Sample records for average large frequency

  1. Generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier

    DOE PAGES

    Zhao, Zhi; Sheehy, Brian; Minty, Michiko

    2017-03-29

    Here, we report on the generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier. In an Yb-doped fiber master-oscillator-power-amplifier system, 2.3-ps 704 MHz pulses are first amplified in small-core fibers and then in large-mode-area rod fibers to produce 270 W average infrared power with a high polarization extinction ratio and diffraction-limited beam quality. By carrying out frequency doubling in a lithium triborate (LBO) crystal, 180 W average green power is generated. To the best of our knowledge, this is the highest average green power achieved in fiber-based laser systems.

  2. Scaling laws and fluctuations in the statistics of word frequencies

    NASA Astrophysics Data System (ADS)

    Gerlach, Martin; Altmann, Eduardo G.

    2014-11-01

    In this paper, we combine statistical analysis of written texts and simple stochastic models to explain the appearance of scaling laws in the statistics of word frequencies. The average vocabulary of an ensemble of fixed-length texts is known to scale sublinearly with the total number of words (Heaps’ law). Analyzing the fluctuations around this average in three large databases (Google-ngram, English Wikipedia, and a collection of scientific articles), we find that the standard deviation scales linearly with the average (Taylor's law), in contrast to the prediction of decaying fluctuations obtained using simple sampling arguments. We explain both scaling laws (Heaps’ and Taylor) by modeling the usage of words using a Poisson process with a fat-tailed distribution of word frequencies (Zipf's law) and topic-dependent frequencies of individual words (as in topic models). Considering topical variations lead to quenched averages, turn the vocabulary size a non-self-averaging quantity, and explain the empirical observations. For the numerous practical applications relying on estimations of vocabulary size, our results show that uncertainties remain large even for long texts. We show how to account for these uncertainties in measurements of lexical richness of texts with different lengths.

  3. Spontaneous, synchronous electrical activity in neonatal mouse cortical neurones

    PubMed Central

    Corlew, Rebekah; Bosma, Martha M; Moody, William J

    2004-01-01

    Spontaneous [Ca2+]i transients were measured in the mouse neocortex from embryonic day 16 (E16) to postnatal day 6 (P6). On the day of birth (P0), cortical neurones generated widespread, highly synchronous [Ca2+]i transients over large areas. On average, 52% of neurones participated in these transients, and in 20% of slices, an average of 80% participated. These transients were blocked by TTX and nifedipine, indicating that they resulted from Ca2+ influx during electrical activity, and occurred at a mean frequency of 0.91 min−1. The occurrence of this activity was highly centred at P0: at E16 and P2 an average of only 15% and 24% of neurones, respectively, participated in synchronous transients, and they occurred at much lower frequencies at both E16 and P2 than at P0. The overall frequency of [Ca2+]i transients in individual cells did not change between E16 and P2, just the degree of their synchronicity. The onset of this spontaneous, synchronous activity correlated with a large increase in Na+ current density that occurred just before P0, and its cessation with a large decrease in resting resistance that occurred just after P2. This widespread, synchronous activity may serve a variety of functions in the neonatal nervous system. PMID:15297578

  4. A high-performance Hg(+) trapped ion frequency standard

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.; Tjoelker, R. L.; Dick, G. J.; Maleki, L.

    1992-01-01

    A high-performance frequency standard based on (199)Hg(+) ions confined in a hybrid radio frequency (RF)/dc linear ion trap is demonstrated. This trap permits storage of large numbers of ions with reduced susceptibility to the second-order Doppler effect caused by the RF confining fields. A 160-mHz-wide atomic resonance line for the 40.5-GHz clock transition is used to steer the output of a 5-mHz crystal oscillator to obtain a stability of 2 x 10(exp -15) for 24,000-second averaging times. Measurements with a 37-mHz line width for the Hg(+) clock transition demonstrate that the inherent stability for this frequency standard is better than 1 x 10(exp -15) at 10,000-second averaging times.

  5. High-power ultra-broadband frequency comb from ultraviolet to infrared by high-power fiber amplifiers.

    PubMed

    Yang, Kangwen; Li, Wenxue; Yan, Ming; Shen, Xuling; Zhao, Jian; Zeng, Heping

    2012-06-04

    A high-power ultra-broadband frequency comb covering the spectral range from ultraviolet to infrared was generated directly by nonlinear frequency conversion of a multi-stage high-power fiber comb amplifier. The 1030-nm infrared spectral fraction of a broadband Ti:sapphire femtosecond frequency comb was power-scaled up to 100 W average power by using a large-mode-area fiber chirped-pulse amplifier. We obtained a frequency-doubled green comb at 515 nm and frequency-quadrupled ultraviolet pulses at 258 nm with the average power of 12.8 and 1.62 W under the input infrared power of 42.2 W, respectively. The carrier envelope phase stabilization was accomplished with an ultra-narrow line-width of 1.86 mHz and a quite low accumulated phase jitter of 0.41 rad, corresponding to a timing jitter of 143 as.

  6. Relationships between electronic game play, obesity, and psychosocial functioning in young men.

    PubMed

    Wack, Elizabeth; Tantleff-Dunn, Stacey

    2009-04-01

    Most estimates suggest that American youth are spending a large amount of time playing video and computer games, spurring researchers to examine the impact this media has on various aspects of health and psychosocial functioning. The current study investigated relationships between frequency of electronic game play and obesity, the social/emotional context of electronic game play, and academic performance among 219 college-aged males. Current game players reported a weekly average of 9.73 hours of game play, with almost 10% of current players reporting an average of 35 hours of play per week. Results indicated that frequency of play was not significantly related to body mass index or grade point average. However, there was a significant positive correlation between frequency of play and self-reported frequency of playing when bored, lonely, or stressed. As opposed to the general conception of electronic gaming as detrimental to functioning, the results suggest that gaming among college-aged men may provide a healthy source of socialization, relaxation, and coping.

  7. Large-Eddy Simulation of Turbulent Wall-Pressure Fluctuations

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.

    1996-01-01

    Large-eddy simulations of a turbulent boundary layer with Reynolds number based on displacement thickness equal to 3500 were performed with two grid resolutions. The computations were continued for sufficient time to obtain frequency spectra with resolved frequencies that correspond to the most important structural frequencies on an aircraft fuselage. The turbulent stresses were adequately resolved with both resolutions. Detailed quantitative analysis of a variety of statistical quantities associated with the wall-pressure fluctuations revealed similar behavior for both simulations. The primary differences were associated with the lack of resolution of the high-frequency data in the coarse-grid calculation and the increased jitter (due to the lack of multiple realizations for averaging purposes) in the fine-grid calculation. A new curve fit was introduced to represent the spanwise coherence of the cross-spectral density.

  8. Effects of large pressure amplitude low frequency noise in the parotid gland perivasculo-ductal connective tissue.

    PubMed

    Oliveira, Pedro; Brito, José; Mendes, João; da Fonseca, Jorge; Águas, Artur; Martins dos Santos, José

    2013-01-01

    In tissues and organs exposed to large pressure amplitude low frequency noise fibrosis occurs in the absence of inflammatory signs, which is thought to be a protective response. In the parotid gland the perivasculo-ductal connective tissue surrounds arteries, veins and the ductal tree. Perivasculo-ductal connective tissue is believed to function as a mechanical stabilizer of the glandular tissue. In order to quantify the proliferation of perivasculo-ductal connective tissue in large pressure amplitude low frequency noise-exposed rats we used sixty Wistar rats which were equally divided into 6 groups. One group kept in silence, and the remaining five exposed to continuous large pressure amplitude low frequency noise: g1-168h (1 week); g2-504h (3 weeks); g3-840h (5 weeks); g4-1512h (9 weeks); and g5-2184h (13 weeks). After exposure, parotid glands were removed and the perivasculo-ductal connective tissue area was measured in all groups. We applied ANOVA statistical analysis, using SPSS 13.0. The global trend is an increase in the average perivasculo-ductal connective tissue areas, that develops linearly and significantly with large pressure amplitude low frequency noise exposure time (p < 0.001). It has been suggested that the biological response to large pressure amplitude low frequency noise exposure is associated with the need to maintain structural integrity. The structural reinforcement would be achieved by increased perivasculo-ductal connective tissue. Hence, these results show that in response to large pressure amplitude low frequency noise exposure, rat parotid glands increase their perivasculo-ductal connective tissue.

  9. Comparison of three large-eddy simulations of shock-induced turbulent separation bubbles

    NASA Astrophysics Data System (ADS)

    Touber, Emile; Sandham, Neil D.

    2009-12-01

    Three different large-eddy simulation investigations of the interaction between an impinging oblique shock and a supersonic turbulent boundary layer are presented. All simulations made use of the same inflow technique, specifically aimed at avoiding possible low-frequency interferences with the shock/boundary-layer interaction system. All simulations were run on relatively wide computational domains and integrated over times greater than twenty five times the period of the most commonly reported low-frequency shock-oscillation, making comparisons at both time-averaged and low-frequency-dynamic levels possible. The results confirm previous experimental results which suggested a simple linear relation between the interaction length and the oblique-shock strength if scaled using the boundary-layer thickness and wall-shear stress. All the tested cases show evidences of significant low-frequency shock motions. At the wall, energetic low-frequency pressure fluctuations are observed, mainly in the initial part of interaction.

  10. A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Sil; Kim, Jae-Seung; Lee, Seong-Hyun; Seo, Yun-Ho

    2014-12-01

    Insertion loss prediction of large acoustical enclosures using Statistical Energy Analysis (SEA) method is presented. The SEA model consists of three elements: sound field inside the enclosure, vibration energy of the enclosure panel, and sound field outside the enclosure. It is assumed that the space surrounding the enclosure is sufficiently large so that there is no energy flow from the outside to the wall panel or to air cavity inside the enclosure. The comparison of the predicted insertion loss to the measured data for typical large acoustical enclosures shows good agreements. It is found that if the critical frequency of the wall panel falls above the frequency region of interest, insertion loss is dominated by the sound transmission loss of the wall panel and averaged sound absorption coefficient inside the enclosure. However, if the critical frequency of the wall panel falls into the frequency region of interest, acoustic power from the sound radiation by the wall panel must be added to the acoustic power from transmission through the panel.

  11. Gravitational dynamos and the low-frequency geomagnetic secular variation.

    PubMed

    Olson, P

    2007-12-18

    Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions.

  12. Gravitational dynamos and the low-frequency geomagnetic secular variation

    PubMed Central

    Olson, P.

    2007-01-01

    Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions. PMID:18048345

  13. Large Civil Tiltrotor (LCTR2) Interior Noise Predictions due to Turbulent Boundary Layer Excitation

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    2013-01-01

    The Large Civil Tiltrotor (LCTR2) is a conceptual vehicle that has a design goal to transport 90 passengers over a distance of 1800 km at a speed of 556 km/hr. In this study noise predictions were made in the notional LCTR2 cabin due to Cockburn/Robertson and Efimtsov turbulent boundary layer (TBL) excitation models. A narrowband hybrid Finite Element (FE) analysis was performed for the low frequencies (6-141 Hz) and a Statistical Energy Analysis (SEA) was conducted for the high frequency one-third octave bands (125- 8000 Hz). It is shown that the interior sound pressure level distribution in the low frequencies is governed by interactions between individual structural and acoustic modes. The spatially averaged predicted interior sound pressure levels for the low frequency hybrid FE and the high frequency SEA analyses, due to the Efimtsov turbulent boundary layer excitation, were within 1 dB in the common 125 Hz one-third octave band. The averaged interior noise levels for the LCTR2 cabin were predicted lower than the levels in a comparable Bombardier Q400 aircraft cabin during cruise flight due to the higher cruise altitude and lower Mach number of the LCTR2. LCTR2 cabin noise due to TBL excitation during cruise flight was found not unacceptable for crew or passengers when predictions were compared to an acoustic survey on a Q400 aircraft.

  14. Phase Averaged Measurements of the Coherent Structure of a Mach Number 0.6 Jet. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Emami, S.

    1983-01-01

    The existence of a large scale structure in a Mach number 0.6, axisymmetric jet of cold air was proven. In order to further characterize the coherent structure, phase averaged measurements of the axial mass velocity, radial velocity, and the product of the two were made. These measurements yield information about the percent of the total fluctuations contained in the coherent structure. These measured values were compared to the total fluctuation levels for each quantity and the result expressed as a percent of the total fluctuation level contained in the organized structure at a given frequency. These measurements were performed for five frequencies (St=0.16, 0.32, 0.474, 0.95, and 1.26). All of the phase averaged measurements required that the jet be artificially excited.

  15. Characteristic Variability Timescales in the Gamma-ray Power Spectra of Blazars

    NASA Astrophysics Data System (ADS)

    Ryan, James Lee; Siemiginowska, Aneta; Sobolewska, Malgorzata; Grindlay, Jonathan E.

    2018-01-01

    We study the gamma-ray variability of 13 bright blazars observed with the Fermi Large Area Telescope in the 0.2-300 MeV band over 7.8 years.We find that continuous-time autoregressive moving average (CARMA) models provide adequate fits to the blazar light curves, and using the models we constrain the power spectral density (PSD) of each source.We also perform simulations to test the ability of CARMA modeling to recover the PSDs of artificial light curves with our data quality.Seven sources show evidence for a low-frequency break at an average timescale of ~1 year, with five of these sources showing evidence for an additional high-frequency break at an average timescale of ~7 days.We compare our results to previous studies, and discuss the possible physical interpretations of our results.

  16. High-frequency large-amplitude oscillations of a non-isothermal N/S boundary

    NASA Astrophysics Data System (ADS)

    Bezuglyj, A. I.; Shklovskij, V. A.

    2016-10-01

    Within the framework of a phenomenological approach based on the heat balance equation and the current dependence of the critical temperature of the superconductor, the effect of high-frequency current of large amplitude and arbitrary waveform on the non-isothermal balance of an oscillating N/S interface in a long superconductor was studied. Self-consistent average temperature field of the rapidly oscillating non-isothermal N/S boundary (heat kink) was introduced, which allowed us to go beyond the well-known concept of mean-square heating and consider the effect of the current waveform. With regard to experiments on the effects of high-power microwave radiation on the current-voltage (IV) characteristics of superconducting films, their classification was performed and the families of IV curves of inhomogeneous superconductors carrying a current containing a high-frequency component of large amplitude. Several IV curves exhibited a hysteresis of thermal nature.

  17. Floquet stability analysis of the longitudinal dynamics of two hovering model insects

    PubMed Central

    Wu, Jiang Hao; Sun, Mao

    2012-01-01

    Because of the periodically varying aerodynamic and inertial forces of the flapping wings, a hovering or constant-speed flying insect is a cyclically forcing system, and, generally, the flight is not in a fixed-point equilibrium, but in a cyclic-motion equilibrium. Current stability theory of insect flight is based on the averaged model and treats the flight as a fixed-point equilibrium. In the present study, we treated the flight as a cyclic-motion equilibrium and used the Floquet theory to analyse the longitudinal stability of insect flight. Two hovering model insects were considered—a dronefly and a hawkmoth. The former had relatively high wingbeat frequency and small wing-mass to body-mass ratio, and hence very small amplitude of body oscillation; while the latter had relatively low wingbeat frequency and large wing-mass to body-mass ratio, and hence relatively large amplitude of body oscillation. For comparison, analysis using the averaged-model theory (fixed-point stability analysis) was also made. Results of both the cyclic-motion stability analysis and the fixed-point stability analysis were tested by numerical simulation using complete equations of motion coupled with the Navier–Stokes equations. The Floquet theory (cyclic-motion stability analysis) agreed well with the simulation for both the model dronefly and the model hawkmoth; but the averaged-model theory gave good results only for the dronefly. Thus, for an insect with relatively large body oscillation at wingbeat frequency, cyclic-motion stability analysis is required, and for their control analysis, the existing well-developed control theories for systems of fixed-point equilibrium are no longer applicable and new methods that take the cyclic variation of the flight dynamics into account are needed. PMID:22491980

  18. Adjusted peak-flow frequency estimates for selected streamflow-gaging stations in or near Montana based on data through water year 2011: Chapter D in Montana StreamStats

    USGS Publications Warehouse

    Sando, Steven K.; Sando, Roy; McCarthy, Peter M.; Dutton, DeAnn M.

    2016-04-05

    The climatic conditions of the specific time period during which peak-flow data were collected at a given streamflow-gaging station (hereinafter referred to as gaging station) can substantially affect how well the peak-flow frequency (hereinafter referred to as frequency) results represent long-term hydrologic conditions. Differences in the timing of the periods of record can result in substantial inconsistencies in frequency estimates for hydrologically similar gaging stations. Potential for inconsistency increases with decreasing peak-flow record length. The representativeness of the frequency estimates for a short-term gaging station can be adjusted by various methods including weighting the at-site results in association with frequency estimates from regional regression equations (RREs) by using the Weighted Independent Estimates (WIE) program. Also, for gaging stations that cannot be adjusted by using the WIE program because of regulation or drainage areas too large for application of RREs, frequency estimates might be improved by using record extension procedures, including a mixed-station analysis using the maintenance of variance type I (MOVE.1) procedure. The U.S. Geological Survey, in cooperation with the Montana Department of Transportation and the Montana Department of Natural Resources and Conservation, completed a study to provide adjusted frequency estimates for selected gaging stations through water year 2011.The purpose of Chapter D of this Scientific Investigations Report is to present adjusted frequency estimates for 504 selected streamflow-gaging stations in or near Montana based on data through water year 2011. Estimates of peak-flow magnitudes for the 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities are reported. These annual exceedance probabilities correspond to the 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.The at-site frequency estimates were adjusted by weighting with frequency estimates from RREs using the WIE program for 438 selected gaging stations in Montana. These 438 selected gaging stations (1) had periods of record less than or equal to 40 years, (2) represented unregulated or minor regulation conditions, and (3) had drainage areas less than about 2,750 square miles.The weighted-average frequency estimates obtained by weighting with RREs generally are considered to provide improved frequency estimates. In some cases, there are substantial differences among the at-site frequency estimates, the regression-equation frequency estimates, and the weighted-average frequency estimates. In these cases, thoughtful consideration should be applied when selecting the appropriate frequency estimate. Some factors that might be considered when selecting the appropriate frequency estimate include (1) whether the specific gaging station has peak-flow characteristics that distinguish it from most other gaging stations used in developing the RREs for the hydrologic region; and (2) the length of the peak-flow record and the general climatic characteristics during the period when the peak-flow data were collected. For critical structure-design applications, a conservative approach would be to select the higher of the at-site frequency estimate and the weighted-average frequency estimate.The mixed-station MOVE.1 procedure generally was applied in cases where three or more gaging stations were located on the same large river and some of the gaging stations could not be adjusted using the weighted-average method because of regulation or drainage areas too large for application of RREs. The mixed-station MOVE.1 procedure was applied to 66 selected gaging stations on 19 large rivers.The general approach for using mixed-station record extension procedures to adjust at-site frequencies involved (1) determining appropriate base periods for the gaging stations on the large rivers, (2) synthesizing peak-flow data for the gaging stations with incomplete peak-flow records during the base periods by using the mixed-station MOVE.1 procedure, and (3) conducting frequency analysis on the combined recorded and synthesized peak-flow data for each gaging station. Frequency estimates for the combined recorded and synthesized datasets for 66 gaging stations with incomplete peak-flow records during the base periods are presented. The uncertainties in the mixed-station record extension results are difficult to directly quantify; thus, it is important to understand the intended use of the estimated frequencies based on analysis of the combined recorded and synthesized datasets. The estimated frequencies are considered general estimates of frequency relations among gaging stations on the same stream channel that might be expected if the gaging stations had been gaged during the same long-term base period. However, because the mixed-station record extension procedures involve secondary statistical analysis with accompanying errors, the uncertainty of the frequency estimates is larger than would be obtained by collecting systematic records for the same number of years in the base period.

  19. Transport and equilibrium in field-reversed mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, J.K.

    Two plasma models relevant to compact torus research have been developed to study transport and equilibrium in field reversed mirrors. In the first model for small Larmor radius and large collision frequency, the plasma is described as an adiabatic hydromagnetic fluid. In the second model for large Larmor radius and small collision frequency, a kinetic theory description has been developed. Various aspects of the two models have been studied in five computer codes ADB, AV, NEO, OHK, RES. The ADB code computes two dimensional equilibrium and one dimensional transport in a flux coordinate. The AV code calculates orbit average integralsmore » in a harmonic oscillator potential. The NEO code follows particle trajectories in a Hill's vortex magnetic field to study stochasticity, invariants of the motion, and orbit average formulas. The OHK code displays analytic psi(r), B/sub Z/(r), phi(r), E/sub r/(r) formulas developed for the kinetic theory description. The RES code calculates resonance curves to consider overlap regions relevant to stochastic orbit behavior.« less

  20. Brain-computer interface based on intermodulation frequency

    NASA Astrophysics Data System (ADS)

    Chen, Xiaogang; Chen, Zhikai; Gao, Shangkai; Gao, Xiaorong

    2013-12-01

    Objective. Most recent steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems have used a single frequency for each target, so that a large number of targets require a large number of stimulus frequencies and therefore a wider frequency band. However, human beings show good SSVEP responses only in a limited range of frequencies. Furthermore, this issue is especially problematic if the SSVEP-based BCI takes a PC monitor as a stimulator, which is only capable of generating a limited range of frequencies. To mitigate this issue, this study presents an innovative coding method for SSVEP-based BCI by means of intermodulation frequencies. Approach. Simultaneous modulations of stimulus luminance and color at different frequencies were utilized to induce intermodulation frequencies. Luminance flickered at relatively large frequency (10, 12, 15 Hz), while color alternated at low frequency (0.5, 1 Hz). An attractive feature of the proposed method was that it would substantially increase the number of targets at a single flickering frequency by altering color modulated frequencies. Based on this method, the BCI system presented in this study realized eight targets merely using three flickering frequencies. Main results. The online results obtained from 15 subjects (14 healthy and 1 with stroke) revealed that an average classification accuracy of 93.83% and information transfer rate (ITR) of 33.80 bit min-1 were achieved using our proposed SSVEP-based BCI system. Specifically, 5 out of the 15 subjects exhibited an ITR of 40.00 bit min-1 with a classification accuracy of 100%. Significance. These results suggested that intermodulation frequencies could be adopted as steady responses in BCI, for which our system could be used as a practical BCI system.

  1. Studies on the microwave permittivity and electromagnetic wave absorption properties of Fe-based nano-composite flakes in different sizes

    NASA Astrophysics Data System (ADS)

    Wu, Yanhui; Han, Mangui; Liu, Tao; Deng, Longjiang

    2015-07-01

    The effective permittivity of composites containing Fe-Cu-Nb-Si-B nanocrystalline micro flakes has been studied within 0.5-10 GHz. Obvious differences in microwave permittivity have been observed for composites consisting of large flakes (size range: 23-111 μm, average thickness: 4.5 μm) and small flakes (size range: 3-21 μm, average thickness: 1.3 μm). Both the real part and imaginary part of permittivity of large flake composite are much larger than these small one in a given frequency. And faster decrease of permittivity with the increasing frequency can be observed for large flake composite than that of small one. These differences in permittivity spectra of different flakes have been explained from the perspective of interfacial polarization and ac conductivity. The assumption that more extensive ohmic contact interface between large flakes and matrix has been validated by the fittings and the calculated percolation threshold. Meanwhile, the permeability spectra of both composites also have been studied by Lorentzian dispersion law. The broadened spectra can be attributed to the distribution of magnetic anisotropy fields of two kinds of ferromagnetic phases in the particles. Finally, the composite containing the small flakes exhibits better electromagnetic wave absorption properties.

  2. Effect of Electrical Current Stimulation on Pseudomonas Aeruginosa Growth

    NASA Astrophysics Data System (ADS)

    Alneami, Auns Q.; Khalil, Eman G.; Mohsien, Rana A.; Albeldawi, Ali F.

    2018-05-01

    The present study evaluates the effect of electrical current with different frequencies stimulation to kill pathogenic Pseudomonas aeruginosa (PA) bacteria in vitro using human safe level of electricity controlled by function generator. A wide range of frequencies has been used from 0.5 Hz-1.2 MHz to stimulate the bacteria at a voltage of 20 p-p volt for different periods of time (5 to 30) minutes. The culture of bacteria used Nickel, Nichrome, or Titanium electrode using agarose in phosphate buffer saline (PBS) and mixed with bacterial stock activated by trypticase soy broth (TSB). The results of frequencies between 0.5-1 KHz show the inhibition zone diameter of 20 mm in average at 30 minutes of stimulation. At frequencies between 3-60 KHz the inhibition zone diameter was only 10mm for 30 minutes of stimulation. While the average of inhibition zone diameter increased to more than 30mm for 30 minutes of stimulation at frequencies between 80-120 KHz. From this study we conclude that at specific frequency (resonance frequency) (frequencies between 0.5-1 KHz) there was relatively large inhibition zone because the inductive reactance effect is equal to the value of capacitive reactance effect (XC = XL). At frequencies over than 60 KHz, maximum inhibition zone noticed because the capacitance impedance becomes negligible (only the small resistivity of the bacterial internal organs).

  3. On the cross-stream spectral method for the Orr-Sommerfeld equation

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.; Hodge, Steven L.

    1993-01-01

    Cross-stream models are defined as solutions to the Orr-Sommerfeld equation which are propagating normal to the flow direction. These models are utilized as a basis for a Hilbert space to approximate the spectrum of the Orr-Sommerfeld equation with plane Poiseuille flow. The cross-stream basis leads to a standard eigenvalue problem for the frequencies of Poiseuille flow instability waves. The coefficient matrix in the eigenvalue problem is shown to be the sum of a real matrix and a negative-imaginary diagonal matrix which represents the frequencies of the cross-stream modes. The real coefficient matrix is shown to approach a Toeplitz matrix when the row and column indices are large. The Toeplitz matrix is diagonally dominant, and the diagonal elements vary inversely in magnitude with diagonal position. The Poiseuille flow eigenvalues are shown to lie within Gersgorin disks with radii bounded by the product of the average flow speed and the axial wavenumber. It is shown that the eigenvalues approach the Gersgorin disk centers when the mode index is large, so that the method may be used to compute spectra with an essentially unlimited number of elements. When the mode index is large, the real part of the eigenvalue is the product of the axial wavenumber and the average flow speed, and the imaginary part of the eigen value is identical to the corresponding cross-stream mode frequency. The cross-stream method is numerically well-conditioned in comparison to Chebyshev based methods, providing equivalent accuracy for small mode indices and superior accuracy for large indices.

  4. Fragmented patterns of flood change across the United States

    USGS Publications Warehouse

    Archfield, Stacey A.; Hirsch, Robert M.; Viglione, A.; Blöschl, G.

    2016-01-01

    Trends in the peak magnitude, frequency, duration, and volume of frequent floods (floods occurring at an average of two events per year relative to a base period) across the United States show large changes; however, few trends are found to be statistically significant. The multidimensional behavior of flood change across the United States can be described by four distinct groups, with streamgages experiencing (1) minimal change, (2) increasing frequency, (3) decreasing frequency, or (4) increases in all flood properties. Yet group membership shows only weak geographic cohesion. Lack of geographic cohesion is further demonstrated by weak correlations between the temporal patterns of flood change and large-scale climate indices. These findings reveal a complex, fragmented pattern of flood change that, therefore, clouds the ability to make meaningful generalizations about flood change across the United States.

  5. Reynolds number trend of hierarchies and scale interactions in turbulent boundary layers.

    PubMed

    Baars, W J; Hutchins, N; Marusic, I

    2017-03-13

    Small-scale velocity fluctuations in turbulent boundary layers are often coupled with the larger-scale motions. Studying the nature and extent of this scale interaction allows for a statistically representative description of the small scales over a time scale of the larger, coherent scales. In this study, we consider temporal data from hot-wire anemometry at Reynolds numbers ranging from Re τ ≈2800 to 22 800, in order to reveal how the scale interaction varies with Reynolds number. Large-scale conditional views of the representative amplitude and frequency of the small-scale turbulence, relative to the large-scale features, complement the existing consensus on large-scale modulation of the small-scale dynamics in the near-wall region. Modulation is a type of scale interaction, where the amplitude of the small-scale fluctuations is continuously proportional to the near-wall footprint of the large-scale velocity fluctuations. Aside from this amplitude modulation phenomenon, we reveal the influence of the large-scale motions on the characteristic frequency of the small scales, known as frequency modulation. From the wall-normal trends in the conditional averages of the small-scale properties, it is revealed how the near-wall modulation transitions to an intermittent-type scale arrangement in the log-region. On average, the amplitude of the small-scale velocity fluctuations only deviates from its mean value in a confined temporal domain, the duration of which is fixed in terms of the local Taylor time scale. These concentrated temporal regions are centred on the internal shear layers of the large-scale uniform momentum zones, which exhibit regions of positive and negative streamwise velocity fluctuations. With an increasing scale separation at high Reynolds numbers, this interaction pattern encompasses the features found in studies on internal shear layers and concentrated vorticity fluctuations in high-Reynolds-number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  6. Convective stability in the Rayleigh-Benard and directional solidification problems - High-frequency gravity modulation

    NASA Technical Reports Server (NTRS)

    Wheeler, A. A.; Mcfadden, G. B.; Murray, B. T.; Coriell, S. R.

    1991-01-01

    The effect of vertical, sinusoidal, time-dependent gravitational acceleration on the onset of solutal convection during directional solidification is analyzed in the limit of large modulation frequency. When the unmodulated state is unstable, the modulation amplitude required to stabilize the system is determined by the method of averaging. When the unmodulated state is stable, resonant modes of instability occur at large modulation amplitude. These are analyzed using matched asymptotic expansions to elucidate the boundary-layer structure for both the Rayleigh-Benard and directional solidification configurations. Based on these analyses, a thorough examination of the dependence of the stability criteria on the unmodulated Rayleigh number, Schmidt number, and distribution coefficient, is carried out.

  7. Fourier Transformation Theory for Averaged Functions, with Application to Very Long Baseline Radio Interferometry.

    DTIC Science & Technology

    1981-02-01

    primary parameters affecting the SNR. For an earth-based interferometer, the physical aperture may usually be constructed adequately large to keep the...bandwidth Av cent--.c. on vo0 by an interferometer with frequency characteristic F(v) and primary power pattern G(s-s ) (defined as the product of the...infinitely narrow beam for the primary power pattern, G(g- 0 ) = (;-S )] we have where we have assumed a flat frequency response and included as a

  8. High-energy, high-average-power laser with Nd:YLF rods corrected by magnetorheological finishing.

    PubMed

    Bagnoud, Vincent; Guardalben, Mark J; Puth, Jason; Zuegel, Jonathan D; Mooney, Ted; Dumas, Paul

    2005-01-10

    A high-energy, high-average-power laser system, optimized to efficiently pump a high-performance optical parametric chirped-pulse amplifier at 527 nm, has been demonstrated. The crystal large-aperture ring amplifier employs two flash-lamp-pumped, 25.4-mm-diameter Nd:YLF rods. The transmitted wave front of these rods is corrected by magnetorheological finishing to achieve nearly diffraction-limited output performance with frequency-doubled pulse energies up to 1.8 J at 5 Hz.

  9. Frequency Shift During Mass Properties Testing Using Compound Pendulum Method

    NASA Technical Reports Server (NTRS)

    Wolfe, David; Regan, Chris

    2012-01-01

    During mass properties testing on the X-48B Blended Wing Body aircraft (The Boeing Company, Chicago, Illinois) at the National Aeronautics and Space Administration Dryden Flight Research Center, Edwards, California, large inertia measurement errors were observed in results from compound pendulum swings when compared to analytical models. By comparing periods of oscillations as measured from an average over the test period versus the period of each oscillation, it was noticed that the frequency of oscillation was shifting significantly throughout the test. This phenomenon was only noticed during compound pendulum swings, and not during bifilar pendulum swings. The frequency shift was only visible upon extensive data analysis of the frequency for each oscillation, and did not appear in averaged frequency data over the test period. Multiple test articles, test techniques, and hardware setups were used in attempts to eliminate or identify the cause of the frequency shift. Plotting the frequency of oscillation revealed a region of minimal shift that corresponded to a larger amplitude range. This region of minimal shift provided the most accurate results compared to a known test article; however, the amplitudes that produce accurate inertia measurements are amplitudes larger than those generally accepted in mass properties testing. This paper examines two case studies of the frequency shift, using mass properties testing performed on a dummy test article, and on the X-48B Blended Wing Body aircraft.

  10. A procedure for removing the effect of response bias errors from waterfowl hunter questionnaire responses

    USGS Publications Warehouse

    Atwood, E.L.

    1958-01-01

    Response bias errors are studied by comparing questionnaire responses from waterfowl hunters using four large public hunting areas with actual hunting data from these areas during two hunting seasons. To the extent that the data permit, the sources of the error in the responses were studied and the contribution of each type to the total error was measured. Response bias errors, including both prestige and memory bias, were found to be very large as compared to non-response and sampling errors. Good fits were obtained with the seasonal kill distribution of the actual hunting data and the negative binomial distribution and a good fit was obtained with the distribution of total season hunting activity and the semi-logarithmic curve. A comparison of the actual seasonal distributions with the questionnaire response distributions revealed that the prestige and memory bias errors are both positive. The comparisons also revealed the tendency for memory bias errors to occur at digit frequencies divisible by five and for prestige bias errors to occur at frequencies which are multiples of the legal daily bag limit. A graphical adjustment of the response distributions was carried out by developing a smooth curve from those frequency classes not included in the predictable biased frequency classes referred to above. Group averages were used in constructing the curve, as suggested by Ezekiel [1950]. The efficiency of the technique described for reducing response bias errors in hunter questionnaire responses on seasonal waterfowl kill is high in large samples. The graphical method is not as efficient in removing response bias errors in hunter questionnaire responses on seasonal hunting activity where an average of 60 percent was removed.

  11. Underexpanded Screeching Jets From Circular, Rectangular, and Elliptic Nozzles

    NASA Technical Reports Server (NTRS)

    Panda, J.; Raman, G.; Zaman, K. B. M. Q.

    2004-01-01

    The screech frequency and amplitude, the shock spacing, the hydrodynamic-acoustic standing wave spacing, and the convective velocity of large organized structures are measured in the nominal Mach number range of 1.1 less than or = Mj less that or = l0.9 for supersonic, underexpanded jets exhausting from a circular, a rectangular and an elliptic nozzle. This provides a carefully measured data set useful in comparing the importance of various physical parameters in the screech generation process. The hydrodynamic-acoustic standing wave is formed between the potential pressure field of large turbulent structures and the acoustic pressure field of the screech sound. It has been demonstrated earlier that in the currently available screech frequency prediction models replacement of the shock spacing by the standing wave spacing provides an exact expression. In view of this newly found evidence, a comparison is made between the average standing wavelength and the average shock spacing. It is found that there exists a small, yet important, difference, which is dependent on the azimuthal screech mode. For example, in the flapping modes of circular, rectangular, and elliptic jets, the standing wavelength is slightly longer than the shock spacing, while for the helical screech mode in a circular jet the opposite is true. This difference accounts for the departure of the existing models from predicting the exact screech frequency. Another important parameter, necessary in screech prediction, is the convective velocity of the large organized structures. It is demonstrated that the presence of the hydrodynamic-acoustic standing wave, even inside the jet shear layer, becomes a significant source of error in the convective velocity data obtained using the conventional methods. However, a new relationship, using the standing wavelength and screech frequency is shown to provide more accurate results.

  12. Preliminary flood-frequency relations for small streams in Kansas

    USGS Publications Warehouse

    Irza, T.J.

    1966-01-01

    Preliminary flood-frequency relations have been defined for small streams in Kansas for floods having recurrence intervals not greater than 10 years. The defined relations will be useful for the design of culverts and other hydraulic structures. The relations are expressed in terms of basin characteristics.Peakflow records at 95 sites in Kansas for an 8-year period provided the basic data. The records were analyzed with respect to 20 basin characteristics by multiple-regression techniques. The resulting formulas relate flood magnitude and frequency to size of contributing drainage area, an index of stream-bed slope, and the average number of days per year when rainfall exceeded 1.0 inch. The other 17 factors had no statistical significance.To illustrate a typical application of the flood-frequency relation, a step-bystep method is presented for computing a frequency curve for Rock Creek near Meriden, Kans. The frequency curve shows that a peak discharge of 3,620 cfs (cubic feet per second) can be expected once every 10 years on the average, and that the 67 percent confidence interval ranges from 1,820 cfs to 7,230 cfs. The large range results from the fact that only 8 years of record have been collected and emphasizes the need for collecting records for a longer period.

  13. The power of a single trajectory

    NASA Astrophysics Data System (ADS)

    Schnellbächer, Nikolas D.; Schwarz, Ulrich S.

    2018-03-01

    Random walks are often evaluated in terms of their mean squared displacements, either for a large number of trajectories or for one very long trajectory. An alternative evaluation is based on the power spectral density, but here it is less clear which information can be extracted from a single trajectory. For continuous-time Brownian motion, Krapf et al now have mathematically proven that the one property that can be reliably extracted from a single trajectory is the frequency dependence of the ensemble-averaged power spectral density (Krapf et al 2018 New J. Phys. 20 023029). Their mathematical analysis also identifies the appropriate frequency window for this procedure and shows that the diffusion coefficient can be extracted by averaging over a small number of trajectories. The authors have verified their analytical results both by computer simulations and experiments.

  14. Caution: Precision Error in Blade Alignment Results in Faulty Unsteady CFD Simulation

    NASA Astrophysics Data System (ADS)

    Lewis, Bryan; Cimbala, John; Wouden, Alex

    2012-11-01

    Turbomachinery components experience unsteady loads at several frequencies. The rotor frequency corresponds to the time for one rotor blade to rotate between two stator vanes, and is normally dominant for rotor torque oscillations. The guide vane frequency corresponds to the time for two rotor blades to pass by one guide vane. The machine frequency corresponds to the machine RPM. Oscillations at the machine frequency are always present due to minor blade misalignments and imperfections resulting from manufacturing defects. However, machine frequency oscillations should not be present in CFD simulations if the mesh is free of both blade misalignment and surface imperfections. The flow through a Francis hydroturbine was modeled with unsteady Reynolds-Averaged Navier-Stokes (URANS) CFD simulations and a dynamic rotating grid. Spectral analysis of the unsteady torque on the rotor blades revealed a large component at the machine frequency. Close examination showed that one blade was displaced by 0 .0001° due to round-off errors during mesh generation. A second mesh without blade misalignment was then created. Subsequently, large machine frequency oscillations were not observed for this mesh. These results highlight the effect of minor geometry imperfections on CFD solutions. This research was supported by a grant from the DoE and a National Defense Science and Engineering Graduate Fellowship.

  15. Important influence of respiration on human R-R interval power spectra is largely ignored

    NASA Technical Reports Server (NTRS)

    Brown, T. E.; Beightol, L. A.; Koh, J.; Eckberg, D. L.

    1993-01-01

    Frequency-domain analyses of R-R intervals are used widely to estimate levels of autonomic neural traffic to the human heart. Because respiration modulates autonomic activity, we determined for nine healthy subjects the influence of breathing frequency and tidal volume on R-R interval power spectra (fast-Fourier transform method). We also surveyed published literature to determine current practices in this burgeoning field of scientific inquiry. Supine subjects breathed at rates of 6, 7.5, 10, 15, 17.1, 20, and 24 breaths/min and with nominal tidal volumes of 1,000 and 1,500 ml. R-R interval power at respiratory and low (0.06-0.14 Hz) frequencies declined significantly as breathing frequency increased. R-R interval power at respiratory frequencies was significantly greater at a tidal volume of 1,500 than 1,000 ml. Neither breathing frequency nor tidal volume influenced average R-R intervals significantly. Our review of studies reporting human R-R interval power spectra showed that 51% of the studies controlled respiratory rate, 11% controlled tidal volume, and 11% controlled both respiratory rate and tidal volume. The major implications of our analyses are that breathing parameters strongly influence low-frequency as well as respiratory frequency R-R interval power spectra and that this influence is largely ignored in published research.

  16. Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM

    USGS Publications Warehouse

    Boore, D.M.

    2009-01-01

    Comparisons of ground motions from two widely used point-source and finite-source ground-motion simulation programs (SMSIM and EXSIM) show that the following simple modifications in EXSIM will produce agreement in the motions from a small earthquake at a large distance for the two programs: (1) base the scaling of high frequencies on the integral of the squared Fourier acceleration spectrum; (2) do not truncate the time series from each subfault; (3) use the inverse of the subfault corner frequency for the duration of motions from each subfault; and (4) use a filter function to boost spectral amplitudes at frequencies near and less than the subfault corner frequencies. In addition, for SMSIM an effective distance is defined that accounts for geometrical spreading and anelastic attenuation from various parts of a finite fault. With these modifications, the Fourier and response spectra from SMSIM and EXSIM are similar to one another, even close to a large earthquake (M 7), when the motions are averaged over a random distribution of hypocenters. The modifications to EXSIM remove most of the differences in the Fourier spectra from simulations using pulsing and static subfaults; they also essentially eliminate any dependence of the EXSIM simulations on the number of subfaults. Simulations with the revised programs suggest that the results of Atkinson and Boore (2006), computed using an average stress parameter of 140 bars and the original version of EXSIM, are consistent with the revised EXSIM with a stress parameter near 250 bars.

  17. A charged particle in a homogeneous magnetic field accelerated by a time-periodic Aharonov-Bohm flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalvoda, T.; Stovicek, P., E-mail: stovicek@kmlinux.fjfi.cvut.cz

    2011-10-15

    We consider a nonrelativistic quantum charged particle moving on a plane under the influence of a uniform magnetic field and driven by a periodically time-dependent Aharonov-Bohm flux. We observe an acceleration effect in the case when the Aharonov-Bohm flux depends on time as a sinusoidal function whose frequency is in resonance with the cyclotron frequency. In particular, the energy of the particle increases linearly for large times. An explicit formula for the acceleration rate is derived with the aid of the quantum averaging method, and then it is checked against a numerical solution and a very good agreement is found.more » - Highlights: > A nonrelativistic quantum charged particle on a plane. > A homogeneous magnetic field and a periodically time-dependent Aharonov-Bohm flux. > The quantum averaging method applied to a time-dependent system. > A resonance of the AB flux with the cyclotron frequency. > An acceleration with linearly increasing energy; a formula for the acceleration rate.« less

  18. REGIONAL SEISMIC CHEMICAL AND NUCLEAR EXPLOSION DISCRIMINATION: WESTERN U.S. EXAMPLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, W R; Taylor, S R; Matzel, E

    2006-07-07

    We continue exploring methodologies to improve regional explosion discrimination using the western U.S. as a natural laboratory. The western U.S. has abundant natural seismicity, historic nuclear explosion data, and widespread mine blasts, making it a good testing ground to study the performance of regional explosion discrimination techniques. We have assembled and measured a large set of these events to systematically explore how to best optimize discrimination performance. Nuclear explosions can be discriminated from a background of earthquakes using regional phase (Pn, Pg, Sn, Lg) amplitude measures such as high frequency P/S ratios. The discrimination performance is improved if the amplitudesmore » can be corrected for source size and path length effects. We show good results are achieved using earthquakes alone to calibrate for these effects with the MDAC technique (Walter and Taylor, 2001). We show significant further improvement is then possible by combining multiple MDAC amplitude ratios using an optimized weighting technique such as Linear Discriminant Analysis (LDA). However this requires data or models for both earthquakes and explosions. In many areas of the world regional distance nuclear explosion data is lacking, but mine blast data is available. Mine explosions are often designed to fracture and/or move rock, giving them different frequency and amplitude behavior than contained chemical shots, which seismically look like nuclear tests. Here we explore discrimination performance differences between explosion types, the possible disparity in the optimization parameters that would be chosen if only chemical explosions were available and the corresponding effect of that disparity on nuclear explosion discrimination. Even after correcting for average path and site effects, regional phase ratios contain a large amount of scatter. This scatter appears to be due to variations in source properties such as depth, focal mechanism, stress drop, in the near source material properties (including emplacement conditions in the case of explosions) and in variations from the average path and site correction. Here we look at several kinds of averaging as a means to try and reduce variance in earthquake and explosion populations and better understand the factors going into a minimum variance level as a function of epicenter (see Anderson ee et al. this volume). We focus on the performance of P/S ratios over the frequency range from 1 to 16 Hz finding some improvements in discrimination as frequency increases. We also explore averaging and optimally combining P/S ratios in multiple frequency bands as a means to reduce variance. Similarly we explore the effects of azimuthally averaging both regional amplitudes and amplitude ratios over multiple stations to reduce variance. Finally we look at optimal performance as a function of magnitude and path length, as these put limits the availability of good high frequency discrimination measures.« less

  19. Civic Journalism and Nonelite Sourcing: Making Routine Newswork of Community Connectedness.

    ERIC Educational Resources Information Center

    Massey, Brian L.

    1998-01-01

    Compares the number of "average" citizens brought into the news in three newspapers. Finds nonelite information sources in numerical parity with elite sources in a civic-journalism newspaper, but finds the frequency and directness of their news voices largely unchanged. Finds that routine civic journalism did more to tone down elites'…

  20. Variability of North Atlantic Hurricane Frequency in a Large Ensemble of High-Resolution Climate Simulations

    NASA Astrophysics Data System (ADS)

    Mei, W.; Kamae, Y.; Xie, S. P.

    2017-12-01

    Forced and internal variability of North Atlantic hurricane frequency during 1951-2010 is studied using a large ensemble of climate simulations by a 60-km atmospheric general circulation model that is forced by observed sea surface temperatures (SSTs). The simulations well capture the interannual-to-decadal variability of hurricane frequency in best track data, and further suggest a possible underestimate of hurricane counts in the current best track data prior to 1966 when satellite measurements were unavailable. A genesis potential index (GPI) averaged over the Main Development Region (MDR) accounts for more than 80% of the forced variations in hurricane frequency, with potential intensity and vertical wind shear being the dominant factors. In line with previous studies, the difference between MDR SST and tropical mean SST is a simple but useful predictor; a one-degree increase in this SST difference produces 7.1±1.4 more hurricanes. The hurricane frequency also exhibits internal variability that is comparable in magnitude to the interannual variability. The 100-member ensemble allows us to address the following important questions: (1) Are the observations equivalent to one realization of such a large ensemble? (2) How many ensemble members are needed to reproduce the variability in observations and in the forced component of the simulations? The sources of the internal variability in hurricane frequency will be identified and discussed. The results provide an explanation for the relatively week correlation ( 0.6) between MDR GPI and hurricane frequency on interannual timescales in observations.

  1. Analyses of infrequent (quasi-decadal) large groundwater recharge events in the northern Great Basin: Their importance for groundwater availability, use, and management

    USGS Publications Warehouse

    Masbruch, Melissa D.; Rumsey, Christine; Gangopadhyay, Subhrendu; Susong, David D.; Pruitt, Tom

    2016-01-01

    There has been a considerable amount of research linking climatic variability to hydrologic responses in the western United States. Although much effort has been spent to assess and predict changes in surface water resources, little has been done to understand how climatic events and changes affect groundwater resources. This study focuses on characterizing and quantifying the effects of large, multiyear, quasi-decadal groundwater recharge events in the northern Utah portion of the Great Basin for the period 1960–2013. Annual groundwater level data were analyzed with climatic data to characterize climatic conditions and frequency of these large recharge events. Using observed water-level changes and multivariate analysis, five large groundwater recharge events were identified with a frequency of about 11–13 years. These events were generally characterized as having above-average annual precipitation and snow water equivalent and below-average seasonal temperatures, especially during the spring (April through June). Existing groundwater flow models for several basins within the study area were used to quantify changes in groundwater storage from these events. Simulated groundwater storage increases per basin from a single recharge event ranged from about 115 to 205 Mm3. Extrapolating these amounts over the entire northern Great Basin indicates that a single large quasi-decadal recharge event could result in billions of cubic meters of groundwater storage. Understanding the role of these large quasi-decadal recharge events in replenishing aquifers and sustaining water supplies is crucial for long-term groundwater management.

  2. Frequency spirals.

    PubMed

    Ottino-Löffler, Bertrand; Strogatz, Steven H

    2016-09-01

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call "frequency spirals." These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

  3. A frequency averaging framework for the solution of complex dynamic systems

    PubMed Central

    Lecomte, Christophe

    2014-01-01

    A frequency averaging framework is proposed for the solution of complex linear dynamic systems. It is remarkable that, while the mid-frequency region is usually very challenging, a smooth transition from low- through mid- and high-frequency ranges is possible and all ranges can now be considered in a single framework. An interpretation of the frequency averaging in the time domain is presented and it is explained that the average may be evaluated very efficiently in terms of system solutions. PMID:24910518

  4. High-frequency strontium vapor laser for biomedical applications

    NASA Astrophysics Data System (ADS)

    Hvorostovsky, A.; Kolmakov, E.; Kudashev, I.; Redka, D.; Kancer, A.; Kustikova, M.; Bykovskaya, E.; Mayurova, A.; Stupnikov, A.; Ruzankina, J.; Tsvetkov, K.; Lukyanov, N.; Paklinov, N.

    2018-02-01

    Sr-laser with high pulse repetition rate and high peak radiation power is a unique tool for studying rapidly occurring processes in time (plasma diagnostics, photoablation, etc.). In addition, the study of the frequency characteristics of the active medium of the laser helps to reveal the physics of the formation of an inverse medium in metal vapor lasers. In this paper, an experimental study of an Sr-laser with an active volume of 5.8 cm3 in the pulse repetition frequency range from 25 to 200 kHz is carried out, and a comparison with the frequency characteristics of media with large active volumes is given. We considered the frequency characteristics of the active medium in two modes: at a constant energy in the excitation pulse CU2 / 2 and at a constant average power consumed by the rectifier. In the presented work with a small-volume GRT using the TASITR-5/12 TASITRON switch, a laser was generated for Pairs of strontium at a CSF of 200 kHz. The behavior of the characteristics of the generation lines of 6.456 μm, 1 μm, and 3 μm at increased repetition frequencies is considered. Using the example of large-volume GRT, it is shown that tubes with a large active volume increase their energy characteristics with the growth of the CSF. The possibility of laser operation at pulse repetition rates above 200 kHz is shown.

  5. Global Model for Asymmetric, Diode-Type Dual Frequency Capacitive Discharge

    NASA Astrophysics Data System (ADS)

    Kim, Jisoo; Lieberman, M. A.; Lichtenberg, A. J.

    2003-10-01

    Dual frequency capacitive reactors can have desirable properties for dielectric etch: low cost, robust uniformity over large areas, and control of dissociation. In the ideal case, the high frequency power controls the plasma density (ion flux) and the low frequency voltage controls the ion bombarding energy. Typical operating conditions are: discharge radius 15-30 cm, length 1-3 cm, pressure 30-200 mTorr, high frequency 27.1-160 MHz, low frequency 2-13.6 MHz, and powers of 500-3000 W for both high and low frequencies. The decoupling of the high and low frequencies is an important feature of dual frequency capacitive discharges. In this work, we describe a global (volume-averaged) model having different top and bottom plate areas that incorporates particle balance, and ohmic and stochastic heating for high and low frequencies. The model is used to obtain the decoupling of high and low frequencies and to investigate limitations to ideal decoupling. Support provided by Lam Research, NSF Grant ECS-0139956, California industries, and UC-SMART Contract SM99-10051.

  6. An analysis of ranibizumab treatment and visual outcomes in real-world settings: the UNCOVER study.

    PubMed

    Eldem, Bora; Lai, Timothy Y Y; Ngah, Nor Fariza; Vote, Brendan; Yu, Hyeong Gon; Fabre, Alban; Backer, Arthur; Clunas, Nathan J

    2018-05-01

    To describe intravitreal ranibizumab treatment frequency, clinical monitoring, and visual outcomes (including mean central retinal thickness [CRT] and visual acuity [VA] changes from baseline) in neovascular age-related macular degeneration (nAMD) in real-world settings across three ranibizumab reimbursement scenarios in the Middle East, North Africa, and the Asia-Pacific region. Non-interventional multicenter historical cohort study of intravitreal ranibizumab use for nAMD in routine clinical practice between April 2010 and April 2013. Eligible patients were diagnosed with nAMD, received at least one intravitreal ranibizumab injection during the study period, and had been observed for a minimum of 1 year (up to 3 years). Reimbursement scenarios were defined as self-paid, partially-reimbursed, and fully-reimbursed. More than three-fourths (n = 2521) of the analysis population was partially-reimbursed for ranibizumab, while 16.4% (n = 532) was fully-reimbursed, and 5.8% was self-paid (n = 188). The average annual ranibizumab injection frequency was 4.1 injections in the partially-reimbursed, 4.7 in the fully-reimbursed and 2.6 in the self-paid populations. The average clinical monitoring frequency was estimated to be 6.7 visits/year, with similar frequencies observed across reimbursement categories. On average, patients experienced VA reduction of -0.7 letters and a decrease in CRT of -44.4 μm. The greatest mean CRT change was observed in the self-paid group, with -92.6 μm. UNCOVER included a large, heterogeneous ranibizumab-treated nAMD population in real-world settings. Patients in all reimbursement scenarios attained vision stability on average, indicating control of disease activity.

  7. Definition of SMOS Level 3 Land Products for the Villafranca del Castillo Data Processing Centre (CP34)

    NASA Astrophysics Data System (ADS)

    Lopez-Baeza, E.; Monsoriu Torres, A.; Font, J.; Alonso, O.

    2009-04-01

    The ESA SMOS (Soil Moisture and Ocean Salinity) Mission is planned to be launched in July 2009. The satellite will measure soil moisture over the continents and surface salinity of the oceans at resolutions that are sufficient for climatological-type studies. This paper describes the procedure to be used at the Spanish SMOS Level 3 and 4 Data Processing Centre (CP34) to generate Soil Moisture and other Land Surface Product maps from SMOS Level 2 data. This procedure can be used to map Soil Moisture, Vegetation Water Content and Soil Dielectric Constant data into different pre-defined spatial grids with fixed temporal frequency. The L3 standard Land Surface Products to be generated at CP34 are: Soil Moisture products: maximum spatial resolution with no spatial averaging, temporal averaging of 3 days, daily generation maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. b': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month), generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation Seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation Vegetation Water Content products: maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. a': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month) using simple averaging method over the L2 products in ISEA grid, generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation Dielectric Constant products: (the dielectric constant products are delivered together with soil moisture products, with the same averaging periods and generation frequency): maximum spatial resolution with no spatial averaging, temporal averaging of 3 days, daily generation maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. b': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month), generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation.

  8. Developing STR databases on structured populations: the native South Siberian population versus the Russian population.

    PubMed

    Zhivotovsky, Lev A; Malyarchuk, Boris A; Derenko, Miroslava V; Wozniak, Marcin; Grzybowski, Tomasz

    2009-09-01

    Developing a forensic DNA database on a population that consists of local ethnic groups separated by physical and cultural barriers is questionable as it can be genetically subdivided. On the other side, small sizes of ethnic groups, especially in alpine regions where they are sub-structured further into small villages, prevent collecting a large sample from each ethnic group. For such situations, we suggest to obtain both a total population database on allele frequencies across ethnic groups and a list of theta-values between the groups and the total data. We have genotyped 558 individuals from the native population of South Siberia, consisting of nine ethnic groups, at 17 autosomal STR loci of the kit packages AmpFlSTR SGM Plus i, Cyrillic AmpFlSTR Profiler Plus. The groups differentiate from each other with average theta-values of around 1.1%, and some reach up to three to four percent at certain loci. There exists between-village differentiation as well. Therefore, a database for the population of South Siberia is composed of data on allele frequencies in the pool of ethnic groups and data on theta-values that indicate variation in allele frequencies across the groups. Comparison to additional data on northeastern Asia (the Chukchi and Koryak) shows that differentiation in allele frequencies among small groups that are separated by large geographic distance can be even greater. In contrast, populations of Russians that live in large cities of the European part of Russia are homogeneous in allele frequencies, despite large geographic distance between them, and thus can be described by a database on allele frequencies alone, without any specific information on theta-values.

  9. Women who prefer longer penises are more likely to have vaginal orgasms (but not clitoral orgasms): implications for an evolutionary theory of vaginal orgasm.

    PubMed

    Costa, Rui Miguel; Miller, Geoffrey F; Brody, Stuart

    2012-12-01

    Research indicates that (i) women's orgasm during penile-vaginal intercourse (PVI) is influenced by fitness-related male partner characteristics, (ii) penis size is important for many women, and (iii) preference for a longer penis is associated with greater vaginal orgasm consistency (triggered by PVI without concurrent clitoral masturbation). To test the hypothesis that vaginal orgasm frequency is associated with women's reporting that a longer than average penis is more likely to provoke their PVI orgasm. Three hundred twenty-three women reported in an online survey their past month frequency of various sexual behaviors (including PVI, vaginal orgasm, and clitoral orgasm), the effects of a longer than average penis on likelihood of orgasm from PVI, and the importance they attributed to PVI and to noncoital sex. Univariate analyses of covariance with dependent variables being frequencies of various sexual behaviors and types of orgasm and with independent variable being women reporting vs. not reporting that a longer than average penis is important for their orgasm from PVI. Likelihood of orgasm with a longer penis was related to greater vaginal orgasm frequency but unrelated to frequencies of other sexual behaviors, including clitoral orgasm. In binary logistic regression, likelihood of orgasm with a longer penis was related to greater importance attributed to PVI and lesser importance attributed to noncoital sex. Women who prefer deeper penile-vaginal stimulation are more likely to have vaginal orgasm, consistent with vaginal orgasm evolving as part of a female mate choice system favoring somewhat larger than average penises. Future research could extend the findings by overcoming limitations related to more precise measurement of penis length (to the pubis and pressed close to the pubic bone) and girth, and large representative samples. Future experimental research might assess to what extent different penis sizes influence women's satisfaction and likelihood of vaginal orgasm. © 2012 International Society for Sexual Medicine.

  10. Time for pulse traversal through slabs of dispersive and negative ({epsilon}, {mu}) materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanda, Lipsa; Ramakrishna, S. Anantha

    2007-12-15

    The traversal times for an electromagnetic pulse traversing a slab of dispersive and dissipative material with negative dielectric permittivity ({epsilon}) and magnetic permeability ({mu}) have been calculated by using the average flow of electromagnetic energy in the medium. The effects of bandwidth of the pulse and dissipation in the medium have been investigated. While both large bandwidth and large dissipation have similar effects in smoothening out the resonant features that appear due to Fabry-Perot resonances, large dissipation can result in very small or even negative traversal times near the resonant frequencies. We have also investigated the traversal times and Wignermore » delay times for obliquely incident pulses and evanescent pulses. The coupling to slab plasmon-polariton modes in frequency ranges with negative {epsilon} or {mu} is shown to result in large traversal times at the resonant conditions. We also find that the group velocity mainly contributes to the delay times for pulses propagating across a slab with n=-1. We have checked that the traversal times are positive and subluminal for pulses with sufficiently large bandwidths.« less

  11. Frequency selective reflection and transmission at a layer composed of a periodic dielectric

    NASA Technical Reports Server (NTRS)

    Bertoni, Henry L.; Cheo, Li-Hsiang S.; Tamir, Theodor

    1987-01-01

    The feasibility of using a periodic dielectric layer, composed of alternating bars having dielectric constants epsilon sub 1 and epsilon sub 2, as a frequency selective subreflector in order to permit feed separation in large aperture reflecting antenna systems was examined. For oblique incidence, it is found that total transmission and total reflection can be obtained at different frequencies for proper choices of epsilon sub 1, epsilon 2, and the geometric parameters. The frequencies of total reflection and transmission can be estimated from wave phenomena occurring in a layer of uniform dielectric constant equal to the average for the periodic layers. About some of the frequencies of total transmission, the bandwidth for 90% transmission is found to be 40%. However, the bandwidth for 90% reflection is always found to be much narrower; the greatest value found being 2.5%.

  12. Diffusion by one wave and by many waves

    NASA Astrophysics Data System (ADS)

    Albert, J. M.

    2010-03-01

    Radiation belt electrons and chorus waves are an outstanding instance of the important role cyclotron resonant wave-particle interactions play in the magnetosphere. Chorus waves are particularly complex, often occurring with large amplitude, narrowband but drifting frequency and fine structure. Nevertheless, modeling their effect on radiation belt electrons with bounce-averaged broadband quasi-linear theory seems to yield reasonable results. It is known that coherent interactions with monochromatic waves can cause particle diffusion, as well as radically different phase bunching and phase trapping behavior. Here the two formulations of diffusion, while conceptually different, are shown to give identical diffusion coefficients, in the narrowband limit of quasi-linear theory. It is further shown that suitably averaging the monochromatic diffusion coefficients over frequency and wave normal angle parameters reproduces the full broadband quasi-linear results. This may account for the rather surprising success of quasi-linear theory in modeling radiation belt electrons undergoing diffusion by chorus waves.

  13. Imaging the 2016 Mw 7.8 Kaikoura, New Zealand, earthquake with teleseismic P waves: A cascading rupture across multiple faults

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Koper, Keith D.; Pankow, Kristine; Ge, Zengxi

    2017-05-01

    The 13 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake was investigated using teleseismic P waves. Backprojection of high-frequency P waves from two regional arrays shows unilateral rupture of at least two southwest-northeast striking faults with an average rupture speed of 1.4-1.6 km/s and total duration of 100 s. Guided by these backprojection results, 33 globally distributed low-frequency P waves were inverted for a finite fault model (FFM) of slip. The FFM showed evidence of several subevents; however, it lacked significant moment release near the epicenter, where a large burst of high-frequency energy was observed. A local strong-motion network recorded strong shaking near the epicenter; hence, for this earthquake the distribution of backprojection energy is superior to the FFM as a guide of strong shaking. For future large earthquakes that occur in regions without strong-motion networks, initial shaking estimates could benefit from backprojection constraints.

  14. Analysis of Infrequent (Quasi-Decadal) Large Groundwater Recharge Events: A Case Study for Northern Utah, United States

    NASA Astrophysics Data System (ADS)

    Masbruch, M.; Rumsey, C.; Gangopadhyay, S.; Susong, D.; Pruitt, T.

    2015-12-01

    There has been a considerable amount of research linking climatic variability to hydrologic responses in arid and semi-arid regions such as the western United States. Although much effort has been spent to assess and predict changes in surface-water resources, little has been done to understand how climatic events and changes affect groundwater resources. This study focuses on quantifying the effects of large quasi-decadal groundwater recharge events on groundwater in the northern Utah portion of the Great Basin for the period 1960 to 2013. Groundwater-level monitoring data were analyzed with climatic data to characterize climatic conditions and frequency of these large recharge events. Using observed water-level changes and multivariate analysis, five large groundwater recharge events were identified within the study area and period, with a frequency of about 11 to 13 years. These events were generally characterized as having above-average annual precipitation and snow water equivalent and below-average seasonal temperatures, especially during the spring (April through June). Existing groundwater flow models for several basins within the study area were used to quantify changes in groundwater storage from these events. Simulated groundwater storage increases per basin from a single event ranged from about 115 Mm3 (93,000 acre-feet) to 205 Mm3 (166,000 acre-ft). Extrapolating these amounts over the entire northern Great Basin indicates that even a single large quasi-decadal recharge event could result in billions of cubic meters (millions of acre-feet) of groundwater recharge. Understanding the role of these large quasi-decadal recharge events in replenishing aquifers and sustaining water supplies is crucial for making informed water management decisions.

  15. Combining Site Occupancy, Breeding Population Sizes and Reproductive Success to Calculate Time-Averaged Reproductive Output of Different Habitat Types: An Application to Tricolored Blackbirds

    PubMed Central

    Holyoak, Marcel; Meese, Robert J.; Graves, Emily E.

    2014-01-01

    In metapopulations in which habitat patches vary in quality and occupancy it can be complicated to calculate the net time-averaged contribution to reproduction of particular populations. Surprisingly, few indices have been proposed for this purpose. We combined occupancy, abundance, frequency of occurrence, and reproductive success to determine the net value of different sites through time and applied this method to a bird of conservation concern. The Tricolored Blackbird (Agelaius tricolor) has experienced large population declines, is the most colonial songbird in North America, is largely confined to California, and breeds itinerantly in multiple habitat types. It has had chronically low reproductive success in recent years. Although young produced per nest have previously been compared across habitats, no study has simultaneously considered site occupancy and reproductive success. Combining occupancy, abundance, frequency of occurrence, reproductive success and nest failure rate we found that that large colonies in grain fields fail frequently because of nest destruction due to harvest prior to fledging. Consequently, net time-averaged reproductive output is low compared to colonies in non-native Himalayan blackberry or thistles, and native stinging nettles. Cattail marshes have intermediate reproductive output, but their reproductive output might be improved by active management. Harvest of grain-field colonies necessitates either promoting delay of harvest or creating alternative, more secure nesting habitats. Stinging nettle and marsh colonies offer the main potential sources for restoration or native habitat creation. From 2005–2011 breeding site occupancy declined 3x faster than new breeding colonies were formed, indicating a rapid decline in occupancy. Total abundance showed a similar decline. Causes of variation in the value for reproduction of nesting substrates and factors behind continuing population declines merit urgent investigation. The method we employ should be useful in other metapopulation studies for calculating time-averaged reproductive output for different sites. PMID:24817307

  16. Cumulative frequency distribution of past species extinctions

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1991-01-01

    Analysis of Sepkoski's compendium of the time ranges of 30,000+ taxa yields a mean duration of 28.4 ma for genera of fossil invertebrates. This converts to an average extinction rate of 3.5 percent per million years or about one percent every 286,000 years. Using survivorship techniques, these estimates can be converted to the species level, yielding a Phanerozoic average of one percent species extinction every 40,000 years. Variation in extinction rates through time is far greater than the null expectation of a homogeneous birth-death model and this reflects the well-known episodicity of extinction ranging from a few large mass extinctions to so-called background extinction. The observed variation in rates can be used to construct a cumulative frequency distribution of extinction intensity, and this distribution, in the form of a kill curve for species, shows the expected waiting times between extinction events of a given intensity. The kill curve is an average description of the extinction events of a given intensity. The kill curve is an average description of the extinction record and does not imply any cause or causes of extinction. The kill curve shows, among other things, that only about five percent of total species extinctions in the Phanerozoic were involved in the five largest mass extinctions. The other 95 percent were distributed among large and small events not normally called mass extinctions. As an exploration of the possibly absurd proposition that most past extinctions were produced by the effects of large-body impact, the kill curve for species was mapped on the comparable distribution for comet and asteroid impacts. The result is a curve predicting the species kill for a given size of impacting object (expressed as crater size). The results are reasonable in that impacts producing craters less than 30 km (diameter) cause negligible extinction but those producing craters 100-150 km (diameter) cause extinction of species in the range of 45-60 percent.

  17. Active Narrow-Band Vibration Isolation of Large Engineering Structures

    NASA Technical Reports Server (NTRS)

    Rahman, Zahidul; Spanos, John

    1994-01-01

    We present a narrow-band tracking control method using a variant of the Least Mean Squares (LMS) algorithm to isolate slowly changing periodic disturbances from engineering structures. The advantage of the algorithm is that it has a simple architecture and is relatively easy to implement while it can isolate disturbances on the order of 40-50 dB over decades of frequency band. We also present the results of an experiment conducted on a flexible truss structure. The average disturbance rejection achieved is over 40 dB over the frequency band of 5 Hz to 50 Hz.

  18. An Eulerian time filtering technique to study large-scale transient flow phenomena

    NASA Astrophysics Data System (ADS)

    Vanierschot, Maarten; Persoons, Tim; van den Bulck, Eric

    2009-10-01

    Unsteady fluctuating velocity fields can contain large-scale periodic motions with frequencies well separated from those of turbulence. Examples are the wake behind a cylinder or the processing vortex core in a swirling jet. These turbulent flow fields contain large-scale, low-frequency oscillations, which are obscured by turbulence, making it impossible to identify them. In this paper, we present an Eulerian time filtering (ETF) technique to extract the large-scale motions from unsteady statistical non-stationary velocity fields or flow fields with multiple phenomena that have sufficiently separated spectral content. The ETF method is based on non-causal time filtering of the velocity records in each point of the flow field. It is shown that the ETF technique gives good results, similar to the ones obtained by the phase-averaging method. In this paper, not only the influence of the temporal filter is checked, but also parameters such as the cut-off frequency and sampling frequency of the data are investigated. The technique is validated on a selected set of time-resolved stereoscopic particle image velocimetry measurements such as the initial region of an annular jet and the transition between flow patterns in an annular jet. The major advantage of the ETF method in the extraction of large scales is that it is computationally less expensive and it requires less measurement time compared to other extraction methods. Therefore, the technique is suitable in the startup phase of an experiment or in a measurement campaign where several experiments are needed such as parametric studies.

  19. Passive magnetic bearing systems stabilizer/bearing utilizing time-averaging of a periodic magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Richard F.

    A high-stiffness stabilizer/bearings for passive magnetic bearing systems is provide where the key to its operation resides in the fact that when the frequency of variation of the repelling forces of the periodic magnet array is large compared to the reciprocal of the growth time of the unstable motion, the rotating system will feel only the time-averaged value of the force. When the time-averaged value of the force is radially repelling by the choice of the geometry of the periodic magnet array, the Earnshaw-related unstable hit motion that would occur at zero rotational speed is suppressed when the system ismore » rotating at operating speeds.« less

  20. Observations of sea ice ridging in the Weddell Sea

    NASA Astrophysics Data System (ADS)

    Granberg, Hardy B.; Leppaäranta, Matti

    1999-11-01

    Sea ice surface topography data were obtained by helicopter-borne laser profiling during the First Finnish Antarctic Expedition (FINNARP-89). The measurements were made near the ice margin at about 73°S, 27°W in the eastern Weddell Sea on December 31, 1989, and January 1, 1990. Five transects, ranging in length from 127 to 163 km and covering a total length of 724 km, are analyzed. With a lower cutoff of 0.91 m the overall ridge frequency was 8.4 ridges/km and the average ridge height was 1.32 m. The spatial variations in ridging were large; for 36 individual 20-km segments the frequencies were 2-16 ridges/km and the mean heights were 1.16-1.56 m. The frequencies and mean heights were weakly correlated. The distributions of the ridge heights followed the exponential distribution; the spacings did not pass tests for either the exponential or the lognormal distribution, but the latter was much closer. In the 20-km segments the areally averaged thickness of ridged ice was 0.51±0.28 m, ranging from 0.10 to 1.15 m. The observed ridge size and frequency are greater than those known for the Ross Sea. Compared with the central Arctic, the Weddell Sea ridging frequencies are similar but the ridge heights are smaller, possibly as a result of differences in snow accumulation.

