units in neutral PAHs and doubly-adjacent CH units in PAH cations, the dominant charge state in the most energetic emission regions. This greatly relieves the structural constraints placed on the interstellar PAH population by the dominance of the 11.2 micron band in this region and eliminates the necessity to invoke extensive dehydrogenation of the emitting species. Furthermore, these results indicate that the emission between 926 and 904 per cm (10.8 and 11.1 microns) observed in many sources can be unambiguously attributed to the non-adjacent CH out-of-plane bending modes of moderately-sized (fewer than 50 carbon atom) PAH cations making this emission an unequivocal tracer of ionized interstellar PAHs.
Electron impact ionization of cycloalkanes, aldehydes, and ketones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Dhanoj; Antony, Bobby, E-mail: bka.ism@gmail.com
The theoretical calculations of electron impact total ionization cross section for cycloalkane, aldehyde, and ketone group molecules are undertaken from ionization threshold to 2 keV. The present calculations are based on the spherical complex optical potential formalism and complex scattering potential ionization contribution method. The results of most of the targets studied compare fairly well with the recent measurements, wherever available and the cross sections for many targets are predicted for the first time. The correlation between the peak of ionization cross sections with number of target electrons and target parameters is also reported. It was found that the crossmore » sections at their maximum depend linearly with the number of target electrons and with other target parameters, confirming the consistency of the values reported here.« less
NASA Astrophysics Data System (ADS)
Barraclough, Brendan; Li, Jonathan G.; Lebron, Sharon; Fan, Qiyong; Liu, Chihray; Yan, Guanghua
2015-08-01
The ionization chamber volume averaging effect is a well-known issue without an elegant solution. The purpose of this study is to propose a novel convolution-based approach to address the volume averaging effect in model-based treatment planning systems (TPSs). Ionization chamber-measured beam profiles can be regarded as the convolution between the detector response function and the implicit real profiles. Existing approaches address the issue by trying to remove the volume averaging effect from the measurement. In contrast, our proposed method imports the measured profiles directly into the TPS and addresses the problem by reoptimizing pertinent parameters of the TPS beam model. In the iterative beam modeling process, the TPS-calculated beam profiles are convolved with the same detector response function. Beam model parameters responsible for the penumbra are optimized to drive the convolved profiles to match the measured profiles. Since the convolved and the measured profiles are subject to identical volume averaging effect, the calculated profiles match the real profiles when the optimization converges. The method was applied to reoptimize a CC13 beam model commissioned with profiles measured with a standard ionization chamber (Scanditronix Wellhofer, Bartlett, TN). The reoptimized beam model was validated by comparing the TPS-calculated profiles with diode-measured profiles. Its performance in intensity-modulated radiation therapy (IMRT) quality assurance (QA) for ten head-and-neck patients was compared with the CC13 beam model and a clinical beam model (manually optimized, clinically proven) using standard Gamma comparisons. The beam profiles calculated with the reoptimized beam model showed excellent agreement with diode measurement at all measured geometries. Performance of the reoptimized beam model was comparable with that of the clinical beam model in IMRT QA. The average passing rates using the reoptimized beam model increased substantially from 92.1% to 99.3% with 3%/3 mm and from 79.2% to 95.2% with 2%/2 mm when compared with the CC13 beam model. These results show the effectiveness of the proposed method. Less inter-user variability can be expected of the final beam model. It is also found that the method can be easily integrated into model-based TPS.
Voinov, Maxim A.; Smirnov, Alex I.
2016-01-01
Electrostatic interactions are known to play one of the major roles in the myriad of biochemical and biophysical processes. In this Chapter we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that is based on an observation of reversible protonation of nitroxides by EPR. Two types of the electrostatic probes are discussed. The first one includes methanethiosulfonate derivatives of protonatable nitroxides that could be used for highly specific covalent modification of the cysteine’s sulfhydryl groups. Such spin labels are very similar in magnetic parameters and chemical properties to conventional MTSL making them suitable for studying local electrostatic properties of protein-lipid interfaces. The second type of EPR probes is designed as spin-labeled phospholipids having a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and a degree of rotational averaging, thus, allowing one to determine the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, determining the local electrostatic potential. Due to their small molecular volume these probes cause a minimal perturbation to the protein or lipid system while covalent attachment secure the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR and also the methods to analyze the EPR spectra by least-squares simulations are also outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide pH range from ca. 2.5 to 7.0 pH units making them suitable to study a broad range of biophysical phenomena especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for calibrating such probes and example of studying surface potential of lipid bilayer is also described. PMID:26477252
Ionization Potentials for Isoelectronic Series.
ERIC Educational Resources Information Center
Agmon, Noam
1988-01-01
Presents a quantitative treatment of ionization potentials of isoelectronic atoms. By looking at the single-electron view of calculating the total energy of an atom, trends in the screening and effective quantum number parameters are examined. Approaches the question of determining electron affinities. (CW)
NASA Technical Reports Server (NTRS)
Mullan, D. J.
1985-01-01
The first ionization potential (FIP) ordering of elemental abundances in solar energetic particles and in the corona which can both be explained Coulomb effects is discussed. Solar energetic particles (SEP) and coronal gas have anomalous abundances relative to the photosphere. The anomalies are similar in both cases: which led to the conclusion that SEP acceleration is not selective, but merely preserves the source abundances. It is argued that SEP acceleration can be selective, because identical selectivity operates to determine the coronal abundances. The abundance anomalies are ordered by first ionization potential (FIP).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet
The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observationsmore » for all the targets reported here, especially for the total cross section.« less
Costa, F; Teles, P; Nogueira, A; Barreto, A; Santos, A I; Carvalho, A; Martins, B; Oliveira, C; Gaspar, C; Barros, C; Neves, D; Costa, D; Rodrigues, E; Godinho, F; Alves, F; Cardoso, G; Cantinho, G; Conde, I; Vale, J; Santos, J; Isidoro, J; Pereira, J; Salgado, L; Rézio, M; Vieira, M; Simãozinho, P; Almeida, P; Castro, R; Parafita, R; Pintão, S; Lúcio, T; Reis, T; Vaz, P
2015-01-01
In 2009-2010 a Portuguese consortium was created to implement the methodologies proposed by the Dose Datamed II (DDM2) project, aiming to collect data from diagnostic X-ray and nuclear medicine (NM) procedures, in order to determine the most frequently prescribed exams and the associated ionizing radiation doses for the Portuguese population. The current study is the continuation of this work, although it focuses only on NM exams for the years 2011 and 2012. The annual frequency of each of the 28 selected NM exams and the average administered activity per procedure was obtained by means of a nationwide survey sent to the 35 NM centres in Portugal. The results show a reduction of the number of cardiac exams performed in the last two years compared with 2010, leading to a reduction of the annual average effective dose of Portuguese population due to NM exams from 0.08 mSv ± 0.017 mSv/caput to 0.059 ± 0.011 mSv/caput in 2011 and 0.054 ± 0.011 mSv/caput in 2012. Portuguese total annual average collective effective dose due to medical procedures was estimated to be 625.6 ± 110.9 manSv in 2011 and 565.1 ± 117.3 manSv in 2012, a reduction in comparison with 2010 (840.3 ± 183.8 manSv). The most frequent exams and the ones that contributed the most for total population dose were the cardiac and bone exams, although a decrease observed in 2011 and in 2012 was verified. The authors intend to perform this study periodically to identify trends in the annual Portuguese average effective dose and to help to raise awareness about the potential dose optimization. Copyright © 2014 Elsevier España, S.L.U. and SEMNIM. All rights reserved.
Busuladzić, M; Gazibegović-Busuladzić, A; Milosević, D B; Becker, W
2008-05-23
The strong-field approximation for ionization of diatomic molecules by an intense laser field is generalized to include rescattering of the ionized electron off the various centers of its molecular parent ion. The resulting spectrum and its interference structure strongly depend on the symmetry of the ground state molecular orbital. For N2, if the laser polarization is perpendicular to the molecular axis, we observe a distinct minimum in the emission spectrum, which survives focal averaging and allows determination of, e.g., the internuclear separation. In contrast, for O2, rescattering is absent in the same situation.
Galaon, Toma; Vacaresteanu, Catalina; Anghel, Dan-Florin; David, Victor
2014-05-01
Nine important 1,4-benzodiazepines and zolpidem were characterized by liquid chromatography-mass spectrometry using a multimode ionization source able to generate ions using both electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), and a single quadrupole mass analyzer. An optimum chromatographic separation was applied for all target compounds in less than 8 minutes using a Zorbax Eclipse Plus column (100 × 4.6 mm, 3.5 µm) kept at 35°C and a 0.3% HCOOH/ACN/IPA (61:34:5) mobile phase pumped at 1 ml/min. Optimization of LC-MS method generated low limit of quantitation (LOQ) values situated in the range 0.3-20.5 ng/ml. Comparison between differences in method sensitivity, under specified chromatographic conditions, when using ESI-only, APCI-only, and simultaneous ESI-APCI ionization with such a multimode source was discussed. Mixed ESI-APCI(+) mode proved to be the most sensitive ionization generating an average 35% detector response increase compared to ESI-only ionization and 350% detector response increase with respect to APCI-only ionization. Characterization of the nine benzodiazepines and zolpidem concerning their MS fragmentation pathway following 'in-source' collision-induced dissociation is discussed in detail and some general trends regarding these fragmentations are set. Copyright © 2013 John Wiley & Sons, Ltd.
Analytic model of aurorally coupled magnetospheric and ionospheric electrostatic potentials
NASA Technical Reports Server (NTRS)
Cornwall, J. M.
1994-01-01
This paper describes modest but significant improvements on earlier studies of electrostatic potential structure in the auroral region using the adiabatic auroral arc model. This model has crucial nonlinearities (connected, for example. with aurorally produced ionization) which have hampered analysis; earlier work has either been linear, which I will show is a poor approximation or, if nonlinear, either numerical or too specialized to study parametric dependencies. With certain simplifying assumptions I find new analytic nonlinear solutions fully exhibiting the parametric dependence of potentials on magnetospheric (e.g.. cross-tail potential) and ionospheric (e.g., recombination rate) parameters. No purely phenomenological parameters are introduced. The results are in reasonable agreement with observed average auroral potential drops, inverted-V scale sizes, and dissipation rates. The dissipation rate is quite comparable to tail energization and transport rates and should have a major effect on tail and magnetospheric dynamics. This paper gives various relations between the cross-tail potential and auroral parameters (e.g., total parallel currents and potential drops) which can be studied with existing data sets.
2016-12-01
masses collide, they form a supercritical mass . Criticality refers to the neutron population within the system. A critical system is one that can...Spectrometry, no. 242, pp. 161–168, 2005. [9] S. Raeder, “Trace analysis of actinides in the environment by means of resonance ionization mass ...first ionization potential of actinide elements by resonance ionization mass spectrometry.” Spectrochimica Acta part B: Atomic Spectroscopy. vol. 52
Fukuda, Ryoichi; Ehara, Masahiro; Nakatsuji, Hiroshi; Kishimoto, Naoki; Ohno, Koichi
2010-02-28
Valence ionized states of iron pentacarbonyl Fe(CO)(5) and eta(5)-cyclopentadienyl cobalt dicarbonyl Co(eta(5)-C(5)H(5))(CO)(2) have been studied by ultraviolet photoelectron spectroscopy, two-dimensional Penning ionization electron spectroscopy (2D-PIES), and symmetry-adapted cluster-configuration interaction calculations. Theory provided reliable assignments for the complex ionization spectra of these molecules, which have metal-carbonyl bonds. Theoretical ionization energies agreed well with experimental observations and the calculated wave functions could explain the relative intensities of PIES spectra. The collision-energy dependence of partial ionization cross sections (CEDPICS) was obtained by 2D-PIES. To interpret these CEDPICS, the interaction potentials between the molecules and a Li atom were examined in several coordinates by calculations. The relation between the slope of the CEDPICS and the electronic structure of the ionized states, such as molecular symmetry and the spatial distribution of ionizing orbitals, was analyzed. In Fe(CO)(5), an attractive interaction was obtained for the equatorial CO, while the interaction for the axial CO direction was repulsive. For Co(eta(5)-C(5)H(5))(CO)(2), the interaction potential in the direction of both Co-C-O and Co-Cp ring was attractive. These anisotropic interactions and ionizing orbital distributions consistently explain the relative slopes of the CEDPICS.
Size-dependent error of the density functional theory ionization potential in vacuum and solution
Sosa Vazquez, Xochitl A.; Isborn, Christine M.
2015-12-22
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. As a result, in vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less
Size-dependent error of the density functional theory ionization potential in vacuum and solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu
2015-12-28
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less
Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C D; Chen, Jing
2016-06-22
Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.
Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C. D.; Chen, Jing
2016-01-01
Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules. PMID:27329071
Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; ...
2016-06-22
Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. Inmore » addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. Here, we showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.« less
Ion energies in high power impulse magnetron sputtering with and without localized ionization zones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yuchen; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720; Tanaka, Koichi
2015-03-23
High speed imaging of high power impulse magnetron sputtering discharges has revealed that ionization is localized in moving ionization zones but localization disappears at high currents for high yield targets. This offers an opportunity to study the effect ionization zones have on ion energies. We measure that ions have generally higher energies when ionization zones are present, supporting the concept that these zones are associated with moving potential humps. We propose that the disappearance of ionization zones is caused by an increased supply of atoms from the target which cools electrons and reduces depletion of atoms to be ionized.
Half-life of the superallowed β+ emitter Ne18
NASA Astrophysics Data System (ADS)
Grinyer, G. F.; Smith, M. B.; Andreoiu, C.; Andreyev, A. N.; Ball, G. C.; Bricault, P.; Chakrawarthy, R. S.; Daoud, J. J.; Finlay, P.; Garrett, P. E.; Hackman, G.; Hyland, B.; Leslie, J. R.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Schumaker, M. A.; Svensson, C. E.; Valiente-Dobón, J. J.; Williams, S. J.; Zganjar, E. F.
2007-08-01
The half-life of Ne18 has been determined by detecting 1042-keV γ rays in the daughter F18 following the superallowed-Fermi β+ decay of samples implanted at the center of the 8πγ-ray spectrometer, a spherical array of 20 HPGe detectors. Radioactive Ne18 beams were produced on-line, mass-separated, and ionized using an electron-cyclotron-resonance ionization source at the ISAC facility at TRIUMF in Vancouver, Canada. This is the first high-precision half-life measurement of a superallowed Fermi β decay to utilize both a large-scale HPGe spectrometer and the isotope separation on-line technique. The half-life of Ne18, 1.6656 ± 0.0019 s, deduced following a 1.4σ correction for detector pulse pile-up, is four times more precise than the previous world average. As part of an investigation into potential systematic effects, the half-life of the heavier isotope Ne23 was determined to be 37.11 ± 0.06 s, a factor of 2 improvement over the previous precision.
Kantardjiev, Alexander A
2015-04-05
A cluster of strongly interacting ionization groups in protein molecules with irregular ionization behavior is suggestive for specific structure-function relationship. However, their computational treatment is unconventional (e.g., lack of convergence in naive self-consistent iterative algorithm). The stringent evaluation requires evaluation of Boltzmann averaged statistical mechanics sums and electrostatic energy estimation for each microstate. irGPU: Irregular strong interactions in proteins--a GPU solver is novel solution to a versatile problem in protein biophysics--atypical protonation behavior of coupled groups. The computational severity of the problem is alleviated by parallelization (via GPU kernels) which is applied for the electrostatic interaction evaluation (including explicit electrostatics via the fast multipole method) as well as statistical mechanics sums (partition function) estimation. Special attention is given to the ease of the service and encapsulation of theoretical details without sacrificing rigor of computational procedures. irGPU is not just a solution-in-principle but a promising practical application with potential to entice community into deeper understanding of principles governing biomolecule mechanisms. © 2015 Wiley Periodicals, Inc.
Half-life of the superallowed {beta}{sup +} emitter {sup 18}Ne
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grinyer, G. F.; Andreoiu, C.; Finlay, P.
The half-life of {sup 18}Ne has been determined by detecting 1042-keV {gamma} rays in the daughter {sup 18}F following the superallowed-Fermi {beta}{sup +} decay of samples implanted at the center of the 8{pi}{gamma}-ray spectrometer, a spherical array of 20 HPGe detectors. Radioactive {sup 18}Ne beams were produced on-line, mass-separated, and ionized using an electron-cyclotron-resonance ionization source at the ISAC facility at TRIUMF in Vancouver, Canada. This is the first high-precision half-life measurement of a superallowed Fermi {beta} decay to utilize both a large-scale HPGe spectrometer and the isotope separation on-line technique. The half-life of {sup 18}Ne, 1.6656 {+-} 0.0019 s,more » deduced following a 1.4{sigma} correction for detector pulse pile-up, is four times more precise than the previous world average. As part of an investigation into potential systematic effects, the half-life of the heavier isotope {sup 23}Ne was determined to be 37.11 {+-} 0.06 s, a factor of 2 improvement over the previous precision.« less
Surface electrostatics of lipid bilayers by EPR of a pH-sensitive spin-labeled lipid.
Voinov, Maxim A; Rivera-Rivera, Izarys; Smirnov, Alex I
2013-01-08
Many biophysical processes such as insertion of proteins into membranes and membrane fusion are governed by bilayer electrostatic potential. At the time of this writing, the arsenal of biophysical methods for such measurements is limited to a few techniques. Here we describe a, to our knowledge, new spin-probe electron paramagnetic resonance (EPR) approach for assessing the electrostatic surface potential of lipid bilayers that is based on a recently synthesized EPR probe (IMTSL-PTE) containing a reversibly ionizable nitroxide tag attached to the lipids' polar headgroup. EPR spectra of the probe directly report on its ionization state and, therefore, on electrostatic potential through changes in nitroxide magnetic parameters and the degree of rotational averaging. Further, the lipid nature of the probe provides its full integration into lipid bilayers. Tethering the nitroxide moiety directly to the lipid polar headgroup defines the location of the measured potential with respect to the lipid bilayer interface. Electrostatic surface potentials measured by EPR of IMTSL-PTE show a remarkable (within ±2%) agreement with the Gouy-Chapman theory for anionic DMPG bilayers in fluid (48°C) phase at low electrolyte concentration (50 mM) and in gel (17°C) phase at 150-mM electrolyte concentration. This agreement begins to diminish for DMPG vesicles in gel phase (17°C) upon varying electrolyte concentration and fluid phase bilayers formed from DMPG/DMPC and POPG/POPC mixtures. Possible reasons for such deviations, as well as the proper choice of an electrostatically neutral reference interface, have been discussed. Described EPR method is expected to be fully applicable to more-complex models of cellular membranes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Surface Electrostatics of Lipid Bilayers by EPR of a pH-Sensitive Spin-Labeled Lipid
Voinov, Maxim A.; Rivera-Rivera, Izarys; Smirnov, Alex I.
2013-01-01
Many biophysical processes such as insertion of proteins into membranes and membrane fusion are governed by bilayer electrostatic potential. At the time of this writing, the arsenal of biophysical methods for such measurements is limited to a few techniques. Here we describe a, to our knowledge, new spin-probe electron paramagnetic resonance (EPR) approach for assessing the electrostatic surface potential of lipid bilayers that is based on a recently synthesized EPR probe (IMTSL-PTE) containing a reversibly ionizable nitroxide tag attached to the lipids’ polar headgroup. EPR spectra of the probe directly report on its ionization state and, therefore, on electrostatic potential through changes in nitroxide magnetic parameters and the degree of rotational averaging. Further, the lipid nature of the probe provides its full integration into lipid bilayers. Tethering the nitroxide moiety directly to the lipid polar headgroup defines the location of the measured potential with respect to the lipid bilayer interface. Electrostatic surface potentials measured by EPR of IMTSL-PTE show a remarkable (within ±2%) agreement with the Gouy-Chapman theory for anionic DMPG bilayers in fluid (48°C) phase at low electrolyte concentration (50 mM) and in gel (17°C) phase at 150-mM electrolyte concentration. This agreement begins to diminish for DMPG vesicles in gel phase (17°C) upon varying electrolyte concentration and fluid phase bilayers formed from DMPG/DMPC and POPG/POPC mixtures. Possible reasons for such deviations, as well as the proper choice of an electrostatically neutral reference interface, have been discussed. Described EPR method is expected to be fully applicable to more-complex models of cellular membranes. PMID:23332063
Red Geyser: A New Class of Galaxy with Large-scale AGN-driven Winds
NASA Astrophysics Data System (ADS)
Roy, Namrata; Bundy, Kevin; Cheung, Edmond; MaNGA Team
2018-01-01
A new class of quiescent (non-star-forming) galaxies harboring possible AGN-driven winds have been discovered using the spatially resolved optical spectroscopy from the ongoing SDSS-IV MaNGA (Sloan Digital Sky Survey-IV Mapping Nearby Galaxies at Apache Point Observatory) survey. These galaxies named "red geysers" constitute 5%-10% of the local quiescent galaxy population and are characterized by narrow bisymmetric ionized gas emission patterns. These enhanced patterns are seen in equivalent width maps of Hα, [OIII] and other strong emission lines. They are co-aligned with the ionized gas velocity gradients but significantly misaligned with stellar velocity gradients. They also show very high gas velocity dispersions (~200 km/s). Considering these observations in light of models of the gravitational potential, Cheung et al. argued that red geysers host large-scale AGN-driven winds of ionized gas that may play a role in suppressing star formation at late times. In this work, we test the hypothesis that AGN activity is ultimately responsible for the red geyser phenomenon. We compare the nuclear radio activity of the red geysers to a matched control sample of galaxies of similar stellar mass, redshift, rest frame NUV–r color and axis ratio. and additionally, control for the presence of ionized gas. We have used 1.4 GHz radio continuum data from the VLA FIRST Survey to stack the radio flux from the red geyser sample and control sample. We find that the red geysers have a higher average radio flux than the control galaxies at > 3σ significance. Our sample is restricted to rest-frame NUV–r color > 5, thus ruling out possible radio emission due to star formation activity. We conclude that red geysers are associated with more active AGN, supporting a feedback picture in which episodic AGN activity drives large-scale but relatively weak ionized winds in many in many early-type galaxies.
Energy Balance for a Sonoluminescence Bubble Yields a Measure of Ionization Potential Lowering
NASA Astrophysics Data System (ADS)
Kappus, B.; Bataller, A.; Putterman, S. J.
2013-12-01
Application of energy conservation between input sound and the microplasma which forms at the moment of sonoluminescence places bounds on the process, whereby the gas is ionized. Detailed pulsed Mie scattering measurements of the radius versus time for a xenon bubble in sulfuric acid provide a complete characterization of the hydrodynamics and minimum radius. For a range of emission intensities, the blackbody spectrum emitted during collapse matches the minimum bubble radius, implying opaque conditions are attained. This requires a degree of ionization >36%. Analysis reveals only 2.1±0.6eV/atom of energy available during light emission. In order to unbind enough charge, collective processes must therefore reduce the ionization potential by at least 75%. We interpret this as evidence that a phase transition to a highly ionized plasma is occurring during sonoluminescence.
Energy balance for a sonoluminescence bubble yields a measure of ionization potential lowering.
Kappus, B; Bataller, A; Putterman, S J
2013-12-06
Application of energy conservation between input sound and the microplasma which forms at the moment of sonoluminescence places bounds on the process, whereby the gas is ionized. Detailed pulsed Mie scattering measurements of the radius versus time for a xenon bubble in sulfuric acid provide a complete characterization of the hydrodynamics and minimum radius. For a range of emission intensities, the blackbody spectrum emitted during collapse matches the minimum bubble radius, implying opaque conditions are attained. This requires a degree of ionization >36%. Analysis reveals only 2.1±0.6 eV/atom of energy available during light emission. In order to unbind enough charge, collective processes must therefore reduce the ionization potential by at least 75%. We interpret this as evidence that a phase transition to a highly ionized plasma is occurring during sonoluminescence.
Effects of target heating on experiments using Kα and Kβ diagnostics.
Palmeri, P; Boutoux, G; Batani, D; Quinet, P
2015-09-01
We describe the impact of heating and ionization on emission from the target of Kα and Kβ radiation induced by the propagation of hot electrons generated by laser-matter interaction. We consider copper as a test case and, starting from basic principles, we calculate the changes in emission wavelength, ionization cross section, and fluorescence yield as Cu is progressively ionized. We have finally considered the more realistic case when hot electrons have a distribution of energies with average energies of 50 and 500 keV (representative respectively of "shock ignition" and of "fast ignition" experiments) and in which the ions are distributed according to ionization equilibrium. In addition, by confronting our theoretical calculations with existing data, we demonstrate that this study offers a generic theoretical background for temperature diagnostics in laser-plasma interactions.
Hashash, Ahmad; Kirkpatrick, D Lynn; Lazo, John S; Block, Lawrence H
2002-07-01
Alkyl 2-imidazolyl disulfide compounds are novel antitumor agents, one of which is currently being evaluated in Phase I clinical trials. These molecules contain an unsymmetrical disulfide fragment, the lipophilic and electronic contributions of which are still not defined in the literature. Lipophilicity, ionization, and solubility of a number of alkyl 2-imidazolyl disulfides were studied. Based on the additivity of lipophilicity and ionization properties, the contribution of the unsymmetrical disulfide fragment to lipophilicity and ionization was elucidated. The unsymmetrical disulfide fragment contributed a Rekker's hydrophobic constant of 0.761 to the lipophilicity of these compounds and an approximated Hammett constant (sigma) of 0.30 to their ionization. The applicability of the general solubility equation (GSE) proposed by Jain and Yalkowsky in predicting the aqueous solubility of these analogs was evaluated. The GSE correctly ranked the aqueous solubilities of these compounds and estimated their log molar solubilities with an average absolute error of 0.35. Copyright 2002 Wiley-Liss Inc.
Bubble size statistics during reionization from 21-cm tomography
NASA Astrophysics Data System (ADS)
Giri, Sambit K.; Mellema, Garrelt; Dixon, Keri L.; Iliev, Ilian T.
2018-01-01
The upcoming SKA1-Low radio interferometer will be sensitive enough to produce tomographic imaging data of the redshifted 21-cm signal from the Epoch of Reionization. Due to the non-Gaussian distribution of the signal, a power spectrum analysis alone will not provide a complete description of its properties. Here, we consider an additional metric which could be derived from tomographic imaging data, namely the bubble size distribution of ionized regions. We study three methods that have previously been used to characterize bubble size distributions in simulation data for the hydrogen ionization fraction - the spherical-average (SPA), mean-free-path (MFP) and friends-of-friends (FOF) methods - and apply them to simulated 21-cm data cubes. Our simulated data cubes have the (sensitivity-dictated) resolution expected for the SKA1-Low reionization experiment and we study the impact of both the light-cone (LC) and redshift space distortion (RSD) effects. To identify ionized regions in the 21-cm data we introduce a new, self-adjusting thresholding approach based on the K-Means algorithm. We find that the fraction of ionized cells identified in this way consistently falls below the mean volume-averaged ionized fraction. From a comparison of the three bubble size methods, we conclude that all three methods are useful, but that the MFP method performs best in terms of tracking the progress of reionization and separating different reionization scenarios. The LC effect is found to affect data spanning more than about 10 MHz in frequency (Δz ∼ 0.5). We find that RSDs only marginally affect the bubble size distributions.
Reduction of the ionization energy for 1s-electrons in dense aluminum plasmas
NASA Astrophysics Data System (ADS)
Lin, C.; Reinholz, H.; Röpke, G.
2017-02-01
The properties of a bound multi-electron system immersed in a plasma environment are strongly modified by the surrounding plasma. In particular, the modification of the ionization energy is described by the electronic self-energy within the framework of the quantum statistical theory. We present the energy shift of the eigenstates and the lowering of the continuum edge of free electrons in a plasma. The reduction of the ionization potential is determined by their difference. This ionization potential depression for the 1s-levels in dense aluminum plasmas is calculated. Comparisons with other theories and the experimental data are shown for aluminum plasma at solid density 2.7 g/cm3.
Giardi, Maria Teresa; Touloupakis, Eleftherios; Bertolotto, Delfina; Mascetti, Gabriele
2013-01-01
Humans are constantly exposed to ionizing radiation deriving from outer space sources or activities related to medical care. Absorption of ionizing radiation doses over a prolonged period of time can result in oxidative damage and cellular dysfunction inducing several diseases, especially in ageing subjects. In this report, we analyze the effects of ionizing radiation, particularly at low doses, in relation to a variety of human pathologies, including cancer, and cardiovascular and retinal diseases. We discuss scientific data in support of protection strategies by safe antioxidant formulations that can provide preventive or potential therapeutic value in response to long-term diseases that may develop following exposure. PMID:23965979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anders, André; Ni, Pavel; Panjan, Matjaž
2013-09-30
Ion energy distribution functions measured for high power impulse magnetron sputtering show features, such as a broad peak at several 10 eV with an extended tail, as well as asymmetry with respect to E×B, where E and B are the local electric and magnetic field vectors, respectively. Here it is proposed that those features are due to the formation of a potential hump of several 10 V in each of the traveling ionization zones. Potential hump formation is associated with a negative-positive-negative space charge that naturally forms in ionization zones driven by energetic drifting electrons.
Gholipour, Yousef; Giudicessi, Silvana L; Nonami, Hiroshi; Erra-Balsells, Rosa
2010-07-01
Nanoparticles (NPs) of diamond, titanium dioxide, titanium silicon oxide, barium strontium titanium oxide, and silver (Ag) were examined for their potential as MALDI matrixes for direct laser desorption/ionization of carbohydrates, especially fructans, from plant tissue. Two sample preparation methods including solvent-assisted and solvent-free (dry) NPs deposition were performed and compared. All examined NPs except for Ag could desorb/ionize standard sucrose and fructans in positive and in negative ion mode. Ag NPs yielded good signals only for nonsalt-doped samples that were measured in the negative ion mode. In the case of in vivo studies, except for Ag, all NPs studied could desorb/ionize carbohydrates from tissue in both the positive and negative ion modes. Furthermore, compared to the results obtained with soluble sugars extracted from plant tissues, fructans with higher molecular weight intact molecular ions could be detected when the plant tissues were directly profiled. The limit of detection (LOD) of fructans and the ratios between signal intensities and fructan concentrations were analyzed. NPs had similar LODs for standard fructan triose (1-kestose) in the positive ion mode and better LODs in the negative ion mode when compared with the common crystalline organic MALDI matrixes used for carbohydrates (2,5-dihydroxybenzoic acid and nor-harmane) or carbon nanotubes. Solvent-free NP deposition on tissues partially improves the signal acquisition. Although lower signal-to-noise ratio sugar signals were acquired from the tissues when compared to the solvent-assisted method, the reproducibility averaged over all sample was more uniform.
Subcycle dynamics of Coulomb asymmetry in strong elliptical laser fields.
Li, Min; Liu, Yunquan; Liu, Hong; Ning, Qicheng; Fu, Libin; Liu, Jie; Deng, Yongkai; Wu, Chengyin; Peng, Liang-You; Peng, Liangyou; Gong, Qihuang
2013-07-12
We measure photoelectron angular distributions of noble gases in intense elliptically polarized laser fields, which indicate strong structure-dependent Coulomb asymmetry. Using a dedicated semiclassical model, we have disentangled the contribution of direct ionization and multiple forward scattering on Coulomb asymmetry in elliptical laser fields. Our theory quantifies the roles of the ionic potential and initial transverse momentum on Coulomb asymmetry, proving that the small lobes of asymmetry are induced by direct ionization and the strong asymmetry is induced by multiple forward scattering in the ionic potential. Both processes are distorted by the Coulomb force acting on the electrons after tunneling. Lowering the ionization potential, the relative contribution of direct ionization on Coulomb asymmetry substantially decreases and Coulomb focusing on multiple rescattering is more important. We do not observe evident initial longitudinal momentum spread at the tunnel exit according to our simulation.
Sampling and analyte enrichment strategies for ambient mass spectrometry.
Li, Xianjiang; Ma, Wen; Li, Hongmei; Ai, Wanpeng; Bai, Yu; Liu, Huwei
2018-01-01
Ambient mass spectrometry provides great convenience for fast screening, and has showed promising potential in analytical chemistry. However, its relatively low sensitivity seriously restricts its practical utility in trace compound analysis. In this review, we summarize the sampling and analyte enrichment strategies coupled with nine modes of representative ambient mass spectrometry (desorption electrospray ionization, paper vhspray ionization, wooden-tip spray ionization, probe electrospray ionization, coated blade spray ionization, direct analysis in real time, desorption corona beam ionization, dielectric barrier discharge ionization, and atmospheric-pressure solids analysis probe) that have dramatically increased the detection sensitivity. We believe that these advances will promote routine use of ambient mass spectrometry. Graphical abstract Scheme of sampling stretagies for ambient mass spectrometry.
Prevosto, L; Kelly, H; Mancinelli, B
2013-12-01
This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.
Gu, Quanli; Knee, J L
2012-09-14
The relative ionization energies of tryptamine conformations are determined by zero kinetic energy photoelectron spectroscopy and photoionization efficiency measurements. The relative cationic conformational stabilities are compared to the published results for the neutral molecule. In the cation, the interaction strength changes significantly between amino group and either the phenyl or the pyrrole moiety of the indole chromophore where most of the positive charge is located, leading to different conformational structures and relative conformer energies in the cation. In particular, the measured adiabatic ionization potential of isomer B is 60,928 ± 5 cm(-1), at least 400 cm(-1) higher than any of the 6 other tryptamine isomers which all have ionization potentials within 200 cm(-1) of each other. In addition to the monomer, measurements were made on the A conformer of the tryptamine(+)-H(2)O complex including the ionization threshold and cation dissociation energy measured using a threshold photoionization fragmentation method. The water cluster exhibits an unexpectedly high ionization potential of 60,307 ± 100 cm(-1), close to the conformer A monomer of 60 320 ± 100 cm(-1). It also exhibits surprisingly low dissociation energy of 1750 ± 150 cm(-1) compared to other H-bonding involved cation-H(2)O complexes which are typically several thousands of wavenumbers higher. Quantum chemical calculations indicate that upon ionization the structure of the parent molecule in the water complex remains mostly unchanged due to the rigid intermolecular double hydrogen bonded water molecule bridging the monomer backbone and its side chain thus leading to the high ionization potential in the water cluster. The surprisingly low dissociation energy measured in the cationic water complex is attributed to the formation of a much more stable structural isomer H(+) in the exit channel.
NASA Astrophysics Data System (ADS)
de Guzman, C. P.; Andrianarijaona, M.; Lee, Y. S.; Andrianarijaona, V.
An extensive knowledge of the ionization energies of amino acids can provide vital information on protein sequencing, structure, and function. Acidic and basic amino acids are unique because they have three ionizable groups: the C-terminus, the N-terminus, and the side chain. The effects of multiple ionizable groups can be seen in how Aspartate's ionizable side chain heavily influences its preferred conformation (J Phys Chem A. 2011 April 7; 115(13): 2900-2912). Theoretical and experimental data on the ionization energies of many of these molecules is sparse. Considering each atom of the amino acid as a potential departing site for the electron gives insight on how the three ionizable groups affect the ionization process of the molecule and the dynamic coupling between the vibrational modes. In the following study, we optimized the structure of each acidic and basic amino acid then exported the three dimensional coordinates of the amino acids. We used ORCA to calculate single point energies for a region near the optimized coordinates and systematically went through the x, y, and z coordinates of each atom in the neutral and ionized forms of the amino acid. With the calculations, we were able to graph energy potential curves to better understand the quantum dynamic properties of the amino acids. The authors thank Pacific Union College Student Association for providing funds.
Yang, Wenjun; Huang, Jinfeng; Xiao, Bang; Liu, Yan; Zhu, Yiqing; Wang, Fang; Sun, Shuhan
2017-01-01
The increasing prevalence of ionizing radiation exposure has inevitably raised public concern over the potential detrimental effects of ionizing radiation on male reproductive system function. The detection of drug candidates to prevent reproductive system from damage caused by ionizing radiation is urgent. We aimed to investigate the protective role of taurine on the injury of mouse spermatocyte-derived cells (GC-2) subjected to ionizing radiation. mouse spermatocytes (GC-2 cells) were exposed to ionizing radiation with or without treatment of Taurine. The effect of ionizing radiation and Taurine treatment on GC-2 cells were evaluated by cell viability assay (CCK8), cell cycle and apoptosis. The relative protein abundance change was determined by Western blotting. The siRNA was used to explore whether Nrf2 signaling was involved in the cytoprotection of Taurine. Taurine significantly inhibited the decrease of cell viability, percentage of apoptotic cells and cell cycle arrest induced by ionizing radiation. Western blot analysis showed that taurine significantly limited the ionizing radiation-induced down-regulation of CyclinB1 and CDK1, and suppressed activation of Fas/FasL system pathway. In addition, taurine treatment significantly increased the expression of Nrf2 and HO-1 in GC-2 cells exposed to ionizing radiation, two components in antioxidant pathway. The above cytoprotection of Taurine was blocked by siNrf2. Our results demonstrate that taurine has the potential to effectively protect GC-2 cells from ionizing radiation- triggered damage via upregulation of Nrf2/HO-1 signaling. © 2017 The Author(s). Published by S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Sansonetti, J. E.
2012-03-01
Energy levels, with designations and uncertainties, have been compiled for the spectra of strontium (Z=38) ions from singly ionized to hydrogen-like. Wavelengths with classifications, intensities, and transition probabilities are also tabulated. In addition, ground states and ionization energies are listed. For many ionization stages experimental data are available; however for those for which only theoretical calculations or fitted values exist, these are reported. There are a few ionization stages for which only a calculated ionization potential is available.
NASA Technical Reports Server (NTRS)
Hartley, Frank T. (Inventor)
2007-01-01
An ion thrusting system is disclosed comprising an ionization membrane having at least one area through which a gas is passed, and which ionizes the gas molecules passing therethrough to form ions and electrons, and an accelerator element which accelerates the ions to form thrust. In some variations, a potential is applied to the ionization membrane may be reversed to thrust ions in an opposite direction. The ionization membrane may also include an opening with electrodes that are located closer than a mean free path of the gas being ionized. Methods of manufacture and use are also provided.
Ionization correction factors for H II regions in blue compact dwarf galaxies
NASA Astrophysics Data System (ADS)
Holovatyi, V. V.; Melekh, B. Ya.
2002-08-01
Energy distributions in the spectra of the ionizing nuclei of H II regions beyond λ <= 91.2 nm were calculated. A grid of photoionization models of 270 H II regions was constructed. The free parameters of the model grid are the hydrogen density nH in the nebular gas, filling factor, energy Lc-spectrum of ionizing nuclei, and metallicity. The chemical composition from the studies of Izotov et al. were used for model grid initialization. The integral linear spectra calculated for the photoionization models were used to determine the concentration ne, temperatures Te of electrons, and ionic concentrations n(A+i)/n(H+) by the nebular gas diagnostic method. The averaged relative ionic abundances n(A+i)/n(H+) thus calculated were used to determine new expressions for ionization correction factors which we recommend for the determination of abundances in the H II regions of blue compact dwarf galaxies.
Charge states of low energy ions from the sun. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Sciambi, R. K.
1975-01-01
Measurements of ionization states and energy spectra of carbon, oxygen, and iron accelerated in ten solar flare particle events are reported, for energies between 15 keV per nucleon and 600 keV per nucleon. The ionization states were remarkably constant from flare to flare, despite great variations in other event parameters. The mean ionization state for carbon was 5.7, for oxygen 6.2, and for iron 11.7, values which are similar to the respective ionization states in the solar wind. The time profile of the He/C+N+O ratio was examined, and it was found that the ratio was small early in the event, and increased with time. The energy spectra of the medium ions showed a flattening below 100 keV per nucleon, which was highly correlated with event size as measured by the event averaged flux of 130 to 220 keV protons.
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
At high altitudes and velocities equal to or greater than the geosynchronous return velocity (10 kilometers per second), the shock layer of a hypersonic flight will be in thermochemical nonequilibrium and partially ionized. The amount of ionization is determined by the velocity. For a trans atmospheric flight of 10 kilometers per second and at an altitude of 80 kilometers, a maximum of 1% ionization is expected. At a velocity of 12 - 17 kilometer per second, such as a Mars return mission, up to 30% of the atoms and molecules in the flow field will be ionized. Under those circumstances, electrons play an important role in determining the internal states of atoms and molecules in the flow field and hence the amount of radiative heat load and the distance it takes for the flow field to re-establish equilibrium. Electron collisions provide an effective means of transferring energy even when the electron number density is as low as 1%. Because the mass of an electron is 12,760 times smaller than the reduced mass of N2, its average speed, and hence its average collision frequency, is more than 100 times larger. Even in the slightly ionized regime with only 1% electrons, the frequency of electron-molecule collisions is equal to or larger than that of molecule-molecule collisions, an important consideration in the low density part of the atmosphere. Three electron-molecule collision processes relevant to hypersonic flows will be considered: (1) vibrational excitation/de-excitation of a diatomic molecule by electron impact, (2) electronic excitation/de-excitation, and (3) dissociative recombination in electron-diatomic ion collisions. A review of available data, both theory and experiment, will be given. Particular attention will be paid to tailoring the molecular physics to the condition of hypersonic flows. For example, the high rotational temperatures in a hypersonic flow field means that most experimental data carried out under room temperatures are not applicable. Also, the average electron temperature is expected to be between 10,000 and 20,000 K. Thus only data for low energy electrons are relevant to the model.
NASA Astrophysics Data System (ADS)
Guzman, F.; Marandet, Y.; Tamain, P.; Bufferand, H.; Ciraolo, G.; Ghendrih, Ph; Guirlet, R.; Rosato, J.; Valentinuzzi, M.
2015-12-01
In magnetized fusion devices, cross field impurity transport is often dominated by turbulence, in particular in the scrape-off layer. In these outer regions of the plasma, fluctuations of plasma parameters can be comparable to mean values, and the way ionization and recombination sources are treated in transport codes becomes questionnable. In fact, sources are calculated using the mean density and temperature values, with no account of fluctuations. In this work we investigate the modeling uncertainties introduced by this approximation, both qualitatively and quantitatively for the local ionization equilibrium. As a first step transport effects are neglected, and their role will be discussed in a companion paper. We show that temperature fluctuations shift the ionization balance towards lower temperatures, essentially because of the very steep temperature dependence of the ionization rate coefficients near the threshold. To reach this conclusion, a thorough analysis of the time scales involved is carried out, in order to devise a proper way of averaging over fluctuations. The effects are found to be substantial only for fairly large relative fluctuation levels for temperature, that is of the order of a few tens of percents.
Scaling Relations of Starburst-driven Galactic Winds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanner, Ryan; Cecil, Gerald; Heitsch, Fabian, E-mail: rytanner@augusta.edu
2017-07-10
Using synthetic absorption lines generated from 3D hydrodynamical simulations, we explore how the velocity of a starburst-driven galactic wind correlates with the star formation rate (SFR) and SFR density. We find strong correlations for neutral and low ionized gas, but no correlation for highly ionized gas. The correlations for neutral and low ionized gas only hold for SFRs below a critical limit set by the mass loading of the starburst, above which point the scaling relations flatten abruptly. Below this point the scaling relations depend on the temperature regime being probed by the absorption line, not on the mass loading.more » The exact scaling relation depends on whether the maximum or mean velocity of the absorption line is used. We find that the outflow velocity of neutral gas can be up to five times lower than the average velocity of ionized gas, with the velocity difference increasing for higher ionization states. Furthermore, the velocity difference depends on both the SFR and mass loading of the starburst. Thus, absorption lines of neutral or low ionized gas cannot easily be used as a proxy for the outflow velocity of the hot gas.« less
Direct Analysis of Large Living Organism by Megavolt Electrostatic Ionization Mass Spectrometry
NASA Astrophysics Data System (ADS)
Ng, Kwan-Ming; Tang, Ho-Wai; Man, Sin-Heng; Mak, Pui-Yuk; Choi, Yi-Ching; Wong, Melody Yee-Man
2014-09-01
A new ambient ionization method allowing the direct chemical analysis of living human body by mass spectrometry (MS) was developed. This MS method, namely Megavolt Electrostatic Ionization Mass Spectrometry, is based on electrostatic charging of a living individual to megavolt (MV) potential, illicit drugs, and explosives on skin/glove, flammable solvent on cloth/tissue paper, and volatile food substances in breath were readily ionized and detected by a mass spectrometer.
Direct analysis of large living organism by megavolt electrostatic ionization mass spectrometry.
Ng, Kwan-Ming; Tang, Ho-Wai; Man, Sin-Heng; Mak, Pui-Yuk; Choi, Yi-Ching; Wong, Melody Yee-Man
2014-09-01
A new ambient ionization method allowing the direct chemical analysis of living human body by mass spectrometry (MS) was developed. This MS method, namely Megavolt Electrostatic Ionization Mass Spectrometry, is based on electrostatic charging of a living individual to megavolt (MV) potential, illicit drugs, and explosives on skin/glove, flammable solvent on cloth/tissue paper, and volatile food substances in breath were readily ionized and detected by a mass spectrometer.
Development Status of the Helicon Hall Thruster
2009-09-15
Hall thruster , the Helicon Hall Thruster , is presented. The Helicon Hall Thruster combines the efficient ionization mechanism of a helicon source with the favorable plasma acceleration properties of a Hall thruster . Conventional Hall thrusters rely on direct current electron bombardment to ionize the flow in order to generate thrust. Electron bombardment typically results in an ionization cost that can be on the order of ten times the ionization potential, leading to reduced efficiency, particularly at low
[Ionizing and non-ionizing radiation (comparative risk estimations)].
Grigor'ev, Iu G
2012-01-01
The population has widely used mobile communication for already more than 15 years. It is important to note that the use of mobile communication has sharply changed the conditions of daily exposure of the population to EME We expose our brain daily for the first time in the entire civilization. The mobile phone is an open and uncontrollable source of electromagnetic radiation. The comparative risk estimation for the population of ionizing and non-ionizing radiation was carried out taking into account the real conditions of influence. Comparison of risks for the population of ionizing and non-ionizing radiation leads us to a conclusion that EMF RF exposure in conditions of wide use of mobile communication is potentially more harmful than ionizing radiation influence.
NASA Technical Reports Server (NTRS)
Hudgins, D. M.; Allamandola, L. J.
1999-01-01
The Ames infrared spectral database of isolated, neutral and ionized polycyclic aromatic hydrocarbons (PAHS) shows that aromatic CH out-of-plane bending frequencies are significantly shifted upon ionization. For solo- and duet-CH groups, the shift is pronounced and consistently toward higher frequencies. The solo-CH modes are blueshifted by an average of 27 cm-1 and the duet-CH modes by an average of 17 cm-1. For trio- and quartet-CH groups, the ionization shifts of the out-of-plane modes are more erratic and typically more modest. As a result of these ionization shifts, the solo-CH out-of-plane modes move out of the region classically associated with these vibrations in neutral PAHS, falling instead at frequencies well above those normally attributed to out-of-plane bending, vibrations of any type. In addition, for the compact PAHs studied, the duet-CH out-of-plane modes are shifted into the frequency range traditionally associated with the solo-CH modes. These results refine our understanding of the origin of the dominant interstellar infrared emission feature near 11.2 microns, whose envelope has traditionally been attributed only to the out-of-plane bending of solo-CH groups on PAHS, and provide a natural explanation for the puzzling emission feature near 11.0 microns within the framework of the PAH model. Specifically, the prevalent but variable long-wavelength wing or shoulder that is often observed near 11.4 microns likely reflects the contributions of duet-CH units in PAH cations. Also, these results indicate that the emission between 926 and 904 cm-1 (10.8 and 11.1 microns) observed in many sources can be unambiguously attributed to the out-of-plane wagging, of solo-CH units in moderately sized (fewer than 50 carbon atom) PAH cations, making this emission an unequivocal tracer of ionized interstellar PAHS.
Effect of the target power density on high-power impulse magnetron sputtering of copper
NASA Astrophysics Data System (ADS)
Kozák, Tomáš
2012-04-01
We present a model analysis of high-power impulse magnetron sputtering of copper. We use a non-stationary global model based on the particle and energy conservation equations in two zones (the high density plasma ring above the target racetrack and the bulk plasma region), which makes it possible to calculate time evolutions of the averaged process gas and target material neutral and ion densities, as well as the fluxes of these particles to the target and substrate during a pulse period. We study the effect of the increasing target power density under conditions corresponding to a real experimental system. The calculated target current waveforms show a long steady state and are in good agreement with the experimental results. For an increasing target power density, an analysis of the particle densities shows a gradual transition to a metal dominated discharge plasma with an increasing degree of ionization of the depositing flux. The average fraction of target material ions in the total ion flux onto the substrate is more than 90% for average target power densities higher than 500 W cm-2 in a pulse. The average ionized fraction of target material atoms in the flux onto the substrate reaches 80% for a maximum average target power density of 3 kW cm-2 in a pulse.
Ionizing and Nonionizing Radiation Protection. Module SH-35. Safety and Health.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This student module on ionizing and nonionizing radiation protection is one of 50 modules concerned with job safety and health. This module describes various types of ionizing and nonionizing radiation, and the situations in the workplace where potential hazards from radiation may exist. Following the introduction, 13 objectives (each keyed to a…
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Kim, Yong-Ki
1999-01-01
Based on the Binary-Encounter-Bethe (BEB) model, the advantage of using relativistic effective core potentials (RECP) in the calculation of total ionization cross sections of heavy atoms or molecules containing heavy atoms is discussed. Numerical examples for Ar, Kr, Xe, and WF6 are presented.
USDA-ARS?s Scientific Manuscript database
The administration of primaquine (PQ), an essential drug for treatment and radical cure of malaria, can lead to methemoglobin formation and life-threatening hemolysis for glucose-6-phosphate dehydrogenase deficient patients. The ionization potential (IP, a quantitative measure of the ability to lose...
Ionized gas at the edge of the central molecular zone
NASA Astrophysics Data System (ADS)
Langer, W. D.; Goldsmith, P. F.; Pineda, J. L.; Velusamy, T.; Requena-Torres, M. A.; Wiesemeyer, H.
2015-04-01
Context. The edge of the central molecular zone (CMZ) is the location where massive dense molecular clouds with large internal velocity dispersions transition to the surrounding more quiescent and lower CO emissivity region of the Galaxy. Little is known about the ionized gas surrounding the molecular clouds and in the transition region. Aims: We determine the properties of the ionized gas at the edge of the CMZ near Sgr E using observations of N+ and C+. Methods: We observed a small portion of the edge of the CMZ near Sgr E with spectrally resolved [C ii] 158 μm and [N ii] 205 μm fine structure lines at six positions with the GREAT instrument on SOFIA and in [C ii] using Herschel HIFI on-the-fly strip maps. We use the [N ii] spectra along with a radiative transfer model to calculate the electron density of the gas and the [C ii] maps to illuminate the morphology of the ionized gas and model the column density of CO-dark H2. Results: We detect two [C ii] and [N ii] velocity components, one along the line of sight to a CO molecular cloud at - 207 km s-1 associated with Sgr E and the other at -174 km s-1 outside the edge of another CO cloud. From the [N ii] emission we find that the average electron density is in the range of ~5 to 21 cm-3 for these features. This electron density is much higher than that of the disk's warm ionized medium, but is consistent with densities determined for bright diffuse H ii nebula. The column density of the CO-dark H2 layer in the -207 km s-1 cloud is ~1-2 × 1021 cm-2 in agreement with theoretical models. The CMZ extends further out in Galactic radius by ~7 to 14 pc in ionized gas than it does in molecular gas traced by CO. Conclusions: The edge of the CMZ likely contains dense hot ionized gas surrounding the neutral molecular material. The high fractional abundance of N+ and high electron density require an intense EUV field with a photon flux of order 106 to 107 photons cm-2 s-1, and/or efficient proton charge exchange with nitrogen, at temperatures of order 104 K, and/or a large flux of X-rays. Sgr E is a region of massive star formation as indicated by the presence of numerous compact H ii regions. The massive stars are potential sources of the EUV radiation that ionizes and heat the gas. In addition, X-ray sources and the diffuse X-ray emission in the CMZ are candidates for ionizing nitrogen.
NASA Astrophysics Data System (ADS)
Pietrzak, Robert; Konefał, Adam; Sokół, Maria; Orlef, Andrzej
2016-08-01
The success of proton therapy depends strongly on the precision of treatment planning. Dose distribution in biological tissue may be obtained from Monte Carlo simulations using various scientific codes making it possible to perform very accurate calculations. However, there are many factors affecting the accuracy of modeling. One of them is a structure of objects called bins registering a dose. In this work the influence of bin structure on the dose distributions was examined. The MCNPX code calculations of Bragg curve for the 60 MeV proton beam were done in two ways: using simple logical detectors being the volumes determined in water, and using a precise model of ionization chamber used in clinical dosimetry. The results of the simulations were verified experimentally in the water phantom with Marcus ionization chamber. The average local dose difference between the measured relative doses in the water phantom and those calculated by means of the logical detectors was 1.4% at first 25 mm, whereas in the full depth range this difference was 1.6% for the maximum uncertainty in the calculations less than 2.4% and for the maximum measuring error of 1%. In case of the relative doses calculated with the use of the ionization chamber model this average difference was somewhat greater, being 2.3% at depths up to 25 mm and 2.4% in the full range of depths for the maximum uncertainty in the calculations of 3%. In the dose calculations the ionization chamber model does not offer any additional advantages over the logical detectors. The results provided by both models are similar and in good agreement with the measurements, however, the logical detector approach is a more time-effective method.
The composition of heavy ions in solar energetic particle events
NASA Technical Reports Server (NTRS)
Fan, C. Y.; Gloeckler, G.; Hovestadt, D.
1983-01-01
Recent advances in determining the elemental, charge state, and isotopic composition of or approximate to 1 to or approximate to 20 MeV per nucleon ions in solar energetic particle (SEP) events and outline our current understanding of the nature of solar and interplanetary processes which may explain the observations. Average values of relative abundances measured in a large number of SEP events were found to be roughly energy independent in the approx. 1 to approx. 20 MeV per nucleon range, and showed a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs revealed the surprisingly common presence of energetic He(+) along with heavy ion with typically coronal ionization states. High resolution measurements of isotopic abundance ratios in a small number of SEP events showed these to be consistent with the universal composition except for the puzzling overabundance of the SEP(22)Ne/(20)Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of (3)He rich, heavy ion rich and carbon poor SEP events, along with direct measurements of the ionization states of SEPs provided essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production.
Element Abundance Ratios in the Quiet Sun Transition Region
NASA Astrophysics Data System (ADS)
Young, P. R.
2018-03-01
Element abundance ratios of magnesium to neon (Mg/Ne) and neon to oxygen (Ne/O) in the transition region of the quiet Sun have been derived by re-assessing previously published data from the Coronal Diagnostic Spectrometer on board the Solar and Heliospheric Observatory in the light of new atomic data. The quiet Sun Mg/Ne ratio is important for assessing the effect of magnetic activity on the mechanism of the first ionization potential (FIP) effect, while the Ne/O ratio can be used to infer the solar photospheric abundance of neon, which cannot be measured directly. The average Mg/Ne ratio is found to be 0.52 ± 0.11, which applies over the temperature region 0.2–0.7 MK, and is consistent with the earlier study. The Ne/O ratio is, however, about 40% larger, taking the value 0.24 ± 0.05 that applies to the temperature range 0.08–0.40 MK. The increase is mostly due to changes in ionization and recombination rates that affect the equilibrium ionization balance. If the Ne/O ratio is interpreted as reflecting the photospheric ratio, then the photospheric neon abundance is 8.08 ± 0.09 or 8.15 ± 0.10 (on a logarithmic scale for which hydrogen is 12), according to whether the oxygen abundances of M. Asplund et al. or E. Caffau et al. are used. The updated photospheric neon abundance implies a Mg/Ne FIP bias for the quiet Sun of 1.6 ± 0.6.
Stroganov, Oleg V; Novikov, Fedor N; Zeifman, Alexey A; Stroylov, Viktor S; Chilov, Ghermes G
2011-09-01
A new graph-theoretical approach called thermodynamic sampling of amino acid residues (TSAR) has been elaborated to explicitly account for the protein side chain flexibility in modeling conformation-dependent protein properties. In TSAR, a protein is viewed as a graph whose nodes correspond to structurally independent groups and whose edges connect the interacting groups. Each node has its set of states describing conformation and ionization of the group, and each edge is assigned an array of pairwise interaction potentials between the adjacent groups. By treating the obtained graph as a belief-network-a well-established mathematical abstraction-the partition function of each node is found. In the current work we used TSAR to calculate partition functions of the ionized forms of protein residues. A simplified version of a semi-empirical molecular mechanical scoring function, borrowed from our Lead Finder docking software, was used for energy calculations. The accuracy of the resulting model was validated on a set of 486 experimentally determined pK(a) values of protein residues. The average correlation coefficient (R) between calculated and experimental pK(a) values was 0.80, ranging from 0.95 (for Tyr) to 0.61 (for Lys). It appeared that the hydrogen bond interactions and the exhaustiveness of side chain sampling made the most significant contribution to the accuracy of pK(a) calculations. Copyright © 2011 Wiley-Liss, Inc.
First detection of winds in red giants by microwave continuum techniques
NASA Technical Reports Server (NTRS)
Drake, S. A.; Linsky, J. L.
1983-01-01
Eight red giants and supergiants have been observed at 4885 MHz (6 cm) with the Very Large Array in an attempt to detect continuum emission. The bright giant Alpha-1 Her (M5 II) was detected at an average flux density of 0.9 + or - 0.13 mJy. Since the likely source of this emission is an ionized, optically thick component of a stellar wind, this detection implies a mass loss rate of 2 x 10 to the -9th solar masses per yr for the ionized gas. The fraction of the outflow in Alpha-1 Her that is ionized (0.002-0.02) seems to be similar to that previously found for Alpha Ori and Alpha Sco A. Alpha Boo (K2 IIIp) and Beta Gem (K0 III) are probable and definite detections, respectively. The derived ionized mass loss rates for these two stars are about 1 x 10 to the -10th solar masses per yr, implying in the case of Alpha Boo that the wind is largely ionized.
Enhanced Ionization of Embedded Clusters by Electron-Transfer-Mediated Decay in Helium Nanodroplets.
LaForge, A C; Stumpf, V; Gokhberg, K; von Vangerow, J; Stienkemeier, F; Kryzhevoi, N V; O'Keeffe, P; Ciavardini, A; Krishnan, S R; Coreno, M; Prince, K C; Richter, R; Moshammer, R; Pfeifer, T; Cederbaum, L S; Mudrich, M
2016-05-20
We report the observation of electron-transfer-mediated decay (ETMD) involving magnesium (Mg) clusters embedded in helium (He) nanodroplets. ETMD is initiated by the ionization of He followed by removal of two electrons from the Mg clusters of which one is transferred to the He ion while the other electron is emitted into the continuum. The process is shown to be the dominant ionization mechanism for embedded clusters for photon energies above the ionization potential of He. For Mg clusters larger than five atoms we observe stable doubly ionized clusters. Thus, ETMD provides an efficient pathway to the formation of doubly ionized cold species in doped nanodroplets.
Method for discriminative particle selection
Post, Richard F.
1992-01-01
The invention is a method and means for separating ions or providing an ion beam. The invention generates ions of the isotopes to be separated, and then provides a traveling electric potential hill created by a sequential series of quasi static electric potential hills. By regulating the velocity and potential amplitude of the traveling electric potential hill ionized isotopes are selectively positively or negatively accelerated. Since the ionized isotopes have differing final velocities, the isotopes may be collected separately or used to produce an ion beam of a selected isotope.
Phosphorus ionization in silicon doped by self-assembled macromolecular monolayers
NASA Astrophysics Data System (ADS)
Wu, Haigang; Li, Ke; Gao, Xuejiao; Dan, Yaping
2017-10-01
Individual dopant atoms can be potentially controlled at large scale by the self-assembly of macromolecular dopant carriers. However, low concentration phosphorus dopants often suffer from a low ionization rate due to defects and impurities introduced by the carrier molecules. In this work, we demonstrated a nitrogen-free macromolecule doping technique and investigated the phosphorus ionization process by low temperature Hall effect measurements. It was found that the phosphorus dopants diffused into the silicon bulk are in nearly full ionization. However, the electrons ionized from the phosphorus dopants are mostly trapped by deep level defects that are likely carbon interstitials.
L -subshell ionization of Ce, Nd, and Lu by 4-10-MeV C ions
NASA Astrophysics Data System (ADS)
Lapicki, G.; Mandal, A. C.; Santra, S.; Mitra, D.; Sarkar, M.; Bhattacharya, D.; Sen, P.; Sarkadi, L.; Trautmann, D.
2005-08-01
Ll,Lα,Lβ,Lγ,Lγ1+5,Lγ2+3,Lγ4+4' x-ray production cross sections of Ce58 , Nd60 and Lu71 induced by 4-, 6-, 8-, and 10-MeV carbon ions were measured. For Lu, Lγ2+3 is separated from Lγ2+3+6 after revision of the technique of Datz so that Lγ1+5 was used instead of Lγ1 , the Lγ4+4'/Lγ1+5 ratio was corrected for multiple ionization, and uncertainties in Lγ4+4' were incorporated in the fitting process. L -subshell ionization cross sections were extracted as a weighted average from two combinations of these cross sections, {Lα,Lγ1+5,Lγ2+3} and {Lα,Lγ1+5,Lγ} . It is shown that, to within a few percent, the first of these two combinations results in the identical cross sections as this weighted average. Within 10%, permutations of different sets of single-hole atomic parameters yielded the same ionization cross sections. These cross sections are typically within 15% and at most 35% of the cross sections obtained with atomic parameters that were altered in two different ways for multiple ionization. Extracted subshell and total L -shell ionization cross sections as well as Ce and Nd data of Braziewicz are compared with the ECPSSR theory of Brandt and Lapicki that accounts for the energy-loss (E), Coulomb-deflection (C), perturbed-stationary-state (PSS) and relativistic (R) effects. These measurements are also compared with the ECPSSR theory after its corrections—in a separated and united atom (USA) treatment, and for the intrashell (IS) transitions with the factors of Sarkadi and Mukoyama normalized to match L -shell cross section with the sum of L -subshell cross sections—as well as with the similarly improved semiclassical approximation of Trautmann. For Ce and Nd, the agreement of the extracted ionization cross sections with these theories is poor for L1 and good for L2 , L3 , and total L shell ionization. For the L2 subshell, this agreement is better for Ce and Nd than for Lu. The ECPSSR theory corrected for the USA and IS effects is surprisingly good for the L1 -subshell ionization of Lu, while at 4MeV a similarly corrected semiclassical approximation is in excellent agreement with L2 and L3 data but overestimates the L1 measurement by almost a factor of 2.
Efficient and robust photo-ionization loading of beryllium ions
NASA Astrophysics Data System (ADS)
Wolf, Sebastian; Studer, Dominik; Wendt, Klaus; Schmidt-Kaler, Ferdinand
2018-02-01
We demonstrate the efficient generation of Be^+ ions with a 60 ns and 150 nJ laser pulse near 235 nm for two-step photo-ionization, proven by subsequent counting of the number of ions loaded into a linear Paul trap. The bandwidth and power of the laser pulse are chosen in such a way that a first, resonant step fully saturates the entire velocity distribution of beryllium atoms effusing from a thermal oven. The second excitation step is driven by the same light field causing efficient non-resonant ionization. Our ion-loading scheme has a similar efficiency as compared to former pathways using two-photon continuous wave laser excitation, but with an order of magnitude lower than average UV light power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aderogba, S.; Meacham, J.M.; Degertekin, F.L.
2005-05-16
Ultrasonic electrospray ionization (ESI) for high-throughput mass spectrometry is demonstrated using a silicon micromachined microarray. The device uses a micromachined ultrasonic atomizer operating in the 900 kHz-2.5 MHz range for droplet generation and a metal electrode in the fluid cavity for ionization. Since the atomization and ionization processes are separated, the ultrasonic ESI source shows the potential for operation at low voltages with a wide range of solvents in contrast with conventional capillary ESI technology. This is demonstrated using the ultrasonic ESI microarray to obtain the mass spectrum of a 10 {mu}M reserpine sample on a time of flight massmore » spectrometer with 197:1 signal-to-noise ratio at an ionization potential of 200 V.« less
Thomas, Brian C; Goracke, Byron D
2016-01-01
Astrophysical ionizing radiation events such as supernovae, gamma-ray bursts, and solar proton events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in solar UV radiation at Earth's surface and in the upper levels of the ocean. Other work has also considered the potential impact of nitric acid rainout, concluding that no significant threat is likely. Not yet studied to date is the potential impact of ozone produced in the lower atmosphere following an ionizing radiation event. Ozone is a known irritant to organisms on land and in water and therefore may be a significant additional hazard. Using previously completed atmospheric chemistry modeling, we examined the amount of ozone produced in the lower atmosphere for the case of a gamma-ray burst and found that the values are too small to pose a significant additional threat to the biosphere. These results may be extended to other ionizing radiation events, including supernovae and extreme solar proton events.
Update on Bio-Refining and Nanocellulose Composite Materials Manufacturing.
Postek, Michael T; Poster, Dianne L
2017-01-01
Nanocellulose is a high value material that has gained increasing attention because of its high strength, stiffness, unique photonic and piezoelectric properties, high stability and uniform structure. One of the factors limiting the potential of nanocellulose and the vast array of potential new products is the ability to produce high-volume quantities of this nano-material. However, recent research has demonstrated that nanocellulose can be efficently produced in large volumes from wood at relatively low cost by the incorporation of ionizing radiation in the process stream. Ionizing radiation causes significant break down of the polysaccharides and leads to the production of potentially useful gaseous products such as H 2 and CO. Ionizing radiation processing remains an open field, ripe for innovation and application. This presentation will review the strong collaboration between the National Institute of Standards and Technology (NIST) and its academic partners pursuing the demonstration of applied ionizing radiation processing to plant materials for the manufacturing and characterization of novel nanomaterials.
Update on Bio-Refining and Nanocellulose Composite Materials Manufacturing
Postek, Michael T.; Poster, Dianne L.
2017-01-01
Nanocellulose is a high value material that has gained increasing attention because of its high strength, stiffness, unique photonic and piezoelectric properties, high stability and uniform structure. One of the factors limiting the potential of nanocellulose and the vast array of potential new products is the ability to produce high-volume quantities of this nano-material. However, recent research has demonstrated that nanocellulose can be efficently produced in large volumes from wood at relatively low cost by the incorporation of ionizing radiation in the process stream. Ionizing radiation causes significant break down of the polysaccharides and leads to the production of potentially useful gaseous products such as H2 and CO. Ionizing radiation processing remains an open field, ripe for innovation and application. This presentation will review the strong collaboration between the National Institute of Standards and Technology (NIST) and its academic partners pursuing the demonstration of applied ionizing radiation processing to plant materials for the manufacturing and characterization of novel nanomaterials. PMID:29225398
Update on bio-refining and nanocellulose composite materials manufacturing
NASA Astrophysics Data System (ADS)
Postek, Michael T.; Poster, Dianne L.
2017-08-01
Nanocellulose is a high value material that has gained increasing attention because of its high strength, stiffness, unique photonic and piezoelectric properties, high stability and uniform structure. One of the factors limiting the potential of nanocellulose and the vast array of potential new products is the ability to produce high-volume quantities of this nano-material. However, recent research has demonstrated that nanocellulose can be efficently produced in large volumes from wood at relatively low cost by the incorporation of ionizing radiation in the process stream. Ionizing radiation causes significant break down of the polysaccharides and leads to the production of potentially useful gaseous products such as H2 and CO. Ionizing radiation processing remains an open field, ripe for innovation and application. This presentation will review the strong collaboration between the National Institute of Standards and Technology (NIST) and its academic partners pursuing the demonstration of applied ionizing radiation processing to plant materials for the manufacturing and characterization of novel nanomaterials.
Code of Practice for the Use of Ionizing Radiations in Secondary Schools.
ERIC Educational Resources Information Center
National Health and Medical Research Council, Canberra (Australia).
The appreciation of the potential hazard of ionizing radiation led to the setting up of national, and later, international commissions for the defining of standards of protection for the occupationally exposed worker in the use of ionizing radiation. However, in the last twenty years, with the large scale development of nuclear energy, the need…
Electron induced inelastic and ionization cross section for plasma modeling
NASA Astrophysics Data System (ADS)
Verma, Pankaj; Mahato, Dibyendu; Kaur, Jaspreet; Antony, Bobby
2016-09-01
The present paper reports electron impact total inelastic and ionization cross section for silicon, germanium, and tin tetrahalides at energies varying from ionization threshold of the target to 5000 eV. These cross section data over a wide energy domain are very essential to understand the physico-chemical processes involved in various environments such as plasma modeling, semiconductor etching, atmospheric sciences, biological sciences, and radiation physics. However, the cross section data on the above mentioned molecules are scarce. In the present article, we report the computation of total inelastic cross section using spherical complex optical potential formalism and the estimation of ionization cross section through a semi-empirical method. The present ionization cross section result obtained for SiCl4 shows excellent agreement with previous measurements, while other molecules have not yet been investigated experimentally. Present results show more consistent behaviour than previous theoretical estimates. Besides cross sections, we have also studied the correlation of maximum ionization cross section with the square root of the ratio of polarizability to ionization potential for the molecules with known polarizabilities. A linear relation is observed between these quantities. This correlation is used to obtain approximate polarizability volumes for SiBr4, SiI4, GeCl4, GeBr4, and GeI4 molecules.
Effects of neutral gas releases on electron beam injection from electrically tethered spacecraft
NASA Technical Reports Server (NTRS)
Winglee, R. M.
1990-01-01
The presence of high neutral densities at low altitudes and/or during thruster firings is known to modify the spacecraft potential during active electron beam injection. Two-dimensional (three velocity) particle simulations are used to investigate the ionization processes including the neutral density required, the modification of the spacecraft potential, beam profile and spatial distribution of the return current into the spacecraft. Three processes are identified: (1) beam-induced ionization, (2) vehicle-induced ionization, and (3) beam plasma discharge. Only in the first two cases does the beam propagate away with little distortion.
Apparatus and method for selective area deposition of thin films on electrically biased substrates
Zuhr, R.A.; Haynes, T.E.; Golanski, A.
1994-10-11
An ion beam deposition process for selective area deposition on a polarized substrate uses a potential applied to the substrate which allows the ionized particles to reach into selected areas for film deposition. Areas of the substrate to be left uncoated are held at a potential that repels the ionized particles. 3 figs.
Apparatus and method for selective area deposition of thin films on electrically biased substrates
Zuhr, R.A.; Haynes, T.E.; Golanski, A.
1999-06-08
An ion beam deposition process for selective area deposition on a polarized substrate uses a potential applied to the substrate which allows the ionized particles to reach into selected areas for film deposition. Areas of the substrate to be left uncoated are held at a potential that repels the ionized particles. 3 figs.
Apparatus and method for selective area deposition of thin films on electrically biased substrates
Zuhr, Raymond A.; Haynes, Tony E.; Golanski, Andrzej
1999-01-01
An ion beam deposition process for selective area deposition on a polarized substrate uses a potential applied to the substrate which allows the ionized particles to reach into selected areas for film deposition. Areas of the substrate to be left uncoated are held at a potential that repells the ionized particles.
Apparatus and method for selective area deposition of thin films on electrically biased substrates
Zuhr, Raymond A.; Haynes, Tony E.; Golanski, Andrzej
1994-01-01
An ion beam deposition process for selective area deposition on a polarized substrate uses a potential applied to the substrate which allows the ionized particles to reach into selected areas for film deposition. Areas of the substrate to be left uncoated are held at a potential that repells the ionized particles.
The relative abundances of Sn, Te, Xe, Ba and Ce. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Krombel, K. E.
1983-01-01
Elements with even atomic number (Z) in the interval 50 or = Z or = 58 were resolved in the cosmic radiation using the Heavy Nuclei Experiment on the HEAO-3 satellite. Their relative abundances were compared with the results expected from pure r-process material, pure s-process material, and solar system material, both with and without a modification due to possible first ionization potential effects. Such effects may be the result of the preferential acceleration, and hence enhancement in the cosmic rays, of those elements having low first ionization potentials. Measurements were found to be inconsistent with pure r-process material at the greater than 98% confidence level whether or not the first ionization potential adjustments are made.
Zhang, W F; Tang, S H; Tan, Q; Liu, Y M
2016-08-20
Objective: To investigate radioactive source term dose monitoring and estimation results in a manufacturing enterprise of ion-absorbing type rare earth ore and the possible ionizing radiation dose received by its workers. Methods: Ionizing radiation monitoring data of the posts in the control area and supervised area of workplace were collected, and the annual average effective dose directly estimated or estimated using formulas was evaluated and analyzed. Results: In the control area and supervised area of the workplace for this rare earth ore, α surface contamination activity had a maximum value of 0.35 Bq/cm 2 and a minimum value of 0.01 Bq/cm 2 ; β radioactive surface contamination activity had a maximum value of 18.8 Bq/cm 2 and a minimum value of 0.22 Bq/cm 2 . In 14 monitoring points in the workplace, the maximum value of the annual average effective dose of occupational exposure was 1.641 mSv/a, which did not exceed the authorized limit for workers (5 mSv/a) , but exceeded the authorized limit for general personnel (0.25 mSv/a) . The radionuclide specific activity of ionic mixed rare earth oxides was determined to be 0.9. Conclusion: The annual average effective dose of occupational exposure in this enterprise does not exceed the authorized limit for workers, but it exceeds the authorized limit for general personnel. We should pay attention to the focus of the radiation process, especially for public works radiation.
NASA Astrophysics Data System (ADS)
Swanson, Kenneth D.; Spencer, Sandra E.; Glish, Gary L.
2017-06-01
Extractive electrospray ionization is an ambient ionization technique that allows real-time sampling of liquid samples, including organic aerosols. Similar to electrospray ionization, the composition of the electrospray solvent used in extractive electrospray ionization can easily be altered to form metal cationized molecules during ionization simply by adding a metal salt to the electrospray solvent. An increase in sensitivity is observed for some molecules that are lithium, sodium, or silver cationized compared with the protonated molecule formed in extractive electrospray ionization with an acid additive. Tandem mass spectrometry of metal cationized molecules can also significantly improve the ability to identify a compound. Tandem mass spectrometry of lithium and silver cationized molecules can result in an increase in the number and uniqueness of dissociation pathways relative to [M + H]+. These results highlight the potential for extractive electrospray ionization with metal cationization in analyzing complex aerosol mixtures. [Figure not available: see fulltext.
Scarlatti, Francesca; Sala, Giusy; Ricci, Clara; Maioli, Claudio; Milani, Franco; Minella, Marco; Botturi, Marco; Ghidoni, Riccardo
2007-08-08
Radiotherapy is an established therapeutic modality for prostate cancer. Since it is well known that radiotherapy is limited due to its severe toxicity towards normal cells at high dose and minimal effect at low dose, the search for biological compounds that increase the sensitivity of tumors cells to radiation may improve the efficacy of therapy. Resveratrol, a natural antioxidant, was shown to inhibit carcinogenesis in animal models, and to block the process of tumor initiation and progression. The purpose of this study was to examine whether or not resveratrol can sensitize DU145, an androgen-independent human prostate cancer cell line, to ionizing radiation. We report here that DU145 cells are resistant to ionizing radiation-induced cell death, but pretreatment with resveratrol significantly enhances cell death. Resveratrol acts synergistically with ionizing radiation to inhibit cell survival in vitro. Resveratrol also potentiates ionizing radiation-induced ceramide accumulation, by promoting its de novo biosynthesis. This confirms ceramide as an effective mediator of the anticancer potential induced by resveratrol.
Marolla, Ana Paula Cleto; Waisberg, Jaques; Saba, Gabriela Tognini; Waisberg, Daniel Reis; Margeotto, Fernando Beani; Pinhal, Maria Aparecida da Silva
2015-01-01
To determine the presence of glycosaminoglycans in the extracellular matrix of connective tissue from neoplastic and non-neoplastic colorectal tissues, since it has a central role in tumor development and progression. Tissue samples from neoplastic and non-neoplastic colorectal tissues were obtained from 64 operated patients who had colorectal carcinoma with no distant metastases. Expressions of heparan sulphate, chondroitin sulphate, dermatan sulphate and their fragments were analyzed by electrospray ionization mass spectrometry, with the technique for extraction and quantification of glycosaminoglycans after proteolysis and electrophoresis. The statistical analysis included mean, standard deviation, and Student'st test. The glycosaminoglycans extracted from colorectal tissue showed three electrophoretic bands in agarose gel. Electrospray ionization mass spectrometry showed characteristic disaccharide fragments from glycosaminoglycans, indicating their structural characterization in the tissues analyzed. Some peaks in the electrospray ionization mass spectrometry were not characterized as fragments of sugars, indicating the presence of fragments of the protein structure of proteoglycans generated during the glycosaminoglycan purification. The average amount of chondroitin and dermatan increased in the neoplastic tissue compared to normal tissue (p=0.01). On the other hand, the average amount of heparan decreased in the neoplastic tissue compared to normal tissue (p= 0.03). The method allowed the determination of the glycosaminoglycans structural profile in colorectal tissue from neoplastic and non-neoplastic colorectal tissue. Neoplastic tissues showed greater amounts of chondroitin sulphate and dermatan sulphate compared to non-neoplastic tissues, while heparan sulphate was decreased in neoplastic tissues.
Fukuyama, Yuko; Kolender, Adriana A; Nishioka, Masae; Nonami, Hiroshi; Matulewicz, María C; Erra-Balsells, Rosa; Cerezo, Alberto S
2005-01-01
Three xylan fractions isolated from the red seaweed Nothogenia fastigiata (Nemaliales) were analyzed by ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (UV-MALDI-TOFMS). UV-MALDI-TOFMS was carried out in the linear and reflectron modes, and as routine in the positive and negative ion modes. Of the several matrices tested, nor-harmane was the only effective one giving good spectra in the positive ion mode. The number-average molar masses of two of the fractions, calculated from the distribution profiles, were lower than those determined previously by (1)H NMR analysis, suggesting a decrease in the ionization efficiency with increasing molecular weight; weight-average molar mass and polydispersity index were also determined. As the xylans retained small but significant quantities of calcium salts, the influence of added Ca(2+) as CaCl(2) on UV-MALDI-MS was investigated. The simultaneous addition of sodium chloride and calcium chloride was also analyzed. Addition of sodium chloride did not change the distribution profile of the native sample showing that the inhibitory effect is due to Ca(2+) and not to Cl(-). Addition of calcium chloride with 1:1 analyte/salt molar ratio gave spectra with less efficient desorption/ionization of oligomers; the signals of these oligomers were completely suppressed when the addition of the salt became massive (1:100 analyte/salt molar ratio). Copyright (c) 2005 John Wiley & Sons, Ltd.
Laser stripping of hydrogen atoms by direct ionization
Brunetti, E.; Becker, W.; Bryant, H. C.; ...
2015-05-08
Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to generate proton beams without stripping foils. The time-dependent Schrödinger equation describing the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a broad range of laser wavelengths, durations and energies. Parameters are identified where the Doppler frequency up-shift of radiation colliding with relativistic particles can lead to efficient ionization over large volumes and broad bandwidths using currently available lasers.
Laser stripping of hydrogen atoms by direct ionization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunetti, E.; Becker, W.; Bryant, H. C.
Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to generate proton beams without stripping foils. The time-dependent Schrödinger equation describing the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a broad range of laser wavelengths, durations and energies. Parameters are identified where the Doppler frequency up-shift of radiation colliding with relativistic particles can lead to efficient ionization over large volumes and broad bandwidths using currently available lasers.
Sanders, Charles L.
2012-01-01
Ultra-low doses and dose- rates of ionizing radiation are effective in preventing disease which suggests that they also may be effective in treating disease. Limited experimental and anecdotal evidence indicates that low radiation doses from radon in mines and spas, thorium-bearing monazite sands and enhanced radioactive uranium ore obtained from a natural geological reactor may be useful in treating many inflammatory conditions and proliferative disorders, including cancer. Optimal therapeutic applications were identified via a literature survey as dose-rates ranging from 7 to 11μGy/hr or 28 to 44 times world average background rates. Rocks from an abandoned uranium mine in Utah were considered for therapeutic application and were examined by γ-ray and laser-induced breakdown fluorescence spectroscopy. The rocks showed the presence of transuranics and fission products with a γ-ray energy profile similar to aged spent uranium nuclear fuel (93% dose due to β particles and 7% due to γ rays). Mud packs of pulverized uranium ore rock dust in sealed plastic bags delivering bag surface β,γ dose-rates of 10–450 μGy/h were used with apparent success to treat several inflammatory and proliferative conditions in humans. PMID:23304108
Black Phosphorus (BP) Nanodots for Potential Biomedical Applications.
Lee, Hyun Uk; Park, So Young; Lee, Soon Chang; Choi, Saehae; Seo, Soonjoo; Kim, Hyeran; Won, Jonghan; Choi, Kyuseok; Kang, Kyoung Suk; Park, Hyun Gyu; Kim, Hee-Sik; An, Ha Rim; Jeong, Kwang-Hun; Lee, Young-Chul; Lee, Jouhahn
2016-01-13
Recently, the appeal of 2D black phosphorus (BP) has been rising due to its unique optical and electronic properties with a tunable band gap (≈0.3-1.5 eV). While numerous research efforts have recently been devoted to nano- and optoelectronic applications of BP, no attention has been paid to promising medical applications. In this article, the preparation of BP-nanodots of a few nm to <20 nm with an average diameter of ≈10 nm and height of ≈8.7 nm is reported by a modified ultrasonication-assisted solution method. Stable formation of nontoxic phosphates and phosphonates from BP crystals with exposure in water or air is observed. As for the BP-nanodot crystals' stability (ionization and persistence of fluorescent intensity) in aqueous solution, after 10 d, ≈80% at 1.5 mg mL(-1) are degraded (i.e., ionized) in phosphate buffered saline. They showed no or little cytotoxic cell-viability effects in vitro involving blue- and green-fluorescence cell imaging. Thus, BP-nanodots can be considered a promising agent for drug delivery or cellular tracking systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of the Carrier-Envelope Phase in the Multiphoton Ionization Regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Takashi; Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581; Watanabe, Shuntaro
2006-06-02
We theoretically investigate the effects of the carrier-envelope phase of few-cycle laser pulses in the multiphoton ionization regime. For atoms with low ionization potential, total ionization yield barely exhibits phase dependence, as expected. However, population of some bound states clearly shows phase dependence. This implies that the measurement of the carrier-envelope phase would be possible through the photoemission between bound states without energy-and-angle-resolved photoelectron detection. The considered scheme could be particularly useful to measure the carrier-envelope phase for a light source without an amplifier, such as a laser oscillator, which cannot provide sufficient pulse energy to induce tunneling ionization.
Lísa, Miroslav; Holcapek, Michal
2008-07-11
Optimized non-aqueous reversed-phase high-performance liquid chromatography method using acetonitrile-2-propanol gradient elution and the column coupling in the total length of 45 cm has been applied for the high resolution separation of plant oils important in food industry, dietetics and cosmetics. Positive-ion atmospheric pressure chemical ionization mass spectrometry is used for the unambiguous identification and also the reliable quantitation with the response factors approach. Based on the precise determination of individual triacyglycerol concentrations, the calculation of average parameters important in the nutrition is performed, i.e. average carbon number, average double bond number, relative concentrations of essential, saturated, monounsaturated and polyunsaturated fatty acids. Results are reported in the form of both chromatographic fingerprints and tables containing relative concentrations for all triacylglycerols and fatty acids in individual samples. In total, 264 triacylglycerols consisting of 28 fatty acids with the alkyl chain length from 6 to 26 carbon atoms and 0 to 4 double bonds have been identified in 26 industrial important plant oils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurahashi, Naoya; Horio, Takuya; Suzuki, Toshinori, E-mail: suzuki@kuchem.kyoto-u.ac.jp
2014-05-07
The streaming potentials of liquid beams of aqueous NaCl, NaBr, and NaI solutions are measured using soft X-ray, He(I), and laser multiphoton ionization photoelectron spectroscopy. Gaseous molecules are ionized in the vicinity of liquid beams and the photoelectron energy shifts are measured as a function of the distance between the ionization point and the liquid beam. The streaming potentials change their polarity with concentration of electrolytes, from which the singular points of concentration eliminating the streaming potentials are determined. The streaming currents measured in air also vanish at these concentrations. The electron binding energies of liquid water and I{sup −},more » Br{sup −}, and Cl{sup −} anions are revisited and determined more accurately than in previous studies.« less
Measurement of charged-particle stopping in warm-dense plasma
Zylstra, A. B.; Frenje, J. A.; Grabowski, P. E.; ...
2015-05-27
We measured the stopping of energetic protons in an isochorically-heated solid-density Be plasma with an electron temperature of ~32 eV, corresponding to moderately-coupled [(e²/a/(k BT e + E F ) ~ 0.3] and moderately-degenerate [k BT e/E F ~2] 'warm dense matter' (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad-hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is themore » first test of these theories in WDM plasma.« less
Verma, Prakash; Bartlett, Rodney J
2014-05-14
This paper's objective is to create a "consistent" mean-field based Kohn-Sham (KS) density functional theory (DFT) meaning the functional should not only provide good total energy properties, but also the corresponding KS eigenvalues should be accurate approximations to the vertical ionization potentials (VIPs) of the molecule, as the latter condition attests to the viability of the exchange-correlation potential (VXC). None of the prominently used DFT approaches show these properties: the optimized effective potential VXC based ab initio dft does. A local, range-separated hybrid potential cam-QTP-00 is introduced as the basis for a "consistent" KS DFT approach. The computed VIPs as the negative of KS eigenvalue have a mean absolute error of 0.8 eV for an extensive set of molecule's electron ionizations, including the core. Barrier heights, equilibrium geometries, and magnetic properties obtained from the potential are in good agreement with experiment. A similar accuracy with less computational efforts can be achieved by using a non-variational global hybrid variant of the QTP-00 approach.
NASA Astrophysics Data System (ADS)
Suresha, B. L.; Sumantha, H. S.; Salman, K. Mohammed; Pramod, N. G.; Abhiram, J.
2018-04-01
The ionization potential is usually found to be less in acid and more in base. The experiment proves that the ionization potential increases on dilution of acid to base and reduces from base to acid. The potential can be tailored according to the desired properties based on our choice of acid or base. The experimental study establishes a direct relationship between pH and electric potential. This work provides theoretical insights on the need for a basic media of pH 10 in chemical thin film growth techniques called Chemical Bath Deposition Techniques.
NASA Technical Reports Server (NTRS)
Kovalenko, L. J.; Philippoz, J.-M.; Bucenell, J. R.; Zenobi, R.; Zare, R. N.
1991-01-01
The distribution of PAHs in the Allende meteorite has been measured using two-step laser desorption and laser multiphoton-ionization mass spectrometry. This method enables in situ analysis (with a spatial resolution of 1 mm or better) of selected organic molecules. Results show that PAH concentrations are locally high compared to the average concentration found by analysis of pulverized samples, and are found primarily in the fine-grained matrix; no PAHs were detected in the interiors of individual chondrules at the detection limit (about 0.05 ppm).
Energetic electrons in the midlatitude nighttime E region
NASA Technical Reports Server (NTRS)
Smith, L. G.; Geller, M. A.; Voss, H. D.
1973-01-01
Nike Apache 14.439 was launched from Wallops Island at 0003 EST on 1 November 1972, a very disturbed night (K sub P = 8). A Geiger counter in the payload detected electrons ( keV) with a maximum flux of 1086 + or -261/sq cm/sec/ster. The height-averaged ionization rate in the upper E region is calculated from the measured electron density profile and has a value of 35 1/cu/cm/sec. The ionization rate can be reconciled with the observed flux of electrons ( 70 2 keV) if the spectrum ( keV) is of the form J ( E) = J sub O exp(-E/E sub O) with E sub O equal to 8.3 keV. The ionization rate on this and other nights is found to be strongly dependent on geomagnetic activity. It is suggested that energetic electrons are the principal source of ionization at midlatitudes in the upper E region near midnight, even under rather quiet geomagnetic conditions.
Stokes-attenuated tunneling ionization of molecules
NASA Astrophysics Data System (ADS)
Kornev, Aleksei S.; Zon, Boris A.
2018-03-01
We set forth the quantum theory of ionic vibrational-level population by means of tunneling ionization of a molecule. Specific calculations are carried out for the H2 molecule. The results are in qualitative agreement with the experimental data [X. Urbain et al., Phys. Rev. Lett. 92, 163004 (2004), 10.1103/PhysRevLett.92.163004]. Our account for the excited vibrational levels reveals an interplay of two tendencies which contribute to the ionization rate: (i) It decreases due to additional energy absorption needed to populate these states and (ii) it increases together with the Franck-Condon factors which are large for these states. We show that these two tendencies practically compensate each other. The average quantitative disagreement between the theory and experiment amounts to ˜30 %. The same disagreement takes place when using the frozen approximation for the description of the nuclei motion. We demonstrated that the light-dressing effect for H2 leads to the dependence of the ionization rate on the angle between the molecule axis and the polarization vector of the radiation.
Gain properties of doped GaAs/AlGaAs multiple quantum well avalanche photodiode structures
NASA Technical Reports Server (NTRS)
Menkara, H. M.; Wagner, B. K.; Summers, C. J.
1995-01-01
A comprehensive characterization has been made of the static and dynamical response of conventional and multiple quantum well (MQW) avalanche photodiodes (APDs). Comparison of the gain characteristics at low voltages between the MQW and conventional APDs show a direct experimental confirmation of a structure-induced carrier multiplication due to interband impact ionization. Similar studies of the bias dependence of the excess noise characteristics show that the low-voltage gain is primarily due to electron ionization in the MQW-APDS, and to both electron and hole ionization in the conventional APDS. For the doped MQW APDS, the average gain per stage was calculated by comparing gain data with carrier profile measurements, and was found to vary from 1.03 at low bias to 1.09 near avalanche breakdown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anders, Andre
2014-12-07
The fundamental question of how energy is supplied to a magnetron discharge is commonly answered by the Penning-Thornton paradigm invoking secondary electrons. Huo et al. (Plasma Sources Sci. Technol. 22, 045005, (2013)) used a global discharge model to show that electron heating in the electric field of the magnetic presheath is dominant. In this contribution, this concept is applied locally taking into account the electric potential structure of ionization zones. Images of ionization zones can and should be interpreted as diagrams of the localization of electric potential and related electron energy, where certain collisions promote or dampen their formation.
The lowest ionization potentials of Al2
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Barnes, Leslie A.; Taylor, Peter R.
1988-01-01
Potential curves for the lowest two electronic states (X 2 sigma g + and A 2 pi u) of Al2(+) were computed using complete active space SCF/multireference CI wave functions and large Gaussian basis sets. The lowest observable vertical ionization potential (to Al2(+) X 2 sigma g +) of the Al2 X 3 pi u ground state is calculated to occur around 6.1 eV, in excellent agreement with the experimental range of 6.0 to 6.42 eV obtained in recent cluster ionization studies by Cox and co-workers. The second vertical ionization potential (to Al2(+) A 2 pi u) occurs near 6.4 eV, also within the experimental range. The adiabatic IP of 5.90 eV is in good agreement with the value of 5.8 to 6.1 eV deduced by Hanley and co-workers from the difference in thresholds between collision induced dissociation processes of Al3(+). The computed IP values are somewhat larger than those deduced from branching ratios in cluster fragmentation experiments by Jarrold and co-workers. The observation of an ionization threshold below 6.42 eV is shown to be incompatible with an Al2 ground electronic state assignment of 3 sigma g -, but the separation between the two lowest states of Al2 is so small that it is likely that both are populated in the experiments, so that this does not provide unambiguous support for the recent theoretical assignment of the ground state as 3 pi u.
Atomic structure data based on average-atom model for opacity calculations in astrophysical plasmas
NASA Astrophysics Data System (ADS)
Trzhaskovskaya, M. B.; Nikulin, V. K.
2018-03-01
Influence of the plasmas parameters on the electron structure of ions in astrophysical plasmas is studied on the basis of the average-atom model in the local thermodynamic equilibrium approximation. The relativistic Dirac-Slater method is used for the electron density estimation. The emphasis is on the investigation of an impact of the plasmas temperature and density on the ionization stages required for calculations of the plasmas opacities. The level population distributions and level energy spectra are calculated and analyzed for all ions with 6 ≤ Z ≤ 32 occurring in astrophysical plasmas. The plasma temperature range 2 - 200 eV and the density range 2 - 100 mg/cm3 are considered. The validity of the method used is supported by good agreement between our values of ionization stages for a number of ions, from oxygen up to uranium, and results obtained earlier by various methods among which are more complicated procedures.
Measurements on the development of cascades in a tungsten-scintillator ionization spectrometer
NASA Technical Reports Server (NTRS)
Cheshire, D. L.; Huggett, R. W.; Johnson, D. P.; Jones, W. V.; Rountree, S. P.; Schmidt, W. K. H.; Kurz, R. J.; Bowen, T.; Delise, D. A.; Krider, E. P.
1975-01-01
The response of a tungsten-scintillator ionization spectrometer to accelerated particle beams has been investigated. Results obtained from exposure of the approx. 1000 g/sq cm apparatus to 5, 10, and 15 GeV/c electrons and pions as well as to 2.1 GeV/nucleon C-12 and O-16 ions are presented. These results include cascade-development curves, fractions of the primary energy measured by the spectrometer, and resolutions of the apparatus for measuring the primary energies. For 15 GeV/c electrons, an average of about 82% of the incident energy is measured by the apparatus with resolution (normal standard deviation) of about 6%. For 15 GeV/c pions, an average of about 65% of the incident energy is measured with resolution of about 18%. The energy resolution improves with increasing energy and with increasing depth of the spectrometer.
Recombination of H3(+) and D3(+) Ions in a Flowing Afterglow Plasma
NASA Technical Reports Server (NTRS)
Gougousi, T.; Johnsen, R.; Golde, M. F.
1995-01-01
The analysis of flowing afterglow plasmas containing H3(+) or D3(+) ions indicates that the de-ionization of such plasmas does not occur by simple dissociative recombination of ions with electrons. An alternative model of de-ionization is proposed in which electrons are captured into H3(**) auto-ionization Rydberg states that are stabilized by collisional mixing of the Rydberg molecules' angular momenta. The proposed mechanism would enable de-ionization to occur without the need for dissociative recombination by the mechanisms of potential-surface crossings.
Multiphoton Ionization Mass and Photoelectron Spectroscopy.
1984-07-01
tracted information about ion vibrational energy levels. Molecules studted include benzene, toluene, aniline, paradifluorobenzene, nitric oxide ...molecules or subgroups and not to others. Ion specific electrodes play an analogous role in electro - chemistry. The prospect of selectively ionizing a... acetaldehyde and butyraldehyde have been studied at the KrF and ArF laser wavelengths. Their ionization potentials are 10.2 and 9.8 eV, respectively
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drzymala, R; Alvarez, P; Bednarz, G
2015-06-15
Purpose: The purpose of this multi-institutional study was to compare two new gamma stereotactic radiosurgery (GSRS) dosimetry protocols to existing calibration methods. The ultimate goal was to guide AAPM Task Group 178 in recommending a standard GSRS dosimetry protocol. Methods: Nine centers (ten GSRS units) participated in the study. Each institution made eight sets of dose rate measurements: six with two different ionization chambers in three different 160mm-diameter spherical phantoms (ABS plastic, Solid Water and liquid water), and two using the same ionization chambers with a custom in-air positioning jig. Absolute dose rates were calculated using a newly proposed formalismmore » by the IAEA working group for small and non-standard radiation fields and with a new air-kerma based protocol. The new IAEA protocol requires an in-water ionization chamber calibration and uses previously reported Monte-Carlo generated factors to account for the material composition of the phantom, the type of ionization chamber, and the unique GSRS beam configuration. Results obtained with the new dose calibration protocols were compared to dose rates determined by the AAPM TG-21 and TG-51 protocols, with TG-21 considered as the standard. Results: Averaged over all institutions, ionization chambers and phantoms, the mean dose rate determined with the new IAEA protocol relative to that determined with TG-21 in the ABS phantom was 1.000 with a standard deviation of 0.008. For TG-51, the average ratio was 0.991 with a standard deviation of 0.013, and for the new in-air formalism it was 1.008 with a standard deviation of 0.012. Conclusion: Average results with both of the new protocols agreed with TG-21 to within one standard deviation. TG-51, which does not take into account the unique GSRS beam configuration or phantom material, was not expected to perform as well as the new protocols. The new IAEA protocol showed remarkably good agreement with TG-21. Conflict of Interests: Paula Petti, Josef Novotny, Gennady Neyman and Steve Goetsch are consultants for Elekta Instrument A/B; Elekta Instrument AB, PTW Freiburg GmbH, Standard Imaging, Inc., and The Phantom Laboratory, Inc. loaned equipment for use in these experiments; The University of Wisconsin Accredited Dosimetry Calibration Laboratory provided calibration services.« less
Laser resonance ionization spectroscopy of antimony
NASA Astrophysics Data System (ADS)
Li, R.; Lassen, J.; Ruczkowski, J.; Teigelhöfer, A.; Bricault, P.
2017-02-01
The resonant ionization laser ion source is an element selective, efficient and versatile ion source to generate radioactive ion beams at on-line mass separator facilities. For some elements with complex atomic structures and incomplete spectroscopic data, laser spectroscopic investigations are required for ionization scheme development. Laser resonance ionization spectroscopy using Ti:Sa lasers has been performed on antimony (Sb) at TRIUMF's off-line laser ion source test stand. Laser light of 230.217 nm (vacuum wavelength) as the first excitation step and light from a frequency-doubled Nd:YVO4 laser (532 nm) as the nonresonant ionization step allowed to search for suitable second excitation steps by continuous wavelength scans from 720 nm to 920 nm across the wavelength tuning range of a grating-tuned Ti:Sa laser. Upon the identification of efficient SES, the third excitation steps for resonance ionization were investigated by laser scans across Rydberg states, the ionization potential and autoionizing states. One Rydberg state and six AI states were found to be well suitable for efficient resonance ionization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barraclough, Brendan; Lebron, Sharon; Li, Jonathan G.
2016-05-15
Purpose: To investigate the geometry dependence of the detector response function (DRF) of three commonly used scanning ionization chambers and its impact on a convolution-based method to address the volume averaging effect (VAE). Methods: A convolution-based approach has been proposed recently to address the ionization chamber VAE. It simulates the VAE in the treatment planning system (TPS) by iteratively convolving the calculated beam profiles with the DRF while optimizing the beam model. Since the convolved and the measured profiles are subject to the same VAE, the calculated profiles match the implicit “real” ones when the optimization converges. Three DRFs (Gaussian,more » Lorentzian, and parabolic function) were used for three ionization chambers (CC04, CC13, and SNC125c) in this study. Geometry dependent/independent DRFs were obtained by minimizing the difference between the ionization chamber-measured profiles and the diode-measured profiles convolved with the DRFs. These DRFs were used to obtain eighteen beam models for a commercial TPS. Accuracy of the beam models were evaluated by assessing the 20%–80% penumbra width difference (PWD) between the computed and diode-measured beam profiles. Results: The convolution-based approach was found to be effective for all three ionization chambers with significant improvement for all beam models. Up to 17% geometry dependence of the three DRFs was observed for the studied ionization chambers. With geometry dependent DRFs, the PWD was within 0.80 mm for the parabolic function and CC04 combination and within 0.50 mm for other combinations; with geometry independent DRFs, the PWD was within 1.00 mm for all cases. When using the Gaussian function as the DRF, accounting for geometry dependence led to marginal improvement (PWD < 0.20 mm) for CC04; the improvement ranged from 0.38 to 0.65 mm for CC13; for SNC125c, the improvement was slightly above 0.50 mm. Conclusions: Although all three DRFs were found adequate to represent the response of the studied ionization chambers, the Gaussian function was favored due to its superior overall performance. The geometry dependence of the DRFs can be significant for clinical applications involving small fields such as stereotactic radiotherapy.« less
Barraclough, Brendan; Li, Jonathan G; Lebron, Sharon; Fan, Qiyong; Liu, Chihray; Yan, Guanghua
2016-05-01
To investigate the geometry dependence of the detector response function (DRF) of three commonly used scanning ionization chambers and its impact on a convolution-based method to address the volume averaging effect (VAE). A convolution-based approach has been proposed recently to address the ionization chamber VAE. It simulates the VAE in the treatment planning system (TPS) by iteratively convolving the calculated beam profiles with the DRF while optimizing the beam model. Since the convolved and the measured profiles are subject to the same VAE, the calculated profiles match the implicit "real" ones when the optimization converges. Three DRFs (Gaussian, Lorentzian, and parabolic function) were used for three ionization chambers (CC04, CC13, and SNC125c) in this study. Geometry dependent/independent DRFs were obtained by minimizing the difference between the ionization chamber-measured profiles and the diode-measured profiles convolved with the DRFs. These DRFs were used to obtain eighteen beam models for a commercial TPS. Accuracy of the beam models were evaluated by assessing the 20%-80% penumbra width difference (PWD) between the computed and diode-measured beam profiles. The convolution-based approach was found to be effective for all three ionization chambers with significant improvement for all beam models. Up to 17% geometry dependence of the three DRFs was observed for the studied ionization chambers. With geometry dependent DRFs, the PWD was within 0.80 mm for the parabolic function and CC04 combination and within 0.50 mm for other combinations; with geometry independent DRFs, the PWD was within 1.00 mm for all cases. When using the Gaussian function as the DRF, accounting for geometry dependence led to marginal improvement (PWD < 0.20 mm) for CC04; the improvement ranged from 0.38 to 0.65 mm for CC13; for SNC125c, the improvement was slightly above 0.50 mm. Although all three DRFs were found adequate to represent the response of the studied ionization chambers, the Gaussian function was favored due to its superior overall performance. The geometry dependence of the DRFs can be significant for clinical applications involving small fields such as stereotactic radiotherapy.