  1. Frequency spirals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottino-Löffler, Bertrand; Strogatz, Steven H., E-mail: strogatz@cornell.edu

    2016-09-15

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call “frequency spirals.” These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seenmore » in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.« less

  2. Bounce frequency fishbone analysis

    NASA Astrophysics Data System (ADS)

    White, Roscoe; Fredrickson, Eric; Chen, Liu

    2002-11-01

    Large amplitude bursting modes are observed on NSTX, which are identified as bounce frequency fishbone modes(PDX Group, Princeton Plasma Physics Lab, Phys Rev. Lett) 50, 891 (1983)^,(L. Chen, R. B. White, and M. N. Rosenbluth Phys Rev. Lett) 52, 1122 (1984). The identification is carried out using numerical equilibria obtained from TRANSP( R. V. Budny, M. G. Bell A. C. Janos et al), Nucl Fusion 35, 1497 (1995) and the numerical guiding center code ORBIT( R.B. White, Phys. Fluids B 2)(4), 845 (1990). These modes are important for high energy particle distributions which have large average bounce angle, such as the nearly tangentially injected beam ions in NSTX and isotropic alpha particle distributions. They are particularly important in high q low shear advanced plasma scenarios. Different ignited plasma scenarios are investigated with these modes in view.

  3. Evidence of biphonation and source-filter interactions in the bugles of male North American wapiti (Cervus canadensis).

    PubMed

    Reby, D; Wyman, M T; Frey, R; Passilongo, D; Gilbert, J; Locatelli, Y; Charlton, B D

    2016-04-15

    With an average male body mass of 320 kg, the wapiti, ITALIC! Cervus canadensis, is the largest extant species of Old World deer (Cervinae). Despite this large body size, male wapiti produce whistle-like sexual calls called bugles characterised by an extremely high fundamental frequency. Investigations of the biometry and physiology of the male wapiti's relatively large larynx have so far failed to account for the production of such a high fundamental frequency. Our examination of spectrograms of male bugles suggested that the complex harmonic structure is best explained by a dual-source model (biphonation), with one source oscillating at a mean of 145 Hz (F0) and the other oscillating independently at an average of 1426 Hz (G0). A combination of anatomical investigations and acoustical modelling indicated that the F0 of male bugles is consistent with the vocal fold dimensions reported in this species, whereas the secondary, much higher source at G0 is more consistent with an aerodynamic whistle produced as air flows rapidly through a narrow supraglottic constriction. We also report a possible interaction between the higher frequency G0 and vocal tract resonances, as G0 transiently locks onto individual formants as the vocal tract is extended. We speculate that male wapiti have evolved such a dual-source phonation to advertise body size at close range (with a relatively low-frequency F0 providing a dense spectrum to highlight size-related information contained in formants) while simultaneously advertising their presence over greater distances using the very high-amplitude G0 whistle component. © 2016. Published by The Company of Biologists Ltd.

  4. Large endolymphatic potentials from low-frequency and infrasonic tones in the guinea pig.

    PubMed

    Salt, Alec N; Lichtenhan, Jeffery T; Gill, Ruth M; Hartsock, Jared J

    2013-03-01

    Responses of the ear to low-frequency and infrasonic sounds have not been extensively studied. Understanding how the ear responds to low frequencies is increasingly important as environmental infrasounds are becoming more pervasive from sources such as wind turbines. This study shows endolymphatic potentials in the third cochlear turn from acoustic infrasound (5 Hz) are larger than from tones in the audible range (e.g., 50 and 500 Hz), in some cases with peak-to-peak amplitude greater than 20 mV. These large potentials were suppressed by higher-frequency tones and were rapidly abolished by perilymphatic injection of KCl at the cochlear apex, demonstrating their third-turn origins. Endolymphatic iso-potentials from 5 to 500 Hz were enhanced relative to perilymphatic potentials as frequency was lowered. Probe and infrasonic bias tones were used to study the origin of the enhanced potentials. Potentials were best explained as a saturating response summed with a sinusoidal voltage (Vo), that was phase delayed by an average of 60° relative to the biasing effects of the infrasound. Vo is thought to arise indirectly from hair cell activity, such as from strial potential changes caused by sustained current changes through the hair cells in each half cycle of the infrasound.

  5. Eddy current effect on the microwave permeability of Fe-based nanocrystalline flakes with different sizes

    NASA Astrophysics Data System (ADS)

    Wu, Yanhui; Han, Mangui; Tang, Zhongkai; Deng, Longjiang

    2014-04-01

    The effective permeability values of composites containing Fe-Cu-Nb-Si-B nanocrystalline flakes have been studied within 0.5-10 GHz. Obvious differences in microwave permeability have been observed between large flakes (size range: 23-111 μm, average thickness: 4.5 μm) and small flakes (size range: 3-21 μm, average thickness: 1.3 μm). The initial real part of microwave permeability of large flakes is larger but it is decreasing faster. The larger flakes also show a larger magnetic loss. Taking into account the eddy current effect, the intrinsic microwave permeability values have been extracted based on the modified Maxwell-Garnet law, which have also been verified by the Acher's law. The dependences of skin depth on frequency have been calculated for both kinds of flakes. It is shown that the eddy current effect in the large flakes is significant. However, the eddy current effect can be ignored in the small flakes.

  6. Multi-carrier transmission for hybrid radio frequency with optical wireless communications

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik; Nguyen, Tien M.

    2015-05-01

    Radio frequency (RF) wireless communication is reaching its capacity to support large data rate transmissions due to hardware constraints (e.g., silicon processes), software strategies (e.g., information theory), and consumer desire for timely large file exchanges (e.g., big data and mobile cloud computing). A high transmission rate performance must keep pace with the generated huge volumes of data for real-time processing. Integrated RF and optical wireless communications (RF/OWC) could be the next generation transmission technology to satisfy both the increased data rate exchange and the communications constraints. However, with the promising benefits of RF/OWC, challenges remain to fully develop hybrid RF with wireless optical communications such as uniform waveform design for information transmission and detection. In this paper, an orthogonal frequency division multiplexing (OFDM) transmission scheme, which widely employed in RF communications, is developed for optical communications. The traditional high peak-to-average power ratio (PAPR) in OFDM is reduced to improve system performance. The proposed multi-carrier waveform is evaluated with a frequency-selective fading channel. The results demonstrate that bit error rate (BER) performance of our proposed optical OFDM transmission technique outperforms the traditional OWC on-off keying (OOK) transmission scheme.

  7. Decomposing delta, theta, and alpha time–frequency ERP activity from a visual oddball task using PCA

    PubMed Central

    Bernat, Edward M.; Malone, Stephen M.; Williams, William J.; Patrick, Christopher J.; Iacono, William G.

    2008-01-01

    Objective Time–frequency (TF) analysis has become an important tool for assessing electrical and magnetic brain activity from event-related paradigms. In electrical potential data, theta and delta activities have been shown to underlie P300 activity, and alpha has been shown to be inhibited during P300 activity. Measures of delta, theta, and alpha activity are commonly taken from TF surfaces. However, methods for extracting relevant activity do not commonly go beyond taking means of windows on the surface, analogous to measuring activity within a defined P300 window in time-only signal representations. The current objective was to use a data driven method to derive relevant TF components from event-related potential data from a large number of participants in an oddball paradigm. Methods A recently developed PCA approach was employed to extract TF components [Bernat, E. M., Williams, W. J., and Gehring, W. J. (2005). Decomposing ERP time-frequency energy using PCA. Clin Neurophysiol, 116(6), 1314–1334] from an ERP dataset of 2068 17 year olds (979 males). TF activity was taken from both individual trials and condition averages. Activity including frequencies ranging from 0 to 14 Hz and time ranging from stimulus onset to 1312.5 ms were decomposed. Results A coordinated set of time–frequency events was apparent across the decompositions. Similar TF components representing earlier theta followed by delta were extracted from both individual trials and averaged data. Alpha activity, as predicted, was apparent only when time–frequency surfaces were generated from trial level data, and was characterized by a reduction during the P300. Conclusions Theta, delta, and alpha activities were extracted with predictable time-courses. Notably, this approach was effective at characterizing data from a single-electrode. Finally, decomposition of TF data generated from individual trials and condition averages produced similar results, but with predictable differences. Specifically, trial level data evidenced more and more varied theta measures, and accounted for less overall variance. PMID:17027110

  8. THEORETICAL p-MODE OSCILLATION FREQUENCIES FOR THE RAPIDLY ROTATING {delta} SCUTI STAR {alpha} OPHIUCHI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deupree, Robert G., E-mail: bdeupree@ap.smu.ca

    2011-11-20

    A rotating, two-dimensional stellar model is evolved to match the approximate conditions of {alpha} Oph. Both axisymmetric and nonaxisymmetric oscillation frequencies are computed for two-dimensional rotating models which approximate the properties of {alpha} Oph. These computed frequencies are compared to the observed frequencies. Oscillation calculations are made assuming the eigenfunction can be fitted with six Legendre polynomials, but comparison calculations with eight Legendre polynomials show the frequencies agree to within about 0.26% on average. The surface horizontal shape of the eigenfunctions for the two sets of assumed number of Legendre polynomials agrees less well, but all calculations show significant departuresmore » from that of a single Legendre polynomial. It is still possible to determine the large separation, although the small separation is more complicated to estimate. With the addition of the nonaxisymmetric modes with |m| {<=} 4, the frequency space becomes sufficiently dense that it is difficult to comment on the adequacy of the fit of the computed to the observed frequencies. While the nonaxisymmetric frequency mode splitting is no longer uniform, the frequency difference between the frequencies for positive and negative values of the same m remains 2m times the rotation rate.« less

  9. Climatological aspects of mesoscale cyclogenesis over the Ross Sea and Ross Ice shelf regions of Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrasco, J.F.; Bromwich, D.H.

    1994-11-01

    A one-year (1988) statistical study of mesoscale cyclogenesis near Terra Nova Bay and Byrd Glacier, Antarctica, was conducted using high-resolution digital satellite imagery and automatic weather station data. Results indicate that on average two (one) mesoscale cyclones form near Terra Nova Bay (Byrd Glacier) each week, confirming these two locations as mesoscale cyclogeneis areas. The maximum (minimum) weekly frequency of mesoscale cyclones occurred during the summer (winter). The satellite survey of mesoscale vortices was extended over the Ross Sea and Ross Ice Shelf. Results suggest southern Marie Byrd Land as another area of mesoscale cyclone formation. Also, frequent mesoscale cyclonicmore » activity was noted over the Ross Sea and Ross Ice Shelf, where, on average, six and three mesoscale vortices were observed each week, respectively, with maximum (minimum) frequency during summer (winter) in both regions. The majority (70-80%) of the vortices were of comma-cloud type and were shallow. Only around 10% of the vortices near Terra Nova Bay and Byrd Glacier were classified as deep vortices, while over the Ross Sea and Ross Ice Shelf around 20% were found to be deep. The average large-scale pattern associated with cyclogenesis days near Terra Nova Bay suggests a slight decrease in the sea level pressure and 500-hPa geopotential height to the northwest of this area with respect to the annual average. This may be an indication of the average position of synoptic-scale cyclones entering the Ross Sea region. Comparison with a similar study but for 1984-85 shows that the overall mesoscale cyclogenesis activity was similar during the three years, but 1985 was found to be the year with greater occurrence of {open_quotes}significant{close_quotes} mesoscales cyclones. The large-scale pattern indicates that this greater activity is related to a deeper circumpolar trough and 500-hPa polar vortex for 1985 in comparison to 1984 and 1988. 64 refs., 13 figs., 5 tabs.« less

  10. Relationships between Electroencephalographic Spectral Peaks Across Frequency Bands

    PubMed Central

    van Albada, S. J.; Robinson, P. A.

    2013-01-01

    The degree to which electroencephalographic spectral peaks are independent, and the relationships between their frequencies have been debated. A novel fitting method was used to determine peak parameters in the range 2–35 Hz from a large sample of eyes-closed spectra, and their interrelationships were investigated. Findings were compared with a mean-field model of thalamocortical activity, which predicts near-harmonic relationships between peaks. The subject set consisted of 1424 healthy subjects from the Brain Resource International Database. Peaks in the theta range occurred on average near half the alpha peak frequency, while peaks in the beta range tended to occur near twice and three times the alpha peak frequency on an individual-subject basis. Moreover, for the majority of subjects, alpha peak frequencies were significantly positively correlated with frequencies of peaks in the theta and low and high beta ranges. Such a harmonic progression agrees semiquantitatively with theoretical predictions from the mean-field model. These findings indicate a common or analogous source for different rhythms, and help to define appropriate individual frequency bands for peak identification. PMID:23483663

  11. Generating visual flickers for eliciting robust steady-state visual evoked potentials at flexible frequencies using monitor refresh rate.

    PubMed

    Nakanishi, Masaki; Wang, Yijun; Wang, Yu-Te; Mitsukura, Yasue; Jung, Tzyy-Ping

    2014-01-01

    In the study of steady-state visual evoked potentials (SSVEPs), it remains a challenge to present visual flickers at flexible frequencies using monitor refresh rate. For example, in an SSVEP-based brain-computer interface (BCI), it is difficult to present a large number of visual flickers simultaneously on a monitor. This study aims to explore whether or how a newly proposed frequency approximation approach changes signal characteristics of SSVEPs. At 10 Hz and 12 Hz, the SSVEPs elicited using two refresh rates (75 Hz and 120 Hz) were measured separately to represent the approximation and constant-period approaches. This study compared amplitude, signal-to-noise ratio (SNR), phase, latency, scalp distribution, and frequency detection accuracy of SSVEPs elicited using the two approaches. To further prove the efficacy of the approximation approach, this study implemented an eight-target BCI using frequencies from 8-15 Hz. The SSVEPs elicited by the two approaches were found comparable with regard to all parameters except amplitude and SNR of SSVEPs at 12 Hz. The BCI obtained an averaged information transfer rate (ITR) of 95.0 bits/min across 10 subjects with a maximum ITR of 120 bits/min on two subjects, the highest ITR reported in the SSVEP-based BCIs. This study clearly showed that the frequency approximation approach can elicit robust SSVEPs at flexible frequencies using monitor refresh rate and thereby can largely facilitate various SSVEP-related studies in neural engineering and visual neuroscience.

  12. Differential lexical and semantic spreading activation in Alzheimer's disease.

    PubMed

    Foster, Paul S; Drago, Valeria; Yung, Raegan C; Pearson, Jaclyn; Stringer, Kristi; Giovannetti, Tania; Libon, David; Heilman, Kenneth M

    2013-08-01

    Alzheimer's disease (AD) is known to be associated with disruption in semantic networks. Previous studies examining changes in spreading activation in AD have used a lexical decision task paradigm. We have used a paradigm based on average word frequencies obtained from the words generated on the Controlled Oral Word Association Test (COWAT) and the Animal Naming (AN) test. The COWAT and AN tests were administered to a group of 25 patients with AD and 20 control participants. We predicted that the patients with AD would have higher average word frequencies on the COWAT and AN tests than the control participants. The results indicated that the AD group generated words with a higher average word frequency on the AN test but a lower average word frequency on the COWAT. The reasons for the discrepancy in average word frequencies on the AN test and COWAT are discussed.

  13. Viscous decay of nonlinear oscillations of a spherical bubble at large Reynolds number

    NASA Astrophysics Data System (ADS)

    Smith, W. R.; Wang, Q. X.

    2017-08-01

    The long-time viscous decay of large-amplitude bubble oscillations is considered in an incompressible Newtonian fluid, based on the Rayleigh-Plesset equation. At large Reynolds numbers, this is a multi-scaled problem with a short time scale associated with inertial oscillation and a long time scale associated with viscous damping. A multi-scaled perturbation method is thus employed to solve the problem. The leading-order analytical solution of the bubble radius history is obtained to the Rayleigh-Plesset equation in a closed form including both viscous and surface tension effects. Some important formulae are derived including the following: the average energy loss rate of the bubble system during each cycle of oscillation, an explicit formula for the dependence of the oscillation frequency on the energy, and an implicit formula for the amplitude envelope of the bubble radius as a function of the energy. Our theory shows that the energy of the bubble system and the frequency of oscillation do not change on the inertial time scale at leading order, the energy loss rate on the long viscous time scale being inversely proportional to the Reynolds number. These asymptotic predictions remain valid during each cycle of oscillation whether or not compressibility effects are significant. A systematic parametric analysis is carried out using the above formula for the energy of the bubble system, frequency of oscillation, and minimum/maximum bubble radii in terms of the Reynolds number, the dimensionless initial pressure of the bubble gases, and the Weber number. Our results show that the frequency and the decay rate have substantial variations over the lifetime of a decaying oscillation. The results also reveal that large-amplitude bubble oscillations are very sensitive to small changes in the initial conditions through large changes in the phase shift.

  14. First measurements of high frequency cross-spectra from a pair of large Michelson interferometers

    DOE PAGES

    Chou, Aaron S.; Gustafson, Richard; Hogan, Craig; ...

    2016-09-09

    Here, measurements are reported of the cross-correlation of spectra of differential position signals from the Fermilab Holometer, a pair of colocated 39 m long, high power Michelson interferometers with flat broadband frequency response in the MHz range. The instrument obtains sensitivity to high frequency correlated signals far exceeding any previous measurement in a broad frequency band extending beyond the 3.8 MHz inverse light-crossing time of the apparatus. The dominant but uncorrelated shot noise is averaged down over 2 × 10 8 independent spectral measurements with 381 Hz frequency resolution to obtain 2.1 × 10 -20m/ √Hz sensitivity to stationary signals. For signal bandwidthsmore » Δf > 11 kHz, the sensitivity to strain h or shear power spectral density of classical or exotic origin surpasses a milestone PSD δh < t p where t p = 5.39 × 10 -44/ Hz is the Planck time.« less

  15. First Measurements of High Frequency Cross-Spectra from a Pair of Large Michelson Interferometers.

    PubMed

    Chou, Aaron S; Gustafson, Richard; Hogan, Craig; Kamai, Brittany; Kwon, Ohkyung; Lanza, Robert; McCuller, Lee; Meyer, Stephan S; Richardson, Jonathan; Stoughton, Chris; Tomlin, Raymond; Waldman, Samuel; Weiss, Rainer

    2016-09-09

    Measurements are reported of the cross-correlation of spectra of differential position signals from the Fermilab Holometer, a pair of colocated 39 m long, high power Michelson interferometers with flat broadband frequency response in the MHz range. The instrument obtains sensitivity to high frequency correlated signals far exceeding any previous measurement in a broad frequency band extending beyond the 3.8 MHz inverse light-crossing time of the apparatus. The dominant but uncorrelated shot noise is averaged down over 2×10^{8} independent spectral measurements with 381 Hz frequency resolution to obtain 2.1×10^{-20}m/sqrt[Hz] sensitivity to stationary signals. For signal bandwidths Δf>11  kHz, the sensitivity to strain h or shear power spectral density of classical or exotic origin surpasses a milestone PSD_{δh}

  16. Next generation semiconductor based-sequencing of a nutrigenetics target gene (GPR120) and association with growth rate in Italian Large White pigs.

    PubMed

    Fontanesi, Luca; Bertolini, Francesca; Scotti, Emilio; Schiavo, Giuseppina; Colombo, Michela; Trevisi, Paolo; Ribani, Anisa; Buttazzoni, Luca; Russo, Vincenzo; Dall'Olio, Stefania

    2015-01-01

    The GPR120 gene (also known as FFAR4 or O3FAR1) encodes for a functional omega-3 fatty acid receptor/sensor that mediates potent insulin sensitizing effects by repressing macrophage-induced tissue inflammation. For its functional role, GPR120 could be considered a potential target gene in animal nutrigenetics. In this work we resequenced the porcine GPR120 gene by high throughput Ion Torrent semiconductor sequencing of amplified fragments obtained from 8 DNA pools derived, on the whole, from 153 pigs of different breeds/populations (two Italian Large White pools, Italian Duroc, Italian Landrace, Casertana, Pietrain, Meishan, and wild boars). Three single nucleotide polymorphisms (SNPs), two synonymous substitutions and one in the putative 3'-untranslated region (g.114765469C > T), were identified and their allele frequencies were estimated by sequencing reads count. The g.114765469C > T SNP was also genotyped by PCR-RFLP confirming estimated frequency in Italian Large White pools. Then, this SNP was analyzed in two Italian Large White cohorts using a selective genotyping approach based on extreme and divergent pigs for back fat thickness (BFT) estimated breeding value (EBV) and average daily gain (ADG) EBV. Significant differences of allele and genotype frequencies distribution was observed between the extreme ADG-EBV groups (P < 0.001) whereas this marker was not associated with BFT-EBV.

  17. Gravitational modulation of thermosolutal convection during directional solidification

    NASA Astrophysics Data System (ADS)

    Murray, B. T.; Coriell, S. R.; McFadden, G. B.; Wheeler, A. A.; Saunders, B. V.

    1993-03-01

    During directional solidification of a binary alloy at constant velocity, thermosolutal convection may occur due to the temperature and solute gradients associated with the solidification process. For vertical growth in an ideal furnace (lacking horizontal gradients) a quiescent state is possible. The effect of a time-periodic vertical gravitational acceleration (or equivalently vibration) on the onset of thermosolutal convection is calculated based on linear stability using Floquet theory. Numerical calculations for the onset of instability have been carried out for a semiconductor alloy with Schmidt number of 10 and Prandtl number of 0.1 with primary emphasis on large modulation frequencies in a microgravity environment for which the background gravitational acceleration is negligible. The numerical results demonstrate that there is a significant difference in stability depending on whether a heavier or lighter solute is rejected. For large modulation frequencies, the stability behavior can be described by either the method of averaging or an asymptotic resonant mode analysis.

  18. Genetic structure characterization of Chileans reflects historical immigration patterns.

    PubMed

    Eyheramendy, Susana; Martinez, Felipe I; Manevy, Federico; Vial, Cecilia; Repetto, Gabriela M

    2015-03-17

    Identifying the ancestral components of genomes of admixed individuals helps uncovering the genetic basis of diseases and understanding the demographic history of populations. We estimate local ancestry on 313 Chileans and assess the contribution from three continental populations. The distribution of ancestry block-length suggests an average admixing time around 10 generations ago. Sex-chromosome analyses confirm imbalanced contribution of European men and Native-American women. Previously known genes under selection contain SNPs showing large difference in allele frequencies. Furthermore, we show that assessing ancestry is harder at SNPs with higher recombination rates and easier at SNPs with large difference in allele frequencies at the ancestral populations. Two observations, that African ancestry proportions systematically decrease from North to South, and that European ancestry proportions are highest in central regions, show that the genetic structure of Chileans is under the influence of a diffusion process leading to an ancestry gradient related to geography.

  19. Genetic structure characterization of Chileans reflects historical immigration patterns

    PubMed Central

    Eyheramendy, Susana; Martinez, Felipe I.; Manevy, Federico; Vial, Cecilia; Repetto, Gabriela M.

    2015-01-01

    Identifying the ancestral components of genomes of admixed individuals helps uncovering the genetic basis of diseases and understanding the demographic history of populations. We estimate local ancestry on 313 Chileans and assess the contribution from three continental populations. The distribution of ancestry block-length suggests an average admixing time around 10 generations ago. Sex-chromosome analyses confirm imbalanced contribution of European men and Native-American women. Previously known genes under selection contain SNPs showing large difference in allele frequencies. Furthermore, we show that assessing ancestry is harder at SNPs with higher recombination rates and easier at SNPs with large difference in allele frequencies at the ancestral populations. Two observations, that African ancestry proportions systematically decrease from North to South, and that European ancestry proportions are highest in central regions, show that the genetic structure of Chileans is under the influence of a diffusion process leading to an ancestry gradient related to geography. PMID:25778948

  20. Study of the resonant frequencies of silicon microcantilevers coated with vanadium dioxide films during the insulator-to-metal transition

    NASA Astrophysics Data System (ADS)

    Rúa, Armando; Fernández, Félix E.; Hines, Melissa A.; Sepúlveda, Nelson

    2010-03-01

    Vanadium dioxide (VO2) thin films were grown on silicon microcantilevers and companion test substrates by pulsed laser deposition followed by in situ annealing in an oxidizing atmosphere, with annealing times used to control crystallite sizes. Annealing times of 18 min produced VO2 films with average crystallite sizes of ˜10 nm or less, while those annealed for 35 min had crystallites of average size ˜90 nm, comparable to sample thickness. X-ray diffraction and x-ray photoelectron spectroscopy studies of the samples showed that films with crystallite sizes ˜40 nm or greater consisted of substoichiometric VO2 in its monoclinic phase, with preferential orientation with (011) planes parallel to the sample surface, while finer structured samples had a substantially similar composition, but showed no clear evidence of preferential orientation and were probably partially amorphous. Forced vibration experiments were performed with the cantilevers as they were thermally cycled through the VO2 insulator-to-metal transition (IMT). Very large reversible changes in the resonant frequencies of up to 5% (3.6 kHz) as well as hysteretic behavior were observed, which depend strongly on film crystallite size. The average value of Young's modulus for VO2 films with crystallite sizes of ˜90 nm was estimated from the mechanical resonance data at room temperature to be ˜120 GPa, but the large tensile stresses which develop between film and substrate through the IMT impede a similar determination for the VO2 tetragonal phase, since the commonly used relationships for cantilever frequencies derived from elasticity theory are not applicable for strongly curved composite beams. The results presented show that VO2 thin films can be useful in novel microscale and nanoscale electromechanical resonators in which effective stiffness can be tuned thermally or optically. This response can provide additional functionality to VO2—based devices which take advantage of other property changes through the IMT.

  1. Relationship between frequency power spectra and intermittent, large-amplitude bursts in the Alcator C-Mod scrape-off layer

    NASA Astrophysics Data System (ADS)

    Theodorsen, A.; Garcia, O. E.; Kube, R.; LaBombard, B.; Terry, J. L.

    2017-11-01

    Fluctuations in the boundary region of the Alcator C-Mod tokamak have been analyzed using gas puff imaging data from a set of Ohmically heated plasma density scan experiments. It is found that the relative fluctuation amplitudes are modest and close to normally distributed at the separatrix but become increasingly larger and skewed towards the main chamber wall. The frequency power spectra are nevertheless similar for all radial positions and line-averaged densities. Predictions of a stochastic model, describing the plasma fluctuations as a super-position of uncorrelated pulses, are shown to be in excellent agreement with the measurements. This implies that the pulse duration is the same, while the degree of pulse overlap decreases radially outwards in the scrape-off layer. The universal frequency power spectral density is thus determined by the shape and duration of the large-amplitude bursts associated with blob-like structures. The model also describes the rate of threshold level crossings, for which the exponential tails underline the intermittency of the fluctuations in the far scarpe-off layer.

  2. Rare and low-frequency coding variants alter human adult height

    PubMed Central

    Marouli, Eirini; Graff, Mariaelisa; Medina-Gomez, Carolina; Lo, Ken Sin; Wood, Andrew R; Kjaer, Troels R; Fine, Rebecca S; Lu, Yingchang; Schurmann, Claudia; Highland, Heather M; Rüeger, Sina; Thorleifsson, Gudmar; Justice, Anne E; Lamparter, David; Stirrups, Kathleen E; Turcot, Valérie; Young, Kristin L; Winkler, Thomas W; Esko, Tõnu; Karaderi, Tugce; Locke, Adam E; Masca, Nicholas GD; Ng, Maggie CY; Mudgal, Poorva; Rivas, Manuel A; Vedantam, Sailaja; Mahajan, Anubha; Guo, Xiuqing; Abecasis, Goncalo; Aben, Katja K; Adair, Linda S; Alam, Dewan S; Albrecht, Eva; Allin, Kristine H; Allison, Matthew; Amouyel, Philippe; Appel, Emil V; Arveiler, Dominique; Asselbergs, Folkert W; Auer, Paul L; Balkau, Beverley; Banas, Bernhard; Bang, Lia E; Benn, Marianne; Bergmann, Sven; Bielak, Lawrence F; Blüher, Matthias; Boeing, Heiner; Boerwinkle, Eric; Böger, Carsten A; Bonnycastle, Lori L; Bork-Jensen, Jette; Bots, Michiel L; Bottinger, Erwin P; Bowden, Donald W; Brandslund, Ivan; Breen, Gerome; Brilliant, Murray H; Broer, Linda; Burt, Amber A; Butterworth, Adam S; Carey, David J; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Chen, Yii-Der Ida; Chowdhury, Rajiv; Christensen, Cramer; Chu, Audrey Y; Cocca, Massimiliano; Collins, Francis S; Cook, James P; Corley, Janie; Galbany, Jordi Corominas; Cox, Amanda J; Cuellar-Partida, Gabriel; Danesh, John; Davies, Gail; de Bakker, Paul IW; de Borst, Gert J.; de Denus, Simon; de Groot, Mark CH; de Mutsert, Renée; Deary, Ian J; Dedoussis, George; Demerath, Ellen W; den Hollander, Anneke I; Dennis, Joe G; Di Angelantonio, Emanuele; Drenos, Fotios; Du, Mengmeng; Dunning, Alison M; Easton, Douglas F; Ebeling, Tapani; Edwards, Todd L; Ellinor, Patrick T; Elliott, Paul; Evangelou, Evangelos; Farmaki, Aliki-Eleni; Faul, Jessica D; Feitosa, Mary F; Feng, Shuang; Ferrannini, Ele; Ferrario, Marco M; Ferrieres, Jean; Florez, Jose C; Ford, Ian; Fornage, Myriam; Franks, Paul W; Frikke-Schmidt, Ruth; Galesloot, Tessel E; Gan, Wei; Gandin, Ilaria; Gasparini, Paolo; Giedraitis, Vilmantas; Giri, Ayush; Girotto, Giorgia; Gordon, Scott D; Gordon-Larsen, Penny; Gorski, Mathias; Grarup, Niels; Grove, Megan L.; Gudnason, Vilmundur; Gustafsson, Stefan; Hansen, Torben; Harris, Kathleen Mullan; Harris, Tamara B; Hattersley, Andrew T; Hayward, Caroline; He, Liang; Heid, Iris M; Heikkilä, Kauko; Helgeland, Øyvind; Hernesniemi, Jussi; Hewitt, Alex W; Hocking, Lynne J; Hollensted, Mette; Holmen, Oddgeir L; Hovingh, G. Kees; Howson, Joanna MM; Hoyng, Carel B; Huang, Paul L; Hveem, Kristian; Ikram, M. Arfan; Ingelsson, Erik; Jackson, Anne U; Jansson, Jan-Håkan; Jarvik, Gail P; Jensen, Gorm B; Jhun, Min A; Jia, Yucheng; Jiang, Xuejuan; Johansson, Stefan; Jørgensen, Marit E; Jørgensen, Torben; Jousilahti, Pekka; Jukema, J Wouter; Kahali, Bratati; Kahn, René S; Kähönen, Mika; Kamstrup, Pia R; Kanoni, Stavroula; Kaprio, Jaakko; Karaleftheri, Maria; Kardia, Sharon LR; Karpe, Fredrik; Kee, Frank; Keeman, Renske; Kiemeney, Lambertus A; Kitajima, Hidetoshi; Kluivers, Kirsten B; Kocher, Thomas; Komulainen, Pirjo; Kontto, Jukka; Kooner, Jaspal S; Kooperberg, Charles; Kovacs, Peter; Kriebel, Jennifer; Kuivaniemi, Helena; Küry, Sébastien; Kuusisto, Johanna; La Bianca, Martina; Laakso, Markku; Lakka, Timo A; Lange, Ethan M; Lange, Leslie A; Langefeld, Carl D; Langenberg, Claudia; Larson, Eric B; Lee, I-Te; Lehtimäki, Terho; Lewis, Cora E; Li, Huaixing; Li, Jin; Li-Gao, Ruifang; Lin, Honghuang; Lin, Li-An; Lin, Xu; Lind, Lars; Lindström, Jaana; Linneberg, Allan; Liu, Yeheng; Liu, Yongmei; Lophatananon, Artitaya; Luan, Jian'an; Lubitz, Steven A; Lyytikäinen, Leo-Pekka; Mackey, David A; Madden, Pamela AF; Manning, Alisa K; Männistö, Satu; Marenne, Gaëlle; Marten, Jonathan; Martin, Nicholas G; Mazul, Angela L; Meidtner, Karina; Metspalu, Andres; Mitchell, Paul; Mohlke, Karen L; Mook-Kanamori, Dennis O; Morgan, Anna; Morris, Andrew D; Morris, Andrew P; Müller-Nurasyid, Martina; Munroe, Patricia B; Nalls, Mike A; Nauck, Matthias; Nelson, Christopher P; Neville, Matt; Nielsen, Sune F; Nikus, Kjell; Njølstad, Pål R; Nordestgaard, Børge G; Ntalla, Ioanna; O'Connel, Jeffrey R; Oksa, Heikki; Loohuis, Loes M Olde; Ophoff, Roel A; Owen, Katharine R; Packard, Chris J; Padmanabhan, Sandosh; Palmer, Colin NA; Pasterkamp, Gerard; Patel, Aniruddh P; Pattie, Alison; Pedersen, Oluf; Peissig, Peggy L; Peloso, Gina M; Pennell, Craig E; Perola, Markus; Perry, James A; Perry, John R.B.; Person, Thomas N; Pirie, Ailith; Polasek, Ozren; Posthuma, Danielle; Raitakari, Olli T; Rasheed, Asif; Rauramaa, Rainer; Reilly, Dermot F; Reiner, Alex P; Renström, Frida; Ridker, Paul M; Rioux, John D; Robertson, Neil; Robino, Antonietta; Rolandsson, Olov; Rudan, Igor; Ruth, Katherine S; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J; Sandow, Kevin; Sapkota, Yadav; Sattar, Naveed; Schmidt, Marjanka K; Schreiner, Pamela J; Schulze, Matthias B; Scott, Robert A; Segura-Lepe, Marcelo P; Shah, Svati; Sim, Xueling; Sivapalaratnam, Suthesh; Small, Kerrin S; Smith, Albert Vernon; Smith, Jennifer A; Southam, Lorraine; Spector, Timothy D; Speliotes, Elizabeth K; Starr, John M; Steinthorsdottir, Valgerdur; Stringham, Heather M; Stumvoll, Michael; Surendran, Praveen; Hart, Leen M ‘t; Tansey, Katherine E; Tardif, Jean-Claude; Taylor, Kent D; Teumer, Alexander; Thompson, Deborah J; Thorsteinsdottir, Unnur; Thuesen, Betina H; Tönjes, Anke; Tromp, Gerard; Trompet, Stella; Tsafantakis, Emmanouil; Tuomilehto, Jaakko; Tybjaerg-Hansen, Anne; Tyrer, Jonathan P; Uher, Rudolf; Uitterlinden, André G; Ulivi, Sheila; van der Laan, Sander W; Van Der Leij, Andries R; van Duijn, Cornelia M; van Schoor, Natasja M; van Setten, Jessica; Varbo, Anette; Varga, Tibor V; Varma, Rohit; Edwards, Digna R Velez; Vermeulen, Sita H; Vestergaard, Henrik; Vitart, Veronique; Vogt, Thomas F; Vozzi, Diego; Walker, Mark; Wang, Feijie; Wang, Carol A; Wang, Shuai; Wang, Yiqin; Wareham, Nicholas J; Warren, Helen R; Wessel, Jennifer; Willems, Sara M; Wilson, James G; Witte, Daniel R; Woods, Michael O; Wu, Ying; Yaghootkar, Hanieh; Yao, Jie; Yao, Pang; Yerges-Armstrong, Laura M; Young, Robin; Zeggini, Eleftheria; Zhan, Xiaowei; Zhang, Weihua; Zhao, Jing Hua; Zhao, Wei; Zhao, Wei; Zheng, He; Zhou, Wei; Rotter, Jerome I; Boehnke, Michael; Kathiresan, Sekar; McCarthy, Mark I; Willer, Cristen J; Stefansson, Kari; Borecki, Ingrid B; Liu, Dajiang J; North, Kari E; Heard-Costa, Nancy L; Pers, Tune H; Lindgren, Cecilia M; Oxvig, Claus; Kutalik, Zoltán; Rivadeneira, Fernando; Loos, Ruth JF; Frayling, Timothy M; Hirschhorn, Joel N; Deloukas, Panos; Lettre, Guillaume

    2016-01-01

    Summary Height is a highly heritable, classic polygenic trait with ∼700 common associated variants identified so far through genome-wide association studies. Here, we report 83 height-associated coding variants with lower minor allele frequencies (range of 0.1-4.8%) and effects of up to 2 cm/allele (e.g. in IHH, STC2, AR and CRISPLD2), >10 times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (+1-2 cm/allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes mutated in monogenic growth disorders and highlight new biological candidates (e.g. ADAMTS3, IL11RA, NOX4) and pathways (e.g. proteoglycan/glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate to large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways. PMID:28146470

  3. A Hierarchical Relationship Between the Fluence Spectra and CME Kinematics in Large Solar Energetic Particle Events: A Radio Perspective

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Makela, P.; Yashiro, S.; Thakur, N.; Akiyama, S.; Xie, H.

    2017-01-01

    We report on further evidence that solar energetic particles are organized by the kinematic properties of coronal mass ejections (CMEs). In particular, we focus on the starting frequency of type II bursts, which is related to the distance from the Sun where the radio emission starts. We find that the three groups of solar energetic particle (SEP) events known to have distinct values of CME initial acceleration, also have distinct average starting frequencies of the associated type II bursts. SEP events with ground level enhancement (GLE) have the highest starting frequency (107 MHz), while those associated with filament eruption (FE) in quiescent regions have the lowest starting frequency (22 MHz); regular SEP events have intermediate starting frequency (81 MHz). Taking the onset time of type II bursts as the time of shock formation, we determine the shock formation heights measured from the Sun center. We find that the shocks form on average closest to the Sun (1.51 Rs) in GLE events, farthest from the Sun in FE SEP events (5.38 Rs), and at intermediate distances in regular SEP events (1.72 Rs). Finally, we present the results of a case study of a CME with high initial acceleration (approx. 3 km s-2) and a type II radio burst with high starting frequency (200 MHz) but associated with a minor SEP event. We find that the relation between the fluence spectral index and CME initial acceleration continues to hold even for this minor SEP event.

  4. A Hierarchical Relationship Between the Fluence Spectra and CME Kinematics in Large Solar Energetic Particle Events: A Radio Perspective

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Makela, P.; Yashiro, S.; Thakur, N.; Akiyama, S.; Xie, H.

    2017-01-01

    We report on further evidence that solar energetic particles are organized by the kinematic properties of coronal mass ejections (CMEs). In particular, we focus on the starting frequency of type II bursts, which is related to the distance from the Sun where the radio emission starts. We find that the three groups of solar energetic particle (SEP) events known to have distinct values of CME initial acceleration, also have distinct average starting frequencies of the associated type II bursts. SEP events with ground level enhancement (GLE) have the highest starting frequency (107 MHz), while those associated with filament eruption (FE) in quiescent regions have the lowest starting frequency (22 MHz); regular SEP events have intermediate starting frequency (81 MHz). Taking the onset time of type II bursts as the time of shock formation, we determine the shock formation heights measured from the Sun center. We find that the shocks form on average closest to the Sun (1.51 Rs) in GLE events, farthest from the Sun in FE SEP events (5.38 Rs), and at intermediate distances in regular SEP events (1.72 Rs). Finally, we present the results of a case study of a CME with high initial acceleration (approx.3 km s-2) and a type II radio burst with high starting frequency (approx. 200 MHz) but associated with a minor SEP event. We find that the relation between the fluence spectral index and CME initial acceleration continues to hold even for this minor SEP event.

  5. Identification of interfaces involved in weak interactions with application to F-actin-aldolase rafts.

    PubMed

    Hu, Guiqing; Taylor, Dianne W; Liu, Jun; Taylor, Kenneth A

    2018-03-01

    Macromolecular interactions occur with widely varying affinities. Strong interactions form well defined interfaces but weak interactions are more dynamic and variable. Weak interactions can collectively lead to large structures such as microvilli via cooperativity and are often the precursors of much stronger interactions, e.g. the initial actin-myosin interaction during muscle contraction. Electron tomography combined with subvolume alignment and classification is an ideal method for the study of weak interactions because a 3-D image is obtained for the individual interactions, which subsequently are characterized collectively. Here we describe a method to characterize heterogeneous F-actin-aldolase interactions in 2-D rafts using electron tomography. By forming separate averages of the two constituents and fitting an atomic structure to each average, together with the alignment information which relates the raw motif to the average, an atomic model of each crosslink is determined and a frequency map of contact residues is computed. The approach should be applicable to any large structure composed of constituents that interact weakly and heterogeneously. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Cygnus A super-resolved via convex optimization from VLA data

    NASA Astrophysics Data System (ADS)

    Dabbech, A.; Onose, A.; Abdulaziz, A.; Perley, R. A.; Smirnov, O. M.; Wiaux, Y.

    2018-05-01

    We leverage the Sparsity Averaging Re-weighted Analysis approach for interferometric imaging, that is based on convex optimization, for the super-resolution of Cyg A from observations at the frequencies 8.422 and 6.678 GHz with the Karl G. Jansky Very Large Array (VLA). The associated average sparsity and positivity priors enable image reconstruction beyond instrumental resolution. An adaptive Preconditioned primal-dual algorithmic structure is developed for imaging in the presence of unknown noise levels and calibration errors. We demonstrate the superior performance of the algorithm with respect to the conventional CLEAN-based methods, reflected in super-resolved images with high fidelity. The high-resolution features of the recovered images are validated by referring to maps of Cyg A at higher frequencies, more precisely 17.324 and 14.252 GHz. We also confirm the recent discovery of a radio transient in Cyg A, revealed in the recovered images of the investigated data sets. Our MATLAB code is available online on GitHub.

  7. Surface pressure distributions on a delta wing undergoing large amplitude pitching oscillations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, Scott A.

    1989-01-01

    Wind tunnel experiments were performed on a 70 deg sweep delta wing to determine the effect of a sinusoidal pitching motion on the pressure field on the suction side of the wing. Twelve pressure taps were placed from 35 to 90 percent of the chord, at 60 percent of the local semi-span. Pressure coefficients were measured as a function of Reynolds number and pitch rate. The pressure coefficient was seen to vary at approximately the same frequency as the pitching frequency. The relative pressure variation at each chord location was comparable for each case. The average pressure distribution through each periodic motion was near the static distribution for the average angle of attack. Upon comparing the upstroke and downstroke pressures for a specific angle of attack, the downstroke pressures were slightly larger. Vortex breakdown was seen to have the most significant effect at the 40 to 45 percent chord location, where a decrease in pressure was apparent.

  8. Fetal head circumference, operative delivery, and fetal outcomes: a multi-ethnic population-based cohort study

    PubMed Central

    2013-01-01

    Background Operative delivery procedures, such as primary cesarean section, vacuum-assisted, and forceps-assisted vaginal delivery increase maternal and fetal morbidity, and the cost of care. We evaluated whether large fetal head circumference (FHC) independently increases risk of such interventions, as well as fetal distress or low Apgar score, in anatomically normal infants. Methods We conducted a population-based retrospective cohort study using Washington State birth certificate data. We included singleton, term infants born to nulliparous mothers from 2003–2009. We compared mode of delivery and fetal outcomes in 10,750 large-FHC (37-41 cm) infants relative to 10,750 average-FHC (34 cm) infants, frequency matched by birth-year. Results Large-FHC infants were nearly twice as likely to be delivered by primary cesarean section as average-FHC infants (unadjusted relative risk [RR] 1.84, 95% confidence interval [CI]: 1.77, 1.92). The RR for primary cesarean section associated with large-FHC was largest for mothers aged 19 years or less (RR 2.28; 95% CI: 1.99, 2.61), and smallest for mothers aged 35 years or greater (RR 1.51; 95% CI: 1.37, 1.66) [test of homogeneity, p < 0.001]. Large-FHC infants were at increased risk of vacuum-assisted vaginal delivery (RR 1.55; 95% CI: 1.43, 1.69), and forceps-assisted vaginal delivery (RR 1.61; 95% CI: 1.32, 1.97). There was no difference in risk of fetal distress (RR 0.97; 95% CI: 0.89, 1.07) for large-FHC versus average-FHC infants. Risk estimates were unaffected by adjustment for potential confounders. Conclusions Nulliparous mothers of large-FHC infants are at increased risk of primary cesarean section, vacuum-assisted and forceps-assisted vaginal delivery relative to mothers of average-FHC infants. Maternal age modifies the association between FHC and primary cesarean section. PMID:23651454

  9. Effect of Logarithmic and Linear Frequency Scales on Parametric Modelling of Tissue Dielectric Data.

    PubMed

    Salahuddin, Saqib; Porter, Emily; Meaney, Paul M; O'Halloran, Martin

    2017-02-01

    The dielectric properties of biological tissues have been studied widely over the past half-century. These properties are used in a vast array of applications, from determining the safety of wireless telecommunication devices to the design and optimisation of medical devices. The frequency-dependent dielectric properties are represented in closed-form parametric models, such as the Cole-Cole model, for use in numerical simulations which examine the interaction of electromagnetic (EM) fields with the human body. In general, the accuracy of EM simulations depends upon the accuracy of the tissue dielectric models. Typically, dielectric properties are measured using a linear frequency scale; however, use of the logarithmic scale has been suggested historically to be more biologically descriptive. Thus, the aim of this paper is to quantitatively compare the Cole-Cole fitting of broadband tissue dielectric measurements collected with both linear and logarithmic frequency scales. In this way, we can determine if appropriate choice of scale can minimise the fit error and thus reduce the overall error in simulations. Using a well-established fundamental statistical framework, the results of the fitting for both scales are quantified. It is found that commonly used performance metrics, such as the average fractional error, are unable to examine the effect of frequency scale on the fitting results due to the averaging effect that obscures large localised errors. This work demonstrates that the broadband fit for these tissues is quantitatively improved when the given data is measured with a logarithmic frequency scale rather than a linear scale, underscoring the importance of frequency scale selection in accurate wideband dielectric modelling of human tissues.

  10. Effect of Logarithmic and Linear Frequency Scales on Parametric Modelling of Tissue Dielectric Data

    PubMed Central

    Salahuddin, Saqib; Porter, Emily; Meaney, Paul M.; O’Halloran, Martin

    2016-01-01

    The dielectric properties of biological tissues have been studied widely over the past half-century. These properties are used in a vast array of applications, from determining the safety of wireless telecommunication devices to the design and optimisation of medical devices. The frequency-dependent dielectric properties are represented in closed-form parametric models, such as the Cole-Cole model, for use in numerical simulations which examine the interaction of electromagnetic (EM) fields with the human body. In general, the accuracy of EM simulations depends upon the accuracy of the tissue dielectric models. Typically, dielectric properties are measured using a linear frequency scale; however, use of the logarithmic scale has been suggested historically to be more biologically descriptive. Thus, the aim of this paper is to quantitatively compare the Cole-Cole fitting of broadband tissue dielectric measurements collected with both linear and logarithmic frequency scales. In this way, we can determine if appropriate choice of scale can minimise the fit error and thus reduce the overall error in simulations. Using a well-established fundamental statistical framework, the results of the fitting for both scales are quantified. It is found that commonly used performance metrics, such as the average fractional error, are unable to examine the effect of frequency scale on the fitting results due to the averaging effect that obscures large localised errors. This work demonstrates that the broadband fit for these tissues is quantitatively improved when the given data is measured with a logarithmic frequency scale rather than a linear scale, underscoring the importance of frequency scale selection in accurate wideband dielectric modelling of human tissues. PMID:28191324

  11. Estimation of the whole-body averaged SAR of grounded human models for plane wave exposure at respective resonance frequencies.

    PubMed

    Hirata, Akimasa; Yanase, Kazuya; Laakso, Ilkka; Chan, Kwok Hung; Fujiwara, Osamu; Nagaoka, Tomoaki; Watanabe, Soichi; Conil, Emmanuelle; Wiart, Joe

    2012-12-21

    According to the international guidelines, the whole-body averaged specific absorption rate (WBA-SAR) is used as a metric of basic restriction for radio-frequency whole-body exposure. It is well known that the WBA-SAR largely depends on the frequency of the incident wave for a given incident power density. The frequency at which the WBA-SAR becomes maximal is called the 'resonance frequency'. Our previous study proposed a scheme for estimating the WBA-SAR at this resonance frequency based on an analogy between the power absorption characteristic of human models in free space and that of a dipole antenna. However, a scheme for estimating the WBA-SAR in a grounded human has not been discussed sufficiently, even though the WBA-SAR in a grounded human is larger than that in an ungrounded human. In this study, with the use of the finite-difference time-domain method, the grounded condition is confirmed to be the worst-case exposure for human body models in a standing posture. Then, WBA-SARs in grounded human models are calculated at their respective resonant frequencies. A formula for estimating the WBA-SAR of a human standing on the ground is proposed based on an analogy with a quarter-wavelength monopole antenna. First, homogenized human body models are shown to provide the conservative WBA-SAR as compared with anatomically based models. Based on the formula proposed here, the WBA-SARs in grounded human models are approximately 10% larger than those in free space. The variability of the WBA-SAR was shown to be ±30% even for humans of the same age, which is caused by the body shape.

  12. A Frequency Domain Approach to Pretest Analysis Model Correlation and Model Updating for the Mid-Frequency Range

    DTIC Science & Technology

    2009-02-01

    range of modal analysis and the high frequency region of statistical energy analysis , is referred to as the mid-frequency range. The corresponding...frequency range of modal analysis and the high frequency region of statistical energy analysis , is referred to as the mid-frequency range. The...predictions. The averaging process is consistent with the averaging done in statistical energy analysis for stochastic systems. The FEM will always

  13. Dynamic triggering potential of large earthquakes recorded by the EarthScope U.S. Transportable Array using a frequency domain detection method

    NASA Astrophysics Data System (ADS)

    Linville, L. M.; Pankow, K. L.; Kilb, D. L.; Velasco, A. A.; Hayward, C.

    2013-12-01

    Because of the abundance of data from the Earthscope U.S. Transportable Array (TA), data paucity and station sampling bias in the US are no longer significant obstacles to understanding some of the physical parameters driving dynamic triggering. Initial efforts to determine locations of dynamic triggering in the US following large earthquakes (M ≥ 8.0) during TA relied on a time domain detection algorithm which used an optimized short-term average to long-term average (STA/LTA) filter and resulted in an unmanageably large number of false positive detections. Specific site sensitivities and characteristic noise when coupled with changes in detection rates often resulted in misleading output. To navigate this problem, we develop a frequency domain detection algorithm that first pre-whitens each seismogram and then computes a broadband frequency stack of the data using a three hour time window beginning at the origin time of the mainshock. This method is successful because of the broadband nature of earthquake signals compared with the more band-limited high frequency picks that clutter results from time domain picking algorithms. Preferential band filtering of the frequency stack for individual events can further increase the accuracy and drive the detection threshold to below magnitude one, but at general cost to detection levels across large scale data sets. Of the 15 mainshocks studied, 12 show evidence of discrete spatial clusters of local earthquake activity occurring within the array during the mainshock coda. Most of this activity is in the Western US with notable sequences in Northwest Wyoming, Western Texas, Southern New Mexico and Western Montana. Repeat stations (associated with 2 or more mainshocks) are generally rare, but when occur do so exclusively in California and Nevada. Notably, two of the most prolific regions of seismicity following a single mainshock occur following the 2009 magnitude 8.1 Samoa (Sep 29, 2009, 17:48:10) event, in areas with few or no known Quaternary faults and sparse historic seismicity. To gain a better understanding of the potential interaction between local events during the mainshock coda and the local stress changes induced by the passing surface waves, we juxtapose the local earthquake locations on maps of peak stress changes (e.g., radial, tangential and horizontal). Preliminary results reveal that triggering in the US is perhaps not as common as previously thought, and that dynamic triggering is most likely a more complicated interplay between physical parameters (e.g., amplitude threshold, wave orientation, tectonic environment, etc) than can be explained by a single dominant driver.

  14. Tephra productivity and eruption flux of the subglacial Katla volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Óladóttir, Bergrún Arna; Sigmarsson, Olgeir; Larsen, Guðrún

    2018-07-01

    The influence of the mode of magma ascent on eruption fluxes is uncertain beneath active volcanoes. To study this, the subglacial volcano Katla, Iceland, whichhas produced abundant tephra through the Holocene, has been investigated through volume estimations of the largest eruptions from the last 3500 years. Tephra volume measurements allow tephra productivity and their variation through time to be estimated. By adding the volume of lava from effusive eruptions, the total eruption flux is obtained. Tephra productivity shows variations with time, ranging from 2.0 km3/century, during the prehistoric period examined, to 0.7 km3/century, during historical time (after 939 CE). However, the average eruption flux remained unchanged ( 2.2 km3/century) during the studied 3500 years due to the large lava produced during the Eldgjá flood basalt eruption (939 CE). Following the Eldgjá event, tephra production declined and also eruption frequency, decreasing from 5.6-2.0 eruptions/century. Magma ascending vertically to the glacier -covered volcano results in explosive phreatomagmatic eruptions and tephra formation, whereas magma transferred in a laterally extended dyke leads to predominant fissural eruptions outside the glacier (e.g., Eldgjá). The mode of magma ascent thus exerts control on the eruption frequency and the volcanic style at Katla volcano without affecting the long-term eruption flux. A uniform increase in cumulative magma volume from Katla suggests a time-integrated steady-state behavior over the last 3500 years. Finally, although the large fissural eruption of Eldgjá lowered the following eruption frequency, it only temporarily affected the time averaged eruption flux of Katla.

  15. Skin friction drag reduction on a flat plate turbulent boundary layer using synthetic jets

    NASA Astrophysics Data System (ADS)

    Belanger, Randy; Boom, Pieter D.; Hanson, Ronald E.; Lavoie, Philippe; Zingg, David W.

    2017-11-01

    In these studies, we investigate the effect of mild synthetic jet actuation on a flat plate turbulent boundary layer with the goal of interacting with the large scales in the log region of the boundary layer and manipulating the overall skin friction. Results will be presented from both large eddy simulations (LES) and wind tunnel experiments. In the experiments, a large parameter space of synthetic jet frequency and amplitude was studied with hot film sensors at select locations behind a pair of synthetic jets to identify the parameters that produce the greatest changes in the skin friction. The LES simulations were performed for a selected set of parameters and provide a more complete evaluation of the interaction between the boundary layer and synthetic jets. Five boundary layer thicknesses downstream, the skin friction between the actuators is generally found to increase, while regions of reduced skin friction persist downstream of the actuators. This pattern is reversed for forcing at low frequency. Overall, the spanwise-averaged skin friction is increased by the forcing, except when forcing at high frequency and low amplitude, for which a net skin friction reduction persists downstream. The physical interpretation of these results will be discussed. The financial support of Airbus is gratefully acknowledged.

  16. Geochemical responses of forested catchments to bark beetle infestation: Evidence from high frequency in-stream electrical conductivity monitoring

    NASA Astrophysics Data System (ADS)

    Su, Ye; Langhammer, Jakub; Jarsjö, Jerker

    2017-07-01

    Under the present conditions of climate warming, there has been an increased frequency of bark beetle-induced tree mortality in Asia, Europe, and North America. This study analyzed seven years of high frequency monitoring of in-stream electrical conductivity (EC), hydro-climatic conditions, and vegetation dynamics in four experimental catchments located in headwaters of the Sumava Mountains, Central Europe. The aim was to determine the effects of insect-induced forest disturbance on in-stream EC at multiple timescales, including annual and seasonal average conditions, daily variability, and responses to individual rainfall events. Results showed increased annual average in-stream EC values in the bark beetle-infected catchments, with particularly elevated EC values during baseflow conditions. This is likely caused by the cumulative loading of soil water and groundwater that discharge excess amounts of substances such as nitrogen and carbon, which are released via the decomposition of the needles, branches, and trunks of dead trees, into streams. Furthermore, we concluded that infestation-induced changes in event-scale dynamics may be largely responsible for the observed shifts in annual average conditions. For example, systematic EC differences between baseflow conditions and event flow conditions in relatively undisturbed catchments were essentially eliminated in catchments that were highly disturbed by bark beetles. These changes developed relatively rapidly after infestation and have long-lasting (decadal-scale) effects, implying that cumulative impacts of increasingly frequent bark beetle outbreaks may contribute to alterations of the hydrogeochemical conditions in more vulnerable mountain regions.

  17. 21 CFR 801.420 - Hearing aid devices; professional and patient labeling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... (ii) History of active drainage from the ear within the previous 90 days. (iii) History of sudden or...). (ii) Frequency response curve. (iii) Average saturation output (HF-Average SSPL 90). (iv) Average full-on gain (HF-Average full-on gain). (v) Reference test gain. (vi) Frequency range. (vii) Total...

  18. 21 CFR 801.420 - Hearing aid devices; professional and patient labeling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... (ii) History of active drainage from the ear within the previous 90 days. (iii) History of sudden or...). (ii) Frequency response curve. (iii) Average saturation output (HF-Average SSPL 90). (iv) Average full-on gain (HF-Average full-on gain). (v) Reference test gain. (vi) Frequency range. (vii) Total...

  19. High Frequency Cut-off Characteristics of Strong Ground Motion Records at Hard Sites, Subduction and Intra-Slab Earthquakes

    NASA Astrophysics Data System (ADS)

    Kagawa, T.; Tsurugi, M.; Irikura, K.

    2006-12-01

    A study on high frequency cut-off characteristics of strong ground motion is presented for subduction and intra- slab earthquakes in Japan. In the latest decade, observed records at hard sites are published by NIED, National Research Institute for Earth Science and Disaster Prevention, and JCOLD, Japan Commission on Large Dams. Especially, KiK-net and K-NET maintained by NIED have been providing high quality data to study high-frequency characteristics. Kagawa et al.(2003) studied the characteristics for crustal earthquakes. We apply the same methodology to the recently observed Japanese records due to subduction and intra-slab earthquakes. We assume a Butterworth type high-cut filter with limit frequency (fmax) and its power factor. These two parameters were derived from Fourier spectrum of observed records fitting the theoretical filter shape. After analyzing the result from view points of site, path, or source effects, an averaged filter model is proposed with its standard deviation. Kagawa et al.(2003) derived average as 8.3 Hz with power factor of 1.92. It is used for strong ground motion simulation. We will propose parameters for the high-cut filters of subduction and intra-slab earthquakes and compare them with the results by Kagawa et al.(2003). REFERENCES: Kagawa et al. (2003), 27JEES (in Japanese with English Abstract).

  20. High-frequency tone-pip-evoked otoacoustic emissions in chinchillas

    NASA Astrophysics Data System (ADS)

    Siegel, Jonathan H.; Charaziak, Karolina K.

    2015-12-01

    We measured otoacoustic emissions in anesthetized chinchillas evoked by short (1 ms) high-frequency (4 kHz) tone-pips (TEOAE) using either a compression or suppression method to separate the stimulus from the emission. Both methods revealed consistent features of the TEOAEs. The main spectral band of the emission generally corresponded to the spectrum of the stimulus, exhibiting a group delay similar to that of SFOAEs [9]. However, a second spectral band below 1.5 kHz, clearly separated from the low-frequency cut-off frequency of the stimulus spectrum, corresponded to an amplitude modulation of the waveform of the TEOAE. The group delay of this low-frequency band was similar to that of the main band near the probe frequency. The average level and group delay of the main band declined monotonically when revealed as the suppressor frequency was raised above the probe. The low-frequency band was more sensitive than the main band to shifts in compound action potential thresholds near the probe frequency induced by acute exposure to intense tones. Taken together, the experiments indicate that both the main and low-frequency bands of the TEOAE are generated primarily near the cochlear region maximally stimulated by the probe, but that significant contributions arise over a large region even more basal.

  1. Characterizing the relative contributions of large vessels to total ocean noise fields: a case study using the Gerry E. Studds Stellwagen Bank National Marine Sanctuary.

    PubMed

    Hatch, Leila; Clark, Christopher; Merrick, Richard; Van Parijs, Sofie; Ponirakis, Dimitri; Schwehr, Kurt; Thompson, Michael; Wiley, David

    2008-11-01

    In 2006, we used the U.S. Coast Guard's Automatic Identification System (AIS) to describe patterns of large commercial ship traffic within a U.S. National Marine Sanctuary located off the coast of Massachusetts. We found that 541 large commercial vessels transited the greater sanctuary 3413 times during the year. Cargo ships, tankers, and tug/tows constituted 78% of the vessels and 82% of the total transits. Cargo ships, tankers, and cruise ships predominantly used the designated Boston Traffic Separation Scheme, while tug/tow traffic was concentrated in the western and northern portions of the sanctuary. We combined AIS data with low-frequency acoustic data from an array of nine autonomous recording units analyzed for 2 months in 2006. Analysis of received sound levels (10-1000 Hz, root-mean-square pressure re 1 microPa +/- SE) averaged 119.5 +/- 0.3 dB at high-traffic locations. High-traffic locations experienced double the acoustic power of less trafficked locations for the majority of the time period analyzed. Average source level estimates (71-141 Hz, root-mean-square pressure re 1 microPa +/- SE) for individual vessels ranged from 158 +/- 2 dB (research vessel) to 186 +/- 2 dB (oil tanker). Tankers were estimated to contribute 2 times more acoustic power to the region than cargo ships, and more than 100 times more than research vessels. Our results indicate that noise produced by large commercial vessels was at levels and within frequencies that warrant concern among managers regarding the ability of endangered whales to maintain acoustic contact within greater sanctuary waters.

  2. Fragmented patterns of flood change across the United States

    PubMed Central

    Hirsch, R. M.; Viglione, A.; Blöschl, G.

    2016-01-01

    Abstract Trends in the peak magnitude, frequency, duration, and volume of frequent floods (floods occurring at an average of two events per year relative to a base period) across the United States show large changes; however, few trends are found to be statistically significant. The multidimensional behavior of flood change across the United States can be described by four distinct groups, with streamgages experiencing (1) minimal change, (2) increasing frequency, (3) decreasing frequency, or (4) increases in all flood properties. Yet group membership shows only weak geographic cohesion. Lack of geographic cohesion is further demonstrated by weak correlations between the temporal patterns of flood change and large‐scale climate indices. These findings reveal a complex, fragmented pattern of flood change that, therefore, clouds the ability to make meaningful generalizations about flood change across the United States. PMID:27917010

  3. The Persistent Effects of Minimum Legal Drinking Age Laws on Drinking Patterns Later in Life

    PubMed Central

    Plunk, Andrew D.; Cavazos-Rehg, Patricia; Bierut, Laura J.; Grucza, Richard A.

    2012-01-01

    Background Exposure to permissive minimum legal drinking age (MLDA) laws not only affects young adults in the short term, but also later in life; for example, individuals who could legally purchase alcohol before age 21 are more likely to suffer from drinking problems as older adults, long after the laws had been changed. However, it is not known how permissive MLDA exposure affects specific drinking behavior. This present study uses changes in MLDA laws during the 1970s and 1980s as a natural experiment to investigate the potential impact of permissive MLDA exposure on average alcohol consumption, frequency of drinking, and on patterns of binging and more moderate, non-heavy drinking. Methods Policy exposure data were paired with alcohol use data from the 1991–1992 National Longitudinal Alcohol Epidemiologic Survey and the 2001–2002 National Epidemiologic Survey on Alcohol and Related Conditions. Past-year drinkers born between 1949 and 1972 (n = 24,088) were included. Average daily intake, overall drinking frequency, and frequency of both binge episodes (5+ drinks) and days without a binge episode (non-heavy drinking) for the previous year at the time of interview were tracked for each respondent. Results Exposure to permissive MLDAs was associated with higher odds to report frequent binging and lower odds to report any moderate drinking; these associations were largely driven by men and those who did not attend college. Overall drinking frequency and average alcohol consumption were not affected by MLDA exposure. Conclusions The ability to legally purchase alcohol before age 21 does not seem to increase overall drinking frequency, but our findings suggest that it is associated with certain types of problematic drinking behaviors that persist into later adulthood: more frequent binge episodes and less frequent non-heavy drinking. We also propose that policymakers and critics should not focus on college drinking when evaluating the effectiveness of MLDAs. PMID:23347177

  4. Average diurnal variation of summer lightning over the Florida peninsula

    NASA Technical Reports Server (NTRS)

    Maier, L. M.; Krider, E. P.; Maier, M. W.

    1984-01-01

    Data derived from a large network of electric field mills are used to determine the average diurnal variation of lightning in a Florida seacoast environment. The variation at the NASA Kennedy Space Center and the Cape Canaveral Air Force Station area is compared with standard weather observations of thunder, and the variation of all discharges in this area is compared with the statistics of cloud-to-ground flashes over most of the South Florida peninsula and offshore waters. The results show average diurnal variations that are consistent with statistics of thunder start times and the times of maximum thunder frequency, but that the actual lightning tends to stop one to two hours before the recorded thunder. The variation is also consistent with previous determinations of the times of maximum rainfall and maximum rainfall rate.

  5. Wave-current generated turbulence over hemisphere bottom roughness

    NASA Astrophysics Data System (ADS)

    Barman, Krishnendu; Roy, Sayahnya; Debnath, Koustuv

    2018-03-01

    The present paper explores the effect of wave-current interaction on the turbulence characteristics and the distribution of eddy structure over artificially crammed rough bed prepared with hemispheres. The effect of the surface wave on temporal and spatial-averaged mean velocity, intensity, Reynolds shear stress over, within cavity and above the hemispherical bed are discussed. Detailed three-dimensional time series velocity components were measured in a tilting flume using 3-D Micro-Acoustic Doppler Velocimeter (ADV) at a Reynolds number, 62 × 103. This study reports the fractional contributions of burst-sweep cycles dominating the total shear stress near hemispherical rough surface both for current only flow as well as for wave-induced cases. Wavelet analysis of the fluctuating velocity signal shows that the superimposed wave of frequency 1 Hz is capable of modulating the energy containing a range of velocity fluctuations at the mid-depth of the cavity region (formed due to the crammed arrangement of the hemispheres). As a result, the large-scale eddies (with large values of wavelet coefficients) are concentrated at a pseudo-frequency which is equal to the wave oscillating frequency. On the other hand, it is observed that the higher wave frequency (2 Hz) is incapable of modulating the eddy structures at that particular region.

  6. On modal cross-coupling in the asymptotic modal limit

    NASA Astrophysics Data System (ADS)

    Culver, Dean; Dowell, Earl

    2018-03-01

    The conditions under which significant modal cross-coupling occurs in dynamical systems responding to high-frequency, broadband forcing that excites many modes is studied. The modal overlap factor plays a key role in the analysis of these systems as the modal density (the ratio of number of modes to the frequency bandwidth) becomes large. The modal overlap factor is effectively the ratio of the width of a resonant peak (the damping ratio times the resonant frequency) to the average frequency interval between resonant peaks (or rather, the inverse of the modal density). It is shown that this parameter largely determines whether substantial modal cross-coupling occurs in a given system's response. Here, two prototypical systems are considered. The first is a simple rectangular plate whose significant modal cross-coupling is the exception rather than the norm. The second is a pair of rectangular plates attached at a point where significant modal cross-coupling is more likely to occur. We show that, for certain cases of modal density and damping, non-negligible cross coupling occurs in both systems. Under similar circumstances, the constraint force between the two plates in the latter system becomes broadband. The implications of this for using Asymptotic Modal Analysis (AMA) in multi-component systems are discussed.

  7. Quantitative analysis of a frequency-domain nonlinearity indicator.

    PubMed

    Reichman, Brent O; Gee, Kent L; Neilsen, Tracianne B; Miller, Kyle G

    2016-05-01

    In this paper, quantitative understanding of a frequency-domain nonlinearity indicator is developed. The indicator is derived from an ensemble-averaged, frequency-domain version of the generalized Burgers equation, which can be rearranged in order to directly compare the effects of nonlinearity, absorption, and geometric spreading on the pressure spectrum level with frequency and distance. The nonlinear effect is calculated using pressure-squared-pressure quadspectrum. Further theoretical development has given an expression for the role of the normalized quadspectrum, referred to as Q/S by Morfey and Howell [AIAA J. 19, 986-992 (1981)], in the spatial rate of change of the pressure spectrum level. To explore this finding, an investigation of the change in level for initial sinusoids propagating as plane waves through inviscid and thermoviscous media has been conducted. The decibel change with distance, calculated through Q/S, captures the growth and decay of the harmonics and indicates that the most significant changes in level occur prior to sawtooth formation. At large distances, the inviscid case results in a spatial rate of change that is uniform across all harmonics. For thermoviscous media, large positive nonlinear gains are observed but offset by absorption, which leads to a greater overall negative spatial rate of change for higher harmonics.

  8. High-power Yb-fiber comb with feed-forward control of nonlinear-polarization-rotation mode-locking and large-mode-area fiber amplification.

    PubMed

    Yan, Ming; Li, Wenxue; Yang, Kangwen; Zhou, Hui; Shen, Xuling; Zhou, Qian; Ru, Qitian; Bai, Dongbi; Zeng, Heping

    2012-05-01

    We report on a simple scheme to precisely control carrier-envelope phase of a nonlinear-polarization-rotation mode-locked self-started Yb-fiber laser system with an average output power of ∼7  W and a pulse width of 130 fs. The offset frequency was locked to the repetition rate of ∼64.5  MHz with a relative linewidth of ∼1.4  MHz by using a self-referenced feed-forward scheme based on an acousto-optic frequency shifter. The phase noise and timing jitter were calculated to be 370 mrad and 120 as, respectively.

  9. Seasonal variations of volcanic eruption frequencies

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    Do volcanic eruptions have a tendency to occur more frequently in the months of May and June? Some past evidence suggests that they do. The present study, based on the new eruption catalog of Simkin et al.(1981), investigates the monthly statistics of the largest eruptions, grouped according to explosive magnitude, geographical latitude, and year. At the 2-delta level, no month-to-month variations in eruption frequency are found to be statistically significant. Examination of previously published month-to-month variations suggests that they, too, are not statistically significant. It is concluded that volcanism, at least averaged over large portions of the globe, is probably not periodic on a seasonal or annual time scale.

  10. Spectral characteristics of earth-space paths at 2 and 30 FHz

    NASA Technical Reports Server (NTRS)

    Baxter, R. A.; Hodge, D. B.

    1978-01-01

    Spectral characteristics of 2 and 30 GHz signals received from the Applications Technology Satellite-6 (ATS-6) are analyzed in detail at elevation angles ranging from 0 deg to 44 deg. The spectra of the received signals are characterized by slopes and break frequencies. Statistics of these parameters are presented as probability density functions. Dependence of the spectral characteristics on elevation angle is investigated. The 2 and 30 GHz spectral shapes are contrasted through the use of scatter diagrams. The results are compared with those predicted from turbulence theory. The average spectral slopes are in close agreement with theory, although the departure from the average value at any given elevation angle is quite large.

  11. Bridgman growth of large-aperture yttrium calcium oxyborate crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Anhua, E-mail: wuanhua@mail.sic.ac.cn; Jiang, Linwen; Qian, Guoxing

    2012-09-15

    Highlights: ► YCOB is a novel non-linear optical crystal possessing good thermal, mechanical and nonlinear optical properties. ► Large size crystal growth is key technology question for YCOB crystal. ► YCOB crystals 3 in. in diameter were grown with modified vertical Bridgman method. ► It is a more effective growth method to obtain large size and high quality YCOB crystal. -- Abstract: Large-aperture yttrium calcium oxyborate YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) crystals with 3 in. in diameter were grown with modified vertical Bridgman method, and the large crystal plate (63 mm × 68 mm × 20 mm) was harvested formore » high-average power frequency conversion system. The crack, facet growth and spiral growth can be effectively controlled in the as-grown crystal, and Bridgman method displays more effective in obtain large size and high quality YCOB crystal plate than Czochralski technique.« less

  12. The effects of intraspecific competition and stabilizing selection on a polygenic trait.

    PubMed Central

    Bürger, Reinhard; Gimelfarb, Alexander

    2004-01-01

    The equilibrium properties of an additive multilocus model of a quantitative trait under frequency- and density-dependent selection are investigated. Two opposing evolutionary forces are assumed to act: (i) stabilizing selection on the trait, which favors genotypes with an intermediate phenotype, and (ii) intraspecific competition mediated by that trait, which favors genotypes whose effect on the trait deviates most from that of the prevailing genotypes. Accordingly, fitnesses of genotypes have a frequency-independent component describing stabilizing selection and a frequency- and density-dependent component modeling competition. We study how the equilibrium structure, in particular, number, degree of polymorphism, and genetic variance of stable equilibria, is affected by the strength of frequency dependence, and what role the number of loci, the amount of recombination, and the demographic parameters play. To this end, we employ a statistical and numerical approach, complemented by analytical results, and explore how the equilibrium properties averaged over a large number of genetic systems with a given number of loci and average amount of recombination depend on the ecological and demographic parameters. We identify two parameter regions with a transitory region in between, in which the equilibrium properties of genetic systems are distinctively different. These regions depend on the strength of frequency dependence relative to pure stabilizing selection and on the demographic parameters, but not on the number of loci or the amount of recombination. We further study the shape of the fitness function observed at equilibrium and the extent to which the dynamics in this model are adaptive, and we present examples of equilibrium distributions of genotypic values under strong frequency dependence. Consequences for the maintenance of genetic variation, the detection of disruptive selection, and models of sympatric speciation are discussed. PMID:15280253

  13. Increased Anatomical Specificity of Neuromodulation via Modulated Focused Ultrasound

    PubMed Central

    Mehić, Edin; Xu, Julia M.; Caler, Connor J.; Coulson, Nathaniel K.; Moritz, Chet T.; Mourad, Pierre D.

    2014-01-01

    Transcranial ultrasound can alter brain function transiently and nondestructively, offering a new tool to study brain function now and inform future therapies. Previous research on neuromodulation implemented pulsed low-frequency (250–700 kHz) ultrasound with spatial peak temporal average intensities (ISPTA) of 0.1–10 W/cm2. That work used transducers that either insonified relatively large volumes of mouse brain (several mL) with relatively low-frequency ultrasound and produced bilateral motor responses, or relatively small volumes of brain (on the order of 0.06 mL) with relatively high-frequency ultrasound that produced unilateral motor responses. This study seeks to increase anatomical specificity to neuromodulation with modulated focused ultrasound (mFU). Here, ‘modulated’ means modifying a focused 2-MHz carrier signal dynamically with a 500-kHz signal as in vibro-acoustography, thereby creating a low-frequency but small volume (approximately 0.015 mL) source of neuromodulation. Application of transcranial mFU to lightly anesthetized mice produced various motor movements with high spatial selectivity (on the order of 1 mm) that scaled with the temporal average ultrasound intensity. Alone, mFU and focused ultrasound (FUS) each induced motor activity, including unilateral motions, though anatomical location and type of motion varied. Future work should include larger animal models to determine the relative efficacy of mFU versus FUS. Other studies should determine the biophysical processes through which they act. Also of interest is exploration of the potential research and clinical applications for targeted, transcranial neuromodulation created by modulated focused ultrasound, especially mFU’s ability to produce compact sources of ultrasound at the very low frequencies (10–100s of Hertz) that are commensurate with the natural frequencies of the brain. PMID:24504255

  14. Neural pulse frequency modulation of an exponentially correlated Gaussian process

    NASA Technical Reports Server (NTRS)

    Hutchinson, C. E.; Chon, Y.-T.

    1976-01-01

    The effect of NPFM (Neural Pulse Frequency Modulation) on a stationary Gaussian input, namely an exponentially correlated Gaussian input, is investigated with special emphasis on the determination of the average number of pulses in unit time, known also as the average frequency of pulse occurrence. For some classes of stationary input processes where the formulation of the appropriate multidimensional Markov diffusion model of the input-plus-NPFM system is possible, the average impulse frequency may be obtained by a generalization of the approach adopted. The results are approximate and numerical, but are in close agreement with Monte Carlo computer simulation results.

  15. Temporal-frequency tuning of cross-orientation suppression in the cat striate cortex.

    PubMed

    Allison, J D; Smith, K R; Bonds, A B

    2001-01-01

    A sinusoidal mask grating oriented orthogonally to and superimposed onto an optimally oriented base grating reduces a cortical neuron's response amplitude. The spatial selectivity of cross-orientation suppression (XOR) has been described, so for this paper we investigated the temporal properties of XOR. We recorded from single striate cortical neurons (n = 72) in anesthetized and paralyzed cats. After quantifying the spatial and temporal characteristics of each cell's excitatory response to a base grating, we measured the temporal-frequency tuning of XOR by systematically varying the temporal frequency of a mask grating placed at a null orientation outside of the cell's excitatory orientation domain. The average preferred temporal frequency of the excitatory response of the neurons in our sample was 3.8 (+/- 1.5 S.D.) Hz. The average cutoff frequency for the sample was 16.3 (+/- 1.7) Hz. The average preferred temporal frequency (7.0 +/- 2.6 Hz) and cutoff frequency (20.4 +/- 6.9 Hz) of the XOR were significantly higher. The differences averaged 1.1 (+/- 0.6) octaves for the peaks and 0.3 (+/- 0.4) octaves for the cutoffs. The XOR mechanism's preference for high temporal frequencies suggests a possible extrastriate origin for the effect and could help explain the low-pass temporal-frequency response profile displayed by most striate cortical neurons.

  16. Future frequencies of extreme weather events in the National Wildlife Refuges of the conterminous U.S.

    USGS Publications Warehouse

    Martinuzzi, Sebastian; Allstadt, Andrew J.; Bateman, Brooke L.; Heglund, Patricia J.; Pidgeon, Anna M.; Thogmartin, Wayne E.; Vavrus, Stephen J.; Radeloff, Volker C.

    2016-01-01

    Climate change is a major challenge for managers of protected areas world-wide, and managers need information about future climate conditions within protected areas. Prior studies of climate change effects in protected areas have largely focused on average climatic conditions. However, extreme weather may have stronger effects on wildlife populations and habitats than changes in averages. Our goal was to quantify future changes in the frequency of extreme heat, drought, and false springs, during the avian breeding season, in 415 National Wildlife Refuges in the conterminous United States. We analyzed spatially detailed data on extreme weather frequencies during the historical period (1950–2005) and under different scenarios of future climate change by mid- and late-21st century. We found that all wildlife refuges will likely experience substantial changes in the frequencies of extreme weather, but the types of projected changes differed among refuges. Extreme heat is projected to increase dramatically in all wildlife refuges, whereas changes in droughts and false springs are projected to increase or decrease on a regional basis. Half of all wildlife refuges are projected to see increases in frequency (> 20% higher than the current rate) in at least two types of weather extremes by mid-century. Wildlife refuges in the Southwest and Pacific Southwest are projected to exhibit the fastest rates of change, and may deserve extra attention. Climate change adaptation strategies in protected areas, such as the U.S. wildlife refuges, may need to seriously consider future changes in extreme weather, including the considerable spatial variation of these changes.

  17. Numerical study on the instabilities in H2-air rotating detonation engines

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Zhou, Weijiang; Yang, Yunjun; Liu, Zhou; Wang, Jianping

    2018-04-01

    Numerical simulations of rotating detonation engines (RDEs) are performed using two-dimensional Euler equations and a detailed chemistry model of H2-air. Two propagation modes, the one-wave mode and the two-wave mode, are observed in the RDEs. The instabilities of the RDEs are studied and analyzed specifically. A low frequency instability and a high frequency instability are found from the pressure-time trace measured at a fixed location and the average density-time trace of the RDEs. For the low frequency instability, the pressure peak of the pressure-time trace oscillates with a low frequency while the average density is stable. The deviation between the measurement location and the location of the detonation wave results in the low frequency instability. For the high frequency instability, the average density of the RDEs oscillates regularly with a single frequency while the pressure oscillates irregularly with several frequencies. The oscillation of the detonation wave height results in the high frequency instability. Furthermore, the low frequency instability and the high frequency instability both occur in the one-wave and two-wave mode RDEs.

  18. Reynolds number effects in combustion noise

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.

    1981-01-01

    Acoustic emission spectra have been obtained for non-premixed turbulent combustion from two small diameter laboratory gas burners, two commercial gas burners and a large gas burner in the firebox of a Babcock-Wilcox Boiler (50,000 lb steam/hr). The changes in burner size and firing rate represent changes in Reynolds number and changes in air/fuel ratio represent departure from stoichiometric proportions. The combustion efficiency was measured independently through gas analysis. The acoustic spectra obtained from the various burners exhibit a persistent shape over the Reynolds number range of 8200-82,000. The spectra were analyzed for identification of a predictable frequency domain that is most responsive to, and readily correlated with, combustion efficiency. A simple parameter (consisting of the ratio of the average acoustic power output in the most responsive frequency bandwidth to the acoustic power level of the loudest frequency) is proposed whose value increases significantly and unmistakably as combustion efficiency approaches 100%. The dependence of the most responsive frequency domain on the various Reynolds numbers associated with turbulent jets is discussed.

  19. A maximum likelihood algorithm for genome mapping of cytogenetic loci from meiotic configuration data.

    PubMed Central

    Reyes-Valdés, M H; Stelly, D M

    1995-01-01

    Frequencies of meiotic configurations in cytogenetic stocks are dependent on chiasma frequencies in segments defined by centromeres, breakpoints, and telomeres. The expectation maximization algorithm is proposed as a general method to perform maximum likelihood estimations of the chiasma frequencies in the intervals between such locations. The estimates can be translated via mapping functions into genetic maps of cytogenetic landmarks. One set of observational data was analyzed to exemplify application of these methods, results of which were largely concordant with other comparable data. The method was also tested by Monte Carlo simulation of frequencies of meiotic configurations from a monotelodisomic translocation heterozygote, assuming six different sample sizes. The estimate averages were always close to the values given initially to the parameters. The maximum likelihood estimation procedures can be extended readily to other kinds of cytogenetic stocks and allow the pooling of diverse cytogenetic data to collectively estimate lengths of segments, arms, and chromosomes. Images Fig. 1 PMID:7568226

  20. First Principles Modeling of RFQ Cooling System and Resonant Frequency Responses for Fermilab’s PIP-II Injector Test

    DOE PAGES

    Edelen, J. P.; Edelen, A. L.; Bowring, D.; ...

    2016-12-23

    In this study we develop an a priori method for simulating dynamic resonant frequency and temperature responses in a radio frequency quadrupole (RFQ) and its associated water-based cooling system respectively. Our model provides a computationally efficient means to evaluate the transient response of the RFQ over a large range of system parameters. The model was constructed prior to the delivery of the PIP-II Injector Test RFQ and was used to aid in the design of the water-based cooling system, data acquisition system, and resonance control system. Now that the model has been validated with experimental data, it can confidently bemore » used to aid in the design of future RFQ resonance controllers and their associated water-based cooling systems. Finally, without any empirical fitting, it has demonstrated the ability to predict absolute temperature and frequency changes to 11% accuracy on average, and relative changes to 7% accuracy.« less

  1. Radio-Frequency-Controlled Cold Collisions and Universal Properties of Unitary Bose Gases

    NASA Astrophysics Data System (ADS)

    Ding, Yijue

    This thesis investigates two topics: ultracold atomic collisions in a radio-frequency field and universal properties of a degenerate unitary Bose gas. One interesting point of the unitary Bose gas is that the system has only one length scale, that is, the average interparticle distance. This single parameter determines all properties of the gas, which is called the universality of the system. We first introduce a renormalized contact interaction to extend the validity of the zero-range interaction to large scattering lengths. Then this renormalized interaction is applied to many-body theories to determined those universal relations of the system. From the few-body perspective, we discuss the scattering between atoms in a single-color radio-frequency field. Our motivation is proposing the radio-frequency field as an effective tool to control interactions between cold atoms. Such a technique may be useful in future experiments such as creating phase transitions in spinor condensates. We also discuss the formation of ultracold molecules using radio-freqency fields from a time-dependent approach.

  2. UHF (Ultra-High-Frequency) Propagation in Vegetative Media.

    DTIC Science & Technology

    1980-04-01

    Y V /ik) where k = 2A/X is the wave number and the asterisk indicates complex conjugate. In order to obtain useful results for average values that are...easy to make an accurate estimation of the expected effects under one set of conditions on the basis of experimental observa- tions carried out under... systems propagating horizontally through vegetation. The large quantity A-13 of measured data demonstrates the complex effects upon path loss of irregu

  3. Polymorphic Alu Insertion/Deletion in Different Caste and Tribal Populations from South India.

    PubMed

    Chinniah, Rathika; Vijayan, Murali; Thirunavukkarasu, Manikandan; Mani, Dhivakar; Raju, Kamaraj; Ravi, Padma Malini; Sivanadham, Ramgopal; C, Kandeepan; N, Mahalakshmi; Karuppiah, Balakrishnan

    2016-01-01

    Seven human-specific Alu markers were studied in 574 unrelated individuals from 10 endogamous groups and 2 hill tribes of Tamil Nadu and Kerala states. DNA was isolated, amplified by PCR-SSP, and subjected to agarose gel electrophoresis, and genotypes were assigned for various Alu loci. Average heterozygosity among caste populations was in the range of 0.292-0.468. Among tribes, the average heterozygosity was higher for Paliyan (0.3759) than for Kani (0.2915). Frequency differences were prominent in all loci studied except Alu CD4. For Alu CD4, the frequency was 0.0363 in Yadavas, a traditional pastoral and herd maintaining population, and 0.2439 in Narikuravars, a nomadic gypsy population. The overall genetic difference (Gst) of 12 populations (castes and tribes) studied was 3.6%, which corresponds to the Gst values of 3.6% recorded earlier for Western Asian populations. Thus, our study confirms the genetic similarities between West Asian populations and South Indian castes and tribes and supported the large scale coastal migrations from Africa into India through West Asia. However, the average genetic difference (Gst) of Kani and Paliyan tribes with other South Indian tribes studied earlier was 8.3%. The average Gst of combined South and North Indian Tribes (CSNIT) was 9.5%. Neighbor joining tree constructed showed close proximity of Kani and Paliyan tribal groups to the other two South Indian tribes, Toda and Irula of Nilgiri hills studied earlier. Further, the analysis revealed the affinities among populations and confirmed the presence of North and South India specific lineages. Our findings have documented the highly diverse (micro differentiated) nature of South Indian tribes, predominantly due to isolation, than the endogamous population groups of South India. Thus, our study firmly established the genetic relationship of South Indian castes and tribes and supported the proposed large scale ancestral migrations from Africa, particularly into South India through West Asian corridor.

  4. Polymorphic Alu Insertion/Deletion in Different Caste and Tribal Populations from South India

    PubMed Central

    Chinniah, Rathika; Vijayan, Murali; Thirunavukkarasu, Manikandan; Mani, Dhivakar; Raju, Kamaraj; Ravi, Padma Malini; Sivanadham, Ramgopal; C, Kandeepan; N, Mahalakshmi; Karuppiah, Balakrishnan

    2016-01-01

    Seven human-specific Alu markers were studied in 574 unrelated individuals from 10 endogamous groups and 2 hill tribes of Tamil Nadu and Kerala states. DNA was isolated, amplified by PCR-SSP, and subjected to agarose gel electrophoresis, and genotypes were assigned for various Alu loci. Average heterozygosity among caste populations was in the range of 0.292–0.468. Among tribes, the average heterozygosity was higher for Paliyan (0.3759) than for Kani (0.2915). Frequency differences were prominent in all loci studied except Alu CD4. For Alu CD4, the frequency was 0.0363 in Yadavas, a traditional pastoral and herd maintaining population, and 0.2439 in Narikuravars, a nomadic gypsy population. The overall genetic difference (Gst) of 12 populations (castes and tribes) studied was 3.6%, which corresponds to the Gst values of 3.6% recorded earlier for Western Asian populations. Thus, our study confirms the genetic similarities between West Asian populations and South Indian castes and tribes and supported the large scale coastal migrations from Africa into India through West Asia. However, the average genetic difference (Gst) of Kani and Paliyan tribes with other South Indian tribes studied earlier was 8.3%. The average Gst of combined South and North Indian Tribes (CSNIT) was 9.5%. Neighbor joining tree constructed showed close proximity of Kani and Paliyan tribal groups to the other two South Indian tribes, Toda and Irula of Nilgiri hills studied earlier. Further, the analysis revealed the affinities among populations and confirmed the presence of North and South India specific lineages. Our findings have documented the highly diverse (micro differentiated) nature of South Indian tribes, predominantly due to isolation, than the endogamous population groups of South India. Thus, our study firmly established the genetic relationship of South Indian castes and tribes and supported the proposed large scale ancestral migrations from Africa, particularly into South India through West Asian corridor. PMID:27315142

  5. Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments.

    PubMed

    Knapp, Alan K; Hoover, David L; Wilcox, Kevin R; Avolio, Meghan L; Koerner, Sally E; La Pierre, Kimberly J; Loik, Michael E; Luo, Yiqi; Sala, Osvaldo E; Smith, Melinda D

    2015-02-03

    Climate change is intensifying the hydrologic cycle and is expected to increase the frequency of extreme wet and dry years. Beyond precipitation amount, extreme wet and dry years may differ in other ways, such as the number of precipitation events, event size, and the time between events. We assessed 1614 long-term (100 year) precipitation records from around the world to identify key attributes of precipitation regimes, besides amount, that distinguish statistically extreme wet from extreme dry years. In general, in regions where mean annual precipitation (MAP) exceeded 1000 mm, precipitation amounts in extreme wet and dry years differed from average years by ~40% and 30%, respectively. The magnitude of these deviations increased to >60% for dry years and to >150% for wet years in arid regions (MAP<500 mm). Extreme wet years were primarily distinguished from average and extreme dry years by the presence of multiple extreme (large) daily precipitation events (events >99th percentile of all events); these occurred twice as often in extreme wet years compared to average years. In contrast, these large precipitation events were rare in extreme dry years. Less important for distinguishing extreme wet from dry years were mean event size and frequency, or the number of dry days between events. However, extreme dry years were distinguished from average years by an increase in the number of dry days between events. These precipitation regime attributes consistently differed between extreme wet and dry years across 12 major terrestrial ecoregions from around the world, from deserts to the tropics. Thus, we recommend that climate change experiments and model simulations incorporate these differences in key precipitation regime attributes, as well as amount into treatments. This will allow experiments to more realistically simulate extreme precipitation years and more accurately assess the ecological consequences. © 2015 John Wiley & Sons Ltd.

  6. A comparative study on the frequency effects of the electrical characteristics of the pulsed dielectric barrier discharge in He/O{sub 2} and in Ar/O{sub 2} at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Guangsheng; Tan, Zhenyu, E-mail: tzy@sdu.edu.cn; Pan, Jie

    In this work, a comparative study on the frequency effects of the electrical characteristics of the pulsed dielectric barrier discharges in He/O{sub 2} and in Ar/O{sub 2} at atmospheric pressure has been performed by means of the numerical simulation based on a 1-D fluid model at frequencies below 100 kHz. The frequency dependences of the characteristic quantities of the discharges in the two gases have been systematically calculated and analyzed under the oxygen concentrations below 2%. The characteristic quantities include the discharge current density, the averaged electron density, the electric field, and the averaged electron temperature. Especially, the frequency effects onmore » the averaged particle densities of the reactive species have also been calculated. This work gives the following significant results. For the two gases, there are two bipolar discharges in one period of applied voltage pulse under the considered frequency range and oxygen concentrations, as occurred in the pure noble gases. The frequency affects the two discharges in He/O{sub 2}, but in Ar/O{sub 2}, it induces a strong effect only on the first discharge. For the first discharge in each gas, there is a characteristic frequency at which the characteristic quantities reach their respective minimum, and this frequency appears earlier for Ar/O{sub 2}. For the second discharge in Ar/O{sub 2}, the averaged electron density presents a slight variation with the frequency. In addition, the discharge in Ar/O{sub 2} is strong and the averaged electron temperature is low, compared to those in He/O{sub 2.} The total averaged particle density of the reactive species in Ar/O{sub 2} is larger than those in He/O{sub 2} by about one order of magnitude.« less

  7. Examination of the neighborhood activation theory in normal and hearing-impaired listeners.

    PubMed

    Dirks, D D; Takayanagi, S; Moshfegh, A; Noffsinger, P D; Fausti, S A

    2001-02-01

    Experiments were conducted to examine the effects of lexical information on word recognition among normal hearing listeners and individuals with sensorineural hearing loss. The lexical factors of interest were incorporated in the Neighborhood Activation Model (NAM). Central to this model is the concept that words are recognized relationally in the context of other phonemically similar words. NAM suggests that words in the mental lexicon are organized into similarity neighborhoods and the listener is required to select the target word from competing lexical items. Two structural characteristics of similarity neighborhoods that influence word recognition have been identified; "neighborhood density" or the number of phonemically similar words (neighbors) for a particular target item and "neighborhood frequency" or the average frequency of occurrence of all the items within a neighborhood. A third lexical factor, "word frequency" or the frequency of occurrence of a target word in the language, is assumed to optimize the word recognition process by biasing the system toward choosing a high frequency over a low frequency word. Three experiments were performed. In the initial experiments, word recognition for consonant-vowel-consonant (CVC) monosyllables was assessed in young normal hearing listeners by systematically partitioning the items into the eight possible lexical conditions that could be created by two levels of the three lexical factors, word frequency (high and low), neighborhood density (high and low), and average neighborhood frequency (high and low). Neighborhood structure and word frequency were estimated computationally using a large, on-line lexicon-based Webster's Pocket Dictionary. From this program 400 highly familiar, monosyllables were selected and partitioned into eight orthogonal lexical groups (50 words/group). The 400 words were presented randomly to normal hearing listeners in speech-shaped noise (Experiment 1) and "in quiet" (Experiment 2) as well as to an elderly group of listeners with sensorineural hearing loss in the speech-shaped noise (Experiment 3). The results of three experiments verified predictions of NAM in both normal hearing and hearing-impaired listeners. In each experiment, words from low density neighborhoods were recognized more accurately than those from high density neighborhoods. The presence of high frequency neighbors (average neighborhood frequency) produced poorer recognition performance than comparable conditions with low frequency neighbors. Word frequency was found to have a highly significant effect on word recognition. Lexical conditions with high word frequencies produced higher performance scores than conditions with low frequency words. The results supported the basic tenets of NAM theory and identified both neighborhood structural properties and word frequency as significant lexical factors affecting word recognition when listening in noise and "in quiet." The results of the third experiment permit extension of NAM theory to individuals with sensorineural hearing loss. Future development of speech recognition tests should allow for the effects of higher level cognitive (lexical) factors on lower level phonemic processing.

  8. Using high-resolution variant frequencies to empower clinical genome interpretation.

    PubMed

    Whiffin, Nicola; Minikel, Eric; Walsh, Roddy; O'Donnell-Luria, Anne H; Karczewski, Konrad; Ing, Alexander Y; Barton, Paul J R; Funke, Birgit; Cook, Stuart A; MacArthur, Daniel; Ware, James S

    2017-10-01

    PurposeWhole-exome and whole-genome sequencing have transformed the discovery of genetic variants that cause human Mendelian disease, but discriminating pathogenic from benign variants remains a daunting challenge. Rarity is recognized as a necessary, although not sufficient, criterion for pathogenicity, but frequency cutoffs used in Mendelian analysis are often arbitrary and overly lenient. Recent very large reference datasets, such as the Exome Aggregation Consortium (ExAC), provide an unprecedented opportunity to obtain robust frequency estimates even for very rare variants.MethodsWe present a statistical framework for the frequency-based filtering of candidate disease-causing variants, accounting for disease prevalence, genetic and allelic heterogeneity, inheritance mode, penetrance, and sampling variance in reference datasets.ResultsUsing the example of cardiomyopathy, we show that our approach reduces by two-thirds the number of candidate variants under consideration in the average exome, without removing true pathogenic variants (false-positive rate<0.001).ConclusionWe outline a statistically robust framework for assessing whether a variant is "too common" to be causative for a Mendelian disorder of interest. We present precomputed allele frequency cutoffs for all variants in the ExAC dataset.

  9. Regional HLA Differences in Poland and Their Effect on Stem Cell Donor Registry Planning

    PubMed Central

    Schmidt, Alexander H.; Solloch, Ute V.; Pingel, Julia; Sauter, Jürgen; Böhme, Irina; Cereb, Nezih; Dubicka, Kinga; Schumacher, Stephan; Wachowiak, Jacek; Ehninger, Gerhard

    2013-01-01

    Regional HLA frequency differences are of potential relevance for the optimization of stem cell donor recruitment. We analyzed a very large sample (n = 123,749) of registered Polish stem cell donors. Donor figures by 1-digit postal code regions ranged from n = 5,243 (region 9) to n = 19,661 (region 8). Simulations based on region-specific haplotype frequencies showed that donor recruitment in regions 0, 2, 3 and 4 (mainly located in the south-eastern part of Poland) resulted in an above-average increase of matching probabilities for Polish patients. Regions 1, 7, 8, 9 (mainly located in the northern part of Poland) showed an opposite behavior. However, HLA frequency differences between regions were generally small. A strong indication for regionally focused donor recruitment efforts can, therefore, not be derived from our analyses. Results of haplotype frequency estimations showed sample size effects even for sizes between n≈5,000 and n≈20,000. This observation deserves further attention as most published haplotype frequency estimations are based on much smaller samples. PMID:24069237

  10. Response of the Water Level in a Well to Earth Tides and Atmospheric Loading Under Unconfined Conditions

    NASA Astrophysics Data System (ADS)

    Rojstaczer, Stuart; Riley, Francis S.

    1990-08-01

    The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q'u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q'u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q'u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q'u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.

  11. Rare and low-frequency coding variants alter human adult height.

    PubMed

    Marouli, Eirini; Graff, Mariaelisa; Medina-Gomez, Carolina; Lo, Ken Sin; Wood, Andrew R; Kjaer, Troels R; Fine, Rebecca S; Lu, Yingchang; Schurmann, Claudia; Highland, Heather M; Rüeger, Sina; Thorleifsson, Gudmar; Justice, Anne E; Lamparter, David; Stirrups, Kathleen E; Turcot, Valérie; Young, Kristin L; Winkler, Thomas W; Esko, Tõnu; Karaderi, Tugce; Locke, Adam E; Masca, Nicholas G D; Ng, Maggie C Y; Mudgal, Poorva; Rivas, Manuel A; Vedantam, Sailaja; Mahajan, Anubha; Guo, Xiuqing; Abecasis, Goncalo; Aben, Katja K; Adair, Linda S; Alam, Dewan S; Albrecht, Eva; Allin, Kristine H; Allison, Matthew; Amouyel, Philippe; Appel, Emil V; Arveiler, Dominique; Asselbergs, Folkert W; Auer, Paul L; Balkau, Beverley; Banas, Bernhard; Bang, Lia E; Benn, Marianne; Bergmann, Sven; Bielak, Lawrence F; Blüher, Matthias; Boeing, Heiner; Boerwinkle, Eric; Böger, Carsten A; Bonnycastle, Lori L; Bork-Jensen, Jette; Bots, Michiel L; Bottinger, Erwin P; Bowden, Donald W; Brandslund, Ivan; Breen, Gerome; Brilliant, Murray H; Broer, Linda; Burt, Amber A; Butterworth, Adam S; Carey, David J; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Chen, Yii-Der Ida; Chowdhury, Rajiv; Christensen, Cramer; Chu, Audrey Y; Cocca, Massimiliano; Collins, Francis S; Cook, James P; Corley, Janie; Galbany, Jordi Corominas; Cox, Amanda J; Cuellar-Partida, Gabriel; Danesh, John; Davies, Gail; de Bakker, Paul I W; de Borst, Gert J; de Denus, Simon; de Groot, Mark C H; de Mutsert, Renée; Deary, Ian J; Dedoussis, George; Demerath, Ellen W; den Hollander, Anneke I; Dennis, Joe G; Di Angelantonio, Emanuele; Drenos, Fotios; Du, Mengmeng; Dunning, Alison M; Easton, Douglas F; Ebeling, Tapani; Edwards, Todd L; Ellinor, Patrick T; Elliott, Paul; Evangelou, Evangelos; Farmaki, Aliki-Eleni; Faul, Jessica D; Feitosa, Mary F; Feng, Shuang; Ferrannini, Ele; Ferrario, Marco M; Ferrieres, Jean; Florez, Jose C; Ford, Ian; Fornage, Myriam; Franks, Paul W; Frikke-Schmidt, Ruth; Galesloot, Tessel E; Gan, Wei; Gandin, Ilaria; Gasparini, Paolo; Giedraitis, Vilmantas; Giri, Ayush; Girotto, Giorgia; Gordon, Scott D; Gordon-Larsen, Penny; Gorski, Mathias; Grarup, Niels; Grove, Megan L; Gudnason, Vilmundur; Gustafsson, Stefan; Hansen, Torben; Harris, Kathleen Mullan; Harris, Tamara B; Hattersley, Andrew T; Hayward, Caroline; He, Liang; Heid, Iris M; Heikkilä, Kauko; Helgeland, Øyvind; Hernesniemi, Jussi; Hewitt, Alex W; Hocking, Lynne J; Hollensted, Mette; Holmen, Oddgeir L; Hovingh, G Kees; Howson, Joanna M M; Hoyng, Carel B; Huang, Paul L; Hveem, Kristian; Ikram, M Arfan; Ingelsson, Erik; Jackson, Anne U; Jansson, Jan-Håkan; Jarvik, Gail P; Jensen, Gorm B; Jhun, Min A; Jia, Yucheng; Jiang, Xuejuan; Johansson, Stefan; Jørgensen, Marit E; Jørgensen, Torben; Jousilahti, Pekka; Jukema, J Wouter; Kahali, Bratati; Kahn, René S; Kähönen, Mika; Kamstrup, Pia R; Kanoni, Stavroula; Kaprio, Jaakko; Karaleftheri, Maria; Kardia, Sharon L R; Karpe, Fredrik; Kee, Frank; Keeman, Renske; Kiemeney, Lambertus A; Kitajima, Hidetoshi; Kluivers, Kirsten B; Kocher, Thomas; Komulainen, Pirjo; Kontto, Jukka; Kooner, Jaspal S; Kooperberg, Charles; Kovacs, Peter; Kriebel, Jennifer; Kuivaniemi, Helena; Küry, Sébastien; Kuusisto, Johanna; La Bianca, Martina; Laakso, Markku; Lakka, Timo A; Lange, Ethan M; Lange, Leslie A; Langefeld, Carl D; Langenberg, Claudia; Larson, Eric B; Lee, I-Te; Lehtimäki, Terho; Lewis, Cora E; Li, Huaixing; Li, Jin; Li-Gao, Ruifang; Lin, Honghuang; Lin, Li-An; Lin, Xu; Lind, Lars; Lindström, Jaana; Linneberg, Allan; Liu, Yeheng; Liu, Yongmei; Lophatananon, Artitaya; Luan, Jian'an; Lubitz, Steven A; Lyytikäinen, Leo-Pekka; Mackey, David A; Madden, Pamela A F; Manning, Alisa K; Männistö, Satu; Marenne, Gaëlle; Marten, Jonathan; Martin, Nicholas G; Mazul, Angela L; Meidtner, Karina; Metspalu, Andres; Mitchell, Paul; Mohlke, Karen L; Mook-Kanamori, Dennis O; Morgan, Anna; Morris, Andrew D; Morris, Andrew P; Müller-Nurasyid, Martina; Munroe, Patricia B; Nalls, Mike A; Nauck, Matthias; Nelson, Christopher P; Neville, Matt; Nielsen, Sune F; Nikus, Kjell; Njølstad, Pål R; Nordestgaard, Børge G; Ntalla, Ioanna; O'Connel, Jeffrey R; Oksa, Heikki; Loohuis, Loes M Olde; Ophoff, Roel A; Owen, Katharine R; Packard, Chris J; Padmanabhan, Sandosh; Palmer, Colin N A; Pasterkamp, Gerard; Patel, Aniruddh P; Pattie, Alison; Pedersen, Oluf; Peissig, Peggy L; Peloso, Gina M; Pennell, Craig E; Perola, Markus; Perry, James A; Perry, John R B; Person, Thomas N; Pirie, Ailith; Polasek, Ozren; Posthuma, Danielle; Raitakari, Olli T; Rasheed, Asif; Rauramaa, Rainer; Reilly, Dermot F; Reiner, Alex P; Renström, Frida; Ridker, Paul M; Rioux, John D; Robertson, Neil; Robino, Antonietta; Rolandsson, Olov; Rudan, Igor; Ruth, Katherine S; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J; Sandow, Kevin; Sapkota, Yadav; Sattar, Naveed; Schmidt, Marjanka K; Schreiner, Pamela J; Schulze, Matthias B; Scott, Robert A; Segura-Lepe, Marcelo P; Shah, Svati; Sim, Xueling; Sivapalaratnam, Suthesh; Small, Kerrin S; Smith, Albert Vernon; Smith, Jennifer A; Southam, Lorraine; Spector, Timothy D; Speliotes, Elizabeth K; Starr, John M; Steinthorsdottir, Valgerdur; Stringham, Heather M; Stumvoll, Michael; Surendran, Praveen; 't Hart, Leen M; Tansey, Katherine E; Tardif, Jean-Claude; Taylor, Kent D; Teumer, Alexander; Thompson, Deborah J; Thorsteinsdottir, Unnur; Thuesen, Betina H; Tönjes, Anke; Tromp, Gerard; Trompet, Stella; Tsafantakis, Emmanouil; Tuomilehto, Jaakko; Tybjaerg-Hansen, Anne; Tyrer, Jonathan P; Uher, Rudolf; Uitterlinden, André G; Ulivi, Sheila; van der Laan, Sander W; Van Der Leij, Andries R; van Duijn, Cornelia M; van Schoor, Natasja M; van Setten, Jessica; Varbo, Anette; Varga, Tibor V; Varma, Rohit; Edwards, Digna R Velez; Vermeulen, Sita H; Vestergaard, Henrik; Vitart, Veronique; Vogt, Thomas F; Vozzi, Diego; Walker, Mark; Wang, Feijie; Wang, Carol A; Wang, Shuai; Wang, Yiqin; Wareham, Nicholas J; Warren, Helen R; Wessel, Jennifer; Willems, Sara M; Wilson, James G; Witte, Daniel R; Woods, Michael O; Wu, Ying; Yaghootkar, Hanieh; Yao, Jie; Yao, Pang; Yerges-Armstrong, Laura M; Young, Robin; Zeggini, Eleftheria; Zhan, Xiaowei; Zhang, Weihua; Zhao, Jing Hua; Zhao, Wei; Zhao, Wei; Zheng, He; Zhou, Wei; Rotter, Jerome I; Boehnke, Michael; Kathiresan, Sekar; McCarthy, Mark I; Willer, Cristen J; Stefansson, Kari; Borecki, Ingrid B; Liu, Dajiang J; North, Kari E; Heard-Costa, Nancy L; Pers, Tune H; Lindgren, Cecilia M; Oxvig, Claus; Kutalik, Zoltán; Rivadeneira, Fernando; Loos, Ruth J F; Frayling, Timothy M; Hirschhorn, Joel N; Deloukas, Panos; Lettre, Guillaume

    2017-02-09

    Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.

  12. Decentral Smart Grid Control

    NASA Astrophysics Data System (ADS)

    Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk

    2015-01-01

    Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals.

  13. Long-term study of urban ultrafine particles and other pollutants

    NASA Astrophysics Data System (ADS)

    Wang, Yungang; Hopke, Philip K.; Chalupa, David C.; Utell, Mark J.

    2011-12-01

    Continuous measurements of number size distributions of ultrafine particles (UFPs) and other pollutants (PM 2.5, SO 2, CO and O 3) have been performed in Rochester, New York since late November 2001. The 2002-2009 average number concentrations of particles in three size ranges (10-50 nm, 50-100 nm and 100-500 nm) were 4730 cm -3, 1838 cm -3, and 1073 cm -3, respectively. The lowest annual average number concentrations of particles in 10-50 nm and 50-100 nm were observed during 2008-2009. The lowest monthly average number concentration of 10-50 nm particles was observed in July and the highest in February. The daily patterns of 10-50 nm particles had two peaks at early morning (7-8 AM) and early afternoon (2 PM). There was a distinct declining trend in the peak number concentrations from 2002-2005 to 2008-2009. Large reductions in SO 2 concentrations associated with northerly winds between 2007 and 2009 were observed. The most significant annual decrease in the frequency of morning particle nucleation was observed from 2005 to 2007. The monthly variation in the morning nucleation events showed a close correlation with number concentrations of 10-50 nm particles ( r = 0.89). The frequency of the local SO 2-related nucleation events was much higher before 2006. All of these results suggest significant impacts of highway traffic and industrial sources. The decrease in particle number concentrations and particle nucleation events likely resulted from a combination of the U.S. EPA 2007 Heavy-Duty Highway Rule implemented on October 1, 2006, the closure of a large coal-fired power plant in May 2008, and the reduction of Eastman Kodak emissions.

  14. Search for and detection of pulsars inmonitoring observations at 111 MHz

    NASA Astrophysics Data System (ADS)

    Tyul'bashev, S. A.; Tyul'bashev, V. S.; Kitaeva, M. A.; Chernyshova, A. I.; Malofeev, V. M.; Chashei, I. V.; Shishov, V. I.; Dagkesamanskii, R. D.; Klimenko, S. V.; Nikitin, I. N.; Nikitina, L. D.

    2017-10-01

    In the course of monitoring interplanetary scintillations of a large number of sources using the Big Scanning Antenna of the Lebedev Physical Institute, a search for pulsars with periods ≥0.4 s at declinations -9◦ < δ < 42◦ and right ascensions 0h < α < 24h was simultaneously carried out. The search was conducted using four years of observations carried out at 110.25MHz in six frequency channels making up a 2.5 MHz band and having a time resolution of 100 ms. The initial identification of pulsar candidates was done using Fourier power spectra averaged over the entire observational period; the pulsar candidates were then verified using observations with higher frequency and time resolution: 32 frequency channels and a time resolution of 12.5 ms. Eighteen new pulsars were discovered in the studied area, whose main characteristics are presented.

  15. Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air

    PubMed Central

    An, Sangmin; Long, Christian J

    2014-01-01

    Summary We present an exploratory study of multimodal tapping-mode atomic force microscopy driving more than three cantilever eigenmodes. We present tetramodal (4-eigenmode) imaging experiments conducted on a thin polytetrafluoroethylene (PTFE) film and computational simulations of pentamodal (5-eigenmode) cantilever dynamics and spectroscopy, focusing on the case of large amplitude ratios between the fundamental eigenmode and the higher eigenmodes. We discuss the dynamic complexities of the tip response in time and frequency space, as well as the average amplitude and phase response. We also illustrate typical images and spectroscopy curves and provide a very brief description of the observed contrast. Overall, our findings are promising in that they help to open the door to increasing sophistication and greater versatility in multi-frequency AFM through the incorporation of a larger number of driven eigenmodes, and in highlighting specific future research opportunities. PMID:25383276

  16. Statistical analysis of mesoscale rainfall: Dependence of a random cascade generator on large-scale forcing

    NASA Technical Reports Server (NTRS)

    Over, Thomas, M.; Gupta, Vijay K.

    1994-01-01

    Under the theory of independent and identically distributed random cascades, the probability distribution of the cascade generator determines the spatial and the ensemble properties of spatial rainfall. Three sets of radar-derived rainfall data in space and time are analyzed to estimate the probability distribution of the generator. A detailed comparison between instantaneous scans of spatial rainfall and simulated cascades using the scaling properties of the marginal moments is carried out. This comparison highlights important similarities and differences between the data and the random cascade theory. Differences are quantified and measured for the three datasets. Evidence is presented to show that the scaling properties of the rainfall can be captured to the first order by a random cascade with a single parameter. The dependence of this parameter on forcing by the large-scale meteorological conditions, as measured by the large-scale spatial average rain rate, is investigated for these three datasets. The data show that this dependence can be captured by a one-to-one function. Since the large-scale average rain rate can be diagnosed from the large-scale dynamics, this relationship demonstrates an important linkage between the large-scale atmospheric dynamics and the statistical cascade theory of mesoscale rainfall. Potential application of this research to parameterization of runoff from the land surface and regional flood frequency analysis is briefly discussed, and open problems for further research are presented.

  17. An improved switching converter model using discrete and average techniques

    NASA Technical Reports Server (NTRS)

    Shortt, D. J.; Lee, F. C.

    1982-01-01

    The nonlinear modeling and analysis of dc-dc converters has been done by averaging and discrete-sampling techniques. The averaging technique is simple, but inaccurate as the modulation frequencies approach the theoretical limit of one-half the switching frequency. The discrete technique is accurate even at high frequencies, but is very complex and cumbersome. An improved model is developed by combining the aforementioned techniques. This new model is easy to implement in circuit and state variable forms and is accurate to the theoretical limit.

  18. Multi-sensor image fusion algorithm based on multi-objective particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Xie, Xia-zhu; Xu, Ya-wei

    2017-11-01

    On the basis of DT-CWT (Dual-Tree Complex Wavelet Transform - DT-CWT) theory, an approach based on MOPSO (Multi-objective Particle Swarm Optimization Algorithm) was proposed to objectively choose the fused weights of low frequency sub-bands. High and low frequency sub-bands were produced by DT-CWT. Absolute value of coefficients was adopted as fusion rule to fuse high frequency sub-bands. Fusion weights in low frequency sub-bands were used as particles in MOPSO. Spatial Frequency and Average Gradient were adopted as two kinds of fitness functions in MOPSO. The experimental result shows that the proposed approach performances better than Average Fusion and fusion methods based on local variance and local energy respectively in brightness, clarity and quantitative evaluation which includes Entropy, Spatial Frequency, Average Gradient and QAB/F.

  19. From micro- to nanomagnetic dots: evolution of the eigenmode spectrum on reducing the lateral size

    NASA Astrophysics Data System (ADS)

    Carlotti, G.; Gubbiotti, G.; Madami, M.; Tacchi, S.; Hartmann, F.; Emmerling, M.; Kamp, M.; Worschech, L.

    2014-07-01

    Brillouin light scattering experiments and micromagnetic simulations have been exploited to investigate the spectrum of thermally excited magnetic eigenmodes in 10 nm-thick elliptical Permalloy dots, when the longer axis D is scaled down from about 1000 to 100 nm. It is shown that for D larger than about 200 nm the characteristics of the spin-wave eigenmodes are dominated by dipolar energy, while for D in the range of about 100 to 200 nm exchange energy effects cause qualitative and quantitative differences in the spin-wave spectrum. In this ‘mesoscopic’ regime, the usual classification scheme, involving one fundamental mode with large average magnetization and many other modes collected in families with specific symmetries, no longer holds. Rather, one finds the simultaneous presence of two modes with ‘fundamental’ character, i.e. with a significant and comparable value of the average dynamical magnetization: the former is at larger frequency and has its maximum amplitude at the dot's centre, while the latter occurs at lower frequency and is localized at the dot's edges. Interestingly, the maximum intensity swaps from the higher frequency mode to the lower frequency one, just when the dot size is reduced from about 200 to 100 nm. This is relevant in view of the exploitation of nanodots for the design of nanomagnetic devices with lateral dimensions in the above interval, such as memory cells, logic gates, reading heads and spin-torque oscillators.

  20. Assessment of occupational exposure to extremely low frequency magnetic fields in hospital personnel.

    PubMed

    Úbeda, Alejandro; Martínez, María Antonia; Cid, María Antonia; Chacón, Lucía; Trillo, María A; Leal, Jocelyne

    2011-07-01

    It has been proposed that chronic exposure to extremely low frequency (ELF) magnetic fields (MF) in occupational environments could represent a risk factor for a number of disorders. Medical and technical workers in hospitals have been reported to be exposed to relatively strong ELF fields. The present work aims to characterize exposure to MF in the 5 Hz to 2 kHz frequency range in a large hospital through both instantaneous environmental measurements and personal monitoring of workers. The study was conducted in different working environments of a hospital with about 4400 employees, many of them working at two or more different work stations and consequently, exposed to MF levels that were expected to be unevenly distributed in space and time. The results indicate that: (1) The dominant frequency at the studied environments was 50 Hz (average 90.8 ± 6% of the total B value); (2) The best descriptive information on a worker's exposure is obtained from personal monitoring of volunteer workers; (3) The arithmetic averages of exposure levels obtained from the monitoring ranged from 0.03 ± 0.01 µT in nurses to 0.39 ± 0.13 µT in physiotherapists; and (4) The description of the MF environment through spot measurements in the workplace, although coherent with the data from personal monitoring, might not adequately estimate MF exposure in some professional categories. Copyright © 2011 Wiley-Liss, Inc.

  1. Relationship between neighbor number and vibrational spectra in disordered colloidal clusters with attractive interactions

    NASA Astrophysics Data System (ADS)

    Yunker, Peter J.; Zhang, Zexin; Gratale, Matthew; Chen, Ke; Yodh, A. G.

    2013-03-01

    We study connections between vibrational spectra and average nearest neighbor number in disordered clusters of colloidal particles with attractive interactions. Measurements of displacement covariances between particles in each cluster permit calculation of the stiffness matrix, which contains effective spring constants linking pairs of particles. From the cluster stiffness matrix, we derive vibrational properties of corresponding "shadow" glassy clusters, with the same geometric configuration and interactions as the "source" cluster but without damping. Here, we investigate the stiffness matrix to elucidate the origin of the correlations between the median frequency of cluster vibrational modes and average number of nearest neighbors in the cluster. We find that the mean confining stiffness of particles in a cluster, i.e., the ensemble-averaged sum of nearest neighbor spring constants, correlates strongly with average nearest neighbor number, and even more strongly with median frequency. Further, we find that the average oscillation frequency of an individual particle is set by the total stiffness of its nearest neighbor bonds; this average frequency increases as the square root of the nearest neighbor bond stiffness, in a manner similar to the simple harmonic oscillator.

  2. Underwater sound pressure variation and bottlenose dolphin (Tursiops truncatus) hearing thresholds in a small pool.

    PubMed

    Finneran, James J; Schlundt, Carolyn E

    2007-07-01

    Studies of underwater hearing are often hampered by the behavior of sound waves in small experimental tanks. At lower frequencies, tank dimensions are often not sufficient for free field conditions, resulting in large spatial variations of sound pressure. These effects may be mitigated somewhat by increasing the frequency bandwidth of the sound stimulus, so effects of multipath interference average out over many frequencies. In this study, acoustic fields and bottlenose dolphin (Tursiops truncatus) hearing thresholds were compared for pure tone and frequency modulated signals. Experiments were conducted in a vinyl-walled, seawater-filled pool approximately 3.7 x 6 x 1.5 m. Acoustic signals were pure tone and linear and sinusoidal frequency modulated tones with bandwidths/modulation depths of 1%, 2%, 5%, 10%, and 20%. Thirteen center frequencies were tested between 1 and 100 kHz. Acoustic fields were measured (without the dolphin present) at three water depths over a 60 x 65 cm grid with a 5-cm spacing. Hearing thresholds were measured using a behavioral response paradigm and up/down staircase technique. The use of FM signals significantly improved the sound field without substantially affecting the measured hearing thresholds.

  3. Doppler-based motion compensation algorithm for focusing the signature of a rotorcraft.

    PubMed

    Goldman, Geoffrey H

    2013-02-01

    A computationally efficient algorithm was developed and tested to compensate for the effects of motion on the acoustic signature of a rotorcraft. For target signatures with large spectral peaks that vary slowly in amplitude and have near constant frequency, the time-varying Doppler shift can be tracked and then removed from the data. The algorithm can be used to preprocess data for classification, tracking, and nulling algorithms. The algorithm was tested on rotorcraft data. The average instantaneous frequency of the first harmonic of a rotorcraft was tracked with a fixed-lag smoother. Then, state space estimates of the frequency were used to calculate a time warping that removed the effect of a time-varying Doppler shift from the data. The algorithm was evaluated by analyzing the increase in the amplitude of the harmonics in the spectrum of a rotorcraft. The results depended upon the frequency of the harmonics and the processing interval duration. Under good conditions, the results for the fundamental frequency of the target (~11 Hz) almost achieved an estimated upper bound. The results for higher frequency harmonics had larger increases in the amplitude of the peaks, but significantly lower than the estimated upper bounds.

  4. Height-reducing variants and selection for short stature in Sardinia

    PubMed Central

    Mulas, Antonella; Steri, Maristella; Busonero, Fabio; Marcus, Joseph H.; Marongiu, Michele; Maschio, Andrea; Ortega Del Vecchyo, Diego; Floris, Matteo; Meloni, Antonella; Delitala, Alessandro; Concas, Maria Pina; Murgia, Federico; Biino, Ginevra; Vaccargiu, Simona; Nagaraja, Ramaiah; Lohmueller, Kirk E.; Timpson, Nicholas J.; Soranzo, Nicole; Tachmazidou, Ioanna; Dedoussis, George; Zeggini, Eleftheria; Uzzau, Sergio; Jones, Chris; Lyons, Robert; Angius, Andrea; Abecasis, Gonçalo R.; Novembre, John; Schlessinger, David; Cucca, Francesco

    2015-01-01

    We report sequencing-based whole-genome association analyses to evaluate the impact of rare and founder variants on stature in 6,307 individuals on the island of Sardinia. We identified two variants with large effects. One is a stop codon in the GHR gene, relatively frequent in Sardinia (0.87% vs <0.01% elsewhere), which in homozygosity causes the short stature Laron syndrome. We find that it reduces height in heterozygotes by an average of 4.2 cm (−0.64 s.d). The other variant, in the imprinted KCNQ1 gene (MAF = 7.7% vs <1% elsewhere) reduces height by an average of 1.83 cm (−0.31 s.d.) when maternally inherited. Additionally, polygenic scores indicate that known height-decreasing alleles are at systematically higher frequency in Sardinians than would be expected by genetic drift. The findings are consistent with selection toward shorter stature in Sardinia and a suggestive human example of the proposed “island effect” reducing the size of large mammals. PMID:26366551

  5. Technique to determine location of radio sources from measurements taken on spinning spacecraft

    NASA Technical Reports Server (NTRS)

    Fainberg, J.

    1979-01-01

    The procedure developed to extract average source direction and average source size from spin-modulated radio astronomy data measured on the IMP-6 spacecraft is described. Because all measurements are used, rather than just finding maxima or minima in the data, the method is very sensitive, even in the presence of large amounts of noise. The technique is applicable to all experiments with directivity characteristics. It is suitable for onboard processing on satellites to reduce the data flow to Earth. The application to spin-modulated nonpolarized radio astronomy data is made and includes the effects of noise, background, and second source interference. The analysis was tested with computer simulated data and the results agree with analytic predictions. Applications of this method with IMP-6 radio data have led to: (1) determination of source positions of traveling solar radio bursts at large distances from the Sun; (2) mapping of magnetospheric radio emissions by radio triangulation; and (3) detection of low frequency radio emissions from Jupiter and Saturn.

  6. Solar U- and J- Bursts at the Frequencies 10-30MHz

    NASA Astrophysics Data System (ADS)

    Dorovskyy, V. V.; Melnik, V. N.; Konovalenko, A. A.; Abranin, E. P.; Rucker, H. O.; Lecacheux, A.

    2006-08-01

    In the present report we discuss the results of observations of solar U- and J- bursts over the frequency range 10-30MHz, which have been obtained within the framework of an international observational campaign in June - August, 2004 at the radio telescope UTR-2 (Kharkov, Ukraine). We succeed to observe these types of bursts for the first time at such a low frequencies due to combination of large effective area of the radio telescope and high sensitivity of the new back-end. During June - August, 2004 about 30 U- and J- bursts were registered, and only 5 of them were confidently identified as U-bursts that may speak about the relative sparsity of the latter at mentioned frequencies. Both the isolated bursts and their sequences were observed. On average the turning frequencies lay in the range 10-22 MHz that corresponds to the arches heliocentric heights of 1.6-2.2 solar radii. In some sequences the bursts turning frequency was stable that may indicate the arch stability, while in others the turning frequency had tendency to vary from burst to burst. Durations of U- and J- bursts did not differ from those of usual Type III bursts (3-7s), while the drift rates of an ascending arm (on the average -1MHz/ s) was a little bit lower, than those of ordinary Type III bursts in this range. The harmonic structure of U- and J- bursts, and also Jb-J pairs (analogous to IIIb-III pairs) were registered. Also L-shaped bursts (Leblanc and Hoyos, 1985) were recorded. A specific feature of L-shaped bursts is prolonged zero-drift region on their dynamic spectra. The sizes and configurations of the arches were estimated on the base of obtained data. Possible explanations of the observed properties of U- and J- bursts are discussed.

  7. Life stress on the Roman limes in continental Croatia.

    PubMed

    Slaus, M; Pećina-Slaus, N; Brkić, H

    2004-01-01

    The purpose of the paper is to analyze and compare the demographic profiles and disease frequencies between a skeletal series from Zmajevac, a settlement on the Danubian limes, and a composite "non-limes" skeletal series consisting of human osteological remains from three large urban settlements to the west of the limes; roman Mursa (modern Osijek), Cibalae (Vinkovci) and Certissia (Strbinci). To determine if life stresses were different in settlements on the limes the age and sex distribution in Zmajevac was compared to the composite "non-limes" series. All skeletons were also analyzed for the presence of dental pathology, dental enamel hypoplasia, cribra orbitalia, trauma, and physical stress. Data collected from the skeletal series show that, with the exception of some indicators of physical stress, no significant differences in quality of life is evident. Both series are characterized by an under-representation of subadults from the youngest age category and by similar average adult male and female ages at death. In Zmajevac the average ages at death for adult males and females were 40.0 and 39.0 years respectively, in the composite "non-limes" series 37.4 years for both males and females. The frequencies of dental disease, subadult stress indicators, and trauma are similar in both series. The only consistent difference between the two series is noted in the frequencies of skeletal markers of physical stress, in particular the frequencies of vertebral osteoarthritis and Schmorl's defects. Total male and total female vertebral osteoarthritis frequencies in the two series are significantly different, as is the difference in total male frequencies of Schmorl's defects. Young adult males in the Zmajevac series seem to have been experiencing particularly heavy physical strain on the vertebral column. They exhibit significantly higher frequencies of both vertebral osteoarthritis and Schmorl's defects than young adult males from the composite non-limes series.

  8. Frequency of Eating Out at Both Fast-Food and Sit-Down Restaurants Was Associated With High Body Mass Index in Non-Large Metropolitan Communities in Midwest.

    PubMed

    Bhutani, Surabhi; Schoeller, Dale A; Walsh, Matthew C; McWilliams, Christine

    2018-01-01

    We investigated the associations between frequency of eating at fast-food, fast-casual, all-you-can-eat, and sit-down restaurants and the body mass index (BMI) in non-large metro Wisconsin communities. To inform prevention efforts, we also analyzed the socioeconomic/environmental and nutrition attitudes/behavior variables that may drive the frequent eating away from home. Cross-sectional analysis of an ancillary data set from the Survey of Health of Wisconsin collected between October 2012 and February 2013. Six Wisconsin counties: 1 classified as rural, 1 as large fringe metro, and 4 as small metro. Adults ≥18 years (N = 1418). Field staff measured height and weight and administered a survey on the frequency of eating away from home, and socioeconomic and nutritional behavior variables. Multivariable regression. The BMI of respondents averaged 29.4 kg/m 2 (39% obese). Every 1-meal/week increase in fast-food and sit-down restaurant consumption was associated with an increase in BMI by 0.8 and 0.6 kg/m 2 , respectively. Unavailability of healthy foods at shopping and eating venues and lack of cooking skills were both positively associated with consumption of fast-food and sit-down meals. Individuals who described their diet as healthy, who avoided high-fat foods, and who believed their diet was keeping their weight controlled did not visit these restaurants frequently. Obesity prevention efforts in non-large metro Wisconsin communities should consider socioeconomic/environmental and nutritional attitudes/behavior of residents when designing restaurant-based or community education interventions.

  9. Frequency of eating out at both fast-food and sit-down restaurants was associated with high body mass index in non-large metropolitan communities in Midwest

    PubMed Central

    Bhutani, Surabhi; Schoeller, Dale A; Walsh, Matthew C; McWilliams, Christine

    2017-01-01

    Purpose We investigated associations between frequency of eating at fast-food, fast-casual, all-you-can-eat, and sit-down restaurants and body mass index (BMI) in non-large metro Wisconsin communities. To inform prevention efforts, we also analyzed socioeconomic/environmental and nutrition attitudes/behavior variables that may drive frequent eating-away-from-home. Design Cross-sectional analysis of an ancillary dataset from the Survey of Health of Wisconsin collected between Oct. 2012 and Feb. 2013. Setting Six Wisconsin counties; one classified as rural, one as large fringe metro and four as small metro. Subjects Adults ≥ 18 years (n = 1418). Measures Field staff measured height, weight and administered a survey on frequency of eating-away-from-home, socioeconomic and nutritional behavior variables. Analysis Multivariable regression. Results BMI of respondents averaged 29.4 kg/m2, (39% obese). Every one-meal/week increase in fast-food and sit-down restaurant consumption was associated with increase in BMI by 0.8 and 0.6 kg/m2 respectively. Unavailability of healthy foods at shopping and eating venues, and lack of cooking skills were both positively associated with consumption of fast-food and sit-down meals. Individuals who described their diet as healthy, who avoided high fat foods and who believed their diet was keeping their weight controlled did not visit these restaurants frequently. Conclusion Obesity prevention efforts in non-large metro Wisconsin communities should consider socioeconomic/environmental and nutritional attitudes/behavior of residents when designing restaurant based or community education interventions. PMID:27574335

  10. Carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool

    NASA Astrophysics Data System (ADS)

    Cai, Yu; Sha, Shuang

    2016-09-01

    This paper proposes a new carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool used in a cylindrical borehole environment during oil-based mud drilling processes. The new tool is an orthogonal frequency division multiplexing access-based contactless multi-measurand detection tool. The tool can measure formation resistivity in different azimuthal angles and elevational depths. It can measure many more measurands simultaneously in a specified bandwidth than the legacy frequency division multiplexing multi-measurand tool without a channel-select filter while avoiding inter-carrier interference. The paper also shows that formation resistivity is not sensitive to frequency in certain frequency bands. The average resistivity collected from N subcarriers can increase the measurement of the signal-to-noise ratio (SNR) by N times given no amplitude clipping in the current-injection electrode. If the clipping limit is taken into account, with the phase rotation of each single carrier, the amplitude peak-to-average ratio can be reduced by 3 times, and the SNR can achieve a 9/N times gain over the single-carrier system. The carrier-interleaving technique is also introduced to counter the carrier frequency offset (CFO) effect, where the CFO will cause inter-pad interference. A qualitative analysis and simulations demonstrate that block-interleaving performs better than tone-interleaving when coping with a large CFO. The theoretical analysis also suggests that increasing the subcarrier number can increase the measurement speed or enhance elevational resolution without sacrificing receiver performance. The complex orthogonal multi-pad multi-carrier resistivity logging tool, in which all subcarriers are complex signals, can provide a larger available subcarrier pool than other types of transceivers.

  11. The Big Glitcher - the Rotation History of PSR JO537-6910

    NASA Technical Reports Server (NTRS)

    Marshall, F. E.; Gotthelf, E. V.; Middleditch, J.; Wang, Q. D.; Zhang, W.

    2003-01-01

    We report the results of an extensive monitoring campaign of PSR 50537-6910, the 16 ms pulsar in the Large Magellanic Cloud, using data acquired with the Rossi X-ray Timing Explorer. The spin evolution of this pulsar is found to experience extreme episodic discontinuities in its spin-down rate during the 2.6 year campaign. The rate of occurance of these timing glitches is 2.3 per year, comparable to the highest seen for any pulsar. The mean glitch amplitude produced a fraction change in the frequency of Delta(nu)/nu = 0.36 x l0(exp -6) and in the frequency derivative of Delta(dot nu)/dot nu = 3 x 10(exp -4). Despite this prodigous timing activity we are able to derive a phase connected timing solution between glitch events with an average spin-down rate of -1.9743 x 10(exp 10) Hz/s. The integrated effect of the glitches in dot nu was so large that the apparent characteristic age of the pulsar (-nu/2dot nu) decreased significantly during the campaign. We discuss the implications of a large glitch activity and high braking index on the spin evolution of young pulsars.

  12. Decision tree analysis of factors influencing rainfall-related building damage

    NASA Astrophysics Data System (ADS)

    Spekkers, M. H.; Kok, M.; Clemens, F. H. L. R.; ten Veldhuis, J. A. E.

    2014-04-01

    Flood damage prediction models are essential building blocks in flood risk assessments. Little research has been dedicated so far to damage of small-scale urban floods caused by heavy rainfall, while there is a need for reliable damage models for this flood type among insurers and water authorities. The aim of this paper is to investigate a wide range of damage-influencing factors and their relationships with rainfall-related damage, using decision tree analysis. For this, district-aggregated claim data from private property insurance companies in the Netherlands were analysed, for the period of 1998-2011. The databases include claims of water-related damage, for example, damages related to rainwater intrusion through roofs and pluvial flood water entering buildings at ground floor. Response variables being modelled are average claim size and claim frequency, per district per day. The set of predictors include rainfall-related variables derived from weather radar images, topographic variables from a digital terrain model, building-related variables and socioeconomic indicators of households. Analyses were made separately for property and content damage claim data. Results of decision tree analysis show that claim frequency is most strongly associated with maximum hourly rainfall intensity, followed by real estate value, ground floor area, household income, season (property data only), buildings age (property data only), ownership structure (content data only) and fraction of low-rise buildings (content data only). It was not possible to develop statistically acceptable trees for average claim size, which suggest that variability in average claim size is related to explanatory variables that cannot be defined at the district scale. Cross-validation results show that decision trees were able to predict 22-26% of variance in claim frequency, which is considerably better compared to results from global multiple regression models (11-18% of variance explained). Still, a large part of the variance in claim frequency is left unexplained, which is likely to be caused by variations in data at subdistrict scale and missing explanatory variables.

  13. A data driven partial ambiguity resolution: Two step success rate criterion, and its simulation demonstration

    NASA Astrophysics Data System (ADS)

    Hou, Yanqing; Verhagen, Sandra; Wu, Jie

    2016-12-01

    Ambiguity Resolution (AR) is a key technique in GNSS precise positioning. In case of weak models (i.e., low precision of data), however, the success rate of AR may be low, which may consequently introduce large errors to the baseline solution in cases of wrong fixing. Partial Ambiguity Resolution (PAR) is therefore proposed such that the baseline precision can be improved by fixing only a subset of ambiguities with high success rate. This contribution proposes a new PAR strategy, allowing to select the subset such that the expected precision gain is maximized among a set of pre-selected subsets, while at the same time the failure rate is controlled. These pre-selected subsets are supposed to obtain the highest success rate among those with the same subset size. The strategy is called Two-step Success Rate Criterion (TSRC) as it will first try to fix a relatively large subset with the fixed failure rate ratio test (FFRT) to decide on acceptance or rejection. In case of rejection, a smaller subset will be fixed and validated by the ratio test so as to fulfill the overall failure rate criterion. It is shown how the method can be practically used, without introducing a large additional computation effort. And more importantly, how it can improve (or at least not deteriorate) the availability in terms of baseline precision comparing to classical Success Rate Criterion (SRC) PAR strategy, based on a simulation validation. In the simulation validation, significant improvements are obtained for single-GNSS on short baselines with dual-frequency observations. For dual-constellation GNSS, the improvement for single-frequency observations on short baselines is very significant, on average 68%. For the medium- to long baselines, with dual-constellation GNSS the average improvement is around 20-30%.

  14. A straightforward frequency-estimation technique for GPS carrier-phase time transfer.

    PubMed

    Hackman, Christine; Levine, Judah; Parker, Thomas E; Piester, Dirk; Becker, Jürgen

    2006-09-01

    Although Global Positioning System (GPS) carrier-phase time transfer (GPSCPTT) offers frequency stability approaching 10-15 at averaging times of 1 d, a discontinuity occurs in the time-transfer estimates between the end of one processing batch (1-3 d in length) and the beginning of the next. The average frequency over a multiday analysis period often has been computed by first estimating and removing these discontinuities, i.e., through concatenation. We present a new frequency-estimation technique in which frequencies are computed from the individual batches then averaged to obtain the mean frequency for a multiday period. This allows the frequency to be computed without the uncertainty associated with the removal of the discontinuities and requires fewer computational resources. The new technique was tested by comparing the fractional frequency-difference values it yields to those obtained using a GPSCPTT concatenation method and those obtained using two-way satellite time-and-frequency transfer (TWSTFT). The clocks studied were located in Braunschweig, Germany, and in Boulder, CO. The frequencies obtained from the GPSCPTT measurements using either method agreed with those obtained from TWSTFT at several parts in 1016. The frequency values obtained from the GPSCPTT data by use of the new method agreed with those obtained using the concatenation technique at 1-4 x 10(-16).

  15. Influence of Solar Variability on the North Atlantic / European Sector.

    NASA Astrophysics Data System (ADS)

    Gray, L. J.

    2016-12-01

    The 11year solar cycle signal in December-January-February averaged mean-sea-level pressure and Atlantic/European blocking frequency is examined using multilinear regression with indices to represent variability associated with the solar cycle, volcanic eruptions, the El Nino - Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation (AMO). Results from a previous 11-year solar cycle signal study of the period 1870-2010 (140 years; 13 solar cycles) that suggested a 3-4 year lagged signal in SLP over the Atlantic are confirmed by analysis of a much longer reconstructed dataset for the period 1660-2010 (350 years; 32 solar cycles). Apparent discrepancies between earlier studies are resolved and stem primarily from the lagged nature of the response and differences between early- and late-winter responses. Analysis of the separate winter months provide supporting evidence for two mechanisms of influence, one operating via the atmosphere that maximises in late winter at 0-2 year lags and one via the mixd-layer ocean that maximises in early winter at 3-4 year lags. Corresponding analysis of DJF-averaged Atlantic / European blocking frequency shows a highly statistically significant signal at 1-year lag that originates promarily from the late winter response. The 11-year solar signal in DJF blocking frequency is compared with other known influences from ENSO and the AMO and found to be as large in amplitude and have a larger region of statistical significance.

  16. Growth, chamber building rate and reproduction time of Palaeonummulites venosus under natural conditions.

    NASA Astrophysics Data System (ADS)

    Kinoshita, Shunichi; Eder, Wolfgang; Wöger, Julia; Hohenegger, Johann; Briguglio, Antonino

    2017-04-01

    Investigations on Palaeonummulites venosus using the natural laboratory approach for determining chamber building rate, test diameter increase rate, reproduction time and longevity is based on the decomposition of monthly obtained frequency distributions based on chamber number and test diameter into normal-distributed components. The shift of the component parameters 'mean' and 'standard deviation' during the investigation period of 15 months was used to calculate Michaelis-Menten functions applied to estimate the averaged chamber building rate and diameter increase rate under natural conditions. The individual dates of birth were estimated using the inverse averaged chamber building rate and the inverse diameter increase rate fitted by the individual chamber number or the individual test diameter at the sampling date. Distributions of frequencies and densities (i.e. frequency divided by sediment weight) based on chamber building rate and diameter increase rate resulted both in a continuous reproduction through the year with two peaks, the stronger in May /June determined as the beginning of the summer generation (generation1) and the weaker in November determined as the beginning of the winter generation (generation 2). This reproduction scheme explains the existence of small and large specimens in the same sample. Longevity, calculated as the maximum difference in days between the individual's birth date and the sampling date seems to be round about one year, obtained by both estimations based on the chamber building rate and the diameter increase rate.

  17. Ear-EEG detects ictal and interictal abnormalities in focal and generalized epilepsy - A comparison with scalp EEG monitoring.

    PubMed

    Zibrandtsen, I C; Kidmose, P; Christensen, C B; Kjaer, T W

    2017-12-01

    Ear-EEG is recording of electroencephalography from a small device in the ear. This is the first study to compare ictal and interictal abnormalities recorded with ear-EEG and simultaneous scalp-EEG in an epilepsy monitoring unit. We recorded and compared simultaneous ear-EEG and scalp-EEG from 15 patients with suspected temporal lobe epilepsy. EEGs were compared visually by independent neurophysiologists. Correlation and time-frequency analysis was used to quantify the similarity between ear and scalp electrodes. Spike-averages were used to assess similarity of interictal spikes. There were no differences in sensitivity or specificity for seizure detection. Mean correlation coefficient between ear-EEG and nearest scalp electrode was above 0.6 with a statistically significant decreasing trend with increasing distance away from the ear. Ictal morphology and frequency dynamics can be observed from visual inspection and time-frequency analysis. Spike averages derived from ear-EEG electrodes yield a recognizable spike appearance. Our results suggest that ear-EEG can reliably detect electroencephalographic patterns associated with focal temporal lobe seizures. Interictal spike morphology from sufficiently large temporal spike sources can be sampled using ear-EEG. Ear-EEG is likely to become an important tool in clinical epilepsy monitoring and diagnosis. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. Growth, chamber building rate and reproduction time of Palaeonummulites venosus (Foraminifera) under natural conditions

    NASA Astrophysics Data System (ADS)

    Kinoshita, Shunichi; Eder, Wolfgang; Wöger, Julia; Hohenegger, Johann; Briguglio, Antonino

    2017-12-01

    We investigated the symbiont-bearing benthic foraminifer Palaeonummulites venosus to determine the chamber building rate (CBR), test diameter increase rate (DIR), reproduction time and longevity using the `natural laboratory' approach. This is based on the decomposition of monthly obtained frequency distributions of chamber number and test diameter into normally distributed components. Test measurements were taken using MicroCT. The shift of the mean and standard deviation of component parameters during the 15-month investigation period was used to calculate Michaelis-Menten functions applied to estimate the averaged CBR and DIR under natural conditions. The individual dates of birth were estimated using the inverse averaged CBR and the inverse DIR fitted by the individual chamber number or the individual test diameter at the sampling date. Distributions of frequencies and densities (i.e., frequency divided by sediment weight) based on both CBR and DIR revealed continuous reproduction throughout the year with two peaks, a stronger one in June determined as the onset of the summer generation (generation 1) and a weaker one in November determined as the onset of the winter generation (generation 2). This reproduction scheme explains the presence of small and large specimens in the same sample. Longevity, calculated as the maximum difference in days between the individual's birth date and the sampling date, is approximately 1.5 yr, an estimation obtained by using both CBR and DIR.