Viidanoja, Jyrki
2015-02-27
A new method for quantification of short chain C1-C6 carboxylic acids in vegetable oils and fats by employing Liquid Chromatography Mass Spectrometry (LC-MS) has been developed. The method requires minor sample preparation and applies non-conventional Electrospray Ionization (ESI) liquid phase chemistry. Samples are first dissolved in chloroform and then extracted using water that has been spiked with stable isotope labeled internal standards that are used for signal normalization and absolute quantification of selected acids. The analytes are separated using Ion Exclusion Chromatography (IEC) and detected with Electrospray Ionization Mass Spectrometry (ESI-MS) as deprotonated molecules. Prior to ionization the eluent that contains hydrochloric acid is modified post-column to ensure good ionization efficiency of the analytes. The averaged within run precision and between run precision were generally lower than 8%. The accuracy was between 85 and 115% for most of the analytes. The Lower Limit of Quantification (LLOQ) ranged from 0.006 to 7mg/kg. It is shown that this method offers good selectivity in cases where UV detection fails to produce reliable results. Copyright © 2015 Elsevier B.V. All rights reserved.
Developing hybrid approaches to predict pKa values of ionizable groups
Witham, Shawn; Talley, Kemper; Wang, Lin; Zhang, Zhe; Sarkar, Subhra; Gao, Daquan; Yang, Wei
2011-01-01
Accurate predictions of pKa values of titratable groups require taking into account all relevant processes associated with the ionization/deionization. Frequently, however, the ionization does not involve significant structural changes and the dominating effects are purely electrostatic in origin allowing accurate predictions to be made based on the electrostatic energy difference between ionized and neutral forms alone using a static structure. On another hand, if the change of the charge state is accompanied by a structural reorganization of the target protein, then the relevant conformational changes have to be taken into account in the pKa calculations. Here we report a hybrid approach that first predicts the titratable groups, which ionization is expected to cause conformational changes, termed “problematic” residues, then applies a special protocol on them, while the rest of the pKa’s are predicted with rigid backbone approach as implemented in multi-conformation continuum electrostatics (MCCE) method. The backbone representative conformations for “problematic” groups are generated with either molecular dynamics simulations with charged and uncharged amino acid or with ab-initio local segment modeling. The corresponding ensembles are then used to calculate the pKa of the “problematic” residues and then the results are averaged. PMID:21744395
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santoro, R.T.; Peelle, R.W.
1964-03-01
Two thin helium-filled parallel-plate ionization chambers were designed for use in continuously monitoring the 160-Mev proton beam of the Harvard University Synchrocyclotron over an intensity range from 10/sup 5/ to 10/sup 10/ protons/ sec. The ionlzation chambers were calibrated by two independert methods. In four calibrations the charge collected in the ionization chambers was compared with that deposited in a Faraday cup which followed the ionization chambers in the proton beam. In a second method, a calibration was made by individually counting beam protons with a pnir of thin scintillation detectors. The ionization chamber response was found to be flatmore » within 2% for a five-decade range of beam intensity. Comparison of the Faraday-cup calibrations with that from proton counting shows agreement to within 5%, which is considered satisfactory. The experimental results were also in agreement, within estimated errors, with the ionization chamber response calculated using an accepted value of the average energy loss per ion pair for helium. A slow shift in the calibrations with time is ascribed to a gradual contamination of the helium of the chambers by air leakage. (auth)« less
Nuclear Fission Investigation with Twin Ionization Chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeynalova, O.; Zeynalov, Sh.; Nazarenko, M.
2011-11-29
The purpose of the present paper was to report the recent results, obtained in development of digital pulse processing mathematics for prompt fission neutron (PFN) investigation using twin ionization chamber (TIC) along with fast neutron time-of-flight detector (ND). Due to well known ambiguities in literature (see refs. [4, 6, 9 and 11]), concerning a pulse induction on TIC electrodes by FF ionization, we first presented detailed mathematical analysis of fission fragment (FF) signal formation on TIC anode. The analysis was done using Ramo-Shockley theorem, which gives relation between charged particle motion between TIC electrodes and so called weighting potential. Weightingmore » potential was calculated by direct numerical solution of Laplace equation (neglecting space charge) for the TIC geometry and ionization, caused by FF. Formulae for grid inefficiency (GI) correction and digital pulse processing algorithms for PFN time-of-flight measurements and pulse shape analysis are presented and discussed.« less
Simplified Numerical Description of SPT Operations
NASA Technical Reports Server (NTRS)
Manzella, David H.
1995-01-01
A simplified numerical model of the plasma discharge within the SPT-100 stationary plasma thruster was developed to aid in understanding thruster operation. A one dimensional description was used. Non-axial velocities were neglected except for the azimuthal electron velocity. A nominal operating condition of 4.5 mg/s of xenon anode flow was considered with 4.5 Amperes of discharge current, and a peak radial magnetic field strength of 130 Gauss. For these conditions, the calculated results indicated ionization fractions of 0.99 near the thruster exit with a potential drop across the discharge of approximately 250 Volts. Peak calculated electron temperatures were found to be sensitive to the choice of total ionization cross section for ionization of atomic xenon by electron bombardment and ranged from 51 eV to 60 eV. The calculated ionization fraction, potential drop, and electron number density agree favorably with previous experiments. Calculated electron temperatures are higher than previously measured.
Detection limits of organic compounds achievable with intense, short-pulse lasers.
Miles, Jordan; De Camillis, Simone; Alexander, Grace; Hamilton, Kathryn; Kelly, Thomas J; Costello, John T; Zepf, Matthew; Williams, Ian D; Greenwood, Jason B
2015-06-21
Many organic molecules have strong absorption bands which can be accessed by ultraviolet short pulse lasers to produce efficient ionization. This resonant multiphoton ionization scheme has already been exploited as an ionization source in time-of-flight mass spectrometers used for environmental trace analysis. In the present work we quantify the ultimate potential of this technique by measuring absolute ion yields produced from the interaction of 267 nm femtosecond laser pulses with the organic molecules indole and toluene, and gases Xe, N2 and O2. Using multiphoton ionization cross sections extracted from these results, we show that the laser pulse parameters required for real-time detection of aromatic molecules at concentrations of one part per trillion in air and a limit of detection of a few attomoles are achievable with presently available commercial laser systems. The potential applications for the analysis of human breath, blood and tissue samples are discussed.
NASA Astrophysics Data System (ADS)
El Ghazi, Haddou; John Peter, A.
2017-04-01
Hydrogenic-like donor-impurity related self and induced polarizations, bending energy and photo-ionization cross section in spherical core/shell zinc blende (In,Ga)N/GaN are computed. Based on the variational approach and within effective-mass and one parabolic approximations, the calculations are made under finite potential barrier taking into account of the discontinuity of the effective-mass and the constant dielectric. The photo-ionization cross section is studied according to the photon incident energy considering the effects of hydrostatic pressure, applied electric field, structure's radius, impurity's position and indium composition in the core. It is obtained that the influences mentioned above lead to either blue shifts or redshifts of the resonant peak of the photo-ionization cross section spectrum. The unusual behavior related to the structure radius is discussed which is as a consequence of the finite potential confinement. We have shown that the photo-ionization cross section can be controlled with adjusting the internal and external factors. These properties can be useful for producing some device applications such as quantum dot infrared photodetectors.
Tachikawa, Hiroto
2017-06-30
Reactions of water dimer cation (H2O)2+ following ionization have been investigated by means of a direct ab initio molecular dynamics method. In particular, the effects of zero point vibration and zero point energy (ZPE) on the reaction mechanism were considered in this work. Trajectories were run on two electronic potential energy surfaces (PESs) of (H2O)2+: ground state ( 2 A″-like state) and the first excited state ( 2 A'-like state). All trajectories on the ground-state PES lead to the proton-transferred product: H 2 O + (Wd)-H 2 O(Wa) → OH(Wd)-H 3 O + (Wa), where Wd and Wa refer to the proton donor and acceptor water molecules, respectively. Time of proton transfer (PT) varied widely from 15 to 40 fs (average time of PT = 30.9 fs). The trajectories on the excited-state PES gave two products: an intermediate complex with a face-to-face structure (H 2 O-OH 2 ) + and a PT product. However, the proton was transferred to the opposite direction, and the reverse PT was found on the excited-state PES: H 2 O(Wd)-H 2 O + (Wa) → H 3 O + (Wd)-OH(Wa). This difference occurred because the ionizing water molecule in the dimer switched between the ground and excited states. The reaction mechanism of (H2O)2+ and the effects of ZPE are discussed on the basis of the results. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Contribution of inner shell Compton ionization to the X-ray fluorescence line intensity
NASA Astrophysics Data System (ADS)
Fernández, Jorge E.; Scot, Viviana; Di Giulio, Eugenio
2016-10-01
The Compton effect is a potential ionization mechanism of atoms. It produces vacancies in inner shells that are filled with the same mechanism of atomic relaxation as the one following photo-absorption. This contribution to X-ray fluorescence emission is frequently neglected because the total Compton cross-section is apparently much lower than the photoelectric one at useful X-ray energies. However, a more careful analysis suggests that is necessary to consider single shell cross sections (instead of total cross sections) as a function of energy. In this article these Compton cross sections are computed for the shells K, L1-L3 and M1-M5 in the framework of the impulse approximation. By comparing the Compton and the photoelectric cross-section for each shell it is then possible to determine the extent of the Compton correction to the intensity of the corresponding characteristic lines. It is shown that for the K shell the correction becomes relevant for excitation energies which are too high to be influent in X-ray spectrometry. In contrast, for L and M shells the Compton contribution is relevant for medium-Z elements and medium energies. To illustrate the different grades of relevance of the correction, for each ionized shell, the energies for which the Compton contribution reaches the extent levels of 1, 5, 10, 20, 50 and 100% of the photoelectric one are determined for all the elements with Z = 11-92. For practical applications it is provided a simple formula and fitting coefficients to compute average correction levels for the shells considered.
Miniature Oxidizer Ionizer for a Fuel Cell
NASA Technical Reports Server (NTRS)
Hartley, Frank
2006-01-01
A proposed miniature device for ionizing the oxygen (or other oxidizing gas) in a fuel cell would consist mostly of a membrane ionizer using the same principles as those of the device described in the earlier article, Miniature Bipolar Electrostatic Ion Thruster (NPO-21057). The oxidizing gas would be completely ionized upon passage through the holes in the membrane ionizer. The resulting positively charged atoms or molecules of oxidizing gas could then, under the influence of the fringe fields of the ionizer, move toward the fuel-cell cathode that would be part of a membrane/electrode assembly comprising the cathode, a solid-electrolyte membrane, and an anode. The electro-oxidized state of the oxidizer atoms and molecules would enhance transfer of them through the cathode, thereby reducing the partial pressure of the oxidizer gas between the ionizer and the fuel-cell cathode, thereby, in turn, causing further inflow of oxidizer gas through the holes in the membrane ionizer. Optionally the ionizer could be maintained at a positive electric potential with respect to the cathode, in which case the resulting electric field would accelerate the ions toward the cathode.
High-frequency, high-intensity photoionization
NASA Astrophysics Data System (ADS)
Reiss, H. R.
1996-02-01
Two analytical methods for computing ionization by high-frequency fields are compared. Predicted ionization rates compare well, but energy predictions for the onset of ionization differ radically. The difference is shown to arise from the use of a transformation in one of the methods that alters the zero from which energy is measured. This alteration leads to an apparent energy threshold for ionization that can, especially in the stabilization regime, differ strongly from the laboratory measurement. It is concluded that channel closings in intense-field ionization can occur at high as well as low frequencies. It is also found that the stabilization phenomenon at high frequencies, very prominent for hydrogen, is absent in a short-range potential.
Marolla, Ana Paula Cleto; Waisberg, Jaques; Saba, Gabriela Tognini; Waisberg, Daniel Reis; Margeotto, Fernando Beani; Pinhal, Maria Aparecida da Silva
2015-01-01
ABSTRACT Objective To determine the presence of glycosaminoglycans in the extracellular matrix of connective tissue from neoplastic and non-neoplastic colorectal tissues, since it has a central role in tumor development and progression. Methods Tissue samples from neoplastic and non-neoplastic colorectal tissues were obtained from 64 operated patients who had colorectal carcinoma with no distant metastases. Expressions of heparan sulphate, chondroitin sulphate, dermatan sulphate and their fragments were analyzed by electrospray ionization mass spectrometry, with the technique for extraction and quantification of glycosaminoglycans after proteolysis and electrophoresis. The statistical analysis included mean, standard deviation, and Student’s t test. Results The glycosaminoglycans extracted from colorectal tissue showed three electrophoretic bands in agarose gel. Electrospray ionization mass spectrometry showed characteristic disaccharide fragments from glycosaminoglycans, indicating their structural characterization in the tissues analyzed. Some peaks in the electrospray ionization mass spectrometry were not characterized as fragments of sugars, indicating the presence of fragments of the protein structure of proteoglycans generated during the glycosaminoglycan purification. The average amount of chondroitin and dermatan increased in the neoplastic tissue compared to normal tissue (p=0.01). On the other hand, the average amount of heparan decreased in the neoplastic tissue compared to normal tissue (p= 0.03). Conclusion The method allowed the determination of the glycosaminoglycans structural profile in colorectal tissue from neoplastic and non-neoplastic colorectal tissue. Neoplastic tissues showed greater amounts of chondroitin sulphate and dermatan sulphate compared to non-neoplastic tissues, while heparan sulphate was decreased in neoplastic tissues. PMID:26761548
NASA Astrophysics Data System (ADS)
Muir, B. R.; McEwen, M. R.; Rogers, D. W. O.
2014-10-01
A method is presented to obtain ion chamber calibration coefficients relative to secondary standard reference chambers in electron beams using depth-ionization measurements. Results are obtained as a function of depth and average electron energy at depth in 4, 8, 12 and 18 MeV electron beams from the NRC Elekta Precise linac. The PTW Roos, Scanditronix NACP-02, PTW Advanced Markus and NE 2571 ion chambers are investigated. The challenges and limitations of the method are discussed. The proposed method produces useful data at shallow depths. At depths past the reference depth, small shifts in positioning or drifts in the incident beam energy affect the results, thereby providing a built-in test of incident electron energy drifts and/or chamber set-up. Polarity corrections for ion chambers as a function of average electron energy at depth agree with literature data. The proposed method produces results consistent with those obtained using the conventional calibration procedure while gaining much more information about the behavior of the ion chamber with similar data acquisition time. Measurement uncertainties in calibration coefficients obtained with this method are estimated to be less than 0.5%. These results open up the possibility of using depth-ionization measurements to yield chamber ratios which may be suitable for primary standards-level dissemination.
Zeng, Jiaolong; Yuan, Jianmin
2007-08-01
Calculation details of radiative opacity for lowly ionized gold plasmas by using our developed fully relativistic detailed level-accounting approach are presented to show the importance of accurate atomic data for a quantitative reproduction of the experimental observations. Even though a huge number of transition lines are involved in the radiative absorption of high- Z plasmas so that one believes that statistical models can often give a reasonable description of their opacities, we first show in detail that an adequate treatment of physical effects, in particular the configuration interaction (including the core-valence electron correlation), is essential to produce atomic data of bound-bound and bound-free processes for gold plasmas, which are accurate enough to correctly explain the relative intensity of two strong absorption peaks experimentally observed located near photon energy of 70 and 80 eV. A detailed study is also carried out for gold plasmas of an average ionization degree sequence of 10, for both spectrally resolved opacities and Rosseland and Planck means. For comparison, results obtained by using an average atom model are also given to show that even for a relatively higher density of matter, correlation effects are also important to predict the correct positions of absorption peaks of transition arrays.
INTERSTELLAR PICK-UP IONS OBSERVED BETWEEN 11 AND 22 AU BY NEW HORIZONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randol, B. M.; McComas, D. J.; Schwadron, N. A., E-mail: brentrandol@gmail.com
We report new observations by the Solar Wind Around Pluto instrument on the New Horizons spacecraft, which measures energy per charge (E/q) spectra of solar wind and interstellar pick-up ions (PUIs) between 11 AU and 22 AU from the Sun. The data provide an unprecedented look at PUIs as there have been very few measurements of PUIs beyond 10 AU. We analyzed the PUI part of the spectra by comparing them to the classic Vasyliunas and Siscoe PUI model. Our analysis indicates that PUIs are usually well-described by this distribution. We derive parameters relevant to PUI studies, such as themore » ionization rate normalized to 1 AU. Our result for the average ionization rate between 11 and 12 AU agrees with an independently derived average value found during the same time. Later, we find a general increase in the ionization rate, which is consistent with the increase in solar activity. We also calculate the PUI thermal pressure, which appears to be roughly consistent with previous results. Through fitting of the solar wind proton peaks in our spectra, we derive solar wind thermal pressures. Based on our analysis, we predict a ratio of PUI thermal pressure to solar wind thermal pressure just inside the termination shock to be between 100 and >1000.« less
Lennon, John D; Cole, Scott P; Glish, Gary L
2006-12-15
A new approach has been developed to analyze synthetic polymers via electrospray ionization mass spectrometry. Ion/molecule reactions, a unique feature of trapping instruments such as quadrupole ion trap mass spectrometers, can be used to chemically deconvolute the molecular mass distribution of polymers from the charge-state distribution generated by electrospray ionization. The reaction involves stripping charge from multiply charged oligomers to reduce the number of charge states. This reduces or eliminates the overlapping of oligomers from adjacent charge states. 15-Crown-5 was used to strip alkali cations (Na+) from several narrow polydisperse poly(ethylene glycol) standards. The charge-state distribution of each oligomer is reduced to primarily one charge state. Individual oligomers can be resolved, and the average molecular mass and polydispersities can be calculated for the polymers examined here. In most cases, the measured number-average molecular mass values are within 10% of the manufacturers' reported values obtained by gel permeation chromatography. The polydispersity was typically underestimated compared to values reported by the suppliers. Mn values were obtained with 0.5% RSD and are independent, over several orders of magnitude, of the polymer and cation concentration. The distributions that were obtained fit quite well to the Gaussian distribution indicating no high- or low-mass discriminations.
Dauster, Ingo; Suhm, Martin A; Buck, Udo; Zeuch, Thomas
2008-01-07
Methanol clusters are generated in a continuous He-seeded supersonic expansion and doped with sodium atoms in a pick-up cell. By this method, clusters of the type Na(CH(3)OH)(n) are formed and subsequently photoionized by applying a tunable dye-laser system. The microsolvation process of the Na 3s electron is studied by determining the ionization potentials (IPs) of these clusters size-selectively for n = 2-40. A decrease is found from n = 2 to 6 and a constant value of 3.19 +/- 0.07 eV for n = 6-40. The experimentally-determined ionization potentials are compared with ionization potentials derived from quantum-chemical calculations, assuming limiting vertical and adiabatic processes. In the first case, energy differences are calculated between the neutral and the ionized cationic clusters of the same geometry. In the second case, the ionized clusters are used in their optimized relaxed geometry. These energy differences and relative stabilities of isomeric clusters vary significantly with the applied quantum-chemical method (B3LYP or MP2). The comparison with the experiment for n = 2-7 reveals strong variations of the ionization potential with the cluster structure indicating that structural diversity and non-vertical pathways give significant signal contributions at the threshold. Based on these findings, a possible explanation for the remarkable difference in IP evolutions of methanol or water and ammonia is presented: for methanol and water a rather localized surface or semi-internal Na 3s electron is excited to either high Rydberg or more localized states below the vertical ionization threshold. This excitation is followed by a local structural relaxation that couples to an autoionization process. For small clusters with n < 6 for methanol and n < 4 for water the addition of solvent molecules leads to larger solvent-metal-ion interaction energies, which consequently lead to lower ionization thresholds. For n = 6 (methanol) and n = 4 (water) this effect comes to a halt, which may be connected with the completion of the first cationic solvation shell limiting the release of local relaxation energy. For Na(NH(3))(n), a largely delocalized and internal electron is excited to autoionizing electronic states, a process that is no longer local and consequently may depend on cluster size up to very large n.
NASA Astrophysics Data System (ADS)
Shivaei, Irene; Reddy, Naveen A.; Siana, Brian; Shapley, Alice E.; Kriek, Mariska; Mobasher, Bahram; Freeman, William R.; Sanders, Ryan L.; Coil, Alison L.; Price, Sedona H.; Fetherolf, Tara; Azadi, Mojegan; Leung, Gene; Zick, Tom
2018-03-01
We combine Hα and Hβ spectroscopic measurements and UV photometry for a sample of 673 galaxies from the MOSDEF survey to constrain hydrogen-ionizing photon production efficiencies ({ξ }ion}) at z = 1.4–2.6. We find < {log}({ξ }ion}/[{{{s}}}-1/{erg} {{{s}}}-1 {Hz}}-1])> = 25.06 (25.34), assuming the Calzetti (SMC) curve for the UV dust correction and a scatter of 0.28 dex in the {ξ }ion} distribution. After accounting for observational uncertainties and variations in dust attenuation, we conclude that the remaining scatter in {ξ }ion} is likely dominated by galaxy-to-galaxy variations in stellar populations, including the slope and upper-mass cutoff of the initial mass function, stellar metallicity, star formation burstiness, and stellar evolution (e.g., single/binary star evolution). Moreover, {ξ }ion} is elevated in galaxies with high ionization states (high [O III]/[O II]) and low oxygen abundances (low [N II]/Hα and high [O III]/Hβ) in the ionized ISM. However, {ξ }ion} does not correlate with the offset from the z ∼ 0 star-forming locus in the BPT diagram, suggesting no change in the hardness of the ionizing radiation accompanying the offset from the z ∼ 0 sequence. We also find that galaxies with blue UV spectral slopes (< β > =-2.1) have {ξ }ion} elevated by a factor of ∼2 relative to the average {ξ }ion} of the sample (< β > =-1.4). If these blue galaxies are similar to those at z > 6, our results suggest that a lower Lyman-continuum escape fraction is required for galaxies to maintain reionization, compared to the canonical {ξ }ion} predictions from stellar population models. Furthermore, we demonstrate that even with robustly dust-corrected Hα, the UV dust attenuation can cause on average a ∼0.3 dex systematic uncertainty in {ξ }ion} calculations.
Milman, Boris L
2005-01-01
A library consisting of 3766 MS(n) spectra of 1743 compounds, including 3126 MS2 spectra acquired mainly using ion trap (IT) and triple-quadrupole (QqQ) instruments, was composed of numerous collections/sources. Ionization techniques were mainly electrospray ionization and also atmospheric pressure chemical ionization and chemical ionization. The library was tested for the performance in identification of unknowns, and in this context this work is believed to be the largest of all known tests of product-ion mass spectral libraries. The MS2 spectra of the same compounds from different collections were in turn divided into spectra of 'unknown' and reference compounds. For each particular compound, library searches were performed resulting in selection by taking into account the best matches for each spectral collection/source. Within each collection/source, replicate MS2 spectra differed in the collision energy used. Overall, there were up to 950 search results giving the best match factors and their ranks in corresponding hit lists. In general, the correct answers were obtained as the 1st rank in up to 60% of the search results when retrieved with (on average) 2.2 'unknown' and 6.2 reference replicates per compound. With two or more replicates of both 'unknown' and reference spectra (the average numbers of replicates were 4.0 and 7.8, respectively), the fraction of correct answers in the 1st rank increased to 77%. This value is close to the performance of established electron ionization mass spectra libraries (up to 79%) found by other workers. The hypothesis that MS2 spectra better match reference spectra acquired using the same type of tandem mass spectrometer (IT or QqQ) was neither strongly proved nor rejected here. The present work shows that MS2 spectral libraries containing sufficiently numerous different entries for each compound are sufficiently efficient for identification of unknowns and suitable for use with different tandem mass spectrometers. 2005 John Wiley & Sons, Ltd.
Atmospheric Ionizing Radiation and Human Exposure
NASA Technical Reports Server (NTRS)
Wilson, John W.; Mertens, Christopher J.; Goldhagen, Paul; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.
2005-01-01
Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes. especially along the coastal plain and interior low lands, and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.
Atmospheric Ionizing Radiation and Human Exposure
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Goldhagen, P.; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.
2004-01-01
Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes especially along the coastal plain and interior low lands and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.
IONIZING RADIATION EXPOSURE OF THE POPULATION OF THE U.S.
This report updates information published by the National Council on Radiation Protection and Measurements (NCRP) in 1987. NCRP reports are considered the authoritative reference for the sources and magnitude of average background exposure to the U.S. population.
NASA Astrophysics Data System (ADS)
Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Gobbi, B.; Grim, G. P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L. S.; Pernicka, M.; Perera, L.; Pirollo, S.; Plano, R.; Procario, M.; Riester, J. L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M.
2001-06-01
Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.
A coincidence study of electron and positron impact ionization of Ar (3p) at 1 keV
NASA Astrophysics Data System (ADS)
Campeanu, Radu I.; Walters, James H. R.; Whelan, Colm T.
2015-10-01
Distorted-wave calculations of the triple differential cross section (TDCS) are presented for electron and positron impact ionization of Ar(3p) in coplanar asymmetric geometry at an impact energy of 1 keV and are compared with a recent experiment. The experiment indicates that the positron TDCS is generally larger than the equivalent electron TDCS. It is shown that the magnitude of the TDCS is extremely sensitive to the energy of the ejected electron and that only when the cross section is averaged over energy do we get a reasonable agreement with experiment.
Horio, Takuya; Maeda, Satoshi; Kishimoto, Naoki; Ohno, Koichi
2006-09-28
Ionic-state-resolved collision energy dependence of Penning ionization cross sections for OCS with He*(2(3)S) metastable atoms was measured in a wide collision energy range from 20 to 350 meV. Anisotropic interaction potential for the OCS-He*(2(3)S) system was obtained by comparison of the experimental data with classical trajectory simulations. It has been found that attractive potential wells around the O and S atoms are clearly different in their directions. Around the O atom, the collinear approach is preferred (the well depth is ca. 90 meV), while the perpendicular approach is favored around the S atom (the well depth is ca. 40 meV). On the basis of the optimized potential energy surface and theoretical simulations, stereo reactivity around the O and S atoms was also investigated. The results were discussed in terms of anisotropy of the potential energy surface and the electron density distribution of molecular orbitals to be ionized.
Optical potential approach to the electron-atom impact ionization threshold problem
NASA Technical Reports Server (NTRS)
Temkin, A.; Hahn, Y.
1973-01-01
The problem of the threshold law for electron-atom impact ionization is reconsidered as an extrapolation of inelastic cross sections through the ionization threshold. The cross sections are evaluated from a distorted wave matrix element, the final state of which describes the scattering from the Nth excited state of the target atom. The actual calculation is carried for the e-H system, and a model is introduced which is shown to preserve the essential properties of the problem while at the same time reducing the dimensionability of the Schrodinger equation. Nevertheless, the scattering equation is still very complex. It is dominated by the optical potential which is expanded in terms of eigen-spectrum of QHQ. It is shown by actual calculation that the lower eigenvalues of this spectrum descend below the relevant inelastic thresholds; it follows rigorously that the optical potential contains repulsive terms. Analytical solutions of the final state wave function are obtained with several approximations of the optical potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabrikant, J.I.
1981-04-01
General background is given for an understanding of the potential health effects in populations exposed to low-level ionizing radiations. The discussion is within the framework of the scientific deliberations and controversies that arose during preparation of the current report of the committee on the biological effects of ionizing radiation of the National Academy of Science - National Research Council (1980 Beir-III Report). (ACR)
Two-photon spectroscopy of autoionizing states of Xe² near threshold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, Stephen T.; Dehmer, Patricia M.; Dehmer, Joseph L.
1990-01-01
The two-photon ionization spectrum of Xe² in the region of the first ionization threshold is presented. Vibronic bands corresponding to at least four different autoionizing electronic states of Xe² are observed for the first time and are tentatively assigned. The observed appearance potential is significantly higher (by 415 cm-1) than the earlier single-photon ionization result (Ng, Trevor, Mahan and Lee, - J. Chem. Phys. 65 (1976) 4327).
SU-E-T-291: Dosimetric Accuracy of Multitarget Single Isocenter Radiosurgery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tannazi, F; Huang, M; Thomas, E
2015-06-15
Purpose: To evaluate the accuracy of single-isocenter multiple-target VMAT radiosurgery (SIMT-VMAT-SRS) by analysis of pre-treatment verification measurements. Methods: Our QA procedure used a phantom having a coronal plane for EDR2 film and a 0.125 cm3 ionization chamber. Film measurements were obtained for the largest and smallest targets for each plan. An ionization chamber measurement (ICM) was obtained for sufficiently large targets. Films were converted to dose using a patient-specific calibration curve and compared to treatment planning system calculations. Alignment error was estimated using image registration. The gamma index was calculated for 3%/3 and 3%/1 mm criteria. The median dose inmore » the target region and, for plans having an ICM, the average dose in the central 5 mm was calculated. Results: The average equivalent target diameter of the 48 targets was 15 mm (3–43 mm). Twenty of the 24 plans had an ICM for the plan corresponding to the largest target (diameter 11–43 mm) with a mean ratio of chamber reading to expected dose (ED) and the mean ratio of film to ED (averaged over the central 5 mm) was 1.001 (0.025 SD) and 1.000 (0.029 SD), respectively. For all plans, the mean film to ED (from the median dose in the target region) was 0.997 (0.027 SD). The mean registration vector was (0.15,0.29) mm, with an average magnitude of 0.96 mm. Before (after) registration, the average fraction of pixels having gamma < 1 was 99.3% (99.6%) and 89.1% (97.6%) for 3%/3mm and 3%/1mm, respectively. Conclusion: Our results demonstrate dosimetric accuracy of SIMT-VMAT-SRS for targets as small as 3 mm. Film dosimetry provides accurate assessment of the absolute dose delivered to targets too small for an ionization chamber measurement; however, the relatively large registration vector indicates that image-guidance should replace laser-based setup for patient-specific evaluation of geometric accuracy.« less
Brealey, David; Libert, Nicolas; Abidi, Nour Elhouda; O’Dwyer, Michael; Zacharowski, Kai; Mikaszewska-Sokolewicz, Malgorzata; Schrenzel, Jacques; Simon, François; Wilks, Mark; Picard-Maureau, Marcus; Chalfin, Donald B.; Ecker, David J.; Sampath, Rangarajan; Singer, Mervyn
2015-01-01
Objective: Early identification of causative microorganism(s) in patients with severe infection is crucial to optimize antimicrobial use and patient survival. However, current culture-based pathogen identification is slow and unreliable such that broad-spectrum antibiotics are often used to insure coverage of all potential organisms, carrying risks of overtreatment, toxicity, and selection of multidrug-resistant bacteria. We compared the results obtained using a novel, culture-independent polymerase chain reaction/electrospray ionization-mass spectrometry technology with those obtained by standard microbiological testing and evaluated the potential clinical implications of this technique. Design: Observational study. Setting: Nine ICUs in six European countries. Patients: Patients admitted between October 2013 and June 2014 with suspected or proven bloodstream infection, pneumonia, or sterile fluid and tissue infection were considered for inclusion. Interventions: None. Measurements and Main Results: We tested 616 bloodstream infection, 185 pneumonia, and 110 sterile fluid and tissue specimens from 529 patients. From the 616 bloodstream infection samples, polymerase chain reaction/electrospray ionization-mass spectrometry identified a pathogen in 228 cases (37%) and culture in just 68 (11%). Culture was positive and polymerase chain reaction/electrospray ionization-mass spectrometry negative in 13 cases, and both were negative in 384 cases, giving polymerase chain reaction/electrospray ionization-mass spectrometry a sensitivity of 81%, specificity of 69%, and negative predictive value of 97% at 6 hours from sample acquisition. The distribution of organisms was similar with both techniques. Similar observations were made for pneumonia and sterile fluid and tissue specimens. Independent clinical analysis of results suggested that polymerase chain reaction/electrospray ionization-mass spectrometry technology could potentially have resulted in altered treatment in up to 57% of patients. Conclusions: Polymerase chain reaction/electrospray ionization-mass spectrometry provides rapid pathogen identification in critically ill patients. The ability to rule out infection within 6 hours has potential clinical and economic benefits. PMID:26327198
Low-Pressure, Field-Ionizing Mass Spectrometer
NASA Technical Reports Server (NTRS)
Hartley, Frank; Smith, Steven
2009-01-01
A small mass spectrometer utilizing a miniature field ionization source is now undergoing development. It is designed for use in a variety of applications in which there are requirements for a lightweight, low-power-consumption instrument that can analyze the masses of a wide variety of molecules and ions. The device can operate without need for a high-vacuum, carrier-gas feed radioactive ionizing source, or thermal ionizer. This mass spectrometer can operate either in the natural vacuum of outer space or on Earth at any ambient pressure below 50 torr (below about 6.7 kPa) - a partial vacuum that can easily be reached by use of a small sampling pump. This mass spectrometer also has a large dynamic range - from singly charged small gas ions to deoxyribonucleic acid (DNA) fragments larger than 104 atomic mass units - with sensitivity adequate for detecting some molecules and ions at relative abundances of less than one part per billion. This instrument (see figure) includes a field ionizer integrated with a rotating-field mass spectrometer (RFMS). The field ionizer effects ionization of a type characterized as "soft" in the art because it does not fragment molecules or initiate avalanche arcing. What makes the "soft" ionization mode possible is that the distance between the ionizing electrodes is less than mean free path for ions at the maximum anticipated operating pressure, so that the ionizer always operates on the non-breakdown side of the applicable Paschen curve (a standard plot of breakdown potential on the ordinate and pressure electrode separation on the abscissa). The field ionizer in this instrument is fabricated by micromachining a submicron-thick membrane out of an electrically nonconductive substrate, coating the membrane on both sides to form electrodes, then micromachining small holes through the electrodes and membrane. Because of the submicron electrode separation, even a potential of only 1 V applied between the electrodes gives rise to an electric field with a strength of in excess of a megavolt per meter strong enough to ionize any gas molecules passing through the holes. An accelerator grid and an electrostatic deflector focus the ions from the field ionizer into the rotating-field cell of the RFMS. The potentials applied to the electrodes of the cell to generate the rotating electric field typically range from 1 to 13 V. The ions travel in well-defined helices within this cell, after which they are collected in a Faraday cup. The mass of most of the molecules reaching the Faraday cup decreases with increasing frequency of rotation of the electric field in the cell. Therefore, the frequency of rotation of the electric field is made to vary in order to scan through a desired range of ion masses: For example, lightweight gas molecules are scanned at frequencies in the megahertz range, while DNA and other large organic molecules are scanned at kilohertz frequencies.
NASA Astrophysics Data System (ADS)
Yanagisawa, Susumu
2017-11-01
Ionization potential and electron affinity of organic semicondutors are important quantities, which are relevant to charge injection barriers. The electrostatic and dynamical contributions to the polarization energies for the injected charges in pentacene polymorphs were investigated. While the dynamical polarization induced narrowing of the energy gap, the electrostatic effect shifted up or down the frontier energy levels, which is sensitive to the molecular orientation at the surface.
Hole-transport material variation in fully vacuum deposited perovskite solar cells
NASA Astrophysics Data System (ADS)
Polander, Lauren E.; Pahner, Paul; Schwarze, Martin; Saalfrank, Matthias; Koerner, Christian; Leo, Karl
2014-08-01
This work addresses the effect of energy level alignment between the hole-transporting material and the active layer in vacuum deposited, planar-heterojunction CH3NH3PbIx-3Clx perovskite solar cells. Through a series of hole-transport materials, with conductivity values set using controlled p-doping of the layer, we correlate their ionization potentials with the open-circuit voltage of the device. With ionization potentials beyond 5.3 eV, a substantial decrease in both current density and voltage is observed, which highlights the delicate energetic balance between driving force for hole-extraction and maximizing the photovoltage. In contrast, when an optimal ionization potential match is found, the open-circuit voltage can be maximized, leading to power conversion efficiencies of up to 10.9%. These values are obtained with hole-transport materials that differ from the commonly used Spiro-MeO-TAD and correspond to a 40% performance increase versus this reference.
NASA Astrophysics Data System (ADS)
Ohmura, S.; Kato, T.; Oyamada, T.; Koseki, S.; Ohmura, H.; Kono, H.
2018-02-01
The mechanisms of anisotropic near-IR tunnel ionization and high-order harmonic generation (HHG) in a CO molecule are theoretically investigated by using the multiconfiguration time-dependent Hartree-Fock (MCTDHF) method developed for the simulation of multielectron dynamics of molecules. The multielectron dynamics obtained by numerically solving the equations of motion (EOMs) in the MCTDHF method is converted to a single orbital picture in the natural orbital representation where the first-order reduced density matrix is diagonalized. The ionization through each natural orbital is examined and the process of HHG is classified into different optical paths designated by a combinations of initial, intermediate and final natural orbitals. The EOMs for natural spin-orbitals are also derived within the framework of the MCTDHF, which maintains the first-order reduced density matrix to be a diagonal one throughout the time propagation of a many-electron wave function. The orbital dependent, time-dependent effective potentials that govern the dynamics of respective time-dependent natural orbitals are deduced from the derived EOMs, of which the temporal variation can be used to interpret the motion of the electron density associated with each natural spin-orbital. The roles of the orbital shape, multiorbital ionization, linear Stark effect and multielectron interaction in the ionization and HHG of a CO molecule are revealed by the effective potentials obtained. When the laser electric field points to the nucleus O from C, tunnel ionization from the C atom side is enhanced; a hump structure originating from multielectron interaction is then formed on the top of the field-induced distorted barrier of the HOMO effective potential. This hump formation, responsible for the directional anisotropy of tunnel ionization, restrains the influence of the linear Stark effect on the energy shifts of bound states.
Performance and Self-Consistency of the Generalized Dielectric Dependent Hybrid Functional
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brawand, Nicholas P.; Govoni, Marco; Vörös, Márton
Here, we analyze the performance of the recently proposed screened exchange constant functional (SX) on the GW100 test set, and we discuss results obtained at different levels of self-consistency. The SX functional is a generalization of dielectric dependent hybrid functionals to finite systems; it is nonempirical and depends on the average screening of the exchange interaction. We compare results for ionization potentials obtained with SX to those of CCSD(T) calculations and experiments, and we find excellent agreement, on par with recent state of the art methods based on many body perturbation theory. Applying SX perturbatively to correct PBE eigenvalues yieldsmore » improved results in most cases, except for ionic molecules, for which wave function self-consistency is instead crucial. Calculations where wave functions and the screened exchange constant (α SX) are determined self-consistently, and those where α SX is fixed to the value determined within PBE, yield results of comparable accuracy. Perturbative G 0W 0 corrections of eigenvalues obtained with self-consistent αSX are small on average, for all molecules in the GW100 test set.« less
Performance and Self-Consistency of the Generalized Dielectric Dependent Hybrid Functional
Brawand, Nicholas P.; Govoni, Marco; Vörös, Márton; ...
2017-05-24
Here, we analyze the performance of the recently proposed screened exchange constant functional (SX) on the GW100 test set, and we discuss results obtained at different levels of self-consistency. The SX functional is a generalization of dielectric dependent hybrid functionals to finite systems; it is nonempirical and depends on the average screening of the exchange interaction. We compare results for ionization potentials obtained with SX to those of CCSD(T) calculations and experiments, and we find excellent agreement, on par with recent state of the art methods based on many body perturbation theory. Applying SX perturbatively to correct PBE eigenvalues yieldsmore » improved results in most cases, except for ionic molecules, for which wave function self-consistency is instead crucial. Calculations where wave functions and the screened exchange constant (α SX) are determined self-consistently, and those where α SX is fixed to the value determined within PBE, yield results of comparable accuracy. Perturbative G 0W 0 corrections of eigenvalues obtained with self-consistent αSX are small on average, for all molecules in the GW100 test set.« less
Measurements of the time constant for steady ionization in shaped-charge barium releases
NASA Technical Reports Server (NTRS)
Hoch, Edward L.; Hallinan, Thomas J.
1993-01-01
Quantitative measurements of three solar illuminated shaped-charge barium releases injected at small angles to the magnetic field were made using a calibrated color television camera. Two of the releases were from 1989. The third release, a reanalysis of an event included in Hallinan's 1988 study of three 1986 releases, was included to provide continuity between the two studies. Time constants for ionization, measured during the first 25 s of each release, were found to vary considerably. The two 1989 time constants differed substantially, and both were significantly less than any of the 1986 time constants. On the basis of this variability, we conclude that the two 1989 releases showed evidence of continuous nonsolar ionization. One release showed nonsolar ionization which could not he attributed to Alfven's critical ionization velocity process, which requires a component of velocity perpendicular to the magnetic field providing a perpendicular energy greater than the ionization potential.
Electron impact ionization of plasma important SiClX (X = 1-4) molecules: theoretical cross sections
NASA Astrophysics Data System (ADS)
Kothari, Harshit N.; Pandya, Siddharth H.; Joshipura, K. N.
2011-06-01
Electron impact ionization of SiClX (X = 1-4) molecules is less studied but an important process for understanding and modelling the interactions of silicon-chlorine plasmas with different materials. The SiCl3 radical is a major chloro-silicon species involved in the CVD (chemical vapour deposition) of silicon films from SiCl4/Ar microwave plasmas. We report in this paper the total ionization cross sections for electron collisions on these silicon compounds at incident energies from the ionization threshold to 2000 eV. We employ the 'complex scattering potential-ionization contribution' method and identify the relative importance of various channels, with ionization included in the cumulative inelastic scattering. New results are also presented on these exotic molecular targets. This work is significant in view of the paucity of theoretical studies on the radicals SiClX (X = 1-3) and on SiCl4.
Solar coronal temperature diagnostics using emission line from multiple stages of ionization of iron
NASA Technical Reports Server (NTRS)
Brosius, Jeffrey W.; Davila, Joseph M.; Thomas, Roger J.; Thompson, William T.
1994-01-01
We obtained spatially resolved extreme-ultraviolet (EUV) spectra of AR 6615 on 1991 May 7 with NASA/ Goddard Space Flight Center's Solar EUV Rocket Telescope and Spectrograph (SERTS). Included are emission lines from four different stages of ionization of iron: Fe(+15) lambda 335 A, Fe(+14) lambda 327 A, Fe(+13) lambda 334 A, and Fe(+12) lambda 348 A. Using intensity ratios from among these lines, we have calculated the active region coronal temperature along the Solar Extreme Ultraviolet Telescope and Spectrograph (SERTS) slit. Temperatures derived from line ratios which incorporate adjacent stages of ionization are most sensitive to measurement uncertainties and yield the largest scatter. Temperatures derived from line ratios which incorporate nonadjacent stages of ionization are less sensitive to measurement uncertainties and yield little scatter. The active region temperature derived from these latter ratios has an average value of 2.54 x 10(exp 6) K, with a standard deviation approximately 0.12 x 10(exp 6) K, and shows no significant variation with position along the slit.
Watanabe, Takehiro; Kawasaki, Hideya; Yonezawa, Tetsu; Arakawa, Ryuichi
2008-08-01
We have developed surface-assisted laser desorption/ionization mass spectrometry using zinc oxide (ZnO) nanoparticles with anisotropic shapes (ZnO-SALDI-MS). The mass spectra showed low background noises in the low m/z, i.e. less than 500 u region. Thus, we succeeded in SALDI ionization on low molecular weight organic compounds, such as verapamil hydrochloride, testosterone, and polypropylene glycol (PPG) (average molecular weight 400) without using a liquid matrix or buffers such as citric acids. In addition, we found that ZnO-SALDI has advantages in post-source decay (PSD) analysis and produced a simple mass spectrum for phospholipids. The ZnO-SALDI spectra for synthetic polymers of polyethylene glycol (PEG), polystyrene (PS) and polymethylmethacrylate (PMMA) showed the sensitivity and molecular weight distribution to be comparable to matrix-assisted laser desorption/ionization (MALDI) spectra with a 2,5-dihydroxybenzoic acid (DHB) matrix. ZnO-SALDI shows good performance for synthetic polymers as well as low molecular weight organic compounds. Copyright (c) 2008 John Wiley & Sons, Ltd.
Atmospheric helium and geomagnetic field reversals.
NASA Technical Reports Server (NTRS)
Sheldon, W. R.; Kern, J. W.
1972-01-01
The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.
The effects of pre-ionization on the impurity and x-ray level in a dense plasma focus device
NASA Astrophysics Data System (ADS)
Piriaei, D.; Yousefi, H. R.; Mahabadi, T. D.; Salar Elahi, A.; Ghoranneviss, M.
2017-02-01
In this study, the effects of pre-ionization on the reduction of the impurities and non-uniformities, the increased stability of the pinch plasma, the enhancement of the total hard x-ray yield, the plasmoid x-ray yield, and the current sheath dynamics of the argon gas at different pressures in a Mather type plasma focus device were investigated. For this purpose, different shunt resistors together with two x-ray detectors were used, and the data gathered from the x-ray signals showed that the optimum shunt resistor could cause the maximum total hard and plasmoid hard x-ray emissions. Moreover, in order to calculate the average speed of the current sheath, two axial magnetic probes were used. It was revealed that the pre-ionization could increase the whole range of the emitted x-rays and produce a more uniform current sheath layer, which moved faster, and this technique could lead to the reduction of the impurities, creating a more stabilized pinched plasma, which was capable of emitting more x-rays than the usual case without using pre-ionization.
Energetic particles and ionization in the nighttime middle and low latitude ionosphere
NASA Technical Reports Server (NTRS)
Voss, H. D.; Smith, L. G.
1977-01-01
Seven Nike Apache rockets, each equipped with an energetic particle spectrometer (12 E 80 keV) and electron-density experiments, were launched from Wallops Island, Virginia and Chilca, Peru, under varying geomagnetic conditions near midnight. At Wallops Island the energetic particle flux (E 40 keV) is found to be strongly dependent on Kp. The pitch-angle distribution is asymmetrical about a peak at 90 D signifying a predominately quasi-trapped flux and explaining the linear increase of count rate with altitute in the altitude region 120 to 200 km. The height-averaged ionization rates derived from the electron-density profiles are consistent with the rates calculated from the observed total particle flux for magnetic index Kp 3. In the region 90 to 110 km it is found that the nighttime ionization is primarily a result of Ly-beta radiation from the geocorona and interplanetary hydrogen for even very disturbed conditions. Below 90 km during rather disturbed conditions energetic electrons can be a significant ionization source. Two energetic particle precipitation zones have been identified at midlatitudes.
Ultrafast laser-induced modifications of energy bands of non-metal crystals
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly
2009-10-01
Ultrafast laser-induced variations of electron energy bands of transparent solids significantly influence ionization and conduction-band electron absorption driving the initial stage of laser-induced damage (LID). The mechanisms of the variations are attributed to changing electron functions from bonding to anti-bonding configuration via laser-induced ionization; laser-driven electron oscillations in quasi-momentum space; and direct distortion of the inter-atomic potential by electric field of laser radiation. The ionization results in the band-structure modification via accumulation of broken chemical bonds between atoms and provides significant contribution to the overall modification only when enough excited electrons are accumulated in the conduction band. The oscillations are associated with modification of electron energy by pondermotive potential of the oscillations. The direct action of radiation's electric field leads to specific high-frequency Franz-Keldysh effect (FKE) spreading the allowed electron states into the bands of forbidden energy. Those processes determine the effective band gap that is a laser-driven energy gap between the modified electron energy bands. Among those mechanisms, the latter two provide reversible band-structure modification that takes place from the beginning of the ionization and are, therefore, of special interest due to their strong influence on the initial stage of the ionization. The pondermotive potential results either in monotonous increase or oscillatory variations of the effective band gap that has been taken into account in some ionization models. The classical FKE provides decrease of the band gap. We analyzing the competition between those two opposite trends of the effective-band-gap variations and discuss applications of those effects for considerations of the laser-induced damage and its threshold in transparent solids.
Super Configuration Accounting Equation of State for WDM and HED plasma
NASA Astrophysics Data System (ADS)
Lee, T. G.; Busquet, M.; Gilles, D.; Klapisch, M.
2017-10-01
Rad-Hydro numerical codes require Equation of State (EOS) and opacities. We describe a procedure to obtain an EOS compatible with our STA opacity model. We use our relativistic super-configuration code - STA-2.5 to compute the average 〈 Z 〉 and excitation-ionization internal energy U and chemical potential _. These and other data will serve as basic inputs into a Yukawa Monte-Carlo improved version of quotidian EOS, known as YMCQ. The screening in the Yukawa potential describing the ion-ion interaction is modified by the data from STA. This integrated procedure yields the excess internal energy due to the non-ideal behavior of the EOS concordant with our opacity model and allows us to have an EOS model applicable from solid matter to very tenuous plasmas as found in laser fusion, astrophysics, or tokamaks. We shall present its application to Carbon, Aluminum and Iron. This work is made possible by a financial support from DOE/NNSA.
Ordak, Michal; Maj-Zurawska, Magdalena; Matsumoto, Halina; Bujalska-Zadrozny, Magdalena; Kieres-Salomonski, Ilona; Nasierowski, Tadeusz; Muszynska, Elzbieta; Wojnar, Marcin
2017-09-01
Studies on the homeostasis of magnesium in alcohol-dependent patients have often been characterized by low hypomagnesemia detection rates. This may be due to the fact that the content of magnesium in blood serum constitutes only 1% of the average magnesium level within the human body. However, the concentration of ionized magnesium is more physiologically important and makes up 67% of the total magnesium within a human organism. There are no data concerning the determination of the ionized fraction of magnesium in patients addicted to alcohol and its influence on mental health status. This study included 100 alcohol-dependent patients and 50 healthy subjects. The free magnesium fraction was determined using the potentiometric method by means of using ion-selective electrodes. The total magnesium level was determined by using a biochemical Indiko Plus analyzer. In this study, different psychometric scales were applied. Our results confirm the usefulness of ionized magnesium concentrations in erythrocytes and plasma as a diagnostic parameter of low magnesium status in alcohol-dependent patients. The lower the concentration of ionized magnesium, the worse the quality of life an alcohol-dependent person might experience. In the case of total magnesium, no such correlation was determined. Copyright © 2017 Elsevier B.V. All rights reserved.
Sichilongo, Kwenga
2004-12-01
Synthetic pyrethroids fragment extensively under electron ionization (EI) conditions to give low mass ions, most of them with the same m/z ratios. This fragmentation is primarily due to the labile ester linkage found in these compounds. In this research we established the best gas chromatography (GC) conditions in the EI mode that served as a benchmark in the development of a chemical ionization (CI) protocol for ten selected synthetic pyrethroids. Based on proton affinity data, several reagent gases were evaluated in the positive CI ionization mode. Methanol was found to produce higher average ion counts relative to the other gases evaluated, which led to the development of an optimized method consisting of selective ejection chemical ionization (SECI) and MS/MS. Standard stainless steel ion trap electrodes produced significant degradation of chromatographic performance on late eluting compounds, which was attributed to electrode surface chemistry. A dramatic improvement in signal-to-noise (S/N) ratios was observed when the chromatographically inert Silcosteel coated electrodes were used. The resulting method, that has significant S/N ratio improvements resulting from a combination of septum programmable injections (SPI), optimized CI and inert Silcosteel-coated electrodes, was used to determine instrument detection limits.
Medical students' knowledge of ionizing radiation and radiation protection.