  19. Average ambulatory measures of sound pressure level, fundamental frequency, and vocal dose do not differ between adult females with phonotraumatic lesions and matched control subjects

    PubMed Central

    Van Stan, Jarrad H.; Mehta, Daryush D.; Zeitels, Steven M.; Burns, James A.; Barbu, Anca M.; Hillman, Robert E.

    2015-01-01

    Objectives Clinical management of phonotraumatic vocal fold lesions (nodules, polyps) is based largely on assumptions that abnormalities in habitual levels of sound pressure level (SPL), fundamental frequency (f0), and/or amount of voice use play a major role in lesion development and chronic persistence. This study used ambulatory voice monitoring to evaluate if significant differences in voice use exist between patients with phonotraumatic lesions and normal matched controls. Methods Subjects were 70 adult females: 35 with vocal fold nodules or polyps and 35 age-, sex-, and occupation-matched normal individuals. Weeklong summary statistics of voice use were computed from anterior neck surface acceleration recorded using a smartphone-based ambulatory voice monitor. Results Paired t-tests and Kolmogorov-Smirnov tests resulted in no statistically significant differences between patients and matched controls regarding average measures of SPL, f0, vocal dose measures, and voicing/voice rest periods. Paired t-tests comparing f0 variability between the groups resulted in statistically significant differences with moderate effect sizes. Conclusions Individuals with phonotraumatic lesions did not exhibit differences in average ambulatory measures of vocal behavior when compared with matched controls. More refined characterizations of underlying phonatory mechanisms and other potentially contributing causes are warranted to better understand risk factors associated with phonotraumatic lesions. PMID:26024911

  20. Wavelet assessment of cerebrospinal compensatory reserve and cerebrovascular reactivity.

    PubMed

    Latka, M; Kolodziej, W; Turalska, M; Latka, D; Zub, W; West, B J

    2007-05-01

    We introduce a wavelet transfer model to relate spontaneous arterial blood pressure (ABP) fluctuations to intracranial pressure (ICP) fluctuations. We employ a complex continuous wavelet transform to develop a consistent mathematical framework capable of parametrizing both cerebral compensatory reserve and cerebrovascular reactivity. The frequency-dependent gain and phase of the wavelet transfer function are introduced because of the non-stationary character of the ICP and ABP time series. The gain characterizes the dampening of spontaneous ABP fluctuations and is interpreted as a novel measure of cerebrospinal compensatory reserve. For a group of 12 patients who died as a result of cerebral lesions (Glasgow Outcome Scale (GOS) = 1) the average gain in the low-frequency (0.02- 0.07 Hz) range was 0.51 +/- 0.13 and significantly exceeded that of 17 patients with GOS = 2 having an average gain of 0.26 +/- 0.11 with p = 1x10(-4) (Kruskal-Wallis test). A time-averaged synchronization index (which may vary from 0 to 1) defined in terms of the wavelet transfer function phase yields information about the stability of the phase difference of the ABP and ICP signals and is used as a cerebrovascular reactivity index. A low value of synchronization index reflects a normally reactive vascular bed, while a high value indicates pathological entrainment of ABP and ICP fluctuations. Such entrainment is strongly pronounced in patients with fatal outcome (for this group the low-frequency synchronization index was 0.69 +/- 0.17). The gain and synchronization parameters define a cerebral hemodynamic state space (CHS) in which the patients with GOS = 1 are to large extent partitioned away from those with GOS = 2. The concept of CHS elucidates the interplay of vascular and compensatory mechanisms.

  1. Frequency domain kinetic of positron-electron annihilation in the MgO-Al2O3 spinel-type ceramics

    NASA Astrophysics Data System (ADS)

    Fl'unt, Orest; Klym, Halyna; Ingram, Adam

    2018-03-01

    In this work, the kinetic of positron-electron annihilation in the MgO-Al2O3 spinel-type ceramics sintered at different temperatures (1100, 1200 and 1400 °C) has been calculated and analyzed in a frequency domain. The spectra of real (in-phase) and imaginary (quadrature) components of positron-electron annihilation kinetic have been obtained numerically from usual temporal characteristics using integral Fourier transform. The numerical calculations were carried out using cubic spline interpolation of the pulse characteristics of MgO-Al2O3 ceramics in time domain with following analytical calculations of integrals. The obtained spectra as real so imaginary part of MgO-Al2O3 ceramics in frequency domain almost good obey a Debye law denying correlation between elementary positron annihilation processes. Complex diagrams of frequency domain responses of as-prepared samples have a shape of semicircles with close characteristic frequencies. Some deviation on low-frequency side of the semicircles is observed confirming an availability of longer time kinetic processes. Sintering temperature dependencies of the relaxation times and characteristic frequencies of positron-electron annihilation processes have been obtained. It is shown that position of large maxima on the frequency dependencies of imaginary part corresponds to fast average relaxation lifetime representing the most intensive interaction process of positrons with small cavity traps in solids.

  2. Low phase noise microwave extraction from femtosecond laser by frequency conversion pair and IF-domain processing.

    PubMed

    Dai, Yitang; Cen, Qizhuang; Wang, Lei; Zhou, Yue; Yin, Feifei; Dai, Jian; Li, Jianqiang; Xu, Kun

    2015-12-14

    Extraction of a microwave component from a low-time-jitter femtosecond pulse train has been attractive for current generation of spectrally pure microwave. In order to avoid the transfer from the optical amplitude noise to microwave phase noise (AM-PM), we propose to down-convert the target component to intermediate frequency (IF) before the opto-electronic conversion. Due to the much lower carrier frequency, the AM-PM is greatly suppressed. The target is then recovered by up-conversion with the same microwave local oscillation (LO). As long as the time delay of the second LO matches that of the IF carrier, the phase noise of the LO shows no impact on the extraction process. The residual noise of the proposed extraction is analyzed in theory, which is also experimentally demonstrated as averagely around -155 dBc/Hz under offset frequency larger than 1 kHz when 10-GHz tone is extracted from a home-made femtosecond fiber laser. Large tunable extraction from 1 GHz to 10 GHz is also reported.

  3. Design and validation of a high-order weighted-frequency fourier linear combiner-based Kalman filter for parkinsonian tremor estimation.

    PubMed

    Zhou, Y; Jenkins, M E; Naish, M D; Trejos, A L

    2016-08-01

    The design of a tremor estimator is an important part of designing mechanical tremor suppression orthoses. A number of tremor estimators have been developed and applied with the assumption that tremor is a mono-frequency signal. However, recent experimental studies have shown that Parkinsonian tremor consists of multiple frequencies, and that the second and third harmonics make a large contribution to the tremor. Thus, the current estimators may have limited performance on estimation of the tremor harmonics. In this paper, a high-order tremor estimation algorithm is proposed and compared with its lower-order counterpart and a widely used estimator, the Weighted-frequency Fourier Linear Combiner (WFLC), using 18 Parkinsonian tremor data sets. The results show that the proposed estimator has better performance than its lower-order counterpart and the WFLC. The percentage estimation accuracy of the proposed estimator is 85±2.9%, an average improvement of 13% over the lower-order counterpart. The proposed algorithm holds promise for use in wearable tremor suppression devices.

  4. [Industrial sound spectrum entailing noise-induced occupational hearing loss in Iasi industry].

    PubMed

    Carp, Cristina Maria; Costinescu, V N

    2011-01-01

    In European Union every day millions of employees are exposed to noise at work and the risk this can entail. this study presents the sound spectrum in Iasi heavy industry: metal foundries industry, punching and embossing of metal sheets, cold and hot metal processing. it was used a type 2 Sound Level Meter (SLM) and the considered value was the average value over 10 test values in 10 consecutive days for each octave band in common audible frequency range. It is obviously that the large values of sound intensities in the most of frequency octave band exceed maximum admissible and legal values. The study reveals the necessity of hardware, medical and managerial measures in order to reduce the occupational noise and to prevent the hearing acuity damage of the workers.

  5. Questionable sound exposure outside of the womb: frequency analysis of environmental noise in the neonatal intensive care unit.

    PubMed

    Lahav, Amir

    2015-01-01

    Recent research raises concerns about the adverse effects of noise exposure on the developing preterm infant. However, current guidelines for NICU noise remain focused on loudness levels, leaving the problem of exposure to potentially harmful sound frequencies largely overlooked. This study examined the frequency spectra present in a level-II NICU. Noise measurements were taken in two level-II open-bay nurseries. Measurements were taken over 5 days for a period of 24 h each. Spectral analysis was focused on comparing sound frequencies in the range of human speech during daytime (7 AM-7 PM) vs. night-time (7 PM-7 AM). On average, daytime noise levels (Leq = 60.05 dBA) were higher than night-time (Leq = 58.67 dBA). Spectral analysis of frequency bands (>50 dB) revealed that infants were exposed to frequencies <500 Hz 100% of the time and to frequencies >500 Hz 57% of the time. During daytime, infants were exposed to nearly 20% more sounds within the speech frequency range compared with night-time (p = 0.018). Measuring the frequency spectra of NICU sounds is necessary to attain a thorough understanding of both the noise levels and the type of sounds that preterm infants are exposed to throughout their hospital stay. The risk of high-frequency noise exposure in the preterm population is still unclear and warrants further investigation. © 2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  6. Fractal hierarchies of magma transport in Hawaii and critical self-organization of tremor

    NASA Astrophysics Data System (ADS)

    Shaw, Herbert R.; Chouet, Bernard

    1991-06-01

    A hierarchical model of magma transport in Hawaii is developed from the seismic records of deep (30-60 km) and intermediate-depth (5-15 km) harmonic tremor between January 1, 1962, and December 31, 1983. We find two kinds of spatial distributions of magma fractions at depths below 5 km, defined by the fractal dimension D3, where the subscript is the embedding dimension. The first is a focused distribution with D3 = 0.28, and the second is a dispersed distribution with D3 = 1.52. The former dimension reflects conduitlike structures where the magma flow converges toward a summit magma chamber and the fractal dimension tends to zero. The latter dimension reflects multifractal clustering of dendritic fractures where hypocentral domains represent subsets of fractures within spherical domains with an average radius of about 1 km. These geometries constitute a percolation network of clustered intermittent fracture and magma transport. The magma volume of the average fracture is about 2 × 104 m3. A tremor model of magma transport is developed from mass balances of percolation that are proportional to tremor durations. It gives reasonable magma fractions and residence times for a vertical drift velocity of 4 km yr-1 and yields patterns of intermittency that are in accord with singularity analyses of the 22-year time series record. According to the model, sustained tremor is generated by the relaxation oscillations of the percolation network with a dominant frequency of about 1 Hz to obtain internally consistent values of fracture geometry, fracture opening force, and magma supply rate. Calculated tremor frequencies are higher in fracture networks of small volume in harmony with the observed relation between seismic amplitude and dominant frequency of tremor. Tectonic relaxation times of rock stresses versus magma pressures are in fair agreement with the average length of tremor episodes and average period of tremor intermittencies. These observations suggest that a high degree of self-organization is characteristic of the nonlinear dynamics of fracture percolation and coupled tremor processes. Logarithms of frequencies (in hertz) of high-amplitude tremor (1-s period), mean tremor duration (28-min period), and mean onset interval (14-day period) are 0, -3.2, and -6.1, implying broadband maxima in the frequency spectrum of transport at intervals of 103. The next longer period of this sequence, which corresponds to eruptions and shallow intrusions, is about 32 years (10 -9 Hz), comparable to the average eruption intermission of Mauna Loa during the last 150 years (about 20 years). This and other evidence suggest that spatiotemporal universality extends from small to large scales in Hawaiian and other magmatic systems. The apparent universal scaling of frequencies may be more than 15 decades in time (1 s to about 60 m.y.) and 10 decades in length (0.1 mm to 103 km).

  7. Neck Circumference and Vocal Parameters in Women Before and After Bariatric Surgery.

    PubMed

    de Souza, Lourdes Bernadete Rocha; Pernambuco, Leandro de Araújo; dos Santos, Marquiony Marques; Pereira, Rayane Medeiros

    2016-03-01

    Morbidly obese patients may suffer from vocal disorders, as vocal production is directly related to the volume of the vocal tract, and the large-scale accumulation of fat in this region may interfere with voice production. The aim of this study was to analyze the neck circumference, fundamental frequency, and maximum phonation time of a group of morbidly obese women before and after bariatric surgery. An observational, longitudinal, and descriptive study was performed with patients of the Obesity and Related Diseases Surgery Unit of a university hospital. A total of 21 morbidly obese women aged 28-68 years, with a mean age of 41.33 years, participated in the study. Neck circumference was measured using a tape measure. To obtain fundamental frequency values, the patient was asked to produce the vowel [a] at normal intensity and pitch for an average period of 3 s. After recording, the participants were asked to produce the sustained vowels [a], [i], and [u] at normal intensity and pitch, with a stopwatch used to measure maximum phonation time. Eight months after surgery, patients were reassessed using the same data collecting procedures as were carried out prior to surgery. After surgery, there was an increase in the average value of fundamental frequency and maximum phonation time for all the vowels and a reduction in neck circumference. The differences were statistically significant. Weight reduction and a consequent decrease in neck circumference affected the changes in maximum phonation time and fundamental frequency values in the voices of these patients, after weight loss.

  8. Analysis of linear electrode array EMG for assessment of hemiparetic biceps brachii muscles.

    PubMed

    Yao, Bo; Zhang, Xu; Li, Sheng; Li, Xiaoyan; Chen, Xiang; Klein, Cliff S; Zhou, Ping

    2015-01-01

    This study presents a frequency analysis of surface electromyogram (EMG) signals acquired by a linear electrode array from the biceps brachii muscles bilaterally in 14 hemiparetic stroke subjects. For different levels of isometric contraction ranging from 10 to 80% of the maximum voluntary contraction (MVC), the power spectra of 19 bipolar surface EMG channels arranged proximally to distally along the muscle fibers were examined in both paretic and contralateral muscles. It was found that across all stroke subjects, the median frequency (MF) and the mean power frequency (MPF), averaged from different surface EMG channels, were significantly smaller in the paretic muscle compared to the contralateral muscle at each of the matched percent MVC contractions. The muscle fiber conduction velocity (MFCV) was significantly slower in the paretic muscle than in the contralateral muscle. No significant correlation between the averaged MF, MPF, or MFCV vs. torque was found in both paretic and contralateral muscles. However, there was a significant positive correlation between the global MFCV and MF. Examination of individual EMG channels showed that electrodes closest to the estimated muscle innervation zones produced surface EMG signals with significantly higher MF and MPF than more proximal or distal locations in both paretic and contralateral sides. These findings suggest complex central and peripheral neuromuscular alterations (such as selective loss of large motor units, disordered control of motor units, increased motor unit synchronization, and atrophy of muscle fibers, etc.) which can collectively influence the surface EMG signals. The frequency difference with regard to the innervation zone also confirms the relevance of electrode position in surface EMG analysis.

  9. Efficiency and multifractality analysis of CSI 300 based on multifractal detrending moving average algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Weijie; Dang, Yaoguo; Gu, Rongbao

    2013-03-01

    We apply the multifractal detrending moving average (MFDMA) to investigate and compare the efficiency and multifractality of 5-min high-frequency China Securities Index 300 (CSI 300). The results show that the CSI 300 market becomes closer to weak-form efficiency after the introduction of CSI 300 future. We find that the CSI 300 is featured by multifractality and there are less complexity and risk after the CSI 300 index future was introduced. With the shuffling, surrogating and removing extreme values procedures, we unveil that extreme events and fat-distribution are the main origin of multifractality. Besides, we discuss the knotting phenomena in multifractality, and find that the scaling range and the irregular fluctuations for large scales in the Fq(s) vs s plot can cause a knot.

  10. Damage Detection of CFRP Plates by Full-Spectral Analysis of a Fibre Bragg Grating Sensor Signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizutani, Yoshihiro; Solid and Structures Engineering Laboratory, Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, Japan, 2-12-1-I1-70, Ookayama, Meguro-ku, Tokyo 152-8552; Groves, Roger M.

    2010-05-28

    This paper describes the measurement of average strain, strain distribution and vibration of cantilever beam made of Carbon Fiber Reinforced Plastics (CFRP), using a single Fibre Bragg Grating (FBG) sensor mounted on the beam surface. Average strain is determined from the displacement of the peak wavelength of reflected light from the FBG sensor. Unstrained reference FBG sensors were used to compensate for temperature drift and the photoelastic coefficient (P{sub e}), which was used to calculate the gauge factor. Measured strains agree with those measured by a resistance foil strain gauge attached to the sample. Stress distributions are measured by monitoringmore » the variation in the full width half maximum (FWHM) values of the reflected spectrum, using a proposed optical analytical model, described in the paper. FWHM values were measured for both the cantilever test beam and a for a reference beam, loaded using a four-point bending rig. The trend of the stress distribution for the test beam matches with our analytical model, however with a relatively large noise present in the experimentally determined data. The vibration of cantilever beam was measured by temporal analysis of the peak reflection wavelength. This technique is very stable as measurements are not affected by variations in the signal amplitude. Finally an application of FBG sensors for damage detection of CFRP plates is demonstrated, by measuring the average strain and natural frequency. With small defects of different sizes applied to the CFRP plate, average strains were seen to increase with damage size and the natural frequency decreased with damage size.« less

  11. On the accuracy of the Head Impact Telemetry (HIT) System used in football helmets.

    PubMed

    Jadischke, Ron; Viano, David C; Dau, Nathan; King, Albert I; McCarthy, Joe

    2013-09-03

    On-field measurement of head impacts has relied on the Head Impact Telemetry (HIT) System, which uses helmet mounted accelerometers to determine linear and angular head accelerations. HIT is used in youth and collegiate football to assess the frequency and severity of helmet impacts. This paper evaluates the accuracy of HIT for individual head impacts. Most HIT validations used a medium helmet on a Hybrid III head. However, the appropriate helmet is large based on the Hybrid III head circumference (58 cm) and manufacturer's fitting instructions. An instrumented skull cap was used to measure the pressure between the head of football players (n=63) and their helmet. The average pressure with a large helmet on the Hybrid III was comparable to the average pressure from helmets used by players. A medium helmet on the Hybrid III produced average pressures greater than the 99th percentile volunteer pressure level. Linear impactor tests were conducted using a large and medium helmet on the Hybrid III. Testing was conducted by two independent laboratories. HIT data were compared to data from the Hybrid III equipped with a 3-2-2-2 accelerometer array. The absolute and root mean square error (RMSE) for HIT were computed for each impact (n=90). Fifty-five percent (n=49) had an absolute error greater than 15% while the RMSE was 59.1% for peak linear acceleration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Plasma processing of large curved surfaces for superconducting rf cavity modification

    DOE PAGES

    Upadhyay, J.; Im, Do; Popović, S.; ...

    2014-12-15

    In this study, plasma based surface modification of niobium is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. The development of the technology based on Cl 2/Ar plasma etching has to address several crucial parameters which influence the etching rate and surface roughness, and eventually, determine cavity performance. This includes dependence of the process on the frequency of the RF generator, gas pressure, power level, the driven (inner) electrode configuration, and the chlorine concentration in the gas mixture during plasma processing. To demonstrate surface layer removal in the asymmetric non-planar geometry, we are using a simplemore » cylindrical cavity with 8 ports symmetrically distributed over the cylinder. The ports are used for diagnosing the plasma parameters and as holders for the samples to be etched. The etching rate is highly correlated with the shape of the inner electrode, radio-frequency (RF) circuit elements, chlorine concentration in the Cl 2/Ar gas mixtures, residence time of reactive species and temperature of the cavity. Using cylindrical electrodes with variable radius, large-surface ring-shaped samples and d.c. bias implementation in the external circuit we have demonstrated substantial average etching rates and outlined the possibility to optimize plasma properties with respect to maximum surface processing effect.« less

  13. Interference Effects of Radiation Emitted from Nuclear Excitons

    NASA Astrophysics Data System (ADS)

    Potzel, W.; van Bürck, U.; Schindelmann, P.; Hagn, H.; Smirnov, G. V.; Popov, S. L.; Gerdau, E.; Shvyd'Ko, Yu. V.; Jäschke, J.; Rüter, H. D.; Chumakov, A. I.; Rüffer, R.

    2003-12-01

    Interference effects in nuclear forward scattering of synchrotron radiation (NFSSR) from two spatially separated stainless-steel foils A and B mounted downstream behind each other have been investigated. Target A can be sinusoidally vibrated by high-frequency (MHz) ultrasound (US), target B is moved at a constant Doppler velocity which is large compared to the natural width of the nuclear transition. Due to this large Doppler shift radiative coupling between both targets is disrupted and the nuclear excitons in A and B develop independently in space and time after the SR pulse. As a consequence, the emission from the whole system (A&B) is dominated by the interference of the emissions from A and B. The application of US to target A is a powerful method to change the relative phasing of the emissions and thus to investigate interference effects originating from the two nuclear excitons in detail. Four distinct cases were studied: (a) If target A is kept stationary and only B is moved at large constant velocity v, the interference pattern exhibits a Quantum Beat (QB) whose period is determined by v. (b) If, in addition, target A is sinusoidally vibrated in a piston-like motion by US and the initial US phase Φ0 is locked to the SR pulse, the QB is frequency modulated by the US. The variation of the QB frequency increases with the US modulation index m. (c) In the case that Φ0 is not synchronized to the SR pulse (phase averaging over Φ0) drastic changes of the amplitude and phase reversals of the QB pattern occur in the time regions around odd multiples of half of the US period. (d) If Φ0 is not synchronized to the SR pulse and the US motion is no longer pistonlike, the NFSSR intensity has to be averaged over both Φ0 and m (amplitude) of the US motion. Surprisingly the QB interference pattern does not vanish completely but a short QB signal remains at times of the full US period even at high values of m. All NFSSR patterns investigated are interpreted and quantitatively described by the dynamical theory.

  14. Asymmetric Impact of Tropical SST Anomalies on Atmospheric Internal Variability over the North Pacific.

    NASA Astrophysics Data System (ADS)

    Chen, Wilbur Y.; van den Dool, Huug M.

    1997-03-01

    A substantial asymmetric impact of tropical Pacific SST anomalies on the internal variability of the extratropical atmosphere is found. A variety of diagnoses is performed to help reveal the dynamical processes leading to the large impact. Thirty-five years of geopotential heights and 29 years of wind fields analyzed operationally at the National Centers for Environmental Prediction (NCEP), formerly the National Meteorological Center, and three sets of 10-yr-long perpetual January integrations run with a low-resolution NCEP global spectral model are investigated in detail for the impact of the SST anomalies on the blocking flows over the North Pacific. The impact on large-scale deep trough flows is also examined.Both the blocking and deep trough flows develop twice as much over the North Pacific during La Niña as during El Niño winters. Consequently, the internal dynamics associated low-frequency variability (LFV), with timescales between 7 and 61 days examined in this study, display distinct characteristics: much larger magnitude for the La Niña than the El Niño winters over the eastern North Pacific, where the LFV is highest in general.The diagnosis of the localized Eliassen-Palm fluxes and their divergence reveals that the high-frequency transient eddies (1-7 days) at high latitudes are effective in forming and maintaining the large-scale blocking flows, while the midlatitude transients are less effective. The mean deformation field over the North Pacific is much more diffluent for the La Niña than the El Niño winters, resulting in more blocking flows being developed and maintained during La Niña by the high-frequency transients over the central North Pacific.In addition to the above dynamical process operating on the high-frequency end of the spectrum, the local barotropic energy conversion between the LFV components and the time-mean flows is also operating and playing a crucial role. The kinetic energy conversion represented by the scalar product between the E vector of the low-frequency components and the deformation D vector of the time-mean flow reveals that, on average, the low-frequency components extract energy from the time-mean flow during La Niña winters while they lose energy to the time-mean flow during El Niño winters. This local barotropic energy conversion on the low-frequency end of the spectrum, together with the forcing of the high-frequency transients on blocking flows on the high-frequency end, explain why there is a large difference in the magnitude of low-frequency variability between the La Niña and the El Niño winters.

  15. Calculation of average landslide frequency using climatic records

    Treesearch

    L. M. Reid

    1998-01-01

    Abstract - Aerial photographs are used to develop a relationship between the number of debris slides generated during a hydrologic event and the size of the event, and the long-term average debris-slide frequency is calculated from climate records using the relation.

  16. Regional price differences and food consumption frequency among elementary school children.

    PubMed

    Sturm, R; Datar, A

    2011-03-01

    Food prices may affect diet and weight gain among youth and lead to geographic disparities in obesity. This paper examines the association between regional prices and consumption frequency of fruit/vegetables and snack items among elementary school children in the USA. Observational study using individual-level survey data of fifth-grade children (average age 11 years) and regional food prices based on store visits in 2004. Dependent variables are self-reported consumption frequency in fifth grade; primary explanatory variables are metropolitan area food prices relative to cost of living. Multivariate regression analysis. Price variation across metropolitan areas exists, and lower real prices for vegetables and fruits predict significantly higher intake frequency. Higher dairy prices predict lower frequency of milk consumption, while higher meat prices predict increased milk consumption. Similar price effects were not found for fast food or soft drink consumption. The geographic variation in food prices across the USA is sufficiently large to affect dietary patterns among youth for fruit, vegetables and milk. The price variation is either too small to affect children's consumption frequency of fast food or soft drinks, or the consumption of these foods is less price sensitive. Copyright © 2010 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  17. A simple method for the computation of first neighbour frequencies of DNAs from CD spectra

    PubMed Central

    Marck, Christian; Guschlbauer, Wilhelm

    1978-01-01

    A procedure for the computation of the first neighbour frequencies of DNA's is presented. This procedure is based on the first neighbour approximation of Gray and Tinoco. We show that the knowledge of all the ten elementary CD signals attached to the ten double stranded first neighbour configurations is not necessary. One can obtain the ten frequencies of an unknown DNA with the use of eight elementary CD signals corresponding to eight linearly independent polymer sequences. These signals can be extracted very simply from any eight or more CD spectra of double stranded DNA's of known frequencies. The ten frequencies of a DNA are obtained by least square fit of its CD spectrum with these elementary signals. One advantage of this procedure is that it does not necessitate linear programming, it can be used with CD data digitalized using a large number of wavelengths, thus permitting an accurate resolution of the CD spectra. Under favorable case, the ten frequencies of a DNA (not used as input data) can be determined with an average absolute error < 2%. We have also observed that certain satellite DNA's, those of Drosophila virilis and Callinectes sapidus have CD spectra compatible with those of DNA's of quasi random sequence; these satellite DNA's should adopt also the B-form in solution. PMID:673843

  18. Regional price differences and food consumption frequency among elementary school children

    PubMed Central

    Sturm, R.; Datar, A.

    2010-01-01

    SUMMARY Objective Food prices may affect diet and weight gain among youth and lead to geographic disparities in obesity. This paper examines the association between regional prices and consumption frequency of fruit/vegetables and snack items among elementary school children in the USA. Study design Observational study using individual-level survey data of fifth-grade children (average age 11 years) and regional food prices based on store visits in 2004. Methods Dependent variables are self-reported consumption frequency in fifth grade; primary explanatory variables are metropolitan area food prices relative to cost of living. Multivariate regression analysis. Results Price variation across metropolitan areas exists, and lower real prices for vegetables and fruits predict significantly higher intake frequency. Higher dairy prices predict lower frequency of milk consumption, while higher meat prices predict increased milk consumption. Similar price effects were not found for fast food or soft drink consumption. Discussion The geographic variation in food prices across the USA is sufficiently large to affect dietary patterns among youth for fruit, vegetables and milk. This suggests that either the price variation is too small to affect children’s consumption frequency of fast food or soft drinks, or that the consumption of these foods is less price sensitive. PMID:21315395

  19. A kinetic model for estimating net photosynthetic rates of cos lettuce leaves under pulsed light.

    PubMed

    Jishi, Tomohiro; Matsuda, Ryo; Fujiwara, Kazuhiro

    2015-04-01

    Time-averaged net photosynthetic rate (P n) under pulsed light (PL) is known to be affected by the PL frequency and duty ratio, even though the time-averaged photosynthetic photon flux density (PPFD) is unchanged. This phenomenon can be explained by considering that photosynthetic intermediates (PIs) are pooled during light periods and then consumed by partial photosynthetic reactions during dark periods. In this study, we developed a kinetic model to estimate P n of cos lettuce (Lactuca sativa L. var. longifolia) leaves under PL based on the dynamics of the amount of pooled PIs. The model inputs are average PPFD, duty ratio, and frequency; the output is P n. The rates of both PI accumulation and consumption at a given moment are assumed to be dependent on the amount of pooled PIs at that point. Required model parameters and three explanatory variables (average PPFD, frequency, and duty ratio) were determined for the simulation using P n values under PL based on several combinations of the three variables. The model simulation for various PL levels with a wide range of time-averaged PPFDs, frequencies, and duty ratios further demonstrated that P n under PL with high frequencies and duty ratios was comparable to, but did not exceed, P n under continuous light, and also showed that P n under PL decreased as either frequency or duty ratio was decreased. The developed model can be used to estimate P n under various light environments where PPFD changes cyclically.

  20. The need for higher-order averaging in the stability analysis of hovering, flapping-wing flight.

    PubMed

    Taha, Haithem E; Tahmasian, Sevak; Woolsey, Craig A; Nayfeh, Ali H; Hajj, Muhammad R

    2015-01-05

    Because of the relatively high flapping frequency associated with hovering insects and flapping wing micro-air vehicles (FWMAVs), dynamic stability analysis typically involves direct averaging of the time-periodic dynamics over a flapping cycle. However, direct application of the averaging theorem may lead to false conclusions about the dynamics and stability of hovering insects and FWMAVs. Higher-order averaging techniques may be needed to understand the dynamics of flapping wing flight and to analyze its stability. We use second-order averaging to analyze the hovering dynamics of five insects in response to high-amplitude, high-frequency, periodic wing motion. We discuss the applicability of direct averaging versus second-order averaging for these insects.

  1. Characterization and comprehension of corona partial discharge in air under power frequency to very low frequency voltage

    NASA Astrophysics Data System (ADS)

    Yuanxiang, ZHOU; Zhongliu, ZHOU; Ling, ZHANG; Yunxiao, ZHANG; Yajun, MO; Jiantao, SUN

    2018-05-01

    For the partial discharge test of electrical equipment with large capacitance, the use of low-frequency voltage instead of power frequency voltage can effectively reduce the capacity requirements of test power supply. However, the validity of PD test under low frequency voltage needs to be evaluated. In order to investigate the influence of voltage frequency on corona discharge in the air, the discharge test of the tip-plate electrode under the frequency from 50 to 0.1 Hz is carried out based on the impulse current method. The results show that some of the main features of corona under low frequency do not change. The magnitude of discharge in a positive half cycle is obviously larger than that in a negative cycle. The magnitude of discharge and interval in positive cycle are random, while that in negative cycle are regular. With the decrease of frequency, the inception voltage increases. The variation trend of maximum and average magnitude and repetition rate of the discharge in positive and negative half cycle with the variation of voltage frequency and magnitude is demonstrated, with discussion and interpretation from the aspects of space charge transportation, effective discharge time and transition of discharge modes. There is an obvious difference in the phase resolved pattern of partial discharge and characteristic parameters of discharge patterns between power and low frequency. The experimental results can be the reference for mode identification of partial discharge under low frequency tests. The trend of the measured parameters with the variation of frequency provides more information about the insulation defect than traditional measurements under a single frequency (usually 50 Hz). Also it helps to understand the mechanism of corona discharge with an explanation of the characteristics under different frequencies.

  2. Operational frequency stability of rubidium and cesium frequency standards

    NASA Technical Reports Server (NTRS)

    Lavery, J. E.

    1973-01-01

    The frequency stabilities under operational conditions of several commercially available rubidium and cesium frequency standards were determined from experimental data for frequency averaging times from 10 to the 7th power s and are presented in table and graph form. For frequency averaging times between 10 to the 5th power and 10 to the 7th power s, the rubidium standards tested have a stability of between 10 to the minus 12th power and 5 x 10 to the minus 12th power, while the cesium standards have a stability of between 2 x 10 to the minus 13th power and 5 x 10 to the minus 13th power.

  3. Analysis of electrochemical noise (ECN) data in time and frequency domain for comparison corrosion inhibition of some azole compounds on Cu in 1.0 M H2SO4 solution

    NASA Astrophysics Data System (ADS)

    Ramezanzadeh, B.; Arman, S. Y.; Mehdipour, M.; Markhali, B. P.

    2014-01-01

    In this study, the corrosion inhibition properties of two similar heterocyclic compounds namely benzotriazole (BTA) and benzothiazole (BNS) inhibitors on copper in 1.0 M H2SO4 solution were studied by electrochemical techniques as well as surface analysis. The results showed that corrosion inhibition of copper largely depends on the molecular structure and concentration of the inhibitors. The effect of DC trend on the interpretation of electrochemical noise (ECN) results in time domain was evaluated by moving average removal (MAR) method. Accordingly, the impact of square and Hanning window functions as drift removal methods in frequency domain was studied. After DC trend removal, a good trend was observed between electrochemical noise (ECN) data and the results obtained from EIS and potentiodynamic polarization. Furthermore, the shot noise theory in frequency domain was applied to approach the charge of each electrochemical event (q) from the potential and current noise signals.

  4. Micromagnetic evaluation of the dissipated heat in cylindrical magnetic nanowires

    NASA Astrophysics Data System (ADS)

    Fernandez-Roldan, Jose Angel; Serantes, David; del Real, Rafael P.; Vazquez, Manuel; Chubykalo-Fesenko, Oksana

    2018-05-01

    Magnetic nanowires (NWs) are promising candidates for heat generation under AC-field application due to their large shape anisotropy. They may be used for catalysis, hyperthermia, or water purification treatments. In the present work, we theoretically evaluate the heat dissipated by a single magnetic nanowire, originated from the domain wall (DW) dynamics under the action of an AC-field. We compare the Permalloy NWs (which demagnetize via the transverse wall propagation) with the Co fcc NWs whose reversal mode is via a vortex domain wall. The average hysteresis loop areas—which are proportional to the Specific Absorption Rate (SAR)—as a function of the field frequency have a pronounced maximum in the range 200 MHz-1 GHz. This maximum frequency is smaller in Permalloy than that in Co and depends on the nanowire length. A simple model related to the nucleation and propagation time and DW velocity (higher for the vortex than for the transverse domain wall) is proposed to explain the non-monotonic SAR dependence on the frequency.

  5. Minimum principles in electromagnetic scattering by small aspherical particles

    NASA Astrophysics Data System (ADS)

    Kostinski, Alex B.; Mongkolsittisilp, Ajaree

    2013-12-01

    We consider the question of optimal shapes, e.g., those causing minimal extinction among all shapes of equal volume. Guided by the isoperimetric property of a sphere, relevant in the geometrical optics limit of scattering by large particles, we examine an analogous question in the low frequency approximation, seeking to disentangle electric and geometric contributions. To that end, we survey the literature on shape functionals and focus on ellipsoids, giving a simple discussion of spherical optimality for the coated ellipsoidal particle. Monotonic increase with asphericity in the low frequency regime for orientation-averaged induced dipole moments and scattering cross-sections is also shown. Additional physical insight is obtained from the Rayleigh-Gans (transparent) limit and eccentricity expansions. We propose connecting low and high frequency regimes in a single minimum principle valid for all size parameters, provided that reasonable size distributions of randomly oriented aspherical particles wash out the resonances for intermediate size parameters. This proposal is further supported by the sum rule for integrated extinction.

  6. Computation of ground motion amplification in Kolkata megacity (India) using finite-difference method for seismic microzonation

    NASA Astrophysics Data System (ADS)

    Shiuly, Amit; Kumar, Vinay; Narayan, Jay

    2014-06-01

    This paper presents the ground motion amplification scenario along with fundamental frequency (F 0) of sedimentary deposit for the seismic microzonation of Kolkata City, situated on the world's largest delta island with very soft soil deposit. A 4th order accurate SH-wave viscoelastic finite-difference algorithm is used for computation of response of 1D model for each borehole location. Different maps, such as for F 0, amplification at F 0, average spectral amplification (ASA) in the different frequency bandwidth of earthquake engineering interest are developed for a variety of end-users communities. The obtained ASA of the order of 3-6 at most of the borehole locations in a frequency range of 0.25-10.0 Hz reveals that Kolkata City may suffer severe damage even during a moderate earthquake. Further, unexpected severe damage to collapse of multi-storey buildings may occur in localities near Hoogly River and Salt Lake area due to double resonance effects during distant large earthquakes.

  7. Heterodyne laser diagnostic system

    DOEpatents

    Globig, Michael A.; Johnson, Michael A.; Wyeth, Richard W.

    1990-01-01

    The heterodyne laser diagnostic system includes, in one embodiment, an average power pulsed laser optical spectrum analyzer for determining the average power of the pulsed laser. In another embodiment, the system includes a pulsed laser instantaneous optical frequency measurement for determining the instantaneous optical frequency of the pulsed laser.

  8. Source levels and call parameters of harbor seal breeding vocalizations near a terrestrial haulout site in Glacier Bay National Park and Preserve.

    PubMed

    Matthews, Leanna P; Parks, Susan E; Fournet, Michelle E H; Gabriele, Christine M; Womble, Jamie N; Klinck, Holger

    2017-03-01

    Source levels of harbor seal breeding vocalizations were estimated using a three-element planar hydrophone array near the Beardslee Islands in Glacier Bay National Park and Preserve, Alaska. The average source level for these calls was 144 dB RMS re 1 μPa at 1 m in the 40-500 Hz frequency band. Source level estimates ranged from 129 to 149 dB RMS re 1 μPa. Four call parameters, including minimum frequency, peak frequency, total duration, and pulse duration, were also measured. These measurements indicated that breeding vocalizations of harbor seals near the Beardslee Islands of Glacier Bay National Park are similar in duration (average total duration: 4.8 s, average pulse duration: 3.0 s) to previously reported values from other populations, but are 170-220 Hz lower in average minimum frequency (78 Hz).

  9. Mechanisms of wave‐driven water level variability on reef‐fringed coastlines

    USGS Publications Warehouse

    Buckley, Mark L.; Lowe, Ryan J.; Hansen, Jeff E; van Dongeren, Ap R.; Storlazzi, Curt

    2018-01-01

    Wave‐driven water level variability (and runup at the shoreline) is a significant cause of coastal flooding induced by storms. Wave runup is challenging to predict, particularly along tropical coral reef‐fringed coastlines due to the steep bathymetric profiles and large bottom roughness generated by reef organisms, which can violate assumptions in conventional models applied to open sandy coastlines. To investigate the mechanisms of wave‐driven water level variability on a reef‐fringed coastline, we performed a set of laboratory flume experiments on an along‐shore uniform bathymetric profile with and without bottom roughness. Wave setup and waves at frequencies lower than the incident sea‐swell forcing (infragravity waves) were found to be the dominant components of runup. These infragravity waves were positively correlated with offshore wave groups, signifying they were generated in the surf zone by the oscillation of the breakpoint. On the reef flat and at the shoreline, the low‐frequency waves formed a standing wave pattern with energy concentrated at the natural frequencies of the reef flat, indicating resonant amplification. Roughness elements used in the flume to mimic large reef bottom roughness reduced low frequency motions on the reef flat and reduced wave run up by 30% on average, compared to the runs over a smooth bed. These results provide insight into sea‐swell and infragravity wave transformation and wave setup dynamics on steep‐sloped coastlines, and the effect that future losses of reef bottom roughness may have on coastal flooding along reef‐fringed coasts.

  10. [Micro vs. macro: structural-functional organization of avian micro- and macrochromosomes].

    PubMed

    Rodionov, A V

    1996-05-01

    Karyotypes of lower vertebrates mainly consist of microchromosomes. In higher vertebrates, microchromosomes are present in each class of the most primitive orders. Birds have more microchromosomes in their karyotype than other vertebrates. Accumulation of microchromosomes in the avian karyotype probably occurred after separation of birds from reptilians in Triassic, but prior to radiation of ancestors of the modern orders (late Cretaceous-early Jurassic). In this review, the structural, molecular, and functional organization of avian macro- and microchromosomes and their participation in genetic processes are discussed. The average size of an avian microchromosome is about 12.4 Mb, which is ten times less than the size of an average macrochromosome. In contrast to macrochromosomes, medium and small avian chromosomes lack the highest level of chromosomal organization: their chromonemes do not have spiral coiling. Microchromosomal euchromatin largely consists of GC-rich R regions. More than half of the mapped avian genes are located on microchromosomes. Crossing-over frequency in microchromosomes is approximately threefold higher than in macrochromosomes. This may be caused by high GC content and recombination hot spots, which are present on each microchromosome. High recombination frequency in microchromosomes increases the probability of their correct meiotic segregation.

  11. Comments on filament-disintegration and its relation to other aspects of solar activity.

    NASA Technical Reports Server (NTRS)

    Dodson, H. W.; Hedeman, E. R.; Rovira De Miceli, M.

    1972-01-01

    Studies of sudden disintegrations of filaments in solar cycles 19 and 20 (to 1969) indicate that such events occur frequently. Approximately 30% of all large filaments in these cycles disintegrated in the course of their transit across the solar disk. 'Major' flares occurred with above average frequency on the last day on which 141 large disappearing filaments were observed. Relationships between a disintegrating filament on July 10-11, 1959, a prior major flare, a newly formed spot, and concomitant growth of H-alpha plage are presented. Observation of prior descending prominence material apparently directed towards the location of the flare of July 15, 1959 is reported. The development of the filament-associated flare of Feb. 13, 1967 is described.

  12. Temperature and composition dependent density of states extracted using overlapping large polaron tunnelling model in MnxCo1-xFe2O4 (x=0.25, 0.5, 0.75) nanoparticles

    NASA Astrophysics Data System (ADS)

    Jamil, Arifa; Afsar, M. F.; Sher, F.; Rafiq, M. A.

    2017-03-01

    We report detailed ac electrical and structural characterization of manganese cobalt ferrite nanoparticles, prepared by coprecipitation technique. X-ray diffraction (XRD) confirmed single-phase cubic spinel structure of the nanoparticles. Tetrahedral (A) and octahedral (B) group complexes were present in the spinel lattice as determined by Fourier Transform Infrared Spectroscopy (FTIR). Scanning Electron Microscope (SEM) images revealed presence of spherical shape nanoparticles having an average diameter 50-80 nm. Composition, temperature and frequency dependent ac electrical study of prepared nanoparticles interpreted the role of cationic distribution between A and B sites. Overlapping large polaron tunnelling (OLPT) conduction mechanism was observed from 290 to 200 K. Frequency exponent s was fitted theoretically using OLPT model. High values of Density of States (DOS) of the order of 1022-1024 eV-1 cm-3 were extracted from ac conductivity for different compositions. We found that DOS was dependent on distribution of cations in the tunnel-type cavities along the a and b axis.

  13. Power flow as a complement to statistical energy analysis and finite element analysis

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1987-01-01

    Present methods of analysis of the structural response and the structure-borne transmission of vibrational energy use either finite element (FE) techniques or statistical energy analysis (SEA) methods. The FE methods are a very useful tool at low frequencies where the number of resonances involved in the analysis is rather small. On the other hand SEA methods can predict with acceptable accuracy the response and energy transmission between coupled structures at relatively high frequencies where the structural modal density is high and a statistical approach is the appropriate solution. In the mid-frequency range, a relatively large number of resonances exist which make finite element method too costly. On the other hand SEA methods can only predict an average level form. In this mid-frequency range a possible alternative is to use power flow techniques, where the input and flow of vibrational energy to excited and coupled structural components can be expressed in terms of input and transfer mobilities. This power flow technique can be extended from low to high frequencies and this can be integrated with established FE models at low frequencies and SEA models at high frequencies to form a verification of the method. This method of structural analysis using power flo and mobility methods, and its integration with SEA and FE analysis is applied to the case of two thin beams joined together at right angles.

  14. Numerical Investigation of the Hydrogen Jet Flammable Envelope Extent with Account for Unsteady Phenomena

    NASA Astrophysics Data System (ADS)

    Chernyavsky, Boris; Benard, Pierre

    2010-11-01

    An important aspect of safety analysis in hydrogen applications is determination of the extent of flammable gas envelope in case of hydrogen jet release. Experimental investigations had shown significant disagreements between the extent of average flammable envelope predicted by steady-state numerical methods, and the region observed to support ignition, with proposed cause being non-steady jet phenomena resulting in significant variations of instantaneous gas concentration and velocity fields in the jet. In order to investigate the influence of these transient phenomena, a numerical investigation of hydrogen jet at low Mach number had been performed using unsteady Large Eddy Simulation. Instantaneous hydrogen concentration and velocity fields were monitored to determine instantaneous flammable envelope. The evolution of the instantaneous fields, including the development of the turbulence structures carrying hydrogen, their extent and frequency, and their relation with averaged fields had been characterized. Simulation had shown significant variability of the flammable envelope, with jet flapping causing shedding of large scale rich and lean gas pockets from the main jet core, which persist for significant times and substantially alter the extent of flammability envelope.

  15. Similar frequency of the McGurk effect in large samples of native Mandarin Chinese and American English speakers.

    PubMed

    Magnotti, John F; Basu Mallick, Debshila; Feng, Guo; Zhou, Bin; Zhou, Wen; Beauchamp, Michael S

    2015-09-01

    Humans combine visual information from mouth movements with auditory information from the voice to recognize speech. A common method for assessing multisensory speech perception is the McGurk effect: When presented with particular pairings of incongruent auditory and visual speech syllables (e.g., the auditory speech sounds for "ba" dubbed onto the visual mouth movements for "ga"), individuals perceive a third syllable, distinct from the auditory and visual components. Chinese and American cultures differ in the prevalence of direct facial gaze and in the auditory structure of their languages, raising the possibility of cultural- and language-related group differences in the McGurk effect. There is no consensus in the literature about the existence of these group differences, with some studies reporting less McGurk effect in native Mandarin Chinese speakers than in English speakers and others reporting no difference. However, these studies sampled small numbers of participants tested with a small number of stimuli. Therefore, we collected data on the McGurk effect from large samples of Mandarin-speaking individuals from China and English-speaking individuals from the USA (total n = 307) viewing nine different stimuli. Averaged across participants and stimuli, we found similar frequencies of the McGurk effect between Chinese and American participants (48 vs. 44 %). In both groups, we observed a large range of frequencies both across participants (range from 0 to 100 %) and stimuli (15 to 83 %) with the main effect of culture and language accounting for only 0.3 % of the variance in the data. High individual variability in perception of the McGurk effect necessitates the use of large sample sizes to accurately estimate group differences.

  16. Capillary Electrophoresis Sensitivity Enhancement Based on Adaptive Moving Average Method.

    PubMed

    Drevinskas, Tomas; Telksnys, Laimutis; Maruška, Audrius; Gorbatsova, Jelena; Kaljurand, Mihkel

    2018-06-05

    In the present work, we demonstrate a novel approach to improve the sensitivity of the "out of lab" portable capillary electrophoretic measurements. Nowadays, many signal enhancement methods are (i) underused (nonoptimal), (ii) overused (distorts the data), or (iii) inapplicable in field-portable instrumentation because of a lack of computational power. The described innovative migration velocity-adaptive moving average method uses an optimal averaging window size and can be easily implemented with a microcontroller. The contactless conductivity detection was used as a model for the development of a signal processing method and the demonstration of its impact on the sensitivity. The frequency characteristics of the recorded electropherograms and peaks were clarified. Higher electrophoretic mobility analytes exhibit higher-frequency peaks, whereas lower electrophoretic mobility analytes exhibit lower-frequency peaks. On the basis of the obtained data, a migration velocity-adaptive moving average algorithm was created, adapted, and programmed into capillary electrophoresis data-processing software. Employing the developed algorithm, each data point is processed depending on a certain migration time of the analyte. Because of the implemented migration velocity-adaptive moving average method, the signal-to-noise ratio improved up to 11 times for sampling frequency of 4.6 Hz and up to 22 times for sampling frequency of 25 Hz. This paper could potentially be used as a methodological guideline for the development of new smoothing algorithms that require adaptive conditions in capillary electrophoresis and other separation methods.

  17. Unveiling signatures of interdecadal climate changes by Hilbert analysis

    NASA Astrophysics Data System (ADS)

    Zappalà, Dario; Barreiro, Marcelo; Masoller, Cristina

    2017-04-01

    A recent study demonstrated that, in a class of networks of oscillators, the optimal network reconstruction from dynamics is obtained when the similarity analysis is performed not on the original dynamical time series, but on transformed series obtained by Hilbert transform. [1] That motivated us to use Hilbert transform to study another kind of (in a broad sense) "oscillating" series, such as the series of temperature. Actually, we found that Hilbert analysis of SAT (Surface Air Temperature) time series uncovers meaningful information about climate and is therefore a promising tool for the study of other climatological variables. [2] In this work we analysed a large dataset of SAT series, performing Hilbert transform and further analysis with the goal of finding signs of climate change during the analysed period. We used the publicly available ERA-Interim dataset, containing reanalysis data. [3] In particular, we worked on daily SAT time series, from year 1979 to 2015, in 16380 points arranged over a regular grid on the Earth surface. From each SAT time series we calculate the anomaly series and also, by using the Hilbert transform, we calculate the instantaneous amplitude and instantaneous frequency series. Our first approach is to calculate the relative variation: the difference between the average value on the last 10 years and the average value on the first 10 years, divided by the average value over all the analysed period. We did this calculations on our transformed series: frequency and amplitude, both with average values and standard deviation values. Furthermore, to have a comparison with an already known analysis methods, we did these same calculations on the anomaly series. We plotted these results as maps, where the colour of each site indicates the value of its relative variation. Finally, to gain insight in the interpretation of our results over real SAT data, we generated synthetic sinusoidal series with various levels of additive noise. By applying Hilbert analysis to the synthetic data, we uncovered a clear trend between mean amplitude and mean frequency: as the noise level grows, the amplitude increases while the frequency decreases. Research funded in part by AGAUR (Generalitat de Catalunya), EU LINC project (Grant No. 289447) and Spanish MINECO (FIS2015-66503-C3-2-P).

  18. Ejaculation Frequency and Risk of Prostate Cancer: Updated Results with an Additional Decade of Follow-up

    PubMed Central

    Rider, Jennifer R.; Wilson, Kathryn M.; Sinnott, Jennifer A.; Kelly, Rachel S.; Mucci, Lorelei A.; Giovannucci, Edward L.

    2016-01-01

    Background Evidence suggests that ejaculation frequency may be inversely related to the risk of prostate cancer (PCa), a disease for which few modifiable risk factors have been identified. Objective To incorporate an additional 10 yr of follow-up into an original analysis and to comprehensively evaluate the association between ejaculation frequency and PCa, accounting for screening, clinically relevant disease subgroups, and the impact of mortality from other causes. Design, setting, and participants A prospective cohort study of participants in the Health Professionals Follow-up Study utilizing self-reported data on average monthly ejaculation frequency. The study includes 31 925 men who answered questions on ejaculation frequency on a 1992 questionnaire and followed through to 2010. The average monthly ejaculation frequency was assessed at three time points: age 20–29 yr, age 40–49 yr, and the year before questionnaire distribution. Outcome measurements and statistical analysis Incidence of total PCa and clinically relevant disease subgroups. Cox models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Results and limitations During 480 831 person-years, 3839 men were diagnosed with PCa. Ejaculation frequency at age 40–49 yr was positively associated with age-standardized body mass index, physical activity, divorce, history of sexually transmitted infections, and consumption of total calories and alcohol. Prostate-specific antigen (PSA) test utilization by 2008, number of PSA tests, and frequency of prostate biopsy were similar across frequency categories. In multivariable analyses, the hazard ratio for PCa incidence for ≥21 compared to 4–7 ejaculations per month was 0.81 (95% confidence interval [CI] 0.72–0.92; p < 0.0001 for trend) for frequency at age 20–29 yr and 0.78 (95% CI 0.69–0.89; p < 0.0001 for trend) for frequency at age 40–49 yr. Associations were driven by low-risk disease, were similar when restricted to a PSA-screened cohort, and were unlikely to be explained by competing causes of death. Conclusions These findings provide additional evidence of a beneficial role of more frequent ejaculation throughout adult life in the etiology of PCa, particularly for low-risk disease. Patient summary We evaluated whether ejaculation frequency throughout adulthood is related to prostate cancer risk in a large US-based study. We found that men reporting higher compared to lower ejaculatory frequency in adulthood were less likely to be subsequently diagnosed with prostate cancer. PMID:27033442

  19. Resting state cortical oscillations of patients with Parkinson disease and with and without subthalamic deep brain stimulation: a magnetoencephalography study.

    PubMed

    Cao, Chunyan; Li, Dianyou; Jiang, Tianxiao; Ince, Nuri Firat; Zhan, Shikun; Zhang, Jing; Sha, Zhiyi; Sun, Bomin

    2015-04-01

    In this study, we investigate the modification to cortical oscillations of patients with Parkinson disease (PD) by subthalamic deep brain stimulation (STN-DBS). Spontaneous cortical oscillations of patients with PD were recorded with magnetoencephalography during on and off subthalamic nucleus deep brain stimulation states. Several features such as average frequency, average power, and relative subband power in regions of interest were extracted in the frequency domain, and these features were correlated with Unified Parkinson Disease Rating Scale III evaluation. The same features were also investigated in patients with PD without surgery and healthy controls. Patients with Parkinson disease without surgery compared with healthy controls had a significantly lower average frequency and an increased average power in 1 to 48 Hz range in whole cortex. Higher relative power in theta and simultaneous decrease in beta and gamma over temporal and occipital were also observed in patients with PD. The Unified Parkinson Disease Rating Scale III rigidity score correlated with the average frequency and with the relative power of beta and gamma in frontal areas. During subthalamic nucleus deep brain stimulation, the average frequency increased significantly when stimulation was on compared with off state. In addition, the relative power dropped in delta, whereas it rose in beta over the whole cortex. Through the course of stimulation, the Unified Parkinson Disease Rating Scale III rigidity and tremor scores correlated with the relative power of alpha over left parietal. Subthalamic nucleus deep brain stimulation improves the symptoms of PD by suppressing the synchronization of alpha rhythm in somatomotor region.

  20. Response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions

    USGS Publications Warehouse

    Rojstaczer, Stuart; Riley, Francis S.

    1990-01-01

    The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q′u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q′u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q′u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q′u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.

  1. Numerical simulation of turbulence and terahertz magnetosonic waves generation in collisionless plasmas

    NASA Astrophysics Data System (ADS)

    Kumar, Narender; Singh, Ram Kishor; Sharma, Swati; Uma, R.; Sharma, R. P.

    2018-01-01

    This paper presents numerical simulations of laser beam (x-mode) coupling with a magnetosonic wave (MSW) in a collisionless plasma. The coupling arises through ponderomotive non-linearity. The pump beam has been perturbed by a periodic perturbation that leads to the nonlinear evolution of the laser beam. It is observed that the frequency spectra of the MSW have peaks at terahertz frequencies. The simulation results show quite complex localized structures that grow with time. The ensemble averaged power spectrum has also been studied which indicates that the spectral index follows an approximate scaling of the order of ˜ k-2.1 at large scales and scaling of the order of ˜ k-3.6 at smaller scales. The results indicate considerable randomness in the spatial structure of the magnetic field profile which gives sufficient indication of turbulence.

  2. An Estimate of North Atlantic Basin Tropical Cyclone Activity for 2008

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2008-01-01

    The statistics of North Atlantic basin tropical cyclones for the interval 1945-2007 are examined and estimates are given for the frequencies of occurrence of the number of tropical cyclones, number of hurricanes, number of major hurricanes, number of category 4/5 hurricanes, and number of U.S. land-falling hurricanes for the 2008 hurricane season. Also examined are the variations of peak wind speed, average peak wind speed per storm, lowest pressure, average lowest pressure per storm, recurrence rate and duration of extreme events (El Nino and La Nina), the variation of 10-yr moving averages of parametric first differences, and the association of decadal averages of frequencies of occurrence of North Atlantic basin tropical cyclones against decadal averages of Armagh Observatory, Northern Ireland, annual mean temperature (found to be extremely important for number of tropical cyclones and number of hurricanes). Because the 2008 hurricane season seems destined to be one that is non-El Nino-related and is a post-1995 season, estimates of the frequencies of occurrence for the various subsets of storms should be above long-term averages.

  3. Synoptic observations of Jupiter's radio emissions: Average Statistical properties observed by Voyager

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.; Carr, T. D.; Thieman, J. R.; Schauble, J. J.; Riddle, A. C.

    1980-01-01

    Observations of Jupiter's low frequency radio emissions collected over one month intervals before and after each Voyager encounter were analyzed. Compilations of occurrence probability, average power flux density and average sense of circular polarization are presented as a function of central meridian longitude, phase of Io, and frequency. The results are compared with ground based observations. The necessary geometrical conditions are preferred polarization sense for Io-related decametric emission observed by Voyager from above both the dayside and nightside hemispheres are found to be essentially the same as are observed in Earth based studies. On the other hand, there is a clear local time dependence in the Io-independent decametric emission. Io appears to have an influence on average flux density of the emission down to below 2 MHz. The average power flux density spectrum of Jupiter's emission has a broad peak near 9MHz. Integration of the average spectrum over all frequencies gives a total radiated power for an isotropic source of 4 x 10 to the 11th power W.

  4. Insured without moral hazard in the health care reform of China.

    PubMed

    Wong, Chack-Kie; Cheung, Chau-Kiu; Tang, Kwong-Leung

    2012-01-01

    Public insurance possibly increases the use of health care because of the insured person's interest in maximizing benefits without incurring out-of-pocket costs. A newly reformed public insurance scheme in China that builds on personal responsibility is thus likely to provide insurance without causing moral hazard. This possibility is the focus of this study, which surveyed 303 employees in a large city in China. The results show that the coverage and use of the public insurance scheme did not show a significant positive effect on the average employee's frequency of physician consultation. In contrast, the employee who endorsed public responsibility for health care visited physicians more frequently in response to some insurance factors. On balance, public insurance did not tempt the average employee to consult physicians frequently, presumably due to personal responsibility requirements in the insurance scheme.

  5. Male songbird indicates body size with low-pitched advertising songs.

    PubMed

    Hall, Michelle L; Kingma, Sjouke A; Peters, Anne

    2013-01-01

    Body size is a key sexually selected trait in many animal species. If size imposes a physical limit on the production of loud low-frequency sounds, then low-pitched vocalisations could act as reliable signals of body size. However, the central prediction of this hypothesis--that the pitch of vocalisations decreases with size among competing individuals--has limited support in songbirds. One reason could be that only the lowest-frequency components of vocalisations are constrained, and this may go unnoticed when vocal ranges are large. Additionally, the constraint may only be apparent in contexts when individuals are indeed advertising their size. Here we explicitly consider signal diversity and performance limits to demonstrate that body size limits song frequency in an advertising context in a songbird. We show that in purple-crowned fairy-wrens, Malurus coronatus coronatus, larger males sing lower-pitched low-frequency advertising songs. The lower frequency bound of all advertising song types also has a significant negative relationship with body size. However, the average frequency of all their advertising songs is unrelated to body size. This comparison of different approaches to the analysis demonstrates how a negative relationship between body size and song frequency can be obscured by failing to consider signal design and the concept of performance limits. Since these considerations will be important in any complex communication system, our results imply that body size constraints on low-frequency vocalisations could be more widespread than is currently recognised.

  6. The Delta Scuti star 38 Eri from the ground and from space

    NASA Astrophysics Data System (ADS)

    Paparó, M.; Kolláth, Z.; Shobbrook, R. R.; Matthews, J. M.; Antoci, V.; Benkő, J. M.; Park, N.-K.; Mirtorabi, M. T.; Luedeke, K.; Kusakin, A.; Bognár, Zs; Sódor, Á.; García-Hernández, A.; Pe na, J. H.; Kuschnig, R.; Moffat, A. F. J.; Rowe, J.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2018-04-01

    We present and discuss the pulsational characteristics of the Delta Scuti star 38 Eri from photometric data obtained at two widely spaced epochs, partly from the ground (1998) and partly from space (MOST, 2011). We found 18 frequencies resolving the discrepancy among the previously published frequencies. Some of the frequencies appeared with different relative amplitudes at two epochs, however, we carried out investigation for amplitude variability for only the MOST data. Amplitude variability was found for one of three frequencies that satisfy the necessary frequency criteria for linear-combination or resonant-mode coupling. Checking the criteria of beating and resonant-mode coupling we excluded them as possible reason for amplitude variability. The two recently developed methods of rotational-splitting and sequence-search were applied to find regular spacings based only on frequencies. Doublets or incomplete multiplets with l = 1, 2 and 3 were found in the rotational splitting search. In the sequence search method we identified four sequences. The averaged spacing, probably a combination of the large separation and the rotational frequency, is 1.724 ± 0.092 d-1. Using the spacing and the scaling relation \\bar{ρ }= [0.0394, 0.0554] gcm-3 was derived. The shift of the sequences proved to be the integer multiple of the rotational splitting spacing. Using the precise MOST frequencies and multi-colour photometry in a hybrid way, we identified four modes with l = 1, two modes with l = 2, two modes with l = 3, and two modes as l = 0 radial modes.

  7. Male Songbird Indicates Body Size with Low-Pitched Advertising Songs

    PubMed Central

    Hall, Michelle L.; Kingma, Sjouke A.; Peters, Anne

    2013-01-01

    Body size is a key sexually selected trait in many animal species. If size imposes a physical limit on the production of loud low-frequency sounds, then low-pitched vocalisations could act as reliable signals of body size. However, the central prediction of this hypothesis – that the pitch of vocalisations decreases with size among competing individuals – has limited support in songbirds. One reason could be that only the lowest-frequency components of vocalisations are constrained, and this may go unnoticed when vocal ranges are large. Additionally, the constraint may only be apparent in contexts when individuals are indeed advertising their size. Here we explicitly consider signal diversity and performance limits to demonstrate that body size limits song frequency in an advertising context in a songbird. We show that in purple-crowned fairy-wrens, Malurus coronatus coronatus, larger males sing lower-pitched low-frequency advertising songs. The lower frequency bound of all advertising song types also has a significant negative relationship with body size. However, the average frequency of all their advertising songs is unrelated to body size. This comparison of different approaches to the analysis demonstrates how a negative relationship between body size and song frequency can be obscured by failing to consider signal design and the concept of performance limits. Since these considerations will be important in any complex communication system, our results imply that body size constraints on low-frequency vocalisations could be more widespread than is currently recognised. PMID:23437221

  8. Results of the NaCo Large Program: probing the occurrence of exoplanets and brown dwarfs at wide orbit

    NASA Astrophysics Data System (ADS)

    Vigan, A.; Chauvin, G.; Bonavita, M.; Desidera, S.; Bonnefoy, M.; Mesa, D.; Beuzit, J.-L.; Augereau, J.-C.; Biller, B.; Boccaletti, A.; Brugaletta, E.; Buenzli, E.; Carson, J.; Covino, E.; Delorme, P.; Eggenberger, A.; Feldt, M.; Hagelberg, J.; Henning, T.; Lagrange, A.-M.; Lanzafame, A.; Ménard, F.; Messina, S.; Meyer, M.; Montagnier, G.; Mordasini, C.; Mouillet, D.; Moutou, C.; Mugnier, L.; Quanz, S. P.; Reggiani, M.; Ségransan, D.; Thalmann, C.; Waters, R.; Zurlo, A.

    2014-01-01

    Over the past decade, a growing number of deep imaging surveys have started to provide meaningful constraints on the population of extrasolar giant planets at large orbital separation. Primary targets for these surveys have been carefully selected based on their age, distance and spectral type, and often on their membership to young nearby associations where all stars share common kinematics, photometric and spectroscopic properties. The next step is a wider statistical analysis of the frequency and properties of low mass companions as a function of stellar mass and orbital separation. In late 2009, we initiated a coordinated European Large Program using angular differential imaging in the H band (1.66 μm) with NaCo at the VLT. Our aim is to provide a comprehensive and statistically significant study of the occurrence of extrasolar giant planets and brown dwarfs at large (5-500 AU) orbital separation around ~150 young, nearby stars, a large fraction of which have never been observed at very deep contrast. The survey has now been completed and we present the data analysis and detection limits for the observed sample, for which we reach the planetary-mass domain at separations of >~50 AU on average. We also present the results of the statistical analysis that has been performed over the 75 targets newly observed at high-contrast. We discuss the details of the statistical analysis and the physical constraints that our survey provides for the frequency and formation scenario of planetary mass companions at large separation.

  9. Frequency-dependent selection acting on the widely fluctuating sex ratio of the aphid Prociphilus oriens.

    PubMed

    Li, Y; Akimoto, S

    2017-07-01

    Frequency-dependent selection is a fundamental principle of adaptive sex ratio evolution in all sex ratio theories but has rarely been detected in the wild. Through long-term censuses, we confirmed large fluctuations in the population sex ratio of the aphid Prociphilus oriens and detected frequency-dependent selection acting on these fluctuations. Fluctuations in the population sex ratio were partly attributable to climatic factors during the growing season. Climatic factors likely affected the growth conditions of host plants, which in turn led to yearly fluctuations in maternal conditions and sex ratios. In the process of frequency-dependent selection, female proportion higher or lower than ca. 60% was associated with a reduction or increase in female proportion, respectively, the next year. The rearing of aphid clones in the laboratory indicated that mothers of each clone produced an increasing number of females as maternal size increased. However, the mean male number was not related to maternal size, but varied largely among clones. Given genetic variance in the ability to produce males among clones, selection should favour clones that can produce more numerous males in years with a high female proportion. Population-level sex allocation to females was on average 71%-73% for three localities and more female-biased when maternal conditions were better. This tendency was accounted for by the hypothesis of competition among foundresses rather than the hypothesis of local mate competition. We conclude that despite consistent operation of frequency-dependent selection, the sex ratio continues to fluctuate because environmental conditions always push it away from equilibrium. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  10. RF Design of a High Average Beam-Power SRF Electron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sipahi, Nihan; Biedron, Sandra; Gonin, Ivan

    2016-06-01

    There is a significant interest in developing high-average power electron sources, particularly in the area of electron sources integrated with Superconducting Radio Frequency (SRF) systems. For these systems, the electron gun and cathode parts are critical components for stable intensity and high-average powers. In this initial design study, we will present the design of a 9-cell accelerator cavity having a frequency of 1.3 GHz and the corresponding field optimization studies.

  11. Quasi-laminar stability and sensitivity analyses for turbulent flows: Prediction of low-frequency unsteadiness and passive control

    NASA Astrophysics Data System (ADS)

    Mettot, Clément; Sipp, Denis; Bézard, Hervé

    2014-04-01

    This article presents a quasi-laminar stability approach to identify in high-Reynolds number flows the dominant low-frequencies and to design passive control means to shift these frequencies. The approach is based on a global linear stability analysis of mean-flows, which correspond to the time-average of the unsteady flows. Contrary to the previous work by Meliga et al. ["Sensitivity of 2-D turbulent flow past a D-shaped cylinder using global stability," Phys. Fluids 24, 061701 (2012)], we use the linearized Navier-Stokes equations based solely on the molecular viscosity (leaving aside any turbulence model and any eddy viscosity) to extract the least stable direct and adjoint global modes of the flow. Then, we compute the frequency sensitivity maps of these modes, so as to predict before hand where a small control cylinder optimally shifts the frequency of the flow. In the case of the D-shaped cylinder studied by Parezanović and Cadot [J. Fluid Mech. 693, 115 (2012)], we show that the present approach well captures the frequency of the flow and recovers accurately the frequency control maps obtained experimentally. The results are close to those already obtained by Meliga et al., who used a more complex approach in which turbulence models played a central role. The present approach is simpler and may be applied to a broader range of flows since it is tractable as soon as mean-flows — which can be obtained either numerically from simulations (Direct Numerical Simulation (DNS), Large Eddy Simulation (LES), unsteady Reynolds-Averaged-Navier-Stokes (RANS), steady RANS) or from experimental measurements (Particle Image Velocimetry - PIV) — are available. We also discuss how the influence of the control cylinder on the mean-flow may be more accurately predicted by determining an eddy-viscosity from numerical simulations or experimental measurements. From a technical point of view, we finally show how an existing compressible numerical simulation code may be used in a black-box manner to extract the global modes and sensitivity maps.

  12. Large-Scale All-Dielectric Metamaterial Perfect Reflectors

    DOE PAGES

    Moitra, Parikshit; Slovick, Brian A.; li, Wei; ...

    2015-05-08

    All-dielectric metamaterials offer a potential low-loss alternative to plasmonic metamaterials at optical frequencies. In this paper, we take advantage of the low absorption loss as well as the simple unit cell geometry to demonstrate large-scale (centimeter-sized) all-dielectric metamaterial perfect reflectors made from silicon cylinder resonators. These perfect reflectors, operating in the telecommunications band, were fabricated using self-assembly based nanosphere lithography. In spite of the disorder originating from the self-assembly process, the average reflectance of the metamaterial perfect reflectors is 99.7% at 1530 nm, surpassing the reflectance of metallic mirrors. Moreover, the spectral separation of the electric and magnetic resonances canmore » be chosen to achieve the required reflection bandwidth while maintaining a high tolerance to disorder. Finally, the scalability of this design could lead to new avenues of manipulating light for low-loss and large-area photonic applications.« less

  13. Structure of a quasi-parallel, quasi-laminar bow shock

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.; Russell, C. T.; Formisano, V.; Hedgecock, P. C.; Scarf, F. L.; Neugebauer, M.; Holzer, R. E.

    1976-01-01

    A thick, quasi-parallel bow shock structure was observed with field and particle detectors of both HEOS 1 and OGO 5. The typical magnetic pulsation structure was at least 1 to 2 earth radii thick radially and was accompanied by irregular but distinct plasma distributions characteristic of neither the solar wind nor the magnetosheath. Waves constituting the large pulsations were polarized principally in the plane of the nominal shock, therefore also in the plane perpendicular to the average interplanetary field. A separate interpulsation regime detected between bursts of large amplitude oscillations was similar to the upstream wave region magnetically, but was characterized by disturbed plasma flux and enhanced noise around the ion plasma frequency. The shock structure appeared to be largely of an oblique, whistler type, probably complicated by counterstreaming high energy protons. Evidence for firehose instability-based structure was weak at best and probably negative.

  14. An absorption profile centred at 78 megahertz in the sky-averaged spectrum.

    PubMed

    Bowman, Judd D; Rogers, Alan E E; Monsalve, Raul A; Mozdzen, Thomas J; Mahesh, Nivedita

    2018-02-28

    After stars formed in the early Universe, their ultraviolet light is expected, eventually, to have penetrated the primordial hydrogen gas and altered the excitation state of its 21-centimetre hyperfine line. This alteration would cause the gas to absorb photons from the cosmic microwave background, producing a spectral distortion that should be observable today at radio frequencies of less than 200 megahertz. Here we report the detection of a flattened absorption profile in the sky-averaged radio spectrum, which is centred at a frequency of 78 megahertz and has a best-fitting full-width at half-maximum of 19 megahertz and an amplitude of 0.5 kelvin. The profile is largely consistent with expectations for the 21-centimetre signal induced by early stars; however, the best-fitting amplitude of the profile is more than a factor of two greater than the largest predictions. This discrepancy suggests that either the primordial gas was much colder than expected or the background radiation temperature was hotter than expected. Astrophysical phenomena (such as radiation from stars and stellar remnants) are unlikely to account for this discrepancy; of the proposed extensions to the standard model of cosmology and particle physics, only cooling of the gas as a result of interactions between dark matter and baryons seems to explain the observed amplitude. The low-frequency edge of the observed profile indicates that stars existed and had produced a background of Lyman-α photons by 180 million years after the Big Bang. The high-frequency edge indicates that the gas was heated to above the radiation temperature less than 100 million years later.

  15. Energy Finite Element Analysis for Computing the High Frequency Vibration of the Aluminum Testbed Cylinder and Correlating the Results to Test Data

    NASA Technical Reports Server (NTRS)

    Vlahopoulos, Nickolas

    2005-01-01

    The Energy Finite Element Analysis (EFEA) is a finite element based computational method for high frequency vibration and acoustic analysis. The EFEA solves with finite elements governing differential equations for energy variables. These equations are developed from wave equations. Recently, an EFEA method for computing high frequency vibration of structures either in vacuum or in contact with a dense fluid has been presented. The presence of fluid loading has been considered through added mass and radiation damping. The EFEA developments were validated by comparing EFEA results to solutions obtained by very dense conventional finite element models and solutions from classical techniques such as statistical energy analysis (SEA) and the modal decomposition method for bodies of revolution. EFEA results have also been compared favorably with test data for the vibration and the radiated noise generated by a large scale submersible vehicle. The primary variable in EFEA is defined as the time averaged over a period and space averaged over a wavelength energy density. A joint matrix computed from the power transmission coefficients is utilized for coupling the energy density variables across any discontinuities, such as change of plate thickness, plate/stiffener junctions etc. When considering the high frequency vibration of a periodically stiffened plate or cylinder, the flexural wavelength is smaller than the interval length between two periodic stiffeners, therefore the stiffener stiffness can not be smeared by computing an equivalent rigidity for the plate or cylinder. The periodic stiffeners must be regarded as coupling components between periodic units. In this paper, Periodic Structure (PS) theory is utilized for computing the coupling joint matrix and for accounting for the periodicity characteristics.

  16. An absorption profile centred at 78 megahertz in the sky-averaged spectrum

    NASA Astrophysics Data System (ADS)

    Bowman, Judd D.; Rogers, Alan E. E.; Monsalve, Raul A.; Mozdzen, Thomas J.; Mahesh, Nivedita

    2018-03-01

    After stars formed in the early Universe, their ultraviolet light is expected, eventually, to have penetrated the primordial hydrogen gas and altered the excitation state of its 21-centimetre hyperfine line. This alteration would cause the gas to absorb photons from the cosmic microwave background, producing a spectral distortion that should be observable today at radio frequencies of less than 200 megahertz. Here we report the detection of a flattened absorption profile in the sky-averaged radio spectrum, which is centred at a frequency of 78 megahertz and has a best-fitting full-width at half-maximum of 19 megahertz and an amplitude of 0.5 kelvin. The profile is largely consistent with expectations for the 21-centimetre signal induced by early stars; however, the best-fitting amplitude of the profile is more than a factor of two greater than the largest predictions. This discrepancy suggests that either the primordial gas was much colder than expected or the background radiation temperature was hotter than expected. Astrophysical phenomena (such as radiation from stars and stellar remnants) are unlikely to account for this discrepancy; of the proposed extensions to the standard model of cosmology and particle physics, only cooling of the gas as a result of interactions between dark matter and baryons seems to explain the observed amplitude. The low-frequency edge of the observed profile indicates that stars existed and had produced a background of Lyman-α photons by 180 million years after the Big Bang. The high-frequency edge indicates that the gas was heated to above the radiation temperature less than 100 million years later.

  17. Resource partitioning of sonar frequency bands in rhinolophoid bats.

    PubMed

    Heller, Klaus-Gerhard; Helversen, Otto V

    1989-08-01

    In the Constant Frequency portions of the orientation calls of various Rhinolophus and Hipposideros species, the frequency with the strongest amplitude was studied comparatively. (1) In the five European species of the genus Rhinolophus call frequencies are either species-specific (R. ferrumequinum, R. blasii and R. euryale) or they overlap (R. hipposideros and R. mehelyi). The call frequency distributions are approximately 5-9 kHz wide, thus their ranges spead less than ±5% from the mean (Fig. 1). Frequency distributions are considerably narrower within smaller geographic areas. (2) As in other bat groups, call frequencies of the Rhinolophoidea are negatively correlated with body size (Fig. 3). Regression lines for the genera Rhinolophus and Rhinolophus, species from dryer climates have on the average higher call frequencies than species from tropical rain forests. (4) The Krau Game Reserve, a still largely intact rain forest area in Malaysia, harbours at least 12 syntopic Rhinolophus and Hipposiderso species. Their call frequencies lie between 40 and 200 kHz (Fig. 2). Distribution over the available frequency range is significantly more even than could be expected from chance alone. Two different null hypotheses to test for random character distribution were derived from frequency-size-relations and by sampling species assemblages from a species pool (Monte Carlo method); both were rejected. In particular, call frequencies lying close together are avoided (Figs. 4, 5). Conversely, the distribution of size ratios complied with a corresponding null hypothesis. This even distribution may be a consequence of resource partitioning with respect to prey type. Alternatively, the importance of these calls as social signals (e.g. recognition of conspecifics) might have necessitated a communication channel partitioning.

  18. Frequency comb-based multiple-access ultrastable frequency dissemination with 7 × 10(-17) instability.

    PubMed

    Zhang, Shuangyou; Zhao, Jianye

    2015-01-01

    In this letter, we demonstrate frequency-comb-based multiple-access ultrastable frequency dissemination over a 10-km single-mode fiber link. First, we synchronize optical pulse trains from an Er-fiber frequency comb to the remote site by using a simple and robust phase-conjugate stabilization method. The fractional frequency-transfer instability at the remote site is 2.6×10(-14) and 4.9×10(-17) for averaging times of 1 and 10,000 s, respectively. Then, we reproduce the harmonic of the repetition rate from the disseminated optical pulse trains at an arbitrary point along the fiber link to test comb-based multiple-access performance, and demonstrate frequency instability of 4×10(-14) and 7×10(-17) at 1 and 10,000 s averaging time, respectively. The proposed comb-based multiple-access frequency dissemination can easily achieve highly stable wideband microwave extraction along the whole link.

  19. Perception of the fundamental frequencies of children's voices by trained and untrained listeners.

    PubMed

    Wilson, F B; Wellen, C J; Kimbarow, M L

    1983-10-01

    This study was designed to determine if trained voice clinicians were better than untrained listeners in judging differences in the fundamental frequencies of children's voices. We also attempted to determine the degree of difference in fundamental frequency necessary for accurate judgments. Finally, ability to perceive pitch differences in speaking voices was correlated with ability to judge puretone stimuli. Results indicated that trained clinicians were no better at judging average fundamental frequency than were untrained listeners. Both groups performed at chance level until differences in vocal fundamental frequency exceeded 20 Hz. Finally, there was no correlation between subjects' success on standardized puretone pitch tests and ability to judge average pitch in the speaking voice.

  20. High frequency source localization in a shallow ocean sound channel using frequency difference matched field processing.

    PubMed

    Worthmann, Brian M; Song, H C; Dowling, David R

    2015-12-01

    Matched field processing (MFP) is an established technique for source localization in known multipath acoustic environments. Unfortunately, in many situations, particularly those involving high frequency signals, imperfect knowledge of the actual propagation environment prevents accurate propagation modeling and source localization via MFP fails. For beamforming applications, this actual-to-model mismatch problem was mitigated through a frequency downshift, made possible by a nonlinear array-signal-processing technique called frequency difference beamforming [Abadi, Song, and Dowling (2012). J. Acoust. Soc. Am. 132, 3018-3029]. Here, this technique is extended to conventional (Bartlett) MFP using simulations and measurements from the 2011 Kauai Acoustic Communications MURI experiment (KAM11) to produce ambiguity surfaces at frequencies well below the signal bandwidth where the detrimental effects of mismatch are reduced. Both the simulation and experimental results suggest that frequency difference MFP can be more robust against environmental mismatch than conventional MFP. In particular, signals of frequency 11.2 kHz-32.8 kHz were broadcast 3 km through a 106-m-deep shallow ocean sound channel to a sparse 16-element vertical receiving array. Frequency difference MFP unambiguously localized the source in several experimental data sets with average peak-to-side-lobe ratio of 0.9 dB, average absolute-value range error of 170 m, and average absolute-value depth error of 10 m.

  1. A simple method for estimating frequency response corrections for eddy covariance systems

    Treesearch

    W. J. Massman

    2000-01-01

    A simple analytical formula is developed for estimating the frequency attenuation of eddy covariance fluxes due to sensor response, path-length averaging, sensor separation, signal processing, and flux averaging periods. Although it is an approximation based on flat terrain cospectra, this analytical formula should have broader applicability than just flat-terrain...

  2. Ultrasonic testing of plates containing edge cracks

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Karagulle, H.; Lee, S. S.

    1985-01-01

    The stress wave factor (SWF) signal is utilized for the nondestructive evaluation of plates containing perpendicular edge cracks. The effects of the existence lateral location and depth of the crack on the magnitude spectra of individual reflections in the SWF signal are studied. If the reflections in the SWF signal are not overlapped the short time Fourier analysis is applied. If the reflections are overlapped the short time homomorphic analysis (cepstrum analysis) is applied. Several reflections which have average resonant frequencies approximately at 0.9, 1.3, and 1.7 MHz are analyzed. It is observed that the magnitude ratios evaluated at average resonant frequencies decrease more with increasing d/h if the crack is located between the transducers, where h is plate thickness and d is crack depth. Moreover, for the plates, crack geometries, reflections, and frequencies considered, the average decibel drop depends mainly on the dimensionless parameter d/h and it is approximately -1 dB per 0.07 d/h. Changes in the average resonant frequencies of the magnitude spectra are also observed due to changes in the location of the crack.

  3. Analysis of the Magnitude and Frequency of Peak Discharges for the Navajo Nation in Arizona, Utah, Colorado, and New Mexico

    USGS Publications Warehouse

    Waltemeyer, Scott D.

    2006-01-01

    Estimates of the magnitude and frequency of peak discharges are necessary for the reliable flood-hazard mapping in the Navajo Nation in Arizona, Utah, Colorado, and New Mexico. The Bureau of Indian Affairs, U.S. Army Corps of Engineers, and Navajo Nation requested that the U.S. Geological Survey update estimates of peak discharge magnitude for gaging stations in the region and update regional equations for estimation of peak discharge and frequency at ungaged sites. Equations were developed for estimating the magnitude of peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years at ungaged sites using data collected through 1999 at 146 gaging stations, an additional 13 years of peak-discharge data since a 1997 investigation, which used gaging-station data through 1986. The equations for estimation of peak discharges at ungaged sites were developed for flood regions 8, 11, high elevation, and 6 and are delineated on the basis of the hydrologic codes from the 1997 investigation. Peak discharges for selected recurrence intervals were determined at gaging stations by fitting observed data to a log-Pearson Type III distribution with adjustments for a low-discharge threshold and a zero skew coefficient. A low-discharge threshold was applied to frequency analysis of 82 of the 146 gaging stations. This application provides an improved fit of the log-Pearson Type III frequency distribution. Use of the low-discharge threshold generally eliminated the peak discharge having a recurrence interval of less than 1.4 years in the probability-density function. Within each region, logarithms of the peak discharges for selected recurrence intervals were related to logarithms of basin and climatic characteristics using stepwise ordinary least-squares regression techniques for exploratory data analysis. Generalized least-squares regression techniques, an improved regression procedure that accounts for time and spatial sampling errors, then was applied to the same data used in the ordinary least-squares regression analyses. The average standard error of prediction for a peak discharge have a recurrence interval of 100-years for region 8 was 53 percent (average) for the 100-year flood. The average standard of prediction, which includes average sampling error and average standard error of regression, ranged from 45 to 83 percent for the 100-year flood. Estimated standard error of prediction for a hybrid method for region 11 was large in the 1997 investigation. No distinction of floods produced from a high-elevation region was presented in the 1997 investigation. Overall, the equations based on generalized least-squares regression techniques are considered to be more reliable than those in the 1997 report because of the increased length of record and improved GIS method. Techniques for transferring flood-frequency relations to ungaged sites on the same stream can be estimated at an ungaged site by a direct application of the regional regression equation or at an ungaged site on a stream that has a gaging station upstream or downstream by using the drainage-area ratio and the drainage-area exponent from the regional regression equation of the respective region.

  4. Observation of the Stratorotational Instability in Flow between Rotating Concentric Cylinders

    NASA Astrophysics Data System (ADS)

    Ibanez, Ruy; Swinney, Harry L.; Rodenborn, Bruce

    2015-03-01

    We study the stratorotational instability in a Taylor-Couette system with a radius ratio η =ro /ri = 0 . 877 . The system is vertically stratified with a constant buoyancy frequency, N =√{ - (g /ρo) (∂ρ / ∂z) } . We determine when the flow becomes unstable as the ratio of the outer to inner cylinder rotation rates, μ =Ωo /Ωi , is decreased from unity (solid body rotation), for Reynolds numbers Re =Ωiri (ro -ri) / ν ranging from 450 to 4000 and N / 2 π = 0 . 3 to 1 . 0 Hz. The axial and azimuthal frequencies, obtained from spatiotemporal spectral analysis of digital movies, yield the observed modes at different Re and μ for fixed N. We find for sufficiently large buoyancy frequency, N / 2 π > 0 . 5 Hz, the stratorotational instability occurs even above the μ = η stability limit obtained from theory developed in the Boussinesq (small N) approximation [cf. the review by D A Shalybkov, Physics Uspekhi 52, 915 (2009)]. The frequencies we obtain for the azimuthal modes are close to multiples of the average frequency of rotation of the cylinders, while the axial wavelengths are found to vary linearly with Froude number, Fr =Ωi / N . Supported by The Sid W. Richardson Foundation.

  5. Experience with Carrier Screening and Prenatal Diagnosis for Sixteen Ashkenazi Jewish Genetic Diseases

    PubMed Central

    Scott, Stuart A.; Edelmann, Lisa; Liu, Liu; Luo, Minjie; Desnick, Robert J.; Kornreich, Ruth

    2010-01-01

    The success of prenatal carrier screening as a disease prevention strategy in the Ashkenazi Jewish (AJ) population has driven the expansion of screening panels as disease-causing founder mutations have been identified. However, the carrier frequencies of many of these mutations have not been reported in large AJ cohorts. We determined the carrier frequencies of over 100 mutations for 16 recessive disorders in the New York metropolitan area AJ population. Among the 100% AJ-descended individuals, screening for 16 disorders resulted in ~1 in 3.3 being a carrier for one disease and ~1 in 24 for two diseases. The carrier frequencies ranged from 0.066 (1 in 15.2; Gaucher disease) to 0.006 (1 in 168; nemaline myopathy), which averaged ~15% higher than those for all screenees. Importantly, over 95% of screenees chose to be screened for all possible AJ diseases, including disorders with lower carrier frequencies and/or detectability. Carrier screening also identified rare individuals homozygous for disease-causing mutations who had previously unrecognized clinical manifestations. Additionally, prenatal testing results and experience for all 16 disorders (n = 574) are reported. Together, these data indicate the general acceptance, carrier frequencies, and prenatal testing results for an expanded panel of 16 diseases in the AJ population. PMID:20672374

  6. Acoustic noise generation by the DOE/NASA MOD-1 wind turbine

    NASA Technical Reports Server (NTRS)

    Kelley, N. D.

    1981-01-01

    The results of a series of measurements taken over the past year of the acoustic emissions from the DOE/NASA MOD-1 Wind Turbine show the maximum acoustic energy is concentrated in the low frequency range, often below 100 Hz. The temporal as well as the frequency characteristics of the turbine sounds have been shown to be important since the MOD-1 is capable of radiating both coherent and incoherent noise. The coherent sounds are usually impulsive and are manifested in an averaged frequency domain plot as large numbers of discrete energy bands extending from the blade passage frequency to beyond 50 Hz on occasion. It is these impulsive sounds which are identified as the principal source of the annoyance to a dozen families living within 3 km of the turbine. The source of the coherent noise appears to be the rapid, unsteady blade loads encountered as the blade passes through the wake of the tower structure. Annoying levels are occasionally reached at nearby homes due to the interaction of the low frequency, high energy peaks in the acoustic impulses and the structural modes of the homes as well as by direct radiation outdoors. The peak levels of these impulses can be enhanced or subdued through complete propagation.

  7. Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences.

    PubMed

    Kovanen, Lauri; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2013-11-05

    Recent studies on electronic communication records have shown that human communication has complex temporal structure. We study how communication patterns that involve multiple individuals are affected by attributes such as sex and age. To this end, we represent the communication records as a colored temporal network where node color is used to represent individuals' attributes, and identify patterns known as temporal motifs. We then construct a null model for the occurrence of temporal motifs that takes into account the interaction frequencies and connectivity between nodes of different colors. This null model allows us to detect significant patterns in call sequences that cannot be observed in a static network that uses interaction frequencies as link weights. We find sex-related differences in communication patterns in a large dataset of mobile phone records and show the existence of temporal homophily, the tendency of similar individuals to participate in communication patterns beyond what would be expected on the basis of their average interaction frequencies. We also show that temporal patterns differ between dense and sparse neighborhoods in the network. Because also this result is independent of interaction frequencies, it can be seen as an extension of Granovetter's hypothesis to temporal networks.

  8. The gust-mitigating potential of flapping wings.

    PubMed

    Fisher, Alex; Ravi, Sridhar; Watkins, Simon; Watmuff, Jon; Wang, Chun; Liu, Hao; Petersen, Phred

    2016-08-02

    Nature's flapping-wing flyers are adept at negotiating highly turbulent flows across a wide range of scales. This is in part due to their ability to quickly detect and counterract disturbances to their flight path, but may also be assisted by an inherent aerodynamic property of flapping wings. In this study, we subject a mechanical flapping wing to replicated atmospheric turbulence across a range of flapping frequencies and turbulence intensities. By means of flow visualization and surface pressure measurements, we determine the salient effects of large-scale freestream turbulence on the flow field, and on the phase-average and fluctuating components of pressure and lift. It is shown that at lower flapping frequencies, turbulence dominates the instantaneous flow field, and the random fluctuating component of lift contributes significantly to the total lift. At higher flapping frequencies, kinematic forcing begins to dominate and the flow field becomes more consistent from cycle to cycle. Turbulence still modulates the flapping-induced flow field, as evidenced in particular by a variation in the timing and extent of leading edge vortex formation during the early downstroke. The random fluctuating component of lift contributes less to the total lift at these frequencies, providing evidence that flapping wings do indeed provide some inherent gust mitigation.

  9. Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences

    PubMed Central

    Kovanen, Lauri; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2013-01-01

    Recent studies on electronic communication records have shown that human communication has complex temporal structure. We study how communication patterns that involve multiple individuals are affected by attributes such as sex and age. To this end, we represent the communication records as a colored temporal network where node color is used to represent individuals’ attributes, and identify patterns known as temporal motifs. We then construct a null model for the occurrence of temporal motifs that takes into account the interaction frequencies and connectivity between nodes of different colors. This null model allows us to detect significant patterns in call sequences that cannot be observed in a static network that uses interaction frequencies as link weights. We find sex-related differences in communication patterns in a large dataset of mobile phone records and show the existence of temporal homophily, the tendency of similar individuals to participate in communication patterns beyond what would be expected on the basis of their average interaction frequencies. We also show that temporal patterns differ between dense and sparse neighborhoods in the network. Because also this result is independent of interaction frequencies, it can be seen as an extension of Granovetter’s hypothesis to temporal networks. PMID:24145424

  10. Evidence of hearing loss in a “normally-hearing” college-student population

    PubMed Central

    Le Prell, C. G.; Hensley, B.N.; Campbell, K. C. M.; Hall, J. W.; Guire, K.

    2011-01-01

    We report pure-tone hearing threshold findings in 56 college students. All subjects reported normal hearing during telephone interviews, yet not all subjects had normal sensitivity as defined by well-accepted criteria. At one or more test frequencies (0.25–8 kHz), 7% of ears had thresholds ≥25 dB HL and 12% had thresholds ≥20 dB HL. The proportion of ears with abnormal findings decreased when three-frequency pure-tone-averages were used. Low-frequency PTA hearing loss was detected in 2.7% of ears and high-frequency PTA hearing loss was detected in 7.1% of ears; however, there was little evidence for “notched” audiograms. There was a statistically reliable relationship in which personal music player use was correlated with decreased hearing status in male subjects. Routine screening and education regarding hearing loss risk factors are critical as college students do not always self-identify early changes in hearing. Large-scale systematic investigations of college students’ hearing status appear to be warranted; the current sample size was not adequate to precisely measure potential contributions of different sound sources to the elevated thresholds measured in some subjects. PMID:21288064

  11. PSR J1838–0537: Discovery of a young, energetic gamma-ray pulsar

    DOE PAGES

    Pletsch, H. J.; Guillemot, L.; Allen, B.; ...

    2012-07-27

    Here, we report the discovery of PSR J1838–0537, a gamma-ray pulsar found through a blind search of data from the Fermi Large Area Telescope (LAT). The pulsar has a spin frequency of 6.9 Hz and a frequency derivative of –2.2 × 10 –11 Hz s–1, implying a young characteristic age of 4970 yr and a large spin-down power of 5.9 × 1036 erg s–1. Follow-up observations with radio telescopes detected no pulsations; thus PSR J1838–0537 appears radio-quiet as viewed from Earth. In 2009 September the pulsar suffered the largest glitch so far seen in any gamma-ray-only pulsar, causing a relativemore » increase in spin frequency of about 5.5 × 10–6. After the glitch, during a putative recovery period, the timing analysis is complicated by the sparsity of the LAT photon data, the weakness of the pulsations, and the reduction in average exposure from a coincidental, contemporaneous change in LAT's sky-survey observing pattern. Furthermore, the pulsar's sky position is coincident with the spatially extended TeV source HESS J1841–055 detected by the High Energy Stereoscopic System (H.E.S.S.). Finally, the inferred energetics suggest that HESS J1841–055 contains a pulsar wind nebula powered by the pulsar.« less

  12. PSR J1838-0537: DISCOVERY OF A YOUNG, ENERGETIC GAMMA-RAY PULSAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pletsch, H. J.; Allen, B.; Aulbert, C.

    2012-08-10

    We report the discovery of PSR J1838-0537, a gamma-ray pulsar found through a blind search of data from the Fermi Large Area Telescope (LAT). The pulsar has a spin frequency of 6.9 Hz and a frequency derivative of -2.2 Multiplication-Sign 10{sup -11} Hz s{sup -1}, implying a young characteristic age of 4970 yr and a large spin-down power of 5.9 Multiplication-Sign 10{sup 36} erg s{sup -1}. Follow-up observations with radio telescopes detected no pulsations; thus PSR J1838-0537 appears radio-quiet as viewed from Earth. In 2009 September the pulsar suffered the largest glitch so far seen in any gamma-ray-only pulsar, causingmore » a relative increase in spin frequency of about 5.5 Multiplication-Sign 10{sup -6}. After the glitch, during a putative recovery period, the timing analysis is complicated by the sparsity of the LAT photon data, the weakness of the pulsations, and the reduction in average exposure from a coincidental, contemporaneous change in LAT's sky-survey observing pattern. The pulsar's sky position is coincident with the spatially extended TeV source HESS J1841-055 detected by the High Energy Stereoscopic System (H.E.S.S.). The inferred energetics suggest that HESS J1841-055 contains a pulsar wind nebula powered by the pulsar.« less

  13. Influence of the normal modes on the plasma uniformity in large scale CCP reactors

    NASA Astrophysics Data System (ADS)

    Eremin, Denis; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Lane, Barton; Matsukuma, Masaaki; Ventzek, Peter

    2016-09-01

    Large scale capacitively coupled plasmas (CCP) driven by sources with high frequency components often exhibit phenomena which are absent in relatively well understood small scale CCPs driven at low frequencies. Of particular interest are such phenomena which affect discharge parameters of direct relevance to the plasma processing applications. One of such parameters is plasma uniformity. By using a self-consistent 2d3v Particle-in-cell/Monte-Carlo (PIC/MCC) code parallelized on GPU we have been able to show that uniformity of the plasma generated is influenced predominantly by two factors, the ionization pattern caused by high-energy electrons and the average temperature of low-energy plasma electrons. The heating mechanisms for these two groups of electrons appear to be different leading to different transversal (radial) profiles of the corresponding factors, which is well captured by the kinetic PIC/MCC code. We find that the heating mechanisms are intrinsically connected with excitation of normal modes inherent to a plasma-filled CCP reactor. In this work we study the wave nature of these phenomena, such as their excitation, propagation, and interaction with electrons. Supported by SFB-TR 87 project of the German Research Foundation and by the ``Experimental and numerical analysis of very high frequency capacitively coupled plasma discharges'' mutual research project between RUB and Tokyo Electron Ltd.

  14. Maximum magnitude in the Lower Rhine Graben

    NASA Astrophysics Data System (ADS)

    Vanneste, Kris; Merino, Miguel; Stein, Seth; Vleminckx, Bart; Brooks, Eddie; Camelbeeck, Thierry

    2014-05-01

    Estimating Mmax, the assumed magnitude of the largest future earthquakes expected on a fault or in an area, involves large uncertainties. No theoretical basis exists to infer Mmax because even where we know the long-term rate of motion across a plate boundary fault, or the deformation rate across an intraplate zone, neither predict how strain will be released. As a result, quite different estimates can be made based on the assumptions used. All one can say with certainty is that Mmax is at least as large as the largest earthquake in the available record. However, because catalogs are often short relative to the average recurrence time of large earthquakes, larger earthquakes than anticipated often occur. Estimating Mmax is especially challenging within plates, where deformation rates are poorly constrained, large earthquakes are rarer and variable in space and time, and often occur on previously unrecognized faults. We explore this issue for the Lower Rhine Graben seismic zone where the largest known earthquake, the 1756 Düren earthquake, has magnitude 5.7 and should occur on average about every 400 years. However, paleoseismic studies suggest that earthquakes with magnitudes up to 6.7 occurred during the Late Pleistocene and Holocene. What to assume for Mmax is crucial for critical facilities like nuclear power plants that should be designed to withstand the maximum shaking in 10,000 years. Using the observed earthquake frequency-magnitude data, we generate synthetic earthquake histories, and sample them over shorter intervals corresponding to the real catalog's completeness. The maximum magnitudes appearing most often in the simulations tend to be those of earthquakes with mean recurrence time equal to the catalog length. Because catalogs are often short relative to the average recurrence time of large earthquakes, we expect larger earthquakes than observed to date to occur. In a next step, we will compute hazard maps for different return periods based on the synthetic catalogs, in order to determine the influence of underestimating Mmax.

  15. Improving timing sensitivity in the microhertz frequency regime: limits from PSR J1713+0747 on gravitational waves produced by supermassive black hole binaries

    NASA Astrophysics Data System (ADS)

    Perera, B. B. P.; Stappers, B. W.; Babak, S.; Keith, M. J.; Antoniadis, J.; Bassa, C. G.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Graikou, E.; Guillemot, L.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Lentati, L.; Liu, K.; Lyne, A. G.; McKee, J. W.; Osłowski, S.; Perrodin, D.; Sanidas, S. A.; Sesana, A.; Shaifullah, G.; Theureau, G.; Verbiest, J. P. W.; Taylor, S. R.

    2018-07-01

    We search for continuous gravitational waves (CGWs) produced by individual supermassive black hole binaries in circular orbits using high-cadence timing observations of PSR J1713+0747. We observe this millisecond pulsar using the telescopes in the European Pulsar Timing Array with an average cadence of approximately 1.6 d over the period between 2011 April and 2015 July, including an approximately daily average between 2013 February and 2014 April. The high-cadence observations are used to improve the pulsar timing sensitivity across the gravitational wave frequency range of 0.008-5μHz. We use two algorithms in the analysis, including a spectral fitting method and a Bayesian approach. For an independent comparison, we also use a previously published Bayesian algorithm. We find that the Bayesian approaches provide optimal results and the timing observations of the pulsar place a 95 per cent upper limit on the sky-averaged strain amplitude of CGWs to be ≲3.5 × 10-13 at a reference frequency of 1 μHz. We also find a 95 per cent upper limit on the sky-averaged strain amplitude of low-frequency CGWs to be ≲1.4 × 10-14 at a reference frequency of 20 nHz.

  16. Improving timing sensitivity in the microhertz frequency regime: limits from PSR J1713+0747 on gravitational waves produced by super-massive black-hole binaries

    NASA Astrophysics Data System (ADS)

    Perera, B. B. P.; Stappers, B. W.; Babak, S.; Keith, M. J.; Antoniadis, J.; Bassa, C. G.; Caballero, R. N.; Champion, D. J.; Cognard, I.; Desvignes, G.; Graikou, E.; Guillemot, L.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lazarus, P.; Lentati, L.; Liu, K.; Lyne, A. G.; McKee, J. W.; Osłowski, S.; Perrodin, D.; Sanidas, S. A.; Sesana, A.; Shaifullah, G.; Theureau, G.; Verbiest, J. P. W.; Taylor, S. R.

    2018-05-01

    We search for continuous gravitational waves (CGWs) produced by individual super-massive black-hole binaries (SMBHBs) in circular orbits using high-cadence timing observations of PSR J1713+0747. We observe this millisecond pulsar using the telescopes in the European Pulsar Timing Array (EPTA) with an average cadence of approximately 1.6 days over the period between April 2011 and July 2015, including an approximately daily average between February 2013 and April 2014. The high-cadence observations are used to improve the pulsar timing sensitivity across the GW frequency range of 0.008 - 5 μHz. We use two algorithms in the analysis, including a spectral fitting method and a Bayesian approach. For an independent comparison, we also use a previously published Bayesian algorithm. We find that the Bayesian approaches provide optimal results and the timing observations of the pulsar place a 95 per cent upper limit on the sky-averaged strain amplitude of CGWs to be ≲ 3.5 × 10-13 at a reference frequency of 1 μHz. We also find a 95 per cent upper limit on the sky-averaged strain amplitude of low-frequency CGWs to be ≲ 1.4 × 10-14 at a reference frequency of 20 nHz.

  17. Mutation rate estimation for 15 autosomal STR loci in a large population from Mainland China.

    PubMed

    Zhao, Zhuo; Zhang, Jie; Wang, Hua; Liu, Zhi-Peng; Liu, Ming; Zhang, Yuan; Sun, Li; Zhang, Hui

    2015-09-01

    STR, short tandem repeats, are well known as a type of powerful genetic marker and widely used in studying human population genetics. Compared with the conventional genetic markers, the mutation rate of STR is higher. Additionally, the mutations of STR loci do not lead to genetic inconsistencies between the genotypes of parents and children; therefore, the analysis of STR mutation is more suited to assess the population mutation. In this study, we focused on 15 autosomal STR loci. DNA samples from a total of 42,416 unrelated healthy individuals (19,037 trios) from the population of Mainland China collected between Jan 2012 and May 2014 were successfully investigated. In our study, the allele frequencies, paternal mutation rates, maternal mutation rates and average mutation rates were detected. Furthermore, we also investigated the relationship between paternal ages, maternal ages, area, the time of pregnancy and average mutation rate. We found that the paternal mutation rate was higher than the maternal mutation rate and the paternal, maternal, and average mutation rates had a positive correlation with paternal age, maternal age and the time of pregnancy respectively. Additionally, the average mutation rate of coastal areas was higher than that of inland areas.

  18. Regional propagation characteristics and source parameters of earthquakes in northeastern North America

    USGS Publications Warehouse

    Boatwright, John

    1994-01-01

    The vertical components of the S wave trains recorded on the Eastern Canadian Telemetered Network (ECTN) from 1980 through 1990 have been spectrally analyzed for source, site, and propagation characteristics. The data set comprises some 1033 recordings of 97 earthquakes whose magnitudes range from M ≈ 3 to 6. The epicentral distances range from 15 to 1000 km, with most of the data set recorded at distances from 200 to 800 km. The recorded S wave trains contain the phases S, SmS, Sn, and Lg and are sampled using windows that increase with distance; the acceleration spectra were analyzed from 1.0 to 10 Hz. To separate the source, site, and propagation characteristics, an inversion for the earthquake corner frequencies, low-frequency levels, and average attenuation parameters is alternated with a regression of residuals onto the set of stations and a grid of 14 distances ranging from 25 to 1000 km. The iteration between these two parts of the inversion converges in about 60 steps. The average attenuation parameters obtained from the inversion were Q = 1997 ± 10 and γ = 0.998 ± 0.003. The most pronounced variation from this average attenuation is a marked deamplification of more than a factor of 2 at 63 km and 2 Hz, which shallows with increasing frequency and increasing distance out to 200 km. The site-response spectra obtained for the ECTN stations are generally flat. The source spectral shape assumed in this inversion provides an adequate spectral model for the smaller events (Mo < 3 × 1021 dyne-cm) in the data set, whose Brune stress drops range from 5 to 150 bars. For the five events in the data set with Mo ≧ 1023 dyne-cm, however, the source spectra obtained by regressing the residuals suggest that an ω2 spectrum is an inadequate model for the spectral shape. In particular, the corner frequencies for most of these large events appear to be split, so that the spectra exhibit an intermediate behavior (where |ü(ω)| is roughly proportional to ω).

  19. Spatial correlations of interdecadal variation in global surface temperatures

    NASA Technical Reports Server (NTRS)

    Mann, Michael E.; Park, Jeffrey

    1993-01-01

    We have analyzed spatial correlation patterns of interdecadal global surface temperature variability from an empirical perspective. Using multitaper coherence estimates from 140-yr records, we find that correlations between hemispheres are significant at about 95 percent confidence for nonrandomness for most of the frequency band in the 0.06-0.24 cyc/yr range. Coherence estimates of pairs of 100-yr grid-point temperature data series near 5-yr period reveal teleconnection patterns consistent with known patterns of ENSO variability. Significant correlated variability is observed near 15 year period, with the dominant teleconnection pattern largely confined to the Northern Hemisphere. Peak-to-peak Delta-T is at about 0.5 deg, with simultaneous warming and cooling of discrete patches on the earth's surface. A global average of this pattern would largely cancel.

  20. Sociodemographic characteristics associated with frequency and duration of eating family meals: a cross-sectional analysis.

    PubMed

    Skeer, Margie R; Yantsides, Konstantina E; Eliasziw, Misha; Tracy, Migdalia R; Carlton-Smith, Allison R; Spirito, Anthony

    2016-01-01

    Children who frequently eat family meals are less likely to develop risk- and behavior-related outcomes, such as substance misuse, sexual risk, and obesity. Few studies have examined sociodemographic characteristics associated with both meal frequency (i.e., number of meals) and duration (i.e., number of minutes spent at mealtimes). We examine the association between sociodemographics and family meal frequency and duration among a sample of 85 parents in a large New England city that was recruited through the public-school system. Additionally, we examined differences in family meals by race/ethnicity and parental nativity. Unadjusted ANOVA and adjusted ANCOVA models were used to assess the associations between sociodemographic characteristics and frequency and duration of meals. Sociodemographic characteristics were not significantly associated with the frequency of family meals; however, in the adjusted models, differences were associated with duration of meals. Parents who were born outside the U.S. spent an average of 135.0 min eating meals per day with their children compared to 76.2 for parents who were born in the U.S. ( p  < 0.01). Additionally, parents who reported being single, divorced, or separated on average, spent significantly more time per day eating family meals (126.7 min) compared to parents who reported being married or partnered (84.4; p  = 0.02). Differences existed in meal duration by parental nativity and race/ethnicity, ranging from 63.7 min among multi-racial/other parents born in the U.S. to 182.8 min among black parents born outside the U.S. This study builds a foundation for focused research into the mechanisms of family meals. Future longitudinal epidemiologic research on family meals may help to delineate targets for prevention of maladaptive behaviors, which could affect family-based practices, interventions, and policies.

  1. Passive and active vibration isolation systems using inerter

    NASA Astrophysics Data System (ADS)

    Alujević, N.; Čakmak, D.; Wolf, H.; Jokić, M.

    2018-03-01

    This paper presents a theoretical study on passive and active vibration isolation schemes using inerter elements in a two degree of freedom (DOF) mechanical system. The aim of the work is to discuss basic capabilities and limitations of the vibration control systems at hand using simple and physically transparent models. Broad frequency band dynamic excitation of the source DOF is assumed. The purpose of the isolator system is to prevent vibration transmission to the receiving DOF. The frequency averaged kinetic energy of the receiving mass is used as the metric for vibration isolation quality. It is shown that the use of inerter element in the passive vibration isolation scheme can enhance the isolation effect. In the active case, a feedback disturbance rejection scheme is considered. Here, the error signal is the receiving body absolute velocity which is directly fed to a reactive force actuator between the source and the receiving bodies. In such a scheme, the so-called subcritical vibration isolation problems exist. These problems are characterised by the uncoupled natural frequency of the receiving body larger than the uncoupled natural frequency of the source body. In subcritical vibration isolation problems, the performance of the active control is limited by poor stability margins. This is because the stable feedback gain is restricted in a narrow range between a minimum and a maximum. However, with the inclusion of an inerter in the isolator, one of the two stability margins can be opened. This enables large, theoretically unlimited negative feedback gains and large active damping of the receiving body vibration. A simple expression for the required inertance is derived.

  2. Astrosat/LAXPC Reveals the High-energy Variability of GRS 1915+105 in the X Class

    NASA Astrophysics Data System (ADS)

    Yadav, J. S.; Misra, Ranjeev; Verdhan Chauhan, Jai; Agrawal, P. C.; Antia, H. M.; Pahari, Mayukh; Dedhia, Dhiraj; Katoch, Tilak; Madhwani, P.; Manchanda, R. K.; Paul, B.; Shah, Parag; Ishwara-Chandra, C. H.

    2016-12-01

    We present the first quick look analysis of data from nine AstroSat's Large Area X-ray Proportional Counter (LAXPC) observations of GRS 1915+105 during 2016 March when the source had the characteristics of being in the Radio-quiet χ class. We find that a simple empirical model of a disk blackbody emission, with Comptonization and a broad Gaussian Iron line can fit the time-averaged 3-80 keV spectrum with a systematic uncertainty of 1.5% and a background flux uncertainty of 4%. A simple dead time corrected Poisson noise level spectrum matches well with the observed high-frequency power spectra till 50 kHz and as expected the data show no significant high-frequency (\\gt 20 {Hz}) features. Energy dependent power spectra reveal a strong low-frequency (2-8 Hz) quasi-periodic oscillation and its harmonic along with broadband noise. The QPO frequency changes rapidly with flux (nearly 4 Hz in ˜5 hr). With increasing QPO frequency, an excess noise component appears significantly in the high-energy regime (\\gt 8 keV). At the QPO frequencies, the time-lag as a function of energy has a non-monotonic behavior such that the lags decrease with energy till about 15-20 keV and then increase for higher energies. These first-look results benchmark the performance of LAXPC at high energies and confirms that its data can be used for more sophisticated analysis such as flux or frequency-resolved spectro-timing studies.

  3. Terahertz birefringence of potassium niobate crystals

    NASA Astrophysics Data System (ADS)

    Antsygin, V. D.; Mamrashev, A. A.; Nikolaev, N. A.

    2018-03-01

    We present terahertz optical properties (refractive indices and absorption coefficients) of potassium niobate crystals measured by time-domain spectroscopy in the range of 0.2-2.0 THz. We observe average refractive indices nx = 5.25, ny = 4.8, nz = 5.9 for corresponding optical axes X, Y, Z with the large birefringence of Δn = nz - ny = 1.1. We report rising absorption coefficient at higher frequencies (α ∼ 50 cm-1 at 1 THz for all three axes) while the dichroism is not pronounced. Somewhat higher absorption compared to the previous results could be attributed to some polydomain structure remaining in the crystal.

  4. Hydrophone area-averaging correction factors in nonlinearly generated ultrasonic beams

    NASA Astrophysics Data System (ADS)

    Cooling, M. P.; Humphrey, V. F.; Wilkens, V.

    2011-02-01

    The nonlinear propagation of an ultrasonic wave can be used to produce a wavefield rich in higher frequency components that is ideally suited to the calibration, or inter-calibration, of hydrophones. These techniques usually use a tone-burst signal, limiting the measurements to harmonics of the fundamental calibration frequency. Alternatively, using a short pulse enables calibration at a continuous spectrum of frequencies. Such a technique is used at PTB in conjunction with an optical measurement technique to calibrate devices. Experimental findings indicate that the area-averaging correction factor for a hydrophone in such a field demonstrates a complex behaviour, most notably varying periodically between frequencies that are harmonics of the centre frequency of the original pulse and frequencies that lie midway between these harmonics. The beam characteristics of such nonlinearly generated fields have been investigated using a finite difference solution to the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a focused field. The simulation results are used to calculate the hydrophone area-averaging correction factors for 0.2 mm and 0.5 mm devices. The results clearly demonstrate a number of significant features observed in the experimental investigations, including the variation with frequency, drive level and hydrophone element size. An explanation for these effects is also proposed.

  5. Seismology and geodesy of the sun: Low-frequency oscillations.

    PubMed

    Dicke, R H

    1981-04-01

    The hourly averages of the solar ellipticity measured from June 13 to Sept. 17, 1966, are analyzed for indications of solar oscillations with periods in excess of 2 hr nu < 0.5 hr(-1). Nothing significant is found for frequencies nu > 0.1 hr(-1) but for lower frequencies the power spectrum shows a very complex structure containing about 20 strong narrow peaks. The complexity is illusionary. The signal apparently consists of only two frequencies. The complexity is due to aliasing by the window function with its basic 24-hr period, with many observational days missing, and with different numbers of hourly averages for the various observational days. Both signal frequencies are apparently due to odd-degree spherical harmonic oscillations of the sun.

  6. Half-Watt average power femtosecond source spanning 3-8 µm based on subharmonic generation in GaAs

    NASA Astrophysics Data System (ADS)

    Smolski, Viktor; Vasilyev, Sergey; Moskalev, Igor; Mirov, Mike; Ru, Qitian; Muraviev, Andrey; Schunemann, Peter; Mirov, Sergey; Gapontsev, Valentin; Vodopyanov, Konstantin

    2018-06-01

    Frequency combs with a wide instantaneous spectral span covering the 3-20 µm molecular fingerprint region are highly desirable for broadband and high-resolution frequency comb spectroscopy, trace molecular detection, and remote sensing. We demonstrate a novel approach for generating high-average-power middle-infrared (MIR) output suitable for producing frequency combs with an instantaneous spectral coverage close to 1.5 octaves. Our method is based on utilizing a highly-efficient and compact Kerr-lens mode-locked Cr2+:ZnS laser operating at 2.35-µm central wavelength with 6-W average power, 77-fs pulse duration, and high 0.9-GHz repetition rate; to pump a degenerate (subharmonic) optical parametric oscillator (OPO) based on a quasi-phase-matched GaAs crystal. Such subharmonic OPO is a nearly ideal frequency converter capable of extending the benefits of frequency combs based on well-established mode-locked pump lasers to the MIR region through rigorous, phase- and frequency-locked down conversion. We report a 0.5-W output in the form of an ultra-broadband spectrum spanning 3-8 µm measured at 50-dB level.

  7. High-Resolution Subtropical Summer Precipitation Derived from Dynamical Downscaling of the NCEP-DOE Reanalysis: How Much Small-Scale Information Is Added by a Regional Model?

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon; Stefanova, Lydia B.; Chan, Steven C.; Schubert, Siegfried D.; OBrien, James J.

    2010-01-01

    This study assesses the regional-scale summer precipitation produced by the dynamical downscaling of analyzed large-scale fields. The main goal of this study is to investigate how much the regional model adds smaller scale precipitation information that the large-scale fields do not resolve. The modeling region for this study covers the southeastern United States (Florida, Georgia, Alabama, South Carolina, and North Carolina) where the summer climate is subtropical in nature, with a heavy influence of regional-scale convection. The coarse resolution (2.5deg latitude/longitude) large-scale atmospheric variables from the National Center for Environmental Prediction (NCEP)/DOE reanalysis (R2) are downscaled using the NCEP Environmental Climate Prediction Center regional spectral model (RSM) to produce precipitation at 20 km resolution for 16 summer seasons (19902005). The RSM produces realistic details in the regional summer precipitation at 20 km resolution. Compared to R2, the RSM-produced monthly precipitation shows better agreement with observations. There is a reduced wet bias and a more realistic spatial pattern of the precipitation climatology compared with the interpolated R2 values. The root mean square errors of the monthly R2 precipitation are reduced over 93 (1,697) of all the grid points in the five states (1,821). The temporal correlation also improves over 92 (1,675) of all grid points such that the domain-averaged correlation increases from 0.38 (R2) to 0.55 (RSM). The RSM accurately reproduces the first two observed eigenmodes, compared with the R2 product for which the second mode is not properly reproduced. The spatial patterns for wet versus dry summer years are also successfully simulated in RSM. For shorter time scales, the RSM resolves heavy rainfall events and their frequency better than R2. Correlation and categorical classification (above/near/below average) for the monthly frequency of heavy precipitation days is also significantly improved by the RSM.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogacz, Alex

    We summarize the current state of a concept for muon acceleration aimed at a future Neutrino Factory and extendable to Higgs Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance by exploring the interplay between the complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival for the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to an initially low RF frequency, e.g., 325 MHz, which is then increased to 650more » MHz as the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. We consider an SRF-efficient design based on a multi-pass (4.5) ?dogbone? RLA, extendable to multi-pass FFAG-like arcs.« less

  9. Comparison of Noise Source Localization Data with Flow Field Data Obtained in Cold Supersonic Jets and Implications Regarding Broadband Shock Noise

    NASA Technical Reports Server (NTRS)

    Podboy, Gary; Wernet, Mark; Clem, Michelle; Fagan, Amy

    2013-01-01

    Phased array noise source localization have been compared with 2 types of flow field data (BOS and PIV). The data show that: 1) the higher frequency noise in a BBSN hump is generated further downstream than the lower frequency noise. This is due to a) the shock spacing decreasing and b) the turbulent structure size increasing with distance downstream. 2) BBSN can be created by very weak shocks. 3) BBSN is not created by the strong shocks just downstream of the nozzle because the turbulent structures have not grown large enough to match the shock spacing. 4) The point in the flow where the shock spacing equals the average size of the turbulent structures is a hot spot for shock noise. 5) Some of the shocks responsible for producing the first hump also produce the second hump.

  10. Radio emission from RS CVn binaries. II - Polarization and spectral properties

    NASA Technical Reports Server (NTRS)

    Mutel, R. L.; Morris, D. H.; Doiron, D. J.; Lestrade, J. F.

    1987-01-01

    Multiepoch radio observations of circular polarization and spectral characteristics of several close, late-type stellar binaries are reported. The median luminosity of four well-studied systems ranged from 16.2 to 17.1 ergs/s/Hz. For individual systems, the fractional circular polarization decreases with increasing luminosity, particularly at frequencies above 5 GHz. Eclipsing binaries have significantly lower average circular polarization compared with noneclipsing systems. Helicity reversal is almost always observed between 1.4 and 4.9 GHz for systems with high orbital inclination. Comparison with ten years of previously published polarization observations for two RS CVn stellar systems show that the same helicity occurs at a given frequency for a given source, indicating a very stable, large-scale magnetic field geometry. These spectral and polarization characteristics strongly support a model of inhomogeneous gyrosynchrotron emission arising from electrons with power law energy spectra interacting with inhomogeneous magnetic fields.

  11. Acoustic emission characterization of steel fibre reinforced concrete during bending

    NASA Astrophysics Data System (ADS)

    Aggelis, D. G.; Soulioti, D. V.; Sapouridis, N.; Barkoula, N. M.; Paipetis, A. S.; Matikas, T. E.

    2010-04-01

    The acoustic emission (AE) behaviour of steel fibre reinforced concrete is studied in this paper. The experiments were conducted in four-point bending with concurrent monitoring of AE signals. The sensors used, were of broadband response in order to capture a wide range of fracturing phenomena. The results indicate that AE parameters undergo significant changes much earlier than the final fracture of the specimens, even if the AE hit rate seems approximately constant. Specifically, the Ib-value which takes into account the amplitude distribution of the recent AE hits decreases when the load reaches about 60-70 % of its maximum value. Additionally, the average frequency of the signals decreases abruptly when a fracture incident occurs, indicating that matrix cracking events produce higher frequencies than fibre pull-out events. It is concluded that proper study of AE parameters enables the characterization of structural health of large structures in cases where remote monitoring is applied.

  12. Combining total internal reflection sum frequency spectroscopy spectral imaging and confocal fluorescence microscopy.

    PubMed

    Allgeyer, Edward S; Sterling, Sarah M; Gunewardene, Mudalige S; Hess, Samuel T; Neivandt, David J; Mason, Michael D

    2015-01-27

    Understanding surface and interfacial lateral organization in material and biological systems is critical in nearly every field of science. The continued development of tools and techniques viable for elucidation of interfacial and surface information is therefore necessary to address new questions and further current investigations. Sum frequency spectroscopy (SFS) is a label-free, nonlinear optical technique with inherent surface specificity that can yield critical organizational information on interfacial species. Unfortunately, SFS provides no spatial information on a surface; small scale heterogeneities that may exist are averaged over the large areas typically probed. Over the past decade, this has begun to be addressed with the advent of SFS microscopy. Here we detail the construction and function of a total internal reflection (TIR) SFS spectral and confocal fluorescence imaging microscope directly amenable to surface investigations. This instrument combines, for the first time, sample scanning TIR-SFS imaging with confocal fluorescence microscopy.

  13. Dynamic models of an earthquake and tsunami offshore Ventura, California

    USGS Publications Warehouse

    Kenny J. Ryan,; Geist, Eric L.; Barall, Michael; David D. Oglesby,

    2015-01-01

    The Ventura basin in Southern California includes coastal dip-slip faults that can likely produce earthquakes of magnitude 7 or greater and significant local tsunamis. We construct a 3-D dynamic rupture model of an earthquake on the Pitas Point and Lower Red Mountain faults to model low-frequency ground motion and the resulting tsunami, with a goal of elucidating the seismic and tsunami hazard in this area. Our model results in an average stress drop of 6 MPa, an average fault slip of 7.4 m, and a moment magnitude of 7.7, consistent with regional paleoseismic data. Our corresponding tsunami model uses final seafloor displacement from the rupture model as initial conditions to compute local propagation and inundation, resulting in large peak tsunami amplitudes northward and eastward due to site and path effects. Modeled inundation in the Ventura area is significantly greater than that indicated by state of California's current reference inundation line.

  14. Analysis of Biomass Feedstock Availability and Variability for the Peace River Region of Alberta, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen, Jamie; Sokhansanj, Shahabaddine; Bi, X.T.

    2009-11-01

    Biorefineries or other biomass-dependent facilities require a predictable, dependable feedstock supplied over many years to justify capital investments. Determining inter-year variability in biomass availability is essential to quantifying the feedstock supply risk. Using a geographic information system (GIS) and historic crop yield data, average production was estimated for 10 sites in the Peace River region of Alberta, Canada. Four high-yielding potential sites were investigated for variability over a 20 year time-frame (1980 2000). The range of availability was large, from double the average in maximum years to nothing in minimum years. Biomass availability is a function of grain yield, themore » biomass to grain ratio, the cropping frequency, and residue retention rate to ensure future crop productivity. Storage strategies must be implemented and alternate feedstock sources identified to supply biomass processing facilities in low-yield years.« less

  15. Investigation of the validity of Reynolds averaged turbulence models at the frequencies that occur in turbomachinery

    NASA Technical Reports Server (NTRS)

    Kuhn, Gary D.

    1988-01-01

    Turbulent flows subjected to various kinds of unsteady disturbances were simulated using a large-eddy-simulation computer code for flow in a channel. The disturbances were: a normal velocity expressed as a traveling wave on one wall of the channel; staggered blowing and suction distributions on the opposite walls of the channel; and oscillations of the mean flow through the channel. The wall boundary conditions were designed to simulate the effects of wakes of a stator stage passing through a rotor channel in a turbine. The oscillating flow simulated the effects of a pressure pulse moving over the rotor blade boundary layer. The objective of the simulations was to provide better understanding of the effects of time-dependent disturbances on the turbulence of a boundary layer and of the underlying physical phenomena regarding the basic interaction between the turbulence and external disturbances of the type found in turbomachinery. Results showed that turbulence is sensitive to certain ranges of frequencies of disturbances. However, no direct connection was found between the frequency of imposed disturbances and characteristic burst frequency of turbulence. New insight into the nature of turbulence at high frequencies was found. The viscous phenomena near solid walls was found to be the dominant influence for high frequency perturbations. At high frequencies, the turbulence was found to be undisturbed, remaining the same as for the steady mean flow. A transition range exists between the high frequency range and the low, or quasi-steady, range in which the turbulence is not predictable by either quasi-steady models or the steady flow model. The limiting lowest frequency for use of the steady flow turbulence model is that for which the viscous Stokes layer based on the blade passing frequency is thicker than the laminar sublayer.

  16. FREQUENCY SHIFTS OF RESONANT MODES OF THE SUN DUE TO NEAR-SURFACE CONVECTIVE SCATTERING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, J.; Hanasoge, S.; Antia, H. M.

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the “surface term.” The dominant source of this systematic effect is thought to be vigorous near-surface convection,more » which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary three-dimensional (3D) flows, can be reduced to an effective “quiet-Sun” wave equation with altered sound speed, Brünt–Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.« less

  17. Analysis of the solar radiation data for Beer Sheva, Israel, and its environs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudish, A.I.; Ianetz, A.

    The solar radiation climate of Beer Sheva, Israel, is reported upon in detail. The database utilized in this analysis consisted of global radiation on a horizontal surface, normal incidence beam radiation, and global radiation on a south-facing surface tilted at 40{degree}. Monthly-average hourly and daily values are reported for each of these three types of measured radiations, together with the calculated monthly-average daily values for the components of the global radiation, viz. the horizontal beam and diffuse radiations. The monthly-average hourly and daily clearness index values have also been calculated and analyzed. Monthly-average daily frequency distributions of the clearness indexmore » values are reported for each month. The solar radiation climate of Beer Sheva has also been compared to those reported for a number of countries in this region. The annual-average daily global radiation incident on a horizontal surface is 18.91 MG/m{sup 2} and that for normal incidence beam radiation is 21.17 MG/m{sup 2}. The annual-average daily fraction of the horizontal global radiation that is beam is 0.72. The annual-average daily value for the clearness index is 0.587 and the average frequency of clear days annually is 58.6%. The authors conclude, based upon the above analysis, that Beer Sheva and its environs are characterized by relatively high, average-daily irradiation rates, both global and beam, and a relatively high frequency of clear days.« less

  18. Vibration properties of and power harvested by a system of electromagnetic vibration energy harvesters that have electrical dynamics

    NASA Astrophysics Data System (ADS)

    Cooley, Christopher G.

    2017-09-01

    This study investigates the vibration and dynamic response of a system of coupled electromagnetic vibration energy harvesting devices that each consist of a proof mass, elastic structure, electromagnetic generator, and energy harvesting circuit with inductance, resistance, and capacitance. The governing equations for the coupled electromechanical system are derived using Newtonian mechanics and Kirchhoff circuit laws for an arbitrary number of these subsystems. The equations are cast in matrix operator form to expose the device's vibration properties. The device's complex-valued eigenvalues and eigenvectors are related to physical characteristics of its vibration. Because the electrical circuit has dynamics, these devices have more natural frequencies than typical electromagnetic vibration energy harvesters that have purely resistive circuits. Closed-form expressions for the steady state dynamic response and average power harvested are derived for devices with a single subsystem. Example numerical results for single and double subsystem devices show that the natural frequencies and vibration modes obtained from the eigenvalue problem agree with the resonance locations and response amplitudes obtained independently from forced response calculations. This agreement demonstrates the usefulness of solving eigenvalue problems for these devices. The average power harvested by the device differs substantially at each resonance. Devices with multiple subsystems have multiple modes where large amounts of power are harvested.

  19. Measurement of Initial Conditions at Nozzle Exit of High Speed Jets

    NASA Technical Reports Server (NTRS)

    Panda, J.; Zaman, K. B. M. Q.; Seasholtz, R. G.

    2004-01-01

    The time averaged and unsteady density fields close to the nozzle exit (0.1 less than or = x/D less than or = 2, x: downstream distance, D: jet diameter) of unheated free jets at Mach numbers of 0.95, 1.4, and 1.8 were measured using a molecular Rayleigh scattering based technique. The initial thickness of shear layer and its linear growth rate were determined from time-averaged density survey and a modeling process, which utilized the Crocco-Busemann equation to relate density profiles to velocity profiles. The model also corrected for the smearing effect caused by a relatively long probe length in the measured density data. The calculated shear layer thickness was further verified from a limited hot-wire measurement. Density fluctuations spectra, measured using a two-Photomultiplier-tube technique, were used to determine evolution of turbulent fluctuations in various Strouhal frequency bands. For this purpose spectra were obtained from a large number of points inside the flow; and at every axial station spectral data from all radial positions were integrated. The radially-integrated fluctuation data show an exponential growth with downstream distance and an eventual saturation in all Strouhal frequency bands. The initial level of density fluctuations was calculated by extrapolation to nozzle exit.

  20. Numerical study of turbulent flow over stages of interacting barchan dunes: sediment scour and vorticity dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Anderson, William

    2017-11-01

    Large-eddy simulation (LES) results of unidirectional turbulent flow over interacting barchan dunes are presented. A series of interacting barchan dune topographies have been considered wherein a small dune is positioned at locations upflow of a relatively larger dune, and at a slight spanwise offset. The smaller dune is geometrically similar, but one-eighth the volume of the larger dune, thus replicating instantaneous realizations during actual dune interactions. We report that flow channeling in the interdune space induces a mean flow heterogeneity - termed ``wake veering'' - in which the location of maximum momentum deficit in the dune wake is spanwise-displaced. The probability density functions of streamwise velocity fluctuation in the interdune space showed wide variability, and were used to select low-frequency, high-magnitude thresholds for conditional sampling. Conditionally- and Reynolds-averaged iso-contours of Q-criterion and differential helicity revealed a persistent roller in interdune space, which strengthened asymmetric sediment erosion via scouring. We assess terms in the Reynolds-averaged streamwise vorticity transport, and show that the roller is primarily sustained by stretching. Finally, we present results of joint time-frequency analysis using wavelet decomposition, which shows that the dune geometry imparts a distinct influence on the local flow.

  1. Cost-effectiveness of the stream-gaging program in North Carolina

    USGS Publications Warehouse

    Mason, R.R.; Jackson, N.M.

    1985-01-01

    This report documents the results of a study of the cost-effectiveness of the stream-gaging program in North Carolina. Data uses and funding sources are identified for the 146 gaging stations currently operated in North Carolina with a budget of $777,600 (1984). As a result of the study, eleven stations are nominated for discontinuance and five for conversion from recording to partial-record status. Large parts of North Carolina 's Coastal Plain are identified as having sparse streamflow data. This sparsity should be remedied as funds become available. Efforts should also be directed toward defining the efforts of drainage improvements on local hydrology and streamflow characteristics. The average standard error of streamflow records in North Carolina is 18.6 percent. This level of accuracy could be improved without increasing cost by increasing the frequency of field visits and streamflow measurements at stations with high standard errors and reducing the frequency at stations with low standard errors. A minimum budget of $762,000 is required to operate the 146-gage program. A budget less than this does not permit proper service and maintenance of the gages and recorders. At the minimum budget, and with the optimum allocation of field visits, the average standard error is 17.6 percent.

  2. Efficient and Unbiased Sampling of Biomolecular Systems in the Canonical Ensemble: A Review of Self-Guided Langevin Dynamics

    PubMed Central

    Wu, Xiongwu; Damjanovic, Ana; Brooks, Bernard R.

    2013-01-01

    This review provides a comprehensive description of the self-guided Langevin dynamics (SGLD) and the self-guided molecular dynamics (SGMD) methods and their applications. Example systems are included to provide guidance on optimal application of these methods in simulation studies. SGMD/SGLD has enhanced ability to overcome energy barriers and accelerate rare events to affordable time scales. It has been demonstrated that with moderate parameters, SGLD can routinely cross energy barriers of 20 kT at a rate that molecular dynamics (MD) or Langevin dynamics (LD) crosses 10 kT barriers. The core of these methods is the use of local averages of forces and momenta in a direct manner that can preserve the canonical ensemble. The use of such local averages results in methods where low frequency motion “borrows” energy from high frequency degrees of freedom when a barrier is approached and then returns that excess energy after a barrier is crossed. This self-guiding effect also results in an accelerated diffusion to enhance conformational sampling efficiency. The resulting ensemble with SGLD deviates in a small way from the canonical ensemble, and that deviation can be corrected with either an on-the-fly or a post processing reweighting procedure that provides an excellent canonical ensemble for systems with a limited number of accelerated degrees of freedom. Since reweighting procedures are generally not size extensive, a newer method, SGLDfp, uses local averages of both momenta and forces to preserve the ensemble without reweighting. The SGLDfp approach is size extensive and can be used to accelerate low frequency motion in large systems, or in systems with explicit solvent where solvent diffusion is also to be enhanced. Since these methods are direct and straightforward, they can be used in conjunction with many other sampling methods or free energy methods by simply replacing the integration of degrees of freedom that are normally sampled by MD or LD. PMID:23913991

  3. Optical Characterization of the SPT-3G Camera

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Ade, P. A. R.; Ahmed, Z.; Anderson, A. J.; Austermann, J. E.; Avva, J. S.; Thakur, R. Basu; Bender, A. N.; Benson, B. A.; Carlstrom, J. E.; Carter, F. W.; Cecil, T.; Chang, C. L.; Cliche, J. F.; Cukierman, A.; Denison, E. V.; de Haan, T.; Ding, J.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Foster, A.; Gannon, R. N.; Gilbert, A.; Groh, J. C.; Halverson, N. W.; Harke-Hosemann, A. H.; Harrington, N. L.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Huang, N.; Irwin, K. D.; Jeong, O. B.; Jonas, M.; Khaire, T.; Kofman, A. M.; Korman, M.; Kubik, D.; Kuhlmann, S.; Kuo, C. L.; Lee, A. T.; Lowitz, A. E.; Meyer, S. S.; Michalik, D.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Noble, G. I.; Novosad, V.; Padin, S.; Pearson, J.; Posada, C. M.; Rahlin, A.; Ruhl, J. E.; Saunders, L. J.; Sayre, J. T.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J. A.; Stark, A. A.; Story, K. T.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vale, L. R.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.; Young, M. R.

    2018-05-01

    The third-generation South Pole Telescope camera is designed to measure the cosmic microwave background across three frequency bands (centered at 95, 150 and 220 GHz) with ˜ 16,000 transition-edge sensor (TES) bolometers. Each multichroic array element on a detector wafer has a broadband sinuous antenna that couples power to six TESs, one for each of the three observing bands and both polarizations, via lumped element filters. Ten detector wafers populate the detector array, which is coupled to the sky via a large-aperture optical system. Here we present the frequency band characterization with Fourier transform spectroscopy, measurements of optical time constants, beam properties, and optical and polarization efficiencies of the detector array. The detectors have frequency bands consistent with our simulations and have high average optical efficiency which is 86, 77 and 66% for the 95, 150 and 220 GHz detectors. The time constants of the detectors are mostly between 0.5 and 5 ms. The beam is round with the correct size, and the polarization efficiency is more than 90% for most of the bolometers.

  4. Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel.

    PubMed

    Huang, Jie; Howie, Bryan; McCarthy, Shane; Memari, Yasin; Walter, Klaudia; Min, Josine L; Danecek, Petr; Malerba, Giovanni; Trabetti, Elisabetta; Zheng, Hou-Feng; Gambaro, Giovanni; Richards, J Brent; Durbin, Richard; Timpson, Nicholas J; Marchini, Jonathan; Soranzo, Nicole

    2015-09-14

    Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a novel approximation that maintains speed without sacrificing imputation accuracy for rare variants.

  5. Numerical Investigation of Synthetic-jet based Flow Control on Vertical-axis Wind Turbine Blades

    NASA Astrophysics Data System (ADS)

    Menon, Ashwin; Tran, Steven; Sahni, Onkar

    2013-11-01

    Vertical-axis wind turbines encounter large unsteady aerodynamic loads in a sustained fashion due to the continuously varying angle of attack that is experienced by turbine blades during each revolution. Moreover, the detachment of the leading edge vortex at high angles of attack leads to sudden change in aerodynamic loads that result in structural vibrations and fatigue, and possibly failure. This numerical study focuses on using synthetic-jet based fluidic actuation to reduce the unsteady loading on VAWT blades. In the simulations, the jets are placed at the dominant separation location that is observed in the baseline case. We consider different tip-speed ratios, O(2-5), and we also study the effect of blowing ratio (to be in O(0.5-1.5)) and reduced frequency, i.e., ratio of jet frequency to flow frequency (to be in O(5-15)). For all cases, unsteady Reynolds-averaged Navier-Stokes simulations are carried out by using the Spallart-Allamaras turbulence model, where stabilized finite element method is employed for spatial discretization along with an implicit time-integration scheme.

  6. Optimal Shape in Electromagnetic Scattering by Small Aspherical Particles

    NASA Astrophysics Data System (ADS)

    Kostinski, A. B.; Mongkolsittisilp, A.

    2013-12-01

    We consider the question of optimal shape for scattering by randomly oriented particles, e.g., shape causing minimal extinction among those of equal volume. Guided by the isoperimetric property of a sphere, relevant in the geometrical optics limit of scattering by large particles, we examine an analogous question in the low frequency (electrostatics) approximation, seeking to disentangle electric and geometric contributions. To that end, we survey the literature on shape functionals and focus on ellipsoids, giving a simple proof of spherical optimality for the coated ellipsoidal particle. Monotonic increase with asphericity in the low frequency regime for orientation-averaged induced dipole moments and scattering cross-sections is also established. Additional physical insight is obtained from the Rayleigh-Gans (transparent) limit and eccentricity expansions. We propose linking low and high frequency regime in a single minimum principle valid for all size parameters, provided that reasonable size distributions wash out the resonances for inter-mediate size parameters. This proposal is further supported by the sum rule for integrated extinction. Implications for spectro-polarimetric scattering are explicitly considered.

  7. Optical Characterization of the SPT-3G Focal Plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Z.; et al.

    The third-generation South Pole Telescope camera is designed to measure the cosmic microwave background across three frequency bands (95, 150 and 220 GHz) with ~16,000 transition-edge sensor (TES) bolometers. Each multichroic pixel on a detector wafer has a broadband sinuous antenna that couples power to six TESs, one for each of the three observing bands and both polarization directions, via lumped element filters. Ten detector wafers populate the focal plane, which is coupled to the sky via a large-aperture optical system. Here we present the frequency band characterization with Fourier transform spectroscopy, measurements of optical time constants, beam properties, andmore » optical and polarization efficiencies of the focal plane. The detectors have frequency bands consistent with our simulations, and have high average optical efficiency which is 86%, 77% and 66% for the 95, 150 and 220 GHz detectors. The time constants of the detectors are mostly between 0.5 ms and 5 ms. The beam is round with the correct size, and the polarization efficiency is more than 90% for most of the bolometers« less

  8. Dynamics of an acoustically levitated particle using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Barrios, G.; Rechtman, R.

    When the acoustic force inside a cavity balances the gravitational force on a particle the result is known as acoustic levitation. Using the lattice Boltzmann equation method we find the acoustic force acting on a rounded particle for two different single-axis acoustic levitators in two dimensions, the first with plane waves, the second with a rounded reflector that enhances the acoustic force. With no gravitational force, a particle oscillates around a pressure node; in the presence of gravity the oscillation is shifted a small vertical distance below the pressure node. This distance increases linearly as the density ratio between the solid particle and fluid grows. For both cavities, the particle oscillates with the frequency of the sound source and its harmonics and in some cases there is a much smaller second dominant frequency. When the momentum of the acoustic source changes, the oscillation around the average vertical position can have both frequencies mentioned above. However, if this quantity is large enough, the oscillations of the particle are aperiodic in the cavity with a rounded reflector.

  9. The Delta Scuti star 38 Eri from the ground and from space

    NASA Astrophysics Data System (ADS)

    Paparó, M.; Kolláth, Z.; Shobbrook, R. R.; Matthews, J. M.; Antoci, V.; Benkő, J. M.; Park, N.-K.; Mirtorabi, M. T.; Luedeke, K.; Kusakin, A.; Bognár, Zs; Sódor, Á.; García-Hernández, A.; Peña, J. H.; Kuschnig, R.; Moffat, A. F. J.; Rowe, J.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2018-07-01

    We present and discuss the pulsational characteristics of the Delta Scuti star 38 Eri from photometric data obtained at two widely spaced epochs, partly from the ground (1998) and partly from space (MOST, 2011). We found 18 frequencies resolving the discrepancy among the previously published frequencies. Some of the frequencies appeared with different relative amplitudes at two epochs, however, we carried out investigation for amplitude variability for only the MOST (Microvariability and Oscillation of STars) data. Amplitude variability was found for one of the three frequencies that satisfy the necessary frequency criteria for linear-combination or resonant-mode coupling. Checking the criteria of beating and resonant-mode coupling we excluded them as possible reason for amplitude variability. The two recently developed methods of rotational splitting and sequence search were applied to find regular spacings based only on frequencies. Doublets or incomplete multiplets with l = 1, 2, and 3 were found in the rotational splitting search. In the sequence search method we identified four sequences. The averaged spacing, probably a combination of the large separation and the rotational frequency, is 1.724 ± 0.092 d-1. Using the spacing and the scaling relation \\bar{ρ}= [0.0394, 0.0554] g cm-3 was derived. The shift of the sequences proved to be the integer multiple of the rotational splitting spacing. Using the precise MOST frequencies and multicolour photometry in a hybrid way, we identified four modes with l = 1, two modes with l = 2, two modes with l = 3, and two modes as l = 0 radial modes.

  10. The Cold Land Processes Experiment (CLPX-1): Analysis and Modelling of LSOS Data (IOP3 Period)

    NASA Technical Reports Server (NTRS)

    Tedesco, Marco; Kim, Edward J.; Cline, Don; Graf, Tobias; Koike, Toshio; Hardy, Janet; Armstrong, Richard; Brodzik, Mary

    2004-01-01

    Microwave brightness temperatures at 18.7,36.5, and 89 GHz collected at the Local-Scale Observation Site (LSOS) of the NASA Cold-Land Processes Field Experiment in February, 2003 (third Intensive Observation Period) were simulated using a Dense Media Radiative Transfer model (DMRT), based on the Quasi Crystalline Approximation with Coherent Potential (QCA-CP). Inputs to the model were averaged from LSOS snow pit measurements, although different averages were used for the lower frequencies vs. the highest one, due to the different penetration depths and to the stratigraphy of the snowpack. Mean snow particle radius was computed as a best-fit parameter. Results show that the model was able to reproduce satisfactorily brightness temperatures measured by the University of Tokyo s Ground Based Microwave Radiometer system (CBMR-7). The values of the best-fit snow particle radii were found to fall within the range of values obtained by averaging the field-measured mean particle sizes for the three classes of Small, Medium and Large grain sizes measured at the LSOS site.