Hagi, Sarah K; Khafaji, Mawya A
2011-05-01
To assess the knowledge of fourth-year medical students in ionizing radiation, and to study the effect of a 3-hour lecture in correcting their misconceptions. A cohort study was conducted on fourth-year medical students at King Abdul-Aziz University, Jeddah, Kingdom of Saudi Arabia during the academic year 2009-2010. A 7-question multiple choice test-type questionnaire administered before, and after a 3-hour didactic lecture was used to assess their knowledge. The data was collected from December 2009 to February 2010. The lecture was given to 333 (72%) participants, out of the total of 459 fourth-year medical students. It covered topics in ionizing radiation and radiation protection. The questionnaire was validated and analyzed by 6 content experts. Of the 333 who attended the lecture, only 253 (76%) students completed the pre- and post questionnaire, and were included in this study. The average student score improved from 47-78% representing a gain of 31% in knowledge (p=0.01). The results indicated that the fourth-year medical students' knowledge regarding ionizing radiation and radiation protection is inadequate. Additional lectures in radiation protection significantly improved their knowledge of the topic, and correct their current misunderstanding. This study has shown that even with one dedicated lecture, students can learn, and absorb general principles regarding ionizing radiation.
Sequential Double lonization: The Timing of Release
NASA Astrophysics Data System (ADS)
Pfeiffer, A.
2011-05-01
The timing of electron release in strong field double ionization poses great challenges both for conceptual definition and for conducting experimental measurement. Here we present coincidence momentum measurements of the doubly charged ion and of the two electrons arising from double ionization of Argon using elliptically (close to circularly) polarized laser pulses. Based on a semi-classical model, the ionization times are calculated from the measured electron momenta across a large intensity range. Exploiting the attoclock technique we have direct access to timings on a coarse and on a fine scale, similar to the hour and the minute hand of a clock. In our attoclock, the magnitude of the electron momenta follows the envelope of the laser pulse and gives a coarse timing for the electron releases (the hour hand), while the fine timing (the minute hand) is provided by the emission angle of the electrons. The first of our findings is that due to depletion the averaged ionization time moves towards the beginning of the pulse with increasing intensity, confirming the results of Maharjan et al., and that the ion momentum distribution projected onto the minor polarization axis shows a bifurcation from a 3-peak to a 4-peak structure. This effect can be fully understood by modeling the process semi-classically in the independent electron approximation following the simple man's model. The ionization time measurement performed with the attoclock shows that the release time of the first electron is in good agreement with the semi-classical simulation performed on the basis of Sequential Double lonization (SDI), whereas the ionization of the second electron occurs significantly earlier than predicted. This observation suggests that electron correlation and other Non-Sequential Double lonization (NSDI) mechanisms may play an important role also in the case of strong field double ionization by close-to-circularly polarized laser pulses. The timing of electron release in strong field double ionization poses great challenges both for conceptual definition and for conducting experimental measurement. Here we present coincidence momentum measurements of the doubly charged ion and of the two electrons arising from double ionization of Argon using elliptically (close to circularly) polarized laser pulses. Based on a semi-classical model, the ionization times are calculated from the measured electron momenta across a large intensity range. Exploiting the attoclock technique we have direct access to timings on a coarse and on a fine scale, similar to the hour and the minute hand of a clock. In our attoclock, the magnitude of the electron momenta follows the envelope of the laser pulse and gives a coarse timing for the electron releases (the hour hand), while the fine timing (the minute hand) is provided by the emission angle of the electrons. The first of our findings is that due to depletion the averaged ionization time moves towards the beginning of the pulse with increasing intensity, confirming the results of Maharjan et al., and that the ion momentum distribution projected onto the minor polarization axis shows a bifurcation from a 3-peak to a 4-peak structure. This effect can be fully understood by modeling the process semi-classically in the independent electron approximation following the simple man's model. The ionization time measurement performed with the attoclock shows that the release time of the first electron is in good agreement with the semi-classical simulation performed on the basis of Sequential Double lonization (SDI), whereas the ionization of the second electron occurs significantly earlier than predicted. This observation suggests that electron correlation and other Non-Sequential Double lonization (NSDI) mechanisms may play an important role also in the case of strong field double ionization by close-to-circularly polarized laser pulses. In collaboration with C. Cirelli and M. Smolarski, Physics Department, ETH Zurich, 8093 Zurich, Switzerland; R. Doerner, Institut fiir Kernphysik, Johann Wolfgang Goethe Universitat, 60438 Frankfurt am Main, Germany; and U. Keller, ETH Zurich.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yushchenko, Alexander V.; Kang, Young-Woon; Kim, Sungeun
We investigated the chemical composition of ρ Pup using high-resolution spectral observations taken from the Very Large Telescope and the IUE archives and also spectra obtained at the 1.8 m telescope of the Bohyunsan observatory in Korea. The abundances of 56 chemical elements and the upper limits of Li and Be abundances were determined. The abundance pattern of ρ Pup was found to be similar to that of Am-type stars. The possibility of the influence of the accretion of interstellar gas and dust on the abundance patterns of B–F-type stars is discussed. The plots of the relative abundances of chemicalmore » elements in the atmospheres of ρ Pup and δ Sct versus the second ionization potentials of these elements show the correlations. The discontinuities at 13.6 and 24.6 eV—the ionization potentials of hydrogen and helium, respectively, are also exhibited in these plots. These discontinuities can be explained by interaction of the atoms of interstellar gas, mainly hydrogen and helium atoms, with the atoms of stellar photospheres (so-called charge-exchange reactions). Note that only the jumps near 13.6 and 24.6 eV were pointed out in previous investigations of relative abundances versus the second ionization potentials for Am-type stars. The dependencies of the relative abundances of chemical elements on the second ionization potentials of these elements were investigated using the published abundance patterns of B–F-type stars. The correlations of relative and absolute abundances of chemical elements, second ionization potentials, and projected rotational velocities are clearly detected for stars with effective temperatures between 7,000 and 12,000 K. If the correlation of relative abundances and second ionization potentials can be explained by the accretion of interstellar gas on the stellar surfaces, the investigation of these correlations can provide valuable information on the density and velocities of interstellar gas in different regions of the Galaxy and also on the influence of this phenomenon on stellar evolution. The dependencies of the relative abundances of chemical elements on the condensation temperatures of these elements were also found in the atmospheres of ρ Pup, δ Sct, and other B–F-type stars. Ten possible λ Boo-type stars were detected. The effective temperatures of these objects are between 10,900 and 14,000 K.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Prakash; Bartlett, Rodney J., E-mail: bartlett@qtp.ufl.edu
Core excitation energies are computed with time-dependent density functional theory (TD-DFT) using the ionization energy corrected exchange and correlation potential QTP(0,0). QTP(0,0) provides C, N, and O K-edge spectra to about an electron volt. A mean absolute error (MAE) of 0.77 and a maximum error of 2.6 eV is observed for QTP(0,0) for many small molecules. TD-DFT based on QTP (0,0) is then used to describe the core-excitation spectra of the 22 amino acids. TD-DFT with conventional functionals greatly underestimates core excitation energies, largely due to the significant error in the Kohn-Sham occupied eigenvalues. To the contrary, the ionization energymore » corrected potential, QTP(0,0), provides excellent approximations (MAE of 0.53 eV) for core ionization energies as eigenvalues of the Kohn-Sham equations. As a consequence, core excitation energies are accurately described with QTP(0,0), as are the core ionization energies important in X-ray photoionization spectra or electron spectroscopy for chemical analysis.« less
Automated generation of radical species in crystalline carbohydrate using ab initio MD simulations.
Aalbergsjø, Siv G; Pauwels, Ewald; Van Yperen-De Deyne, Andy; Van Speybroeck, Veronique; Sagstuen, Einar
2014-08-28
As the chemical structures of radiation damaged molecules may differ greatly from their undamaged counterparts, investigation and description of radiation damaged structures is commonly biased by the researcher. Radical formation from ionizing radiation in crystalline α-l-rhamnose monohydrate has been investigated using a new method where the selection of radical structures is unbiased by the researcher. The method is based on using ab initio molecular dynamics (MD) studies to investigate how ionization damage can form, change and move. Diversity in the radical production is gained by using different points on the potential energy surface of the intact crystal as starting points for the ionizations and letting the initial velocities of the nuclei after ionization be generated randomly. 160 ab initio MD runs produced 12 unique radical structures for investigation. Out of these, 7 of the potential products have never previously been discussed, and 3 products are found to match with radicals previously observed by electron magnetic resonance experiments.
NASA Astrophysics Data System (ADS)
Zhong, Xunqi; Miao, Zhiming; Zhang, Linlin; Jiang, Hongbing; Liu, Yunquan; Gong, Qihuang; Wu, Chengyin
2018-03-01
We investigate the 391-nm lasing dynamics from ionized nitrogen molecules in 800-nm femtosecond laser fields. By comparing the radiation intensity, spectrum shape, and temporal profile of the 391-nm lasing at various experimental conditions, we conclude that the lasing dynamics contains not only the generation and the decay of ionized nitrogen molecules, but also the seed-built coherence among emitters as well as the propagation effect in the plasma filamentation. These results provide reliable guidance for optimizing the 391-nm lasing from ionized nitrogen molecules in 800-nm femtosecond laser fields, which have potential applications for remote sensing in the atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloney, J. A.; Morozov, V. S.; Derbenev, Ya. S.
Muon colliders have been proposed for the next generation of particle accelerators that study high-energy physics at the energy and intensity frontiers. In this paper we study a possible implementation of muon ionization cooling, Parametric-resonance Ionization Cooling (PIC), in the twin helix channel. The resonant cooling method of PIC offers the potential to reduce emittance beyond that achievable with ionization cooling with ordinary magnetic focusing. We examine optimization of a variety of parameters, study the nonlinear dynamics in the twin helix channel and consider possible methods of aberration correction.
X-ray scattering measurements on imploding CH spheres at the National Ignition Facility
Kraus, D.; Chapman, D. A.; Kritcher, A. L.; ...
2016-07-21
In this study, we have performed spectrally resolved x-ray scattering measurements on highly compressed polystyrene at pressures of several tens of TPa (100 Mbar) created by spherically convergent shocks at the National Ignition Facility. Scattering data of line radiation at 9.0 keV were recorded from the dense plasma shortly after shock coalescence. Accounting for spatial gradients, opacity effects, and source broadening, we demonstrate the sensitivity of the elastic scattering component to carbon K -shell ionization while at the same time constraining the temperature of the dense plasma. Finally, for six times compressed polystyrene, we find an average temperature of 86more » eV and carbon ionization state of 4.9, indicating that widely used ionization models need revision in order to be suitable for the extreme states of matter tested in our experiment.« less
Axial Structure of High-Vacuum Planar Magnetron Discharge Space
NASA Astrophysics Data System (ADS)
Miura, Tsutomu
1999-09-01
The spatial structure of high-vacuum planar magnetron discharge is theoretically investigated taking into account the electron confinement. The boundary xes of the electron confinement region depends on BA with Ea/BA as the parameter (BA: the magnetic flux density at the anode, Ea: the average electric field strength). The location at which the frequency of ionization events takes the maximum is expressed as CnNxiep (CnN: a factor related to the electron density distribution, xiep: the distance of the location from the cathode at which the ionization is most efficient). With increasing Ea and BA at a fixed Ea/BA, the density of the confined energetic electrons increases. With increasing Ea, the region where ionization is efficient shifts to the cathode side to give a high efficiency of the magnet. The boundary xes as determined by the probe method agreed with the theoretical prediction.
NASA Astrophysics Data System (ADS)
Kaniel, A.; Igra, O.; Ben-Dor, G.; Mond, M.
The flow field in the ionizing relaxation zone developed behind a normal shock wave in an electrically neutral, homogeneous, two temperature mixture of thermally ideal gases (molecules, atoms, ions, electrons) was numerically solved. The heat transfer between the electron gas and the other components was taken into account while all the other transport phenomena (molecular, turbulent and radiative) were neglected in the relaxation zone, since it is dominated by inelastic collisions. The threshold cross sections measured by Specht (1981), for excitation of argon by electron collisions, were used. The calculated results show good agreement with the results of the shock tube experiments presented by Glass and Liu (1978), especially in the electron avalanche region. A critical examination was made of the common assumptions regarding the average energy with which electrons are produced by atom-atom collisions and the relative effectiveness of atom-atom collisions (versus electron-atom collisions) in ionizing excited argon.
Calculations of acceptor ionization energies in GaN
NASA Astrophysics Data System (ADS)
Wang, H.; Chen, A.-B.
2001-03-01
The k.p Hamiltonian and a model potential are used to deduce the acceptor ionization energies in GaN from a systematic study of the chemical trend in GaAs, GaP, and InP. The acceptors studied include Be, Mg, Ca, Zn, and Cd on the cation sites and C, Si, and Ge on the anion sites. Our calculated acceptor ionization energies are estimated to be accurate to better than 10% across the board. The ionization energies of C and Be (152 and 187 meV, respectively) in wurtzite GaN are found to be lower than that of Mg (224 meV). The C was found to behave like the hydrogenic acceptor in all systems and it has the smallest ionization energy among all the acceptors studied.
Acceptor Ionization Energies in GaN*
NASA Astrophysics Data System (ADS)
Wang, Hao; Ban Chen, An
2001-03-01
The k.p Hamiltonian and a model potential are used to deduce the acceptor ionization energies in GaN from a systematic study of the chemical trend in GaAs, GaP, and InP. The acceptors studied include Be, Mg, Ca, Zn, and Cd on the cation sites and C, Si, and Ge on the anion sites. Our calculated acceptor ionization energies are estimated to be accurate to better than ten percent across the board. The ionization energies of C and Be (152 and 187 meV respectively) in wurtzite GaN are found to be lower than that of Mg (224 meV). The C was found to behave like the hydrogenic acceptor in all systems and it has the smallest ionization energy among all the acceptors studied.
Bell, W.A. Jr.; Love, L.O.; Prater, W.K.
1958-01-28
An ion source is presented capable of producing ions of elements which vaporize only at exceedingly high temperatures, i.e.,--1500 degrees to 3000 deg C. The ion source utilizes beams of electrons focused into a first chamber housing the material to be ionized to heat the material and thereby cause it to vaporize. An adjacent second chamber receives the vaporized material through an interconnecting passage, and ionization of the vaporized material occurs in this chamber. The ionization action is produced by an arc discharge sustained between a second clectron emitting filament and the walls of the chamber which are at different potentials. The resultant ionized material egresses from a passageway in the second chamber. Using this device, materials which in the past could not be processed in mass spectometers may be satisfactorily ionized for such applications.
Ionization waves of arbitrary velocity driven by a flying focus
NASA Astrophysics Data System (ADS)
Palastro, J. P.; Turnbull, D.; Bahk, S.-W.; Follett, R. K.; Shaw, J. L.; Haberberger, D.; Bromage, J.; Froula, D. H.
2018-03-01
A chirped laser pulse focused by a chromatic lens exhibits a dynamic, or flying, focus in which the trajectory of the peak intensity decouples from the group velocity. In a medium, the flying focus can trigger an ionization front that follows this trajectory. By adjusting the chirp, the ionization front can be made to travel at an arbitrary velocity along the optical axis. We present analytical calculations and simulations describing the propagation of the flying focus pulse, the self-similar form of its intensity profile, and ionization wave formation. The ability to control the speed of the ionization wave and, in conjunction, mitigate plasma refraction has the potential to advance several laser-based applications, including Raman amplification, photon acceleration, high-order-harmonic generation, and THz generation.
Ionizing and Non-ionizing Radiation Effects in Thin Layer Hexagonal Boron Nitride
2015-03-01
capacitance-voltage measurements indicating Frenkel-Poole (FP) and Fowler-Nordheim tunneling (FNT) are the primary current mechanisms before and after...linear FNT model and a 0.013 eV increase in the barrier potential for the FP model. There was a decrease of 0.19 eV in the tunneling potential for the...non-linear FNT model. Defects generated by the neutron damage increased currents by increasing trap assisted tunneling (TAT). v
High efficiency photoionization detector
Anderson, David F.
1984-01-01
A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.
Chen, Shu Jian; Yao, Xupei; Zheng, Changxi; Duan, Wen Hui
2017-11-01
Non-equilibrium molecular dynamics was used to simulate the dynamics of atoms at the atom probe surface and five objective functions were used to quantify errors. The results suggested that before ionization, thermal vibration and collision caused the atoms to displace up to 1Å and 25Å respectively. The average atom displacements were found to vary between 0.2 and 0.5Å. About 9 to 17% of the atoms were affected by collision. Due to the effects of collision and ion-ion repulsion, the back-calculated positions were on average 0.3-0.5Å different from the pre-ionized positions of the atoms when the number of ions generated per pulse was minimal. This difference could increase up to 8-10Å when 1.5ion/nm 2 were evaporated per pulse. On the basis of the results, surface ion density was considered an important factor that needed to be controlled to minimize error in the evaporation process. Copyright © 2017. Published by Elsevier B.V.
Ristova, Mimoza M; Radiceska, Pavlina; Bozinov, Igorco; Barandovski, Lambe
2016-05-01
One of the crucial factors determining the cyanoacrylate deposit quality over latent fingerprints appeared to be the extent of the humidity. This work focuses on the enhancement/refreshment of age-degraded latent fingerprints by irradiating the samples with UV, X-ray, or thermal neutrons prior to the cyanoacrylate (CA) fuming. Age degradation of latent fingerprints deposited on glass surfaces was examined through the decrease in the number of characteristic minutiae counts over time. A term "critical day" was introduced for the time at which the average number of identifiable minutiae definitions drops to one-half. Fingerprints older than their "critical day" were exposed to either UV, X-ray, or thermal neutrons. Identical reference samples were kept unexposed. All samples, both reference and irradiated, were developed during a single CA fuming procedure. Comparative latent fingerprint analysis showed that exposure to ionizing radiation enhances the CA fuming, yielding a 20-30% increase in average minutiae count. © 2015 American Academy of Forensic Sciences.
X-ray ionization of the intergalactic medium by quasars
NASA Astrophysics Data System (ADS)
Graziani, Luca; Ciardi, B.; Glatzle, M.
2018-06-01
We investigate the impact of quasars on the ionization of the surrounding intergalactic medium (IGM) with the radiative transfer code CRASH4, now accounting for X-rays and secondary electrons. After comparing with analytic solutions, we post-process a cosmic volume (≈1.5 × 104 Mpc3h-3) containing a ULAS J1120+0641-like quasar (QSO) hosted by a 5 × 1011M⊙h-1 dark matter (DM) halo. We find that: (i) the average HII region (R ˜ 3.2 pMpc in a lifetime tf = 107 yrs) is mainly set by UV flux, in agreement with semi-analytic scaling relations; (ii) a largely neutral (xHII < 0.001), warm (T ˜ 103 K) tail extends up to few Mpc beyond the ionization front, as a result of the X-ray flux; (iii) LyC-opaque inhomogeneities induce a line of sight (LOS) scatter in R as high as few physical Mpc, consistent with the DLA scenario proposed to explain the anomalous size of the ULAS J1120+0641 ionized region. On the other hand, with an ionization rate \\dot{N}_{γ ,0} ˜ 10^{57} s-1, the assumed DLA clustering and gas opacity, only one LOS shows an HII region compatible with the observed one. We deduce that either the ionization rate of the QSO is at least one order of magnitude lower or the ULAS J1120+0641 bright phase is shorter than 107 yrs.
Kim, Michelle J.; Zoerb, Matthew C.; Campbell, Nicole R.; ...
2016-04-05
Here, benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e., DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical-ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt −1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a much weaker electric field, demonstrated that ion–molecule reactions likely proceed through amore » combination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The in-field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer, where measurements from the two instruments were highly correlated ( R 2 > 0.95, 10 s averages) over a wide range of sampling conditions.« less
Negative-ion chemical-ionization mass spectrometry (NICI MS) has the potential to be a very useful technique in identifying various polycyclic aromatic hydrocarbons (PAHs) in soil and sediment samples. Some PAHs give much stronger signals under NICI MS conditions than others. On ...
NASA Astrophysics Data System (ADS)
Häberlen, Oliver D.; Chung, Sai-Cheong; Stener, Mauro; Rösch, Notker
1997-03-01
A series of gold clusters spanning the size range from Au6 through Au147 (with diameters from 0.7 to 1.7 nm) in icosahedral, octahedral, and cuboctahedral structure has been theoretically investigated by means of a scalar relativistic all-electron density functional method. One of the main objectives of this work was to analyze the convergence of cluster properties toward the corresponding bulk metal values and to compare the results obtained for the local density approximation (LDA) to those for a generalized gradient approximation (GGA) to the exchange-correlation functional. The average gold-gold distance in the clusters increases with their nuclearity and correlates essentially linearly with the average coordination number in the clusters. An extrapolation to the bulk coordination of 12 yields a gold-gold distance of 289 pm in LDA, very close to the experimental bulk value of 288 pm, while the extrapolated GGA gold-gold distance is 297 pm. The cluster cohesive energy varies linearly with the inverse of the calculated cluster radius, indicating that the surface-to-volume ratio is the primary determinant of the convergence of this quantity toward bulk. The extrapolated LDA binding energy per atom, 4.7 eV, overestimates the experimental bulk value of 3.8 eV, while the GGA value, 3.2 eV, underestimates the experiment by almost the same amount. The calculated ionization potentials and electron affinities of the clusters may be related to the metallic droplet model, although deviations due to the electronic shell structure are noticeable. The GGA extrapolation to bulk values yields 4.8 and 4.9 eV for the ionization potential and the electron affinity, respectively, remarkably close to the experimental polycrystalline work function of bulk gold, 5.1 eV. Gold 4f core level binding energies were calculated for sites with bulk coordination and for different surface sites. The core level shifts for the surface sites are all positive and distinguish among the corner, edge, and face-centered sites; sites in the first subsurface layer show still small positive shifts.
Charting the Parameter Space of the 21-cm Power Spectrum
NASA Astrophysics Data System (ADS)
Cohen, Aviad; Fialkov, Anastasia; Barkana, Rennan
2018-05-01
The high-redshift 21-cm signal of neutral hydrogen is expected to be observed within the next decade and will reveal epochs of cosmic evolution that have been previously inaccessible. Due to the lack of observations, many of the astrophysical processes that took place at early times are poorly constrained. In recent work we explored the astrophysical parameter space and the resulting large variety of possible global (sky-averaged) 21-cm signals. Here we extend our analysis to the fluctuations in the 21-cm signal, accounting for those introduced by density and velocity, Lyα radiation, X-ray heating, and ionization. While the radiation sources are usually highlighted, we find that in many cases the density fluctuations play a significant role at intermediate redshifts. Using both the power spectrum and its slope, we show that properties of high-redshift sources can be extracted from the observable features of the fluctuation pattern. For instance, the peak amplitude of ionization fluctuations can be used to estimate whether heating occurred early or late and, in the early case, to also deduce the cosmic mean ionized fraction at that time. The slope of the power spectrum has a more universal redshift evolution than the power spectrum itself and can thus be used more easily as a tracer of high-redshift astrophysics. Its peaks can be used, for example, to estimate the redshift of the Lyα coupling transition and the redshift of the heating transition (and the mean gas temperature at that time). We also show that a tight correlation is predicted between features of the power spectrum and of the global signal, potentially yielding important consistency checks.
On the use of unshielded cables in ionization chamber dosimetry for total-skin electron therapy.
Chen, Z; Agostinelli, A; Nath, R
1998-03-01
The dosimetry of total-skin electron therapy (TSET) usually requires ionization chamber measurements in a large electron beam (up to 120 cm x 200 cm). Exposing the chamber's electric cable, its connector and part of the extension cable to the large electron beam will introduce unwanted electronic signals that may lead to inaccurate dosimetry results. While the best strategy to minimize the cable-induced electronic signal is to shield the cables and its connector from the primary electrons, as has been recommended by the AAPM Task Group Report 23 on TSET, cables without additional shielding are often used in TSET dosimetry measurements for logistic reasons, for example when an automatic scanning dosimetry is used. This paper systematically investigates the consequences and the acceptability of using an unshielded cable in ionization chamber dosimetry in a large TSET electron beam. In this paper, we separate cable-induced signals into two types. The type-I signal includes all charges induced which do not change sign upon switching the chamber polarity, and type II includes all those that do. The type-I signal is easily cancelled by the polarity averaging method. The type-II cable-induced signal is independent of the depth of the chamber in a phantom and its magnitude relative to the true signal determines the acceptability of a cable for use under unshielded conditions. Three different cables were evaluated in two different TSET beams in this investigation. For dosimetry near the depth of maximum buildup, the cable-induced dosimetry error was found to be less than 0.2% when the two-polarity averaging technique was applied. At greater depths, the relative dosimetry error was found to increase at a rate approximately equal to the inverse of the electron depth dose. Since the application of the two-polarity averaging technique requires a constant-irradiation condition, it was demonstrated than an additional error of up to 4% could be introduced if the unshielded cable's spatial configuration were altered during the two-polarity measurements. This suggests that automatic scanning systems with unshielded cables should not be used in TSET ionization chamber dosimetry. However, the data did show that an unshielded cable may be used in TSET ionization chamber dosimetry if the size of cable-induced error in a given TSET beam is pre-evaluated and the measurement is carefully conducted. When such an evaluation has not been performed, additional shielding should be applied to the cable being used, making measurements at multiple points difficult.
NASA Astrophysics Data System (ADS)
Uchimura, Tomohiro; Onoda, Takayuki; Lin, Cheng-Huang; Imasaka, Totaro
1999-08-01
An optical parametric oscillator and a Ti:sapphire laser are used as a pump source for the generation of high-order vibrational stimulated Raman emission in the vacuum ultraviolet region. This tunable laser is employed as an excitation/ionization source in a supersonic jet/multiphoton ionization/time-of-flight mass spectrometric study of benzene. The merits and potential advantages of this approach are discussed in this study.
Ponta, Michaela; Frentiu, Maria; Frentiu, Tiberiu
2012-06-01
A medium power, low Ar consumption capacitively coupled plasma torch (275 W, 0.4 L min-1) with molybdenum tubular electrode and single or two ring electrodes in non-local thermodynamic equilibrium (LTE) was characterized with respect to its ability to achieve element ionization. Ionization degrees of Ca, Mg, Mn and Cd were determined from ionic-to-atomic emission ratio and ionization equilibrium according to Saha's equation. The ionization degrees resulted from the Saha equation were higher by 9-32% than those obtained from spectral lines intensity in LTE regime and closer to reality. A linear decrease of ionization with increase of ionization energy of elements was observed. Plasma torch with two ring electrodes provided higher ionization degrees (85 ± 7% Ca, 79 ± 7% Mn, 80 ± 7% Mg and 73 ± 8% Cd) than those in single ring arrangement (70 ± 6% Ca, 57 ± 7% Mn, 57 ± 8% Mg and 42 ± 9% Cd). The Ca ionization decreased linearly by up to 79 ± 4% and 53 ± 6% in plasma with two ring electrodes and single ring respectively in the presence of up to 400 µg mL-1 Na as interferent. The studied plasma was effective in element ionization and could be a potential ion source in mass spectrometry.
Effect of radiant catalytic ionization on lean color and lipid oxidation of beef
USDA-ARS?s Scientific Manuscript database
Objectives: The radiant catalytic ionization (RCI) technology utilizes a combination of UV light and low-level oxidizers such as ozone, hydroxyl radicals, and hydrogen peroxide to cause antimicrobial action. There is a potential to use this technology as an antimicrobial intervention against foodbor...
Greater knowledge of biotransformation rates for ionizable organic compounds (IOCs) in fish is required to properly assess the bioaccumulation potential of many environmentally relevant contaminants. In this study we measured in vitro hepatic clearance rates for 50 IOCs using a p...
NASA Technical Reports Server (NTRS)
Kanik, I.; Beegle, L. W.; Hill, H. H.
2001-01-01
The potential of the high-resolution Electrospray Ionization/Ion Mobility Spectrometry (ESI/IMS) technique as analytical separation tool in analyzing bio-molecular mixtures in the search for the chemical signatures of life is demonstrated. Additional information is contained in the original extended abstract.
QTAIM electron density study of natural chalcones
NASA Astrophysics Data System (ADS)
González Moa, María J.; Mandado, Marcos; Cordeiro, M. Natália D. S.; Mosquera, Ricardo A.
2007-09-01
QTAIM atomic and bond properties, ionization potential, and O-H bond dissociation energies calculated at the B3LYP/6-311++G(2d,2p) level indicate the natural chalcones bear a significant radical scavenging activity. However, their ionization potentials indicate they decrease the electron-transfer rate between antioxidant and oxygen that yields the pro-oxidative cations less than other natural antioxidants. Rings A and B display slight and similar positive charges, whereas ring B is involved in exocycle delocalization at a larger extension.
High efficiency photoionization detector
Anderson, D.F.
1984-01-31
A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.
Potential for the Vishniac instability in ionizing shock waves propagating into cold gases
NASA Astrophysics Data System (ADS)
Robinson, A. P. L.; Pasley, J.
2018-05-01
The Vishniac instability was posited as an instability that could affect supernova remnants in their late stage of evolution when subject to strong radiative cooling, which can drive the effective ratio of specific heats below 1.3. The potential importance of this instability to these astrophysical objects has motivated a number of laser-driven laboratory studies. However, the Vishniac instability is essentially a dynamical instability that should operate independently of whatever physical processes happen to reduce the ratio of specific heats. In this paper, we examine the possibility that ionization and molecular dissociation processes can achieve this, and we show that this is possible for a certain range of shock wave Mach numbers for ionizing/dissociating shock waves propagating into cold atomic and molecular gases.
Quantum statistical mechanics of dense partially ionized hydrogen.
NASA Technical Reports Server (NTRS)
Dewitt, H. E.; Rogers, F. J.
1972-01-01
The theory of dense hydrogenic plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. In this theory, the effective interaction between any two charges is the dynamic screened potential obtained from the plasma dielectric function. We make the static approximation; and we carry out detailed numerical calculations with the bound and scattering states of the Debye potential, using the Beth-Uhlenbeck form of the quantum second virial coefficient. We compare our results with calculations from the Saha equation.
Plasma properties in electron-bombardment ion thrusters
NASA Technical Reports Server (NTRS)
Matossian, J. N.; Beattie, J. R.
1987-01-01
The paper describes a technique for computing volume-averaged plasma properties within electron-bombardment ion thrusters, using spatially varying Langmuir-probe measurements. Average values of the electron densities are defined by integrating the spatially varying Maxwellian and primary electron densities over the ionization volume, and then dividing by the volume. Plasma properties obtained in the 30-cm-diameter J-series and ring-cusp thrusters are analyzed by the volume-averaging technique. The superior performance exhibited by the ring-cusp thruster is correlated with a higher average Maxwellian electron temperature. The ring-cusp thruster maintains the same fraction of primary electrons as does the J-series thruster, but at a much lower ion production cost. The volume-averaged predictions for both thrusters are compared with those of a detailed thruster performance model.
NASA Astrophysics Data System (ADS)
Nakajima, K.; Schaerer, D.; Le Fèvre, O.; Amorín, R.; Talia, M.; Lemaux, B. C.; Tasca, L. A. M.; Vanzella, E.; Zamorani, G.; Bardelli, S.; Grazian, A.; Guaita, L.; Hathi, N. P.; Pentericci, L.; Zucca, E.
2018-05-01
Context. Ultraviolet (UV) emission-line spectra are used to spectroscopically confirm high-z galaxies and increasingly also to determine their physical properties. Aims: We construct photoionization models to interpret the observed UV spectra of distant galaxies in terms of the dominant radiation field and the physical condition of the interstellar medium (ISM). These models are applied to new spectroscopic observations from the VIMOS Ultra Deep Survey (VUDS). Methods: We construct a large grid of photoionization models, which use several incident radiation fields (stellar populations, active galactic nuclei (AGNs), mix of stars and AGNs, blackbodies, and others), and cover a wide range of metallicities and ionization parameters. From these models we derive new spectral UV line diagnostics using equivalent widths (EWs) of [CIII]λ1909 doublet, CIVλ1549 doublet and the line ratios of [CIII], CIV, and He IIλ1640 recombination lines. We apply these diagnostics to a sample of 450 [CIII]-emitting galaxies at redshifts z = 2-4 previously identified in VUDS. Results: We demonstrate that our photoionization models successfully reproduce observations of nearby and high-redshift sources with known radiation field and/or metallicity. For star-forming galaxies our models predict that [CIII] EW peaks at sub-solar metallicities, whereas CIV EW peaks at even lower metallicity. Using the UV diagnostics, we show that the average star-forming galaxy (EW([CIII]) 2 Å) based on the composite of the 450 UV-selected galaxies' spectra The inferred metallicity and ionization parameter is typically Z = 0.3-0.5 Z⊙ and logU = -2.7 to - 3, in agreement with earlier works at similar redshifts. The models also indicate an average age of 50-200 Myr since the beginning of the current star-formation, and an ionizing photon production rate, ξion, of logξion/erg-1 Hz = 25.3-25.4. Among the sources with EW([CIII]) >= 10 Å, approximately 30% are likely dominated by AGNs. The metallicity derived for galaxies with EW(CIII) = 10-20 Å is low, Z = 0.02-0.2 Z⊙, and the ionization parameter higher (logU -1.7) than the average star-forming galaxy. To explain the average UV observations of the strongest but rarest [CIII] emitters (EW([CIII]) > 20 Å), we find that stellar photoionization is clearly insufficient. A radiation field consisting of a mix of a young stellar population (logξion/erg-1 Hz 25.7) plus an AGN component is required. Furthermore an enhanced C/O abundance ratio (up to the solar value) is needed for metallicities Z = 0.1-0.2 Z⊙ and logU = -1.7 to - 1.5. Conclusions: A large grid of photoionization models has allowed us to propose new diagnostic diagrams to classify the nature of the ionizing radiation field (star formation or AGN) of distant galaxies using UV emission lines, and to constrain their ISM properties. We have applied this grid to a sample of [CIII]-emitting galaxies at z = 2-4 detected in VUDS, finding a range of physical properties and clear evidence for significant AGN contribution in rare sources with very strong [CIII] emission. The UV diagnostics we propose should also serve as an important basis for the interpretation of upcoming observations of high-redshift galaxies. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791.JSPS Overseas Research Fellow.
Identifying and managing the risks of medical ionizing radiation in endourology.
Yecies, Todd; Averch, Timothy D; Semins, Michelle J
2018-02-01
The risks of exposure to medical ionizing radiation is of increasing concern both among medical professionals and the general public. Patients with nephrolithiasis are exposed to high levels of ionizing radiation through both diagnostic and therapeutic modalities. Endourologists who perform a high-volume of fluoroscopy guided procedures are also exposed to significant quantities of ionizing radiation. The combination of judicious use of radiation-based imaging modalities, application of new imaging techniques such as ultra-low dose computed tomography (CT) scan, and modifying use of current technology such as increasing ultrasound and pulsed fluoroscopy utilization offers the possibility of significantly reducing radiation exposure. We present a review of the literature regarding the risks of medical ionizing radiation to patients and surgeons as it pertains to the field of endourology and interventions that can be performed to limit this exposure. A review of the current state of the literature was performed using MEDLINE and PubMed. Interventions designed to limit patient and surgeon radiation exposure were identified and analyzed. Summaries of the data were compiled and synthesized in the body of the text. While no level 1 evidence exists demonstrating the risk of secondary malignancy with radiation exposure, the preponderance of evidence suggests a dose and age dependent increase in malignancy risk from ionizing radiation. Patients with nephrolithiasis were exposed to an average effective dose of 37mSv over a 2 year period. Multiple evidence-based interventions to limit patient and surgeon radiation exposure and associated risk were identified. Current evidence suggest an age and dose dependent risk of secondary malignancy from ionizing radiation. Urologists must act in accordance with ALARA principles to safely manage nephrolithiasis while minimizing radiation exposure.
Light-Absorbing Brown Carbon Aerosol Constituents from Combustion of Indonesian Peat and Biomass.
Budisulistiorini, Sri Hapsari; Riva, Matthieu; Williams, Michael; Chen, Jing; Itoh, Masayuki; Surratt, Jason D; Kuwata, Mikinori
2017-04-18
Light-absorbing brown carbon (BrC) constituents of organic aerosol (OA) have been shown to significantly absorb ultraviolet (UV) and visible light and thus impact radiative forcing. However, molecular identification of the BrC constituents is still limited. In this study, we characterize BrC constituents at the molecular level in (i) aerosols emitted by combustion of peat, fern/leaf, and charcoal from Indonesia and (ii) ambient aerosols collected in Singapore during the 2015 haze episode. Aerosols were analyzed using ultra performance liquid chromatography instrument interfaced to a diode array detector and electrospray ionization high-resolution quadrupole time-of-flight mass spectrometer operated in the negative ion mode. In the laboratory-generated aerosols, we identified 41 compounds that can potentially absorb near-UV and visible wavelengths, such as oxygenated-conjugated compounds, nitroaromatics, and S-containing compounds. The sum of BrC constituents in peat, fern/leaf, and charcoal burning aerosols are 16%, 35%, and 28% of the OA mass, respectively, giving an average contribution of 24%. On average, the BrC constituents account for 0.4% of the ambient OA mass; however, large uncertainties in mass closure remain because of the lack of authentic standards. This study highlights the potential of light-absorbing BrC OA constituents from peat, fern/leaf, and charcoal burning and their importance in the atmosphere.
Determination of structure parameters in strong-field tunneling ionization theory of molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Songfeng; Jin Cheng; College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, Gansu 730070
2010-03-15
In the strong field molecular tunneling ionization theory of Tong et al. [Phys. Rev. A 66, 033402 (2002)], the ionization rate depends on the asymptotic wave function of the molecular orbital from which the electron is removed. The orbital wave functions obtained from standard quantum chemistry packages in general are not good enough in the asymptotic region. Here we construct a one-electron model potential for several linear molecules using density functional theory. We show that the asymptotic wave function can be improved with an iteration method and after one iteration accurate asymptotic wave functions and structure parameters are determined. Withmore » the new parameters we examine the alignment-dependent tunneling ionization probabilities for several molecules and compare with other calculations and with recent measurements, including ionization from inner molecular orbitals.« less
Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chunwei, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001; Tian, Xiubo, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com
2016-08-15
The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process wasmore » simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process.« less
Gramatyka, Michalina; Skorupa, Agnieszka; Sokół, Maria
2018-01-01
Several lines of evidence indicate that exposure of heart to ionizing radiation increases the risk of cardiotoxicity manifested by heart dysfunction and cardiovascular diseases. It was initially believed that the heart is an organ relatively resistant to radiation. Currently, however, it is suspected that even low doses of radiation (< 2 Gy) may have a negative impact on the cardiovascular system. Cardiotoxicity of ionizing radiation is associated with metabolic changes observed in cardiac cells injured by radiation. In this study, we used human cardiomyocytes as a model system, and studied their metabolic response to radiation using high-resolution magic angle spinning nuclear magnetic resonance techniques (HR-MAS NMR). Human cardiomyocytes cultured in vitro were exposed to ionizing radiation and their survival was assessed by clonogenic assay. Changes in apoptosis intensity and cell cycle distribution after the irradiation were measured as well. NMR spectra of cardiomyocytes were acquired using Bruker Avance 400 MHz spectrometer at a spinning rate of 3200 Hz. Survival of cardiomyocytes after NMR experiments was assessed by the Trypan blue exclusion assay. Exposure of cardiomyocytes to small doses of ionizing radiation had no effect on cell proliferation potential and intensity of cell death. However, analysis of metabolic profiles revealed changes in lipids, threonine, glycine, glycerophosphocholine, choline, valine, isoleucine, glutamate, reduced glutathione and taurine metabolism. The results of this study showed that ionizing radiation affects metabolic profiles of cardiomyocytes even at low doses, which potentially have no effect on cell viability.
Mower, Laura; Bushe, Chris
2015-01-01
Abstract: Ionizing radiation is an essential component of the care process. However, providers and patients may not be fully aware of the risks involved, the level of ionizing radiation delivered with various procedures, or the potential for harm through incidental overexposure or cumulative dose. Recent high-profile incidents demonstrating the devastating short-term consequences of radiation overexposure have drawn attention to these risks, but applicable solutions are lacking. Although various recommendations and guidelines have been proposed, organizational variability challenges providers to identify their own practical solutions. To identify potential failure modes and develop solutions to preserve patient safety within a large, national healthcare system, we assembled a multidisciplinary team to conduct a comprehensive analysis of practices surrounding the delivery of ionizing radiation. Workgroups were developed to analyze existing culture, processes, and technology to identify deficiencies and propose solutions. Six focus areas were identified: competency and certification; equipment; monitoring and auditing; education; clinical pathways; and communication and marketing. This manuscript summarizes this comprehensive, multidisciplinary, and systemic analysis of risk and provides examples to illustrate how these focus areas can be used to improve the use of ionizing radiation. The proposed solutions, once fully implemented, may advance patient safety and care. PMID:26042626
An optically stimulated luminescence system to measure dose profiles in x-ray computed tomography
NASA Astrophysics Data System (ADS)
Yukihara, E. G.; Ruan, C.; Gasparian, P. B. R.; Clouse, W. J.; Kalavagunta, C.; Ahmad, S.
2009-10-01
This paper describes an LED-based optically stimulated luminescence (OSL) system for dose profile measurements using OSL detector strips and investigates its performance in x-ray computed tomography (CT) dosimetry. To compensate for the energy response of the Al2O3:C OSL detectors, which have an effective atomic number of 11.28, field-specific energy correction factors were determined using two methods: (a) comparing the OSL profiles with ionization chamber point measurements (0.3 cm3 ionization chamber) and (b) comparing the OSL profiles integrated over a 100 mm length with 100 mm long pencil ionization chamber measurements. These correction factors were obtained for the CT body and head phantoms, central and peripheral positions and three x-ray tube potential differences (100 kVp, 120 kVp and 140 kVp). The OSL dose profiles corrected by the energy dependence agreed with the ionization chamber point measurements over the entire length of the phantom (300 mm). For 120 kVp x-ray tube potential difference, the CTDI100 values calculated using the OSL dose profiles corrected for the energy dependence and those obtained from an independent measurement with a 100 mm long pencil ionization chamber also agreed within ±5%.
LABORATORY PHOTO-CHEMISTRY OF PAHS: IONIZATION VERSUS FRAGMENTATION
Zhen, Junfeng; Castellanos, Pablo; Paardekooper, Daniel M.; Ligterink, Niels; Linnartz, Harold; Nahon, Laurent; Joblin, Christine; Tielens, Alexander G. G. M.
2015-01-01
Interstellar Polycyclic Aromatic Hydrocarbons (PAH) are expected to be strongly processed by Vacuum Ultra-Violet (VUV) photons. Here, we report experimental studies on the ionization and fragmentation of coronene (C24H12), ovalene (C32H14) and hexa-peri-hexabenzocoronene (HBC; C42H18) cations by exposure to synchrotron radiation in the range of 8–40 eV. The results show that for small PAH cations such as coronene, fragmentation (H-loss) is more important than ionization. However, as the size increases, ionization becomes more and more important and for the HBC cation, ionization dominates. These results are discussed and it is concluded that, for large PAHs, fragmentation only becomes important when the photon energy has reached the highest ionization potential accessible. This implies that PAHs are even more photo-stable than previously thought. The implications of this experimental study for the photo-chemical evolution of PAHs in the interstellar medium (ISM) are briefly discussed. PMID:26688710
LABORATORY PHOTO-CHEMISTRY OF PAHs: IONIZATION VERSUS FRAGMENTATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen, Junfeng; Castellanos, Pablo; Ligterink, Niels
2015-05-01
Interstellar polycyclic aromatic hydrocarbons (PAHs) are expected to be strongly processed by vacuum ultraviolet photons. Here, we report experimental studies on the ionization and fragmentation of coronene (C{sub 24}H{sub 12}), ovalene (C{sub 32}H{sub 14}) and hexa-peri-hexabenzocoronene (HBC; C{sub 42}H{sub 18}) cations by exposure to synchrotron radiation in the range of 8–40 eV. The results show that for small PAH cations such as coronene, fragmentation (H-loss) is more important than ionization. However, as the size increases, ionization becomes more and more important and for the HBC cation, ionization dominates. These results are discussed and it is concluded that, for large PAHs,more » fragmentation only becomes important when the photon energy has reached the highest ionization potential accessible. This implies that PAHs are even more photo-stable than previously thought. The implications of this experimental study for the photo-chemical evolution of PAHs in the interstellar medium are briefly discussed.« less
Laser-based methods for the analysis of low molecular weight compounds in biological matrices.
Kiss, András; Hopfgartner, Gérard
2016-07-15
Laser-based desorption and/or ionization methods play an important role in the field of the analysis of low molecular-weight compounds (LMWCs) because they allow direct analysis with high-throughput capabilities. In the recent years there were several new improvements in ionization methods with the emergence of novel atmospheric ion sources such as laser ablation electrospray ionization or laser diode thermal desorption and atmospheric pressure chemical ionization and in sample preparation methods with the development of new matrix compounds for matrix-assisted laser desorption/ionization (MALDI). Also, the combination of ion mobility separation with laser-based ionization methods starts to gain popularity with access to commercial systems. These developments have been driven mainly by the emergence of new application fields such as MS imaging and non-chromatographic analytical approaches for quantification. This review aims to present these new developments in laser-based methods for the analysis of low-molecular weight compounds by MS and several potential applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Two-color ionization injection using a plasma beatwave accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, C. B.; Benedetti, C.; Esarey, E.
Two-color laser ionization injection is a method to generate ultra-low emittance (sub-100 nm transverse normalized emittance) beams in a laser-driven plasma accelerator. A plasma beatwave accelerator is proposed to drive the plasma wave for ionization injection, where the beating of the lasers effectively produces a train of long-wavelength pulses. The plasma beatwave accelerator excites a large amplitude plasma wave with low peak laser electric fields, leaving atomically-bound electrons with low ionization potential. A short-wavelength, low-amplitude ionization injection laser pulse (with a small ponderomotive force and large peak electric field) is used to ionize the remaining bound electrons at a wakemore » phase suitable for trapping, generating an ultra-low emittance electron beam that is accelerated in the plasma wave. Using a plasma beatwave accelerator for wakefield excitation, compared to short-pulse wakefield excitation, allows for a lower amplitude injection laser pulse and, hence, a lower emittance beam may be generated.« less
Two-color ionization injection using a plasma beatwave accelerator
Schroeder, C. B.; Benedetti, C.; Esarey, E.; ...
2018-01-10
Two-color laser ionization injection is a method to generate ultra-low emittance (sub-100 nm transverse normalized emittance) beams in a laser-driven plasma accelerator. A plasma beatwave accelerator is proposed to drive the plasma wave for ionization injection, where the beating of the lasers effectively produces a train of long-wavelength pulses. The plasma beatwave accelerator excites a large amplitude plasma wave with low peak laser electric fields, leaving atomically-bound electrons with low ionization potential. A short-wavelength, low-amplitude ionization injection laser pulse (with a small ponderomotive force and large peak electric field) is used to ionize the remaining bound electrons at a wakemore » phase suitable for trapping, generating an ultra-low emittance electron beam that is accelerated in the plasma wave. Using a plasma beatwave accelerator for wakefield excitation, compared to short-pulse wakefield excitation, allows for a lower amplitude injection laser pulse and, hence, a lower emittance beam may be generated.« less
Atomic solid state energy scale: Universality and periodic trends in oxidation state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelatt, Brian D.; Kokenyesi, Robert S.; Ravichandran, Ram
2015-11-15
The atomic solid state energy (SSE) scale originates from a plot of the electron affinity (EA) and ionization potential (IP) versus band gap (E{sub G}). SSE is estimated for a given atom by assessing an average EA (for a cation) or an average IP (for an anion) for binary inorganic compounds having that specific atom as a constituent. Physically, SSE is an experimentally-derived average frontier orbital energy referenced to the vacuum level. In its original formulation, 69 binary closed-shell inorganic semiconductors and insulators were employed as a database, providing SSE estimates for 40 elements. In this contribution, EA and IPmore » versus E{sub G} are plotted for an additional 92 compounds, thus yielding SSE estimates for a total of 64 elements from the s-, p-, d-, and f-blocks of the periodic table. Additionally, SSE is refined to account for its dependence on oxidation state. Although most cations within the SSE database are found to occur in a single oxidation state, data are available for nine d-block transition metals and one p-block main group metal in more than one oxidation state. SSE is deeper in energy for a higher cation oxidation state. Two p-block main group non-metals within the SSE database are found to exist in both positive and negative oxidation states so that they can function as a cation or anion. SSEs for most cations are positioned above −4.5 eV with respect to the vacuum level, and SSEs for all anions are positioned below. Hence, the energy −4.5 eV, equal to the hydrogen donor/acceptor ionization energy ε(+/−) or equivalently the standard hydrogen electrode energy, is considered to be an absolute energy reference for chemical bonding in the solid state. - Highlights: • Atomic solid-state energies are estimated for 64 elements from experimental data. • The relationship between atomic SSEs and oxidation state is assessed. • Cations are positioned above and absolute energy of −4.5 eV and anions below.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhaskaran-Nair, Kiran; Kowalski, Karol; Jarrell, Mark
2015-11-05
Polyacenes have attracted considerable attention due to their use in organic based optoelectronic materials. Polyacenes are polycyclic aromatic hydrocarbons composed of fused benzene rings. Key to understanding and design of new functional materials is an understanding of their excited state properties starting with their electron affinity (EA) and ionization potential (IP). We have developed a highly accurate and com- putationally e*fficient EA/IP equation of motion coupled cluster singles and doubles (EA/IP-EOMCCSD) method that is capable of treating large systems and large basis set. In this study we employ the EA/IP-EOMCCSD method to calculate the electron affinity and ionization potential ofmore » naphthalene, anthracene, tetracene, pentacene, hex- acene and heptacene. We have compared our results with other previous theoretical studies and experimental data. Our EA/IP results are in very good agreement with experiment and when compared with the other theoretical investigations our results represent the most accurate calculations as compared to experiment.« less
Ionization potential depression in an atomic-solid-plasma picture
NASA Astrophysics Data System (ADS)
Rosmej, F. B.
2018-05-01
Exotic solid density matter such as heated hollow crystals allow extended material studies while their physical properties and models such as the famous ionization potential depression are presently under renewed controversial discussion. Here we develop an atomic-solid-plasma (ASP) model that permits ionization potential depression studies also for single and multiple core hole states. Numerical calculations show very good agreement with recently available data not only in absolute values but also for Z-scaled properties while currently employed methods fail. For much above solid density compression, the ASP model predicts increased K-edge energies that are related to a Fermi surface rising. This is in good agreement with recent quantum molecular dynamics simulations. For hot dense matter a quantum number dependent optical electron finite temperature ion sphere model is developed that fits well with line shift and line disappearance data from dense laser produced plasma experiments. Finally, the physical transparency of the ASP picture allows a critical discussion of current methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Bo; Govind, Niranjan; Aprà, Edoardo
In this paper we apply equation-of-motion coupled cluster (EOMCC) methods in studies of vertical ionization potentials (IP) and electron affinities (EA) for sin- gled walled carbon nanotubes. EOMCC formulations for ionization potentials and electron affinities employing excitation manifolds spanned by single and double ex- citations (IP/EA-EOMCCSD) are used to study IPs and EAs of nanotubes as a function of nanotube length. Several armchair nanotubes corresponding to C20nH20 models with n = 2 - 6 have been used in benchmark calculations. In agreement with previous studies, we demonstrate that the electronegativity of C20nH20 systems remains, to a large extent, independent ofmore » nanotube length. We also compare IP/EA- EOMCCSD results with those obtained with the coupled cluster models with single and double excitations corrected by perturbative triples, CCSD(T), and density func- tional theory (DFT) using global and range-separated hybrid exchange-correlation functionals.« less
NASA Technical Reports Server (NTRS)
Agrawal, P. C.; Ramsey, B. D.
1988-01-01
An experimental investigation of propane and six other quench gases was carried out in argon-filled proportional counters. The objective of the study was to find the best gas mixture for optimizing the gas gain and the energy resolution as well as to understand the role of the ionization potential of quench gases in determining these parameters. It was found that the best gas gains and energy resolutions are obtained with propane, ethane, and isobutane in that order. The ionization potentials of these three lie below the argon metastable potentials and have the lowest value of resonance defect compared to the other quench gases. The better results obtained with these mixtures can be explained by an increased ionization yield resulting from the Penning effect. Propylene and trans-2-butene give inferior performance compared to the above three gases. Methane and carbon dioxide, the most commonly used quench gases in the argon-filled detectors, provide the worst results.
Acceleration of ions and neutrals by a traveling electrostatic wave
NASA Astrophysics Data System (ADS)
Lee, K. H.; Lee, L. C.; Wong, A. Y.
2018-02-01
We propose a new scheme for accelerating a weakly ionized gas by externally imposing a sinusoidal electrostatic (ES) potential in a tubular system. The weakly ionized gas consists of three fluid components: neutral hydrogen fluid ( H ), positively charged fluid ( H + ), and negatively charged fluids ( H - and/or e - ), as an example. The sinusoidal ES potential is imposed on a series of conductive meshes in the tubular system, and its phase varies with time and space to mimic a traveling ES wave. The charged fluids are trapped and accelerated by the sinusoidal ES potential, while the neutral fluid is accelerated through neutral-ion collisions. The neutral fluid can be accelerated to the wave phase velocity in a few neutral-ion collision times. The whole device remains charge-neutral, and there is no build-up of space charge. The acceleration scheme can be applied to, for example, the propulsion of glider in the air, partially ionized plasma in a chamber, spacecraft, and wind tunnel.
NASA Astrophysics Data System (ADS)
Sein, Lawrence T.
2011-08-01
Hammett parameters σ' were determined from vertical ionization potentials, vertical electron affinities, adiabatic ionization potentials, adiabatic electron affinities, HOMO, and LUMO energies of a series of N, N' -bis (3',4'-substituted-phenyl)-1,4-quinonediimines computed at the B3LYP/6-311+G(2d,p) level on B3LYP/6-31G ∗ molecular geometries. These parameters were then least squares fit as a function of literature Hammett parameters. For N, N' -bis (4'-substituted-phenyl)-1,4-quinonediimines, the least squares fits demonstrated excellent linearity, with the square of Pearson's correlation coefficient ( r2) greater than 0.98 for all isomers. For N, N' -bis (3'-substituted-3'-aminophenyl)-1,4-quinonediimines, the least squares fits were less nearly linear, with r2 approximately 0.70 for all isomers when derived from calculated vertical ionization potentials, but those from calculated vertical electron affinities usually greater than 0.90.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bross, David H.; Parmar, Payal; Peterson, Kirk A.
The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set (CBS) limit using new all-electron correlation consistent basis sets. The latter were carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons have been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. As amore » result, the final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV), and thus more reliable than the current experimental values of IP 3 through IP 6.« less
NASA Astrophysics Data System (ADS)
Craven, S. M.; Hoenigman, J. R.; Moddeman, W. E.
1981-11-01
The potential use of secondary ion mass spectroscopy (SIMS) to analyze biological samples for calcium isotopes is discussed. Comparison of UTI and Extranuclear based quadrupole systems is made on the basis of the analysis of CaO and calcium metal. The Extranuclear quadrupole based system is superior in resolution and sensitivity to the UTI system and is recommended. For determination of calcium isotopes to within an accuracy of a few percent a high resolution quadrupole, such as the Extranuclear, and signal averaging capability are required. Charge neutralization will be mandated for calcium oxide, calcium nitrate, or calcium oxalate. SIMS is not capable of the high precision and high accuracy results possible by thermal ionization methods, but where faster analysis is desirable with an accuracy of a few percent, SIMS is a viable alternative.
Energy Pooling, Ion Recombination, and Reactions of Rubidium and Cesium in Hydrocarbon Gasses.
NASA Astrophysics Data System (ADS)
Bresler, Sean Michael; Park, J.; Heaven, Michael
2017-06-01
Diode Pumped Alkali Lasers (DPAL) are continuous wave lasers, potentially capable of megawatt average powers. These lasers exploit the D1 and D2 lines of alkali metals resulting in a 3-level laser with the lasing transition in the near infrared region of the electromagnetic spectrum. Energy pooling processes involving collisions between excited alkali metals cause a fraction of the gain media to be highly excited and eventually ionized. These high energy cesium atoms and ions chemically react with small hydrocarbons utilized as buffer gasses for the system, depleting the gain media. A kinetic model supported by experimental data is introduced to explain the cumulative effects of optical trapping, energy pooling, and chemical reactivity in heavy alkali metal (Rb, Cs) systems. Spectroscopic studies demonstrating metal hydride formation will also be presented.
Triple differential cross-sections of Ne (2s2) in coplanar to perpendicular plane geometry
NASA Astrophysics Data System (ADS)
Chen, L. Q.; Khajuria, Y.; Chen, X. J.; Xu, K. Z.
2003-10-01
The distorted wave Born approximation (DWBA) with the spin averaged static exchange potential has been used to calculate the triple differential cross-sections (TDCSs) for Ne (2s^2) ionization by electron impact in coplanar to perpendicular plane symmetric geometry at 110.5 eV incident electron energy. The present theoretical results at gun angles Psi = 0^circ (coplanar symmetric geometry) and Psi = 90^circ (perpendicular plane geometry) are in satisfactory agreement with the available experimental data. A deep interference minimum appears in the TDCS in the coplanar symmetric geometry and a strong peak at scattering angle xi = 90^circ caused by the single collision mechanism has been observed in the perpendicular plane geometry. The TDCSs at the gun angles Psi = 30^circ, and Psi = 60^circ are predicted.
Ionospheric modification using relativistic electron beams
NASA Technical Reports Server (NTRS)
Banks, Peter M.; Fraser-Smith, Anthony C.; Gilchrist, B. E.
1990-01-01
The recent development of comparatively small electron linear accelerators (linacs) now makes possible a new class of ionospheric modification experiments using beams of relativistic electrons. These experiments can potentially provide much new information about the interactions of natural relativistic electrons with other particles in the upper atmosphere, and it may also make possible new forms of ionization structures extending down from the lower ionosphere into the largely un-ionized upper atmosphere. The consequences of firing a pulsed 1 A, 5 Mev electron beam downwards into the upper atmosphere are investigated. If a small pitch angle with respect to the ambient geomagnetic field is selected, the beam produces a narrow column of substantial ionization extending down from the source altitude to altitudes of approximately 40 to 45 km. This column is immediately polarized by the natural middle atmosphere fair weather electric field and an increasingly large potential difference is established between the column and the surrounding atmosphere. In the regions between 40 to 60 km, this potential can amount to many tens of kilovolts and the associated electric field can be greater than the field required for breakdown and discharge. Under these conditions, it may be possible to initiate lightning discharges along the initial ionization channel. Filamentation may also occur at the lower end to drive further currents in the partially ionized gases of the stratosphere. Such discharges would derive their energy from the earth-ionosphere electrical system and would be sustained until plasma depletion and/or electric field reduction brought the discharge under control. It is likely that this artificially-triggered lightning would produce measurable low-frequency radiation.
NASA Astrophysics Data System (ADS)
Dzifčáková, Elena; Dudík, Jaroslav
2018-03-01
Context. Transition region (TR) spectra typically show the Si IV 1402.8 Å line to be enhanced by a factor of 5 or more compared to the neighboring O IV 1401.2 Å, contrary to predictions of ionization equilibrium models and the Maxwellian distribution of particle energies. Non-equilibrium effects in TR spectra are therefore expected. Aims: To investigate the combination of non-equilibrium ionization and high-energy particles, we apply the model of the periodic electron beam, represented by a κ-distribution that recurs at periods of several seconds, to plasma at chromospheric temperatures of 104 K. This simple model can approximate a burst of energy release involving accelerated particles. Methods: Instantaneous time-dependent charge states of silicon and oxygen were calculated and used to synthesize the instantaneous and period-averaged spectra of Si IV and O IV. Results: The electron beam drives the plasma out of equilibrium. At electron densities of Ne = 1010 cm-3, the plasma is out of ionization equilibrium at all times in all cases we considered, while for a higher density of Ne = 1011 cm-3, ionization equilibrium can be reached toward the end of each period, depending on the conditions. In turn, the character of the period-averaged synthetic spectra also depends on the properties of the beam. While the case of κ = 2 results in spectra with strong or even dominant O IV, higher values of κ can approximate a range of observed TR spectra. Spectra similar to typically observed spectra, with the Si IV 1402.8 Å line about a factor 5 higher than O IV 1401.2 Å, are obtained for κ = 3. An even higher value of κ = 5 results in spectra that are exclusively dominated by Si IV, with negligible O IV emission. This is a possible interpretation of the TR spectra of UV (Ellerman) bursts, although an interpretation that requires a density that is 1-3 orders of magnitude lower than for equilibrium estimates. Movies associated to Fig. A.1 are available at http://https://www.aanda.org
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Michelle J.; Zoerb, Matthew C.; Campbell, Nicole R.
Here, benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e., DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical-ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt −1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a much weaker electric field, demonstrated that ion–molecule reactions likely proceed through amore » combination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The in-field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer, where measurements from the two instruments were highly correlated ( R 2 > 0.95, 10 s averages) over a wide range of sampling conditions.« less
Ionizing radiation and taxonomic, functional and evolutionary diversity of bird communities.
Morelli, Federico; Benedetti, Yanina; Mousseau, Timothy A; Møller, Anders Pape
2018-08-15
Ionizing radiation from nuclear accidents at Chernobyl, Fukushima and elsewhere has reduced the abundance, species richness and diversity of ecosystems. Here we analyzed the taxonomic, functional and evolutionary diversity of bird communities in forested areas around Chernobyl. Species richness decreased with increasing radiation, mainly in 2007. Functional richness, but not functional evenness and divergence, decreased with increasing level of ionizing radiation. Evolutionary distinctiveness of bird communities was higher in areas with higher levels of ionizing radiation. Regression tree models revealed that species richness was higher in bird communities in areas with radiation levels lower than 0.7 μSv/h. In contrast, when radiation levels were higher than 16.67 μSv/h, bird species richness reached a minimum. Functional richness was affected by two variables: Forest cover and radiation level. Higher functional richness was found in bird communities in areas with forest cover lower than 50%. In the areas with forest cover higher than 50%, the functional richness was lower when radiation level was higher than 0.91 μSv/h. Finally, the average evolutionary distinctiveness of bird communities was higher in areas with forest cover exceeding 50%. These findings imply that level of ionizing radiation interacted with forest cover to affect species richness and its component parts, i.e. taxonomic, functional, and evolutionary diversity. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pyak, P. E.; Usachenko, V. I.
2018-03-01
The phenomenon of pronounced peak structure(s) of longitudinal momentum distributions as well as a spike-like structure of low-energy spectra of photoelectrons emitted from laser-irradiated Ar and Ne atoms in a single ionization process is theoretically studied in the tunneling and multiphoton regimes of ionization. The problem is addressed assuming only the direct above-threshold ionization (ATI) as a physical mechanism underlying the phenomenon under consideration (viz. solely contributing to observed photoelectron momentum distributions (PMD)) and using the Coulomb-Volkov (CV) ansatz within the frame of conventional strong-field approximation (SFA) applied in the length-gauge formulation. The developed CV-SFA approach also incorporates the density functional theory essentially exploited for numerical composition of initial (laser-free) atomic state(s) constructed from atomic orbitals of Gaussian type. Our presented CV-SFA based (and laser focal-volume averaged) calculation results proved to be well reproducing both the pronounced double-peak and/or ATI-like multi-peak structure(s) experimentally observed in longitudinal PMD under conditions of tunneling and/or multiphoton regime, respectively. In addition, our CV-SFA results presented for tunneling regime also suggest and remarkably reproduce a pronounced structure observed in relevant experiments as a ‘spike-like’ enhanced maximum arising in low-energy region (around the value of about 1 eV) of photoelectron spectra. The latter consistency allows to identify and interpret these results as the so-called low-energy structure (LES) since the phenomenon proved to appear as the most prominent if the influence of Coulomb potential on photoelectron continuum states is maximally taken into account under calculations (viz. if the parameter Z in CV’s functions is put equal to 1). Moreover, the calculated LES proved to correspond (viz., established as closely related) to the mentioned double-peak structure arising in the low-momentum region ({p}| | ≤slant | 0.2| a.u.) of longitudinal PMDs calculated under condition of the tunneling regime. Thus, the phenomena under consideration can be well understood and adequately interpreted beyond the terms and/or concepts of various different alternative strong-field approaches and models (such as e.g., extensively invoked and exploited nowadays though, more sophisticated SFA-based ‘rescattering’ mechanism) compared to which, the currently applied CV-SFA model (through the same underlying physical mechanism of solely direct ATI suggested) is additionally able to provide and reveal an intimate and transparent interrelation between the phenomena of LES and double-peak structure arising in PMDs observed in the tunneling regime.
Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) has long been established as a tool by which microorganisms can be characterized and identified. EPA is investigating the potential of using this technology as a way to rapidly identify Aeromonas species fo...
Three chamber negative ion source
Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.
1985-01-01
A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.
Craig, Sandra; Gao, Lei; Lee, Irene; Gray, Thomas; Berdis, Anthony J.
2012-01-01
This report describes the design and application of several distinct gold-containing indoles as anti-cancer agents. When used individually, all gold-bearing compounds display cytostatic effects against leukemia and adherent cancer cell lines. However, two gold-bearing indoles show unique behavior by increasing the cytotoxic effects of clinically relevant levels of ionizing radiation. Quantifying the amount of DNA damage demonstrates that each gold-indole enhances apoptosis by inhibiting DNA repair. Both Au(I)-indoles were tested for inhibitory effects against various cellular targets including thioredoxin reductase, a known target of several gold compounds, and various ATP-dependent kinases. While neither compound significantly inhibits the activity of thioreoxin reductase, both showed inhibitory effects against several kinases associated with cancer initiation and progression. The inhibition of these kinases provides a possible mechanism for the ability of these Au(I)-indoles potentiate the cytotoxic effects of ionizing radiation. Clinical applications of combining Au(I)-indoles with ionizing radiation are discussed as a new strategy to achieve chemosensitization of cancer cells. PMID:22289037
Keyshar, Kunttal; Berg, Morgann; Zhang, Xiang; ...
2017-07-19
Here, the values of the ionization energies of transition metal dichalcogenides (TMDs) are needed to assess their potential usefulness in semiconductor heterojunctions for high-performance optoelectronics. Here, we report on the systematic determination of ionization energies for three prototypical TMD monolayers (MoSe 2, WS 2, and MoS 2) on SiO 2 using photoemission electron microscopy with deep ultraviolet illumination. The ionization energy displays a progressive decrease from MoS 2, to WS 2, to MoSe 2, in agreement with predictions of density functional theory calculations. Combined with the measured energy positions of the valence band edge at the Brillouin zone center, wemore » deduce that, in the absence of interlayer coupling, a vertical heterojunction comprising any of the three TMD monolayers would form a staggered (type-II) band alignment. This band alignment could give rise to long-lived interlayer excitons that are potentially useful for valleytronics or efficient electron–hole separation in photovoltaics.« less
Hazards to space workers from ionizing radiation
NASA Technical Reports Server (NTRS)
Lyman, J. T.
1980-01-01
A compilation of background information and a preliminary assessment of the potential risks to workers from the ionizing radiation encountered in space is provided. The report: (1) summarizes the current knowledge of the space radiation environment to which space workers will be exposed; (2) reviews the biological effects of ionizing radiation considered of major importance to a SPS project; and (3) discusses the health implications of exposure of populations of space workers to the radiations likely to penetrate through the shielding provided by the SPS work stations and habitat shelters of the SPS Reference System.
Upstream ionization instability associated with a current-free double layer.
Aanesland, A; Charles, C; Lieberman, M A; Boswell, R W
2006-08-18
A low frequency instability has been observed using various electrostatic probes in a low-pressure expanding helicon plasma. The instability is associated with the presence of a current-free double layer (DL). The frequency of the instability increases linearly with the potential drop of the DL, and simultaneous measurements show their coexistence. A theory for an upstream ionization instability has been developed, which shows that electrons accelerated through the DL increase the ionization upstream and are responsible for the observed instability. The theory is in good agreement with the experimental results.
What is the maximum mass of a Population III galaxy?
NASA Astrophysics Data System (ADS)
Visbal, Eli; Bryan, Greg L.; Haiman, Zoltán
2017-08-01
We utilize cosmological hydrodynamic simulations to study the formation of Population III (Pop III) stars in dark matter haloes exposed to strong ionizing radiation. We simulate the formation of three haloes subjected to a wide range of ionizing fluxes, and find that for high flux, ionization and photoheating can delay gas collapse and star formation up to halo masses significantly larger than the atomic cooling threshold. The threshold halo mass at which gas first collapses and cools increases with ionizing flux for intermediate values, and saturates at a value approximately an order of magnitude above the atomic cooling threshold for extremely high flux (e.g. ≈5 × 108 M⊙ at z ≈ 6). This behaviour can be understood in terms of photoheating, ionization/recombination and Ly α cooling in the pressure-supported, self-shielded gas core at the centre of the growing dark matter halo. We examine the spherically averaged radial velocity profiles of collapsing gas and find that a gas mass of up to ≈106 M⊙ can reach the central regions within 3 Myr, providing an upper limit on the amount of massive Pop III stars that can form. The ionizing radiation increases this limit by a factor of a few compared to strong Lyman-Werner radiation alone. We conclude that the bright He II 1640 Å emission recently observed from the high-redshift galaxy CR7 cannot be explained by Pop III stars alone. However, in some haloes, a sufficient number of Pop III stars may form to be detectable with future telescopes such as the James Webb Space Telescope.
Ambient Ionization Mass Spectrometry for Cancer Diagnosis and Surgical Margin Evaluation
Ifa, Demian R.; Eberlin, Livia S.
2017-01-01
Background There is a clinical need for new technologies that would enable rapid disease diagnosis based on diagnostic molecular signatures. Ambient ionization mass spectrometry has revolutionized the means by which molecular information can be obtained from tissue samples in real time and with minimal sample pretreatment. New developments in ambient ionization techniques applied to clinical research suggest that ambient ionization mass spectrometry will soon become a routine medical tool for tissue diagnosis. Content This review summarizes the main developments in ambient ionization techniques applied to tissue analysis, with focus on desorption electrospray ionization mass spectrometry, probe electrospray ionization, touch spray, and rapid evaporative ionization mass spectrometry. We describe their applications to human cancer research and surgical margin evaluation, highlighting integrated approaches tested for ex vivo and in vivo human cancer tissue analysis. We also discuss the challenges for clinical implementation of these tools and offer perspectives on the future of the field. Summary A variety of studies have showcased the value of ambient ionization mass spectrometry for rapid and accurate cancer diagnosis. Small molecules have been identified as potential diagnostic biomarkers, including metabolites, fatty acids, and glycerophospholipids. Statistical analysis allows tissue discrimination with high accuracy rates (>95%) being common. This young field has challenges to overcome before it is ready to be broadly accepted as a medical tool for cancer diagnosis. Growing research in new, integrated ambient ionization mass spectrometry technologies and the ongoing improvements in the existing tools make this field very promising for future translation into the clinic. PMID:26555455
Low-sample flow secondary electrospray ionization: improving vapor ionization efficiency.
Vidal-de-Miguel, G; Macía, M; Pinacho, P; Blanco, J
2012-10-16
In secondary electrospray ionization (SESI) systems, gaseous analytes exposed to an elecrospray plume become ionized after charge is transferred from the charging electrosprayed particles to the sample species. Current SESI systems have shown a certain potential. However, their ionization efficiency is limited by space charge repulsion and by the high sample flows required to prevent vapor dilution. As a result, they have a poor conversion ratio of vapor into ions. We have developed and tested a new SESI configuration, termed low-flow SESI, that permits the reduction of the required sample flows. Although the ion to vapor concentration ratio is limited, the ionic flow to sample vapor flow ratio theoretically is not. The new ionizer is coupled to a planar differential mobility analyzer (DMA) and requires only 0.2 lpm of vapor sample flow to produce 3.5 lpm of ionic flow. The achieved ionization efficiency is 1/700 (one ion for every 700 molecules) for TNT and, thus, compared with previous SESI ionizers coupled with atmospheric pressure ionization-mass spectrometry (API-MS) (Mesonero, E.; Sillero, J. A.; Hernández, M.; Fernandez de la Mora, J. Philadelphia PA, 2009) has been improved by a large factor of at least 50-100 (our measurements indicate 70). The new ionizer coupled with the planar DMA and a triple quadrupole mass spectrometer (ABSciex API5000) requires only 20 fg (50 million molecules) to produce a discernible signal after mobility and MS(2) analysis.
Density functional theory calculations of continuum lowering in strongly coupled plasmas.
Vinko, S M; Ciricosta, O; Wark, J S
2014-03-24
An accurate description of the ionization potential depression of ions in plasmas due to their interaction with the environment is a fundamental problem in plasma physics, playing a key role in determining the ionization balance, charge state distribution, opacity and plasma equation of state. Here we present a method to study the structure and position of the continuum of highly ionized dense plasmas using finite-temperature density functional theory in combination with excited-state projector augmented-wave potentials. The method is applied to aluminium plasmas created by intense X-ray irradiation, and shows excellent agreement with recently obtained experimental results. We find that the continuum lowering for ions in dense plasmas at intermediate temperatures is larger than predicted by standard plasma models and explain this effect through the electronic structure of the valence states in these strong-coupling conditions.
NASA Technical Reports Server (NTRS)
Markson, R.
1980-01-01
The ionospheric potential and galactic cosmic radiation, found to be inversely correlated with the solar wind velocity are examined as being germane to weather modification. Since the ionospheric potential is proportional to the fair weather electric field intensity and cosmic radiation is the dominant source of atmospheric ionization, it is concluded that the Earth's overall electric field varies in phase with atmospheric ionization and that the latter is modulated by the solar wind. A proposed mechanism, in which solar control of ionizing radiation influences atmospheric electrification and thus possibly cloud physical processes is discussed. An experimental approach to critically test the proposed mechanism through comparison of the temporal variation of the Earth's electric field with conditions in the interplanetary medium is outlined.
Feasibility of Ionization-Mediated Pathway for Ultraviolet-Induced Melanin Damage.
Mandal, Mukunda; Das, Tamal; Grewal, Baljinder K; Ghosh, Debashree
2015-10-22
Melanin is the pigment found in human skin that is responsible for both photoprotection and photodamage. Recently there have been reports that greater photodamage of DNA occurs when cells containing melanin are irradiated with ultraviolet (UV) radiation, thus suggesting that the photoproducts of melanin cause DNA damage. Photoionization processes have also been implicated in the photodegradation of melanin. However, not much is known about the oxidation potential of melanin and its monomers. In this work we calculate the ionization energies of monomers, dimers, and few oligomers of eumelanin to estimate the threshold energy required for the ionization of eumelanin. We find that this threshold is within the UV-B region for eumelanin. We also look at the charge and spin distributions of the various ionized states of the monomers that are formed to understand which of the ionization channels might favor monomerization from a covalent dimer.
Badal, Sunil P; Michalak, Shawn D; Chan, George C-Y; You, Yi; Shelley, Jacob T
2016-04-05
Plasma-based ambient desorption/ionization sources are versatile in that they enable direct ionization of gaseous samples as well as desorption/ionization of analytes from liquid and solid samples. However, ionization matrix effects, caused by competitive ionization processes, can worsen sensitivity or even inhibit detection all together. The present study is focused on expanding the analytical capabilities of the flowing atmospheric-pressure afterglow (FAPA) source by exploring additional types of ionization chemistry. Specifically, it was found that the abundance and type of reagent ions produced by the FAPA source and, thus, the corresponding ionization pathways of analytes, can be altered by changing the source working conditions. High abundance of proton-transfer reagent ions was observed with relatively high gas flow rates and low discharge currents. Conversely, charge-transfer reagent species were most abundant at low gas flows and high discharge currents. A rather nonpolar model analyte, biphenyl, was found to significantly change ionization pathway based on source operating parameters. Different analyte ions (e.g., MH(+) via proton-transfer and M(+.) via charge-transfer) were formed under unique operating parameters demonstrating two different operating regimes. These tunable ionization modes of the FAPA were used to enable or enhance detection of analytes which traditionally exhibit low-sensitivity in plasma-based ADI-MS analyses. In one example, 2,2'-dichloroquaterphenyl was detected under charge-transfer FAPA conditions, which were difficult or impossible to detect with proton-transfer FAPA or direct analysis in real-time (DART). Overall, this unique mode of operation increases the number and range of detectable analytes and has the potential to lessen ionization matrix effects in ADI-MS analyses.
Injection and trapping of tunnel-ionized electrons into laser-produced wakes.
Pak, A; Marsh, K A; Martins, S F; Lu, W; Mori, W B; Joshi, C
2010-01-15
A method, which utilizes the large difference in ionization potentials between successive ionization states of trace atoms, for injecting electrons into a laser-driven wakefield is presented. Here a mixture of helium and trace amounts of nitrogen gas was used. Electrons from the K shell of nitrogen were tunnel ionized near the peak of the laser pulse and were injected into and trapped by the wake created by electrons from majority helium atoms and the L shell of nitrogen. The spectrum of the accelerated electrons, the threshold intensity at which trapping occurs, the forward transmitted laser spectrum, and the beam divergence are all consistent with this injection process. The experimental measurements are supported by theory and 3D OSIRIS simulations.
Radiative transfer in dusty nebulae. III - The effects of dust albedo
NASA Technical Reports Server (NTRS)
Petrosian, V.; Dana, R. A.
1980-01-01
The effects of an albedo of internal dust, such as ionization structure and temperature of dust grain, were studied by the quasi-diffusion method with an iterative technique for solving the radiative heat transfer equations. It was found that the generalized on-the-spot approximation solution is adequate for most astrophysical applications for a zero albedo; for a nonzero albedo, the Eddington approximation is more accurate. The albedo increases the average energy of the diffuse photons, increasing the ionization level of hydrogen and heavy elements if the Eddington approximation is applied; the dust thermal gradient is reduced so that the infrared spectrum approaches blackbody spectrum with an increasing albedo.
Analysis Of Ultra Compact Ionized Hydrogen Regions Within The Northern Half Of The Galactic Disk
NASA Astrophysics Data System (ADS)
Bruce, John
2011-01-01
From a catalog of 199 candidate ultra compact (UC) HII regions 123 sources included in the the intersection of the GLIMPSE (8 μm),Cornish (6 cm), and Bolocam ( 1.1 mm) galactic plane surveys (BGPS) were analyzed. The sources were sorted based on 6 cm morphology and coincidence with 8 μm bubbles. The 1.1 mm flux attributes were measured and calculations were performed to determine the ionized hydrogen contributions to the 1.1 mm flux. The category averages and frequencies were obtained as well. Significant differences in HII percentages were present among the morphology groups but ranged widely, without apparent distinction, between the bubble forming and triggered source categories.
Zhao, Shan; Zhang, Jing; Yang, Yi; Shao, Bing
2010-04-01
A method for the determination of 27 industrial dyes in juice and wine has been developed using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/ MS). Acetonitrile was used as extraction solvent, and sodium chloride was added to salt out the analytes from the samples. Chromatographic separation was performed on a C18 column with the gradient elution and the mass spectrometric acquisition was carried out under the mode of multiple reaction monitoring (MRM). Twenty-four of the 27 dyes were detected under positive ionization mode using the mobile phase of acetonitrile and water containing 0.1% formic acid. The other 3 dyes were analyzed under negative ionization mode with the mobile phase of acetonitrile and water. As a result, the average recoveries of 27 dyes spiked in juice ranged from 57.0% to 117.7% with the relative standard deviations (RSDs) of 2.4%-17.7%, and the average recoveries of 27 dyes spiked in wine ranged from 40.8% to 109.4% with the RSDs of 1.6%-17.9%. The limits of quantification (LOQs) of 27 dyes spiked in juice were in the range of 0.1-50 microg/kg, and 0.2-50 microg/kg for those spiked in wine. This method can be applied to rapid detection of illegally added dyes in soft drinks due to its simplicity and high sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buhl, T.E.; Hansen, W.R.
1984-05-01
Estimators for calculating the risk of cancer and genetic disorders induced by exposure to ionizing radiation have been recommended by the US National Academy of Sciences Committee on the Biological Effects of Ionizing Radiations, the UN Scientific Committee on the Effects of Atomic Radiation, and the International Committee on Radiological Protection. These groups have also considered the risks of somatic effects other than cancer. The US National Council on Radiation Protection and Measurements has discussed risk estimate procedures for radiation-induced health effects. The recommendations of these national and international advisory committees are summarized and compared in this report. Based onmore » this review, two procedures for risk estimation are presented for use in radiological assessments performed by the US Department of Energy under the National Environmental Policy Act of 1969 (NEPA). In the first procedure, age- and sex-averaged risk estimators calculated with US average demographic statistics would be used with estimates of radiation dose to calculate the projected risk of cancer and genetic disorders that would result from the operation being reviewed under NEPA. If more site-specific risk estimators are needed, and the demographic information is available, a second procedure is described that would involve direct calculation of the risk estimators using recommended risk-rate factors. The computer program REPCAL has been written to perform this calculation and is described in this report. 25 references, 16 tables.« less
Rostad, C.E.; Sanford, W.E.
2009-01-01
Pore waters from the Chesapeake Bay impact structure cores recovered at Eyreville Farm, Northampton County, Virginia, were analyzed to characterize the dissolved organic carbon. After squeezing or centrifuging, a small volume of pore water, 100 ??L, was taken for analysis by electrospray ionization-mass spectrometry. Porewater samples were analyzed directly without filtration or fractionation, in positive and negative mode, for polar organic compounds. Spectra in both modes were dominated by low-molecular-weight ions. Negative mode had clusters of ions differing by -60 daltons, possibly due to increasing concentrations of inorganic salts. The numberaverage molecular weight and weight-average molecular weight values for the pore waters from the Chesapeake Bay impact structure are higher than those reported for other aquatic sources of natural dissolved organic carbon as determined by electrospray ionization-mass spectrometry. In order to address the question of whether drilling mud fluids may have contaminated the pore waters during sample collection, spectra from the pore waters were compared to spectra from drilling mud fluids. Ions indicative of drilling mud fluids were not found in spectra from the pore waters, indicating there was no detectable contamination, and highlighting the usefulness of this analytical technique for detecting potential contamination during sample collection. ?? 2009 The Geological Society of America.
Akamatsu, Ken; Shikazono, Naoya; Saito, Takeshi
2017-11-01
We have developed a new method for estimating the localization of DNA damage such as apurinic/apyrimidinic sites (APs) on DNA using fluorescence anisotropy. This method is aimed at characterizing clustered DNA damage produced by DNA-damaging agents such as ionizing radiation and genotoxic chemicals. A fluorescent probe with an aminooxy group (AlexaFluor488) was used to label APs. We prepared a pUC19 plasmid with APs by heating under acidic conditions as a model for damaged DNA, and subsequently labeled the APs. We found that the observed fluorescence anisotropy (r obs ) decreases as averaged AP density (λ AP : number of APs per base pair) increases due to homo-FRET, and that the APs were randomly distributed. We applied this method to three DNA-damaging agents, 60 Co γ-rays, methyl methanesulfonate (MMS), and neocarzinostatin (NCS). We found that r obs -λ AP relationships differed significantly between MMS and NCS. At low AP density (λ AP < 0.001), the APs induced by MMS seemed to not be closely distributed, whereas those induced by NCS were remarkably clustered. In contrast, the AP clustering induced by 60 Co γ-rays was similar to, but potentially more likely to occur than, random distribution. This simple method can be used to estimate mutagenicity of ionizing radiation and genotoxic chemicals. Copyright © 2017 Elsevier Inc. All rights reserved.
Shining a light on star formation driven outflows: the physical conditions within galactic outflows
NASA Astrophysics Data System (ADS)
Chisholm, John P.; Tremonti, Christina A.; Leitherer, Claus; Wofford, Aida; Chen, Yanmei
2016-01-01
Stellar feedback drives energy and momentum into the surrounding gas, which drives gas and metals out of galaxies through a galactic outflow. Unfortunately, galactic outflows are difficult to observe and characterize because they are extremely diffuse, and contain gas at many different temperatures. Here we present results from a sample of 37 nearby (z < 0.27) star forming galaxies observed in the ultraviolet with the Cosmic Origins Spectrograph on the Hubble Space Telescope. The sample covers over three decades in stellar mass and star formation rate, probing different morphologies such as dwarf irregulars and high-mass merging systems. Using four different UV absorption lines (O I, Si II, Si III and Si IV) that trace a wide range of temperatures (ionization potentials between 13.6 eV and 45 eV), we find shallow correlations between the outflow velocity or the equivalent width of absorption lines with stellar mass or star formation rate. Absorption lines probing different temperature phases have similar centroid velocities and line widths, indicating that they are comoving. Using the equivalent width ratios of the four different transitions, we find the ratios to be consistent with photo-ionized outflows, with moderately strong ionization parameters. By constraining the ionization mechanism we model the ionization fractions for each transition, but find the ionization fractions depend crucially on input model parameters. The shallow velocity scalings imply that low-mass galaxies launch outflows capable of escaping their galactic potential, while higher mass galaxies retain all of their gas, unless they undergo a merger.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, Dr. Peter S.; Ball, Robert; Chapman, J. Wehrley
2010-01-01
A new radiation sensor derived from plasma panel display technology is introduced. It has the capability to detect ionizing and non-ionizing radiation over a wide energy range and the potential for use in many applications. The principle of operation is described and some early results presented.
Beste, A; Harrison, R J; Yanai, T
2006-08-21
Chemists are mainly interested in energy differences. In contrast, most quantum chemical methods yield the total energy which is a large number compared to the difference and has therefore to be computed to a higher relative precision than would be necessary for the difference alone. Hence, it is desirable to compute energy differences directly, thereby avoiding the precision problem. Whenever it is possible to find a parameter which transforms smoothly from an initial to a final state, the energy difference can be obtained by integrating the energy derivative with respect to that parameter (cf. thermodynamic integration or adiabatic connection methods). If the dependence on the parameter is predominantly linear, accurate results can be obtained by single-point integration. In density functional theory and Hartree-Fock, we applied the formalism to ionization potentials, excitation energies, and chemical bond breaking. Example calculations for ionization potentials and excitation energies showed that accurate results could be obtained with a linear estimate. For breaking bonds, we introduce a nongeometrical parameter which gradually turns the interaction between two fragments of a molecule on. The interaction changes the potentials used to determine the orbitals as well as the constraint on the orbitals to be orthogonal.
NASA Astrophysics Data System (ADS)
Garcia de Gorordo, Alvaro; Hallock, Gary A.; Kandadai, Nirmala
2008-11-01
The Heavy Ion Beam Probe (HIBP) diagnostic has successfully measured the electric potential in a number of major plasma devices in the fusion community. In contrast to a Langmuir probe, the HIBP measures the exact electric potential rather than the floating potential. It is also has the advantage of being a very nonperturbing diagnostic. We propose a new photon-assisted beam probe technique that would extend the HIBP type of diagnostics into the low temperature plasma regime. We expect this method to probe plasmas colder than 10 eV. The novelty of the proposed diagnostic is a VUV laser that ionizes the probing particle. Excimer lasers produce the pulsed VUV radiation needed. The lasers on the market don't have a short enough wavelength too ionize any ion directly and so we calculate the population density of excited states in a NLTE plasma. These new photo-ionization techniques can take an instantaneous one-dimensional potential measurement of a plasma and are ideal for nonmagnitized plasmas where continuous time resolution is not required. Also the status of the Neutral Beam Probe installation on the Helimak experiment will be presented.
Photoionization in Ultraviolet Processing of Astrophysical Ice Analogs at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Woon, David E.
2004-01-01
Two recent experimental studies have demonstrated that amino acids or amino acid precursors are generated when astrophysical ice analogs are subjected to ultraviolet (UV) irradiation at cryogenic temperatures. Understanding the complete phenomenology of photoprocessing is critical to elucidating chemical reaction mechanisms that can function within an ice matrix under very cold conditions. Pushing beyond the much better characterized study of photolytic dissociation of chemical bonds through electronic excitation, this work explored the ability of UV radiation present in the interstellar medium to ionize small molecules embedded in ices. Quantum chemical calculations, including bulk solvation effects, were used to study the ionization of hydrogen (H2), water, and methanol (CH3OH) bound in small clusters of water. Ionization potentials were found to be much smaller in the condensed phase than in the gas phase; even a small cluster can account for large changes in the ionization potentials in ice, as well as the known formation of an OH--H3O+ pair in the case of H2O photoionization. To gauge the impact of photoionization on subsequent grain chemistry, the reaction between OH and CO in the presence of H3O+ was studied and compared with the potential energy surface without hydronium present, which is relevant to chemistry following photolysis. The differences indicate that the reaction is somewhat more likely to proceed to products (H + CO2) in the case of photoionization.
Dosimetry audit simulation of treatment planning system in multicenters radiotherapy
NASA Astrophysics Data System (ADS)
Kasmuri, S.; Pawiro, S. A.
2017-07-01
Treatment Planning System (TPS) is an important modality that determines radiotherapy outcome. TPS requires input data obtained through commissioning and the potentially error occurred. Error in this stage may result in the systematic error. The aim of this study to verify the TPS dosimetry to know deviation range between calculated and measurement dose. This study used CIRS phantom 002LFC representing the human thorax and simulated all external beam radiotherapy stages. The phantom was scanned using CT Scanner and planned 8 test cases that were similar to those in clinical practice situation were made, tested in four radiotherapy centers. Dose measurement using 0.6 cc ionization chamber. The results of this study showed that generally, deviation of all test cases in four centers was within agreement criteria with average deviation about -0.17±1.59 %, -1.64±1.92 %, 0.34±1.34 % and 0.13±1.81 %. The conclusion of this study was all TPS involved in this study showed good performance. The superposition algorithm showed rather poor performance than either analytic anisotropic algorithm (AAA) and convolution algorithm with average deviation about -1.64±1.92 %, -0.17±1.59 % and -0.27±1.51 % respectively.
Kα resonance fluorescence in Al, Ti, Cu and potential applications for X-ray sources
NASA Astrophysics Data System (ADS)
Nahar, Sultana N.; Pradhan, Anil K.
2015-04-01
The Kα resonance fluorescence (RFL) effect via photoabsorptions of inner shell electrons as the element goes through multiple ionization states is studied. We demonstrate that the resonances observed recently in Kα (1s-2p) fluorescence in aluminum plasmas by using a high-intensity X-ray free-electron laser [1] are basically K-shell resonances in hollow atoms going through multiple ionization states at resonant energies as predicted earlier for gold and iron ions [2]. These resonances are formed below the K-shell ionization edge and shift toward higher energies with ionization states, as observed. Fluorescence emission intensities depend on transition probabilities for each ionization stage of the given element for all possible Kα (1 s → 2 p) transition arrays. The present calculations for resonant photoabsorptions of Kα photons in Al have reproduced experimentally observed features. Resonant cross sections and absorption coefficients are presented for possible observation of Kα RFL in the resonant energy ranges of 4.5-5.0 keV for Ti ions and 8.0-8.7 keV for Cu ions respectively. We suggest that theoretically the Kα RFL process may be driven to enhance the Auger cycle by a twin-beam monochromatic X-ray source, tuned to the K-edge and Kα energies, with potential applications such as the development of narrow-band biomedical X-ray devices.
System level latchup mitigation for single event and transient radiation effects on electronics
Kimbrough, J.R.; Colella, N.J.
1997-09-30
A ``blink`` technique, analogous to a person blinking at a flash of bright light, is provided for mitigating the effects of single event current latchup and prompt pulse destructive radiation on a micro-electronic circuit. The system includes event detection circuitry, power dump logic circuitry, and energy limiting measures with autonomous recovery. The event detection circuitry includes ionizing radiation pulse detection means for detecting a pulse of ionizing radiation and for providing at an output terminal thereof a detection signal indicative of the detection of a pulse of ionizing radiation. The current sensing circuitry is coupled to the power bus for determining an occurrence of excess current through the power bus caused by ionizing radiation or by ion-induced destructive latchup of a semiconductor device. The power dump circuitry includes power dump logic circuitry having a first input terminal connected to the output terminal of the ionizing radiation pulse detection circuitry and having a second input terminal connected to the output terminal of the current sensing circuitry. The power dump logic circuitry provides an output signal to the input terminal of the circuitry for opening the power bus and the circuitry for shorting the power bus to a ground potential to remove power from the power bus. The energy limiting circuitry with autonomous recovery includes circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential. The circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential includes a series FET and a shunt FET. The invention provides for self-contained sensing for latchup, first removal of power to protect latched components, and autonomous recovery to enable transparent operation of other system elements. 18 figs.
System level latchup mitigation for single event and transient radiation effects on electronics
Kimbrough, Joseph Robert; Colella, Nicholas John
1997-01-01
A "blink" technique, analogous to a person blinking at a flash of bright light, is provided for mitigating the effects of single event current latchup and prompt pulse destructive radiation on a micro-electronic circuit. The system includes event detection circuitry, power dump logic circuitry, and energy limiting measures with autonomous recovery. The event detection circuitry includes ionizing radiation pulse detection means for detecting a pulse of ionizing radiation and for providing at an output terminal thereof a detection signal indicative of the detection of a pulse of ionizing radiation. The current sensing circuitry is coupled to the power bus for determining an occurrence of excess current through the power bus caused by ionizing radiation or by ion-induced destructive latchup of a semiconductor device. The power dump circuitry includes power dump logic circuitry having a first input terminal connected to the output terminal of the ionizing radiation pulse detection circuitry and having a second input terminal connected to the output terminal of the current sensing circuitry. The power dump logic circuitry provides an output signal to the input terminal of the circuitry for opening the power bus and the circuitry for shorting the power bus to a ground potential to remove power from the power bus. The energy limiting circuitry with autonomous recovery includes circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential. The circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential includes a series FET and a shunt FET. The invention provides for self-contained sensing for latchup, first removal of power to protect latched components, and autonomous recovery to enable transparent operation of other system elements.
Helium on Venus - Implications for uranium and thorium
NASA Technical Reports Server (NTRS)
Prather, M. J.; Mcelroy, M. B.
1983-01-01
Helium is removed at an average rate of 10 to the 6th atoms per square centimeter per second from Venus's atmosphere by the solar wind following ionization above the plasmapause. The surface source of helium-4 on Venus is similar to that on earth, suggesting comparable abundances of crustal uranium and thorium.
Luke, Paul
1996-01-01
An ionization detector electrode and signal subtraction apparatus and method provides at least one first conductive trace formed onto the first surface of an ionization detector. The first surface opposes a second surface of the ionization detector. At least one second conductive trace is also formed on the first surface of the ionization detector in a substantially interlaced and symmetrical pattern with the at least one first conductive trace. Both of the traces are held at a voltage potential of a first polarity type. By forming the traces in a substantially interlaced and symmetric pattern, signals generated by a charge carrier are substantially of equal strength with respect to both of the traces. The only significant difference in measured signal strength occurs when the charge carrier moves to within close proximity of the traces and is received at the collecting trace. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge and to determine the position at which the charge carrier originated within the ionization detector.
Luke, P.
1996-06-25
An ionization detector electrode and signal subtraction apparatus and method provide at least one first conductive trace formed onto the first surface of an ionization detector. The first surface opposes a second surface of the ionization detector. At least one second conductive trace is also formed on the first surface of the ionization detector in a substantially interlaced and symmetrical pattern with the at least one first conductive trace. Both of the traces are held at a voltage potential of a first polarity type. By forming the traces in a substantially interlaced and symmetric pattern, signals generated by a charge carrier are substantially of equal strength with respect to both of the traces. The only significant difference in measured signal strength occurs when the charge carrier moves to within close proximity of the traces and is received at the collecting trace. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge and to determine the position at which the charge carrier originated within the ionization detector. 9 figs.
NASA Astrophysics Data System (ADS)
Ma, Pan; Wang, Chuncheng; Luo, Sizuo; Yu, Xitao; Li, Xiaokai; Wang, Zhenzhen; Hu, Wenhui; Yu, Jiaqi; Yang, Yizhang; Tian, Xu; Cui, Zhonghua; Ding, Dajun
2018-05-01
We studied the relative yields and dissociation dynamics for two- and three-body Coulomb explosion (CE) channels from highly charged carbonyl sulfide molecules in intense laser fields using the CE imaging technique. The electron recollision contributions are evaluated by comparing the relative yields for the multiple ionization process in linearly polarized and circularly polarized (LP and CP) laser fields. The nonsequential multiple ionization is only confirmed for the charge states of 2 to 4 because the energy for further ionization from the inner orbital is much larger than the maximum recollision energy, 3.2U p . The novel deviations of kinetic energy releases distributions between LP and CP pulses are observed for the charge states higher than 4. It can be attributed to the stronger molecular bending in highly charged states before three-body CE with CP light, in which the bending wave packet is initialed by the triple or quartic ionization and spread along their potential curves. Compared to LP light, CP light ionizes a larger fraction of bending molecules in the polarization plane.
Specific cationic emission of cisplatin following ionization by swift protons
NASA Astrophysics Data System (ADS)
Moretto-Capelle, Patrick; Champeaux, Jean-Philippe; Deville, Charlotte; Sence, Martine; Cafarelli, Pierre
2016-05-01
We have investigated collision-induced ionization and fragmentation by 100 keV protons of the radio sensitizing molecule cisplatin, which is used in cancer treatments. A large emission of HCl+ and NH2+ is observed, but surprisingly, no cationic fragments containing platinum are detected, in contrast to ionization-dissociation induced by electronic collision. Theoretical investigations show that the ionization processes take place on platinum and on chlorine atoms. We propose new ionization potentials for cisplatin. Dissociation limits corresponding to the measured fragmentation mass spectrum have been evaluated and the theoretical results show that the non-observed cationic fragments containing platinum are mostly associated with low dissociation energies. We have also investigated the reaction path for the hydrogen transfer from the NH3 group to the Cl atom, as well as the corresponding dissociation limits from this tautomeric form. Here again the cations containing platinum correspond to lower dissociation limits. Thus, the experimental results suggest that excited states, probably formed via inner-shell ionization of the platinum atom of the molecule, correlated to higher dissociation limits are favored.
Ionization Cross Sections and Dissociation Channels of DNA Bases by Electron Collisions
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Dateo, Christopher E.; Fletcher, Graham D.
2004-01-01
Free secondary electrons are the most abundant secondary species in ionizing radiation. Their role in DNA damage, both direct and indirect, is an active area of research. While indirect damage by free radicals, particularly by the hydroxyl radical generated by electron collision with water. is relatively well studied, damage by direct electron collision with DNA is less well understood. Only recently Boudaiffa et al. demonstrated that electrons at energies well below ionization thresholds can induce substantial yields of single- and double-strand breaks in DNA by a resonant, dissociative attachment process. This study attracted renewed interest in electron collisions with DNA, especially in the low energy region. At higher energies ionization becomes important. While Monte Carlo track simulations of radiation damage always include ionization, the probability of dissociative ionization, i.e., simultaneous ionization and dissociation, is ignored. Just like dissociative attachment, dissociative ionization may be an important contributor to double-strand breaks since the radicals and ions produced by dissociative ionization, located in the vicinity of the DNA coil, can readily interact with other parts of the DNA. Using the improved binary-encounter dipole (iBED) formulation, we calculated the ionization cross sections of the four DNA bases, adenine, cytosine, guanine, and thymine, by electrons at energies from threshold to 1 KeV. The present calculation gives cross sections approximately 20% lower than the results by Bemhardt and Paretzke using the Deutsch-Mark and Binary-Encounter-Bethe (BEB) formalisms. The difference is most likely due to the lack of a shielding term in the dipole potential used in the Deutsch-Mark and BEB formalisms. The dissociation channels of ionization for the bases are currently being studied.
Shining a light on galactic outflows: photoionized outflows
NASA Astrophysics Data System (ADS)
Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei; Wofford, Aida
2016-04-01
We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O I, Si II, Si III, and Si IV ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modelled as a comoving phase. The Si equivalent width ratios (e.g. Si IV/Si II) have low dispersion, and little variation with stellar mass; while ratios with O I and Si vary by a factor of 2 for a given stellar mass. Photoionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photoionization models constrain the ionization parameter (U) between -2.25 < log (U) < -1.5, and require that the outflow metallicities are greater than 0.5 Z⊙. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15-10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.
NASA Technical Reports Server (NTRS)
Stallcop, James R.; Partridge, Harry; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances in scattering calculations with an emphasis on the accuracy that is obtainable. Results for interactions of the atoms and ionized atoms of nitrogen and oxygen will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.
NASA Astrophysics Data System (ADS)
Pogosov, V. V.; Reva, V. I.
2017-09-01
In terms of the model of stable jellium, self-consistent calculations of spatial distributions of electrons and potentials, as well as of energies of dissociation, cohesion, vacancy formation, electron attachment, and ionization potentials of solid clusters of Mg N , Li N (with N ≤ 254 ) and of clusters containing a vacancy ( N ≥ 12) have been performed. The contribution of a monovacancy to the energy of the cluster and size dependences of its characteristics and of asymptotics have been discussed. Calculations have been performed using a SKIT-3 cluster at Glushkov Institute of Cybernetics, National Academy of Sciences, Ukraine (Rpeak = 7.4 Tflops).
An Optics Free Spectrometer for the Extreme Ultraviolet
NASA Technical Reports Server (NTRS)
Judge, D. L.; Daybell, M. D.; Hoffman, J. R.; Gruntman, M. A.; Ogawa, H. S.; Samson, J. A. R.
1994-01-01
The optics-free spectrometer is a photon spectrometer. It provides the photon spectrum of a broadband source by converting photons of energy E into electrons of energy E', according to the Einstein relation, E' = E - Ei. E, is the ionization threshold of the gas target of interest (any of the rare gases are suitable) and E is the incoming photon energy. As is evident from the above equation, only a single order spectrum is produced throughout the energy range between the first and second ionization potentials of the rare gas used. Photons with energy above the second ionization potential produce two groups of electrons, but they are readily distinguished from each other. This feature makes this device extremely useful for determining the true spectrum of a continuum source or a many line source. The principle of operation and the laboratory results obtained with a representative configuration of the optics-free spectrometer are presented.
Bio-effects of non-ionizing electromagnetic fields in context of cancer therapy.