  11. Ab Initio Potential Energy Surfaces and the Calculation of Accurate Vibrational Frequencies

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.; Martin, Jan M. L.; Taylor, Peter R.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within plus or minus 8 cm(exp -1) on average, and molecular bond distances are accurate to within plus or minus 0.001-0.003 Angstroms, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as vibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy will be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.

  12. Ab Initio Calculation of Accurate Vibrational Frequencies for Molecules of Interest in Atmospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within +/- 8 cm(sup -1) on average, and molecular bond distances are accurate to within +/- 0.001-0.003 A, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as rovibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy win be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.

  13. The elimination of zero-order diffraction of 10.6 μm infrared digital holography

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Yang, Chao

    2017-05-01

    A new method of eliminating the zero-order diffraction in infrared digital holography has been raised in this paper. Usually in the reconstruction of digital holography, the spatial frequency of the infrared thermal imager, such as microbolometer, cannot be compared to the common visible CCD or CMOS devices. The infrared imager suffers the problems of large pixel size and low spatial resolution, which cause the zero-order diffraction a severe influence of the reconstruction process of digital holograms. The zero-order diffraction has very large energy and occupies the central region in the spectrum domain. In this paper, we design a new filtering strategy to overcome this problem. This filtering strategy contains two kinds of filtering process which are the Gaussian low-frequency filter and the high-pass phase averaging filter. With the correct set of the calculating parameters, these filtering strategies can work effectively on the holograms and fully eliminate the zero-order diffraction, as well as the two crossover bars shown in the spectrum domain. Detailed explanation and discussion about the new method have been proposed in this paper, and the experiment results are also demonstrated to prove the performance of this method.

  14. Global structure transitions in an experimental induction furnace

    NASA Astrophysics Data System (ADS)

    Tasaka, Yuji; Galindo, Vladimir; Vogt, Tobias; Eckert, Sven

    2017-11-01

    Flows induced by alternating magnetic field (AMF) in a cylindrical vessel filled with liquid metal, alloy of GaInSn, were examined experimentally using ultrasonic Doppler velocimetry (UDV). Measurement lines of UDV arranged vertically set at different radial and azimuthal positions extracted flow structures and their time variations as spatio-temporal velocity maps in the opaque liquid metal layer. At low frequency of AMF, corresponding to shielding parameter S =μm σωR2 = O(1) (μm and σ are magnetic permeability and electric conductivity of the test fluid, ω angular frequency of AMF, and R the radius of cylindrical vessel), two toroidal vortices exist in the fluid layer as the large scale flow structure and have interactions each other. With increasing of S the structure has transition from toroidal vortex pair to four large scale circulations (S >= 100) via transient state, where strong interactions of two vortices are observed (30 < S < 100). Faster vertical stream is observed near the cylinder wall because of ski effect caused by AMF, and the time-averaged velocity of the stream takes maximum around S = 20 , which is little smaller value of S for the onset of the transient state. JSPS KAKENHI No. 15KK0219.

  15. 50 CFR 218.120 - Specified activity and geographical area.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the following mid-frequency active sonar (MFAS) sources, high-frequency active sonar (HFAS) sources...-mounted active sonar)—up to 2,890 hours over the course of 5 years (an average of 578 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)—up to 260 hours over the course of 5 years (an average of 52...

  16. 50 CFR 218.120 - Specified activity and geographical area.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the following mid-frequency active sonar (MFAS) sources, high-frequency active sonar (HFAS) sources...-mounted active sonar)—up to 2,890 hours over the course of 5 years (an average of 578 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)—up to 260 hours over the course of 5 years (an average of 52...

  17. 50 CFR 218.120 - Specified activity and geographical area.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the following mid-frequency active sonar (MFAS) sources, high-frequency active sonar (HFAS) sources...-mounted active sonar)—up to 2,890 hours over the course of 5 years (an average of 578 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)—up to 260 hours over the course of 5 years (an average of 52...

  18. 50 CFR 218.120 - Specified activity and geographical area.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the following mid-frequency active sonar (MFAS) sources, high-frequency active sonar (HFAS) sources...-mounted active sonar)—up to 2,890 hours over the course of 5 years (an average of 578 hours per year); (ii) AN/SQS-56 (hull-mounted active sonar)—up to 260 hours over the course of 5 years (an average of 52...

  19. Fiber optic sensing system

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory (Inventor)

    1991-01-01

    A fiber optic interferometer utilizes a low coherence light emitting diode (LED) laser as a light source which is filtered and driven at two RF frequencies, high and low, that are specific to the initial length of the resonator chamber. A displacement of a reflecting mirror changes the length traveled by the nonreferencing signal. The low frequency light undergoes destructive interference which reduces the average intensity of the wave while the high frequency light undergoes constructive interference which increases the average intensity of the wave. The ratio of these two intensity measurements is proportional to the displacement incurred.

  20. Comparison of Two Methods for Estimating the Sampling-Related Uncertainty of Satellite Rainfall Averages Based on a Large Radar Data Set

    NASA Technical Reports Server (NTRS)

    Lau, William K. M. (Technical Monitor); Bell, Thomas L.; Steiner, Matthias; Zhang, Yu; Wood, Eric F.

    2002-01-01

    The uncertainty of rainfall estimated from averages of discrete samples collected by a satellite is assessed using a multi-year radar data set covering a large portion of the United States. The sampling-related uncertainty of rainfall estimates is evaluated for all combinations of 100 km, 200 km, and 500 km space domains, 1 day, 5 day, and 30 day rainfall accumulations, and regular sampling time intervals of 1 h, 3 h, 6 h, 8 h, and 12 h. These extensive analyses are combined to characterize the sampling uncertainty as a function of space and time domain, sampling frequency, and rainfall characteristics by means of a simple scaling law. Moreover, it is shown that both parametric and non-parametric statistical techniques of estimating the sampling uncertainty produce comparable results. Sampling uncertainty estimates, however, do depend on the choice of technique for obtaining them. They can also vary considerably from case to case, reflecting the great variability of natural rainfall, and should therefore be expressed in probabilistic terms. Rainfall calibration errors are shown to affect comparison of results obtained by studies based on data from different climate regions and/or observation platforms.

  1. Preliminary evaluation of magnitude and frequency of floods in selected small drainage basins in Ohio

    USGS Publications Warehouse

    Kolva, J.R.

    1985-01-01

    A previous study of flood magitudes and frequencies in Ohio concluded that existing regionalized flood equations may not be adequate for estimating peak flows in small basins that are heavily forested, surface mined, or located in northwestern Ohio. In order to provide a large data base for improving estimation of flood peaks in these basins, 30 crest-stage gages were installed in 1977, in cooperation with the Ohio Department of Transportation, to provide a 10-year record of flood data The study area consists of two distinct parts: Northwestern Ohio, which contains 8 sites, and southern and eastern Ohio, which contains 22 sites in small forested or surface-mined drainage basins. Basin characteristics were determined for all 30 sites for 1978 conditions. Annual peaks were recorded or estimated for all 30 sites for water years 1978-82; an additional year of peak discharges was available at four sites. The 2-year (Q2) and 5-year (Q5) flood peaks were determined from these annual peaks.Q2 and Q5 values also were calculated using published regionalized regression equations for Ohio. The ratios of the observed to predicted 2-year (R2) and 5-year (R5) values were then calculated. This study found that observed flood peaks aree lower than estimated peaks by a significant amount in surface-mined basins. The average ratios of observed to predicted R2 values are 0.51 for basins with more than 40 percent surface-minded land, and 0.68 for sites with any surface-mined land. The average R5 value is 0.55 for sites with more than 40 percent surface-minded land, and 0.61 for sites with any surface-mined land. Estimated flood peaks from forested basins agree with the observed values fairly well. R2 values average 0.87 for sites with 20 percent or more forested land, but no surface-mined land, and R5 values average 0.96. If all sites with more than 20 percent forested land and some surface-mined land are considered, R2 the values average 0.86, and the R5 values average 0.82.

  2. Spatiotemporal Variables of Able-bodied and Amputee Sprinters in Men's 100-m Sprint.

    PubMed

    Hobara, H; Kobayashi, Y; Mochimaru, M

    2015-06-01

    The difference in world records set by able-bodied sprinters and amputee sprinters in the men's 100-m sprint is still approximately 1 s (as of 28 March 2014). Theoretically, forward velocity in a 100-m sprint is the product of step frequency and step length. The goal of this study was to examine the hypothesis that differences in the sprint performance of able-bodied and amputee sprinters would be due to a shorter step length rather than lower step frequency. Men's elite-level 100-m races with a total of 36 able-bodied, 25 unilateral and 17 bilateral amputee sprinters were analyzed from the publicly available internet broadcasts of 11 races. For each run of each sprinter, the average forward velocity, step frequency and step length over the whole 100-m distance were analyzed. The average forward velocity of able-bodied sprinters was faster than that of the other 2 groups, but there was no significant difference in average step frequency among the 3 groups. However, the average step length of able-bodied sprinters was significantly longer than that of the other 2 groups. These results suggest that the differences in sprint performance between 2 groups would be due to a shorter step length rather than lower step frequency. © Georg Thieme Verlag KG Stuttgart · New York.

  3. ASSESSMENT OF LOW-FREQUENCY HEARING WITH NARROW-BAND CHIRP EVOKED 40-HZ SINUSOIDAL AUDITORY STEADY STATE RESPONSE

    PubMed Central

    Wilson, Uzma S.; Kaf, Wafaa A.; Danesh, Ali A.; Lichtenhan, Jeffery T.

    2016-01-01

    Objective To determine the clinical utility of narrow-band chirp evoked 40-Hz sinusoidal auditory steady state responses (s-ASSR) in the assessment of low-frequency hearing in noisy participants. Design Tone bursts and narrow-band chirps were used to respectively evoke auditory brainstem responses (tb-ABR) and 40-Hz s-ASSR thresholds with the Kalman-weighted filtering technique and were compared to behavioral thresholds at 500, 2000, and 4000 Hz. A repeated measure ANOVA and post-hoc t-tests, and simple regression analyses were performed for each of the three stimulus frequencies. Study Sample Thirty young adults aged 18–25 with normal hearing participated in this study. Results When 4000 equivalent responses averages were used, the range of mean s-ASSR thresholds from 500, 2000, and 4000 Hz were 17–22 dB lower (better) than when 2000 averages were used. The range of mean tb-ABR thresholds were lower by 11–15 dB for 2000 and 4000 Hz when twice as many equivalent response averages were used, while mean tb-ABR thresholds for 500 Hz were indistinguishable regardless of additional response averaging Conclusion Narrow band chirp evoked 40-Hz s-ASSR requires a ~15 dB smaller correction factor than tb-ABR for estimating low-frequency auditory threshold in noisy participants when adequate response averaging is used. PMID:26795555

  4. Seismology and geodesy of the sun: low-frequency oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dicke, R.H.

    1981-04-01

    The hourly averages of the solar ellipticity measured from June 13 to September 17, 1966, are analyzed for indications of solar oscillations with periods in excess of 2 h ..nu.. < 0.5 h/sup -1/. Nothing significant is found for frequencies ..nu.. > 0.1 hr/sup -1/ but for lower frequencies the power spectrum shows a very complex structure containing about 20 strong narrow peaks. The complexity is illusionary. The signal apparently consists of only two frequencies. The complexity is due to aliasing by the window function with its basic 24-h period, with many observational days missing, and with different numbers ofmore » hourly averages for the various observational days. Both signal frequencies are apparently due to odd-degree spherical harmonic oscillations of the sun.« less

  5. Zircons reveal magma fluxes in the Earth's crust.

    PubMed

    Caricchi, Luca; Simpson, Guy; Schaltegger, Urs

    2014-07-24

    Magma fluxes regulate the planetary thermal budget, the growth of continents and the frequency and magnitude of volcanic eruptions, and play a part in the genesis and size of magmatic ore deposits. However, because a large fraction of the magma produced on the Earth does not erupt at the surface, determinations of magma fluxes are rare and this compromises our ability to establish a link between global heat transfer and large-scale geological processes. Here we show that age distributions of zircons, a mineral often present in crustal magmatic rocks, in combination with thermal modelling, provide an accurate means of retrieving magma fluxes. The characteristics of zircon age populations vary significantly and systematically as a function of the flux and total volume of magma accumulated in the Earth's crust. Our approach produces results that are consistent with independent determinations of magma fluxes and volumes of magmatic systems. Analysis of existing age population data sets using our method suggests that porphyry-type deposits, plutons and large eruptions each require magma input over different timescales at different characteristic average fluxes. We anticipate that more extensive and complete magma flux data sets will serve to clarify the control that the global heat flux exerts on the frequency of geological events such as volcanic eruptions, and to determine the main factors controlling the distribution of resources on our planet.

  6. Non-destructive evaluation of coating thickness using guided waves

    NASA Astrophysics Data System (ADS)

    Ostiguy, Pierre-Claude; Quaegebeur, Nicolas; Masson, Patrice

    2015-04-01

    Among existing strategies for non-destructive evaluation of coating thickness, ultrasonic methods based on the measurement of the Time-of-Flight (ToF) of high frequency bulk waves propagating through the thickness of a structure are widespread. However, these methods only provide a very localized measurement of the coating thickness and the precision on the results is largely affected by the surface roughness, porosity or multi-layered nature of the host structure. Moreover, since the measurement is very local, inspection of large surfaces can be time consuming. This article presents a robust methodology for coating thickness estimation based on the generation and measurement of guided waves. Guided waves have the advantage over ultrasonic bulk waves of being less sensitive to surface roughness, and of measuring an average thickness over a wider area, thus reducing the time required to inspect large surfaces. The approach is based on an analytical multi-layer model and intercorrelation of reference and measured signals. The method is first assessed numerically for an aluminum plate, where it is demonstrated that coating thickness can be measured within a precision of 5 micrometers using the S0 mode at frequencies below 500 kHz. Then, an experimental validation is conducted and results show that coating thicknesses in the range of 10 to 200 micrometers can be estimated within a precision of 10 micrometers of the exact coating thickness on this type of structure.

  7. Dietary habits and selenium intake of residents in mountain and coastal communities in Japan.

    PubMed

    Miyazaki, Yukiko; Koyama, Hiroshi; Sasada, Yoko; Satoh, Hiroshi; Nojiri, Masami; Suzuki, Shosuke

    2004-10-01

    We used a Simple Food Frequency Questionnaire (SFFQ) in combination with other dietary approaches to estimate the selenium intake from different food groups based on the average long-term diet, in two rural communities in Japan, one in a mountain area and the other in a coastal area. The intake frequencies of rice and wheat products were significantly different in the two districts. The intake frequencies of fish, meat, and eggs, which are rich in selenium, were not significantly different. The mean dietary selenium intake, estimated from the SFFQ and the 24-h recall method, was 82.7 microg/d (n=234) (range 19.2-180.1 microg/d) in the mountain community. The mean dietary selenium intake estimated from the SFFQ and average value of the normal portion size was 118.0 microg/d (n=123) (range 22.6-255.3 microg/d) in the coastal community. These estimated mean values exceeded the Japanese RDA, although the range of daily selenium intake was large. In the mountain community, fish made the largest contribution to dietary selenium intake (48.2% of daily total), followed by eggs (24.3%), and meat (17.0%). In the coastal community, fish accounted for 57.7% of daily total selenium intake, followed by meat (17.5%), and eggs (16.1%). In both districts, the total contribution of rice and wheat products was around 10%. It was found that the contribution of fish to dietary selenium intake was high and the contribution of cereals was low among Japanese.

  8. Helioseismic Constraints on the Depth Dependence of Large-Scale Solar Convection

    NASA Astrophysics Data System (ADS)

    Woodard, Martin F.

    2017-08-01

    A recent helioseismic statistical waveform analysis of subsurface flow based on a 720-day time series of SOHO/MDI Medium-l spherical-harmonic coefficients has been extended to cover a greater range of subphotospheric depths. The latest analysis provides estimates of flow-dependent oscillation-mode coupling-strength coefficients b(s,t;n,l) over the range l = 30 to 150 of mode degree (angular wavenumber) for solar p-modes in the approximate frequency range 2 to 4 mHz. The range of penetration depths of this mode set covers most of the solar convection zone. The most recent analysis measures spherical harmonic (s,t) components of the flow velocity for odd s in the angular wavenumber range 1 to 19 for t not much smaller than s at a given s. The odd-s b(s,t;n,l) coefficients are interpreted as averages over depth of the depth-dependent amplitude of one spherical-harmonic (s,t) component of the toroidal part of the flow velocity field. The depth-dependent weighting function defining the average velocity is the fractional kinetic energy density in radius of modes of the (n,l) multiplet. The b coefficients have been converted to estimates of root velocity power as a function of l0 = nu0*l/nu(n,l), which is a measure of mode penetration depth. (nu(n,l) is mode frequency and nu0 is a reference frequency equal to 3 mHz.) A comparison of the observational results with simple convection models will be presented.

  9. Lessons Learned from OMI Observations of Point Source SO2 Pollution

    NASA Technical Reports Server (NTRS)

    Krotkov, N.; Fioletov, V.; McLinden, Chris

    2011-01-01

    The Ozone Monitoring Instrument (OMI) on NASA Aura satellite makes global daily measurements of the total column of sulfur dioxide (SO2), a short-lived trace gas produced by fossil fuel combustion, smelting, and volcanoes. Although anthropogenic SO2 signals may not be detectable in a single OMI pixel, it is possible to see the source and determine its exact location by averaging a large number of individual measurements. We describe new techniques for spatial and temporal averaging that have been applied to the OMI SO2 data to determine the spatial distributions or "fingerprints" of SO2 burdens from top 100 pollution sources in North America. The technique requires averaging of several years of OMI daily measurements to observe SO2 pollution from typical anthropogenic sources. We found that the largest point sources of SO2 in the U.S. produce elevated SO2 values over a relatively small area - within 20-30 km radius. Therefore, one needs higher than OMI spatial resolution to monitor typical SO2 sources. TROPOMI instrument on the ESA Sentinel 5 precursor mission will have improved ground resolution (approximately 7 km at nadir), but is limited to once a day measurement. A pointable geostationary UVB spectrometer with variable spatial resolution and flexible sampling frequency could potentially achieve the goal of daily monitoring of SO2 point sources and resolve downwind plumes. This concept of taking the measurements at high frequency to enhance weak signals needs to be demonstrated with a GEOCAPE precursor mission before 2020, which will help formulating GEOCAPE measurement requirements.

  10. Toward canonical ensemble distribution from self-guided Langevin dynamics simulation

    NASA Astrophysics Data System (ADS)

    Wu, Xiongwu; Brooks, Bernard R.

    2011-04-01

    This work derives a quantitative description of the conformational distribution in self-guided Langevin dynamics (SGLD) simulations. SGLD simulations employ guiding forces calculated from local average momentums to enhance low-frequency motion. This enhancement in low-frequency motion dramatically accelerates conformational search efficiency, but also induces certain perturbations in conformational distribution. Through the local averaging, we separate properties of molecular systems into low-frequency and high-frequency portions. The guiding force effect on the conformational distribution is quantitatively described using these low-frequency and high-frequency properties. This quantitative relation provides a way to convert between a canonical ensemble and a self-guided ensemble. Using example systems, we demonstrated how to utilize the relation to obtain canonical ensemble properties and conformational distributions from SGLD simulations. This development makes SGLD not only an efficient approach for conformational searching, but also an accurate means for conformational sampling.

  11. A 10-Year Climatology of Cloud Cover and Vertical Distribution Derived from Both Surface and GOES Observations Over the DOE ARM SGP Site

    NASA Technical Reports Server (NTRS)

    Xi, Baike; Dong, Xiquan; Minnis, P.; Khaiyer, M.

    2010-01-01

    Analysis of a decade of ARM radar-lidar and GOES observations at the SGP site reveal that 0.5 and 4-hr averages of the surface cloud fraction correspond closely to 0.5deg and 2.5deg averages of GOES cloudiness, respectively. The long-term averaged surface and GOES cloud fractions agree to within 0.5%. Cloud frequency increases and cloud amount decreases as the temporal and spatial averaging scales increase. Clouds occurred most often during winter and spring. Single-layered clouds account for 61.5% of the total cloud frequency. There are distinct bimodal vertical distributions of clouds with a lower peak around 1 km and an upper one that varies from 7.5 to 10.8 km between winter and summer, respectively. The frequency of occurrence for nighttime GOES high-cloud tops agree well with the surface observations, but are underestimated during the day.

  12. Joint channel/frequency offset estimation and correction for coherent optical FBMC/OQAM system

    NASA Astrophysics Data System (ADS)

    Wang, Daobin; Yuan, Lihua; Lei, Jingli; wu, Gang; Li, Suoping; Ding, Runqi; Wang, Dongye

    2017-12-01

    In this paper, we focus on analysis of the preamble-based joint estimation for channel and laser-frequency offset (LFO) in coherent optical filter bank multicarrier systems with offset quadrature amplitude modulation (CO-FBMC/OQAM). In order to reduce the noise impact on the estimation accuracy, we proposed an estimation method based on inter-frame averaging. This method averages the cross-correlation function of real-valued pilots within multiple FBMC frames. The laser-frequency offset is estimated according to the phase of this average. After correcting LFO, the final channel response is also acquired by averaging channel estimation results within multiple frames. The principle of the proposed method is analyzed theoretically, and the preamble structure is thoroughly designed and optimized to suppress the impact of inherent imaginary interference (IMI). The effectiveness of our method is demonstrated numerically using different fiber and LFO values. The obtained results show that the proposed method can improve transmission performance significantly.

  13. Riverbed Hydrologic Exchange Dynamics in a Large Regulated River Reach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Tian; Bao, Jie; Huang, Maoyi

    Hydrologic exchange flux (HEF) is an important hydrologic component in river corridors that includes both bidirectional (hyporheic) and unidirectional (gaining/losing) surface water – groundwater exchanges. Quantifying HEF rates in a large regulated river is difficult due to the large spatial domains, complexity of geomorphologic features and subsurface properties, and the great stage variations created by dam operations at multiple time scales. In this study, we developed a method that combined numerical modeling and field measurements for estimating HEF rates across the river bed in a 7‐km long reach of the highly regulated Columbia River. A high‐resolution computational fluid dynamics (CFD)more » modeling framework was developed and validated by field measurements and other modeling results to characterize the HEF dynamics across the river bed. We found that about 85% of the time from 2008‐2014 the river was losing water with an annual average net HEF rates across the river bed (Qz) of ‐2.3 m3 s−1 (negative indicating downwelling). June was the only month that the river gained water, with monthly averaged Qz of 0.8 m3 s−1. We also found that the daily dam operations increased the hourly gross gaining and losing rate over an average year of 8% and 2%, respectively. By investigating the HEF feedbacks at various time scales, we suggest that the dam operations could reduce the HEF at seasonal time scale by decreasing the seasonal flow variations, while also enhance the HEF at sub‐daily time scale by generating high frequency discharge variations. These changes could generate significant impacts on biogeochemical processes in the hyporheic zone.« less

  14. Simulation of tropical cyclone activity over the western North Pacific based on CMIP5 models

    NASA Astrophysics Data System (ADS)

    Shen, Haibo; Zhou, Weican; Zhao, Haikun

    2017-09-01

    Based on the Coupled Model Inter-comparison Project 5 (CMIP5) models, the tropical cyclone (TC) activity in the summers of 1965-2005 over the western North Pacific (WNP) is simulated by a TC dynamically downscaling system. In consideration of diversity among climate models, Bayesian model averaging (BMA) and equal-weighed model averaging (EMA) methods are applied to produce the ensemble large-scale environmental factors of the CMIP5 model outputs. The environmental factors generated by BMA and EMA methods are compared, as well as the corresponding TC simulations by the downscaling system. Results indicate that BMA method shows a significant advantage over the EMA. In addition, impacts of model selections on BMA method are examined. To each factor, ten models with better performance are selected from 30 CMIP5 models and then conduct BMA, respectively. As a consequence, the ensemble environmental factors and simulated TC activity are similar with the results from the 30 models' BMA, which verifies the BMA method can afford corresponding weight for each model in the ensemble based on the model's predictive skill. Thereby, the existence of poor performance models will not particularly affect the BMA effectiveness and the ensemble outcomes are improved. Finally, based upon the BMA method and downscaling system, we analyze the sensitivity of TC activity to three important environmental factors, i.e., sea surface temperature (SST), large-scale steering flow, and vertical wind shear. Among three factors, SST and large-scale steering flow greatly affect TC tracks, while average intensity distribution is sensitive to all three environmental factors. Moreover, SST and vertical wind shear jointly play a critical role in the inter-annual variability of TC lifetime maximum intensity and frequency of intense TCs.

  15. Controlling plasma properties under differing degrees of electronegativity using odd harmonic dual frequency excitation

    NASA Astrophysics Data System (ADS)

    Gibson, Andrew R.; Gans, Timo

    2017-11-01

    The charged particle dynamics in low-pressure oxygen plasmas excited by odd harmonic dual frequency waveforms (low frequency of 13.56 MHz and high frequency of 40.68 MHz) are investigated using a one-dimensional numerical simulation in regimes of both low and high electronegativity. In the low electronegativity regime, the time and space averaged electron and negative ion densities are approximately equal and plasma sustainment is dominated by ionisation at the sheath expansion for all combinations of low and high frequency and the phase shift between them. In the high electronegativity regime, the negative ion density is a factor of 15-20 greater than the low electronegativity cases. In these cases, plasma sustainment is dominated by ionisation inside the bulk plasma and at the collapsing sheath edge when the contribution of the high frequency to the overall voltage waveform is low. As the high frequency component contribution to the waveform increases, sheath expansion ionisation begins to dominate. It is found that the control of the average voltage drop across the plasma sheath and the average ion flux to the powered electrode are similar in both regimes of electronegativity, despite the differing electron dynamics using the considered dual frequency approach. This offers potential for similar control of ion dynamics under a range of process conditions, independent of the electronegativity. This is in contrast to ion control offered by electrically asymmetric waveforms where the relationship between the ion flux and ion bombardment energy is dependent upon the electronegativity.

  16. On the averaging area for incident power density for human exposure limits at frequencies over 6 GHz

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yota; Hirata, Akimasa; Morimoto, Ryota; Aonuma, Shinta; Laakso, Ilkka; Jokela, Kari; Foster, Kenneth R.

    2017-04-01

    Incident power density is used as the dosimetric quantity to specify the restrictions on human exposure to electromagnetic fields at frequencies above 3 or 10 GHz in order to prevent excessive temperature elevation at the body surface. However, international standards and guidelines have different definitions for the size of the area over which the power density should be averaged. This study reports computational evaluation of the relationship between the size of the area over which incident power density is averaged and the local peak temperature elevation in a multi-layer model simulating a human body. Three wave sources are considered in the frequency range from 3 to 300 GHz: an ideal beam, a half-wave dipole antenna, and an antenna array. 1D analysis shows that averaging area of 20 mm  ×  20 mm is a good measure to correlate with the local peak temperature elevation when the field distribution is nearly uniform in that area. The averaging area is different from recommendations in the current international standards/guidelines, and not dependent on the frequency. For a non-uniform field distribution, such as a beam with small diameter, the incident power density should be compensated by multiplying a factor that can be derived from the ratio of the effective beam area to the averaging area. The findings in the present study suggest that the relationship obtained using the 1D approximation is applicable for deriving the relationship between the incident power density and the local temperature elevation.

  17. [The acoustics of the open mastoid cavity (so-called "radical cavity") and its modification by surgical measures. II. Clinical studies].

    PubMed

    Hartwein, J

    1992-09-01

    The acoustic resonance of a severely altered outer ear channel (radical mastoid cavity) is investigated in a series of 18 patients who underwent revision surgery by means of in-situ measurements of the sound-pressure-level near the tympanic membrane. While the average volume of the open cavity differs from the normal ear channel for the factor 2.5, the size of the external meatus is--in average--only 20% larger. This leads to an average frequency in patients with open cavity of 1939 Hz, more than 1000 Hz less than in a series (n = 20) of normal ears (average resonance frequency: 2942 Hz). The altered acoustic behaviour of the open cavity leads to partial extensive discrepancies of the resonance-caused sound-pressure augmentation in the frequencies of 3 and 4 kHz, which are important for speech perception. The average difference is more than 10 dB (SPL). Proved surgical techniques of cavity obliteration and meatoplasty can lead to a nearly normalized acoustic behaviour of the outer ear in a statistic significant way. Due to these surgical procedures, an average postoperative resonance frequency of 2421 Hz could be reached in our patients. Especially, the resonance-caused sound-pressure augmentation in 3-4 kHz could nearly be equalized to such of a normal outer ear. Differences in the acoustic behaviour of the outer ear as can be found between patients with an open mastoid cavity and normal ears can almost be eliminated surgically.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Electron-Impact Excitation and Ionization in Air

    DTIC Science & Technology

    2009-09-01

    average collision frequency, is more than 100 times larger. Even in the slightly ionized regime with only 1% electrons, the frequency of electron...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and...physics-based model of nonequilibrium chemistry and radiation in hypersonic flow, it is timely to investigate and update the electron collision cross

  19. Lightning electromagnetic radiation field spectra in the interval from 0.2 to 20 MHz

    NASA Technical Reports Server (NTRS)

    Willett, J. C.; Bailey, J. C.; Leteinturier, C.; Krider, E. P.

    1990-01-01

    New Fourier transforms of wideband time-domain electric fields (E) produced by lightning (recorded at the Kennedy Space Center during the summers of 1985 and 1987) were recorded in such a way that several different events in each lightning flash could be captured. Average HF spectral amplitudes for first return strokes, stepped-leader steps, and 'characteristic pulses' are given for significantly more events, at closer ranges, and with better spectral resolution than in previous literature reports. The method of recording gives less bias toward the first large event in the flash and thus yields a large sample of a wide variety of lightning processes. As a result, reliable composite spectral amplitudes are obtained for a number of different processes in cloud-to-ground lightning over the frequency interval from 0.2 to 20 MHz.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moitra, Parikshit; Slovick, Brian A.; li, Wei

    All-dielectric metamaterials offer a potential low-loss alternative to plasmonic metamaterials at optical frequencies. In this paper, we take advantage of the low absorption loss as well as the simple unit cell geometry to demonstrate large-scale (centimeter-sized) all-dielectric metamaterial perfect reflectors made from silicon cylinder resonators. These perfect reflectors, operating in the telecommunications band, were fabricated using self-assembly based nanosphere lithography. In spite of the disorder originating from the self-assembly process, the average reflectance of the metamaterial perfect reflectors is 99.7% at 1530 nm, surpassing the reflectance of metallic mirrors. Moreover, the spectral separation of the electric and magnetic resonances canmore » be chosen to achieve the required reflection bandwidth while maintaining a high tolerance to disorder. Finally, the scalability of this design could lead to new avenues of manipulating light for low-loss and large-area photonic applications.« less

  1. Ionospheric modifications detected by a dense network of single frequency GNSS receivers

    NASA Astrophysics Data System (ADS)

    Mrak, S.; Semeter, J. L.

    2017-12-01

    It has been predicted that the region of totality during a total solar eclipse can launch atmospheric gravity waves with large enough amplitude to cause traveling ionospheric disturbances (TIDs). We report initial results from a remote sensing campaign involving a dense hybrid network of single- and dual-frequency GNSS receivers deployed underneath the 21 August 2017 solar eclipse. The campaign took place in central Missouri, involving 84 Trimble dual-frequency receivers, complemented by 2 additional 50 Hz dual-frequency receivers and 15 single-frequency receivers, together constructing 100 receivers with average mutual separation of less than 25 km and with a time resolution of 1 second or better. The initial results show a crescent shaped enhancement bulge in front of region of totality, extending all the way from Canada to Gulf of Mexico. In addition, in the path of totality is noticed a great depletion region, followed by a pair of transverse waves propagating in west-east direction. In the following months, we will explore the transition region carried by the totality by a virtue of hyper dense network of GNSS receivers with 1 second resolution. In addition to TEC data decomposition we will explore effects of the totality on the raw measurements (phase, code and signal intensity), and to the navigation solution which is likely to be effected by a different propagation conditions with respect to other days.

  2. A Feasibility Study for Simultaneous Measurements of Water Vapor and Precipitation Parameters using a Three-frequency Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Liao, L.; Tian, L.

    2005-01-01

    The radar return powers from a three-frequency radar, with center frequency at 22.235 GHz and upper and lower frequencies chosen with equal water vapor absorption coefficients, can be used to estimate water vapor density and parameters of the precipitation. A linear combination of differential measurements between the center and lower frequencies on one hand and the upper and lower frequencies on the other provide an estimate of differential water vapor absorption. The coupling between the precipitation and water vapor estimates is generally weak but increases with bandwidth and the amount of non-Rayleigh scattering of the hydrometeors. The coupling leads to biases in the estimates of water vapor absorption that are related primarily to the phase state and the median mass diameter of the hydrometeors. For a down-looking radar, path-averaged estimates of water vapor absorption are possible under rain-free as well as raining conditions by using the surface returns at the three frequencies. Simulations of the water vapor attenuation retrieval show that the largest source of error typically arises from the variance in the measured radar return powers. Although the error can be mitigated by a combination of a high pulse repetition frequency, pulse compression, and averaging in range and time, the radar receiver must be stable over the averaging period. For fractional bandwidths of 20% or less, the potential exists for simultaneous measurements at the three frequencies with a single antenna and transceiver, thereby significantly reducing the cost and mass of the system.

  3. Potential association of vacuum cleaning frequency with an altered gut microbiota in pregnant women and their 2-year-old children.

    PubMed

    Avershina, Ekaterina; Ravi, Anuradha; Storrø, Ola; Øien, Torbjørn; Johnsen, Roar; Rudi, Knut

    2015-12-21

    Westernized lifestyle and hygienic behavior have contributed to dramatic changes in the human-associated microbiota. This particularly relates to indoor activities such as house cleaning. We therefore investigated the associations between washing and vacuum cleaning frequency and the gut microbiota composition in a large longitudinal cohort of mothers and their children. The gut microbiota composition was determined using 16S ribosomal RNA (rRNA) gene Illumina deep sequencing. We found that high vacuum cleaning frequency about twice or more a week was associated with an altered gut microbiota composition both during pregnancy and for 2-year-old children, while there were no associations with house washing frequency. In total, six Operational Taxonomic Units (OTUs) showed significant False Discovery Rate (FDR) corrected associations with vacuum cleaning frequency for mothers (two positive and four negative) and five for 2-year-old children (four positive and one negative). For mothers and the 2-year-old children, OTUs among the dominant microbiota (average >5 %) showed correlation to vacuum cleaning frequency, with an increase in Faecalibacterium prausnitzii for mothers (p = 0.013, FDR corrected), and Blautia sp. for 2-year children (p = 0.012, FDR corrected). Bacteria showing significant associations are among the dominant gut microbiota, which may indicate indirect immunomodulation of the gut microbiota possibly through increased allergen (dust mites) exposure as a potential mechanism. However, further exploration is needed to unveil mechanistic details.

  4. A frequency domain analysis of respiratory variations in the seismocardiogram signal.

    PubMed

    Pandia, Keya; Inan, Omer T; Kovacs, Gregory T A

    2013-01-01

    The seismocardiogram (SCG) signal traditionally measured using a chest-mounted accelerometer contains low-frequency (0-100 Hz) cardiac vibrations that can be used to derive diagnostically relevant information about cardiovascular and cardiopulmonary health. This work is aimed at investigating the effects of respiration on the frequency domain characteristics of SCG signals measured from 18 healthy subjects. Toward this end, the 0-100 Hz SCG signal bandwidth of interest was sub-divided into 5 Hz and 10 Hz frequency bins to compare the spectral energy in corresponding frequency bins of the SCG signal measured during three key conditions of respiration--inspiration, expiration, and apnea. Statistically significant differences were observed between the power in ensemble averaged inspiratory and expiratory SCG beats and between ensemble averaged inspiratory and apneaic beats across the 18 subjects for multiple frequency bins in the 10-40 Hz frequency range. Accordingly, the spectral analysis methods described in this paper could provide complementary and improved classification of respiratory modulations in the SCG signal over and above time-domain SCG analysis methods.

  5. Shifts in biomass and productivity for a subtropical dry forest in response to simulated elevated hurricane disturbances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holm, Jennifer A.; Van Bloem, Skip J.; Larocque, Guy R.

    Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model -based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical dry forests in Puerto Rico. Using the previously validated individual-based gap model ZELIG-TROP, we developed a new hurricane damage routine and parameterized it with site- and species-specific hurricane effects. A baseline case with the reconstructed historical hurricane regime represented the control condition. Ten treatment cases, reflecting plausible shifts in hurricane regimes,more » manipulated both hurricane return time (i.e. frequency) and hurricane intensity. The treatment-related change in carbon storage and fluxes were reported as changes in aboveground forest biomass (AGB), net primary productivity (NPP), and in the aboveground carbon partitioning components, or annual carbon accumulation (ACA). Increasing the frequency of hurricanes decreased aboveground biomass by between 5% and 39%, and increased NPP between 32% and 50%. Decadal-scale biomass fluctuations were damped relative to the control. In contrast, increasing hurricane intensity did not create a large shift in the long-term average forest structure, NPP, or ACA from that of historical hurricane regimes, but produced large fluctuations in biomass. Decreasing both the hurricane intensity and frequency by 50% produced the highest values of biomass and NPP. For the control scenario and with increased hurricane intensity, ACA was negative, which indicated that the aboveground forest components acted as a carbon source. However, with an increase in the frequency of storms or decreased storms, the total ACA was positive due to shifts in leaf production, annual litterfall, and coarse woody debris inputs, indicating a carbon sink into the forest over the long-term. The carbon loss from each hurricane event, in all scenarios, always recovered over sufficient time. Our results suggest that subtropical dry forests will remain resilient to hurricane disturbance. However carbon stocks will decrease if future climates increase hurricane frequency by 50% or more.« less

  6. Shifts in biomass and productivity for a subtropical dry forest in response to simulated elevated hurricane disturbances

    NASA Astrophysics Data System (ADS)

    Holm, Jennifer A.; Van Bloem, Skip J.; Larocque, Guy R.; Shugart, Herman H.

    2017-02-01

    Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model-based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical dry forests in Puerto Rico. Using the previously validated individual-based gap model ZELIG-TROP, we developed a new hurricane damage routine and parameterized it with site- and species-specific hurricane effects. A baseline case with the reconstructed historical hurricane regime represented the control condition. Ten treatment cases, reflecting plausible shifts in hurricane regimes, manipulated both hurricane return time (i.e. frequency) and hurricane intensity. The treatment-related change in carbon storage and fluxes were reported as changes in aboveground forest biomass (AGB), net primary productivity (NPP), and in the aboveground carbon partitioning components, or annual carbon accumulation (ACA). Increasing the frequency of hurricanes decreased aboveground biomass by between 5% and 39%, and increased NPP between 32% and 50%. Decadal-scale biomass fluctuations were damped relative to the control. In contrast, increasing hurricane intensity did not create a large shift in the long-term average forest structure, NPP, or ACA from that of historical hurricane regimes, but produced large fluctuations in biomass. Decreasing both the hurricane intensity and frequency by 50% produced the highest values of biomass and NPP. For the control scenario and with increased hurricane intensity, ACA was negative, which indicated that the aboveground forest components acted as a carbon source. However, with an increase in the frequency of storms or decreased storms, the total ACA was positive due to shifts in leaf production, annual litterfall, and coarse woody debris inputs, indicating a carbon sink into the forest over the long-term. The carbon loss from each hurricane event, in all scenarios, always recovered over sufficient time. Our results suggest that subtropical dry forests will remain resilient to hurricane disturbance. However carbon stocks will decrease if future climates increase hurricane frequency by 50% or more.

  7. Shifts in biomass and productivity for a subtropical dry forest in response to simulated elevated hurricane disturbances

    DOE PAGES

    Holm, Jennifer A.; Van Bloem, Skip J.; Larocque, Guy R.; ...

    2017-02-07

    Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model -based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical dry forests in Puerto Rico. Using the previously validated individual-based gap model ZELIG-TROP, we developed a new hurricane damage routine and parameterized it with site- and species-specific hurricane effects. A baseline case with the reconstructed historical hurricane regime represented the control condition. Ten treatment cases, reflecting plausible shifts in hurricane regimes,more » manipulated both hurricane return time (i.e. frequency) and hurricane intensity. The treatment-related change in carbon storage and fluxes were reported as changes in aboveground forest biomass (AGB), net primary productivity (NPP), and in the aboveground carbon partitioning components, or annual carbon accumulation (ACA). Increasing the frequency of hurricanes decreased aboveground biomass by between 5% and 39%, and increased NPP between 32% and 50%. Decadal-scale biomass fluctuations were damped relative to the control. In contrast, increasing hurricane intensity did not create a large shift in the long-term average forest structure, NPP, or ACA from that of historical hurricane regimes, but produced large fluctuations in biomass. Decreasing both the hurricane intensity and frequency by 50% produced the highest values of biomass and NPP. For the control scenario and with increased hurricane intensity, ACA was negative, which indicated that the aboveground forest components acted as a carbon source. However, with an increase in the frequency of storms or decreased storms, the total ACA was positive due to shifts in leaf production, annual litterfall, and coarse woody debris inputs, indicating a carbon sink into the forest over the long-term. The carbon loss from each hurricane event, in all scenarios, always recovered over sufficient time. Our results suggest that subtropical dry forests will remain resilient to hurricane disturbance. However carbon stocks will decrease if future climates increase hurricane frequency by 50% or more.« less

  8. Analysis of the change in peak corneal temperature during excimer laser ablation in porcine eyes

    NASA Astrophysics Data System (ADS)

    Mosquera, Samuel Arba; Verma, Shwetabh

    2015-07-01

    The objective is to characterize the impact of different ablation parameters on the thermal load during corneal refractive surgery by means of excimer laser ablation on porcine eyes. One hundred eleven ablations were performed in 105 porcine eyes. Each ablation was recorded using infrared thermography and analyzed mainly based on the two tested local frequencies (40 Hz, clinical local frequency; 1000 Hz, no local frequency). The change in peak corneal temperature was analyzed with respect to varying ablation parameters [local frequency, system repetition rate, pulse energy, optical zone (OZ) size, and refractive correction]. Transepithelial ablations were also compared to intrastromal ablations. The average of the baseline temperature across all eyes was 20.5°C±1.1 (17.7°C to 22.2°C). Average of the change in peak corneal temperature for all clinical local frequency ablations was 5.8°C±0.8 (p=3.3E-53 to baseline), whereas the average was 9.0°C±1.5 for all no local frequency ablations (p=1.8E-35 to baseline, 1.6E-16 to clinical local frequency ablations). A logarithmic relationship was observed between the changes in peak corneal temperature with increasing local frequency. For clinical local frequency, change in peak corneal temperature was comparatively flat (r2=0.68 with a range of 1.5°C) with increasing system repetition rate and increased linearly with increasing OZ size (r2=0.95 with a range of 2.4°C). Local frequency controls help maintain safe corneal temperature increase during excimer laser ablations. Transepithelial ablations induce higher thermal load compared to intrastromal ablations, indicating a need for stronger thermal controls in transepithelial refractive procedures.

  9. A Database Approach for Predicting and Monitoring Baked Anode Properties

    NASA Astrophysics Data System (ADS)

    Lauzon-Gauthier, Julien; Duchesne, Carl; Tessier, Jayson

    2012-11-01

    The baked anode quality control strategy currently used by most carbon plants based on testing anode core samples in the laboratory is inadequate for facing increased raw material variability. The low core sampling rate limited by lab capacity and the common practice of reporting averaged properties based on some anode population mask a significant amount of individual anode variability. In addition, lab results are typically available a few weeks after production and the anodes are often already set in the reduction cells preventing early remedial actions when necessary. A database approach is proposed in this work to develop a soft-sensor for predicting individual baked anode properties at the end of baking cycle. A large historical database including raw material properties, process operating parameters and anode core data was collected from a modern Alcoa plant. A multivariate latent variable PLS regression method was used for analyzing the large database and building the soft-sensor model. It is shown that the general low frequency trends in most anode physical and mechanical properties driven by raw material changes are very well captured by the model. Improvements in the data infrastructure (instrumentation, sampling frequency and location) will be necessary for predicting higher frequency variations in individual baked anode properties. This paper also demonstrates how multivariate latent variable models can be interpreted against process knowledge and used for real-time process monitoring of carbon plants, and detection of faults and abnormal operation.

  10. Realization of a new concept for visible frequency division: phase locking of harmonic and sum frequencies.

    PubMed

    Telle, H R; Meschede, D; Hänsch, T W

    1990-05-15

    We explore and demonstrate the feasibility of an optical-frequency-to-radio-frequency division method that is based on visible or near-infrared laser oscillators only. Comparing harmonic and sum frequencies, we generate the arithmetic average of two visible frequencies. Cascading n stages provides difference-frequency division by 2(n). For a demonstration we have phase locked the second harmonic and the sum frequency of two independent diode lasers.

  11. Rate and timing cues associated with the cochlear amplifier: level discrimination based on monaural cross-frequency coincidence detection.

    PubMed

    Heinz, M G; Colburn, H S; Carney, L H

    2001-10-01

    The perceptual significance of the cochlear amplifier was evaluated by predicting level-discrimination performance based on stochastic auditory-nerve (AN) activity. Performance was calculated for three models of processing: the optimal all-information processor (based on discharge times), the optimal rate-place processor (based on discharge counts), and a monaural coincidence-based processor that uses a non-optimal combination of rate and temporal information. An analytical AN model included compressive magnitude and level-dependent-phase responses associated with the cochlear amplifier, and high-, medium-, and low-spontaneous-rate (SR) fibers with characteristic frequencies (CFs) spanning the AN population. The relative contributions of nonlinear magnitude and nonlinear phase responses to level encoding were compared by using four versions of the model, which included and excluded the nonlinear gain and phase responses in all possible combinations. Nonlinear basilar-membrane (BM) phase responses are robustly encoded in near-CF AN fibers at low frequencies. Strongly compressive BM responses at high frequencies near CF interact with the high thresholds of low-SR AN fibers to produce large dynamic ranges. Coincidence performance based on a narrow range of AN CFs was robust across a wide dynamic range at both low and high frequencies, and matched human performance levels. Coincidence performance based on all CFs demonstrated the "near-miss" to Weber's law at low frequencies and the high-frequency "mid-level bump." Monaural coincidence detection is a physiologically realistic mechanism that is extremely general in that it can utilize AN information (average-rate, synchrony, and nonlinear-phase cues) from all SR groups.

  12. Large improvement of the electrical impedance of imaging and high-intensity focused ultrasound (HIFU) phased arrays using multilayer piezoelectric ceramics coupled in lateral mode.

    PubMed

    Song, Junho; Lucht, Benjamin; Hynynen, Kullervo

    2012-07-01

    With a change in phased-array configuration from one dimension to two, the electrical impedance of the array elements is substantially increased because of their decreased width (w)-to-thickness (t) ratio. The most common way to compensate for this impedance increase is to employ electrical matching circuits at a high cost of fabrication complexity and effort. In this paper, we introduce a multilayer lateral-mode coupling method for phased-array construction. The direct comparison showed that the electrical impedance of a single-layer transducer driven in thickness mode is 1/(n²(1/(w/t))²) times that of an n-layer lateral mode transducer. A large reduction of the electrical impedance showed the impact and benefit of the lateral-mode coupling method. A one-dimensional linear 32-element 770-kHz imaging array and a 42-element 1.45-MHz high-intensity focused ultrasound (HIFU) phased array were fabricated. The averaged electrical impedances of each element were measured to be 58 Ω at the maximum phase angle of -1.2° for the imaging array and 105 Ω at 0° for the HIFU array. The imaging array had a center frequency of 770 kHz with an averaged -6-dB bandwidth of approximately 52%. For the HIFU array, the averaged maximum surface acoustic intensity was measured to be 32.8 W/cm² before failure.

  13. Wind fence enclosures for infrasonic wind noise reduction.

    PubMed

    Abbott, JohnPaul; Raspet, Richard; Webster, Jeremy

    2015-03-01

    A large porous wind fence enclosure has been built and tested to optimize wind noise reduction at infrasonic frequencies between 0.01 and 10 Hz to develop a technology that is simple and cost effective and improves upon the limitations of spatial filter arrays for detecting nuclear explosions, wind turbine infrasound, and other sources of infrasound. Wind noise is reduced by minimizing the sum of the wind noise generated by the turbulence and velocity gradients inside the fence and by the area-averaging the decorrelated pressure fluctuations generated at the surface of the fence. The effects of varying the enclosure porosity, top condition, bottom gap, height, and diameter and adding a secondary windscreen were investigated. The wind fence enclosure achieved best reductions when the surface porosity was between 40% and 55% and was supplemented by a secondary windscreen. The most effective wind fence enclosure tested in this study achieved wind noise reductions of 20-27 dB over the 2-4 Hz frequency band, a minimum of 5 dB noise reduction for frequencies from 0.1 to 20 Hz, constant 3-6 dB noise reduction for frequencies with turbulence wavelengths larger than the fence, and sufficient wind noise reduction at high wind speeds (3-6 m/s) to detect microbaroms.

  14. Photonic instantaneous frequency measurement of wideband microwave signals.

    PubMed

    Li, Yueqin; Pei, Li; Li, Jing; Wang, Yiqun; Yuan, Jin; Ning, Tigang

    2017-01-01

    We propose a photonic system for instantaneous frequency measurement (IFM) of wideband microwave signals with a tunable measurement range and resolution based on a polarization-maintaining fiber Bragg grating (PM-FBG). Firstly, in order to be insensitive to laser power fluctuation, we aim at generating two different frequency to amplitude characteristics so that we can normalize them to obtain an amplitude comparison function (ACF). Then we encode these two different wavelengths in two perpendicular polarizations by using the PM-FBG which shows different transmission profiles at two polarizations. The ACF is capable of being adjusted by tuning polarization angle, therefore the measurement range and resolution are tunable. By theoretical analyses and simulated verification, a frequency measurement range of 0~17.2 GHz with average resolution of ±0.12 GHz can be achieved, which signifies a wide measurement range with relatively high resolution. Our system does not require large optical bandwidth for the components because the wavelength spacing can be small, making the system affordable, stable, and reliable with more consistent characteristics due to the narrowband nature of the optical parts. PM-FBG with high integration can be potentially used for more polarization manipulating systems and the use of a single-polarization dual-wavelength laser can simplify the architecture and enhance the stability.

  15. Robust frequency diversity based algorithm for clutter noise reduction of ultrasonic signals using multiple sub-spectrum phase coherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gongzhang, R.; Xiao, B.; Lardner, T.

    2014-02-18

    This paper presents a robust frequency diversity based algorithm for clutter reduction in ultrasonic A-scan waveforms. The performance of conventional spectral-temporal techniques like Split Spectrum Processing (SSP) is highly dependent on the parameter selection, especially when the signal to noise ratio (SNR) is low. Although spatial beamforming offers noise reduction with less sensitivity to parameter variation, phased array techniques are not always available. The proposed algorithm first selects an ascending series of frequency bands. A signal is reconstructed for each selected band in which a defect is present when all frequency components are in uniform sign. Combining all reconstructed signalsmore » through averaging gives a probability profile of potential defect position. To facilitate data collection and validate the proposed algorithm, Full Matrix Capture is applied on the austenitic steel and high nickel alloy (HNA) samples with 5MHz transducer arrays. When processing A-scan signals with unrefined parameters, the proposed algorithm enhances SNR by 20dB for both samples and consequently, defects are more visible in B-scan images created from the large amount of A-scan traces. Importantly, the proposed algorithm is considered robust, while SSP is shown to fail on the austenitic steel data and achieves less SNR enhancement on the HNA data.« less

  16. Rupture process of the M 7.9 Denali fault, Alaska, earthquake: Subevents, directivity, and scaling of high-frequency ground motions

    USGS Publications Warehouse

    Frankel, A.

    2004-01-01

    Displacement waveforms and high-frequency acceleration envelopes from stations at distances of 3-300 km were inverted to determine the source process of the M 7.9 Denali fault earthquake. Fitting the initial portion of the displacement waveforms indicates that the earthquake started with an oblique thrust subevent (subevent # 1) with an east-west-striking, north-dipping nodal plane consistent with the observed surface rupture on the Susitna Glacier fault. Inversion of the remainder of the waveforms (0.02-0.5 Hz) for moment release along the Denali and Totschunda faults shows that rupture proceeded eastward on the Denali fault, with two strike-slip subevents (numbers 2 and 3) centered about 90 and 210 km east of the hypocenter. Subevent 2 was located across from the station at PS 10 (Trans-Alaska Pipeline Pump Station #10) and was very localized in space and time. Subevent 3 extended from 160 to 230 km east of the hypocenter and had the largest moment of the subevents. Based on the timing between subevent 2 and the east end of subevent 3, an average rupture velocity of 3.5 km/sec, close to the shear wave velocity at the average rupture depth, was found. However, the portion of the rupture 130-220 km east of the epicenter appears to have an effective rupture velocity of about 5.0 km/ sec, which is supershear. These two subevents correspond approximately to areas of large surface offsets observed after the earthquake. Using waveforms of the M 6.7 Nenana Mountain earthquake as empirical Green's functions, the high-frequency (1-10 Hz) envelopes of the M 7.9 earthquake were inverted to determine the location of high-frequency energy release along the faults. The initial thrust subevent produced the largest high-frequency energy release per unit fault length. The high-frequency envelopes and acceleration spectra (>0.5 Hz) of the M 7.9 earthquake can be simulated by chaining together rupture zones of the M 6.7 earthquake over distances from 30 to 180 km east of the hypocenter. However, the inversion indicates that there was relatively little high-frequency energy generated along the 60-km portion of the Totschunda fault on the east end of the rupture.

  17. Migraine disability assessment (MIDAS) score: relation to headache frequency, pain intensity, and headache symptoms.

    PubMed

    Stewart, Walter F; Lipton, Richard B; Kolodner, Ken

    2003-03-01

    To determine the extent to which variation in the Migraine Disability Assessment (MIDAS) score is associated with headache frequency, pain intensity, headache symptoms, gender, and employment status. The MIDAS questionnaire is a 7-item questionnaire (with 5 scored items) designed to measure headache-related disability, to improve physician-patient communication, and to identify patients with high treatment needs. Data from 3 population-based studies (total sample, n = 397) conducted in the United States and the United Kingdom were used to evaluate the relationship between headache features (attack frequency, pain intensity, pain quality, and associated symptoms) and MIDAS score. Data on headache features were collected by telephone using a standardized interview. The MIDAS questionnaire was completed shortly after the telephone interview. General linear models were used to determine the extent to which population variation in the MIDAS score was explained by headache features. Using linear regression, variables for all headache features (ie, headache frequency, pain intensity, pain quality, and associated symptoms) and demographic characteristics explained only 22% of the variation in MIDAS scores. Almost all (19.9%) the explained variance was accounted for by average pain intensity (12.0%), number of headache days (6.1%), and exacerbation of pain with movement (1.8%). When pain intensity and headache frequency were included in the model, no statistically significant differences in MIDAS scores were observed by gender or employment status. Although explaining only 2.1% of the variance, age was significantly associated with MIDAS scores, with those under 25 years demonstrating higher MIDAS scores than other age groups. No other variables (ie, frequency of occurrence of associated symptoms and other measures of quality of pain) were associated with MIDAS scores. Challenges to the utility of the MIDAS as a measure include whether headache-related disability is largely a function of other routine headache features and whether MIDAS is inherently biased based on work status and gender. While the MIDAS score was associated with headache frequency and average pain score, these two headache features explain only a modest proportion of the variation in MIDAS scores. Additionally, gender and work status were not related to MIDAS scores. These findings suggest that the MIDAS score captures information about disability that is not inherent to other headache features and is independent of gender and work status.

  18. The Gaussian atmospheric transport model and its sensitivity to the joint frequency distribution and parametric variability.

    PubMed

    Hamby, D M

    2002-01-01

    Reconstructed meteorological data are often used in some form of long-term wind trajectory models for estimating the historical impacts of atmospheric emissions. Meteorological data for the straight-line Gaussian plume model are put into a joint frequency distribution, a three-dimensional array describing atmospheric wind direction, speed, and stability. Methods using the Gaussian model and joint frequency distribution inputs provide reasonable estimates of downwind concentration and have been shown to be accurate to within a factor of four. We have used multiple joint frequency distributions and probabilistic techniques to assess the Gaussian plume model and determine concentration-estimate uncertainty and model sensitivity. We examine the straight-line Gaussian model while calculating both sector-averaged and annual-averaged relative concentrations at various downwind distances. The sector-average concentration model was found to be most sensitive to wind speed, followed by horizontal dispersion (sigmaZ), the importance of which increases as stability increases. The Gaussian model is not sensitive to stack height uncertainty. Precision of the frequency data appears to be most important to meteorological inputs when calculations are made for near-field receptors, increasing as stack height increases.

  19. Acoustic analysis of speech variables during depression and after improvement.

    PubMed

    Nilsonne, A

    1987-09-01

    Speech recordings were made of 16 depressed patients during depression and after clinical improvement. The recordings were analyzed using a computer program which extracts acoustic parameters from the fundamental frequency contour of the voice. The percent pause time, the standard deviation of the voice fundamental frequency distribution, the standard deviation of the rate of change of the voice fundamental frequency and the average speed of voice change were found to correlate to the clinical state of the patient. The mean fundamental frequency, the total reading time and the average rate of change of the voice fundamental frequency did not differ between the depressed and the improved group. The acoustic measures were more strongly correlated to the clinical state of the patient as measured by global depression scores than to single depressive symptoms such as retardation or agitation.

  20. 300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers.

    PubMed

    Xuan, Hongwen; Zhao, Zhigang; Igarashi, Hironori; Ito, Shinji; Kakizaki, Kouji; Kobayashi, Yohei

    2015-04-20

    A narrow-linewidth, high average power deep-ultraviolet (DUV) coherent laser emitting at 193 nm is demonstrated by frequency mixing a Yb-hybrid laser with an Er-fiber laser. The Yb-hybrid laser consists of Yb-fiber lasers and an Yb:YAG amplifier. The average output power of the 193 nm laser is 310 mW at 6 kHz, which corresponds to a pulse energy of 51 μJ. To the best of our knowledge, this is the highest average power and pulse energy ever reported for a narrow-linewidth 193 nm light generated by a combination of solid-state and fiber lasers with frequency mixing. We believe this laser will be beneficial for the application of interference lithography by seeding an injection-locking ArF eximer laser.

  1. Using scientific evidence to improve hospital library services: Southern Chapter/Medical Library Association journal usage study.

    PubMed

    Dee, C R; Rankin, J A; Burns, C A

    1998-07-01

    Journal usage studies, which are useful for budget management and for evaluating collection performance relative to library use, have generally described a single library or subject discipline. The Southern Chapter/Medical Library Association (SC/MLA) study has examined journal usage at the aggregate data level with the long-term goal of developing hospital library benchmarks for journal use. Thirty-six SC/MLA hospital libraries, categorized for the study by size as small, medium, or large, reported current journal title use centrally for a one-year period following standardized data collection procedures. Institutional and aggregate data were analyzed for the average annual frequency of use, average costs per use and non-use, and average percent of non-used titles. Permutation F-type tests were used to measure difference among the three hospital groups. Averages were reported for each data set analysis. Statistical tests indicated no significant differences between the hospital groups, suggesting that benchmarks can be derived applying to all types of hospital libraries. The unanticipated lack of commonality among heavily used titles pointed to a need for uniquely tailored collections. Although the small sample size precluded definitive results, the study's findings constituted a baseline of data that can be compared against future studies.

  2. Using scientific evidence to improve hospital library services: Southern Chapter/Medical Library Association journal usage study.

    PubMed Central

    Dee, C R; Rankin, J A; Burns, C A

    1998-01-01

    BACKGROUND: Journal usage studies, which are useful for budget management and for evaluating collection performance relative to library use, have generally described a single library or subject discipline. The Southern Chapter/Medical Library Association (SC/MLA) study has examined journal usage at the aggregate data level with the long-term goal of developing hospital library benchmarks for journal use. METHODS: Thirty-six SC/MLA hospital libraries, categorized for the study by size as small, medium, or large, reported current journal title use centrally for a one-year period following standardized data collection procedures. Institutional and aggregate data were analyzed for the average annual frequency of use, average costs per use and non-use, and average percent of non-used titles. Permutation F-type tests were used to measure difference among the three hospital groups. RESULTS: Averages were reported for each data set analysis. Statistical tests indicated no significant differences between the hospital groups, suggesting that benchmarks can be derived applying to all types of hospital libraries. The unanticipated lack of commonality among heavily used titles pointed to a need for uniquely tailored collections. CONCLUSION: Although the small sample size precluded definitive results, the study's findings constituted a baseline of data that can be compared against future studies. PMID:9681164

  3. Power Spectral Density Specification and Analysis of Large Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2009-01-01

    The 2-dimensional Power Spectral Density (PSD) can be used to characterize the mid- and the high-spatial frequency components of the surface height errors of an optical surface. We found it necessary to have a complete, easy-to-use approach for specifying and evaluating the PSD characteristics of large optical surfaces, an approach that allows one to specify the surface quality of a large optical surface based on simulated results using a PSD function and to evaluate the measured surface profile data of the same optic in comparison with those predicted by the simulations during the specification-derivation process. This paper provides a complete mathematical description of PSD error, and proposes a new approach in which a 2-dimentional (2D) PSD is converted into a 1-dimentional (1D) one by azimuthally averaging the 2D-PSD. The 1D-PSD calculated this way has the same unit and the same profile as the original PSD function, thus allows one to compare the two with each other directly.

  4. Trains of large Kelvin-Helmholtz billows observed in the Kuroshio above a seamount

    NASA Astrophysics Data System (ADS)

    Chang, Ming-Huei; Jheng, Sin-Ya; Lien, Ren-Chieh

    2016-08-01

    Trains of large Kelvin-Helmholtz (KH) billows within the Kuroshio current at ~230 m depth off southeastern Taiwan and above a seamount were observed by shipboard instruments. The trains of large KH billows were present in a strong shear band along the 0.55 m s-1 isotach within the Kuroshio core; they are presumably produced by flow interactions with the rapidly changing topography. Each individual billow, resembling a cat's eye, had a horizontal length scale of 200 m, a vertical scale of 100 m, and a timescale of 7 min, near the local buoyancy frequency. Overturns were observed frequently in the billow cores and the upper eyelids. The turbulent kinetic energy dissipation rates estimated using the Thorpe scale had an average value of O(10-4) W kg-1 and a maximum value of O(10-3) W kg-1. The turbulence mixing induced by the KH billows may exchange Kuroshio water with the surrounding water masses.

  5. 47 CFR 2.1049 - Measurements required: Occupied bandwidth.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... established for the characteristic baseband frequency. (Modulation reference level is defined as the average....1049 Section 2.1049 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS... Certification § 2.1049 Measurements required: Occupied bandwidth. The occupied bandwidth, that is the frequency...

  6. Three-month-old human infants use vocal cues of body size.

    PubMed

    Pietraszewski, David; Wertz, Annie E; Bryant, Gregory A; Wynn, Karen

    2017-06-14

    Differences in vocal fundamental ( F 0 ) and average formant ( F n ) frequencies covary with body size in most terrestrial mammals, such that larger organisms tend to produce lower frequency sounds than smaller organisms, both between species and also across different sex and life-stage morphs within species. Here we examined whether three-month-old human infants are sensitive to the relationship between body size and sound frequencies. Using a violation-of-expectation paradigm, we found that infants looked longer at stimuli inconsistent with the relationship-that is, a smaller organism producing lower frequency sounds, and a larger organism producing higher frequency sounds-than at stimuli that were consistent with it. This effect was stronger for fundamental frequency than it was for average formant frequency. These results suggest that by three months of age, human infants are already sensitive to the biologically relevant covariation between vocalization frequencies and visual cues to body size. This ability may be a consequence of developmental adaptations for building a phenotype capable of identifying and representing an organism's size, sex and life-stage. © 2017 The Author(s).

  7. Effects of photosynthetic photon flux density, frequency, duty ratio, and their interactions on net photosynthetic rate of cos lettuce leaves under pulsed light: explanation based on photosynthetic-intermediate pool dynamics.

    PubMed

    Jishi, Tomohiro; Matsuda, Ryo; Fujiwara, Kazuhiro

    2018-06-01

    Square-wave pulsed light is characterized by three parameters, namely average photosynthetic photon flux density (PPFD), pulsed-light frequency, and duty ratio (the ratio of light-period duration to that of the light-dark cycle). In addition, the light-period PPFD is determined by the averaged PPFD and duty ratio. We investigated the effects of these parameters and their interactions on net photosynthetic rate (P n ) of cos lettuce leaves for every combination of parameters. Averaged PPFD values were 0-500 µmol m -2  s -1 . Frequency values were 0.1-1000 Hz. White LED arrays were used as the light source. Every parameter affected P n and interactions between parameters were observed for all combinations. The P n under pulsed light was lower than that measured under continuous light of the same averaged PPFD, and this difference was enhanced with decreasing frequency and increasing light-period PPFD. A mechanistic model was constructed to estimate the amount of stored photosynthetic intermediates over time under pulsed light. The results indicated that all effects of parameters and their interactions on P n were explainable by consideration of the dynamics of accumulation and consumption of photosynthetic intermediates.

  8. Independence of amplitude-frequency and phase calibrations in an SSVEP-based BCI using stepping delay flickering sequences.

    PubMed

    Chang, Hsiang-Chih; Lee, Po-Lei; Lo, Men-Tzung; Lee, I-Hui; Yeh, Ting-Kuang; Chang, Chun-Yen

    2012-05-01

    This study proposes a steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) independent of amplitude-frequency and phase calibrations. Six stepping delay flickering sequences (SDFSs) at 32-Hz flickering frequency were used to implement a six-command BCI system. EEG signals recorded from Oz position were first filtered within 29-35 Hz, segmented based on trigger events of SDFSs to obtain SDFS epochs, and then stored separately in epoch registers. An epoch-average process suppressed the inter-SDFS interference. For each detection point, the latest six SDFS epochs in each epoch register were averaged and the normalized power of averaged responses was calculated. The visual target that induced the maximum normalized power was identified as the visual target. Eight subjects were recruited in this study. All subjects were requested to produce the "563241" command sequence four times. The averaged accuracy, command transfer interval, and information transfer rate (mean ± std.) values for all eight subjects were 97.38 ± 5.97%, 3.56 ± 0.68 s, and 42.46 ± 11.17 bits/min, respectively. The proposed system requires no calibration in either the amplitude-frequency characteristic or the reference phase of SSVEP which may provide an efficient and reliable channel for the neuromuscular disabled to communicate with external environments.

  9. Low frequency steady-state brain responses modulate large scale functional networks in a frequency-specific means.

    PubMed

    Wang, Yi-Feng; Long, Zhiliang; Cui, Qian; Liu, Feng; Jing, Xiu-Juan; Chen, Heng; Guo, Xiao-Nan; Yan, Jin H; Chen, Hua-Fu

    2016-01-01

    Neural oscillations are essential for brain functions. Research has suggested that the frequency of neural oscillations is lower for more integrative and remote communications. In this vein, some resting-state studies have suggested that large scale networks function in the very low frequency range (<1 Hz). However, it is difficult to determine the frequency characteristics of brain networks because both resting-state studies and conventional frequency tagging approaches cannot simultaneously capture multiple large scale networks in controllable cognitive activities. In this preliminary study, we aimed to examine whether large scale networks can be modulated by task-induced low frequency steady-state brain responses (lfSSBRs) in a frequency-specific pattern. In a revised attention network test, the lfSSBRs were evoked in the triple network system and sensory-motor system, indicating that large scale networks can be modulated in a frequency tagging way. Furthermore, the inter- and intranetwork synchronizations as well as coherence were increased at the fundamental frequency and the first harmonic rather than at other frequency bands, indicating a frequency-specific modulation of information communication. However, there was no difference among attention conditions, indicating that lfSSBRs modulate the general attention state much stronger than distinguishing attention conditions. This study provides insights into the advantage and mechanism of lfSSBRs. More importantly, it paves a new way to investigate frequency-specific large scale brain activities. © 2015 Wiley Periodicals, Inc.

  10. The causal meaning of Fisher’s average effect

    PubMed Central

    LEE, JAMES J.; CHOW, CARSON C.

    2013-01-01

    Summary In order to formulate the Fundamental Theorem of Natural Selection, Fisher defined the average excess and average effect of a gene substitution. Finding these notions to be somewhat opaque, some authors have recommended reformulating Fisher’s ideas in terms of covariance and regression, which are classical concepts of statistics. We argue that Fisher intended his two averages to express a distinction between correlation and causation. On this view, the average effect is a specific weighted average of the actual phenotypic changes that result from physically changing the allelic states of homologous genes. We show that the statistical and causal conceptions of the average effect, perceived as inconsistent by Falconer, can be reconciled if certain relationships between the genotype frequencies and non-additive residuals are conserved. There are certain theory-internal considerations favouring Fisher’s original formulation in terms of causality; for example, the frequency-weighted mean of the average effects equaling zero at each locus becomes a derivable consequence rather than an arbitrary constraint. More broadly, Fisher’s distinction between correlation and causation is of critical importance to gene-trait mapping studies and the foundations of evolutionary biology. PMID:23938113

  11. Dual-band frequency selective surface with large band separation and stable performance

    NASA Astrophysics Data System (ADS)

    Zhou, Hang; Qu, Shao-Bo; Peng, Wei-Dong; Lin, Bao-Qin; Wang, Jia-Fu; Ma, Hua; Zhang, Jie-Qiu; Bai, Peng; Wang, Xu-Hua; Xu, Zhuo

    2012-05-01

    A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations.

  12. Regenerator Operation at Very High Frequencies for Microcryocoolers

    NASA Astrophysics Data System (ADS)

    Radebaugh, Ray; O'Gallagher, Agnes

    2006-04-01

    The size of Stirling and Stirling-type pulse tube cryocoolers is dominated by the size of the pressure oscillator. Such cryocoolers typically operate at frequencies up to about 60 Hz for cold-end temperatures above about 60 K. Higher operating frequencies would allow the size and mass of the pressure oscillator to be reduced for a given power input. However, simply increasing the operating frequency leads to large losses in the regenerator. The simple analytical equations derived here show how the right combination of frequency and pressure, along with optimized regenerator geometry, can lead to successful regenerator operation at frequencies up to 1 kHz. Efficient regenerator operation at such high frequencies is possible only with pressures of about 5 to 8 MPa and with very small hydraulic diameters and lengths. Other geometrical parameters must also be optimized for such conditions. The analytical equations are used to provide guidance to the right combination of parameters. We give example numerical calculations with REGEN3.2 in the paper for 60 Hz, 400 Hz, and 1000 Hz operation of optimized screen regenerators and show that the coefficient of performance at 400 Hz and 1000 Hz is about 78 % and 68 %, respectively, of that for 60 Hz when an average pressure of 7 MPa is used with the higher frequency, compared with 2.5 MPa for 60 Hz operation. The 1000 Hz coefficient of performance for parallel tubes is about the same as that of the screen geometry at 60 Hz. The compressor and cold-end swept volumes are reduced by a factor of 47 at 1000 Hz, compared with the 60 Hz case for the same input acoustic power, which can enable the development of microcryocoolers for MEMS applications.