Saliev, Timur; Tachibana, Katsuro; Bulanin, Denis; Mikhalovsky, Sergey; Whitby, Ray D L
2014-01-01
Bio-effects mediated by non-ionizing electromagnetic fields (EMF) have become a hot topic of research in the last decades. This interest has been triggered by a growing public concern about the rapid expansion of telecommunication devices and possible consequences of their use on human health. Despite a feasibility study of potential negative impacts, the therapeutic advantages of EMF could be effectively harnessed for the treatment of cancer and other diseases. This review aims to examine recent findings relating to the mechanisms of action underlying the bio-effects induced by non-ionizing EMF. The potential of non-thermal and thermal effects is discussed in the context of possible applications for the induction of apoptosis, formation of reactive oxygen species, and increase of membrane permeability in malignant cells. A special emphasis has been put on the combination of EMF with magnetic nano-particles and ultrasound for cancer treatment. The review encompasses both human and animal studies.
Qiao, Xiaoqiang; Zhou, Yuan; Hou, Chunyan; Zhang, Xiaodan; Yang, Kaiguang; Zhang, Lihua; Zhang, Yukui
2013-03-01
The cationic reagent 1-(3-aminopropyl)-3-butylimidazolium bromide (BAPI) was exploited for the derivatization of carboxyl groups on peptides. Nearly 100% derivatization efficiency was achieved with the synthetic peptide RVYVHPI (RI-7). Furthermore, the peptide derivative was stable in a 0.1% TFA/water solution or a 0.1% (v/v) TFA/acetonitrile/water solution for at least one week. The effect of BAPI derivatization on the ionization of the peptide RI-7 was further investigated, and the detection sensitivity was improved >42-fold via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), thus outperforming the commercial piperazine derivatization approach. Moreover, the charge states of the peptide were largely increased via BAPI derivatization by electrospray ionization (ESI) MS. The results indicate the potential merits of BAPI derivatization for high sensitivity peptide analysis by MS.
Winfough, Matthew; Meloni, Giovanni
2017-12-01
Absolute photoionization cross sections for 2 potential propargylic fuels (propargylamine and dipropargyl ether) along with the partial ionization cross sections for their dissociative fragments are measured and presented for the first time via synchrotron photoionization mass spectrometry. The experimental setup consists of a multiplexed orthogonal time-of-flight mass spectrometer and is located at the Advanced Light Source facility of the Lawrence Berkeley National Laboratory in Berkeley, California. Data for a third propargylic compound (propargyl alcohol) were taken; however, because of its low signal, due to its weakly bound cation, only the dissociative ionization fragment from the H-loss channel is observed and presented. Suggested pathways leading to formation of dissociative photoionization fragments along with CBS-QB3 calculated adiabatic ionization energies and appearance energies for the dissociative fragments are also presented. Copyright © 2017 John Wiley & Sons, Ltd.
Gasper, Gerald L.; Carlson, Ross; Akhmetov, Artem; Moore, Jerry F.; Hanley, Luke
2010-01-01
This paper describes the development of laser desorption 7.87 eV vacuum ultraviolet postionization mass spectrometry (LDPI-MS) to detect antibiotics within intact bacterial colony biofilms. As >99% of the molecules ejected by laser desorption are neutrals, vacuum ultraviolet (VUV) photoionization of these neutrals can provide significantly increased signal compared to detection of directly emitted ions. Postionization with VUV radiation from the molecular fluorine laser single photon ionizes laser desorbed neutrals with ionization potentials below the 7.87 eV photon energy. Antibiotics with structures indicative of sub-7.87 eV ionization potentials were examined for their ability to be detected by 7.87 eV LDPI-MS. Tetracycline, sulfadiazine, and novobiocin were successfully detected neat as dried films physisorbed on porous silicon oxide substrates. Tetracycline and sulfadiazine were then detected within intact Staphylococcus epidermidis colony biofilms, the former with LOD in the micromolar concentration range. PMID:18704905
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyshar, Kunttal; Berg, Morgann; Zhang, Xiang
Here, the values of the ionization energies of transition metal dichalcogenides (TMDs) are needed to assess their potential usefulness in semiconductor heterojunctions for high-performance optoelectronics. Here, we report on the systematic determination of ionization energies for three prototypical TMD monolayers (MoSe 2, WS 2, and MoS 2) on SiO 2 using photoemission electron microscopy with deep ultraviolet illumination. The ionization energy displays a progressive decrease from MoS 2, to WS 2, to MoSe 2, in agreement with predictions of density functional theory calculations. Combined with the measured energy positions of the valence band edge at the Brillouin zone center, wemore » deduce that, in the absence of interlayer coupling, a vertical heterojunction comprising any of the three TMD monolayers would form a staggered (type-II) band alignment. This band alignment could give rise to long-lived interlayer excitons that are potentially useful for valleytronics or efficient electron–hole separation in photovoltaics.« less
NASA Technical Reports Server (NTRS)
Jones, Douglas E.
1996-01-01
Analysis and interpretation of data from the Orbiter Retarding Potential Analyzer (ORPA) onboard the Pioneer Venus Orbiter is reported. By comparing ORPA data to proton data from the Orbiter Plasma Analyzer (OPA), it was found that the ORPA suprathermal electron densities taken outside the Venusian ionopause represent solar wind electron densities, thus allowing the high resolution study of Venus bow shocks using both magnetic field and solar wind electron data. A preliminary analysis of 366 bow shock penetrations was completed using the solar wind electron data as determined from ORPA suprathermal electron densities and temperatures, resulting in an estimate of the extent to which mass loading pickup of O+ (UV ionized O atoms flowing out of the Venus atmosphere) upstream of the Venus obstacle occurred. The pickup of O+ averaged 9.95%, ranging from 0.78% to 23.63%. Detailed results are reported in two attached theses: (1) Comparison of ORPA Suprathermal Electron and OPA Solar Wind Proton Data from the Pioneer Venus Orbiter and (2) Pioneer Venus Orbiter Retarding Potential Analyzer Observations of the Electron Component of the Solar Wind, and of the Venus Bow Shock and Magnetosheath.
NASA Astrophysics Data System (ADS)
Chen, Jun Hong; Bochsler, Peter; Möbius, Eberhard; Gloeckler, George
2014-09-01
Interstellar neutrals penetrating into the inner heliosphere are ionized by photoionization, charge exchange with solar wind ions, and electron impact ionization. These processes comprise the first step in the evolution of interstellar pickup ion (PUI) distributions. Typically, PUI distributions have been described in terms of velocity distribution functions that cool adiabatically under solar wind expansion, with a cooling index of 3/2. Recently, the cooling index has been determined experimentally in observations of He PUI distributions with Advanced Composition Explorer (ACE)/Solar Wind Ion Composition Spectrometer and found to vary substantially over the solar cycle. The experimental determination of the cooling index depends on the knowledge of the ionization rates and their spatial variation. Usually, ionization rates increase with 1/r2 as neutral particles approach the Sun, which is not exactly true for electron impact ionization, because the electron temperature increases with decreasing distance from the Sun due to the complexity of its distributions and different radial gradients in temperature. This different dependence on distance may become important in the study of the evolution of PUI distributions and is suspected as one of the potential reasons for the observed variation of the cooling index. Therefore, we investigate in this paper the impact of electron ionization on the variability of the cooling index. We find that the deviation of the electron ionization rate from the canonical 1/r2 behavior of other ionization processes plays only a minor role.
Trattner, Sigal; Prinsen, Peter; Wiegert, Jens; Gerland, Elazar-Lars; Shefer, Efrat; Morton, Tom; Thompson, Carla M; Yagil, Yoad; Cheng, Bin; Jambawalikar, Sachin; Al-Senan, Rani; Amurao, Maxwell; Halliburton, Sandra S; Einstein, Andrew J
2017-12-01
Metal-oxide-semiconductor field-effect transistors (MOSFETs) serve as a helpful tool for organ radiation dosimetry and their use has grown in computed tomography (CT). While different approaches have been used for MOSFET calibration, those using the commonly available 100 mm pencil ionization chamber have not incorporated measurements performed throughout its length, and moreover, no previous work has rigorously evaluated the multiple sources of error involved in MOSFET calibration. In this paper, we propose a new MOSFET calibration approach to translate MOSFET voltage measurements into absorbed dose from CT, based on serial measurements performed throughout the length of a 100-mm ionization chamber, and perform an analysis of the errors of MOSFET voltage measurements and four sources of error in calibration. MOSFET calibration was performed at two sites, to determine single calibration factors for tube potentials of 80, 100, and 120 kVp, using a 100-mm-long pencil ion chamber and a cylindrical computed tomography dose index (CTDI) phantom of 32 cm diameter. The dose profile along the 100-mm ion chamber axis was sampled in 5 mm intervals by nine MOSFETs in the nine holes of the CTDI phantom. Variance of the absorbed dose was modeled as a sum of the MOSFET voltage measurement variance and the calibration factor variance, the latter being comprised of three main subcomponents: ionization chamber reading variance, MOSFET-to-MOSFET variation and a contribution related to the fact that the average calibration factor of a few MOSFETs was used as an estimate for the average value of all MOSFETs. MOSFET voltage measurement error was estimated based on sets of repeated measurements. The calibration factor overall voltage measurement error was calculated from the above analysis. Calibration factors determined were close to those reported in the literature and by the manufacturer (~3 mV/mGy), ranging from 2.87 to 3.13 mV/mGy. The error σ V of a MOSFET voltage measurement was shown to be proportional to the square root of the voltage V: σV=cV where c = 0.11 mV. A main contributor to the error in the calibration factor was the ionization chamber reading error with 5% error. The usage of a single calibration factor for all MOSFETs introduced an additional error of about 5-7%, depending on the number of MOSFETs that were used to determine the single calibration factor. The expected overall error in a high-dose region (~30 mGy) was estimated to be about 8%, compared to 6% when an individual MOSFET calibration was performed. For a low-dose region (~3 mGy), these values were 13% and 12%. A MOSFET calibration method was developed using a 100-mm pencil ion chamber and a CTDI phantom, accompanied by an absorbed dose error analysis reflecting multiple sources of measurement error. When using a single calibration factor, per tube potential, for different MOSFETs, only a small error was introduced into absorbed dose determinations, thus supporting the use of a single calibration factor for experiments involving many MOSFETs, such as those required to accurately estimate radiation effective dose. © 2017 American Association of Physicists in Medicine.
Quantum Phenomena in High Energy Density Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murnane, Margaret; Kapteyn, Henry
The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV
Pirro, Valentina; Hattab, Eyas M.; Cohen-Gadol, Aaron A.; Cooks, R. Graham
2016-01-01
Desorption electrospray ionization—mass spectrometry (DESI-MS) imaging was used to analyze unmodified human brain tissue sections from 39 subjects sequentially in the positive and negative ionization modes. Acquisition of both MS polarities allowed more complete analysis of the human brain tumor lipidome as some phospholipids ionize preferentially in the positive and others in the negative ion mode. Normal brain parenchyma, comprised of grey matter and white matter, was differentiated from glioma using positive and negative ion mode DESI-MS lipid profiles with the aid of principal component analysis along with linear discriminant analysis. Principal component–linear discriminant analyses of the positive mode lipid profiles was able to distinguish grey matter, white matter, and glioma with an average sensitivity of 93.2% and specificity of 96.6%, while the negative mode lipid profiles had an average sensitivity of 94.1% and specificity of 97.4%. The positive and negative mode lipid profiles provided complementary information. Principal component–linear discriminant analysis of the combined positive and negative mode lipid profiles, via data fusion, resulted in approximately the same average sensitivity (94.7%) and specificity (97.6%) of the positive and negative modes when used individually. However, they complemented each other by improving the sensitivity and specificity of all classes (grey matter, white matter, and glioma) beyond 90% when used in combination. Further principal component analysis using the fused data resulted in the subgrouping of glioma into two groups associated with grey and white matter, respectively, a separation not apparent in the principal component analysis scores plots of the separate positive and negative mode data. The interrelationship of tumor cell percentage and the lipid profiles is discussed, and how such a measure could be used to measure residual tumor at surgical margins. PMID:27658243
Effect of the phenoxy groups on PDIB and its derivatives
NASA Astrophysics Data System (ADS)
Song, Peng; Guan, Baijie; Zhou, Qiao; Zhao, Meiyu; Huang, Jindou; Ma, Fengcai
2016-10-01
The anisotropic hole and electron mobilities in N,N‧-3,4,9,10-perylenediimide-1,7-phenoxy (PDIB-2OPh) and N,Nʹ-3,4,9,10-perylenediimide (PDIB) were theoretically predicted using the Marcus-Hush theory. The substituent effect of phenoxy on their mobility rates, absorption spectra, electron affinities, and ionization potentials was explored. By comparing the simulated hole mobility in PDIB and PDIB-2OPh, it is found that the phenoxy rings act as spacers between adjacent stacking columns in the phenoxy-substituted derivatives. The increasement of the number of benzene oxygen groups leads to the absorption spectra red-shift of these molecular systems. This coincides with their change tendency of the adiabatic ionization potentials, vertical ionization potentials. However, the calculated adiabatic electron affinities and vertical electron affinities of N,N‧-butyl-3,4,9,10-perylenediimide-1,6,7,12-phenoxy (PDIB-4OPh) are larger than those of PDIB;OPh. The steric effect in PDIB-4OPh is expected to cause space reversal and thus to changes in the properties of the molecule.
Effect of the phenoxy groups on PDIB and its derivatives
Song, Peng; Guan, Baijie; Zhou, Qiao; Zhao, Meiyu; Huang, Jindou; Ma, Fengcai
2016-01-01
The anisotropic hole and electron mobilities in N,N′-3,4,9,10-perylenediimide-1,7-phenoxy (PDIB-2OPh) and N,Nʹ-3,4,9,10-perylenediimide (PDIB) were theoretically predicted using the Marcus–Hush theory. The substituent effect of phenoxy on their mobility rates, absorption spectra, electron affinities, and ionization potentials was explored. By comparing the simulated hole mobility in PDIB and PDIB-2OPh, it is found that the phenoxy rings act as spacers between adjacent stacking columns in the phenoxy-substituted derivatives. The increasement of the number of benzene oxygen groups leads to the absorption spectra red-shift of these molecular systems. This coincides with their change tendency of the adiabatic ionization potentials, vertical ionization potentials. However, the calculated adiabatic electron affinities and vertical electron affinities of N,N′-butyl-3,4,9,10-perylenediimide-1,6,7,12-phenoxy (PDIB-4OPh) are larger than those of PDIB;OPh. The steric effect in PDIB-4OPh is expected to cause space reversal and thus to changes in the properties of the molecule. PMID:27759050
NASA Astrophysics Data System (ADS)
Purohit, Ghanshyam; Singh, Prithvi
2017-06-01
The electron-impact ionization of inert gases for asymmetric final state energy sharing conditions has been studied in detail. However, there have been relatively few studies examining equal energy final state electrons. We report in this communication the results of triple differential cross sections (TDCSs) for electron impact ionization of Ar (3 p) for equal energy sharing of the outgoing electrons. We calculate TDCS in the modified distorted wave Born approximation (DWBA) formalism including post collision interaction (PCI) and polarization potential. We compare the results of our calculation with available measurements [Phys. Rev. A 87, 022712 (2013)]. We study the effect of PCI, target polarization on the trends of TDCS for the single ionization of Ar (3 p) targets.
NASA Astrophysics Data System (ADS)
Ohno, Koichi; Yamazaki, Masakazu; Kishimoto, Naoki; Ogawa, Tetsuji; Takeshita, Kouichi
2000-12-01
Ionization cross-sections of N 2 in collision with He* 2 3S as functions of the collision energy and the ejected electron kinetic energy (two-dimensional Penning ionization electron spectra, 2D-PIES) have been evaluated by trajectory calculations based on quantum chemical potential surfaces of both entrance and exit channels as well as on the transition widths for producing X, A, and B states of N 2+. The present approach using a Li atom for He * and an overlap approximation for Γ has given theoretical 2D-PIES in good agreement with the observation and a promise for its application to the study of dynamics in collisional ionization involving highly anisotropic target systems.
Propagation of ultrashort laser pulses in optically ionized gases
NASA Astrophysics Data System (ADS)
Morozov, A.; Luo, Y.; Suckewer, S.; Gordon, D. F.; Sprangle, P.
2010-02-01
Propagation of 800 nm, 120 fs laser pulses with intensities of 4×1016 W/cm2 in supersonic gas jets of N2 and H2 is studied using a shear-type interferometer. The plasma density distribution resulting from photoionization is resolved in space and time with simultaneously measured initial neutral density distribution. A distinct difference in laser beam propagation distance is observed when comparing propagation in jets of H2 and N2. This is interpreted in terms of ionization induced refraction, which is stronger when electrons are produced from states of higher ionization potential. Three dimensional particle-in-cell simulations, based on directly solving the Maxwell-Lorentz system of equations, show the roles played by the forward Raman and ionization scattering instabilities, which further affect the propagation distance.
The mean free path of hydrogen ionizing photons during the epoch of reionization
NASA Astrophysics Data System (ADS)
Rahmati, Alireza; Schaye, Joop
2018-05-01
We use the Aurora radiation-hydrodynamical simulations to study the mean free path (MFP) for hydrogen ionizing photons during the epoch of reionization. We directly measure the MFP by averaging the distance 1 Ry photons travel before reaching an optical depth of unity along random lines-of-sight. During reionization the free paths tend to end in neutral gas with densities near the cosmic mean, while after reionization the end points tend to be overdense but highly ionized. Despite the increasing importance of discrete, over-dense systems, the cumulative contribution of systems with NHI ≲ 1016.5 cm-2 suffices to drive the MFP at z ≈ 6, while at earlier times higher column densities are more important. After reionization the typical size of HI systems is close to the local Jeans length, but during reionization it is much larger. The mean free path for photons originating close to galaxies, {MFP_{gal}}, is much smaller than the cosmic MFP. After reionization this enhancement can remain significant up to starting distances of ˜1 comoving Mpc. During reionization, however, {MFP_{gal}} for distances ˜102 - 103 comoving kpc typically exceeds the cosmic MFP. These findings have important consequences for models that interpret the intergalactic MFP as the distance escaped ionizing photons can travel from galaxies before being absorbed and may cause them to under-estimate the required escape fraction from galaxies, and/or the required emissivity of ionizing photons after reionization.
EVIDENCE FOR POLAR X-RAY JETS AS SOURCES OF MICROSTREAM PEAKS IN THE SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neugebauer, Marcia, E-mail: mneugeb@lpl.arizona.edu
2012-05-01
It is proposed that the interplanetary manifestations of X-ray jets observed in solar polar coronal holes during periods of low solar activity are the peaks of the so-called microstreams observed in the fast polar solar wind. These microstreams exhibit velocity fluctuations of {+-}35 km s{sup -1}, higher kinetic temperatures, slightly higher proton fluxes, and slightly higher abundances of the low-first-ionization-potential element iron relative to oxygen ions than the average polar wind. Those properties can all be explained if the fast microstreams result from the magnetic reconnection of bright-point loops, which leads to X-ray jets which, in turn, result in solarmore » polar plumes. Because most of the microstream peaks are bounded by discontinuities of solar origin, jets are favored over plumes for the majority of the microstream peaks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craven, S.M.; Hoenigman, J.R.; Moddeman, W.E.
1981-11-20
The potential use of secondary ion mass spectroscopy (SIMS) to analyze biological samples for calcium isotopes is discussed. Comparison of UTI and Extranuclear based quadrupole systems is made on the basis of the analysis of CaO and calcium metal. The Extranuclear quadrupole based system is superior in resolution and sensitivity to the UTI system and is recommended. For determination of calcium isotopes to within an accuracy of a few percent a high resolution quadrupole, such as the Extranuclear, and signal averaging capability are required. Charge neutralization will be mandated for calcium oxide, calcium nitrate, or calcium oxalate. SIMS is notmore » capable of the high precision and high accuracy results possible by thermal ionization methods, but where faster analysis is desirable with an accuracy of a few percent, SIMS is a viable alternative.« less
Ultra-bright pulsed electron beam with low longitudinal emittance
Zolotorev, Max
2010-07-13
A high-brightness pulsed electron source, which has the potential for many useful applications in electron microscopy, inverse photo-emission, low energy electron scattering experiments, and electron holography has been described. The source makes use of Cs atoms in an atomic beam. The source is cycled beginning with a laser pulse that excites a single Cs atom on average to a band of high-lying Rydberg nP states. The resulting valence electron Rydberg wave packet evolves in a nearly classical Kepler orbit. When the electron reaches apogee, an electric field pulse is applied that ionizes the atom and accelerates the electron away from its parent ion. The collection of electron wave packets thus generated in a series of cycles can occupy a phase volume near the quantum limit and it can possess very high brightness. Each wave packet can exhibit a considerable degree of coherence.
Muhonen, J T; Laucht, A; Simmons, S; Dehollain, J P; Kalra, R; Hudson, F E; Freer, S; Itoh, K M; Jamieson, D N; McCallum, J C; Dzurak, A S; Morello, A
2015-04-22
Building upon the demonstration of coherent control and single-shot readout of the electron and nuclear spins of individual (31)P atoms in silicon, we present here a systematic experimental estimate of quantum gate fidelities using randomized benchmarking of 1-qubit gates in the Clifford group. We apply this analysis to the electron and the ionized (31)P nucleus of a single P donor in isotopically purified (28)Si. We find average gate fidelities of 99.95% for the electron and 99.99% for the nuclear spin. These values are above certain error correction thresholds and demonstrate the potential of donor-based quantum computing in silicon. By studying the influence of the shape and power of the control pulses, we find evidence that the present limitation to the gate fidelity is mostly related to the external hardware and not the intrinsic behaviour of the qubit.
Lu, Qi Liang; Luo, Qi Quan; Huang, Shou Guo; Li, Yi De; Wan, Jian Guo
2016-07-07
An optimization strategy combining global semiempirical quantum mechanical search with all-electron density functional theory was adopted to determine the lowest energy structure of (GaSb)n clusters up to n = 9. The growth pattern of the clusters differed from those of previously reported group III-V binary clusters. A cagelike configuration was found for cluster sizes n ≤ 7. The structure of (GaSb)6 deviated from that of other III-V clusters. Competition existed between core-shell and hollow cage structures of (GaSb)7. Novel noncagelike structures were energetically preferred over the cages for the (GaSb)8 and (GaSb)9 clusters. Electronic properties, such as vertical ionization potential, adiabatic electron affinities, HOMO-LUMO gaps, and average on-site charges on Ga or Sb atoms, as well as binding energies, were computed.
NASA Astrophysics Data System (ADS)
Tapia, Jesus B.; Hibbard, Hailey A. J.; Reynolds, Melissa M.
2017-10-01
We present the use of a simple, one-pot derivatization to allow the polysaccharide dextran to carry multiple positive charges, shifting its molecular weight distribution to a lower m/ z range. We performed this derivatization because molecular weight measurements of polysaccharides by mass spectrometry are challenging because of their lack of readily ionizable groups. The absence of ionizable groups limits proton abstraction and suppresses proton adduction during the ionization process, producing mass spectra with predominantly singly charged metal adduct ions, thereby limiting the detection of large polysaccharides. To address this challenge, we derivatized dextran T1 (approximately 1 kDa) by attaching ethylenediamine, giving dextran readily ionizable, terminal amine functional groups. The attached ethylenediamine groups facilitated proton adduction during the ionization process in positive ion mode. Using the low molecular weight dextran T1, we tracked the number of ethylenediamine attachments by measuring the mass shift from underivatized to derivatized dextran T1. Using electrospray ionization time-of-flight mass spectrometry, we observed derivatized dextran chains ranging from two to nine glucose residues with between one and four attachments/charges. Our success in shifting derivatized dextran T1 toward the low m/ z range suggests potential for this derivatization as a viable route for analysis of high molecular weight polysaccharides using electrospray ionization time-of-flight mass spectrometry. [Figure not available: see fulltext.
NASA Technical Reports Server (NTRS)
Ferkinhoff, Carl; Brisbin, Drew; Nikola, Thomas; Parshley, Stephen C.; Stacey, Gordon J.; Phillips, Thomas G.; Falgarone, Edith; Benford, Dominic J.; Staguhn, Johannes G.; Tucker, Carol E.
2011-01-01
We report the first detections of the [NIl] 122 {\\mu} m line from a high redshift galaxy. The line was strongly (> 6{\\sigma}) detected from SMMJ02399-0136, and HI413+ 117 (the Cloverleaf QSO) using the Redshift(z) and Early Universe Spectrometer (ZEUS) on the CSO. The lines from both sources are quite bright with line-to-FIR continuum luminosity ratios that are approx.7.0x10(exp -4) (Cloverleaf) and 2.1x10(exp -3) (SMMJ02399). With ratios 2-10 times larger than the average value for nearby galaxies, neither source exhibits the line-to-continuum deficits seen in nearby sources. The line strengths also indicate large ionized gas fractions, approx.8 to 17% of the molecular gas mass. The [OIII]/[NII] line ratio is very sensitive to the effective temperature of ionizing stars and the ionization parameter for emission arising in the narrow-line region (NLR) of an AGN. Using our previous detection of the [01II] 88 {\\mu}m line, the [OIII]/ [NIl] line ratio for SMMJ02399-0136 indicates the dominant source of the line emission is either stellar HII regions ionized by 09.5 stars, or the NLR of the AGN with ionization parameter 10g(U) = -3.3 to -4.0. A composite system, where 30 to 50% of the FIR lines arise in the NLR also matches the data. The Cloverleaf is best modeled by a superposition of approx.200 M82like starbursts accounting for all of the FIR emission and 43% of the [NIl] line. The remainder may come from the NLR. This work demonstrates the utility of the [NIl] and [OIII] lines in constraining properties of the ionized medium.
Solving the Excitation and Chemical Abundances in Shocks: The Case of HH 1
NASA Astrophysics Data System (ADS)
Giannini, T.; Antoniucci, S.; Nisini, B.; Bacciotti, F.; Podio, L.
2015-11-01
We present deep spectroscopic (3600-24700 Å ) X-shooter observations of the bright Herbig-Haro object HH 1, one of the best laboratories to study the chemical and physical modifications caused by protostellar shocks on the natal cloud. We observe atomic fine structure lines, H i and He i recombination lines and H2 ro-vibrational lines (more than 500 detections in total). Line emission was analyzed by means of Non-local Thermal Equilibiurm codes to derive the electron temperature and density, and for the first time we are able to accurately probe different physical regimes behind a dissociative shock. We find a temperature stratification in the range 4000 K \\div 80,000 K, and a significant correlation between temperature and ionization energy. Two density regimes are identified for the ionized gas, a more tenuous, spatially broad component (density ˜103 cm-3), and a more compact component (density ≥slant 105 cm-3) likely associated with the hottest gas. A further neutral component is also evidenced, having a temperature ≲10,000 K and a density >104 cm-3. The gas fractional ionization was estimated by solving the ionization equilibrium equations of atoms detected in different ionization stages. We find that neutral and fully ionized regions co-exist inside the shock. Also, indications in favor of at least partially dissociative shock as the main mechanism for molecular excitation are derived. Chemical abundances are estimated for the majority of the detected species. On average, abundances of non-refractory/refractory elements are lower than solar of about 0.15/0.5 dex. This indicates the presence of dust inside the medium, with a depletion factor of iron of ˜40%. Based on observations collected at the European Southern Observatory, (92.C-0058).
The GBT Diffuse Ionized Gas Survey (GDIGS)
NASA Astrophysics Data System (ADS)
Luisi, Matteo; Anderson, Loren Dean; Liu, Bin; Bania, Thomas; Balser, Dana; Wenger, Trey; Haffner, Lawrence Matthew
2018-01-01
Diffuse ionized gas in the Galactic mid-plane known as the "Warm Ionized Medium" (WIM) makes up ~20% of the gas mass of the Milky Way and >90% of its ionized gas. It is the last major component of the interstellar medium (ISM) that has not yet been studied at high spatial and spectral resolution, and therefore many of its fundamental properties remain unclear. The Green Bank Telescope (GBT) Diffuse Ionized Gas Survey (GDIGS) is a new large survey of the Milky Way disk at C-band (4-8 GHz). The main goals of GDIGS are to investigate the properties of the WIM and to determine the connection between the WIM and high-mass star formation over the Galactic longitude and latitude range of 32 deg > l > -5 deg, |b| < 0.5 deg. We use the new VEGAS spectrometer to simultaneously observe 22 Hn-alpha radio recombination lines, 25 Hn-beta lines, 8 Hn-gamma lines, and 9 molecular lines (namely CH3OH and H2CO), and also continuum at ~60 frequencies. We average the Hn-alpha lines to produce Nyquist-sampled maps on a spatial grid of 1 arcmin, a velocity resolution of 0.5 km/s and rms sensitivities of ~3 mJy per beam. GDIGS observations are currently underway and are expected to be completed by late 2018. These data will allow us to: 1) Study for the first time the inner-Galaxy WIM unaffected by confusion from discrete HII regions, 2) determine the distribution of the inner Galaxy WIM, 3) investigate the ionization state of the WIM, 4) explore the connection between the WIM and HII regions, and 5) analyze the effect of leaked photons from HII regions on ISM dust temperatures.
Schramm, E; Mühlberger, F; Mitschke, S; Reichardt, G; Schulte-Ladbeck, R; Pütz, M; Zimmermann, R
2008-02-01
Several ionization potentials (IPs) of security relevant substances were determined with single photon ionization time of flight mass spectrometry (SPI-TOFMS) using monochromatized synchrotron radiation from the "Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung" (BESSY). In detail, the IPs of nine explosives and related compounds, seven narcotics and narcotics precursors, and one chemical warfare agent (CWA) precursor were determined, whereas six IPs already known from the literature were verified correctly. From seven other substances, including one CWA precursor, the IP could not be determined as the molecule ion peak could not be detected. For these substances the appearance energy (AE) of a main fragment was determined. The analyzed security-relevant substances showed IPs significantly below the IPs of common matrix compounds such as nitrogen and oxygen. Therefore, it is possible to find photon energies in between, whereby the molecules of interest can be detected with SPI in very low concentrations due to the shielding of the matrix. All determined IPs except the one of the explosive EGDN were below 10.5 eV. Hence, laser-generated 118 nm photons can be applied for detecting almost all security-relevant substances by, e.g., SPI-TOFMS.
Giraudeau, Mathieu; Bonzom, Jean-Marc; Ducatez, Simon; Beaugelin-Seiller, Karine; Deviche, Pierre; Lengagne, Thierry; Cavalie, Isabelle; Camilleri, Virginie; Adam-Guillermin, Christelle; McGraw, Kevin J
2018-05-09
The nuclear accident in the Fukushima prefecture released a large amount of artificial radionuclides that might have short- and long-term biological effects on wildlife. Ionizing radiation can be a harmful source of reactive oxygen species, and previous studies have already shown reduced fitness effects in exposed animals in Chernobyl. Due to their potential health benefits, carotenoid pigments might be used by animals to limit detrimental effects of ionizing radiation exposure. Here, we examined concentrations of carotenoids in blood (i.e. a snapshot of levels in circulation), liver (endogenous carotenoid reserves), and the vocal sac skin (sexual signal) in relation to the total radiation dose rates absorbed by individual (TDR from 0.2 to 34 µGy/h) Japanese tree frogs (Hyla japonica). We found high within-site variability of TDRs, but no significant effects of the TDR on tissue carotenoid levels, suggesting that carotenoid distribution in amphibians might be less sensitive to ionizing radiation exposure than in other organisms or that the potential deleterious effects of radiation exposure might be less significant or more difficult to detect in Fukushima than in Chernobyl due to, among other things, differences in the abundance and mixture of each radionuclide.
Effects of dose scaling on delivery quality assurance in tomotherapy
Nalichowski, Adrian; Burmeister, Jay
2012-01-01
Delivery quality assurance (DQA) of tomotherapy plans is routinely performed with silver halide film which has a limited range due to the effects of saturation. DQA plans with dose values exceeding this limit require the dose of the entire plan to be scaled downward if film is used, to evaluate the dose distribution in two dimensions. The potential loss of fidelity between scaled and unscaled DQA plans as a function of dose scaling is investigated. Three treatment plans for 12 Gy fractions designed for SBRT of the lung were used to create DQA procedures that were scaled between 100% and 10%. The dose was measured with an ionization chamber array and compared to values from the tomotherapy treatment planning system. Film and cylindrical ion chamber measurements were also made for one patient for scaling factors of 50% to 10% to compare with the ionization chamber array measurements. The array results show the average gamma pass rate is ≥99% from 100% to 30% scaling. The average gamma pass rate falls to 93.6% and 51.1% at 20% and 10% scaling, respectively. Film analysis yields similar pass rates. Cylindrical ion chambers did not exhibit significant variation with dose scaling, but only represent points in the low gradient region of the dose distribution. Scaling the dose changes the mechanics of the radiation delivery, as well as the signal‐to‐noise ratio. Treatment plans which exhibit parameters that differ significantly from those common to DQA plans studied in this paper may exhibit different behavior. Dose scaling should be limited to the smallest degree possible. Planar information, such as that from film or a detector array, is required. The results show that it is not necessary to perform both a scaled and unscaled DQA plan for the treatment plans considered here. PACS numbers: 87.55.km, 87.55.Qr PMID:22231213
Classical molecular dynamics simulations for non-equilibrium correlated plasmas
NASA Astrophysics Data System (ADS)
Ferri, S.; Calisti, A.; Talin, B.
2017-03-01
A classical molecular dynamics model was recently extended to simulate neutral multi-component plasmas where various charge states of the same atom and electrons coexist. It is used to investigate the plasma effects on the ion charge and on the ionization potential in dense plasmas. Different simulated statistical properties will show that the concept of isolated particles is lost in such correlated plasmas. The charge equilibration is discussed for a carbon plasma at solid density and investigation on the charge distribution and on the ionization potential depression (IPD) for aluminum plasmas is discussed with reference to existing experiments.
Closing in on chemical bonds by opening up relativity theory.
Whitney, Cynthia K
2008-03-01
This paper develops a connection between the phenomenology of chemical bonding and the theory of relativity. Empirical correlations between electron numbers in atoms and chemical bond stabilities in molecules are first reviewed and extended. Quantitative chemical bond strengths are then related to ionization potentials in elements. Striking patterns in ionization potentials are revealed when the data are viewed in an element-independent way, where element-specific details are removed via an appropriate scaling law. The scale factor involved is not explained by quantum mechanics; it is revealed only when one goes back further, to the development of Einstein's special relativity theory.
Ionization potential depression and optical spectra in a Debye plasma model
NASA Astrophysics Data System (ADS)
Lin, Chengliang; Röpke, Gerd; Reinholz, Heidi; Kraeft, Wolf-Dietrich
2017-11-01
We show how optical spectra in dense plasmas are determined by the shift of energy levels as well as the broadening owing to collisions with the plasma particles. In lowest approximation, the interaction with the plasma particles is described by the RPA dielectric function, leading to the Debye shift of the continuum edge. The bound states remain nearly un-shifted, their broadening is calculated in Born approximation. The role of ionization potential depression as well as the Inglis-Teller effect are shown. The model calculations have to be improved going beyond the lowest (RPA) approximation when applying to WDM spectra.
Electrostatic Return of Contaminants
NASA Technical Reports Server (NTRS)
Rantanen, R.; Gordon, T.
2003-01-01
A Model has been developed capable of calculating the electrostatic return of spacecraft-emitted molecules that are ionized and attracted back to the spacecraft by the spacecraft electric potential on its surfaces. The return of ionized contaminant molecules to charged spacecraft surfaces is very important to all altitudes. It is especially important at geosynchronous and interplanetary environments, since it may be the only mechanism by which contaminants can degrade a surface. This model is applicable to all altitudes and spacecraft geometries. In addition to results of the model will be completed to cover a wide range of potential space systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzmán, Andrés E.; Garay, Guido; Bronfman, Leonardo
2014-12-01
We report the detection, made using ALMA, of the 92 GHz continuum and hydrogen recombination lines (HRLs) H40α, H42α, and H50β emission toward the ionized wind associated with the high-mass young stellar object G345.4938+01.4677. This is the luminous central dominating source located in the massive and dense molecular clump associated with IRAS 16562–3959. The HRLs exhibit Voigt profiles, which is a strong signature of Stark broadening. We successfully reproduce the observed continuum and HRLs simultaneously using a simple model of a slow ionized wind in local thermodynamic equilibrium, with no need for a high-velocity component. The Lorentzian line wings implymore » electron densities of 5 × 10{sup 7} cm{sup –3} on average. In addition, we detect SO and SO{sub 2} emission arising from a compact (∼3000 AU) molecular core associated with the central young star. The molecular core exhibits a velocity gradient that is perpendicular to the jet-axis, which we interpret as evidence of rotation. The set of observations toward G345.4938+01.4677 are consistent with it being a young high-mass star associated with a slow photo-ionized wind.« less
Red shift of the SF6 vibration spectrum induced by the electron absorption: An ab initio study
NASA Astrophysics Data System (ADS)
Tang, Bin; Zhang, Long-Fei; Han, Fang-Yuan; Luo, Zong-Chang; Liang, Qin-Qin; Liu, Chen-Yao; Zhu, Li-Ping; Zhang, Jie-Ming
2018-01-01
As a widely used gas insulator, sulfur hexafluoride (SF6) has a large cross section for electron absorption, which may make the molecule ionized to the -1 charge state in the high-voltage environment. Using ab initio calculations, we show that the absorbed electron is located averagely on the six F atoms, occupying the antibonding level of the s-p σ bonds and increasing the S-F bond length. The ionized SF6- molecule decreases its decomposition energy to only 1.5 eV, much lower than that of the neutral molecule (4.8 eV), which can be understood according to the occupying of the antibonding orbital and thus weakening of the s-p σ bonds. The weakening of the bonds results in an obvious red shift in the vibrational modes of the ionized SF6- molecule by 120-270 cm-1, compared to those of the neutral molecule. The detailed origin of these vibrational modes is analyzed. Since the appearance of the ionized SF6- molecules is before the decomposition reaction of the SF6- molecule into low-fluoride sulfides, this method may improve the sensitivity of the defection of the partial discharge and save more time for the prevention of the insulation failure in advance.
Campanella, Francesca; Rossi, Laura; Giroletti, Elio; Micheletti, Piero; Buzzi, Fabio; Villani, Simona
2017-06-14
Radiological practices are the first anthropic sources of ionizing radiation exposure of the population. However, a review of recent publications underlines inadequate doctors' knowledge about doses imparted in medical practices and about patient protection that might explain unnecessary radiological prescriptions. We investigated the knowledge of the physicians of Pavia District (Italy) on the risk of radiation exposure. A cross sectional study was performed involving the Medical Association of Pavia District. Data were collected with a self-administered questionnaire, available on-line with private login and password. Four hundred nineteen physicians fulfilled the questionnaire; 48% of participants reported training about radiation protection. The average percentage of correct answers on the knowledge on ionizing radiation was 62.29%, with a significantly higher result between radiologist. Around 5 and 13% of the responders do not know that, respectively, ultrasonography and magnetic resonance do not expose patients to ionizing radiations. Only 5% of the physicians properly identified the cancer risk rate associated to abdomen computed tomography. The findings show a quite good level of the general knowledge about ionizing radiations, higher that reported in literature. Nevertheless, we believe the usefulness of training on the risk linked to radiation exposure in medicine for physicians employed in every area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, J.K.; Bhatnagar, V.P.
1989-04-01
Relations for the average energetic particle heating and the typical Hall and Pedersen conductances, as functions of the ground-based Hf radio absorption, are determined. Collis and coworkers used the geosynchronous GEOS 2 particle data to relate or ''calibrate'' the auroral absorption on the same magnetic field lines with five levels of D region ionization. These ionospheric models are related to a Chapman layer that extends these models into the E region. The average energetic particle heating is calculated for each of these models using recent expressions for the effective recombination coefficient. The corresponding height-integrated heating rates are determined and relatedmore » to the absorption with a quadratic expression. The average Hall and Pedersen conductivities are calculated for each of the nominal absorption ionospheric models. The corresponding height-integrated conductances for nighttime conditions are determined and related to the absorption. Expressions for these conductances during disturbed sunlit conditions are also determined. These relations can be used in conjunction with simultaneous ground-based riometric and magnetic observations to determines the average Hall and Pedersen currents and the Joule heating. The typical daily rate of temperature increase in the mesosphere for storm conditions is several 10 K for both the energetic particle and the Joule heating. The increasing importance of these parameters of the upper and middle atmospheres is discussed. It is proposed that northern hemisphere ionospheric, current, and heating synoptic models and parameters be investigated for use on a regular basis. copyright American Geophysical Union 1989« less
NASA Astrophysics Data System (ADS)
Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim
2017-10-01
Ultra-low emittance beams can be generated using ionization injection of electrons into a wakefield excited by a plasma beatwave accelerator. This all-optical method of electron beam generation uses three laser pulses of different colors. Two long-wavelength laser pulses, with frequency difference equal to the plasma frequency, resonantly drive a plasma wave without fully ionizing a gas. A short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the beating long-wavelength lasers, ionizes a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wakefield. Using the beating of long-wavelength pulses to generate the wakefield enables atomically-bound electrons to remain at low ionization potentials, reducing the required amplitude of the ionization pulse, and, hence, the initial transverse momentum and emittance of the injected electrons. An example is presented using two lines of a CO2 laser to form a plasma beatwave accelerator to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection. Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Alkali metal ionization detector
Bauerle, James E.; Reed, William H.; Berkey, Edgar
1978-01-01
Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.
Obena, Rofeamor P; Lin, Po-Chiao; Lu, Ying-Wei; Li, I-Che; del Mundo, Florian; Arco, Susan dR; Nuesca, Guillermo M; Lin, Chung-Chen; Chen, Yu-Ju
2011-12-15
The significance and epidemiological effects of metals to life necessitate the development of direct, efficient, and rapid method of analysis. Taking advantage of its simple, fast, and high-throughput features, we present a novel approach to metal ion detection by matrix-functionalized magnetic nanoparticle (matrix@MNP)-assisted MALDI-MS. Utilizing 21 biologically and environmentally relevant metal ion solutions, the performance of core and matrix@MNP against conventional matrixes in MALDI-MS and laser desorption ionization (LDI) MS were systemically tested to evaluate the versatility of matrix@MNP as ionization element. The matrix@MNPs provided 20- to >100-fold enhancement on detection sensitivity of metal ions and unambiguous identification through characteristic isotope patterns and accurate mass (<5 ppm), which may be attributed to its multifunctional role as metal chelator, preconcentrator, absorber, and reservoir of energy. Together with the comparison on the ionization behaviors of various metals having different ionization potentials (IP), we formulated a metal ionization mechanism model, alluding to the role of exciton pooling in matrix@MNP-assisted MALDI-MS. Moreover, the detection of Cu in spiked tap water demonstrated the practicability of this new approach as an efficient and direct alternative tool for fast, sensitive, and accurate determination of trace metal ions in real samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isselhardt, Brett H.
2011-09-01
Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of 235U/ 238U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser inmore » a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garza, Jorge; Nichols, Jeffrey A.; Dixon, David A.
2000-01-15
The Hartree product is analyzed in the context of Kohn-Sham theory. The differential equations that emerge from this theory are solved with the optimized effective potential using the Krieger, Li, and Iafrate approximation, in order to get a local potential as required by the ordinary Kohn-Sham procedure. Because the diagonal terms of the exact exchange energy are included in Hartree theory, it is self-interaction free and the exchange potential has the proper asymptotic behavior. We have examined the impact of this correct asymptotic behavior on local and global properties using this simple model to approximate the exchange energy. Local quantities,more » such as the exchange potential and the average local electrostatic potential are used to examine whether the shell structure in an atom is revealed by this theory. Global quantities, such as the highest occupied orbital energy (related to the ionization potential) and the exchange energy are also calculated. These quantities are contrasted with those obtained from calculations with the local density approximation, the generalized gradient approximation, and the self-interaction correction approach proposed by Perdew and Zunger. We conclude that the main characteristics in an atomic system are preserved with the Hartree theory. In particular, the behavior of the exchange potential obtained in this theory is similar to those obtained within other Kohn-Sham approximations. (c) 2000 American Institute of Physics.« less
Dissociative Ionization of Benzene by Electron Impact
NASA Technical Reports Server (NTRS)
Huo, Winifred; Dateo, Christopher; Kwak, Dochan (Technical Monitor)
2002-01-01
We report a theoretical study of the dissociative ionization (DI) of benzene from the low-lying ionization channels. Our approach makes use of the fact that electron motion is much faster than nuclear motion and DI is treated as a two-step process. The first step is electron-impact ionization resulting in an ion with the same nuclear geometry as the neutral molecule. In the second step the nuclei relax from the initial geometry and undergo unimolecular dissociation. For the ionization process we use the improved binary-encounter dipole (iBED) model. For the unimolecular dissociation step, we study the steepest descent reaction path to the minimum of the ion potential energy surface. The path is used to analyze the probability of unimolecular dissociation and to determine the product distributions. Our analysis of the dissociation products and the thresholds of the productions are compared with the result dissociative photoionization measurements of Feng et al. The partial oscillator strengths from Feng et al. are then used in the iBED cross section calculations.
Electron-Impact Ionization and Dissociative Ionization of Biomolecules
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Chaban, Galina M.; Dateo, Christopher E.
2006-01-01
It is well recognized that secondary electrons play an important role in radiation damage to humans. Particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. Our study of electron-impact ionization of DNA fragments uses the improved binary-encounter dipole model and covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3(sup prime)- and C5 (sup prime)-deoxyribose-phospate cross sections, differing by less than 5%. Investigation of tandem double lesion initiated by electron-impact dissociative ionization of guanine, followed by proton reaction with the cytosine in the Watson-Crick pair, is currently being studied to see if tandem double lesion can be initiated by electron impact. Up to now only OH-induced tandem double lesion has been studied.
Ultrafast multiphoton ionization dynamics and control of NaK molecules
NASA Astrophysics Data System (ADS)
Davidsson, Jan; Hansson, Tony; Mukhtar, Emad
1998-12-01
The multiphoton ionization dynamics of NaK molecules is investigated experimentally using one-color pump-probe femtosecond spectroscopy at 795 nm and intermediate laser field strengths (about 10 GW/cm2). Both NaK+ and Na+ ions are detected as a function of pulse separation time, pulse intensities, and strong pulse-weak pulse order. To aid in the analysis, the potential energy curves of the two lowest electronic states of NaK+ and the electronic transition dipole moment between them are calculated by the GAUSSIAN94 UCIS method. Different ionization pathways are identified by Franck-Condon analysis, and vibrational dynamics in the A 1Σ+ and 3 1Π states, as well as in the ground state, is observed. Further, the existence of a highly excited (above the adiabatic ionization limit) neutral state of NaK is proposed. By changing the strong pulse-weak pulse order of the pulses, the ionization pathways for production of both ions can be varied and thus controlled.
NASA Astrophysics Data System (ADS)
Xu, Yanqi; Tzeng, Sheng Yuan; Shivatare, Vidya; Takahashi, Kaito; Zhang, Bing; Tzeng, Wen Bih
2015-03-01
We report the vibronic and cation spectra of four rotamers of m-methoxystyrene, recorded by using the two-color resonant two-photon ionization and mass-analyzed threshold ionization techniques. The excitation energies of the S1← S0 electronic transition are found to be 32 767, 32 907, 33 222, and 33 281 cm-1, and the corresponding adiabatic ionization energies are 65 391, 64 977, 65 114, and 64 525 cm-1 for these isomeric species. Most of the observed active vibrations in the electronically excited S1 and cationic ground D0 states involve in-plane ring deformation and substituent-sensitive bending motions. It is found that the relative orientation of the methoxyl with respect to the vinyl group does not influence the vibrational frequencies of the ring-substituent bending modes. The two dimensional potential energy surface calculations support our experimental finding that the isomerization is restricted in the S1 and D0 states.
Low- and high-LET radiation drives clonal expansion of lung progenitor cells in vivo
Farin, Alicia M.; Manzo, Nicholas D.; Kirsch, David G.; Stripp, Barry R.
2015-01-01
Abundant populations of epithelial progenitor cells maintain the epithelium along the proximal-to-distal axis of the airway. Exposure of lung tissue to ionizing radiation leads to tissue remodeling and potential cancer initiation or progression. However, little is known about the effects of ionizing radiation on airway epithelial progenitor cells. We hypothesized that ionizing radiation exposure will alter the behavior of airway epithelial progenitor cells in a radiation dose- and quality-dependent manner. To address this hypothesis, we cultured primary airway epithelial cells isolated from mice exposed to various doses of 320 kVp X-ray or 600 MeV/nucleon 56Fe ions in a 3D epithelial-fibroblast co-culture system. Colony-forming efficiency of the airway epithelial progenitor cells was assessed at culture day 14. In vivo clonogenic and proliferative potentials of airway epithelial progenitor cells were measured after exposure to ionizing radiation by lineage tracing and IdU incorporation. Exposure to both X-rays and 56Fe resulted in a dose dependent decrease in the ability of epithelial progenitors to form colonies in vitro. In vivo evidence for increased clonogenic expansion of epithelial progenitors was observed after exposure to both X-rays and 56Fe. Interestingly, we found no significant increase in the epithelial proliferative index, indicating that ionizing radiation does not promote increased turnover of the airway epithelium. Therefore, we propose a model in which radiation induces a dose-dependent decrease in the pool of available progenitor cells, leaving fewer progenitors able to maintain the airway long-term. This work provides novel insights into the effects of ionizing radiation exposure on airway epithelial progenitor cell behavior. PMID:25564721
Ionization Injection of Electrons into a Plasma Wakefield Accelerator at FACET
NASA Astrophysics Data System (ADS)
Clayton, Chris; E-200 At Facet Collaboration
2013-10-01
In the PWFA experiments at FACET, a low ionization-potential (IP) metal vapor gas (Li) is confined within a heat-pipe oven by a higher IP buffer gas (typically He). The Li is easily field-ionized by the FACET beam. A non-linear wake is formed in the blowout regime when the 20.3 GeV bunch containing 2e10 electrons in a σz ~ 30 μm is focused to a (vacuum) σr < 25 near the ~ 10cm-long boundary region. There the Li density rises from zero up to the oven's 30cm-long flat-topped density of 2.5e17 cm-3. To obtain a mono-energetic beam from accelerated ionization-injected electrons at the far end of the oven--the goal of this experiment--it is necessary for the FACET beam to have a betatron pinch just where the flat-topped region begins; i.e., where the wake wavelength is no longer changing. If the buffer gas contains a mixture of He and a moderate IP gas, the ``impurity'' gases will also be field ionized and potentially contribute more charge to the injected bunch than with He alone. Moderate IP gases were added to the He buffer gas: 10%, 20%, and 50% Ar (balance He) and 30% Ne (balance He) have been used. Evidence for ionization injection and acceleration appears through the observation of distinct features, characterized by their very narrow size and thus angular spread, at the image plane of a magnetic imaging spectrometer. Analysis aimed at characterizing these features with respect to energy, charge, and angular spread is underway and will be presented. This work was supported by the DOE and the NSF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, James E.; Alvarez, Marcelo A., E-mail: jowen@ias.edu
2016-01-01
We have investigated the evaporation of close-in exoplanets irradiated by ionizing photons. We find that the properties of the flow are controlled by the ratio of the recombination time to the flow timescale. When the recombination timescale is short compared to the flow timescale, the flow is in approximate local ionization equilibrium with a thin ionization front where the photon mean free path is short compared to the flow scale. In this “recombination-limited” flow the mass-loss scales roughly with the square root of the incident flux. When the recombination time is long compared to the flow timescale the ionization frontmore » becomes thick and encompasses the entire flow with the mass-loss rate scaling linearly with flux. If the planet's potential is deep, then the flow is approximately “energy-limited”; however, if the planet's potential is shallow, then we identify a new limiting mass-loss regime, which we term “photon-limited.” In this scenario, the mass-loss rate is purely limited by the incoming flux of ionizing photons. We have developed a new numerical approach that takes into account the frequency dependence of the incoming ionizing spectrum and performed a large suite of 1D simulations to characterize UV driven mass-loss around low-mass planets. We find that the flow is “recombination-limited” at high fluxes but becomes “energy-limited” at low fluxes; however, the transition is broad occurring over several orders of magnitude in flux. Finally, we point out that the transitions between the different flow types do not occur at a single flux value but depend on the planet's properties, with higher-mass planets becoming “energy-limited” at lower fluxes.« less
BADGER v1.0: A Fortran equation of state library
NASA Astrophysics Data System (ADS)
Heltemes, T. A.; Moses, G. A.
2012-12-01
The BADGER equation of state library was developed to enable inertial confinement fusion plasma codes to more accurately model plasmas in the high-density, low-temperature regime. The code had the capability to calculate 1- and 2-T plasmas using the Thomas-Fermi model and an individual electron accounting model. Ion equation of state data can be calculated using an ideal gas model or via a quotidian equation of state with scaled binding energies. Electron equation of state data can be calculated via the ideal gas model or with an adaptation of the screened hydrogenic model with ℓ-splitting. The ionization and equation of state calculations can be done in local thermodynamic equilibrium or in a non-LTE mode using a variant of the Busquet equivalent temperature method. The code was written as a stand-alone Fortran library for ease of implementation by external codes. EOS results for aluminum are presented that show good agreement with the SESAME library and ionization calculations show good agreement with the FLYCHK code. Program summaryProgram title: BADGERLIB v1.0 Catalogue identifier: AEND_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEND_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 41 480 No. of bytes in distributed program, including test data, etc.: 2 904 451 Distribution format: tar.gz Programming language: Fortran 90. Computer: 32- or 64-bit PC, or Mac. Operating system: Windows, Linux, MacOS X. RAM: 249.496 kB plus 195.630 kB per isotope record in memory Classification: 19.1, 19.7. Nature of problem: Equation of State (EOS) calculations are necessary for the accurate simulation of high energy density plasmas. Historically, most EOS codes used in these simulations have relied on an ideal gas model. This model is inadequate for low-temperature, high-density plasma conditions; the gaseous and liquid phases; and the solid phase. The BADGER code was developed to give more realistic EOS data in these regimes. Solution method: BADGER has multiple, user-selectable models to treat the ions, average-atom ionization state and electrons. Ion models are ideal gas and quotidian equation of state (QEOS), ionization models are Thomas-Fermi and individual accounting method (IEM) formulation of the screened hydrogenic model (SHM) with l-splitting, electron ionization models are ideal gas and a Helmholtz free energy minimization method derived from the SHM. The default equation of state and ionization models are appropriate for plasmas in local thermodynamic equilibrium (LTE). The code can calculate non-LTE equation of state (EOS) and ionization data using a simplified form of the Busquet equivalent-temperature method. Restrictions: Physical data are only provided for elements Z=1 to Z=86. Multiple solid phases are not currently supported. Liquid, gas and plasma phases are combined into a generalized "fluid" phase. Unusual features: BADGER divorces the calculation of average-atom ionization from the electron equation of state model, allowing the user to select ionization and electron EOS models that are most appropriate to the simulation. The included ion ideal gas model uses ground-state nuclear spin data to differentiate between isotopes of a given element. Running time: Example provided only takes a few seconds to run.
Distribution and Kinematics of Ionized Gas in the central 500pc of Seyfert Galaxies
NASA Astrophysics Data System (ADS)
Hyland, Ella; Hicks, Erin K. S.; Kade, Kiana
2018-06-01
We have characterized the spatial distribution and kinematics of the ionized hydrogen gas in a sample of 40 Seyfert galaxies as part of the KONA (Keck OSIRIS Nearby AGN) survey. An analysis of the narrow Brackett Gamma emission (2.16 microns) in the central 500 pc of these local AGN will be presented. Measurements include the azimuthal averages of the flux distribution, velocity dispersion, and emission line equivalent width. In addition, the excitation of the Brackett Gamma emission is considered using the ratio of its flux with that of molecular hydrogen (2.12 microns) as a diagnostic. A comparison of the circumnuclear narrow Brackett Gamma emission characteristics in the Seyfert type 1 and type 2 subsamples will also be presented.
Molecular three-body Brauner-Briggs-Klar theory for ion-impact ionization of molecules
NASA Astrophysics Data System (ADS)
Ghanbari-Adivi, E.
2016-12-01
Molecular three-body Brauner-Briggs-Klar (M3BBK) theory is developed to study the single ionization of diatomic molecules by ion impact. The orientation-averaged molecular orbital (OAMO) approximation is used to reduce the required computer time without sacrificing the performance of the method. The post-collision interaction (PCI) between the scattered projectile and the ejected electron is included. The theory is applied to collision of protons with hydrogen molecules. Results are obtained for two different kinematical regimes: i) fast collisions and low emission energies, and ii) not so fast collisions and higher emission energies. For both considered regimes, experimental fully differential cross-sections as well as different theoretical calculations are available for comparison. These comparisons are carried out and discussed.
Ionized cluster beam deposition
NASA Technical Reports Server (NTRS)
Kirkpatrick, A. R.
1983-01-01
Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.
Idelevich, Evgeny A; Grünastel, Barbara; Becker, Karsten
2017-01-01
Candida sepsis is a life-threatening condition with increasing prevalence. In this study, direct blood culturing on solid medium using a lysis-centrifugation procedure enabled successful Candida species identification by matrix-assisted laser desorption-ionization time of flight mass spectrometry on average 3.8 h (Sabouraud agar) or 7.4 h (chocolate agar) before the positivity signal for control samples in Bactec mycosis-IC/F or Bactec Plus aerobic/F bottles, respectively. Direct culturing on solid medium accelerated candidemia diagnostics compared to that with automated broth-based systems. Copyright © 2016 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
McElroy, M. B.; Prather, M. J.; Rodriguez, J. M.
1982-06-01
Ionization of thermal and nonthermal oxygen atoms above the plasmapause on Venus supplies an escape flux for O averaging 6 x 10 to the 6th atoms/sq cm-sec. Hydrogen and oxygen atoms escape with stoichiometry characteristic of water. It is argued that escape of H is controlled by the oxidation state of the atmosphere, regulated by escape of O.
NASA Astrophysics Data System (ADS)
Kraiem, M.; Mayer, K.; Gouder, T.; Seibert, A.; Wiss, T.; Thiele, H.; Hiernaut, J.-P.
2010-01-01
Thermal ionization mass spectrometry (TIMS) is a well established instrumental technique for providing accurate and precise isotope ratio measurements of elements with reasonably low first ionization potential. In nuclear safeguards and in environmental research, it is often required to measure the isotope ratios in small samples of uranium. Empirical studies had shown that the ionization yield of uranium and plutonium in a TIMS ion source can be significantly increased in the presence of a carbon source. But, even though carbon appeared crucial in providing high ionization yields, processes taking place on the ionization surface were still not well understood. This paper describes the experimental results obtained from an extended study on the evaporation and ionization mechanisms of uranium occurring on a rhenium mass spectrometry filament in the presence of carbon. Solid state reactions were investigated using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Additionally, vaporization measurements were performed with a modified-Knudsen cell mass spectrometer for providing information on the neutral uranium species in the vapor phase. Upon heating, under vacuum, the uranyl nitrate sample was found to turn into a uranium carbide compound, independent of the type of carbon used as ionization enhancer. With further heating, uranium carbide leads to formation of single charged uranium metal ions and a small amount of uranium carbide ions. The results are relevant for a thorough understanding of the ion source chemistry of a uranyl nitrate sample under reducing conditions. The significant increase in ionization yield described by many authors on the basis of empirical results can be now fully explained and understood.
Ionizing Collisions of Electrons with Radical Species OH, H2 O2 and HO2; Theoretical Calculations
NASA Astrophysics Data System (ADS)
Joshipura, K. N.; Pandya, S. H.; Vaishnav, B. G.; Patel, U. R.
2016-05-01
In this paper we present our calculated total ionization cross sections (TICS) of electron impact on radical targets OH, H2 O2 and HO2 at energies from threshold to 2000 eV. Reactive species such as these pose difficulties in measurements of electron scattering cross sections. No measured data have been reported in this regard except an isolated TICS measurement on OH radical, and hence the present work on the title radicals hold significance. These radical species are present in an environment in which water molecules undergo dissociation (neutral or ionic) in interactions with photons or electrons. The embedding environments could be quite diverse, ranging from our atmosphere to membranes of living cells. Ionization of OH, H2 O2 or HO2 can give rise to further chemistry in the relevant bulk medium. Therefore, it is appropriate and meaningful to examine electron impact ionization of these radicals in comparison with that of water molecules, for which accurate da are available. For the OH target single-centre scattering calculations are performed by starting with a 4-term complex potential, that describes simultaneous elastic plus inelastic scattering. TICS are obtained from the total inelastic cross sections in the complex scattering potential - ionization contribution formalism , a well established method. For H2 O2 and HO2 targets, we employ the additivity rule with overlap or screening corrections. Detailed results will be presented in the Conference.
The iQID Camera: An Ionizing-Radiation Quantum Imaging Detector
Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; ...
2014-06-11
We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier andmore » then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. In conclusion, we present the latest results and discuss potential applications.« less
Hergenhahn, Uwe
2012-12-01
The paper gives an introduction into Interatomic and Intermolecular Coulombic Decay (ICD). ICD is an autoionization process, which contrary to Auger decay involves neighbouring sites of the initial vacancy as an integral part of the decay transition. As a result of ICD, slow electrons are produced which generally are known to be active in radiation damage. The author summarizes the properties of ICD and reviews a number of important experiments performed in recent years. Intermolecular Coulombic Decay can generally take place in weakly bonded aggregates in the presence of ionizing particles or ionizing radiation. Examples collected here mostly use soft X-rays produced by synchrotron radiation to ionize, and use rare-gas clusters, water clusters or solutes in a liquid jet to observe ICD after irradiation. Intermolecular Coulombic Decay is initiated by single ionization into an excited state. The subsequent relaxation proceeds via an ultra-fast energy transfer to a neighbouring site, where a second ionization occurs. Secondary electrons from ICD have clearly been identified in numerous systems. ICD can take place after primary ionization, as the second step of a decay cascade which also involves Auger decay, or after resonant excitation with an energy which exceeds the ionization potential of the system. ICD is expected to play a role whenever particles or radiation with photon energies above the ionization energies for inner valence electrons are present in weakly bonded matter, e.g., biological tissue. The process produces at the same time a slow electron and two charged atomic or molecular fragments, which will lead to structural changes around the ionized site.
Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M.
2016-01-01
Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7 – 20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species behave similarly, the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ~18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section, but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them, all are in good agreement with theoretical ones confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models. PMID:27212712
Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M
2016-05-10
Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7 - 20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species behave similarly, the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ~18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section, but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them, all are in good agreement with theoretical ones confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.
Io plasma torus ion composition: Voyager, Galileo, and Cassini
NASA Astrophysics Data System (ADS)
Nerney, Edward G.; Bagenal, Fran; Steffl, Andrew J.
2017-01-01
The Io torus produces ultraviolet emissions diagnostic of plasma conditions. We revisit data sets obtained by the Voyager 1, Galileo, and Cassini missions at Jupiter. With the latest version (8.0) of the CHIANTI atomic database we analyze UV spectra to determine ion composition. We compare ion composition obtained from observations from these three missions with a theoretical model of the physical chemistry of the torus by Delamere et al. (2005). We find ion abundances from the Voyager data similar to the Cassini epoch, consistent with the dissociation and ionization of SO2, but with a slightly higher average ionization state for sulfur, consistent with the higher electron temperature measured by Voyager. This reanalysis of the Voyager data produces a much lower oxygen:sulfur ratio than earlier analysis by Shemansky (1988), which was also reported by Bagenal (1994). We derive fractional ion compositions in the center of the torus to be S+/Ne 5%, S++/Ne 20%, S+++/Ne 5%, O+/Ne 20%, O++/Ne 3%, and Σ(On+)/Σ(Sn+) 0.8, leaving about 10-15% of the charge as protons. The radial profile of ion composition indicates a slightly higher average ionization state, a modest loss of sulfur relative to oxygen, and Σ(On+)/Σ(Sn+) 1.2 at about 8 RJ, beyond which the composition is basically frozen in. The Galileo observations of UV emissions from the torus suggest that the composition in June 1996 may have comprised a lower abundance of oxygen than usual, consistent with observations made at the same time by the EUVE satellite.
Global Infrared–Radio Spectral Energy Distributions of Galactic Massive Star-Forming Regions
NASA Astrophysics Data System (ADS)
Povich, Matthew Samuel; Binder, Breanna Arlene
2018-01-01
We present a multiwavelength study of 30 Galactic massive star-forming regions. We fit multicomponent dust, blackbody, and power-law continuum models to 3.6 µm through 10 mm spectral energy distributions obtained from Spitzer, MSX, IRAS, Herschel, and Planck archival survey data. Averaged across our sample, ~20% of Lyman continuum photons emitted by massive stars are absorbed by dust before contributing to the ionization of H II regions, while ~50% of the stellar bolometric luminosity is absorbed and reprocessed by dust in the H II regions and surrounding photodissociation regions. The most luminous, infrared-bright regions that fully sample the upper stellar initial mass function (ionizing photon rates NC ≥ 1050 s–1 and total infrared luminosity LTIR ≥ 106.8 L⊙) have higher percentages of absorbed Lyman continuum photons (~40%) and dust-reprocessed starlight (~80%). The monochromatic 70-µm luminosity L70 is linearly correlated with LTIR, and on average L70/LTIR = 50%, in good agreement with extragalactic studies. Calibrated against the known massive stellar content in our sampled H II regions, we find that star formation rates based on L70 are in reasonably good agreement with extragalactic calibrations, when corrected for the smaller physical sizes of the Galactic regions. We caution that absorption of Lyman continuum photons prior to contributing to the observed ionizing photon rate may reduce the attenuation-corrected Hα emission, systematically biasing extragalactic calibrations toward lower star formation rates when applied to spatially-resolved studies of obscured star formation.This work was supported by the National Science Foundation under award CAREER-1454333.
Zhang, Ying; Tobias, Herbert J.; Brenna, J. Thomas
2014-01-01
Comprehensive two dimensional gas chromatography (GC×GC) provides greater separation space than conventional GC. Because of fast peak elution, a time of flight mass spectrometer (TOFMS) is the usual structure-specific detector of choice. The quantitative capabilities of a novel GC×GC fast quadrupole MS were investigated with electron ionization (EI), and CH4 or NH3 positive chemical ionization (PCI) for analysis of endogenous urinary steroids targeted in anti-doping tests. Average precisions for steroid quantitative analysis from replicate urine extractions were 6% (RSD) for EI and 8% for PCI-NH3. The average limits of detection (LOD) calculated by quantification ions for 12 target steroids spiked into steroid-free urine matrix (SFUM) were 2.6 ng mL−1 for EI, 1.3 ng mL−1 for PCI-CH4, and 0.3 ng mL−1 for PCI-NH3, all in mass scanning mode. The measured limits of quantification (LOQ) with full mass scan GC×GC-qMS were comparable with the LOQ values measured by one-dimensional GC-MS in single ion monitoring (SIM) mode. PCI-NH3 yields fewer fragments and greater (pseudo)molecular ion abundances than EI or PCI-CH4. These data show a benchtop GC×GC-qMS system has the sensitivity, specificity, and resolution to analyze urinary steroids at normal urine concentrations, and that PCI-NH3, not currently available on most GC×GC-TOFMS instruments, is of particular value for generation of structure-specific ions. PMID:22606686
2015-06-01
Research Committee nm Nanometer Np Neptunium NPT Treaty of Non-proliferation of Nuclear Weapons ns Nanosecond ps Picosecond Pu Plutonium RIMS...discovery—credited also to Fritz Strassman— scientists realized these reactions also emitted secondary neutrons . These secondary neutrons could in...destructive capabilities of nuclear fission and atomic weapons . Figure 1. Uranium-235 Fission chain reaction, from [1
Majewski, Mark W.; Miller, Patricia A.; Miller, Marvin J.
2016-01-01
Classically, β-lactams need an ionizable group to potentiate antibacterial activity. Sets of cephalosporins and penicillins featuring different substituted hydroxamates in place of the traditional carboxylate group have been synthesized and tested for antibiotic activity. Many of the compounds exhibited anti-bacterial activities with notable MIC values in the range of 6-0.2 μM. PMID:27999444
Ionization waves of arbitrary velocity driven by a flying focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palastro, J. P.; Turnbull, D.; Bahk, S. -W.
A chirped laser pulse focused by a chromatic lens exhibits a dynamic, or flying, focus in which the trajectory of the peak intensity decouples from the group velocity. In a medium, the flying focus can trigger an ionization front that follows this trajectory. By adjusting the chirp, the ionization front can be made to travel at an arbitrary velocity along the optical axis. For this study, we present analytical calculations and simulations describing the propagation of the flying focus pulse, the self-similar form of its intensity profile, and ionization wave formation. The ability to control the speed of the ionizationmore » wave and, in conjunction, mitigate plasma refraction has the potential to advance several laser-based applications, including Raman amplification, photon acceleration, high-order-harmonic generation, and THz generation.« less
Photoelectron circular dichroism in different ionization regimes
NASA Astrophysics Data System (ADS)
Wollenhaupt, Matthias
2016-12-01
Photoelectron circular dichroism (PECD) describes an asymmetry in the photoelectron angular distribution (PAD) from photoionization of randomly oriented enantiomers with circularly polarized light. Beaulieu et al present a comprehensive set of measured PADs from multiphoton ionization of limonene and fenchone in different ionization regimes (multiphoton and tunneling) and analyze the resulting PECD (Beaulieu et al 2016 New J. Phys. 18 102002). From their observations the authors conclude that the PECD is universal in the sense that the molecular chirality is encoded in the PAD independent of the ionization regime. The analysis is supplemented by a classical model based on electron scattering in a chiral potential. The paper presents beautiful data and is an important step towards a more complete physical picture of PECD. The results and their interpretation stimulate the ongoing vivid debate on the role of resonances in multiphoton PECD.
Ionization waves of arbitrary velocity driven by a flying focus
Palastro, J. P.; Turnbull, D.; Bahk, S. -W.; ...
2018-03-01
A chirped laser pulse focused by a chromatic lens exhibits a dynamic, or flying, focus in which the trajectory of the peak intensity decouples from the group velocity. In a medium, the flying focus can trigger an ionization front that follows this trajectory. By adjusting the chirp, the ionization front can be made to travel at an arbitrary velocity along the optical axis. For this study, we present analytical calculations and simulations describing the propagation of the flying focus pulse, the self-similar form of its intensity profile, and ionization wave formation. The ability to control the speed of the ionizationmore » wave and, in conjunction, mitigate plasma refraction has the potential to advance several laser-based applications, including Raman amplification, photon acceleration, high-order-harmonic generation, and THz generation.« less
Ionizing Radiation: how fungi cope, adapt, and exploit with the help of melanin
Dadachova, Ekaterina; Casadevall, Arturo
2008-01-01
SUMMARY OF RECENT ADVANCES Life on Earth has always existed in the flux of ionizing radiation. However, fungi seem to interact with the ionizing radiation differently from other Earth’s inhabitants. Recent data show that melanized fungal species like those from Chernobyl’s reactor respond to ionizing radiation with enhanced growth. Fungi colonize space stations and adapt morphologically to extreme conditions. Radiation exposure causes upregulation of many key genes, and an inducible microhomology-mediated recombination pathway could be a potential mechanism of adaptive evolution in eukaryotes. The discovery of melanized organisms in high radiation environments, the space stations, Antarctic mountains, and in the reactor cooling water combined with phenomenon of ‘radiotropism’ raises the tantalizing possibility that melanins have functions analogous to other energy harvesting pigments such as chlorophylls. PMID:18848901
An Investigation of the Ionization Structure of the Carina Spiral Arm with WHAM
NASA Astrophysics Data System (ADS)
Benjamin, Robert A.; Krishnarao, Dhanesh; Haffner, L. Matthew
2018-01-01
Recent investigations of the Sagittarius-Carina spiral arm with the Wisconsin H-alpha Mapper (Krishnarao et al 2017) show the presence of ionized gas stretching up to three kiloparsecs above and below the Carina section of this spiral arm. This arm segment, which wraps outside the solar circle in the fourth quadrant of the Galactic disk, seems to be unusual when compared to the other Milky Way spiral arms measured with WHAM. We review the status of what is known about the vertical ionization structure of the spiral arms of the Milky Way Galaxy and relate the properties of this spiral arm section to recent investigations of midplane HII regions and star formation in the Milky Way disk. We discuss potential implications of this star formation and ionization for our understanding of Milky Way Galactic structure.
Ma, Qiang; Bai, Hua; Li, Wentao; Wang, Chao; Li, Xinshi; Cooks, R Graham; Ouyang, Zheng
2016-03-17
Significantly simplified work flows were developed for rapid analysis of various types of cosmetic and foodstuff samples by employing a miniature mass spectrometry system and ambient ionization methods. A desktop Mini 12 ion trap mass spectrometer was coupled with paper spray ionization, extraction spray ionization and slug-flow microextraction for direct analysis of Sudan Reds, parabens, antibiotics, steroids, bisphenol and plasticizer from raw samples with complex matrices. Limits of detection as low as 5 μg/kg were obtained for target analytes. On-line derivatization was also implemented for analysis of steroid in cosmetics. The developed methods provide potential analytical possibility for outside-the-lab screening of cosmetics and foodstuff products for the presence of illegal substances. Copyright © 2016 Elsevier B.V. All rights reserved.
Kuś, Tomasz; Krylov, Anna I
2011-08-28
The charge-stabilization method is applied to double ionization potential equation-of-motion (EOM-DIP) calculations to stabilize unstable dianion reference functions. The auto-ionizing character of the dianionic reference states spoils the numeric performance of EOM-DIP limiting applications of this method. We demonstrate that reliable excitation energies can be computed by EOM-DIP using a stabilized resonance wave function instead of the lowest energy solution corresponding to the neutral + free electron(s) state of the system. The details of charge-stabilization procedure are discussed and illustrated by examples. The choice of optimal stabilizing Coulomb potential, which is strong enough to stabilize the dianion reference, yet, minimally perturbs the target states of the neutral, is the crux of the approach. Two algorithms of choosing optimal parameters of the stabilization potential are presented. One is based on the orbital energies, and another--on the basis set dependence of the total Hartree-Fock energy of the reference. Our benchmark calculations of the singlet-triplet energy gaps in several diradicals show a remarkable improvement of the EOM-DIP accuracy in problematic cases. Overall, the excitation energies in diradicals computed using the stabilized EOM-DIP are within 0.2 eV from the reference EOM spin-flip values. © 2011 American Institute of Physics
Nanosecond laser-cluster interactions at 109-1012 W/cm 2
NASA Astrophysics Data System (ADS)
Singh, Rohtash; Tripathi, V. K.; Vatsa, R. K.; Das, D.
2017-08-01
An analytical model and a numerical code are developed to study the evolution of multiple charge states of ions by irradiating clusters of atoms of a high atomic number (e.g., Xe) by 1.06 μm and 0.53 μm nanosecond laser pulses of an intensity in the range of 109-1012 W/cm 2 . The laser turns clusters into plasma nanoballs. Initially, the momentum randomizing collisions of electrons are with neutrals, but soon these are taken over by collisions with ions. The ionization of an ion to the next higher state of ionization is taken to be caused by an energetic free electron impact, and the rates of impact ionization are suitably modelled by having an inverse exponential dependence of ionizing collision frequency on the ratio of ionization potential to electron temperature. Cluster expansion led adiabatic cooling is a major limiting mechanism on electron temperature. In the intensity range considered, ionization states up to 7 are expected with nanosecond pulses. Another possible mechanism, filamentation of the laser, has also been considered to account for the observation of higher charged states. However, filamentation is seen to be insufficient to cause substantial local enhancement in the intensity to affect electron heating rates.
Atmospheric Ionization Measurements
NASA Astrophysics Data System (ADS)
Slack, Thomas; Mayes, Riley
2015-04-01
The measurement of atmospheric ionization is a largely unexplored science that potentially holds the key to better understanding many different geophysical phenomena through this new and valuable source of data. Through the LaACES program, which is funded by NASA through the Louisiana Space Consortium, students at Loyola University New Orleans have pursued the goal of measuring high altitude ionization for nearly three years, and were the first to successfully collect ionization data at altitudes over 30,000 feet using a scientific weather balloon flown from the NASA Columbia Scientific Ballooning Facility in Palestine, TX. In order to measure atmospheric ionization, the science team uses a lightweight and highly customized sensor known as a Gerdien condenser. Among other branches of science the data is already being used for, such as the study of aerosol pollution levels in the atmosphere, the data may also be useful in meteorology and seismology. Ionization data might provide another variable with which to predict weather or seismic activity more accurately and further in advance. Thomas Slack and Riley Mayes have served as project managers for the experiment, and have extensive knowledge of the experiment from the ground up. LaSPACE Louisiana Space Consortium.
NASA Astrophysics Data System (ADS)
Xiang, HU; Ping, DUAN; Jilei, SONG; Wenqing, LI; Long, CHEN; Xingyu, BIAN
2018-02-01
There exists strong interaction between the plasma and channel wall in the Hall thruster, which greatly affects the discharge performance of the thruster. In this paper, a two-dimensional physical model is established based on the actual size of an Aton P70 Hall thruster discharge channel. The particle-in-cell simulation method is applied to study the influences of segmented low emissive graphite electrode biased with anode voltage on the discharge characteristics of the Hall thruster channel. The influences of segmented electrode placed at the ionization region on electric potential, ion number density, electron temperature, ionization rate, discharge current and specific impulse are discussed. The results show that, when segmented electrode is placed at the ionization region, the axial length of the acceleration region is shortened, the equipotential lines tend to be vertical with wall at the acceleration region, thus radial velocity of ions is reduced along with the wall corrosion. The axial position of the maximal electron temperature moves towards the exit with the expansion of ionization region. Furthermore, the electron-wall collision frequency and ionization rate also increase, the discharge current decreases and the specific impulse of the Hall thruster is slightly enhanced.
Cheng, Zhipeng; Dong, Fengshou; Xu, Jun; Liu, Xingang; Wu, Xiaohu; Chen, Zenglong; Pan, Xinglu; Gan, Jay; Zheng, Yongquan
2017-09-15
This paper describes the application of atmospheric pressure gas chromatography quadrupole-time-of-flight mass spectrometry for the simultaneous determination of organophosphorus pesticides in apple, pear, tomato, cucumber and cabbage. Soft ionization with atmospheric pressure ionization source was compared with traditional electron impact ionization (EI). The sensitivity of GC coupled to atmospheric pressure ionization (APGC) for all the analytes was enhanced by 1.0-8.2 times. The ionization modes with atmospheric pressure ionization source was studied by comparing the charge-transfer and proton-transfer conditions. The optimized QuEChERs method was used to pretreat the samples. The calibration curves were found linear from 10 to 1000μg/L, obtaining correlation coefficients higher than 0.9845. Satisfactory mean recovery values, in the range of 70.0-115.9%, and satisfactory precision, with all RSD r <19.7% and all RSD R values <19.5% at the three fortified concentration levels for all the fifteen OPPs. The results demonstrate the potential of APGC-QTOF-MS for routine quantitative analysis of organophosphorus pesticide in fruits and vegetables. Copyright © 2017 Elsevier Ltd. All rights reserved.
Martha, Cornelius T; Hoogendoorn, Jan-Carel; Irth, Hubertus; Niessen, Wilfried M A
2011-05-15
Current development in catalyst discovery includes combinatorial synthesis methods for the rapid generation of compound libraries combined with high-throughput performance-screening methods to determine the associated activities. Of these novel methodologies, mass spectrometry (MS) based flow chemistry methods are especially attractive due to the ability to combine sensitive detection of the formed reaction product with identification of introduced catalyst complexes. Recently, such a mass spectrometry based continuous-flow reaction detection system was utilized to screen silver-adducted ferrocenyl bidentate catalyst complexes for activity in a multicomponent synthesis of a substituted 2-imidazoline. Here, we determine the merits of different ionization approaches by studying the combination of sensitive detection of product formation in the continuous-flow system with the ability to simultaneous characterize the introduced [ferrocenyl bidentate+Ag](+) catalyst complexes. To this end, we study the ionization characteristics of electrospray ionization (ESI), atmospheric-pressure chemical ionization (APCI), no-discharge APCI, dual ESI/APCI, and dual APCI/no-discharge APCI. Finally, we investigated the application potential of the different ionization approaches by the investigation of ferrocenyl bidentate catalyst complex responses in different solvents. Copyright © 2011 Elsevier B.V. All rights reserved.
Gaire, B.; Gatton, A. S.; Wiegandt, F.; ...
2016-09-14
We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinatedmore » molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.« less
Neves, R C; Stokol, T; Bach, K D; McArt, J A A
2018-02-01
The objective of this study was to assess an optimized ion-selective electrode Ca-module prototype as a potential cow-side device for ionized Ca (iCa) measurements in bovine blood. A linearity experiment showed no deviation from linearity over a range of iCa concentrations compared with a commercial point-of-care (POC) device commonly used in the field (POC VS ; VetScan i-STAT, Abaxis North America, Union City, CA) and a laboratory gold standard benchtop blood-gas analyzer [reference analyzer (RA); ABL-800 FLEX, Radiometer Medical, Copenhagen, Denmark]. Coefficient of variation on 3 samples with high, within-range, and low iCa concentrations ranged from 1.0 to 3.9% for the prototype. A follow-up validation experiment was performed, in which our objectives were to (1) assess the performance of the prototype cow-side against the POC VS (farm gold-standard) using fresh non-anticoagulated whole-blood samples; (2) assess the performance of the prototype and the POC VS against the RA in a diagnostic laboratory using blood collected in a heparin-balanced syringe; and (3) assess the agreement of the prototype and POC VS on-farm (fresh non-anticoagulated whole blood) against the RA on heparin-balanced blood. Finally, sensitivity and specificity of the results obtained by the prototype and the POC VS cow-side compared with the results obtained by the laboratory RA using 3 different iCa cut points for classification of subclinical hypocalcemia were calculated. A total of 101 periparturient Holstein cows from 3 dairy farms in New York State were used for the second experiment. Ionized Ca results from the prototype cow-side were, on average, 0.06 mmol/L higher than the POC VS . With heparin-balanced samples under laboratory conditions, the prototype and POC VS measured an average 0.04 mmol/L higher and lower, respectively, compared with the RA. Results from the prototype and POC VS cow-side were 0.01 mmol/L higher and 0.05 mmol/L lower, respectively, compared with results from the laboratory RA on heparinized blood. Sensitivity and specificity for the prototype and the POC VS under farm conditions at 3 potential subclinical hypocalcemia cut points were 100 and ≥93.5%, respectively. This novel ion-selective electrode Ca-module could become a rapid low-cost tool for assessing iCa cow-side, while qualitatively allowing classification of subclinical hypocalcemia on-farm. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
An evaluation of ionizing radiation emitted by high power microwave generators
NASA Astrophysics Data System (ADS)
Lovell, C. David; Bolch, W. Emmett
1992-02-01
Ionizing radiation emitted by electron-beam driven high power microwave (HPM) generators were measured in the near and far-field using lithium fluoride (LiF) thermoluminescent dosimeters (TLD's). Simplified photon energy spectra were determined by measuring radiation transmission, at electron beam energies of 300 to 650 keV, through various thicknesses of steel and lead attenuators. These data were used to calculate the effective energy of the x-rays produced by interactions between the electrons and the walls or other structures of the HPM generators. Operators were polled to determine locations of burn marks or other visible damage to locate potential ionizing radiation source regions.
Effect of ionization on the oxidation kinetics of aluminum nanoparticles
NASA Astrophysics Data System (ADS)
Zheng, Yao-Ting; He, Min; Cheng, Guang-xu; Zhang, Zaoxiao; Xuan, Fu-Zhen; Wang, Zhengdong
2018-03-01
Molecular dynamics simulation (MD) of the observed stepwise oxidation of core-shell structured Al/Al2O3 nanoparticles is presented. Different from the metal ion hopping process in the Cabrera-Mott model, which is assumed to occur only at a certain distance from the oxide layer, the MD simulation shows that Al atoms jump over various interfacial gaps directly under the thermal driving force. The energy barrier for Al ionization is found to be increased along with the enlargement of interfacial gap. A mechanism of competition between thermal driving force and ionization potential barrier is proposed in the interpretation of stepwise oxidation behavior.
Luminosity limits for liquid argon calorimetry
NASA Astrophysics Data System (ADS)
J, Rutherfoord; B, Walker R.
2012-12-01
We have irradiated liquid argon ionization chambers with betas using high-activity Strontium-90 sources. The radiation environment is comparable to that in the liquid argon calorimeters which are part of the ATLAS detector installed at CERN's Large Hadron Collider. We measure the ionization current over a wide range of applied potential for two different source activities and for three different chamber gaps. These studies provide operating experience at exceptionally high ionization rates. We can operate these chambers either in the normal mode or in the space-charge limited regime and thereby determine the transition point between the two. From the transition point we indirectly extract the positive argon ion mobility.
Cahill, J.D.; Furlong, E.T.; Burkhardt, M.R.; Kolpin, D.; Anderson, L.G.
2004-01-01
Commonly used prescription and over-the-counter pharmaceuticals are possibly present in surface- and ground-water samples at ambient concentrations less than 1 μg/L. In this report, the performance characteristics of a combined solid-phase extraction isolation and high-performance liquid chromatography–electrospray ionization mass spectrometry (HPLC–ESI-MS) analytical procedure for routine determination of the presence and concentration of human-health pharmaceuticals are described. This method was developed and used in a recent national reconnaissance of pharmaceuticals in USA surface waters. The selection of pharmaceuticals evaluated for this method was based on usage estimates, resulting in a method that contains compounds from diverse chemical classes, which presents challenges and compromises when applied as a single routine analysis. The method performed well for the majority of the 22 pharmaceuticals evaluated, with recoveries greater than 60% for 12 pharmaceuticals. The recoveries of angiotensin-converting enzyme inhibitors, a histamine (H2) receptor antagonist, and antihypoglycemic compound classes were less than 50%, but were retained in the method to provide information describing the potential presence of these compounds in environmental samples and to indicate evidence of possible matrix enhancing effects. Long-term recoveries, evaluated from reagent-water fortifications processed over 2 years, were similar to initial method performance. Method detection limits averaged 0.022 μg/L, sufficient for expected ambient concentrations. Compound-dependent matrix effects on HPLC/ESI-MS analysis, including enhancement and suppression of ionization, were observed as a 20–30% increase in measured concentrations for three compounds and greater than 50% increase for two compounds. Changing internal standard and more frequent ESI source maintenance minimized matrix effects. Application of the method in the national survey demonstrates that several pharmaceuticals are routinely detected at 0.010–0.100 μg/L concentrations.
NASA Astrophysics Data System (ADS)
Klapisch, M.; Bar-Shalom, A.
1997-12-01
Busquet's RADIOM model for effective ionization temperature Tz is an appealing and simple way to introduce non LTE effects in hydrocodes. The authors report checking the validity of RADIOM in the optically thin case by comparison with two collisional radiative models, MICCRON (level-by-level) for C and Al and SCROLL (superconfiguration- by-superconfiguration) for Lu and Au. MICCRON is described in detail. The agreement between the average ion charge >Z< and the corresponding Tz obtained from RADIOM on the one hand, and from MICCRON on the other hand for C and Al is excellent. The absorption spectra at Tz agree very well with the one generated by SCROLL near LTE conditions (small β). Farther from LTE (large β) the agreement is still good, but another effective temperature gives an excellent agreement. It is concluded that the model of Busquet is very good in most cases. There is however room for improvement when the departure from LTE is more pronounced for heavy atoms and for emissivity. Improvement appears possible because the concept of ionization temperature seems to hold in a broader range of parameters.
Mutational influences of low-dose and high let ionizing radiation in drosophila melanogaster
NASA Astrophysics Data System (ADS)
Lei, Huang; Fanjun, Kong; Sun, Yeqing
For cosmic environment consists of a varying kinds of radiation particles including high Z and energy ions which was charactered with low-dose and high RBE, it is important to determine the possible biofuctions of high LET radiation on human beings. To analyse the possible effectes of mutational influences of low-dose and high-LET ionizing radiation, wild fruit flies drosophila melanogaster were irradiated by 12C6+ ions in two LET levels (63.3 and 30 keV/µum) with different low doses from 2mGy to 2000mGy (2, 20, 200, 2000mGy) in HIRFL (Heavy ion radiation facility laboratory, lanzhou, China).In the same LET value group, the average polymorphic frequency was elevated along with adding doses of irradation, the frequency in 2000 mGy dose samples was significantly higher than other samples (p<0.01).These results suggest that genomic DNA sequence could be effected by low-dose and high-LET ionizing radiation, the irradiation dose is an important element in genomic mutation frequency origination.
NASA Astrophysics Data System (ADS)
Kishore Kumar, G.; Nesse Tyssøy, H.; Williams, Bifford P.
2018-03-01
We investigate the possibility that sufficiently large electric fields and/or ionization during geomagnetic disturbed conditions may invalidate the assumptions applied in the retrieval of neutral horizontal winds from meteor and/or lidar measurements. As per our knowledge, the possible errors in the wind estimation have never been reported. In the present case study, we have been using co-located meteor radar and sodium resonance lidar zonal wind measurements over Andenes (69.27°N, 16.04°E) during intense substorms in the declining phase of the January 2005 solar proton event (21-22 January 2005). In total, 14 h of measurements are available for the comparison, which covers both quiet and disturbed conditions. For comparison, the lidar zonal wind measurements are averaged over the same time and altitude as the meteor radar wind measurements. High cross correlations (∼0.8) are found in all height regions. The discrepancies can be explained in light of differences in the observational volumes of the two instruments. Further, we extended the comparison to address the electric field and/or ionization impact on the neutral wind estimation. For the periods of low ionization, the neutral winds estimated with both instruments are quite consistent with each other. During periods of elevated ionization, comparatively large differences are noticed at the highermost altitude, which might be due to the electric field and/or ionization impact on the wind estimation. At present, one event is not sufficient to make any firm conclusion. Further study with more co-located measurements are needed to test the statistical significance of the result.
Photoionization of High-altitude Gas in a Supernova-driven Turbulent Interstellar Medium
NASA Astrophysics Data System (ADS)
Wood, Kenneth; Hill, Alex S.; Joung, M. Ryan; Mac Low, Mordecai-Mark; Benjamin, Robert A.; Haffner, L. Matthew; Reynolds, R. J.; Madsen, G. J.
2010-10-01
We investigate models for the photoionization of the widespread diffuse ionized gas (DIG) in galaxies. In particular, we address the long standing question of the penetration of Lyman continuum photons from sources close to the galactic midplane to large heights in the galactic halo. We find that recent hydrodynamical simulations of a supernova-driven interstellar medium (ISM) have low-density paths and voids that allow for ionizing photons from midplane OB stars to reach and ionize gas many kiloparsecs above the midplane. We find that ionizing fluxes throughout our simulation grids are larger than predicted by one-dimensional slab models, thus allowing for photoionization by O stars of low altitude neutral clouds in the Galaxy that are also detected in Hα. In previous studies of such clouds, the photoionization scenario had been rejected and the Hα had been attributed to enhanced cosmic ray ionization or scattered light from midplane H II regions. We do find that the emission measure distributions in our simulations are wider than those derived from Hα observations in the Milky Way. In addition, the horizontally averaged height dependence of the gas density in the hydrodynamical models is lower than inferred in the Galaxy. These discrepancies are likely due to the absence of magnetic fields in the hydrodynamic simulations and we discuss how magnetohydrodynamic effects may reconcile models and observations. Nevertheless, we anticipate that the inclusion of magnetic fields in the dynamical simulations will not alter our primary finding that midplane OB stars are capable of producing high-altitude DIG in a realistic three-dimensional ISM.
Simulator training to minimize ionizing radiation exposure in the catheterization laboratory.
Katz, Aric; Shtub, Avraham; Solomonica, Amir; Poliakov, Adva; Roguin, Ariel
2017-03-01
To learn about radiation and how to lower it. Patients and operators are routinely exposed to high doses of ionizing radiation during catheterization procedures. This increased exposure to ionizing radiation is partially due to a lack of awareness to the effects of ionizing radiation, and lack of knowledge on the distribution and behavior of scattered radiation. A simulator, which incorporates data on scattered ionizing radiation, was built based on multiple phantom measurements and used for teaching radiation safety. The validity of the simulator was confirmed in three catheterization laboratories and tested by 20 interventional cardiologists. All evaluators were tested by an objective knowledge examination before, immediately following, and 12 weeks after simulator-based learning and training. A subjective Likert questionnaire on satisfaction with simulation-based learning and training was also completed. The 20 evaluators learned and retained the knowledge that they gained from using the simulator: the average scores of the knowledge examination pre-simulator training was 54 ± 15% (mean ± standard deviation), and this score significantly increased after training to 94 ± 10% (p < 0.001). The evaluators also reported high levels of satisfaction following simulation-based learning and training according to the results of the subjective Likert questionnaire. Simulators can be used to train cardiology staff and fellows and to further educate experienced personnel on radiation safety. As a result of simulator training, the operator gains knowledge, which can then be applied in the catheterization laboratory in order to reduce radiation doses to the patient and to the operator, thereby improving the safety of the intervention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owrangi, A; Roberts, D; Covington, E
Purpose: To evaluate the peripheral dose (PD) to a fetus during radiation therapy of pregnant patients when using a newly designed fetal lead shield (FLS). Methods: A custom FLS has been designed and fabricated for our department. The FLS (1.1 TVLs for 6 MV) is mounted on a mobile frame and can be adjusted vertically with a motor actuator. PD measurements were acquired for multiple simple square fields and for a variety of potential treatment sites a pregnant patient may be treated for including brain, head and neck (H&N) and thorax. For measurements of the brain, H&N, and thorax, anmore » ionization chamber and OSLDs were positioned on average at a distance of 48, 29 and 26 cm, respectively, from the edge of treatment fields to mimic the approximate position of the fundus. Results: Based on our measurements, applying a 90° collimator rotation and using tertiary MLCs to define the field aperture in combination with jaws resulted in an average dose reduction of 60%. When using these planning strategies in combination with the FLS, on average, the PD was reduced by additional 25% for simple square fields and 20% for clinical plans. Conclusion: The custom FLS is a safe, effective, and relatively easy system to position. Commissioning measurements have demonstrated that the PD to the fetus can be significantly reduced when using the FLS. The comprehensive dataset obviates the need for individual patient pre-treatment dose measurements as long as the geometry falls within the commissioning limits.« less
Stepanov, Irina; Muzic, John; Le, Chap T.; Sebero, Erin; Villalta, Peter; Ma, Bin; Jensen, Joni; Hatsukami, Dorothy; Hecht, Stephen S.
2013-01-01
Quantitation of DNA adducts could provide critical information on the relationship between exposure to tobacco smoke and cancer risk in smokers. In this study, we developed a robust and sensitive liquid chromatography-tandem mass spectrometry method for the analysis of 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB1)-releasing DNA adducts in human oral cells, a non-invasive source of DNA for biomarker studies. Isolated DNA undergoes acid hydrolysis, after which samples are purified by solid-phase extraction and analyzed by LC-ESI-MS/MS. The developed method was applied for analysis of samples obtained via collection with a commercial mouthwash from 30 smokers and 15 nonsmokers. In smokers, the levels of HPB-releasing DNA adducts averaged 12.0 pmol HPB/mg DNA (detected in 20 out of 28 samples with quantifiable DNA yield) and in nonsmokers, the levels of adducts averaged 0.23 pmol/mg DNA (detected in 3 out of 15 samples). For the 30 smoking subjects, matching buccal brushings were also analyzed and HPB-releasing DNA adducts were detected in 24 out of 27 samples with quantifiable DNA yield, averaging 44.7 pmol HPB/mg DNA. The levels of adducts in buccal brushings correlated with those in mouthwash samples of smokers (R = 0.73, p < 0.0001). Potentially the method can be applied in studies of individual susceptibility to tobacco-induced cancers in humans. PMID:23252610
NASA Astrophysics Data System (ADS)
Cheng, Li; Shen, Zuochun; Lu, Jianye; Gao, Huide; Lü, Zhiwei
2005-11-01
Dissociation energies, ionization potentials and electron affinities of three perfluoroalkyl iodides, CF 3I, C 2F 5I, and i-C 3F 7I are calculated accurately with B3LYP, MP n ( n = 2-4), QCISD, QCISD(T), CCSD, and CCSD(T) methods. Calculations are performed by using large-core correlation-consistent pseudopotential basis set (SDB-aug-cc-pVTZ) for iodine atom. In all energy calculations, the zero point vibration energy is corrected. And the basis set superposition error is corrected by counterpoise method in the calculation of dissociation energy. Theoretical results are compared with the experimental values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhaskaran-Nair, Kiran; Kowalski, Karol; Moreno, Juana
Discovery of fullerenes has opened a entirely new chapter in chemistry due to their wide range of properties which holds exciting applications in numerous disciplines of science. The Nobel Prize in Chemistry 1996 was awarded jointly to Robert F. Curl Jr., Sir Harold W. Kroto and Richard E. Smalley in recoginition for their discovery of this new carbon allotrope. In this letter we are reporting ionization potential and electron attachment studies on fullerenes (C60 and C70) obtained with novel parallel implementation of the EA-EOM-CCSD and IP-EOM-CCSD methods in NWChem program package.
Stochastic treatment of electron multiplication without scattering in dielectrics
NASA Technical Reports Server (NTRS)
Lin, D. L.; Beers, B. L.
1981-01-01
By treating the emission of optical phonons as a Markov process, a simple analytic method is developed for calculating the electronic ionization rate per unit length for dielectrics. The effects of scattering from acoustic and optical phonons are neglected. The treatment obtains universal functions in recursive form, the theory depending on only two dimensionless energy ratios. A comparison of the present work with other numerical approaches indicates that the effect of scattering becomes important only when the electric potential energy drop in a mean free path for optical-phonon emission is less than about 25% of the ionization potential. A comparison with Monte Carlo results is also given for Teflon.
Closing in on Chemical Bonds by Opening up Relativity Theory
Whitney, Cynthia Kolb
2008-01-01
This paper develops a connection between the phenomenology of chemical bonding and the theory of relativity. Empirical correlations between electron numbers in atoms and chemical bond stabilities in molecules are first reviewed and extended. Quantitative chemical bond strengths are then related to ionization potentials in elements. Striking patterns in ionization potentials are revealed when the data are viewed in an element-independent way, where element-specific details are removed via an appropriate scaling law. The scale factor involved is not explained by quantum mechanics; it is revealed only when one goes back further, to the development of Einstein’s special relativity theory. PMID:19325749
Tang, Yuanyuan; Imasaka, Tomoko; Yamamoto, Shigekazu; Imasaka, Totaro
2016-06-01
Multiphoton ionization processes of parent-polycyclic aromatic hydrocarbons (PPAHs), nitro-PAHs (NPAHs), and amino-PAHs (APAHs) were examined by gas chromatography combined with time-of-flight mass spectrometry using a femtosecond Ti:sapphire laser as the ionization source. The efficiency of multiphoton ionization was examined using lasers emitting in the far-ultraviolet (200 nm), deep-ultraviolet (267 nm), and near-ultraviolet (345 nm) regions. The largest signal intensities were obtained when the far-ultraviolet laser was employed. This favorable result can be attributed to the fact that these compounds have the largest molar absorptivities in the far-ultraviolet region. On the other hand, APAHs were ionized more efficiently than NPAHs in the near-ultraviolet region because of their low ionization energies. A sample extracted from a real particulate matter 2.5 (PM2.5) sample was measured, and numerous signal peaks arising from PAH and its analogs were observed at 200 nm. On the other hand, only a limited number of signed peaks were observed at 345 nm, some of which were signed to PPAHs, NPAHs, and APAHs. Thus, multiphoton ionization mass spectrometry has potential for the use in comprehensive analysis of toxic environmental pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Jun; Zhang, Song Bin; Ye, Bang Jiao; Wang, Jian Guo; Janev, R. K.
2017-09-01
Low-energy electron elastic scattering and impact ionization with hydrogenlike helium in Debye plasmas have been investigated by employing the exterior complex scaling method. The interactions between charged particles in the plasmas have been represented by Debye-Hückel potentials. The 1 s -1 s elastic collision strengths below the n =2 excitation threshold of He+ dominated by resonance structures are calculated for different screening lengths. As the screening strength increases, the resonance peaks studied [2(1,0) 2 +1Se,3Po,1De , and 2(0,1) 2 +1Po] exhibit blueshifts and then redshifts with a further increase of the screening strength, which results in dramatic changes of the collision strengths. It is found that these dynamic variation features of the resonances are related to the changes of energy levels of He+ in the screened potential and geometric configurations of resonances. Triple-differential-ionization cross sections in coplanar geometries at 6-Ry incident electron energy are also reported, significant changes are observed with varying screening length.
High-field plasma acceleration in a high-ionization-potential gas
Corde, S.; Adli, E.; Allen, J. M.; ...
2016-06-17
Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. In our research, we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by upmore » to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m -1, over ~20 cm. Lastly, the results open new possibilities for the design of particle beam drivers and plasma sources.« less
Musilova, Michaela; Wright, Gary; Ward, John M; Dartnell, Lewis R
2015-12-01
Extreme radiation-resistant microorganisms can survive doses of ionizing radiation far greater than are present in the natural environment. Radiation resistance is believed to be an incidental adaptation to desiccation resistance, as both hazards cause similar cellular damage. Desert soils are, therefore, promising targets to prospect for new radiation-resistant strains. This is the first study to isolate radiation-resistant microbes by using gamma-ray exposure preselection from the extreme cold desert of the Antarctic Dry Valleys (a martian surface analogue). Halomonads, identified by 16S rRNA gene sequencing, were the most numerous survivors of the highest irradiation exposures. They were studied here for the first time for both their desiccation and irradiation survival characteristics. In addition, the association between desiccation and radiation resistance has not been investigated quantitatively before for a broad diversity of microorganisms. Thus, a meta-analysis of scientific literature was conducted to gather a larger data set. A strong correlation was found between desiccation and radiation resistance, indicating that an increase in the desiccation resistance of 5 days corresponds to an increase in the room-temperature irradiation survival of 1 kGy. Irradiation at -79°C (representative of average martian surface temperatures) increases the microbial radiation resistance 9-fold. Consequently, the survival of the cold-, desiccation-, and radiation-resistant organisms isolated here has implications for the potential habitability of dormant or cryopreserved life on Mars. Extremophiles-Halomonas sp.-Antarctica-Mars-Ionizing radiation-Cosmic rays.