  13. Illumination Modulation for Improved Propagation-Based Phase Imaging

    NASA Astrophysics Data System (ADS)

    Chakraborty, Tonmoy

    Propagation-based phase imaging enables the quantitative reconstruction of a light beam's phase from measurements of its intensity. Because the intensity depends on the time-averaged square of the field the relationship between intensity and phase is, in general, nonlinear. The transport of intensity equation (TIE), is a linear equation relating phase and propagated intensity that arises from restricting the propagation distance to be small. However, the TIE limits the spatial frequencies that can be reliably reconstructed to those below some cutoff, which limits the accuracy of reconstruction of fine features in phase. On the other hand, the low frequency components suffer from poor signal to noise ratio (SNR) unless the propagation distance is sufficiently large, which leads to low frequency artifacts that obscure the reconstruction. In this research, I will consider the use of incoherent primary sources of illumination, in a Kohler illumination setup, to enhance the low-frequency performance of the TIE. The necessary steps required to design and build a table-top imaging setup which is capable of capturing intensity at any defocused position while modulating the source will be explained. In addition, it will be shown how by employing such illumination, the steps required for computationally recovering the phase, i.e. Fourier transforms and frequency-domain filtering, may be performed in the optical system. While these methods can address the low-frequency performance of the TIE, they do not extend its high-frequency cutoff. To avoid this cutoff, for objects with slowly varying phase, the contrast transfer function (CTF) model, an alternative to the TIE, can be used to recover phase. By allowing the combination of longer propagation distances and incoherent sources, it will be shown how CTF can improve performance at both high and low frequencies.

  14. Multiresolution analysis of the spatiotemporal variability in global radiation observed by a dense network of 99 pyranometers

    NASA Astrophysics Data System (ADS)

    Lakshmi Madhavan, Bomidi; Deneke, Hartwig; Witthuhn, Jonas; Macke, Andreas

    2017-03-01

    The time series of global radiation observed by a dense network of 99 autonomous pyranometers during the HOPE campaign around Jülich, Germany, are investigated with a multiresolution analysis based on the maximum overlap discrete wavelet transform and the Haar wavelet. For different sky conditions, typical wavelet power spectra are calculated to quantify the timescale dependence of variability in global transmittance. Distinctly higher variability is observed at all frequencies in the power spectra of global transmittance under broken-cloud conditions compared to clear, cirrus, or overcast skies. The spatial autocorrelation function including its frequency dependence is determined to quantify the degree of similarity of two time series measurements as a function of their spatial separation. Distances ranging from 100 m to 10 km are considered, and a rapid decrease of the autocorrelation function is found with increasing frequency and distance. For frequencies above 1/3 min-1 and points separated by more than 1 km, variations in transmittance become completely uncorrelated. A method is introduced to estimate the deviation between a point measurement and a spatially averaged value for a surrounding domain, which takes into account domain size and averaging period, and is used to explore the representativeness of a single pyranometer observation for its surrounding region. Two distinct mechanisms are identified, which limit the representativeness; on the one hand, spatial averaging reduces variability and thus modifies the shape of the power spectrum. On the other hand, the correlation of variations of the spatially averaged field and a point measurement decreases rapidly with increasing temporal frequency. For a grid box of 10 km × 10 km and averaging periods of 1.5-3 h, the deviation of global transmittance between a point measurement and an area-averaged value depends on the prevailing sky conditions: 2.8 (clear), 1.8 (cirrus), 1.5 (overcast), and 4.2 % (broken clouds). The solar global radiation observed at a single station is found to deviate from the spatial average by as much as 14-23 (clear), 8-26 (cirrus), 4-23 (overcast), and 31-79 W m-2 (broken clouds) from domain averages ranging from 1 km × 1 km to 10 km × 10 km in area.

  15. Relationship between large slip area and static stress drop of aftershocks of inland earthquake :Example of the 2007 Noto Hanto earthquake

    NASA Astrophysics Data System (ADS)

    Urano, S.; Hiramatsu, Y.; Yamada, T.

    2013-12-01

    The 2007 Noto Hanto earthquake (MJMA 6.9; hereafter referred to the main shock) occurred at 0:41(UTC) on March 25, 2007 at a depth of 11km beneath the west coast of Noto Peninsula, central Japan. The dominant slip of the main shock was on a reverse fault with a right-lateral slip and the large slip area was distributed from hypocenter to the shallow part on the fault plane (Horikawa, 2008). The aftershocks are distributed not only in the small slip area but also in the large slip area (Hiramatsu et al., 2011). In this study, we estimate static stress drops of aftershocks on the fault plane of the main shock. We discuss the relationship between the static stress drops of the aftershocks and the large slip area of the main shock by investigating spatial pattern of the values of the static stress drops. We use the waveform data obtained by the group for the joint aftershock observations of the 2007 Noto Hanto Earthquake (Sakai et al., 2007). The sampling frequency of the waveform data is 100 Hz or 200 Hz. Focusing on similar aftershocks reported by Hiramatsu et al. (2011), we analyze static stress drops by using the method of empirical Green's function (EGF) (Hough, 1997) as follows. The smallest earthquake (MJMA≥2.0) of each group of similar earthquakes is set to the EGF earthquake, and the largest earthquake (MJMA≥2.5) is set to the target earthquake. We then deconvolve the waveform of an interested earthquake with that of the EGF earthquake at each station and obtain the spectral ratio of the sources that cancels the propagation effects (path and site effects). Following the procedure of Yamada et al. (2010), we finally estimate static stress drops for P- and S-waves from corner frequencies of the spectral ratio by using a model of Madariaga (1976). The estimated average value of static stress drop is 8.2×1.3 MPa (8.6×2.2 MPa for P-wave and 7.8×1.3 MPa for S-wave). These values are coincident approximately with the static stress drop of aftershocks of other inland earthquakes in Japan (Ito et al., 2005; Iio et al., 2006) and independent of the seismic moment. We then compare the values with the coseismic slip distribution of the main shock reported by Horikawa (2008). If we define large slip areas as areas with a slip exceeding 1 m, the average value of static stress drop is 12×2.3 (MPa) in the area. On the other hand, the average value is 5.7×0.9 (MPa) outside the large slip area. These results suggest that aftershocks in the large slip area likely have larger values of static stress drop, which would reflect the spatial heterogeneity of shear strength and dynamic stress level. Our results are coincident with the result of Yamada et al. (2010).

  16. Modification of response functions of cat visual cortical cells by spatially congruent perturbing stimuli.

    PubMed

    Kabara, J F; Bonds, A B

    2001-12-01

    Responses of cat striate cortical cells to a drifting sinusoidal grating were modified by the superimposition of a second, perturbing grating (PG) that did not excite the cell when presented alone. One consequence of the presence of a PG was a shift in the tuning curves. The orientation tuning of all 41 cells exposed to a PG and the spatial frequency tuning of 83% of the 23 cells exposed to a PG showed statistically significant dislocations of both the response function peak and center of mass from their single grating values. As found in earlier reports, the presence of PGs suppressed responsiveness. However, reductions measured at the single grating optimum orientation or spatial frequency were on average 1.3 times greater than the suppression found at the peak of the response function modified by the presence of the PG. Much of the loss in response seen at the single grating optimum is thus a result of a shift in the tuning function rather than outright suppression. On average orientation shifts were repulsive and proportional (approximately 0.10 deg/deg) to the angle between the perturbing stimulus and the optimum single grating orientation. Shifts in the spatial frequency response function were both attractive and repulsive, resulting in an overall average of zero. For both simple and complex cells, PGs generally broadened orientation response function bandwidths. Similarly, complex cell spatial frequency response function bandwidths broadened. Simple cell spatial frequency response functions usually did not change, and those that did broadened only 4% on average. These data support the hypothesis that additional sinusoidal components in compound stimuli retune cells' response functions for orientation and spatial frequency.

  17. TIDAL DISSIPATION COMPARED TO SEISMIC DISSIPATION: IN SMALL BODIES, EARTHS, AND SUPER-EARTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efroimsky, Michael, E-mail: michael.efroimsky@usno.navy.mil

    2012-02-20

    While the seismic quality factor and phase lag are defined solely by the bulk properties of the mantle, their tidal counterparts are determined by both the bulk properties and the size effect (self-gravitation of a body as a whole). For a qualitative estimate, we model the body with a homogeneous sphere, and express the tidal phase lag through the lag in a sample of material. Although simplistic, our model is sufficient to understand that the lags are not identical. The difference emerges because self-gravitation pulls the tidal bulge down. At low frequencies, this reduces strain and the damping rate, makingmore » tidal damping less efficient in larger objects. At higher frequencies, competition between self-gravitation and rheology becomes more complex, though for sufficiently large super-Earths the same rule applies: the larger the planet, the weaker the tidal dissipation in it. Being negligible for small terrestrial planets and moons, the difference between the seismic and tidal lagging (and likewise between the seismic and tidal damping) becomes very considerable for large exoplanets (super-Earths). In those, it is much lower than what one might expect from using a seismic quality factor. The tidal damping rate deviates from the seismic damping rate, especially in the zero-frequency limit, and this difference takes place for bodies of any size. So the equal in magnitude but opposite in sign tidal torques, exerted on one another by the primary and the secondary, have their orbital averages going smoothly through zero as the secondary crosses the synchronous orbit. We describe the mantle rheology with the Andrade model, allowing it to lean toward the Maxwell model at the lowest frequencies. To implement this additional flexibility, we reformulate the Andrade model by endowing it with a free parameter {zeta} which is the ratio of the anelastic timescale to the viscoelastic Maxwell time of the mantle. Some uncertainty in this parameter's frequency dependence does not influence our principal conclusions.« less

  18. Analysis of a Precambrian Resonance-Stabilized Day Length

    NASA Astrophysics Data System (ADS)

    Bartlett, B. C.; Stevenson, D. J.

    2014-12-01

    Calculations indicate the average rate of decrease of Earth's angular momentum must have been less than its present value in the past; otherwise, the Earth should have a longer day length. Existing stromatolite data suggests the Earth's rotational frequency would have been near that of the atmospheric resonance frequency toward the end of the Precambrian era, approximately 600Ma. The semidiurnal atmospheric tidal torque would have reached a maximum near this day length of 21hr. At this point, the atmospheric torque would have been comparable in magnitude but opposite in direction to the lunar torque, creating a stabilizing effect which could preserve a constant day length while trapped in this resonant state, as suggested by Zahnle and Walker (1987). We examine the hypothesis that this resonant stability was encountered and sustained for a large amount of time during the Precambrian era and was broken by a large and relatively fast increase in global temperature, possibly in the deglaciation period following a snowball event. Computational simulations of this problem were performed, indicating that a persistent increase in temperature larger than around 10K over a period of time less than 107 years will break resonance (though these values vary with Q), but that the resonant stability is not easily broken by random high-amplitude high-frequency atmospheric temperature fluctuation or other forms of thermal noise. Further work also indicates it is possible to escape resonance simply by increasing the lunar tidal torque on the much longer timescale of plate tectonics, particularly for low atmospheric Q-factors, or that resonance could have never formed in the first place, had the lunar torque been very high or Q been very low when the Earth's rotational frequency was near the atmospheric resonance frequency. However, the need to explain the present day length given the current lunar torque favors the interpretation we offer, in which Earth's length of day was stabilized for hundreds of millions of years, escaping this stability in the aftermath of a sudden global temperature change.

  19. Average absorption cross-section of the human body measured at 1-12 GHz in a reverberant chamber: results of a human volunteer study

    NASA Astrophysics Data System (ADS)

    Flintoft, I. D.; Robinson, M. P.; Melia, G. C. R.; Marvin, A. C.; Dawson, J. F.

    2014-07-01

    The electromagnetic absorption cross-section (ACS) averaged over polarization and angle-of-incidence of 60 ungrounded adult subjects was measured at microwave frequencies of 1-12 GHz in a reverberation chamber. Average ACS is important in non-ionizing dosimetry and exposure studies, and is closely related to the whole-body averaged specific absorption rate (WBSAR). The average ACS was measured with a statistical uncertainty of less than 3% and high frequency resolution for individuals with a range of body shapes and sizes allowing the statistical distribution of WBSAR over a real population with individual internal and external morphologies to be determined. The average ACS of all subjects was found to vary from 0.15 to 0.4 m2 for an individual subject it falls with frequency over 1-6 GHz, and then rises slowly over the 6-12 GHz range in which few other studies have been conducted. Average ACS and WBSAR are then used as a surrogate for worst-case ACS/WBSAR, in order to study their variability across a real population compared to literature results from simulations using numerical phantoms with a limited range of anatomies. Correlations with body morphological parameters such as height, mass and waist circumference have been investigated: the strongest correlation is with body surface area (BSA) at all frequencies above 1 GHz, however direct proportionality to BSA is not established until above 5 GHz. When the average ACS is normalized to the BSA, the resulting absorption efficiency shows a negative correlation with the estimated thickness of subcutaneous body fat. Surrogate models and statistical analysis of the measurement data are presented and compared to similar models from the literature. The overall dispersion of measured average WBSAR of the sample of the UK population studied is consistent with the dispersion of simulated worst-case WBSAR across multiple numerical phantom families. The statistical results obtained allow the calibration of human exposure assessments made with particular phantoms to a population with a range of individual morphologies.

  20. Average absorption cross-section of the human body measured at 1-12 GHz in a reverberant chamber: results of a human volunteer study.

    PubMed

    Flintoft, I D; Robinson, M P; Melia, G C R; Marvin, A C; Dawson, J F

    2014-07-07

    The electromagnetic absorption cross-section (ACS) averaged over polarization and angle-of-incidence of 60 ungrounded adult subjects was measured at microwave frequencies of 1-12 GHz in a reverberation chamber. Average ACS is important in non-ionizing dosimetry and exposure studies, and is closely related to the whole-body averaged specific absorption rate (WBSAR). The average ACS was measured with a statistical uncertainty of less than 3% and high frequency resolution for individuals with a range of body shapes and sizes allowing the statistical distribution of WBSAR over a real population with individual internal and external morphologies to be determined. The average ACS of all subjects was found to vary from 0.15 to 0.4 m(2); for an individual subject it falls with frequency over 1-6 GHz, and then rises slowly over the 6-12 GHz range in which few other studies have been conducted. Average ACS and WBSAR are then used as a surrogate for worst-case ACS/WBSAR, in order to study their variability across a real population compared to literature results from simulations using numerical phantoms with a limited range of anatomies. Correlations with body morphological parameters such as height, mass and waist circumference have been investigated: the strongest correlation is with body surface area (BSA) at all frequencies above 1 GHz, however direct proportionality to BSA is not established until above 5 GHz. When the average ACS is normalized to the BSA, the resulting absorption efficiency shows a negative correlation with the estimated thickness of subcutaneous body fat. Surrogate models and statistical analysis of the measurement data are presented and compared to similar models from the literature. The overall dispersion of measured average WBSAR of the sample of the UK population studied is consistent with the dispersion of simulated worst-case WBSAR across multiple numerical phantom families. The statistical results obtained allow the calibration of human exposure assessments made with particular phantoms to a population with a range of individual morphologies.

  1. Estimating Exceptionally Rare Germline and Somatic Mutation Frequencies via Next Generation Sequencing

    PubMed Central

    Yoon, Song-Ro; Arnheim, Norman; Calabrese, Peter

    2016-01-01

    We used targeted next generation deep-sequencing (Safe Sequencing System) to measure ultra-rare de novo mutation frequencies in the human male germline by attaching a unique identifier code to each target DNA molecule. Segments from three different human genes (FGFR3, MECP2 and PTPN11) were studied. Regardless of the gene segment, the particular testis donor or the 73 different testis pieces used, the frequencies for any one of the six different mutation types were consistent. Averaging over the C>T/G>A and G>T/C>A mutation types the background mutation frequency was 2.6x10-5 per base pair, while for the four other mutation types the average background frequency was lower at 1.5x10-6 per base pair. These rates far exceed the well documented human genome average frequency per base pair (~10−8) suggesting a non-biological explanation for our data. By computational modeling and a new experimental procedure to distinguish between pre-mutagenic lesion base mismatches and a fully mutated base pair in the original DNA molecule, we argue that most of the base-dependent variation in background frequency is due to a mixture of deamination and oxidation during the first two PCR cycles. Finally, we looked at a previously studied disease mutation in the PTPN11 gene and could easily distinguish true mutations from the SSS background. We also discuss the limits and possibilities of this and other methods to measure exceptionally rare mutation frequencies, and we present calculations for other scientists seeking to design their own such experiments. PMID:27341568

  2. Population radiation dose from diagnostic nuclear medicine procedures in the Tehran population in 1999-2003: striking changes in only one decade.

    PubMed

    Tabeie, Faraj; Mohammadi, Hooshang; Asli, Isa Neshandar

    2013-02-01

    Use of unsealed radiopharmaceuticals in Iran's nuclear medicine centers has expanded rapidly in the last decade. As part of a nationwide survey, this study was undertaken to estimate the radiation risk due to the diagnostic nuclear medicine procedures performed in Tehran in 1999-2003. During the five years of the study, the data of 101,540 yearly examinations of diagnostic nuclear medicine were obtained for 34 (out of 40) active nuclear medicine centers in Tehran. The patients studied were aged 1 y, 5 y, 10 y, 15 y, and adults (>15 y). Compared to an earlier investigation in 1989 (which was published in 1995), striking changes were found to be occurring in the trends of nuclear medicine in Tehran in a matter of a decade. The frequency of cardiac examinations increased from less than 1% in 1989 to 43.2% (mean of 5 y) in 2003; thyroid examinations, with the relative frequency of higher than 80% in 1989, decreased to 26.7% in the current investigation (averaged for 2001); and the number of overall examinations per 1,000 population of Tehran increased from 1.9 in 1989 to 8.8 in this study (about fourfold). The decrease in relative frequency of thyroid examinations could be attributed to the lower referral policy (mainly by specialists), decreased incidence of goiter due to implementation of programs for iodine enrichment diets, introduction of fine needle aspiration (FNA), and sonography techniques for diagnosis of thyroid disease. The large increase in relative frequency of cardiac examinations could be due to the increase in the number of single photon emission computerized tomography (SPECT) systems in recent years as compared to 1989 in Tehran. The collective effective dose increased from 400 (person-Sv) in 1999 to 529 (person-Sv) in 2003, and the effective dose per capita increased from 34.80 μSv in 1999 to 44.06 μSv in 2003 (average, 35.60 μSv).

  3. Genotype distribution and allele frequencies of the genes associated with body composition and locomotion traits in Myanmar native horses.

    PubMed

    Okuda, Yu; Moe, Hla Hla; Moe, Kyaw Kyaw; Shimizu, Yuki; Nishioka, Kenji; Shimogiri, Takeshi; Mannen, Hideyuki; Kanemaki, Misao; Kunieda, Tetsuo

    2017-08-01

    Myanmar native horses are small horses used mainly for drafting carts or carriages in rural areas and packing loads in mountainy areas. In the present study, we investigated genotype distributions and allele frequencies of the LCORL/NCAPG, MSTN and DMRT3 genes, which are associated with body composition and locomotion traits of horses, in seven local populations of Myanmar native horses. The genotyping result of LCORL/NCAPG showed that allele frequencies of C allele associated with higher withers height ranged from 0.08 to 0.27, and 0.13 in average. For MSTN, allele frequencies of C allele associated with higher proportion of Type 2B muscular fiber ranged from 0.05 to 0.23, and 0.09 in average. For DMRT3, allele frequencies of A allele associated with ambling gait ranged from 0 to 0.04, and 0.01 in average. The presences of the minor alleles of these genes at low frequencies suggest a possibility that these horse populations have not been under strong selection pressure for particular locomotion traits and body composition. Our findings of the presence of these minor alleles in Southeast Asian native horses are also informative for considering the origins of these minor alleles associated with body composition and locomotion traits in horse populations. © 2016 Japanese Society of Animal Science.

  4. Optical frequency transfer via a 660 km underground fiber link using a remote Brillouin amplifier.

    PubMed

    Raupach, S M F; Koczwara, A; Grosche, G

    2014-11-03

    In long-distance, optical continuous-wave frequency transfer via fiber, remote bidirectional Er³ ⁺ -doped fiber amplifiers are commonly used to mitigate signal attenuation. We demonstrate for the first time the ultrastable transfer of an optical frequency using a remote fiber Brillouin amplifier, placed in a server room along the link. Using it as the only means of remote amplification, on a 660 km loop of installed underground fiber we bridge distances of 250 km and 160 km between amplifications. Over several days of uninterrupted measurement, we find an instability of the frequency transfer (Allan deviation of Λ-weighted data with 1 s gate time) of around 1 × 10(-19) and less for averaging times longer than 3000 s. The modified Allan deviation reaches 3 × 10(-19) at an averaging time of 100 s. Beyond 100 s it follows the interferometer noise floor, and for averaging times longer than 1000 s the modified Allan deviation is in the 10(-20) range. A conservative value of the overall accuracy is 1 × 10(-19)

  5. Track Structure Model for Radial Distributions of Electron Spectra and Event Spectra from High-Energy Ions

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Katz, R.; Wilson, J. W.

    1998-01-01

    An analytic method is described for evaluating the average radial electron spectrum and the radial and total frequency-event spectrum for high-energy ions. For high-energy ions, indirect events make important contributions to frequency-event spectra. The method used for evaluating indirect events is to fold the radial electron spectrum with measured frequency-event spectrum for photons or electrons. The contribution from direct events is treated using a spatially restricted linear energy transfer (LET). We find that high-energy heavy ions have a significantly reduced frequency-averaged final energy (yF) compared to LET, while relativistic protons have a significantly increased yF and dose-averaged lineal energy (yD) for typical site sizes used in tissue equivalent proportional counters. Such differences represent important factors in evaluating event spectra with laboratory beams, in space- flight, or in atmospheric radiation studies and in validation of radiation transport codes. The inadequacy of LET as descriptor because of deviations in values of physical quantities, such as track width, secondary electron spectrum, and yD for ions of identical LET is also discussed.

  6. Heterodyne laser instantaneous frequency measurement system

    DOEpatents

    Wyeth, Richard W.; Johnson, Michael A.; Globig, Michael A.

    1989-01-01

    A heterodyne laser instantaneous frequency measurement system is disclosed. The system utilizes heterodyning of a pulsed laser beam with a continuous wave laser beam to form a beat signal. The beat signal is processed by a controller or computer which determines both the average frequency of the laser pulse and any changes or chirp of th frequency during the pulse.

  7. Mechanisms Controlling the Interannual Variation of Mixed Layer Temperature Averaged over the Nino-3 Region

    NASA Technical Reports Server (NTRS)

    Kim, Seung-Bum; Lee, Tong; Fukumori, Ichiro

    2007-01-01

    The present study examines processes governing the interannual variation of MLT in the eastern equatorial Pacific.Processes controlling the interannual variation of mixed layer temperature (MLT) averaged over the Nino-3 domain (5 deg N-5 deg S, 150 deg-90 deg W) are studied using an ocean data assimilation product that covers the period of 1993-2003. The overall balance is such that surface heat flux opposes the MLT change but horizontal advection and subsurface processes assist the change. Advective tendencies are estimated here as the temperature fluxes through the domain's boundaries, with the boundary temperature referenced to the domain-averaged temperature to remove the dependence on temperature scale. This allows the authors to characterize external advective processes that warm or cool the water within the domain as a whole. The zonal advective tendency is caused primarily by large-scale advection of warm-pool water through the western boundary of the domain. The meridional advective tendency is contributed to mostly by Ekman current advecting large-scale temperature anomalies through the southern boundary of the domain. Unlike many previous studies, the subsurface processes that consist of vertical mixing and entrainment are explicitly evaluated. In particular, a rigorous method to estimate entrainment allows an exact budget closure. The vertical mixing across the mixed layer (ML) base has a contribution in phase with the MLT change. The entrainment tendency due to the temporal change in ML depth is negligible compared to other subsurface processes. The entrainment tendency by vertical advection across the ML base is dominated by large-scale changes in upwelling and the temperature of upwelling water. Tropical instability waves (TIWs) result in smaller-scale vertical advection that warms the domain during La Nina cooling events. However, such a warming tendency is overwhelmed by the cooling tendency associated with the large-scale upwelling by a factor of 2. In summary, all the balance terms are important in the MLT budget except the entrainment due to lateral induction and temporal variation in ML depth. All three advective tendencies are primarily caused by large-scale and low-frequency processes, and they assist the Nino-3 MLT change.

  8. Vibration analysis based on electronic stroboscopic speckle-shearing pattern interferometry

    NASA Astrophysics Data System (ADS)

    Jia, Dagong; Yu, Changsong; Xu, Tianhua; Jin, Chao; Zhang, Hongxia; Jing, Wencai; Zhang, Yimo

    2008-12-01

    In this paper, an electronic speckle-shearing pattern interferometer with pulsed laser and pulse frequency controller is fabricated. The principle of measuring the vibration in the object using electronic stroboscopic speckle--shearing pattern interferometer is analyzed. Using a metal plate, the edge of which is clamped, as an experimental specimen, the shear interferogram are obtained under two experimental frequencies, 100 Hz and 200 Hz. At the same time, the vibration of this metal plate under the same experimental conditions is measured using the time-average method in order to test the performance of this electronic stroboscopic speckle-shearing pattern interferometer. The result indicated that the fringe of shear interferogram become dense with the experimental frequency increasing. Compared the fringe pattern obtained by the stroboscopic method with the fringe obtained by the time-average method, the shearing interferogram of stroboscopic method is clearer than the time-average method. In addition, both the time-average method and stroboscopic method are suited for qualitative analysis for the vibration of the object. More over, the stroboscopic method is well adapted to quantitative vibration analysis.

  9. CELL POPULATION KINETICS OF EXCISED ROOTS OF PISUM SATIVUM

    PubMed Central

    Van't Hof, Jack

    1965-01-01

    The cell population kinetics of excised, cultured pea roots was studied with the use of tritiated thymidine and colchicine to determine (1) the influence of excision, (2) the influence of sucrose concentration, (3) the average mitotic cycle duration, and (4) the duration of mitosis and the G 1, S, and G 2 periods of interphase.1 The results indicate that the process of excision causes a drop in the frequency of mitotic figures when performed either at the beginning of the culture period or after 100 hours in culture. This initial decrease in frequency of cell division is independent of sucrose concentration, but the subsequent rise in frequency of division, after 12 hours in culture, is dependent upon sucrose concentration. Two per cent sucrose maintains the shortest mitotic cycle duration. The use of colchicine indicated an average cycle duration of 20 hours, whereas the use of tritiated thymidine produced an average cycle duration of 17 hours. PMID:5857253

  10. Stable fiber-optic time transfer by active radio frequency phase locking.

    PubMed

    Yin, Feifei; Wu, Zhongle; Dai, Yitang; Ren, Tianpeng; Xu, Kun; Lin, Jintong; Tang, Geshi

    2014-05-15

    In this Letter we demonstrate a fiber link capable of stable time signal transfer utilizing our active long-distance radio frequency (RF) stabilization technology. Taking advantage of the chromatic dispersion in optical fiber, our scheme compensates dynamically the link delay variation by tuning the optical carrier wavelength to phase lock a round-trip RF reference. Since the time signal and the RF reference are carried by the same optical carrier, a highly stable time transfer is achieved at the same time. Experimentally, we demonstrate a stability of the time signal transfer over 50-km fiber with a time deviation of 40 ps at 1-s average and 2.3 ps at 1000-s average. The performance of the RF reference delivery is also tested, with an Allan deviation of 2×10(-15) at 1000-s average. According to our proposal, a simultaneous stable time and frequency transfer is expected.

  11. Gonorrhoea and Syphilis Epidemiology in Flemish General Practice 2009–2013: Results from a Registry-based Retrospective Cohort Study Compared with Mandatory Notification

    PubMed Central

    Schweikardt, Christoph; Goderis, Geert; Elli, Steven; Coppieters, Yves

    2016-01-01

    Background The number of newly diagnosed gonorrhoea and syphilis cases has increased in Flanders in recent years. Our aim was to investigate, to which extent these diagnoses were registered by general practitioners (GPs), and to examine opportunities and limits of the Intego database in this regard. Methods Data from a retrospective cohort study based on the Flemish Intego general practice database was analyzed for the years 2009–2013. Case definitions were applied. Due to small case numbers obtained, cases were pooled and averaged over the observation period. Frequencies were compared with those calculated from figures of mandatory notification. Results A total of 91 gonorrhoea and 23 syphilis cases were registered. The average Intego annual frequency of gonorrhoea cases obtained was 11.9 (95% Poisson confidence interval (CI) 9.6; 14.7) per 100,000 population, and for syphilis 3.0 (CI 1.9; 4.5), respectively, while mandatory notification was calculated at 14.0 (CI: 13.6, 14.4) and 7.0 (CI: 6.7, 7.3), respectively. Conclusion In spite of limitations such as small numbers and different case definitions, comparison with mandatory notification suggests that the GP was involved in the large majority of gonorrhoea cases, while the majority of new syphilis cases did not come to the knowledge of the GP. PMID:29546196

  12. Are Ecstasy Induced Serotonergic Alterations Overestimated For The Majority Of Users?

    PubMed

    Szigeti, Balázs; Winstock, Adam R; Erritzoe, David; Maier, Larissa J

    2018-05-01

    Neuroimaging studies imply that the regular use of ±3,4-methylenedioxymethamphetamine (MDMA), the major constituent of ecstasy pills, alters the brain's serotonergic system in a dose-dependent manner. However, the relevance of these findings remains unclear due to limited knowledge about the ecstasy/MDMA use pattern of real-life users. We examined the representativeness of ecstasy users enrolled in neuroimaging studies by comparing their ecstasy use habits with the use patterns of a large, international sample. A systematic literature search revealed 10 imaging studies that compare serotonin transporter levels in recreational ecstasy users to matched controls. To characterize the ecstasy use patterns we relied on the Global Drug Survey, the world's largest self-report database on drug use. The basis of the dose comparison were the Usual Amount (pills/session), Use Frequency (sessions/month) and Dose Intensity (pills/year) variables. Both the average Usual Amount (pills/session) and Use Frequency (sessions/month) of neuroimaging study participants corresponded to the top 5-10% of the Global Drug Survey sample and imaging participants, on average, consumed 720% more pills over a year than the Global Drug Survey participants. Our findings suggest that the serotonin brain imaging literature has focused on unusually heavy ecstasy use and therefore the conclusions from these studies are likely to overestimate the extent of serotonergic alterations experienced by the majority of people who use ecstays.

  13. A numerical study of Coulomb interaction effects on 2D hopping transport.

    PubMed

    Kinkhabwala, Yusuf A; Sverdlov, Viktor A; Likharev, Konstantin K

    2006-02-15

    We have extended our supercomputer-enabled Monte Carlo simulations of hopping transport in completely disordered 2D conductors to the case of substantial electron-electron Coulomb interaction. Such interaction may not only suppress the average value of hopping current, but also affect its fluctuations rather substantially. In particular, the spectral density S(I)(f) of current fluctuations exhibits, at sufficiently low frequencies, a 1/f-like increase which approximately follows the Hooge scaling, even at vanishing temperature. At higher f, there is a crossover to a broad range of frequencies in which S(I)(f) is nearly constant, hence allowing characterization of the current noise by the effective Fano factor [Formula: see text]. For sufficiently large conductor samples and low temperatures, the Fano factor is suppressed below the Schottky value (F = 1), scaling with the length L of the conductor as F = (L(c)/L)(α). The exponent α is significantly affected by the Coulomb interaction effects, changing from α = 0.76 ± 0.08 when such effects are negligible to virtually unity when they are substantial. The scaling parameter L(c), interpreted as the average percolation cluster length along the electric field direction, scales as [Formula: see text] when Coulomb interaction effects are negligible and [Formula: see text] when such effects are substantial, in good agreement with estimates based on the theory of directed percolation.

  14. Lightning electromagnetic radiation field spectra in the interval from 0. 2 to 20 MHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willett, J.C.; Bailey, J.C.; Leteinturier, C.

    1990-11-20

    Average energy spectral densities are presented for the fast transitions in most of the components that produce large radiation field impulses from cloud-to-ground lightning; first and subsequent return strokes; stepped, dart-stepped, and 'chaotic' leaders; and 'characteristic' cloud pulses. A disagreement in the previous literature about the spectral energy radiated by return strokes at high frequencies is noted and explained. The authors show that the spectral amplitudes are not seriously distorted by propagation over less than 35 km of seawater, although as much as 45 km of such propagation does appear to produce significant attenuation above about 10 MHz. First andmore » subsequent return strokes produce identical spectra between 0.2 and 20 MHz. The spectra of stepped and dart-stepped leader steps are nearly identical and are very similar to that of characteristic pulses. The spectra of leader steps also match return stroke spectra above 2-3 MHz after the former are increased by about 7 dB. The shapes of individual spectra do not depend on their amplitude, so the shapes of the average spectra are probably not distorted by the trigger thresholds used in the data acquisition. Return strokes are the strongest sources of radiation from cloud-to-ground lightning in the 0.2- to 20-MHz frequency range, although certain intracloud processes are stronger radiators above 8 MHz.« less

  15. Parents' Reactions to Finding Out That Their Children Have Average or above Average IQ Scores.

    ERIC Educational Resources Information Center

    Dirks, Jean; And Others

    1983-01-01

    Parents of 41 children who had been given an individually-administered intelligence test were contacted 19 months after testing. Parents of average IQ children were less accurate in their memory of test results. Children with above average IQ experienced extremely low frequencies of sibling rivalry, conceit or pressure. (Author/HLM)

  16. A numerical and experimental investigation on seismic anisotropy of Finero Peridotite, Ivrea-Verbano Zone, northern Italy

    NASA Astrophysics Data System (ADS)

    Zhong, Xin; Frehner, Marcel; Zappone, Alba; Kunze, Karsten

    2014-05-01

    We present a combined experimental and numerical study on Finero Peridotite to investigate the major factors creating its seismic anisotropy. We extrapolate the ultrasonic seismic wave velocity measured in a hydrostatic pressure vessel to 0 MPa and 250 MPa confining pressure to compare with numerical simulations at atmospheric pressure and to restore the velocity at in-situ lower crustal conditions, respectively. A linear relation between confining pressure and seismic velocity above 80 MPa reveals the intrinsic mechanical property of the bulk rock without the interference of cracks. To visualize the crystallographic preferred orientation (CPO) we use the electron backscatter diffraction (EBSD) method and create crystallographic orientation maps and pole figures. The first also reveals the shape preferred orientation (SPO). We found that very weak CPO but significant SPO exist in most of the peridotite. The Voigt and Reuss bounds as well as the Hill average (VRH) are calculated from EBSD data to visualize seismic velocity and to calculate anisotropy in the form of velocity pole figures. We perform finite element (FE) simulations of wave propagation on the EBSD crystallographic orientation maps to calculate the effective wave velocity at different propagation angles, hence estimate the anisotropy numerically. In fracture-free models the FE simulation results agree well with the Hill average. In one case of a sample containing fractures the FE simulation yields similar minimal velocity as the laboratory measurement, which lies outside the VR bounds. This is a warning that care has to be taken when using VRH averages in fractured rocks. All three velocity estimates (hydrostatic pressure vessel, VRH average, and FE simulation) result in equally weak seismic anisotropy. This is mainly the consequence of weak CPO. Although SPO is significantly stronger it has minor influence on anisotropy. Hydrous minerals influence the seismic anisotropy only when their modal composition is large enough to allow waves to propagate preferentially through them. Unlike hornblende, phlogopite is not proven to be a major source for the seismic anisotropy due to its small modal composition. Seismic velocity is also influenced by the source frequency distribution. A lower-frequency source in the FE simulations results in lower effective velocity regardless of sample orientation. The frequency spectrum of the propagating wave is modified from source to receiver due to scattering at the mineral grains, thus leading to effective negative attenuation factors peaked at around 1-3 MHz depending on the source spectrum. However, compared with other factors, such as CPO, SPO, fractures, or hydrous mineral phases, the effect of the source frequency distribution is minor, but may be influential when extrapolated to seismic frequencies (Hz-kHz). This study provides a comprehensive method combining laboratory measurements, EBSD data, and numerical simulations to estimate seismic anisotropy. Future work may focus on modeling the influence of different pore fluids or more complex fracture geometries on seismic velocity and anisotropy. Acknowledgements This work was supported by the Swiss National Science Foundation (project UPseis, 200021_143319).

  17. Response of desert biological soil crusts to alterations in precipitation frequency

    USGS Publications Warehouse

    Belnap, J.; Phillips, S.L.; Miller, M.E.

    2004-01-01

    Biological soil crusts, a community of cyanobacteria, lichens, and mosses that live on the soil surface, occur in deserts throughout the world. They are a critical component of desert ecosystems, as they are important contributors to soil fertility and stability. Future climate scenarios predict alteration of the timing and amount of precipitation in desert environments. Because biological soil crust organisms are only metabolically active when wet, and as soil surfaces dry quickly in deserts during late spring, summer, and early fall, the amount and timing of precipitation is likely to have significant impacts on the physiological functioning of these communities. Using the three dominant soil crust types found in the western United States, we applied three levels of precipitation frequency (50% below-average, average, and 50% above-average) while maintaining average precipitation amount (therefore changing both timing and size of applied events). We measured the impact of these treatments on photosynthetic performance (as indicated by dark-adapted quantum yield and chlorophyll a concentrations), nitrogenase activity, and the ability of these organisms to maintain concentrations of radiation-protective pigments (scytonemin, beta-carotene, echinenone, xanthophylls, and canthaxanthin). Increased precipitation frequency produced little response after 2.5 months exposure during spring (1 April-15 June) or summer (15 June-31 August). In contrast, most of the above variables had a large, negative response after exposure to increased precipitation frequency for 6 months spring-fall (1 April-31 October) treatment. The crusts dominated by the soil lichen Collema, being dark and protruding above the surface, dried the most rapidly, followed by the dark surface cyanobacterial crusts (Nostoc-Scytonema-Microcoleus), and then by the light cyanobacterial crusts (Microcoleus). This order reflected the magnitude of the observed response: crusts dominated by the lichen Collema showed the largest decline in quantum yield, chlorophyll a, and protective pigments; crusts dominated by Nostoc-Scytonema-Microcoleus showed an intermediate decline in these variables; and the crusts dominated by Microcoleus showed the least negative response. Most previous studies of crust response to radiation stress have been short-term laboratory studies, where organisms were watered and kept under moderate temperatures. Such conditions would give crust organisms access to ample carbon to respond to imposed stresses (e.g., production of UV-protective pigments, replacement of degraded chlorophyll). In contrast, our longer-term study showed that under field conditions of high air temperatures and frequent, small precipitation events, crust organisms appear unable to produce protective pigments in response to radiation stress, as they likely dried more quickly than when they received larger, less frequent events. Reduced activity time likely resulted in less carbon available to produce or repair chlorophyll a and/or protective pigments. Our findings may partially explain the global observation that soil lichen cover and richness declines as the frequency of summer rainfall increases. ?? Springer-Verlag 2003.

  18. Stimulated polariton scattering in an intracavity RbTiOPO4 crystal generating frequency-tunable THz output.

    PubMed

    Ortega, Tiago A; Pask, Helen M; Spence, David J; Lee, Andrew J

    2016-05-16

    A high power, frequency-tunable THz source based on intracavity stimulated polariton scattering (SPS) in RbTiOPO4 (RTP) is demonstrated for the first time. Frequency tunable THz output was obtained from 3.10 to 4.15 THz, with a gap at 3.17 to 3.49 THz, arising from the 104 cm-1 A1 mode in RTP. A maximum average output power of 16.2 µW was detected at 3.8 THz. This is the highest average output power ever reported for an intracavity polariton laser.

  19. Effect of pilsicainide on dominant frequency in the right and left atria and pulmonary veins during atrial fibrillation: association with its atrial fibrillation terminating effect.

    PubMed

    Horiuchi, Daisuke; Iwasa, Atsushi; Sasaki, Kenichi; Owada, Shingen; Kimura, Masaomi; Sasaki, Shingo; Okumura, Ken

    2009-04-17

    Dominant frequency reflects the peak cycle length of atrial fibrillation. In 34 patients with atrial fibrillation, bipolar electrograms were recorded from multiple atrial sites and pulmonary veins and the effect of pilsicainide, class Ic antiarrhythmic drug, on dominant frequency was examined. At baseline, mean dominant frequencies (Hz) in the right and left atria, coronary sinus and right and left superior pulmonary veins were 5.87 +/- 0.76, 6.08 +/- 0.60, 5.65 +/- 0.95, 6.12 +/- 0.88 and 6.59 +/- 0.89, respectively (P < 0.05, left superior pulmonary vein vs right atrium and coronary sinus). After pilsicainide (1.0 mg/kg/5 min), dominant frequency decreased at all sites in all patients. Atrial fibrillation was terminated at 5.9 +/- 2.2 min in 16 patients (Group A) with a decrease in the average of mean dominant frequencies at all sites from 5.80 +/- 0.72 to 3.57 +/- 0.63 Hz, was converted to atrial flutter at 7.3 +/- 1.4 min in 5 (Group B) with a decrease in the average dominant frequency from 5.83 +/- 0.48 to 3.08 +/- 0.19 Hz, and was not terminated in the other 13 (Group C) despite the average dominant frequency decrease from 6.59 +/- 0.76 to 4.42 +/- 0.52 Hz. In 14 of the 21 Groups A and B patients (67%), mean dominant frequencies at all recording sites were < 4.0 after pilsicainide, while they were < 4.0 in 1 of the 13 Group C patients (8%, P < 0.01). In conclusion, the degree of dominant frequency decrease by pilsicainide is closely related to its atrial fibrillation terminating effect: When dominant frequency in the atria decreases to < 4.0 Hz, atrial fibrillation is terminated with 93% positive and 63% negative predictive values.

  20. Imaging and characterizing shallow sedimentary strata using teleseismic arrivals recorded on linear arrays: An example from the Atlantic Coastal Plain of the southeastern U.S.

    NASA Astrophysics Data System (ADS)

    Pratt, T. L.

    2017-12-01

    Unconsolidated, near-surface sediments can influence the amplitudes and frequencies of ground shaking during earthquakes. Ideally these effects are accounted for when determining ground motion prediction equations and in hazard estimates summarized in seismic hazard maps. This study explores the use of teleseismic arrivals recorded on linear receiver arrays to estimate the seismic velocities, determine the frequencies of fundamental resonance peaks, and image the major reflectors in the Atlantic Coastal Plain (ACP) and Mississippi Embayment (ME) strata of the central and southeastern United States. These strata have thicknesses as great as 2 km near the coast in the study areas, but become thin and eventually pinch out landward. Spectral ratios relative to bedrock sites were computed from teleseismic arrivals recorded on linear arrays deployed across the sedimentary sequences. The large contrast in properties at the bedrock surface produces a strong fundamental resonance peak in the 0.2 to 4 Hz range. Contour maps of sediment thicknesses derived from drill hole data allow for the theoretical estimation of average velocities by matching the observed frequencies at which resonance peaks occur. The sloping bedrock surface allows for calculation of a depth-varying velocity profile, under the assumption that the velocities at each depth do not change laterally between stations. The spectral ratios can then be converted from frequency to depth, resulting in an image of the subsurface similar to that of a seismic reflection profile but with amplitudes being the spectral ratio caused by a reflector at that depth. The complete data set thus provides an average velocity function for the sedimentary sequence, the frequencies and amplitudes of the major resonance peaks, and a subsurface image of the major reflectors producing resonance peaks. The method is demonstrated using three major receiver arrays crossing the ACP and ME strata that originally were deployed for imaging the crust and mantle, confirming that teleseismic signals can be used to characterize sedimentary strata in the upper km.

  1. Resonant Interaction of a Rectangular Jet with a Flat-Plate

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Fagan, A. F.; Clem, M. M.; Brown, C. A.

    2014-01-01

    A resonant interaction between a large aspect ratio rectangular jet and a flat-plate is addressed in this experimental study. The plate is placed parallel to but away from the direct path of the jet. At high subsonic conditions and for certain relative locations of the plate, the resonance accompanied by an audible tone is encountered. The trends of the tone frequency variation exhibit some similarities to, but also marked differences from, corresponding trends of the well-known edge-tone phenomenon. Under the resonant condition flow visualization indicates a periodic flapping motion of the jet column. Phase-averaged Mach number data obtained near the plate's trailing edge illustrate that the jet cross-section goes through large contortions within the period of the tone. Farther downstream a clear 'axis switching' takes place. These results suggest that the assumption of two-dimensionality should be viewed with caution in any analysis of the flow.

  2. Association between magnetic field fluctuations and energetic particle bursts in the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Krimigis, S. M.; Armstrong, T. P.

    1982-01-01

    The association between energetic protons (0.29-0.50 MeV) and simultaneous local fluctuations of magnetic field at 35 to 45 earth radii in the magnetotail is examined statistically with data from APL/JHU particle telescopes aboard IMP 7 and IMP 8. About four satellite years of 5.5 min averaged measurements are used in this study. In addition to confirming that the level of magnetic field fluctuations generally increases with the presence of energetic protons and their streaming anisotropy, it is found that increases in occurrence frequency of streaming of energetic protons are ordered far better by magnetic field fluctuations than by proximity to the neutral sheet. However, the presence of large magnetic field fluctuations (delta B greater than 5 nT or delta B/B greater than 50%) is neither a necessary nor a sufficient condition for the detection of large streaming in energetic protons.

  3. Diel Surface Temperature Range Scales with Lake Size

    PubMed Central

    Woolway, R. Iestyn; Jones, Ian D.; Maberly, Stephen C.; French, Jon R.; Livingstone, David M.; Monteith, Donald T.; Simpson, Gavin L.; Thackeray, Stephen J.; Andersen, Mikkel R.; Battarbee, Richard W.; DeGasperi, Curtis L.; Evans, Christopher D.; de Eyto, Elvira; Feuchtmayr, Heidrun; Hamilton, David P.; Kernan, Martin; Krokowski, Jan; Rimmer, Alon; Rose, Kevin C.; Rusak, James A.; Ryves, David B.; Scott, Daniel R.; Shilland, Ewan M.; Smyth, Robyn L.; Staehr, Peter A.; Thomas, Rhian; Waldron, Susan; Weyhenmeyer, Gesa A.

    2016-01-01

    Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored. PMID:27023200

  4. Influence of the Compositional Grading on Concentration of Majority Charge Carriers in Near-Surface Layers of n(p)-HgCdTe Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.

    2018-02-01

    The capacitive characteristics of metal-insulator-semiconductor (MIS) structures based on the compositionally graded Hg1-xCdxTe created by molecular beam epitaxy have been experimentally investigated in a wide temperature range (8-77 K). A program has been developed for numerical simulation of ideal capacitance-voltage (C-V) characteristics in the low-frequency and high-frequency approximations. The concentrations of the majority carriers in the near-surface semiconductor layer are determined from the values of the capacitances in the minima of low-frequency C-V curves. For MIS structures based on p-Hg1-xCdxTe, the effect of the presence of the compositionally graded layer on the hole concentration in the near-surface semiconductor layer, determined from capacitive measurements, has not been established. Perhaps this is due to the fact that the concentration of holes in the near-surface layer largely depends on the type of dielectric coating and the regimes of its application. For MIS structures based on n-Hg1-x Cd x Te (x = 0.22-0.23) without a graded-gap layer, the electron concentration determined by the proposed method is close to the average concentration determined by the Hall measurements. The electron concentration in the near-surface semiconductor layer of the compositionally graded n-Hg1-x Cd x Te (x = 0.22-0.23) found from the minimum capacitance value is much higher than the average electron concentration determined by the Hall measurements. The results are qualitatively explained by the creation of additional intrinsic donor-type defects in the near-surface compositionally graded layer of n-Hg1-x Cd x Te.

  5. A real time index of geomagnetic background noise for the MAD (Magnetic Anomaly Detection) frequency band

    NASA Astrophysics Data System (ADS)

    Bernardi, A.; Fraser-Smith, A. C.; Villard, O. G.

    1985-02-01

    An index of geomagnetic activity in the upper part of the ultra low frequency (ULF) range (less than 4.55 Hz) has been developed. This index will be referred to as the MA index (magnetic activity index). The MA index is prepared every half hour and is a measure of the strength of the geomagnetic activity in the Pc1-Pc3 pulsation frequency range during that half hour period. Activity in the individual Pc pulsation ranges can also be measured, if desired. The index is calculated from the running average of the full-wave rectified values of the band pass filtered geomagnetic signals and thus it provides a better indication of the magnitude of these band pass filtered magnetic pulsations than does the ap index, for example. Daily variations of the band pass filtered magnetic signals are also better captured by the MA index. To test this system we used analog tape recordings of wide-band geomagnetic signals. The indices for these tapes are presented in the form of plots, together with a comparison with the ap indices of the same time intervals. The MA index shows the daily variation of the geometric signals quite clearly during times when there is strong activity, i.e., when the ap index values are large. Because impulsive signals, such as lightning discharges, tend to be suppressed in the averaging process, the MA index is insensitive to impulsive noise. It is found that the time variation of the MA index is in general markedly different from the variation of the ap index for the same time intervals.

  6. Links between North Atlantic atmospheric blocking and recent trends in European winter precipitation

    NASA Astrophysics Data System (ADS)

    Ummenhofer, Caroline; Seo, Hyodae; Kwon, Young-Oh; Joyce, Terrence

    2015-04-01

    European precipitation has sustained robust trends during wintertime (January - March) over recent decades. Central, western, and northern Europe have become wetter by an average 0.1-0.3% per annum for the period 1901-2010, while southern Europe, including the Iberian Peninsula, much of Italy and the Balkan States, has sustained drying of -0.2% per annum or more over the same period. The overall pattern is consistent across different observational precipitation products, while the magnitude of the precipitation trends varies amongst data sets. Using cluster analysis, which identifies recurrent states (or regimes) of European winter precipitation by grouping them according to an objective similarity criterion, changes in the frequency of dominant winter precipitation patterns over the past century are evaluated. Considerable multi-decadal variability exists in the frequency of dominant winter precipitation patterns: more recent decades are characterised by significantly fewer winters with anomalous wet conditions over southern, western, and central Europe. In contrast, winters with dry conditions in western and southern Europe, but above-average rainfall in western Scandinavia and the northern British Isles, have been more common recently. We evaluate the associated multi-decadal large-scale circulation changes across the broader extratropical North Atlantic region, which accompany the observed wintertime precipitation variability using the 20th Century reanalysis product. Some influence of the North Atlantic Oscillation (NAO) is apparent in modulating the frequency of dominant precipitation patterns. However, recent trends in the characteristics of atmospheric blocking across the North Atlantic sector indicate a change in the dominant blocking centres (near Greenland, the British Isles, and west of the Iberian Peninsula). Associated changes in sea level pressure, storm track position and strength, and oceanic heat fluxes across the North Atlantic region are also addressed.

  7. Single-trial log transformation is optimal in frequency analysis of resting EEG alpha.

    PubMed

    Smulders, Fren T Y; Ten Oever, Sanne; Donkers, Franc C L; Quaedflieg, Conny W E M; van de Ven, Vincent

    2018-02-01

    The appropriate definition and scaling of the magnitude of electroencephalogram (EEG) oscillations is an underdeveloped area. The aim of this study was to optimize the analysis of resting EEG alpha magnitude, focusing on alpha peak frequency and nonlinear transformation of alpha power. A family of nonlinear transforms, Box-Cox transforms, were applied to find the transform that (a) maximized a non-disputed effect: the increase in alpha magnitude when the eyes are closed (Berger effect), and (b) made the distribution of alpha magnitude closest to normal across epochs within each participant, or across participants. The transformations were performed either at the single epoch level or at the epoch-average level. Alpha peak frequency showed large individual differences, yet good correspondence between various ways to estimate it in 2 min of eyes-closed and 2 min of eyes-open resting EEG data. Both alpha magnitude and the Berger effect were larger for individual alpha than for a generic (8-12 Hz) alpha band. The log-transform on single epochs (a) maximized the t-value of the contrast between the eyes-open and eyes-closed conditions when tested within each participant, and (b) rendered near-normally distributed alpha power across epochs and participants, thereby making further transformation of epoch averages superfluous. The results suggest that the log-normal distribution is a fundamental property of variations in alpha power across time in the order of seconds. Moreover, effects on alpha power appear to be multiplicative rather than additive. These findings support the use of the log-transform on single epochs to achieve appropriate scaling of alpha magnitude. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Electrical performance characteristics of high power converters for space power applications

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; King, Roger J.

    1989-01-01

    The first goal of this project was to investigate various converters that would be suitable for processing electric power derived from a nuclear reactor. The implementation is indicated of a 20 kHz system that includes a source converter, a ballast converter, and a fixed frequency converter for generating the 20 kHz output. This system can be converted to dc simply by removing the fixed frequency converter. This present study emphasized the design and testing of the source and ballast converters. A push-pull current-fed (PPCF) design was selected for the source converter, and a 2.7 kW version of this was implemented using three 900 watt modules in parallel. The characteristic equation for two converters in parallel was derived, but this analysis did not yield any experimental methods for measuring relative stability. The three source modules were first tested individually and then in parallel as a 2.7 kW system. All tests proved to be satisfactory; the system was stable; efficiency and regulation were acceptable; and the system was fault tolerant. The design of a ballast-load converter, which was operated as a shunt regulator, was investigated. The proposed power circuit is suitable for use with BJTs because proportional base drive is easily implemented. A control circuit which minimizes switching frequency ripple and automatically bypasses a faulty shunt section was developed. A nonlinear state-space-averaged model of the shunt regulator was developed and shown to produce an accurate incremental (small-signal) dynamic model, even though the usual state-space-averaging assumptions were not met. The nonlinear model was also shown to be useful for large-signal dynamic simulation using PSpice.

  9. Internal rotation of 13 low-mass low-luminosity red giants in the Kepler field

    NASA Astrophysics Data System (ADS)

    Triana, S. A.; Corsaro, E.; De Ridder, J.; Bonanno, A.; Pérez Hernández, F.; García, R. A.

    2017-06-01

    Context. The Kepler space telescope has provided time series of red giants of such unprecedented quality that a detailed asteroseismic analysis becomes possible. For a limited set of about a dozen red giants, the observed oscillation frequencies obtained by peak-bagging together with the most recent pulsation codes allowed us to reliably determine the core/envelope rotation ratio. The results so far show that the current models are unable to reproduce the rotation ratios, predicting higher values than what is observed and thus indicating that an efficient angular momentum transport mechanism should be at work. Here we provide an asteroseismic analysis of a sample of 13 low-luminosity low-mass red giant stars observed by Kepler during its first nominal mission. These targets form a subsample of the 19 red giants studied previously, which not only have a large number of extracted oscillation frequencies, but also unambiguous mode identifications. Aims: We aim to extend the sample of red giants for which internal rotation ratios obtained by theoretical modeling of peak-bagged frequencies are available. We also derive the rotation ratios using different methods, and compare the results of these methods with each other. Methods: We built seismic models using a grid search combined with a Nelder-Mead simplex algorithm and obtained rotation averages employing Bayesian inference and inversion methods. We compared these averages with those obtained using a previously developed model-independent method. Results: We find that the cores of the red giants in this sample are rotating 5 to 10 times faster than their envelopes, which is consistent with earlier results. The rotation rates computed from the different methods show good agreement for some targets, while some discrepancies exist for others.

  10. The use of wavenumber normalization in computing spatially averaged coherencies (KRSPAC) of microtremor data from asymmetric arrays

    USGS Publications Warehouse

    Asten, M.W.; Stephenson, William J.; Hartzell, Stephen

    2015-01-01

    The SPAC method of processing microtremor noise observations for estimation of Vs profiles has a limitation that the array has circular or triangular symmetry in order to allow spatial (azimuthal) averaging of inter-station coherencies over a constant station separation. Common processing methods allow for station separations to vary by typically ±10% in the azimuthal averaging before degradation of the SPAC spectrum is excessive. A limitation on use of high-wavenumbers in inversions of SPAC spectra to Vs profiles has been the requirement for exact array symmetry to avoid loss of information in the azimuthal averaging step. In this paper we develop a new wavenumber-normalised SPAC method (KRSPAC) where instead of performing averaging of sets of coherency versus frequency spectra and then fitting to a model SPAC spectrum, we interpolate each spectrum to coherency versus k.r, where k and r are wavenumber and station separation respectively, and r may be different for each pair of stations. For fundamental mode Rayleigh-wave energy the model SPAC spectrum to be fitted reduces to Jo(kr). The normalization process changes with each iteration since k is a function of frequency and phase velocity and hence is updated each iteration. The method proves robust and is demonstrated on data acquired in the Santa Clara Valley, CA, (Site STGA) where an asymmetric array having station separations varying by a factor of 2 is compared with a conventional triangular array; a 300-mdeep borehole with a downhole Vs log provides nearby ground truth. The method is also demonstrated on data from the Pleasanton array, CA, where station spacings are irregular and vary from 400 to 1200 m. The KRSPAC method allows inversion of data using kr (unitless) values routinely up to 30, and occasionally up to 60. Thus despite the large and irregular station spacings, this array permits resolution of Vs as fine as 15 m for the near-surface sediments, and down to a maximum depth of 2.5 km.

  11. Simulation of Chirping Avalanche in Neighborhood of TAE gap

    NASA Astrophysics Data System (ADS)

    Berk, Herb; Breizman, Boris; Wang, Ge; Zheng, Linjin

    2016-10-01

    A new kinetic code, CHIRP, focuses on the nonlinear response of resonant energetic particles (EPs) that destabilize Alfven waves which then can produce hole and clump phase space chirping structures, while the background plasma currents are assumed to respond linearly to the generated fields. EP currents are due to the motion arising from the perturbed field that is time averaged over an equilibrium orbit. A moderate EP source produces TAE chirping structures that have a limited range of chirping that do not reach the continuum. When the source is sufficiently strong, an EPM is excited in the lower continuum and it chirps rapidly downward as its amplitude rapidly grows in time. This response resembles the experimental observation of an avalanche, which occurs after a series of successive chirping events with a modest frequency shift, and then suddenly a rapid large amplitude and rapid frequency burst to low frequency with the loss of EPs. From these simulation observations we propose that in the experiment the EP population is slowly increasing to the point where the EPM is eventually excited. Supported by SCIDAC Center for Nonlinear Simulation of Energetic Particles Burning Plasmas (CSEP).

  12. Sensitivity of LES results from turbine rim seals to changes in grid resolution and sector size

    NASA Astrophysics Data System (ADS)

    O'Mahoney, T.; Hills, N.; Chew, J.

    2012-07-01

    Large-Eddy Simulations (LES) were carried out for a turbine rim seal and the sensitivity of the results to changes in grid resolution and the size of the computational domain are investigated. Ingestion of hot annulus gas into the rotor-stator cavity is compared between LES results and against experiments and Unsteady Reynolds-Averaged Navier-Stokes (URANS) calculations. The LES calculations show greater ingestion than the URANS calculation and show better agreement with experiments. Increased grid resolution shows a small improvement in ingestion predictions whereas increasing the sector model size has little effect on the results. The contrast between the different CFD models is most stark in the inner cavity, where the URANS shows almost no ingestion. Particular attention is also paid to the presence of low frequency oscillations in the disc cavity. URANS calculations show such low frequency oscillations at different frequencies than the LES. The oscillations also take a very long time to develop in the LES. The results show that the difficult problem of estimating ingestion through rim seals could be overcome by using LES but that the computational requirements were still restrictive.

  13. Nuisance Flooding and Relative Sea-Level Rise: the Importance of Present-Day Land Motion.

    PubMed

    Karegar, Makan A; Dixon, Timothy H; Malservisi, Rocco; Kusche, Jürgen; Engelhart, Simon E

    2017-09-11

    Sea-level rise is beginning to cause increased inundation of many low-lying coastal areas. While most of Earth's coastal areas are at risk, areas that will be affected first are characterized by several additional factors. These include regional oceanographic and meteorological effects and/or land subsidence that cause relative sea level to rise faster than the global average. For catastrophic coastal flooding, when wind-driven storm surge inundates large areas, the relative contribution of sea-level rise to the frequency of these events is difficult to evaluate. For small scale "nuisance flooding," often associated with high tides, recent increases in frequency are more clearly linked to sea-level rise and global warming. While both types of flooding are likely to increase in the future, only nuisance flooding is an early indicator of areas that will eventually experience increased catastrophic flooding and land loss. Here we assess the frequency and location of nuisance flooding along the eastern seaboard of North America. We show that vertical land motion induced by recent anthropogenic activity and glacial isostatic adjustment are contributing factors for increased nuisance flooding. Our results have implications for flood susceptibility, forecasting and mitigation, including management of groundwater extraction from coastal aquifers.

  14. A High-Density Admixture Map for Disease Gene Discovery in African Americans

    PubMed Central

    Smith, Michael W. ; Patterson, Nick ; Lautenberger, James A. ; Truelove, Ann L. ; McDonald, Gavin J. ; Waliszewska, Alicja ; Kessing, Bailey D. ; Malasky, Michael J. ; Scafe, Charles ; Le, Ernest ; De Jager, Philip L. ; Mignault, Andre A. ; Yi, Zeng ; de Thé, Guy ; Essex, Myron ; Sankalé, Jean-Louis ; Moore, Jason H. ; Poku, Kwabena ; Phair, John P. ; Goedert, James J. ; Vlahov, David ; Williams, Scott M. ; Tishkoff, Sarah A. ; Winkler, Cheryl A. ; De La Vega, Francisco M. ; Woodage, Trevor ; Sninsky, John J. ; Hafler, David A. ; Altshuler, David ; Gilbert, Dennis A. ; O’Brien, Stephen J. ; Reich, David 

    2004-01-01

    Admixture mapping (also known as “mapping by admixture linkage disequilibrium,” or MALD) provides a way of localizing genes that cause disease, in admixed ethnic groups such as African Americans, with ∼100 times fewer markers than are required for whole-genome haplotype scans. However, it has not been possible to perform powerful scans with admixture mapping because the method requires a dense map of validated markers known to have large frequency differences between Europeans and Africans. To create such a map, we screened through databases containing ∼450,000 single-nucleotide polymorphisms (SNPs) for which frequencies had been estimated in African and European population samples. We experimentally confirmed the frequencies of the most promising SNPs in a multiethnic panel of unrelated samples and identified 3,011 as a MALD map (1.2 cM average spacing). We estimate that this map is ∼70% informative in differentiating African versus European origins of chromosomal segments. This map provides a practical and powerful tool, which is freely available without restriction, for screening for disease genes in African American patient cohorts. The map is especially appropriate for those diseases that differ in incidence between the parental African and European populations. PMID:15088270

  15. Hydrodynamic Torques and Rotations of Superparamagnetic Bead Dimers

    NASA Astrophysics Data System (ADS)

    Pease, Christopher; Etheridge, J.; Wijesinghe, H. S.; Pierce, C. J.; Prikockis, M. V.; Sooryakumar, R.

    Chains of micro-magnetic particles are often rotated with external magnetic fields for many lab-on-a-chip technologies such as transporting beads or mixing fluids. These applications benefit from faster responses of the actuated particles. In a rotating magnetic field, the magnetization of superparamagnetic beads, created from embedded magnetic nano-particles within a polymer matrix, is largely characterized by induced dipoles mip along the direction of the field. In addition there is often a weak dipole mop that orients out-of-phase with the external rotating field. On a two-bead dimer, the simplest chain of beads, mop contributes a torque Γm in addition to the torque from mip. For dimers with beads unbound to each other, mop rotates individual beads which generate an additional hydrodynamic torque on the dimer. Whereas, mop directly torques bound dimers. Our results show that Γm significantly alters the average frequency-dependent dimer rotation rate for both bound and unbound monomers and, when mop exceeds a critical value, increases the maximum dimer rotation frequency. Models that include magnetic and hydrodynamics torques provide good agreement with the experimental findings over a range of field frequencies.

  16. Synaptic dynamics regulation in response to high frequency stimulation in neuronal networks

    NASA Astrophysics Data System (ADS)

    Su, Fei; Wang, Jiang; Li, Huiyan; Wei, Xile; Yu, Haitao; Deng, Bin

    2018-02-01

    High frequency stimulation (HFS) has confirmed its ability in modulating the pathological neural activities. However its detailed mechanism is unclear. This study aims to explore the effects of HFS on neuronal networks dynamics. First, the two-neuron FitzHugh-Nagumo (FHN) networks with static coupling strength and the small-world FHN networks with spike-time-dependent plasticity (STDP) modulated synaptic coupling strength are constructed. Then, the multi-scale method is used to transform the network models into equivalent averaged models, where the HFS intensity is modeled as the ratio between stimulation amplitude and frequency. Results show that in static two-neuron networks, there is still synaptic current projected to the postsynaptic neuron even if the presynaptic neuron is blocked by the HFS. In the small-world networks, the effects of the STDP adjusting rate parameter on the inactivation ratio and synchrony degree increase with the increase of HFS intensity. However, only when the HFS intensity becomes very large can the STDP time window parameter affect the inactivation ratio and synchrony index. Both simulation and numerical analysis demonstrate that the effects of HFS on neuronal network dynamics are realized through the adjustment of synaptic variable and conductance.

  17. Implications of the Mw9.0 Tohoku-Oki earthquake for ground motion scaling with source, path, and site parameters

    USGS Publications Warehouse

    Stewart, Jonathan P.; Midorikawa, Saburoh; Graves, Robert W.; Khodaverdi, Khatareh; Kishida, Tadahiro; Miura, Hiroyuki; Bozorgnia, Yousef; Campbell, Kenneth W.

    2013-01-01

    The Mw9.0 Tohoku-oki Japan earthquake produced approximately 2,000 ground motion recordings. We consider 1,238 three-component accelerograms corrected with component-specific low-cut filters. The recordings have rupture distances between 44 km and 1,000 km, time-averaged shear wave velocities of VS30 = 90 m/s to 1,900 m/s, and usable response spectral periods of 0.01 sec to >10 sec. The data support the notion that the increase of ground motions with magnitude saturates at large magnitudes. High-frequency ground motions demonstrate faster attenuation with distance in backarc than in forearc regions, which is only captured by one of the four considered ground motion prediction equations for subduction earthquakes. Recordings within 100 km of the fault are used to estimate event terms, which are generally positive (indicating model underprediction) at short periods and zero or negative (overprediction) at long periods. We find site amplification to scale minimally with VS30 at high frequencies, in contrast with other active tectonic regions, but to scale strongly with VS30 at low frequencies.

  18. Performance of the unique-word-reverse-modulation type demodulator for mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Dohi, Tomohiro; Nitta, Kazumasa; Ueda, Takashi

    1993-01-01

    This paper proposes a new type of coherent demodulator, the unique-word (UW)-reverse-modulation type demodulator, for burst signal controlled by voice operated transmitter (VOX) in mobile satellite communication channels. The demodulator has three individual circuits: a pre-detection signal combiner, a pre-detection UW detector, and a UW-reverse-modulation type demodulator. The pre-detection signal combiner combines signal sequences received by two antennas and improves bit energy-to-noise power density ratio (E(sub b)/N(sub 0)) 2.5 dB to yield 10(exp -3) average bit error rate (BER) when carrier power-to-multipath power ratio (CMR) is 15 dB. The pre-detection UW detector improves UW detection probability when the frequency offset is large. The UW-reverse-modulation type demodulator realizes a maximum pull-in frequency of 3.9 kHz, the pull-in time is 2.4 seconds and frequency error is less than 20 Hz. The performances of this demodulator are confirmed through computer simulations and its effect is clarified in real-time experiments at a bit rate of 16.8 kbps using a digital signal processor (DSP).

  19. Evolutionary prisoner's dilemma games on the network with punishment and opportunistic partner switching

    NASA Astrophysics Data System (ADS)

    Takesue, H.

    2018-02-01

    Punishment and partner switching are two well-studied mechanisms that support the evolution of cooperation. Observation of human behaviour suggests that the extent to which punishment is adopted depends on the usage of alternative mechanisms, including partner switching. In this study, we investigate the combined effect of punishment and partner switching in evolutionary prisoner's dilemma games conducted on a network. In the model, agents are located on the network and participate in the prisoner's dilemma games with punishment. In addition, they can opportunistically switch interaction partners to improve their payoff. Our Monte Carlo simulation showed that a large frequency of punishers is required to suppress defectors when the frequency of partner switching is low. In contrast, cooperation is the most abundant strategy when the frequency of partner switching is high regardless of the strength of punishment. Interestingly, cooperators become abundant not because they avoid the cost of inflicting punishment and earn a larger average payoff per game but rather because they have more numerous opportunities to be referred to as a role agent by defectors. Our results imply that the fluidity of social relationships has a profound effect on the adopted strategy in maintaining cooperation.

  20. Physically-based extreme flood frequency with stochastic storm transposition and paleoflood data on large watersheds

    NASA Astrophysics Data System (ADS)

    England, John F.; Julien, Pierre Y.; Velleux, Mark L.

    2014-03-01

    Traditionally, deterministic flood procedures such as the Probable Maximum Flood have been used for critical infrastructure design. Some Federal agencies now use hydrologic risk analysis to assess potential impacts of extreme events on existing structures such as large dams. Extreme flood hazard estimates and distributions are needed for these efforts, with very low annual exceedance probabilities (⩽10-4) (return periods >10,000 years). An integrated data-modeling hydrologic hazard framework for physically-based extreme flood hazard estimation is presented. Key elements include: (1) a physically-based runoff model (TREX) coupled with a stochastic storm transposition technique; (2) hydrometeorological information from radar and an extreme storm catalog; and (3) streamflow and paleoflood data for independently testing and refining runoff model predictions at internal locations. This new approach requires full integration of collaborative work in hydrometeorology, flood hydrology and paleoflood hydrology. An application on the 12,000 km2 Arkansas River watershed in Colorado demonstrates that the size and location of extreme storms are critical factors in the analysis of basin-average rainfall frequency and flood peak distributions. Runoff model results are substantially improved by the availability and use of paleoflood nonexceedance data spanning the past 1000 years at critical watershed locations.