NASA Astrophysics Data System (ADS)
Roberts, J. M.; Veres, P.; Warneke, C.; Neuman, J. A.; Washenfelder, R. A.; Brown, S. S.; Baasandorj, M.; Burkholder, J. B.; Burling, I. R.; Johnson, T. J.; Yokelson, R. J.; de Gouw, J.
2010-07-01
A negative-ion proton-transfer chemical ionization mass spectrometric technique (NI-PT-CIMS), using acetate as the reagent ion, was applied to the measurement of volatile inorganic acids of atmospheric interest: hydrochloric (HCl), nitrous (HONO), nitric (HNO3), and isocyanic (HNCO) acids. Gas phase calibrations through the sampling inlet showed the method to be intrinsically sensitive (6-16 cts/pptv), but prone to inlet effects for HNO3 and HCl. The ion chemistry was found to be insensitive to water vapor concentrations, in agreement with previous studies of carboxylic acids. The inlet equilibration times for HNCO and HONO were 2 to 4 s, allowing for measurement in biomass burning studies. Several potential interferences in HONO measurements were examined: decomposition of HNO3·NO3- clusters within the CIMS, and NO2-water production on inlet surfaces, and were quite minor (≤1%, 3.3%, respectively). The detection limits of the method were limited by the instrument backgrounds in the ion source and flow tube, and were estimated to range between 16 and 50 pptv (parts per trillion by volume) for a 1 min average. The comparison of HONO measured by CIMS and by in situ FTIR showed good correlation and agreement to within 17%. The method provided rapid and accurate measurements of HNCO and HONO in controlled biomass burning studies, in which both acids were seen to be important products.
NASA Astrophysics Data System (ADS)
Roberts, J. M.; Veres, P.; Warneke, C.; Neuman, J. A.; Washenfelder, R. A.; Brown, S. S.; Baasandorj, M.; Burkholder, J. B.; Burling, I. R.; Johnson, T. J.; Yokelson, R. J.; de Gouw, J.
2010-01-01
A negative-ion proton transfer chemical ionization mass spectrometric technique (NI-PT-CIMS), using acetate as the reagent ion, was applied to the measurement of volatile inorganic acids of atmospheric interest: hydrochloric (HCl), nitrous (HONO), nitric (HNO3), and isocyanic (HNCO) acids. Gas phase calibrations through the sampling inlet showed the method to be intrinsically sensitive (6-16 cts/pptv), but prone to inlet effects for HNO3 and HCl. The ion chemistry was found to be insensitive to water vapor concentrations, in agreement with previous studies of carboxylic acids. The inlet equilibration times for HNCO and HONO were 2 to 4 s, allowing for measurement in biomass burning studies. Several potential interferences in HONO measurements were examined: decomposition of HNO3·NO3- clusters within the CIMS, and NO2-water production on inlet surfaces, and were quite minor (≤1%, 3.3%, respectively). The detection limits of the method were limited by the instrument backgrounds in the ion source and flow tube, and were estimated to range between 16 and 50 pptv (parts per trillion by volume) for a 1 min average. The comparison of HONO measured by CIMS and by in situ FTIR showed good correlation and agreement to within 17%. The method provided rapid and accurate measurements of HNCO and HONO in controlled biomass burning studies, in which both acids were seen to be important products.
Implanted medical devices in the radiation environment of commercial spaceflight.
Reyes, David P; McClure, Steven S; Chancellor, Jeffery C; Blue, Rebecca S; Castleberry, Tarah L; Vanderploeg, James M
2014-11-01
Some commercial spaceflight participants (SFPs) may have medical conditions that require implanted medical devices (IMDs), such as cardiac pacemakers, defibrillators, insulin pumps, or similar electronic devices. The effect of space radiation on the function of IMDs is unknown. This review will identify known effects of terrestrial and aviation electromagnetic interference (EMI) and radiation on IMDs in order to provide insight into the potential effects of radiation exposures in the space environment. A systematic literature review was conducted on available literature on human studies involving the effects of EMI as well as diagnostic and therapeutic radiation on IMDs. The literature review identified potential transient effects from EMI and diagnostic radiation levels as low as 10 mGy on IMDs. High-energy, therapeutic, ionizing radiation can cause more permanent device malfunctions at doses as low as 40 mGy. Radiation doses from suborbital flight altitudes and durations are anticipated to be less than those experienced during an average round-trip, cross-country airline flight and are unlikely to result in significant detriment, though longer, orbital flights may expose SFPs to doses potentially harmful to IMD function. Individuals with IMDs should experience few, if any, radiation-related device malfunctions during suborbital flight, but could have problems with radiation exposures associated with longer, orbital flights.
[Evaluation of dental X-ray apparatus in terms of patient exposure to ionizing radiation].
Olszewski, Jerzy; Wrzesień, Małgorzata
2017-06-27
The use of X-ray in dental procedures causes exposure of the patient to ionizing radiation. This exposure depends primarily on the parameters used in tooth examination. The aim of the study was to determine the patients exposure and to assess the technical condition of X-ray tubes. Seventeen hundred dental offices were covered by the questionnaire survey and 740 questionnaires were sent back. Direct measurements were performed in 100 units by using the thermoluminescent detectors and X-ray films. The results showed that the most commonly used exposure time is 0.22±0.16 s. The average entrance dose for the parameters used most commonly by dentists is 1.7±1.4 mGy. The average efficiency of X-ray tube estimated on the basis of exposures is 46.5±23.7 μGy/mAs. The study results indicate that the vast majority of X-ray tubes meet the requirements specified in the binding regulations. Med Pr 2017;67(4):491-496. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Triple Differential Cross Sections for single ionization of the Ethane molecule
NASA Astrophysics Data System (ADS)
Ali, Esam; Nixon, Kate; Ning, Chuangang; Murray, Andrew; Madison, Don
2015-09-01
We report experimental and theoretical results for electron-impact (e,2e) ionization of the Ethane molecule (C2H6) in the coplanar scattering geometry for four different ejected electron energies Ea = 5,10,15, and 20 eV respectively, and for each ejected electron energy, the projectile scattering angle is fixed at 10°. We will show that the TDCS is very sensitive for the case of two heavy nuclei surrounded by lighter H nuclei. On the theoretical side, we have used the M3DW coupled with the Orientation Averaged Molecular Orbital (OAMO) approximation and proper average (PA) over all orientations. These approximations show good agreement with experimental data for the binary peaks. However, for the recoil peak region, experiment finds a noticeable peak while theory predicts no peak. No recoil peak suggests no (or very weak) nuclear scattering, so we have investigated the importance of nuclear scattering by moving the nuclei closer to the center of mass. This work is supported by the US National Science Foundation under Grant No. PHY-1068237 and XSEDE resources provided by the Texas Advanced Computing Center (Grant No. TG-MCA07S029).
A combined thermal dissociation and electron impact ionization source for RIB generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.; Williams, C.
1995-12-31
The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for RIB applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, in principle, overcome thismore » handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility (HRIBF), now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article.« less
NASA Astrophysics Data System (ADS)
Suzuki, Yohichi; Seki, Kazuhiko
2018-03-01
We studied ion concentration profiles and the charge density gradient caused by electrode reactions in weak electrolytes by using the Poisson-Nernst-Planck equations without assuming charge neutrality. In weak electrolytes, only a small fraction of molecules is ionized in bulk. Ion concentration profiles depend on not only ion transport but also the ionization of molecules. We considered the ionization of molecules and ion association in weak electrolytes and obtained analytical expressions for ion densities, electrostatic potential profiles, and ion currents. We found the case that the total ion density gradient was given by the Kuramoto length which characterized the distance over which an ion diffuses before association. The charge density gradient is characterized by the Debye length for 1:1 weak electrolytes. We discuss the role of these length scales for efficient water splitting reactions using photo-electrocatalytic electrodes.
NASA Astrophysics Data System (ADS)
Wu, Pei Ying; Tzeng, Wen Bih
2015-10-01
We applied two-color resonant two-photon ionization and mass-analyzed threshold ionization techniques to record the vibronic, photoionization efficiency, and cation spectra of the selected rotamers of 3-fluorostyrene. The adiabatic ionization energies of cis- and trans-3-fluorostyrene were determined to be 69 960 ± 5 and 69 856 ± 5 cm-1, respectively. Cation vibrations 10a, 15, 6b, and 12 of both rotamers have been found to have frequencies of 218, 404, 452, and 971 cm-1, respectively. This finding shows that the relative orientation of the vinyl group with respect to the F atom does not affect these vibrations of the 3-fluorostyrene cation. Our one-dimensional potential energy surface calculations support that the cis-trans isomerization of 3-fluorostyrene does not occur under the present experimental conditions.
Experimental Resonance Enhanced Multiphoton Ionization (REMPI) studies of small molecules
NASA Technical Reports Server (NTRS)
Dehmer, J. L.; Dehmer, P. M.; Pratt, S. T.; Ohalloran, M. A.; Tomkins, F. S.
1987-01-01
Resonance enhanced multiphoton ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of exciting opportunities for both basic and applied science. On the applied side, REMPI has great potential as an ultrasensitive, highly selective detector for trace, reactive, or transient species. On the basic side, REMPI affords an unprecedented means of exploring excited state physics and chemistry at the quantum-state-specific level. An overview of current studies of excited molecular states is given to illustrate the principles and prospects of REMPI.
Central-cell corrections and shallow donor states in strong magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayam, Sr. Gerardin; Navaneethakrishnan, K.
2001-06-01
Ionization energies and the central-cell corrections have been calculated for a few shallow donors in Si, GaP, and GaAs. We have assumed a short range potential with two parameters for the strength and the range for each donor, representing the central-cell effects. These parameters are fixed using the experimentally available ionization energies for each donor in a semiconductor. In the presence of a magnetic field the donor ionization energies are estimated using a variational procedure. Our results show that the ionization energies and the central-cell corrections increase with magnetic field. Our results are compared for GaAs with the recent workmore » by Heron et al. [R. J. Heron, R. A. Lewis, P. E. Simmonds, R. P. Starret, A. V. Skougarevsky, R. G. Clark, and C. R. Stanley, J. Appl. Phys. 85, 893 (1999)]. {copyright} 2001 American Institute of Physics.« less
Measuring Ionization in Highly Compressed, Near-Degenerate Plasmas
NASA Astrophysics Data System (ADS)
Doeppner, Tilo; Kraus, D.; Neumayer, P.; Bachmann, B.; Collins, G. W.; Divol, L.; Kritcher, A.; Landen, O. L.; Pak, A.; Weber, C.; Fletcher, L.; Glenzer, S. H.; Falcone, R. W.; Saunders, A.; Chapman, D.; Baggott, R.; Gericke, D. O.; Yi, A.
2016-10-01
A precise knowledge of ionization at given temperature and density is required to accurately model compressibility and heat capacity of materials at extreme conditions. We use x-ray Thomson scattering to characterize the plasma conditions in plastic and beryllium capsules near stagnation in implosion experiments at the National Ignition Facility. We expect the capsules to be compressed to more than 20x and electron densities approaching 1025 cm-3, corresponding to a Fermi energy of 170 eV. Zinc Heα x-rays (9 keV) scattering at 120° off the plasma yields high sensitivity to K-shell ionization, while at the same time constraining density and temperature. We will discuss recent results in the context of ionization potential depression at these extreme conditions. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Measurements of ionization states in warm dense aluminum with betatron radiation
NASA Astrophysics Data System (ADS)
Mo, M. Z.; Chen, Z.; Fourmaux, S.; Saraf, A.; Kerr, S.; Otani, K.; Masoud, R.; Kieffer, J.-C.; Tsui, Y.; Ng, A.; Fedosejevs, R.
2017-05-01
Time-resolved measurements of the ionization states of warm dense aluminum via K-shell absorption spectroscopy are demonstrated using betatron radiation generated from laser wakefield acceleration as a probe. The warm dense aluminum is generated by irradiating a free-standing nanofoil with a femtosecond optical laser pulse and was heated to an electron temperature of ˜20 -25 eV at a close-to-solid mass density. Absorption dips in the transmitted x-ray spectrum due to the Al4 + and Al5 + ions are clearly seen during the experiments. The measured absorption spectra are compared to simulations with various ionization potential depression models, including the commonly used Stewart-Pyatt model and an alternative modified Ecker-Kröll model. The observed absorption spectra are in approximate agreement with these models, though indicating a slightly higher state of ionization and closer agreement for simulations with the modified Ecker-Kröll model.
Air ions and mood outcomes: a review and meta-analysis
2013-01-01
Background Psychological effects of air ions have been reported for more than 80 years in the media and scientific literature. This study summarizes a qualitative literature review and quantitative meta-analysis, where applicable, that examines the potential effects of exposure to negative and positive air ions on psychological measures of mood and emotional state. Methods A structured literature review was conducted to identify human experimental studies published through August, 2012. Thirty-three studies (1957–2012) evaluating the effects of air ionization on depression, anxiety, mood states, and subjective feelings of mental well-being in humans were included. Five studies on negative ionization and depression (measured using a structured interview guide) were evaluated by level of exposure intensity (high vs. low) using meta-analysis. Results Consistent ionization effects were not observed for anxiety, mood, relaxation/sleep, and personal comfort. In contrast, meta-analysis results showed that negative ionization, overall, was significantly associated with lower depression ratings, with a stronger association observed at high levels of negative ion exposure (mean summary effect and 95% confidence interval (CI) following high- and low-density exposure: 14.28 (95% CI: 12.93-15.62) and 7.23 (95% CI: 2.62-11.83), respectively). The response to high-density ionization was observed in patients with seasonal or chronic depression, but an effect of low-density ionization was observed only in patients with seasonal depression. However, no relationship between the duration or frequency of ionization treatment on depression ratings was evident. Conclusions No consistent influence of positive or negative air ionization on anxiety, mood, relaxation, sleep, and personal comfort measures was observed. Negative air ionization was associated with lower depression scores particularly at the highest exposure level. Future research is needed to evaluate the biological plausibility of this association. PMID:23320516
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine
2016-05-10
Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7–20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation andmore » photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ∼13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies all species behave similarly; the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ∼18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them; all are in good agreement with theoretical ones, confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.« less
NASA Astrophysics Data System (ADS)
Melott, Adrian L.; Atri, Dimitra; Thomas, Brian C.; Medvedev, Mikhail V.; Wilson, Graham W.; Murray, Michael J.
2010-08-01
It has been suggested that galactic shock asymmetry induced by our galaxy's infall toward the Virgo Cluster may be a source of periodicity in cosmic ray exposure as the solar system oscillates perpendicular to the galactic plane, thereby, inducing an observed terrestrial periodicity in biodiversity. There are a number of plausible mechanisms by which cosmic rays might affect terrestrial biodiversity. Here we investigate one of these mechanisms, the consequent ionization and dissociation in the atmosphere, resulting in changes in atmospheric chemistry that culminate in the depletion of ozone and a resulting increase in the dangerous solar UVB flux on the ground. We use a heuristic model of the cosmic ray intensity enhancement originally suggested by Medvedev and Melott (2007) to compute steady state atmospheric effects. This paper is a reexamination of an issue we have studied before with a simplified approximation for the distribution of incidence angles. The new results are based on an improved ionization background computation averaged over a massive ensemble (about 7 × 105) shower simulations at various energies and incidence angles. We adopt a range with a minimal model and a fit to full exposure to the postulated extragalactic background. The atmospheric effects are greater than they were with our earlier, simplified ionization model. At the lower end of the intensity range, we find that the effects are too small to be of serious consequence. At the upper end of this range, ˜6% global average loss of ozone column density exceeds that currently experienced due to anthropogenic effects such as accumulated chlorofluorocarbons. We discuss some of the possible effects. The intensity of the atmospheric effects is less than those of a nearby supernova or galactic γ ray burst, but the duration of the effects would be about 106 times longer. Present UVB enhancement from current ozone depletion ˜3% is a documented stress on the biosphere, but a depletion of the magnitude found at the upper end of our range would approximately double the global average UVB flux. We conclude that for estimates at the upper end of the reasonable range of the cosmic ray variability over geologic time, the mechanism of atmospheric ozone depletion may provide a major biological stress, which could easily bring about major loss of biodiversity. It is possible that future high-energy astrophysical observations will resolve the question of whether such depletion is likely.
Non local-thermodynamical-equilibrium effects in the simulation of laser-produced plasmas
NASA Astrophysics Data System (ADS)
Klapisch, M.; Bar-Shalom, A.; Oreg, J.; Colombant, D.
1998-05-01
Local thermodynamic equilibrium (LTE) breaks down in directly or indirectly driven laser plasmas because of sharp gradients, energy deposition, etc. For modeling non-LTE effects in hydrodynamical simulations, Busquet's model [Phys. Fluids B 5, 4191 (1993)] is very convenient and efficient. It uses off-line generated LTE opacities and equation of states via an effective, radiation-dependent ionization temperature Tz. An overview of the model is given. The results are compared with an elaborate collisional radiative model based on superconfigurations. The agreements for average charge Z* and opacities are surprisingly good, even more so when the plasma is immersed in a radiation field. Some remaining discrepancy at low density is attributed to dielectronic recombination. Improvement appears possible, especially for emissivities, because the concept of ionization temperature seems to be validated.
High-order above-threshold ionization beyond the electric dipole approximation
NASA Astrophysics Data System (ADS)
Brennecke, Simon; Lein, Manfred
2018-05-01
Photoelectron momentum distributions from strong-field ionization are calculated by numerical solution of the one-electron time-dependent Schrödinger equation for a model atom including effects beyond the electric dipole approximation. We focus on the high-energy electrons from rescattering and analyze their momentum component along the field propagation direction. We show that the boundary of the calculated momentum distribution is deformed in accordance with the classical three-step model including the beyond-dipole Lorentz force. In addition, the momentum distribution exhibits an asymmetry in the signal strengths of electrons emitted in the forward/backward directions. Taken together, the two non-dipole effects give rise to a considerable average forward momentum component of the order of 0.1 a.u. for realistic laser parameters.
Tani, Masaharu; Goto, Shinji; Kamada, Kensaku; Mori, Katsuharu; Urata, Yoshishige; Ihara, Yoshito; Kijima, Hiroshi; Ueyama, Yoshito; Shibata, Shobu
2002-01-01
Glioblastoma cells are highly malignant and show resistance to ionizing radiation, as well as anti‐cancer drugs. This resistance to cancer therapy is often associated with a high concentration of glutathione (GSH). In this study, the effect of continuous down‐regulation of γ‐glutamylcysteine synthetase (γ‐GCS) expression, a rate‐limiting enzyme for GSH synthesis, on resistance to ionizing radiation and cisplatin (CDDP) was studied in T98G human glioblastoma cells. We constructed a hammerhead ribozyme against a γ‐GCS heavy subunit (γ‐GCSh) mRNA and transfected it into T98G cells. (1) The transfection of the ribozyme decreased the concentration of GSH and resulted in G1 cell cycle arrest of T98G cells. (2) The transfection of the ribozyme increased the cytotoxicity of ionizing radiation and CDDP in T98G cells. Thus, hammerhead ribozyme against γ‐GCS is suggested to have potential as a cancer gene therapy to reduce the resistance of malignant cells to ionizing radiation and anti‐cancer drugs. PMID:12079521
The sensibility of SPE induced atmospheric photochemical response to the ionization rate variations.
NASA Astrophysics Data System (ADS)
Krivolutsky, Alexei A.; Kukoleva, Anna; Kuminov, Alexander; Maygkova, Irina
During Solar proton event (SPE) energetic particles affect neutral atmospheric chemistry (Jackman et al. 1990, Krivolutsky A.A. et al. 2001 ets. ). The calculations results for [NO] and [O3] changes have qualitative suitability with observations data from satellites (UARS, HALOE for N.P.), although the simulated result differs in value from observed ones for nitrogen compounds. It seems potential probable reasons for this diversity exist. The sensibility of SPE induced atmospheric response to the ionization rates was investigated. The solar proton fluxes data from two satellites were used for ionization rate calculations by the method Vitt and Jackman (1996): geo-stationary GOES-10 (orbit height ≈ 40000 km) and CORONAS (orbit height is ≈ 400 km) for period of SPE 28.10. 2003. Calculated time integral ion creation during SPE using low and high orbit data differs for 1.5. Differences in ionization rate vertical distribution from GOES and CORONAS were found. Using this different ionization data the atmospherical composition response has been simulated with 1D photochemical model. The corresponding differences are discussed.
Theory of electron-impact ionization of atoms
NASA Astrophysics Data System (ADS)
Kadyrov, A. S.; Mukhamedzhanov, A. M.; Stelbovics, A. T.; Bray, I.
2004-12-01
The existing formulations of electron-impact ionization of a hydrogenic target suffer from a number of formal problems including an ambiguous and phase-divergent definition of the ionization amplitude. An alternative formulation of the theory is given. An integral representation for the ionization amplitude which is free of ambiguity and divergence problems is derived and is shown to have four alternative, but equivalent, forms well suited for practical calculations. The extension to amplitudes of all possible scattering processes taking place in an arbitrary three-body system follows. A well-defined conventional post form of the breakup amplitude valid for arbitrary potentials including the long-range Coulomb interaction is given. Practical approaches are based on partial-wave expansions, so the formulation is also recast in terms of partial waves and partial-wave expansions of the asymptotic wave functions are presented. In particular, expansions of the asymptotic forms of the total scattering wave function, developed from both the initial and the final state, for electron-impact ionization of hydrogen are given. Finally, the utility of the present formulation is demonstrated on some well-known model problems.
Effects of Ionizing Radiation on Cellular Structures, Induced Instability, and Carcinogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resat, Marianne S.; Arthurs, Benjamin J.; Estes, Brian J.
2006-03-01
According to the American Cancer Society, the United States can expect 1,368,030 new cases of cancer in 2004 [1]. Among the many carcinogens Americans are exposed to, ionizing radiation will contribute to this statistic. Humans live in a radiation environment. Ionizing radiation is in the air we breathe, the earth we live on, and the food we eat. Man-made radiation adds to this naturally occurring radiation level thereby increasing the chance for human exposure. For many decades the scientific community, governmental regulatory bodies, and concerned citizens have struggled to estimate health risks associated with radiation exposures, particularly at low doses.more » While cancer induction is the primary concern and the most important somatic effect of exposure to ionizing radiation, potential health risks do not involve neoplastic diseases exclusively but also include somatic mutations that might contribute to birth defects and ocular maladies, and heritable mutations that might impact on disease risks in future generations. Consequently it is important we understand the effect of ionizingradiation on cellular structures and the subsequent long-term health risks associated with exposure to ionizing radiation.« less
Stolee, Jessica A; Vertes, Akos
2013-04-02
Ambient ionization methods for mass spectrometry have enabled the in situ and in vivo analysis of biological tissues and cells. When an etched optical fiber is used to deliver laser energy to a sample in laser ablation electrospray ionization (LAESI) mass spectrometry, the analysis of large single cells becomes possible. However, because in this arrangement the ablation plume expands in three dimensions, only a small portion of it is ionized by the electrospray. Here we show that sample ablation within a capillary helps to confine the radial expansion of the plume. Plume collimation, due to the altered expansion dynamics, leads to greater interaction with the electrospray plume resulting in increased ionization efficiency, reduced limit of detection (by a factor of ~13, reaching 600 amol for verapamil), and extended dynamic range (6 orders of magnitude) compared to conventional LAESI. This enhanced sensitivity enables the analysis of a range of metabolites from small cell populations and single cells in the ambient environment. This technique has the potential to be integrated with flow cytometry for high-throughput metabolite analysis of sorted cells.
Relativistic features and time delay of laser-induced tunnel ionization
NASA Astrophysics Data System (ADS)
Yakaboylu, Enderalp; Klaiber, Michael; Bauke, Heiko; Hatsagortsyan, Karen Z.; Keitel, Christoph H.
2013-12-01
The electron dynamics in the classically forbidden region during relativistic tunnel ionization is investigated. The classical forbidden region in the relativistic regime is identified by defining a gauge-invariant total-energy operator. Introducing position-dependent energy levels inside the tunneling barrier, we demonstrate that the relativistic tunnel ionization can be well described by a one-dimensional intuitive picture. This picture predicts that, in contrast to the well-known nonrelativistic regime, the ionized electron wave packet arises with a momentum shift along the laser's propagation direction. This is compatible with results from a strong-field approximation calculation where the binding potential is assumed to be zero ranged. Further, the tunneling time delay, stemming from Wigner's definition, is investigated for model configurations of tunneling and compared with results obtained from the exact propagator. By adapting Wigner's time delay definition to the ionization process, the tunneling time is investigated in the deep-tunneling and in the near-threshold-tunneling regimes. It is shown that while in the deep-tunneling regime signatures of the tunneling time delay are not measurable at remote distance, they are detectable, however, in the latter regime.
Unprecedented Ionization Processes in Mass Spectrometry Provide Missing Link between ESI and MALDI.
Trimpin, Sarah; Lee, Chuping; Weidner, Steffen M; El-Baba, Tarick J; Lutomski, Corinne A; Inutan, Ellen D; Foley, Casey D; Ni, Chi-Kung; McEwen, Charles N
2018-03-05
In the field of mass spectrometry, producing intact, highly-charged protein ions from surfaces is a conundrum with significant potential payoff in application areas ranging from biomedical to clinical research. Here, we report on the ability to form intact, highly-charged protein ions on high vacuum time-of-flight mass spectrometers in the linear and reflectron modes achievable using experimental conditions that allow effective matrix removal from both the sample surfaces and from the charged clusters formed by the laser ablation event. The charge states are the highest reported on high vacuum mass spectrometers, yet they remain at only around a third of the highest charge obtained using laser ablation with a suitable matrix at atmospheric pressure. Other than physical instrument modifications, the key to forming abundant and stable highly-charged ions appears to be the volatility of the matrix used. Cumulative results suggest mechanistic links between the ionization process reported here and traditional ionization methods of electrospray ionization and matrix-assisted laser desorption/ionization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.
2011-11-01
X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet active galactic nuclei (AGNs). These have been detected essentially through blueshifted Fe XXV/XXVI K-shell transitions. In the previous paper of this series we defined UFOs as those highly ionized absorbers with an outflow velocity higher than 10,000 km s-1 and assessed the statistical significance of the associated blueshifted absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. The present paper is an extension of that work. First, we report a detailed curve of growth analysis of the main Fe XXV/XXVI transitions in photoionized plasmas. Then, we estimate an average spectral energy distribution for the sample sources and directly model the Fe K absorbers in the XMM-Newton spectra with the detailed Xstar photoionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35% and that the majority of the Fe K absorbers are indeed associated with UFOs. The outflow velocity distribution spans from ~10,000 km s-1 (~0.03c) up to ~100,000 km s-1 (~0.3c), with a peak and mean value of ~42,000 km s-1 (~0.14c). The ionization parameter is very high and in the range log ξ ~ 3-6 erg s-1 cm, with a mean value of log ξ ~ 4.2 erg s-1 cm. The associated column densities are also large, in the range N H ~ 1022-1024 cm-2, with a mean value of N H ~ 1023 cm-2. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7 keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton-thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can provide important clues on the connection between accretion disks, winds, and jets.
Self-shielding of hydrogen in the IGM during the epoch of reionization
NASA Astrophysics Data System (ADS)
Chardin, Jonathan; Kulkarni, Girish; Haehnelt, Martin G.
2018-04-01
We investigate self-shielding of intergalactic hydrogen against ionizing radiation in radiative transfer simulations of cosmic reionization carefully calibrated with Lyα forest data. While self-shielded regions manifest as Lyman-limit systems in the post-reionization Universe, here we focus on their evolution during reionization (redshifts z = 6-10). At these redshifts, the spatial distribution of hydrogen-ionizing radiation is highly inhomogeneous, and some regions of the Universe are still neutral. After masking the neutral regions and ionizing sources in the simulation, we find that the hydrogen photoionization rate depends on the local hydrogen density in a manner very similar to that in the post-reionization Universe. The characteristic physical hydrogen density above which self-shielding becomes important at these redshifts is about nH ˜ 3 × 10-3 cm-3, or ˜20 times the mean hydrogen density, reflecting the fact that during reionization photoionization rates are typically low enough that the filaments in the cosmic web are often self-shielded. The value of the typical self-shielding density decreases by a factor of 3 between redshifts z = 3 and 10, and follows the evolution of the average photoionization rate in ionized regions in a simple fashion. We provide a simple parameterization of the photoionization rate as a function of density in self-shielded regions during the epoch of reionization.
Self-shielding of hydrogen in the IGM during the epoch of reionization
NASA Astrophysics Data System (ADS)
Chardin, Jonathan; Kulkarni, Girish; Haehnelt, Martin G.
2018-07-01
We investigate self-shielding of intergalactic hydrogen against ionizing radiation in radiative transfer simulations of cosmic reionization carefully calibrated with Lyα forest data. While self-shielded regions manifest as Lyman limit systems in the post-reionization Universe, here we focus on their evolution during reionization (redshifts z = 6-10). At these redshifts, the spatial distribution of hydrogen-ionizing radiation is highly inhomogeneous, and some regions of the Universe are still neutral. After masking the neutral regions and ionizing sources in the simulation, we find that the hydrogen photoionization rate depends on the local hydrogen density in a manner very similar to that in the post-reionization Universe. The characteristic physical hydrogen density above which self-shielding becomes important at these redshifts is about nH ˜ 3 × 10-3 cm-3, or ˜20 times the mean hydrogen density, reflecting the fact that during reionization photoionization rates are typically low enough that the filaments in the cosmic web are often self-shielded. The value of the typical self-shielding density decreases by a factor of 3 between redshifts z = 3 and 10, and follows the evolution of the average photoionization rate in ionized regions in a simple fashion. We provide a simple parametrization of the photoionization rate as a function of density in self-shielded regions during the epoch of reionization.
Spatial Fluctuations of the Intergalactic Temperature-Density Relation After Hydrogen Reionization
NASA Astrophysics Data System (ADS)
Keating, Laura C.; Puchwein, Ewald; Haehnelt, Martin G.
2018-04-01
The thermal state of the post-reionization IGM is sensitive to the timing of reionization and the nature of the ionizing sources. We have modelled here the thermal state of the IGM in cosmological radiative transfer simulations of a realistic, extended, spatially inhomogeneous hydrogen reionization process, carefully calibrated with Lyα forest data. We compare these with cosmological simulations run using a spatially homogeneous ionizing background. The simulations with a realistic growth of ionized regions and a realistic spread in reionization redshifts show, as expected, significant spatial fluctuations in the temperature-density relation (TDR) of the post-reionization IGM. The most recently ionized regions are hottest and exhibit a flatter TDR. In simulations consistent with the average TDR inferred from Lyα forest data, these spatial fluctuations have a moderate but noticeable effect on the statistical properties of the Lyα opacity of the IGM at z ˜ 4 - 6. This should be taken into account in accurate measurements of the thermal properties of the IGM and the free-streaming of dark matter from Lyα forest data in this redshift range. The spatial variations of the TDR predicted by our simulations are, however, smaller by about a factor two than would be necessary to explain the observed large spatial opacity fluctuations on large (≥ 50 h-1 comoving Mpc) scales at z ≳ 5.5.
Spatial fluctuations of the intergalactic temperature-density relation after hydrogen reionization
NASA Astrophysics Data System (ADS)
Keating, Laura C.; Puchwein, Ewald; Haehnelt, Martin G.
2018-07-01
The thermal state of the post-reionization IGM is sensitive to the timing of reionization and the nature of the ionizing sources. We have modelled here the thermal state of the IGM in cosmological radiative transfer simulations of a realistic, extended, spatially inhomogeneous hydrogen reionization process, carefully calibrated with Ly α forest data. We compare these with cosmological simulations run using a spatially homogeneous ionizing background. The simulations with a realistic growth of ionized regions and a realistic spread in reionization redshifts show, as expected, significant spatial fluctuations in the temperature-density relation (TDR) of the post-reionization IGM. The most recently ionized regions are hottest and exhibit a flatter TDR. In simulations consistent with the average TDR inferred from Ly α forest data, these spatial fluctuations have a moderate but noticeable effect on the statistical properties of the Ly α opacity of the IGM at z ˜ 4-6. This should be taken into account in accurate measurements of the thermal properties of the IGM and the free-streaming of dark matter from Ly α forest data in this redshift range. The spatial variations of the TDR predicted by our simulations are, however, smaller by about a factor of 2 than would be necessary to explain the observed large spatial opacity fluctuations on large (≥50 h-1 comoving Mpc) scales atz ≳ 5.5.
NASA Astrophysics Data System (ADS)
Harrach, Robert J.; Rogers, Forest J.
1981-09-01
Two equation-of-state (EOS) models for multipy ionized matter are evaluated for the case of an aluminum plasma in the temperature range from about one eV to several hundred eV, spanning conditions of weak to strong ionization. Specifically, the simple analytical mode of Zel'dovich and Raizer and the more comprehensive model comprised by Rogers' plasma physics avtivity expansion code (ACTEX) are used to calculate the specific internal energy ɛ and average degree of ionization Z¯*, as functons of temperature T and density ρ. In the absence of experimental data, these results are compared against each other, covering almost five orders-of-magnitude variation in ɛ and the full range of Z¯* We find generally good agreement between the two sets of results, especially for low densities and for temperatures near the upper end of the rage. Calculated values of ɛ(T) agree to within ±30% over nearly the full range in T for densities below about 1 g/cm3. Similarly, the two models predict values of Z¯*(T) which track each other fairly well; above 20 eV the discrepancy is less than ±20% fpr ρ≲1 g/cm3. Where the calculations disagree, we expect the ACTEX code to be more accurate than Zel'dovich and Raizer's model, by virtue of its more detailed physics content.
NASA Technical Reports Server (NTRS)
Sellen, J. M., Jr.; Kemp, R. F.; Hall, D. F.
1973-01-01
Doubly to singly charged mercury ion ratios in electron bombardment ion thruster exhaust beams have been determined as functions of bombardment discharge potential, thrust beam current, thrust beam radial position, acceleration-deceleration voltage ratio, and propellant utilization fraction. A mathematical model for two-step ionization processes has been derived, and calculated ion ratios are compared to observed ratios. Production of Hg(++) appears to result primarily from sequential ionization of Hg(+) in the discharge. Experimental and analytical results are presented, and design, construction, and operation features of an electrostatic deflection ion time-of-flight analyzer for the determination of the above-mentioned ratios are reviewed.
Absolute photoionization cross sections of two cyclic ketones: cyclopentanone and cyclohexanone.
Price, Chelsea; Fathi, Yasmin; Meloni, Giovanni
2017-05-01
Absolute photoionization cross sections for cyclopentanone and cyclohexanone, as well as partial ionization cross sections for the dissociative ionized fragments, are presented in this investigation. Experiments are performed via a multiplexed photoionization mass spectrometer utilizing vacuum ultraviolet (VUV) synchrotron radiation supplied by the Advanced Light Source of Lawrence Berkeley National Laboratory. These results allow the quantification of these species that is relevant to investigate the kinetics and combustion reactions of potential biofuels. The CBS-QB3 calculated values for the adiabatic ionization energies agree well with the experimental values, and the identification of possible dissociative fragments is discussed for both systems. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Dissociative properties of 1,1,1,2-tetrafluoroethane obtained by computational chemistry
NASA Astrophysics Data System (ADS)
Hayashi, Toshio; Ishikawa, Kenji; Sekine, Makoto; Hori, Masaru
2018-06-01
The electronic properties and dissociative channels of the alternative to the CCl2F2 (CFC-12) refrigerant, 1,1,1,2-tetrafluoroethane (HFC-134a) with a low global warming potential (GWP, 1430), were revealed by computational chemistry. The results show that CF3 + and CHF2 + ions are mainly produced by ionization. The CF3CH2 + ion is produced by ion pair formation and by direct ionization in the energy region higher than approximately 15 eV, but also in small amounts by the ionization of the dissociated CF3CH2 radical. This information is useful for etching process engineers in leading-edge semiconductor manufacturing.
Ambient ionization and miniature mass spectrometry system for chemical and biological analysis
Ma, Xiaoxiao; Ouyang, Zheng
2016-01-01
Ambien ionization and miniaturization of mass spectrometers are two fields in mass spectrometry that have advanced significantly in the last decade. The integration of the techniques developed in these two fields is leading to the development of complete miniature analytical systems that can be used for on-site or point-of-care analysis by non-expert users. In this review, we report the current status of development in ambient ionization and miniature mass spectrometers, with an emphasis on those techniques with potential impact on the point-of-care (POC) diagnostics. The challenges in the future development of the integrated systems are discussed with possible solutions presented. PMID:28042191
Second Order Born Effects in the Perpendicular Plane Ionization of Xe (5p) Atoms
NASA Astrophysics Data System (ADS)
Purohit, G.; Singh, Prithvi; Patidar, Vinod
We report triple differential cross section (TDCS) results for the perpendicular plane ionization of xenon atoms at incident electron energies 5, 10, 20, 30, and 40 eV above ionization potential. The TDCS calculation have been preformed within the modified distorted wave Born approximation formalism including the second order Born (SBA) amplitude. We compare the (e, 2e) TDCS result of our calculation with the very recent measurements of Nixon and Murray [Phys. Rev. A 85, 022716 (2012)] and relativistic DWBA-G results of Illarionov and Stauffer [J. Phys. B: At. Mol. Opt. Phys. 45, 225202 (2012)] and discuss the process contributing to structure seen in the differential cross section.
On the possibility of collective attraction in complex plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhuri, M.; Morfill, G. E.; Kompaneets, R.
2010-06-15
An investigation on the possible collective electric attraction between like-charged dust particles has been performed in an isotropic homogeneous complex (dusty) plasma in which a balance between plasma creation due to ionization and plasma loss due to the absorption on dust particles has been reached. The analysis is made on the basis of a self-consistent fluid model, which includes plasma ionization, plasma loss on dust particles, dust charge variations, and ion-neutral friction. It is shown that the interaction potential can have an attractive part in the stability regime of the ionization-absorption balance with respect to ion perturbations only under verymore » limited circumstances.« less
NASA Technical Reports Server (NTRS)
Roy, N. L.
1975-01-01
Signals from impact ionization plasmas were studied as a means of performing microparticle composition analysis. Impact ionization signal response was measured in a time-of-flight (TOF) system for lanthanum hexaboride, carbonyl iron, and aluminum microparticle impacts on a tantalum target, primarily in the 1 - 8 km/s velocity range. Oscilloscope photographs of representative ion TOF signal response are given for each material studied. Graphs and histograms are presented of the total charge collected as well as the charge collected in each observed ion mass group. Data show that ion signals consist primarily of the lower ionization potential elements over the 1 - 8 km/s range.
Theory of warm ionized gases: equation of state and kinetic Schottky anomaly.
Capolupo, A; Giampaolo, S M; Illuminati, F
2013-10-01
Based on accurate Lennard-Jones-type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analog in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed. In particular, the predicted plasma electron density in a sonoluminescent bubble turns out to be in good agreement with the value measured in recent experiments.
Dadachova, Ekaterina; Bryan, Ruth A; Huang, Xianchun; Moadel, Tiffany; Schweitzer, Andrew D; Aisen, Philip; Nosanchuk, Joshua D; Casadevall, Arturo
2007-05-23
Melanin pigments are ubiquitous in nature. Melanized microorganisms are often the dominating species in certain extreme environments, such as soils contaminated with radionuclides, suggesting that the presence of melanin is beneficial in their life cycle. We hypothesized that ionizing radiation could change the electronic properties of melanin and might enhance the growth of melanized microorganisms. Ionizing irradiation changed the electron spin resonance (ESR) signal of melanin, consistent with changes in electronic structure. Irradiated melanin manifested a 4-fold increase in its capacity to reduce NADH relative to non-irradiated melanin. HPLC analysis of melanin from fungi grown on different substrates revealed chemical complexity, dependence of melanin composition on the growth substrate and possible influence of melanin composition on its interaction with ionizing radiation. XTT/MTT assays showed increased metabolic activity of melanized C. neoformans cells relative to non-melanized cells, and exposure to ionizing radiation enhanced the electron-transfer properties of melanin in melanized cells. Melanized Wangiella dermatitidis and Cryptococcus neoformans cells exposed to ionizing radiation approximately 500 times higher than background grew significantly faster as indicated by higher CFUs, more dry weight biomass and 3-fold greater incorporation of (14)C-acetate than non-irradiated melanized cells or irradiated albino mutants. In addition, radiation enhanced the growth of melanized Cladosporium sphaerospermum cells under limited nutrients conditions. Exposure of melanin to ionizing radiation, and possibly other forms of electromagnetic radiation, changes its electronic properties. Melanized fungal cells manifested increased growth relative to non-melanized cells after exposure to ionizing radiation, raising intriguing questions about a potential role for melanin in energy capture and utilization.
NASA Astrophysics Data System (ADS)
Naubereit, P.; Marín-Sáez, J.; Schneider, F.; Hakimi, A.; Franzmann, M.; Kron, T.; Richter, S.; Wendt, K.
2016-05-01
The generation of tunable laser light in the green to orange spectral range has generally been a deficiency of solid-state lasers. Hence, the formalisms of difference frequency generation (DFG) and optical parametric processes are well known, but the DFG of pulsed solid-state lasers was rarely efficient enough for its use in resonance ionization spectroscopy. Difference frequency generation of high-repetition-rate Ti:sapphire lasers was demonstrated for resonance ionization of sodium by efficiently exciting the well-known D1 and D2 lines in the orange spectral range (both ≈589 nm). In order to prove the applicability of the laser system for its use at resonance ionization laser ion sources of radioactive ion beam facilities, the first ionization potential of Na was remeasured by three-step resonance ionization into Rydberg levels and investigating Rydberg convergences. A result of EIP=41449.455 (6) stat(7) syscm-1 was obtained, which is in perfect agreement with the literature value of EIPlit =41449.451(2)cm-1 . A total of 41 level positions for the odd-parity Rydberg series n f 2F5/2,7/2o for principal quantum numbers of 10 ≤n ≤60 were determined experimentally.
Quantum mechanical calculations related to ionization and charge transfer in DNA
NASA Astrophysics Data System (ADS)
Cauët, E.; Valiev, M.; Weare, J. H.; Liévin, J.
2012-07-01
Ionization and charge migration in DNA play crucial roles in mechanisms of DNA damage caused by ionizing radiation, oxidizing agents and photo-irradiation. Therefore, an evaluation of the ionization properties of the DNA bases is central to the full interpretation and understanding of the elementary reactive processes that occur at the molecular level during the initial exposure and afterwards. Ab initio quantum mechanical (QM) methods have been successful in providing highly accurate evaluations of key parameters, such as ionization energies (IE) of DNA bases. Hence, in this study, we performed high-level QM calculations to characterize the molecular energy levels and potential energy surfaces, which shed light on ionization and charge migration between DNA bases. In particular, we examined the IEs of guanine, the most easily oxidized base, isolated and embedded in base clusters, and investigated the mechanism of charge migration over two and three stacked guanines. The IE of guanine in the human telomere sequence has also been evaluated. We report a simple molecular orbital analysis to explain how modifications in the base sequence are expected to change the efficiency of the sequence as a hole trap. Finally, the application of a hybrid approach combining quantum mechanics with molecular mechanics brings an interesting discussion as to how the native aqueous DNA environment affects the IE threshold of nucleobases.
The objective of the present study is to review current knowledge regarding the bioaccumulation potential of IOCs, with a focus on the availability of empirical data for fish. Aspects of the bioaccumulation potential of IOCs in fish that can be characterized relatively well inclu...
NASA Astrophysics Data System (ADS)
Engel, Thierry; Kane, M.; Fontaine, Joel
1997-08-01
During high-power laser welding, gas ionization occurs above the sample. The resulting plasma ignition threshold is related to ionization potential of metallic vapors from the sample, and shielding gases used in the process. In this work, we have characterized the temporal behavior of the radiation emitted by the plasma during laser welding in order to relate the observed signals to the process parameters.
NASA Astrophysics Data System (ADS)
Antonakis, Manolis M.; Tsirigotaki, Alexandra; Kanaki, Katerina; Milios, Constantinos J.; Pergantis, Spiros A.
2013-08-01
In this study, we report on the development of a novel nebulizer configuration for sonic-spray ionization (SSI) mass spectrometry (MS), more specifically for a version of SSI that is referred to as Venturi easy ambient sonic-spray ionization (V-EASI) MS. The developed nebulizer configuration is based on a commercially available pneumatic glass nebulizer that has been used extensively for aerosol formation in atomic spectrometry. In the present study, the nebulizer was modified in order to achieve efficient V-EASI-MS operation. Upon evaluating this system, it has been demonstrated that V-EASI-MS offers some distinct advantages for the analysis of coordination compounds and redox active inorganic compounds over the predominantly used electrospray ionization (ESI) technique. Such advantages, for this type of compounds, are demonstrated here for the first time. More specifically, a series of labile heptanuclear heterometallic [CuII 6LnIII] clusters held together with artificial amino acid ligands, in addition to easily oxidized inorganic oxyanions of selenium and arsenic, were analyzed. The observed advantages pertain to V-EASI appearing to be a "milder" ionization source than ESI, not requiring electrical potentials for gas phase ion formation, thus eliminating the possibility of unwanted redox transformations, allowing for the "simultaneous" detection of negative and positive ions (bipolar analysis) without the need to change source ionization conditions, and also not requiring the use of syringes and delivery pumps. Because of such features, especially because of the absence of ionization potentials, EASI can be operated with minimal requirements for source parameter optimization. We observed that source temperature and accelerating voltage do not seem to affect labile compounds to the extent they do in ESI-MS. In addition, bipolar analysis of proteins was demonstrated here by acquiring both positive and negative ion mass spectra from the same protein solutions, without the need to independently adjust solution and source conditions in each mode. Finally, the simple and efficient operation of a dual-nebulizer configuration was demonstrated for V-EASI-MS for the first time.
Antonakis, Manolis M; Tsirigotaki, Alexandra; Kanaki, Katerina; Milios, Constantinos J; Pergantis, Spiros A
2013-08-01
In this study, we report on the development of a novel nebulizer configuration for sonic-spray ionization (SSI) mass spectrometry (MS), more specifically for a version of SSI that is referred to as Venturi easy ambient sonic-spray ionization (V-EASI) MS. The developed nebulizer configuration is based on a commercially available pneumatic glass nebulizer that has been used extensively for aerosol formation in atomic spectrometry. In the present study, the nebulizer was modified in order to achieve efficient V-EASI-MS operation. Upon evaluating this system, it has been demonstrated that V-EASI-MS offers some distinct advantages for the analysis of coordination compounds and redox active inorganic compounds over the predominantly used electrospray ionization (ESI) technique. Such advantages, for this type of compounds, are demonstrated here for the first time. More specifically, a series of labile heptanuclear heterometallic [Cu(II) 6Ln(III)] clusters held together with artificial amino acid ligands, in addition to easily oxidized inorganic oxyanions of selenium and arsenic, were analyzed. The observed advantages pertain to V-EASI appearing to be a "milder" ionization source than ESI, not requiring electrical potentials for gas phase ion formation, thus eliminating the possibility of unwanted redox transformations, allowing for the "simultaneous" detection of negative and positive ions (bipolar analysis) without the need to change source ionization conditions, and also not requiring the use of syringes and delivery pumps. Because of such features, especially because of the absence of ionization potentials, EASI can be operated with minimal requirements for source parameter optimization. We observed that source temperature and accelerating voltage do not seem to affect labile compounds to the extent they do in ESI-MS. In addition, bipolar analysis of proteins was demonstrated here by acquiring both positive and negative ion mass spectra from the same protein solutions, without the need to independently adjust solution and source conditions in each mode. Finally, the simple and efficient operation of a dual-nebulizer configuration was demonstrated for V-EASI-MS for the first time.
NASA Astrophysics Data System (ADS)
Xu, Hao; Wise, John H.; Norman, Michael L.; Ahn, Kyungjin; O'Shea, Brian W.
2016-12-01
Cosmic reionization is thought to be primarily fueled by the first generations of galaxies. We examine their stellar and gaseous properties, focusing on the star formation rates and the escape of ionizing photons, as a function of halo mass, redshift, and environment using the full suite of the Renaissance Simulations with an eye to provide better inputs to global reionization simulations. This suite probes overdense, average, and underdense regions of the universe of several hundred comoving Mpc3, each yielding a sample of over 3000 halos in the mass range of 107-109.5 {M}⊙ at their final redshifts of 15, 12.5, and 8, respectively. In the process, we simulate the effects of radiative and supernova feedback from 5000 to 10,000 Population III stars in each simulation. We find that halos as small as 107 {M}⊙ are able to host bursty star formation due to metal-line cooling from earlier enrichment by massive Population III stars. Using our large sample, we find that the galaxy-halo occupation fraction drops from unity at virial masses above 108.5 {M}⊙ to ˜50% at 108 {M}⊙ and ˜10% at 107 {M}⊙ , quite independent of redshift and region. Their average ionizing escape fraction is ˜5% in the mass range of 108-109 {M}⊙ and increases with decreasing halo mass below this range, reaching 40%-60% at 107 {M}⊙ . Interestingly, we find that the escape fraction varies between 10%-20% in halos with virial masses of ˜3 × 109 {M}⊙ . Taken together, our results confirm the importance of the smallest galaxies as sources of ionizing radiation contributing to the reionization of the universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezaee, Mohammad, E-mail: Mohammad.Rezaee@USherbrooke.ca; Hunting, Darel John; Sanche, Léon
Purpose: To investigate the efficiencies of platinum chemotherapeutic drugs (Pt-drugs) in the sensitization of DNA to the direct effects of ionizing radiation and to determine the role of low-energy electrons (LEEs) in this process. Methods and Materials: Complexes of supercoiled plasmid DNA covalently bound to either cisplatin, carboplatin, or oxaliplatin were prepared in different molar ratios. Solid films of DNA and DNA modified by Pt-drugs were irradiated with either 10-KeV or 10-eV electrons. Damages to DNA were quantified by gel electrophoresis, and the yields for damage formation were obtained from exposure–response curves. Results: The presence of an average of 2more » Pt-drug–DNA adducts (Pt-adducts) in 3199-bp plasmid DNA increases the probability of a double-strand break by factors of 3.1, 2.5, and 2.4 for carboplatin, cisplatin, and oxaliplatin, respectively. Electrons with energies of 10 eV and 10 KeV interact with Pt-adducts to preferentially enhance the formation of cluster lesions. The maximum increase in radiosensitivity per Pt-adduct is found at ratios up to 3.1 × 10{sup −4} Pt-adducts per nucleotide, which is equivalent to an average of 2 adducts per plasmid. Carboplatin and oxaliplatin show higher efficiencies than cisplatin in the radiosensitization of DNA. Because carboplatin and cisplatin give rise to identical reactive species that attach to DNA, carboplatin must be considered as a better radiosensitizer for equal numbers of Pt-adducts. Conclusion: Platinum chemotherapeutic drugs preferentially enhance the formation of cluster damage to DNA induced by the direct effect of ionizing radiation, and LEEs are the main species responsible for such an enhancement via the formation of electron resonances.« less