  1. Genetic and environmental origins of gambling behaviors from ages 18 to 25: A longitudinal twin family study.

    PubMed

    King, Serena M; Keyes, Margaret; Winters, Ken C; McGue, Matt; Iacono, William G

    2017-05-01

    Gambling behaviors tend to increase in prevalence from late adolescence to young adulthood, and the underlying genetic and environmental influences during this period remain largely understudied. We examined the genetic and environmental influences on gambling behaviors contributing to stability and change from ages 18 to 25 in a longitudinal, behavioral genetic mixed-sex twin study design. Participants were enrolled in the Minnesota Twin Family Study. A range of gambling behaviors (maximum frequency, average frequency, money lost, and gambling problems) were assessed at ages 18 and 25. The results of our study support the following conclusions: (a) the genetic and environmental factors impacting a range of gambling behaviors are largely similar in men and women, (b) genetic factors increase in influence from 18 to 25 (21% at age 18 to 57% at age 25), (c) shared environmental factors are influential at age 18, but tend to decrease from ages 18 to 25 (55% at age 18 to 10% at age 25), and (d) nonshared environmental influences are similarly significant and are small to moderate in magnitude at both ages. The findings add to a small yet important research area regarding determinants of youth gambling behaviors and have the potential to inform prevention and intervention efforts. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Large scale structures in a turbulent boundary layer and their imprint on wall shear stress

    NASA Astrophysics Data System (ADS)

    Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark

    2015-11-01

    Experiments were performed on a turbulent boundary layer developing on a flat plate model under zero pressure gradient flow. A MEMS differential capacitive shear stress sensor with a 1 mm × 1 mm floating element was used to capture the fluctuating wall shear stress simultaneously with streamwise velocity measurements from a hot-wire anemometer traversed in the wall normal direction. Near the wall, the peak in the cross correlation corresponds to an organized motion inclined 45° from the wall. In the outer region, the peak diminishes in value, but is still significant at a distance greater than half the boundary layer thickness, and corresponds to a structure inclined 14° from the wall. High coherence between the two signals was found for the low-frequency content, reinforcing the belief that large scale structures have a vital impact on wall shear stress. Thus, estimation of the wall shear stress from the low-frequency velocity signal will be performed, and is expected to be statistically significant in the outer boundary layer. Additionally, conditionally averaged mean velocity profiles will be presented to assess the effects of high and low shear stress. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  3. Correlation dimension of financial market

    NASA Astrophysics Data System (ADS)

    Nie, Chun-Xiao

    2017-05-01

    In this paper, correlation dimension is applied to financial data analysis. We calculate the correlation dimensions of some real market data and find that the dimensions are significantly smaller than those of the simulation data based on geometric Brownian motion. Based on the analysis of the Chinese and US stock market data, the main results are as follows. First, by calculating three data sets for the Chinese and US market, we find that large market volatility leads to a significant decrease in the dimensions. Second, based on 5-min stock price data, we find that the Chinese market dimension is significantly larger than the US market; this shows a significant difference between the two markets for high frequency data. Third, we randomly extract stocks from a stock set and calculate the correlation dimensions, and find that the average value of these dimensions is close to the dimension of the original set. In addition, we analyse the intuitional meaning of the relevant dimensions used in this paper, which are directly related to the average degree of the financial threshold network. The dimension measures the speed of the average degree that varies with the threshold value. A smaller dimension means that the rate of change is slower.

  4. Topology optimization of two-dimensional elastic wave barriers

    NASA Astrophysics Data System (ADS)

    Van hoorickx, C.; Sigmund, O.; Schevenels, M.; Lazarov, B. S.; Lombaert, G.

    2016-08-01

    Topology optimization is a method that optimally distributes material in a given design domain. In this paper, topology optimization is used to design two-dimensional wave barriers embedded in an elastic halfspace. First, harmonic vibration sources are considered, and stiffened material is inserted into a design domain situated between the source and the receiver to minimize wave transmission. At low frequencies, the stiffened material reflects and guides waves away from the surface. At high frequencies, destructive interference is obtained that leads to high values of the insertion loss. To handle harmonic sources at a frequency in a given range, a uniform reduction of the response over a frequency range is pursued. The minimal insertion loss over the frequency range of interest is maximized. The resulting design contains features at depth leading to a reduction of the insertion loss at the lowest frequencies and features close to the surface leading to a reduction at the highest frequencies. For broadband sources, the average insertion loss in a frequency range is optimized. This leads to designs that especially reduce the response at high frequencies. The designs optimized for the frequency averaged insertion loss are found to be sensitive to geometric imperfections. In order to obtain a robust design, a worst case approach is followed.

  5. Constant Group Velocity Ultrasonic Guided Wave Inspection for Corrosion and Erosion Monitoring in Pipes

    NASA Astrophysics Data System (ADS)

    Instanes, Geir; Pedersen, Audun; Toppe, Mads; Nagy, Peter B.

    2009-03-01

    This paper describes a novel ultrasonic guided wave inspection technique for the monitoring of internal corrosion and erosion in pipes, which exploits the fundamental flexural mode to measure the average wall thickness over the inspection path. The inspection frequency is chosen so that the group velocity of the fundamental flexural mode is essentially constant throughout the wall thickness range of interest, while the phase velocity is highly dispersive and changes in a systematic way with varying wall thickness in the pipe. Although this approach is somewhat less accurate than the often used transverse resonance methods, it smoothly integrates the wall thickness over the whole propagation length, therefore it is very robust and can tolerate large and uneven thickness variations from point to point. The constant group velocity (CGV) method is capable of monitoring the true average of the wall thickness over the inspection length with an accuracy of 1% even in the presence of one order of magnitude larger local variations. This method also eliminates spurious variations caused by changing temperature, which can cause fairly large velocity variations, but do not significantly influence the dispersion as measured by the true phase angle in the vicinity of the CGV point. The CGV guided wave CEM method was validated in both laboratory and field tests.

  6. Female preferences for spectral call properties in the western genetic lineage of Cope’s gray treefrog (Hyla chrysoscelis)

    PubMed Central

    Schrode, Katrina M.; Ward, Jessica L.; Vélez, Alejandro

    2012-01-01

    Female frogs discriminate among potential mates based on individual variation in male advertisement calls. While considerable data have accumulated allowing comparisons of female preference functions among species, we still lack fundamental knowledge about how and why the shapes of preference functions for particular call properties vary among populations within all but a few species. Here, we report results from a study aimed at describing female preference functions for spectral call properties in Cope’s gray treefrog (Hyla chrysoscelis). Widespread throughout the eastern half of North America, Cope’s gray treefrog is the diploid member of the cryptic diploid-tetraploid Hyla versicolor species complex, and its populations are divided into two distinct genetic lineages (eastern and western). In this study of a western lineage population, we recorded and analyzed the spectral properties of 1000 advertisement calls from 50 males and conducted two-choice phonotaxis experiments to estimate a population-level preference function. Females preferred calls with average frequencies over calls with frequencies that were 2 or 3 semitones (1.4 or 2.1 standard deviations, respectively) lower than the population mean. We observed no behavioral discrimination between calls with average and higher-than-average frequencies. Preferences discriminating against low-frequency calls were weak and were abolished by attenuating the preferred average call by 3 dB. We discuss these results in light of previous studies of eastern lineage populations, geographic variation in female preference functions, and the potential adaptive value of discriminating against calls with low frequencies. PMID:24496093

  7. Analysis and comparison of safety models using average daily, average hourly, and microscopic traffic.

    PubMed

    Wang, Ling; Abdel-Aty, Mohamed; Wang, Xuesong; Yu, Rongjie

    2018-02-01

    There have been plenty of traffic safety studies based on average daily traffic (ADT), average hourly traffic (AHT), or microscopic traffic at 5 min intervals. Nevertheless, not enough research has compared the performance of these three types of safety studies, and seldom of previous studies have intended to find whether the results of one type of study is transferable to the other two studies. First, this study built three models: a Bayesian Poisson-lognormal model to estimate the daily crash frequency using ADT, a Bayesian Poisson-lognormal model to estimate the hourly crash frequency using AHT, and a Bayesian logistic regression model for the real-time safety analysis using microscopic traffic. The model results showed that the crash contributing factors found by different models were comparable but not the same. Four variables, i.e., the logarithm of volume, the standard deviation of speed, the logarithm of segment length, and the existence of diverge segment, were positively significant in the three models. Additionally, weaving segments experienced higher daily and hourly crash frequencies than merge and basic segments. Then, each of the ADT-based, AHT-based, and real-time models was used to estimate safety conditions at different levels: daily and hourly, meanwhile, the real-time model was also used in 5 min intervals. The results uncovered that the ADT- and AHT-based safety models performed similar in predicting daily and hourly crash frequencies, and the real-time safety model was able to provide hourly crash frequency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Analysis of Muscle Contraction on Pottery Manufacturing Process Using Electromyography (EMG)

    NASA Astrophysics Data System (ADS)

    Soewardi, Hartomo; Azka Rahmayani, Amalia

    2016-01-01

    One of the most common problems in pottery manufacturing process is musculoskeletal disorders on workers. This disorder was caused by uncomfortable posture where the workers sit on the floor with one leg was folded and another was twisted for long duration. Back, waist, buttock, and right knee frequently experience the disorders. The objective of this research is to investigate the muscle contraction at such body part of workers in manufacturing process of pottery. Electromyography is used to investigate the muscle contraction based on the median frequency signal. Focus measurements is conducted on four muscles types. They are lower interscapular muscle on the right and left side, dorsal lumbar muscle, and lateral hamstring muscle. Statistical analysis is conducted to test differences of muscle contraction between female and male. The result of this research showed that the muscle which reached the highest contraction is dorsal lumbar muscle with the average of median frequency is 51,84 Hz. Then followed by lower interscapular muscle on the left side with the average of median frequency is 31,30 hz, lower interscapular muscle on the right side average of median frequency is 31,24 Hz, and lateral hamstring muscle average of median frequency is 21,77 Hz. Based on the statistic analysis result, there were no differences between male and female on left and right lower interscapular muscle and dorsal lumbar muscle but there were differences on lateral hamstring muscle with the significance level is 5%. Besides that, there were differences for all combination muscle types with the level of significance is 5%.

  9. Quantitative evaluations of mechanisms of radiofrequency interactions with biological molecules and processes.

    PubMed

    Sheppard, Asher R; Swicord, Mays L; Balzano, Quirino

    2008-10-01

    The complexity of interactions of electromagnetic fields up to 10(12) Hz with the ions, atoms, and molecules of biological systems has given rise to a large number of established and proposed biophysical mechanisms applicable over a wide range of time and distance scales, field amplitudes, frequencies, and waveforms. This review focuses on the physical principles that guide quantitative assessment of mechanisms applicable for exposures at or below the level of endogenous electric fields associated with development, wound healing, and excitation of muscles and the nervous system (generally, 1 to 10(2) V m(-1)), with emphasis on conditions where temperature increases are insignificant (<1 K). Experiment and theory demonstrate possible demodulation at membrane barriers for frequencies < or =10 MHz, but not at higher frequencies. Although signal levels somewhat below system noise can be detected, signal-to-noise ratios substantially less than 0.1 cannot be overcome by cooperativity, signal averaging, coherent detection, or by nonlinear dynamical systems. Sensory systems and possible effects on biological magnetite suggest paradigms for extreme sensitivity at lower frequencies, but there are no known radiofrequency (RF) analogues. At the molecular level, vibrational modes are so overdamped by water molecules that excitation of molecular modes below the far infrared cannot occur. Two RF mechanisms plausibly may affect biological matter under common exposure conditions. For frequencies below approximately 150 MHz, shifts in the rate of chemical reactions can be mediated by radical pairs and, at all frequencies, dielectric and resistive heating can raise temperature and increase the entropy of the affected biological system.

  10. Frequencies of chromosomal inversions in Drosophila melanogaster in Fukushima after the nuclear power plant accident.

    PubMed

    Itoh, Masanobu; Kajihara, Ryutaro; Kato, Yasuko; Takano-Shimizu, Toshiyuki; Inoue, Yutaka

    2018-01-01

    In order to investigate genetic impact of a large amount of radionuclides released by the Fukushima Dai-ichi Nuclear Power Plant accident in 2011, we surveyed 2,304 haploid genomes of Drosophila melanogaster collected in three localities in Fukushima in 2012 and 2013 for chromosomal inversions. No unique inversion was found in 298 genomes in 2012 and only two in 2,006 genomes in 2013. The observed frequencies were even lower than the long-term average frequency of unique inversions in Japan. The common cosmopolitan inversions were also examined in Fukushima, Kyoto, and Iriomote (Okinawa) in 2012. Among three samples in Fukushima, the flies in Iizaka, where environmental radiation level was the highest, showed the lowest frequency of In(2L)t, but the highest frequency of In(3R)P, contrary to the expectation of decreasing of their frequencies in higher polluted areas. These results suggest that, at this level of genetic analysis, Fukushima populations of D. melanogaster would not have been negatively impacted following the release of radionuclides. Transposable P-element mobility was not likely to induce DNA damage solely or synergistically with radioactivity, because their transposition activity was totally repressed in the Fukushima strains. However, it should be noted that, because of limitations in access to the exclusion zone, we could only sample the populations in areas of relatively low radioactive contamination (0.39-0.63 μSv/h). Therefore, the present study is likely to be underpowered to detect any effects that might be expected in heavily contaminated areas.

  11. Multifield analysis of a piezoelectric valveless micropump: effects of actuation frequency and electric potential

    NASA Astrophysics Data System (ADS)

    Sayar, Ersin; Farouk, Bakhtier

    2012-07-01

    Coupled multifield analysis of a piezoelectrically actuated valveless micropump device is carried out for liquid (water) transport applications. The valveless micropump consists of two diffuser/nozzle elements; the pump chamber, a thin structural layer (silicon), and a piezoelectric layer, PZT-5A as the actuator. We consider two-way coupling of forces between solid and liquid domains in the systems where actuator deflection causes fluid flow and vice versa. Flow contraction and expansion (through the nozzle and the diffuser respectively) generate net fluid flow. Both structural and flow field analysis of the microfluidic device are considered. The effect of the driving power (voltage) and actuation frequency on silicon-PZT-5A bi-layer membrane deflection and flow rate is investigated. For the compressible flow formulation, an isothermal equation of state for the working fluid is employed. The governing equations for the flow fields and the silicon-PZT-5A bi-layer membrane motions are solved numerically. At frequencies below 5000 Hz, the predicted flow rate increases with actuation frequency. The fluid-solid system shows a resonance at 5000 Hz due to the combined effect of mechanical and fluidic capacitances, inductances, and damping. Time-averaged flow rate starts to drop with increase of actuation frequency above (5000 Hz). The velocity profile in the pump chamber becomes relatively flat or plug-like, if the frequency of pulsations is sufficiently large (high Womersley number). The pressure, velocity, and flow rate prediction models developed in the present study can be utilized to optimize the design of MEMS based micropumps.

  12. Frequencies of chromosomal inversions in Drosophila melanogaster in Fukushima after the nuclear power plant accident

    PubMed Central

    Kajihara, Ryutaro; Kato, Yasuko; Takano-Shimizu, Toshiyuki; Inoue, Yutaka

    2018-01-01

    In order to investigate genetic impact of a large amount of radionuclides released by the Fukushima Dai-ichi Nuclear Power Plant accident in 2011, we surveyed 2,304 haploid genomes of Drosophila melanogaster collected in three localities in Fukushima in 2012 and 2013 for chromosomal inversions. No unique inversion was found in 298 genomes in 2012 and only two in 2,006 genomes in 2013. The observed frequencies were even lower than the long-term average frequency of unique inversions in Japan. The common cosmopolitan inversions were also examined in Fukushima, Kyoto, and Iriomote (Okinawa) in 2012. Among three samples in Fukushima, the flies in Iizaka, where environmental radiation level was the highest, showed the lowest frequency of In(2L)t, but the highest frequency of In(3R)P, contrary to the expectation of decreasing of their frequencies in higher polluted areas. These results suggest that, at this level of genetic analysis, Fukushima populations of D. melanogaster would not have been negatively impacted following the release of radionuclides. Transposable P-element mobility was not likely to induce DNA damage solely or synergistically with radioactivity, because their transposition activity was totally repressed in the Fukushima strains. However, it should be noted that, because of limitations in access to the exclusion zone, we could only sample the populations in areas of relatively low radioactive contamination (0.39–0.63 μSv/h). Therefore, the present study is likely to be underpowered to detect any effects that might be expected in heavily contaminated areas. PMID:29420572

  13. On tridimensional rip current modeling

    NASA Astrophysics Data System (ADS)

    Marchesiello, Patrick; Benshila, Rachid; Almar, Rafael; Uchiyama, Yusuke; McWilliams, James C.; Shchepetkin, Alexander

    2015-12-01

    Do lateral shear instabilities of nearshore circulation account for a substantial part of Very Low-Frequency (VLF) variability? If yes, it would promote stirring and mixing of coastal waters and surf-shelf exchanges. Another question is whether tridimensional transient processes are important for instability generation. An innovative modeling system with tridimensional wave-current interactions was designed to investigate transient nearshore currents and interactions between nearshore and innershelf circulations. We present here some validation of rip current modeling for the Aquitanian coast of France, using in-situ and remote video sensing. We then proceed to show the benefits of 3D versus 2D (depth-mean flow) modeling of rip currents and their low-frequency variability. It appears that a large part of VLF motions is due to intrinsic variability of the tridimensional flow. 3D models may thus provide a valuable, only marginally more expensive alternative to conventional 2D approaches that miss the vertical flow structure and its nonlinear interaction with the depth-averaged flow.

  14. Dynamic behavior of turbulent flow in a widely-spaced co-axial jet diffusion flame combustor

    NASA Astrophysics Data System (ADS)

    Sturgess, G. J.; Syed, S. A.

    1983-01-01

    Reacting flows in a bluff-body stabilized diffusion flame research combustor operated by the Wright Aeronautical Propulsion Laboratory exhibit the presence of coherent structures where, because of dynamic behavior the flame consists of large, discrete flame eddies passing down the combustion tunnel separated in time by axial regions where no flame is visible. It is proposed that the formation of these structures and their subsequent behavior are the result of vortex-shedding from the flameholder and, in the main, interaction with the organ-pipe natural frequencies of the long combustion tunnel. A simulation of the flow is made based on a finite difference solution of the time-average, steady state, elliptic form of the Reynolds equations using the two-equation turbulence model and a 'mixed is burned' combustion model for closure. The simulation of the eddies and, in conjunction with a universal Strouhal number-Reynolds number correlation, provides successful prediction of the flame frequencies.

  15. Microwave noise temperature and attenuation of clouds - Statistics of these effects at various sites in the United States, Alaska, and Hawaii

    NASA Technical Reports Server (NTRS)

    Slobin, S. D.

    1982-01-01

    The microwave attenuation and noise temperature effects of clouds can result in serious degradation of telecommunications link performance, especially for low-noise systems presently used in deep-space communications. Although cloud effects are generally less than rain effects, the frequent presence of clouds will cause some amount of link degradation a large portion of the time. This paper presents a general review of cloud types and their water particle densities, attenuation and noise temperature calculations, and basic link signal-to-noise ratio calculations. Tabular results of calculations for 12 different cloud models are presented for frequencies in the range 10-50 GHz. Curves of average-year attenuation and noise temperature statistics at frequencies ranging from 10 to 90 GHz, calculated from actual surface and radiosonde observations, are given for 15 climatologically distinct regions in the contiguous United States, Alaska, and Hawaii. Nonuniform sky cover is considered in these calculations.

  16. Mode switching characteristics of PSR B0329+54 at 150 MHz

    NASA Astrophysics Data System (ADS)

    Białkowski, Sławomir; Lewandowski, Wojciech; Kijak, Jarosław; Błaszkiewicz, Leszek; Krankowski, Andrzej; Osłowski, Stefan

    2018-06-01

    We present the results of 60 hours of observations of PSR B0329+54 with the LOFAR PL-612 station located in Bałdy near Olsztyn, Poland and managed by University of Warmia and Mazury in Olsztyn (UWM). Observations were conducted in August/September 2016 and in May and August 2017 using the HBA antennas, at the central frequency of about 140 MHz, and they were conducted in form of six 10-hour semi-continuous observing sessions. The main goal of the analysis was the study of the mode switching phenomenon in this pulsar, and our results show that at this frequency the abnormal profile mode is present only for about 12.6% of time on average, which is lower than for the analysis of a very large set of 1.5 GHz observations performed at Ürümqi observatory in 2011. Also worth mentioning is the fact, that the results shown in this paper also demonstrate the first scientific output concerning pulsar observations with the PL-612 station.

  17. Topological chaos of the spatial prisoner's dilemma game on regular networks.

    PubMed

    Jin, Weifeng; Chen, Fangyue

    2016-02-21

    The spatial version of evolutionary prisoner's dilemma on infinitely large regular lattice with purely deterministic strategies and no memories among players is investigated in this paper. Based on the statistical inferences, it is pertinent to confirm that the frequency of cooperation for characterizing its macroscopic behaviors is very sensitive to the initial conditions, which is the most practically significant property of chaos. Its intrinsic complexity is then justified on firm ground from the theory of symbolic dynamics; that is, this game is topologically mixing and possesses positive topological entropy on its subsystems. It is demonstrated therefore that its frequency of cooperation could not be adopted by simply averaging over several steps after the game reaches the equilibrium state. Furthermore, the chaotically changing spatial patterns via empirical observations can be defined and justified in view of symbolic dynamics. It is worth mentioning that the procedure proposed in this work is also applicable to other deterministic spatial evolutionary games therein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Patterns of change in high frequency precipitation variability over North America.

    PubMed

    Roque-Malo, Susana; Kumar, Praveen

    2017-09-18

    Precipitation variability encompasses attributes associated with the sequencing and duration of events of the full range of magnitudes. However, climate change studies have largely focused on extreme events. Using analyses of long-term weather station data, we show that high frequency events, such as fraction of wet days in a year and average duration of wet and dry periods, are undergoing significant changes across North America. Further, these changes are more prevalent and larger than those associated with extremes. Such trends also exist for events of a range of magnitudes. Existence of localized clusters with opposing trend to that of broader geographic variation illustrates the role of microclimate and other drivers of trends. Such hitherto unknown patterns over the entire North American continent have the potential to significantly inform our characterization of the resilience and vulnerability of a broad range of ecosystems and agricultural and socio-economic systems. They can also set new benchmarks for climate model assessments.

  19. Promoter classifier: software package for promoter database analysis.

    PubMed

    Gershenzon, Naum I; Ioshikhes, Ilya P

    2005-01-01

    Promoter Classifier is a package of seven stand-alone Windows-based C++ programs allowing the following basic manipulations with a set of promoter sequences: (i) calculation of positional distributions of nucleotides averaged over all promoters of the dataset; (ii) calculation of the averaged occurrence frequencies of the transcription factor binding sites and their combinations; (iii) division of the dataset into subsets of sequences containing or lacking certain promoter elements or combinations; (iv) extraction of the promoter subsets containing or lacking CpG islands around the transcription start site; and (v) calculation of spatial distributions of the promoter DNA stacking energy and bending stiffness. All programs have a user-friendly interface and provide the results in a convenient graphical form. The Promoter Classifier package is an effective tool for various basic manipulations with eukaryotic promoter sequences that usually are necessary for analysis of large promoter datasets. The program Promoter Divider is described in more detail as a representative component of the package.

  20. Taming instabilities in power grid networks by decentralized control

    NASA Astrophysics Data System (ADS)

    Schäfer, B.; Grabow, C.; Auer, S.; Kurths, J.; Witthaut, D.; Timme, M.

    2016-05-01

    Renewables will soon dominate energy production in our electric power system. And yet, how to integrate renewable energy into the grid and the market is still a subject of major debate. Decentral Smart Grid Control (DSGC) was recently proposed as a robust and decentralized approach to balance supply and demand and to guarantee a grid operation that is both economically and dynamically feasible. Here, we analyze the impact of network topology by assessing the stability of essential network motifs using both linear stability analysis and basin volume for delay systems. Our results indicate that if frequency measurements are averaged over sufficiently large time intervals, DSGC enhances the stability of extended power grid systems. We further investigate whether DSGC supports centralized and/or decentralized power production and find it to be applicable to both. However, our results on cycle-like systems suggest that DSGC favors systems with decentralized production. Here, lower line capacities and lower averaging times are required compared to those with centralized production.

  1. 14 CFR Appendix E to Part 29 - HIRF Environments and Equipment HIRF Test Levels

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... following table: Table I.—HIRF Environment I Frequency Field strength(volts/meter) Peak Average 10 kHz-2 MHz 50 50 2 MHz-30 MHz 100 100 30 MHz-100 MHz 50 50 100 MHz-400 MHz 100 100 400 MHz-700 MHz 700 50 700... Environment II Frequency Field strength(volts/meter) Peak Average 10 kHz-500 kHz 20 20 500 kHz-2 MHz 30 30 2...

  2. 14 CFR Appendix D to Part 27 - HIRF Environments and Equipment HIRF Test Levels

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... following table: Table I.—HIRF Environment I Frequency Field strength(volts/meter) Peak Average 10 kHz-2 MHz 50 50 2 MHz-30 MHz 100 100 30 MHz-100 MHz 50 50 100 MHz-400 MHz 100 100 400 MHz-700 MHz 700 50 700... Environment II Frequency Field strength(volts/meter) Peak Average 10 kHz-500 kHz 20 20 500 kHz-2 MHz 30 30 2...

  3. Cross-frequency and band-averaged response variance prediction in the hybrid deterministic-statistical energy analysis method

    NASA Astrophysics Data System (ADS)

    Reynders, Edwin P. B.; Langley, Robin S.

    2018-08-01

    The hybrid deterministic-statistical energy analysis method has proven to be a versatile framework for modeling built-up vibro-acoustic systems. The stiff system components are modeled deterministically, e.g., using the finite element method, while the wave fields in the flexible components are modeled as diffuse. In the present paper, the hybrid method is extended such that not only the ensemble mean and variance of the harmonic system response can be computed, but also of the band-averaged system response. This variance represents the uncertainty that is due to the assumption of a diffuse field in the flexible components of the hybrid system. The developments start with a cross-frequency generalization of the reciprocity relationship between the total energy in a diffuse field and the cross spectrum of the blocked reverberant loading at the boundaries of that field. By making extensive use of this generalization in a first-order perturbation analysis, explicit expressions are derived for the cross-frequency and band-averaged variance of the vibrational energies in the diffuse components and for the cross-frequency and band-averaged variance of the cross spectrum of the vibro-acoustic field response of the deterministic components. These expressions are extensively validated against detailed Monte Carlo analyses of coupled plate systems in which diffuse fields are simulated by randomly distributing small point masses across the flexible components, and good agreement is found.

  4. Amplitudes and frequency sweep rates of wave packets of whistler-mode chorus observed by the Cluster spacecraft

    NASA Astrophysics Data System (ADS)

    Macusova, E.; Santolik, O.; Pickett, J. S.; Gurnett, D. A.; Cornilleau-Wehrlin, N.; Demekhov, A. G.; Titova, E. E.

    2013-12-01

    Whistler-mode chorus is one of the most intense electromagnetic wave emissions observed in the inner magnetosphere, usually outside the plasmasphere. These waves play an important role in wave-particle interactions. They are usually generated close to the geomagnetic equator in a wide range of L-shells, and they propagate toward larger magnetic latitudes. Whistler-mode chorus is sometimes composed of two frequency bands separated by a gap at one half of the electron cyclotron frequency. At short time scales (on the order of hundreds of milliseconds) chorus consist of different discrete spectral shapes: rising tones, falling tones, constant frequency tones, and hooks. Our survey is based on high time resolution measurements collected by the WBD instrument onboard four Cluster spacecraft. We analyze time intervals containing different types of spectral shapes occurring at different L-shells, and at different latitudes relative to the chorus source region, as it is determined from measurements of the STAFF-SA instrument. Each of these events includes a large number of individual wave packets (between a few hundreds to a few thousands). For each individual wave packet we determine the frequency sweep rate and the average amplitude. Our results confirm previous conclusions of numerical simulations, theoretical predictions, and case studies showing that the amplitude of chorus wave packets increases with an increasing frequency sweep rate. The amplitude also increases as the wave forming chorus propagate away from the equator. The scatter of obtained values of frequency sweep rates and amplitudes is much larger closer to the Earth than at larger radial distances. This work receives EU support through the FP7-Space grant agreement no 284520 for the MAARBLE collaborative research project.

  5. 47 CFR 73.310 - FM technical definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... The term “center frequency” means: (1) The average frequency of the emitted wave when modulated by a sinusoidal signal. (2) The frequency of the emitted wave without modulation. Composite antenna pattern. The... exist at a point in the absence of waves reflected from the earth or other reflecting objects. Frequency...

  6. Deciphering the Long-Term Trend of Atlantic Basin Intense Hurricanes: More Active Versus Less Active During the Present Epoch

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1998-01-01

    During the interval of 1944-1997, 120 intense hurricanes (i.e., those of category 3 or higher on the Saffir-Simpson hurricane damage potential scale) were observed in the Atlantic basin, having an annual frequency of 0-7 events per year, being more active prior to the mid 1960's than thereafter (hence a possible two-state division: more active versus less active), and being preferentially lower during El Nino years as compared to non-El Nino years. Because decadal averages of the frequency of intense hurricanes closely resemble those of average temperature anomalies for northern hemispheric and global standards and of the average temperature at the Armagh Observatory (Northern Ireland), a proxy for climatic change, it is inferred that the long-term trends of the annual frequency of intense hurricanes and temperature may be statistically related. Indeed, on the basis of 4- and 10-yr moving averages, one finds that there exists strong linear associations between the annual frequency of intense hurricanes in the Atlantic basin and temperature (specially, when temperature slightly leads). Because the long-term leading trends of temperature are now decidedly upward, beginning about the mid 1980's, it is inferred that the long-term consequential trends of the annual frequency of intense hurricanes should now also be upward, having begun near 1990, suggesting that a return to the more active state probably has already occurred. However, because of the anomalous El Nino activity of the early to mid 1990's, the switch from the less active to the more active state essentially went unnoticed (a marked increase in the number of intense hurricanes was not observed until the 1995 and 1996 hurricane seasons, following the end of the anomalous El Nino activity). Presuming that a return to the more active state has, indeed, occurred, one expects the number of seasonal intense hurricanes during the present epoch (continuing through about 2012) to usually be higher than average (i.e., greater than or equal to 2), except during El Nino-related seasons when the number usually will be less than average.

  7. Averaging, passage through resonances, and capture into resonance in two-frequency systems

    NASA Astrophysics Data System (ADS)

    Neishtadt, A. I.

    2014-10-01

    Applying small perturbations to an integrable system leads to its slow evolution. For an approximate description of this evolution the classical averaging method prescribes averaging the rate of evolution over all the phases of the unperturbed motion. This simple recipe does not always produce correct results, because of resonances arising in the process of evolution. The phenomenon of capture into resonance consists in the system starting to evolve in such a way as to preserve the resonance property once it has arisen. This paper is concerned with application of the averaging method to a description of evolution in two-frequency systems. It is assumed that the trajectories of the averaged system intersect transversally the level surfaces of the frequency ratio and that certain other conditions of general position are satisfied. The rate of evolution is characterized by a small parameter \\varepsilon. The main content of the paper is a proof of the following result: outside a set of initial data with measure of order \\sqrt \\varepsilon the averaging method describes the evolution to within O(\\sqrt \\varepsilon \\vert\\ln\\varepsilon\\vert) for periods of time of order 1/\\varepsilon. This estimate is sharp. The exceptional set of measure \\sqrt \\varepsilon contains the initial data for phase points captured into resonance. A description of the motion of such phase points is given, along with a survey of related results on averaging. Examples of capture into resonance are presented for some problems in the dynamics of charged particles. Several open problems are stated. Bibliography: 65 titles.

  8. Climate analysis of tornadoes in China

    NASA Astrophysics Data System (ADS)

    Yao, Yeqing; Yu, Xiaoding; Zhang, Yijun; Zhou, Zijiang; Xie, Wusan; Lu, Yanyu; Yu, Jinlong; Wei, Lingxiang

    2015-06-01

    Based on analysis of historical tornado observation data provided by the primary network of national weather stations in China for the period from 1960 to 2009, it is found that most tornadoes in China (85%) occurred over plains. Specifically, large numbers of tornado occurrences are found in the Northeast Plain, the North China Plain, the middle-lower Yangtze Plain, and the Pearl River Delta Plain. A flat underlying surface is conducive to tornado occurrence, while the latitudal variation of tornado occurrence in China is not so obvious. Tornadoes mainly occur in summer, and the highest frequency is in July. Note that the beginning and the time span of tornado outbreaks are different in North and South China. Tornadoes occur during May-September in South China (south of 25°N), June-September in Northeast China (north of 40°N), July-September in the middle-lower Yangtze Plain, and July-August in North China (between 25° and 40°N). More than 80% of total tornadoes occurred during the above periods for the specific regions. The 1960s and 1970s have seen about twice the average number of tornadoes (7.5 times per year) compared to the mean for 1960-2009. The most frequent occurrence of tornado was in the early and mid 1960s; there were large fluctuations in the 1970s; and the number of tornadoes in the 1980s approached the 50-yr average. Tornado occurrences gradually decreased in the late 1980s, and an abrupt change with dramatic decrease occurred in 1994. The decrease in the tornado occurrence frequency is consistent with the simultaneous climatic change in the meteorological elements that are favorable for tornado formation. Tornado formation requires large vertical wind shear and sufficient atmospheric moisture content near the ground. Changes in the vertical wind shear at both 0-1 and 0-6 km appear to be one important factor that results in the decrease in tornado formation. The changing tendency of relative humidity also has contributed to the decrease in tornado formation in China.

  9. A decentralized approach to reducing the social costs of cascading failures

    NASA Astrophysics Data System (ADS)

    Hines, Paul

    Large cascading failures in electrical power networks come with enormous social costs. These can be direct financial costs, such as the loss of refrigerated foods in grocery stores, or more indirect social costs, such as the traffic congestion that results from the failure of traffic signals. While engineers and policy makers have made numerous technical and organizational changes to reduce the frequency and impact of large cascading failures, the existing data, as described in Chapter 2 of this work, indicate that the overall frequency and impact of large electrical blackouts in the United States are not decreasing. Motivated by the cascading failure problem, this thesis describes a new method for Distributed Model Predictive Control and a power systems application. The central goal of the method, when applied to power systems, is to reduce the social costs of cascading failures by making small, targeted reductions in load and generation and changes to generator voltage set points. Unlike some existing schemes that operate from centrally located control centers, the method is operated by software agents located at substations distributed throughout the power network. The resulting multi-agent control system is a new approach to decentralized control, combining Distributed Model Predictive Control and Reciprocal Altruism. Experimental results indicate that this scheme can in fact decrease the average size, and thus social costs, of cascading failures. Over 100 randomly generated disturbances to a model of the IEEE 300 bus test network, the method resulted in nearly an order of magnitude decrease in average event size (measured in cost) relative to cascading failure simulations without remedial control actions. Additionally, the communication requirements for the method are measured, and found to be within the bandwidth capabilities of current communications technology (on the order of 100kB/second). Experiments on several resistor networks with varying structures, including a random graph, a scale-free network and a power grid indicate that the effectiveness of decentralized control schemes, like the method proposed here, is a function of the structure of the network that is to be controlled.

  10. First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble

    PubMed Central

    Dankers, Rutger; Arnell, Nigel W.; Clark, Douglas B.; Falloon, Pete D.; Fekete, Balázs M.; Gosling, Simon N.; Heinke, Jens; Kim, Hyungjun; Masaki, Yoshimitsu; Satoh, Yusuke; Stacke, Tobias; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Climate change due to anthropogenic greenhouse gas emissions is expected to increase the frequency and intensity of precipitation events, which is likely to affect the probability of flooding into the future. In this paper we use river flow simulations from nine global hydrology and land surface models to explore uncertainties in the potential impacts of climate change on flood hazard at global scale. As an indicator of flood hazard we looked at changes in the 30-y return level of 5-d average peak flows under representative concentration pathway RCP8.5 at the end of this century. Not everywhere does climate change result in an increase in flood hazard: decreases in the magnitude and frequency of the 30-y return level of river flow occur at roughly one-third (20–45%) of the global land grid points, particularly in areas where the hydrograph is dominated by the snowmelt flood peak in spring. In most model experiments, however, an increase in flooding frequency was found in more than half of the grid points. The current 30-y flood peak is projected to occur in more than 1 in 5 y across 5–30% of land grid points. The large-scale patterns of change are remarkably consistent among impact models and even the driving climate models, but at local scale and in individual river basins there can be disagreement even on the sign of change, indicating large modeling uncertainty which needs to be taken into account in local adaptation studies. PMID:24344290

  11. Quantifying watershed-scale groundwater loading and in-stream fate of nitrate using high-frequency water quality data

    USGS Publications Warehouse

    Miller, Matthew P.; Tesoriero, Anthony J.; Capel, Paul D.; Pellerin, Brian A.; Hyer, Kenneth E.; Burns, Douglas A.

    2016-01-01

    We describe a new approach that couples hydrograph separation with high-frequency nitrate data to quantify time-variable groundwater and runoff loading of nitrate to streams, and the net in-stream fate of nitrate at the watershed-scale. The approach was applied at three sites spanning gradients in watershed size and land use in the Chesapeake Bay watershed. Results indicate that 58-73% of the annual nitrate load to the streams was groundwater-discharged nitrate. Average annual first order nitrate loss rate constants (k) were similar to those reported in both modelling and in-stream process-based studies, and were greater at the small streams (0.06 and 0.22 d-1) than at the large river (0.05 d-1), but 11% of the annual loads were retained/lost in the small streams, compared with 23% in the large river. Larger streambed area to water volume ratios in small streams result in greater loss rates, but shorter residence times in small streams result in a smaller fraction of nitrate loads being removed than in larger streams. A seasonal evaluation of k values suggests that nitrate was retained/lost at varying rates during the growing season. Consistent with previous studies, streamflow and nitrate concentration were inversely related to k. This new approach for interpreting high-frequency nitrate data and the associated findings furthers our ability to understand, predict, and mitigate nitrate impacts on streams and receiving waters by providing insights into temporal nitrate dynamics that would be difficult to obtain using traditional field-based studies.

  12. The importance of leading edge vortices under simplified flapping flight conditions at the size scale of birds.

    PubMed

    Hubel, Tatjana Y; Tropea, Cameron

    2010-06-01

    Over the last decade, interest in animal flight has grown, in part due to the possible use of flapping propulsion for micro air vehicles. The importance of unsteady lift-enhancing mechanisms in insect flight has been recognized, but unsteady effects were generally thought to be absent for the flapping flight of larger animals. Only recently has the existence of LEVs (leading edge vortices) in small vertebrates such as swifts, small bats and hummingbirds been confirmed. To study the relevance of unsteady effects at the scale of large birds [reduced frequency k between 0.05 and 0.3, k=(pifc)/U(infinity); f is wingbeat frequency, U(infinity) is free-stream velocity, and c is the average wing chord], and the consequences of the lack of kinematic and morphological refinements, we have designed a simplified goose-sized flapping model for wind tunnel testing. The 2-D flow patterns along the wing span were quantitatively visualized using particle image velocimetry (PIV), and a three-component balance was used to measure the forces generated by the wings. The flow visualization on the wing showed the appearance of LEVs, which is typically associated with a delayed stall effect, and the transition into flow separation. Also, the influence of the delayed stall and flow separation was clearly visible in measurements of instantaneous net force over the wingbeat cycle. Here, we show that, even at reduced frequencies as low as those of large bird flight, unsteady effects are present and non-negligible and have to be addressed by kinematic and morphological adaptations.

  13. The Contribution of Mesoscale Convective Weather Systems to the Warm-Season Precipitation in the United States.

    NASA Astrophysics Data System (ADS)

    Fritsch, J. M.; Kane, R. J.; Chelius, C. R.

    1986-10-01

    The contribution of precipitation from mesoscale convective weather systems to the warm-season (April-September) rainfall in the United States is evaluated. Both Mesoscale Convective Complexes (MCC's) and other large, long-lived mesoscale convective systems that do not quite meet Maddox's criteria for being termed an MCC are included in the evaluation. The distribution and geographical limits of the precipitation from the convective weather systems are constructed for the warm seasons of 1982, a `normal' year, and 1983, a drought year. Precipitation characteristics of the systems are compared for the 2 years to determine how large-scale drought patterns affect their precipitation production.The frequency, precipitation characteristics and hydrologic ramifications of multiple occurrences, or series, of convective weather systems are presented and discussed. The temporal and spatial characteristics of the accumulated precipitation from a series of convective complexes is investigated and compared to that of Hurricane Alicia.It is found that mesoscale convective weather systems account for approximately 30% to 70% of the warm-season (April-September) precipitation over much of the region between the Rocky Mountains and the Mississippi River. During the June through August period, their contribution is even larger. Moreover, series of convective weather systems are very likely the most prolific precipitation producer in the United States, rivaling and even exceeding that of hurricanes.Changes in the large-scale circulation patterns affected the seasonal precipitation from mesoscale convective weather systems by altering the precipitation characteristics of individual systems. In particular, for the drought period of 1983, the frequency of the convective systems remained nearly the same as in the `normal' year (1982); however, the average precipitation area and the average volumetric production significantly decreased. Nevertheless, the rainfall that was produced by mesoscale convective weather systems in the drought year accounted for most of the precipitation received during the critical crop growth period.It is concluded that mesoscale convective weather systems may be a crucial precipitation-producing deterrent to drought and an important mechanism for enhancing midsummer crop growth throughout the midwestern United States. Furthermore, because mesoscale convective weather systems account for such a large fraction of the warm-season precipitation, significant improvements in prediction of such systems would likely translate into significant improvements in quantitative precipitation forecast skill and corresponding improvements in hydrologic forecasts of runoff.

  14. Seamount statistics in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Smith, Deborah K.; Jordan, Thomas H.

    1988-04-01

    We apply the wide-beam sampling technique of Jordan et al. (1983) to approximately 157,000 km of wide-beam profiles to obtain seamount population statistics for eight regions in the eastern and southern Pacific Ocean. Population statistics derived from wide-beam echograms are compared with seamount counts from Sea Beam swaths and with counts from bathymetric maps. We find that the average number of seamounts with summit heights h ≥ H is well-approximated by the exponential frequency-size distribution: ν(H)=νoe-βH. The exponential model for seamount sizes, characterized by the single scale parameter β-1, is found to be superior to a power-law (self-similar) model, which has no intrinsic scale, in describing the average distribution of Pacific seamounts, and it appears to be valid over a size spectrum spanning 5 orders of magnitude in abundance. Large-scale regional variations in seamount populations are documented. We observe significant differences in seamount densities across the Murray fracture zone in the North Pacific and the Eltanin fracture zone system in the South Pacific. The Eltanin discontinuity is equally evident on both sides of the Pacific-Antarctic ridge. In the South Pacific, regions symmetrically disposed about the ridge axis have very similar seamount densities, despite the large difference between Pacific plate and Antarctic plate absolute velocities; evidently, any differences in the shear flows at the base of the Pacific and Antarctic plates do not affect seamount emplacement. Systematic variations in νo and β are observed as a function of lithospheric age, with the number of large seamounts increasing more rapidly than small seamounts. These observations have been used to develop a simple model for seamount production under the assumptions that (1) an exponential size-frequency distribution is maintained, (2) production is steady state, and (3) most small seamounts are formed on or near the ridge axis. The limited data available from this study appear to be consistent with the model, but they are insufficient to provide a rigorous test of the assumptions or determine accurately the model parameters. However, the data from the South Pacific indicate that the off-axis production of large seamounts probably accounts for the majority of seamounts with summit heights greater than 1000 m.

  15. Past year non-medical opioid use and abuse and PTSD diagnosis: Interactions with sex and associations with symptom clusters

    PubMed Central

    Smith, Kathryn Z.; Smith, Philip H.; Cercone, Sarah A.; McKee, Sherry A.; Homish, Gregory G.

    2016-01-01

    Introduction Few studies have examined the associations between posttraumatic stress disorder (PTSD) and non-medical opioid use (NMOU), particularly in general U.S. samples. Methods We analyzed data from wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC), a nationally representative sample of non-institutionalized adults, to examine (1) the relationship between PTSD diagnosis with NMOU, Opioid Use Disorder diagnosis, and average monthly frequency of NMOU; and (2) the relationship between PTSD symptom clusters with NMOU, Opioid Use Disorder diagnosis, and average monthly frequency of NMOU. We also explored sex differences among these associations. Results In the adjusted model, a past year PTSD diagnosis was associated with higher odds of past year NMOU for women and men, but the association was stronger for women. In addition, a PTSD was associated with higher odds of an Opioid Use Disorder diagnosis for women, but not for men. With regards to the relationship between specific symptom clusters among those with a past year PTSD diagnosis, important sex differences emerged. For women, the avoidance symptom cluster was associated with higher odds of NMOU, an Opioid Use Disorder diagnosis, and average monthly frequency of NMOU, while for men the arousal/reactivity cluster was associated with higher odds of NMOU, an Opioid Use Disorder diagnosis, and average monthly frequency of NMOU. In addition, for men, the avoidance symptom cluster was associated with higher odds of an Opioid Use Disorder diagnosis, but a lower rate of average monthly frequency of NMOU. Conclusions Results add to the literature showing an association between PTSD and NMOU and suggest that PTSD is more strongly associated with substance use for women than men. Further, results based on individual symptom clusters suggest that men and women with PTSD may be motivated to use substances for different reasons. PMID:26946448

  16. Pooled-DNA Sequencing for Elucidating New Genomic Risk Factors, Rare Variants Underlying Alzheimer's Disease.

    PubMed

    Jin, Sheng Chih; Benitez, Bruno A; Deming, Yuetiva; Cruchaga, Carlos

    2016-01-01

    Analyses of genome-wide association studies (GWAS) for complex disorders usually identify common variants with a relatively small effect size that only explain a small proportion of phenotypic heritability. Several studies have suggested that a significant fraction of heritability may be explained by low-frequency (minor allele frequency (MAF) of 1-5 %) and rare-variants that are not contained in the commercial GWAS genotyping arrays (Schork et al., Curr Opin Genet Dev 19:212, 2009). Rare variants can also have relatively large effects on risk for developing human diseases or disease phenotype (Cruchaga et al., PLoS One 7:e31039, 2012). However, it is necessary to perform next-generation sequencing (NGS) studies in a large population (>4,000 samples) to detect a significant rare-variant association. Several NGS methods, such as custom capture sequencing and amplicon-based sequencing, are designed to screen a small proportion of the genome, but most of these methods are limited in the number of samples that can be multiplexed (i.e. most sequencing kits only provide 96 distinct index). Additionally, the sequencing library preparation for 4,000 samples remains expensive and thus conducting NGS studies with the aforementioned methods are not feasible for most research laboratories.The need for low-cost large scale rare-variant detection makes pooled-DNA sequencing an ideally efficient and cost-effective technique to identify rare variants in target regions by sequencing hundreds to thousands of samples. Our recent work has demonstrated that pooled-DNA sequencing can accurately detect rare variants in targeted regions in multiple DNA samples with high sensitivity and specificity (Jin et al., Alzheimers Res Ther 4:34, 2012). In these studies we used a well-established pooled-DNA sequencing approach and a computational package, SPLINTER (short indel prediction by large deviation inference and nonlinear true frequency estimation by recursion) (Vallania et al., Genome Res 20:1711, 2010), for accurate identification of rare variants in large DNA pools. Given an average sequencing coverage of 30× per haploid genome, SPLINTER can detect rare variants and short indels up to 4 base pairs (bp) with high sensitivity and specificity (up to 1 haploid allele in a pool as large as 500 individuals). Step-by-step instructions on how to conduct pooled-DNA sequencing experiments and data analyses are described in this chapter.

  17. Configuration-specific kinetic theory applied to an ideal binary gas mixture.

    PubMed

    Wiseman, Floyd L

    2006-10-05

    This paper is the second in a two-part series dealing with the configuration-specific analyses for molecular collision events of hard, spherical molecules at thermal equilibrium. The first paper analyzed a single-component system, and the reader is referred to it for the fundamental concepts. In this paper, the expressions for the configuration-specific collision frequencies and the average line-of-centers collision angles and speeds are derived for an ideal binary gas mixture. The analyses show that the average line-of-centers quantities are all dependent upon the ratio of the masses of the two components, but not upon molecular size. Of course, the configuration-specific collision frequencies do depend on molecular size. The expression for the overall binary collision frequency is a simple sum of the configuration-specific collision frequencies and is identical to the conventional expression.

  18. FREQUENCY OF FEET DEFORMITIES IN PUPILS ATTENDING JUNIOR GRADES OF ELEMENTARY SCHOOL

    PubMed Central

    Kendić, Sulejman; Skender, Nijaz; Ćatović, Amra; Čeleš, Naim; Dupljak, Indira; Ćatović, Sejdo

    2007-01-01

    The examination of feet by plantograph was performed in 552 pupils of first, second and fourth grades of elementary school “Harmani II” in Bihać. Examination revealed 201 children (36,42%) with satisfactory condition (pedes recti) while 351 pupils were diagnosed with certain form of feet deformity. Frequencies of feet deformities in girls are 60,00% in first, 65,19% in second and 66,30% in fourth grade. Average frequency of feet deformities in the examined girls is 64,90%. Pedes plani was found in 24,91% pupils. Fequencies of feet deformities in boys are 61,29% in first, 65,54% in second and 52,54% in fourth grade. Average frequency of feet deformities in the examined boys is 62,17%. Pedes plani is the most frequent deformity (23,83%). PMID:17848147

  19. Directly q-switched high power resonator based on XLMA-fibers

    NASA Astrophysics Data System (ADS)

    Giesberts, M.; Fitzau, O.; Hoffmann, H.-D.; Lange, R.; Bachert, C.; Krause, V.

    2018-02-01

    In this paper we present a simple approach to achieving nanosecond pulses from a directly q-switched high-power resonator based on extra-large mode area (XLMA) fibers with a beam quality factor M2 < 15. An average output power of > 500 W has been demonstrated for repetition frequencies between 50-100 kHz. The resonator consists of a single fiber q-switched with soldered Pockels-cells which exhibit a very high contrast ratio leading to output pulses down to about 10 ns and peak powers up to > 250 kW at 1064 nm wavelength. By using this design instead of a fiber MOPA setup, a cost-effective and less complex system could be implemented.

  20. Human speed perception is contrast dependent

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Thompson, Peter

    1992-01-01

    When two parallel gratings moving at the same speed are presented simultaneously, the lower-contrast grating appears slower. This misperception is evident across a wide range of contrasts (2.5-50 percent) and does not appear to saturate. On average, a 70 percent contrast grating must be slowed by 35 percent to match a 10 percent contrast grating moving at 2 deg/sec (N = 6). Furthermore, the effect is largely independent of the absolute contrast level and is a quasilinear function of log contrast ratio. A preliminary parametric study shows that, although spatial frequency has little effect, relative orientation is important. Finally, the misperception of relative speed appears lessened when the stimuli to be matched are presented sequentially.

  1. Assessing the present and future probability of Hurricane Harvey's rainfall

    NASA Astrophysics Data System (ADS)

    Emanuel, Kerry

    2017-11-01

    We estimate, for current and future climates, the annual probability of areally averaged hurricane rain of Hurricane Harvey's magnitude by downscaling large numbers of tropical cyclones from three climate reanalyses and six climate models. For the state of Texas, we estimate that the annual probability of 500 mm of area-integrated rainfall was about 1% in the period 1981–2000 and will increase to 18% over the period 2081–2100 under Intergovernmental Panel on Climate Change (IPCC) AR5 representative concentration pathway 8.5. If the frequency of such event is increasingly linearly between these two periods, then in 2017 the annual probability would be 6%, a sixfold increase since the late 20th century.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, T.; Diamond, J.; Liu, N.

    The readout electronics for the resonant beam position monitors (BPMs) in the Fermilab Switchyard (SY) have been upgraded, utilizing a low noise amplifier transition board and Fermilab designed digitizer boards. The stripline BPMs are estimated to have an average signal output of between -110 dBm and -80 dBm, with an estimated peak output of -70 dBm. The external resonant circuit is tuned to the SY machine frequency of 53.10348 MHz. Both the digitizer and transition boards have variable gain in order to accommodate the large dynamic range and irregularity of the resonant extraction spill. These BPMs will aid in auto-tuningmore » of the SY beamline as well as enabling operators to monitor beam position through the spill.« less

  3. Copy Counts

    ERIC Educational Resources Information Center

    Beaumont, Lee R.

    1970-01-01

    The level of difficulty of straight copy, which is used to measure typewriting speed, is influenced by syllable intensity (the average number of syllables per word), stroke intensity (average number of strokes per word), and high-frequency words. (CH)

  4. Physical and numerical investigation of the flow induced vibration of the hydrofoil

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Wang, G. Y.; Huang, B.

    2016-11-01

    The objective of this paper is to investigate the flow induced vibration of a flexible hydrofoil in cavitating flows via combined experimental and numerical studies. The experiments are presented for the modified NACA66 hydrofoil made of POM Polyacetate in the closed-loop cavitation tunnel at Beijing Institute of Technology. The high-speed camera and the single point Laser Doppler Vibrometer are applied to analyze the transient flow structures and the corresponding structural vibration characteristics. The hybrid coupled fluid structure interaction model is conducted to couple the incompressible and unsteady Reynolds Averaged Navier-Stokes solver with a simplified two-degree-of-freedom structural model. The k-ω SST turbulence model with the turbulence viscosity correction and the Zwart cavitation model are introduced to the present simulations. The results showed that with the decreasing of the cavitation number, the cavitating flows display incipient cavitation, sheet cavitation, cloud cavitation and supercavitation. The vibration magnitude increases dramatically for the cloud cavitation and decline for the supercavitation. The cloud cavitation development strongly affects the vibration response, which is corresponding to the periodically developing and shedding of the large-scale cloud cavity. The main frequency of the vibration amplitude is accordance with the cavity shedding frequency and other two frequencies of the vibration amplitude are corresponding to the natural frequencies of the bending and twisting modes.

  5. Elementary dispersion analysis of some mimetic discretizations on triangular C-grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korn, P., E-mail: peter.korn@mpimet.mpg.de; Danilov, S.; A.M. Obukhov Institute of Atmospheric Physics, Moscow

    2017-02-01

    Spurious modes supported by triangular C-grids limit their application for modeling large-scale atmospheric and oceanic flows. Their behavior can be modified within a mimetic approach that generalizes the scalar product underlying the triangular C-grid discretization. The mimetic approach provides a discrete continuity equation which operates on an averaged combination of normal edge velocities instead of normal edge velocities proper. An elementary analysis of the wave dispersion of the new discretization for Poincaré, Rossby and Kelvin waves shows that, although spurious Poincaré modes are preserved, their frequency tends to zero in the limit of small wavenumbers, which removes the divergence noisemore » in this limit. However, the frequencies of spurious and physical modes become close on shorter scales indicating that spurious modes can be excited unless high-frequency short-scale motions are effectively filtered in numerical codes. We argue that filtering by viscous dissipation is more efficient in the mimetic approach than in the standard C-grid discretization. Lumping of mass matrices appearing with the velocity time derivative in the mimetic discretization only slightly reduces the accuracy of the wave dispersion and can be used in practice. Thus, the mimetic approach cures some difficulties of the traditional triangular C-grid discretization but may still need appropriately tuned viscosity to filter small scales and high frequencies in solutions of full primitive equations when these are excited by nonlinear dynamics.« less

  6. A wavelet-based adaptive fusion algorithm of infrared polarization imaging

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Gu, Guohua; Chen, Qian; Zeng, Haifang

    2011-08-01

    The purpose of infrared polarization image is to highlight man-made target from a complex natural background. For the infrared polarization images can significantly distinguish target from background with different features, this paper presents a wavelet-based infrared polarization image fusion algorithm. The method is mainly for image processing of high-frequency signal portion, as for the low frequency signal, the original weighted average method has been applied. High-frequency part is processed as follows: first, the source image of the high frequency information has been extracted by way of wavelet transform, then signal strength of 3*3 window area has been calculated, making the regional signal intensity ration of source image as a matching measurement. Extraction method and decision mode of the details are determined by the decision making module. Image fusion effect is closely related to the setting threshold of decision making module. Compared to the commonly used experiment way, quadratic interpolation optimization algorithm is proposed in this paper to obtain threshold. Set the endpoints and midpoint of the threshold searching interval as initial interpolation nodes, and compute the minimum quadratic interpolation function. The best threshold can be obtained by comparing the minimum quadratic interpolation function. A series of image quality evaluation results show this method has got improvement in fusion effect; moreover, it is not only effective for some individual image, but also for a large number of images.

  7. Body mass index and acoustic voice parameters: is there a relationship.

    PubMed

    Souza, Lourdes Bernadete Rocha de; Santos, Marquiony Marques Dos

    2017-05-06

    Specific elements such as weight and body volume can interfere in voice production and consequently in its acoustic parameters, which is why it is important for the clinician to be aware of these relationships. To investigate the relationship between body mass index and the average acoustic voice parameters. Observational, cross-sectional descriptive study. The sample consisted of 84 women, aged between 18 and 40years, an average of 26.83 (±6.88). The subjects were grouped according to body mass index: 19 underweight; 23 normal ranges, 20 overweight and 22 obese and evaluated the fundamental frequency of the sustained vowel [a] and the maximum phonation time of the vowels [a], [i], [u], using PRAAT software. The data were submitted to the Kruskal-Wallis test to verify if there were differences between the groups regarding the study variables. All variables showed statistically significant results and were subjected to non-parametric test Mann-Whitney. Regarding to the average of the fundamental frequency, there was statistically significant difference between groups with underweight and overweight and obese; normal range and overweight and obese. The average maximum phonation time revealed statistically significant difference between underweight and obese individuals; normal range and obese; overweight and obese. Body mass index influenced the average fundamental frequency of overweight and obese individuals evaluated in this study. Obesity influenced in reducing maximum phonation time average. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  8. Large-scale dynamo action precedes turbulence in shearing box simulations of the magnetorotational instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Pallavi; Ebrahimi, Fatima; Blackman, Eric G.

    Here, we study the dynamo generation (exponential growth) of large-scale (planar averaged) fields in unstratified shearing box simulations of the magnetorotational instability (MRI). In contrast to previous studies restricted to horizontal (x–y) averaging, we also demonstrate the presence of large-scale fields when vertical (y–z) averaging is employed instead. By computing space–time planar averaged fields and power spectra, we find large-scale dynamo action in the early MRI growth phase – a previously unidentified feature. Non-axisymmetric linear MRI modes with low horizontal wavenumbers and vertical wavenumbers near that of expected maximal growth, amplify the large-scale fields exponentially before turbulence and high wavenumbermore » fluctuations arise. Thus the large-scale dynamo requires only linear fluctuations but not non-linear turbulence (as defined by mode–mode coupling). Vertical averaging also allows for monitoring the evolution of the large-scale vertical field and we find that a feedback from horizontal low wavenumber MRI modes provides a clue as to why the large-scale vertical field sustains against turbulent diffusion in the non-linear saturation regime. We compute the terms in the mean field equations to identify the individual contributions to large-scale field growth for both types of averaging. The large-scale fields obtained from vertical averaging are found to compare well with global simulations and quasi-linear analytical analysis from a previous study by Ebrahimi & Blackman. We discuss the potential implications of these new results for understanding the large-scale MRI dynamo saturation and turbulence.« less

  9. Large-scale dynamo action precedes turbulence in shearing box simulations of the magnetorotational instability

    DOE PAGES

    Bhat, Pallavi; Ebrahimi, Fatima; Blackman, Eric G.

    2016-07-06

    Here, we study the dynamo generation (exponential growth) of large-scale (planar averaged) fields in unstratified shearing box simulations of the magnetorotational instability (MRI). In contrast to previous studies restricted to horizontal (x–y) averaging, we also demonstrate the presence of large-scale fields when vertical (y–z) averaging is employed instead. By computing space–time planar averaged fields and power spectra, we find large-scale dynamo action in the early MRI growth phase – a previously unidentified feature. Non-axisymmetric linear MRI modes with low horizontal wavenumbers and vertical wavenumbers near that of expected maximal growth, amplify the large-scale fields exponentially before turbulence and high wavenumbermore » fluctuations arise. Thus the large-scale dynamo requires only linear fluctuations but not non-linear turbulence (as defined by mode–mode coupling). Vertical averaging also allows for monitoring the evolution of the large-scale vertical field and we find that a feedback from horizontal low wavenumber MRI modes provides a clue as to why the large-scale vertical field sustains against turbulent diffusion in the non-linear saturation regime. We compute the terms in the mean field equations to identify the individual contributions to large-scale field growth for both types of averaging. The large-scale fields obtained from vertical averaging are found to compare well with global simulations and quasi-linear analytical analysis from a previous study by Ebrahimi & Blackman. We discuss the potential implications of these new results for understanding the large-scale MRI dynamo saturation and turbulence.« less

  10. Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion.

    PubMed

    Bauer, Dominik; Zawischa, Ivo; Sutter, Dirk H; Killi, Alexander; Dekorsy, Thomas

    2012-04-23

    We demonstrate the generation of 1.1 ps pulses containing more than 41 µJ of energy directly out of an Yb:YAG thin-disk without any additional amplification stages. The laser oscillator operates in ambient atmosphere with a 3.5 MHz repetition rate and 145 W of average output power at a fundamental wavelength of 1030 nm. An average output power of 91.5 W at 515 nm was obtained by frequency doubling with a conversion efficiency exceeding 65%. Third harmonic generation resulted in 34 W at 343 nm at 34% efficiency. © 2012 Optical Society of America

  11. Water-waves frequency upshift of the spectral mean due to wind forcing

    NASA Astrophysics Data System (ADS)

    Eeltink, Debbie; Chabchoub, Amin; Brunetti, Maura; Kasparian, Jerome; Kimmoun, Olivier; Branger, Hubert

    2017-04-01

    The effect of wind forcing on monochromatic modulated water waves was investigated both numerically and experimentally in the context of the Modified Non-Linear Schrödinger (MNLS) equation framework. While wind is usually associated with a frequency downshift of the dominant spectral peak, we show that it may induce an upshift of the spectral mean due to an asymmetric amplification of the spectrum. Here the weighted average spectral mean is equal to the ratio of the momentum of the envelope to its norm and it detects any asymmetries in the spectrum (Segur et al. 2005). Wind can however indirectly induce frequency downshifts, by promoting dissipative effects like wave breaking. We highlight that the definition of the up- and downshift in terms of peak frequency or average frequency is critical for a relevant discussion. In our model, the wind input consists of a leading order forcing term that amplifies all frequencies equally and induces a broadening of the spectrum, and a higher order asymmetric term (Brunetti et al. 2014; Brunetti & Kasparian 2014) that amplifies higher frequencies more than lower ones and induces a permanent upshift of the spectral mean. The effect of MNLS + wind is exactly opposite to MNLS + viscosity, where the lower order viscosity terms damp the whole spectrum, while the higher order viscosity terms damp higher frequencies more than lower ones and thus causes a permanent downshift, as evidenced by Carter & Govan (2016). We corroborated the model with wave tank experiments conducted in the IRPHE/Pytheas large wind-wave facility located in Marseille, France. Wave data analysis show the temporary downshift in the spectral peak sense caused by the wind, and the temporary upshift in the spectral mean sense characteristic of the MNLS. As the tank-length was limited, we used long-range simulations to obtain upshift in the spectral mean sense caused by the wind. The limit of the model is reached when breaking events occur. We acknowledge financial support from the Swiss National Science Foundation (project 200021-155970), the Labex MEC (French ANR-10-LABX-0092) and the A*MIDEX project (ANR-11-IDEX-0001-02). • Brunetti, M. and Kasparian, J. 2014 "Modulational instability in wind-forced waves". Physics Letters A, 378: 48, 3626-3630. • Brunetti, M., Marchiando, N., Berti, N. and Kasparian, J. 2014 "Nonlinear fast growth of water waves under wind forcing". Physics Letters A 378: 1415, 1025-1030. • Carter, J. D. and Govan, A. 2016 "Frequency downshift in a viscous fluid." Eur. Journ. Mech. - B/Fluids 59: 177-185. • Segur, H., Henderson, D., Carter, J., Hammack, J., Li, C.-M., Pheiff, D. and Socha, K. 2005 "Stabilizing the Benjamin-Feir instability". Journ. Fluid Mechanics, 539: 229-271.

  12. The efficiency of photovoltaic cells exposed to pulsed laser light

    NASA Technical Reports Server (NTRS)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  13. The Experimental Study about the Effect of Operating Conditions on Multi-tube Pulse Detonation Engine Performance

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Min; Han, Hyung-Seok; Choi, Jeong-Yeol

    2018-04-01

    This study examines a multi-tube pulse detonation engine (PDE) which has a type of constant volume combustion. We designed and made the multi-tube PDE and then conducted an experiment in various operating frequencies and equivalence ratios. First, experiments with operating frequencies of 40, 80, 120, 160, and 200 Hz resulted in an average thrust and specific impulse 23.14 N and 42.34 s. The next experiment resulted in the equivalence ratio varying from 0.81 to 1.38, which resulted in an average thrust and specific impulse 22.36 N and 40.11 s. The average detonation velocity was 8% lower than that calculated according to C-J theory. The incidence ratios of the detonation wave were stable with the exception of the operating frequency of 200 Hz. However, at 200 Hz, the incidence ratio was less than 50%. We assumed that a low fill fraction occurred for this problem. The thrust of the PDE increased with the operating frequency. However, the thrust increase was at a lower rate than in previous studies, because of a lost thrust output result from the slow response time of the load cell amplifier.

  14. Compact Tunable Narrowband Terahertz-Wave Source Based on Difference Frequency Generation Pumped by Dual Fiber Lasers in MgO:LiNbO3

    NASA Astrophysics Data System (ADS)

    Wada, Yoshio; Satoh, Takumi; Higashi, Yasuhiro; Urata, Yoshiharu

    2017-12-01

    We demonstrate a high-average-power, single longitudinal-mode, and tunable terahertz (THz)-wave source based on difference frequency generation (DFG) in a MgO:LiNbO3 (MgO:LN) crystal. The waves for DFG are generated using a pair of Yb-doped pulsed fiber lasers with a master oscillator power fiber amplifier configuration. The average power of the THz-wave output reaches 450 μW at 1.07 THz (280 μm) at a linewidth of 7.2 GHz, and the tunability ranges from 0.35 to 1.07 THz under the pulse repetition frequency of 500 kHz. A short burn-in test of the THz wave is also carried out, and the output power stability is within ± 5% of the averaged power without any active stabilizing technique. The combination of MgO:LN-DFG and stable and robust fiber laser sources is highly promising for the development of high-average-power THz-wave sources, particularly in the high transmission sub-THz region. This approach may enable new applications of THz-wave spectroscopy in imaging and remote sensing.

  15. Relative locations between shallow very low frequency earthquakes and low frequency tremors investigated based on near-filed BBOBS records

    NASA Astrophysics Data System (ADS)

    Chi, W. C.; To, A.; Chen, W. J.; Konishi, K.

    2017-12-01

    Two types of anomalous seismic events of long duration with signals depleted in high frequencies relative to most earthquakes are recorded in a network of broadband ocean bottom seismometers (BBOBS) deployed at shallow Nankai subduction zone (DONET1). The first type is very low frequency earthquake (VLFE) whose signals are observed both in the lower and higher frequency ranges of the 0.1 Hz microseism band, which are 0.02-0.06 Hz and 2-8 Hz. The second type is low frequency tremor (LFT), whose signals are only observed at 2-8 Hz. The waveform similarity at 2-8 Hz and concurrences of the two types of event warrant further investigations on whether they represent the same phenomenon or not. Previously, To et al., (2015) examined the relation between VLFEs and LFTs by comparing their maximum amplitude at two different frequency ranges, 2-8 Hz and 0.02-0.05 Hz. The comparison showed that the maximum amplitudes measured at the two frequency ranges correlate positively for VLFEs, that is, large magnitude VLFEs showed large amplitude in both frequency ranges. The comparison also showed that the amplitude measured at 2-8 Hz were larger for VLFEs than those of LFTs. Based on such amplitude observations, they concluded that VLFEs and LFTs are likely smaller and larger events of the same phenomenon. Here, we examined the relation between the two types of event based on their spatial distribution. Their distributions should be similar if they represent the same phenomenon. The data are broadband seismographs of 20 stations of DONET1. We detected 144 VLFEs and 775 LFTs during the intense LFT/VLFE activity period of one week in October 2015. Events are located using an envelope cross correlation method. We used the root-mean-square (RMS) amplitudes constructed from the two horizontal components, bandpass filtered at 2-­8 Hz and then smoothed by taking a moving average with a window length of 5 s. The obtained distributions of VLFEs and LFTs show similar patterns. They both formed two spatially separated groups, one in the northeast side and the other in the southwest side of DONET1. There is no spatial segregation between the two event types, supporting the speculation that VLFEs and LFEs are different manifestations of the same phenomenon. Acknowledgement: Data of DONET1 were downloaded through https://hinetwww11.bosai.go.jp.

  16. Electroacoustic Performance of Direct-Input Hearing Aids with FM Amplification Systems.

    ERIC Educational Resources Information Center

    Thibodeau, Linda M.

    1990-01-01

    The electroacoustic performance of 18 direct-input and two inductive-coupling hearing aids was compared when operating with two different frequency modulation (FM) systems. The most significant differences occurred in full-on gain, equivalent-input noise, and frequency response, as opposed to high frequency average saturation sound pressure level…

  17. Ultrastable automatic frequency control

    NASA Technical Reports Server (NTRS)

    Sabourin, D. J.; Furiga, A.

    1981-01-01

    Center frequency of wideband AFC circuit drifts only hundredths of percent per day. Since circuit responds only to slow frequency drifts and modulation signal has high-pass characteristics, AFC does not interfere with normal FM operation. Stable oscillator, reset circuit, and pulse generator constitute time-averaging discriminator; digital counter in pulse generator replaces usual monostable multivibrator.

  18. Estimating the vibration level of an L-shaped beam using power flow techniques

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.; Mccollum, M.; Rassineux, J. L.; Gilbert, T.

    1986-01-01

    The response of one component of an L-shaped beam, with point force excitation on the other component, is estimated using the power flow method. The transmitted power from the source component to the receiver component is expressed in terms of the transfer and input mobilities at the excitation point and the joint. The response is estimated both in narrow frequency bands, using the exact geometry of the beams, and as a frequency averaged response using infinite beam models. The results using this power flow technique are compared to the results obtained using finite element analysis (FEA) of the L-shaped beam for the low frequency response and to results obtained using statistical energy analysis (SEA) for the high frequencies. The agreement between the FEA results and the power flow method results at low frequencies is very good. SEA results are in terms of frequency averaged levels and these are in perfect agreement with the results obtained using the infinite beam models in the power flow method. The narrow frequency band results from the power flow method also converge to the SEA results at high frequencies. The advantage of the power flow method is that detail of the response can be retained while reducing computation time, which will allow the narrow frequency band analysis of the response to be extended to higher frequencies.

  19. Some limitations of frequency as a component of risk: an expository note.

    PubMed

    Cox, Louis Anthony

    2009-02-01

    Students of risk analysis are often taught that "risk is frequency times consequence" or, more generally, that risk is determined by the frequency and severity of adverse consequences. But is it? This expository note reviews the concepts of frequency as average annual occurrence rate and as the reciprocal of mean time to failure (MTTF) or mean time between failures (MTBF) in a renewal process. It points out that if two risks (represented as two (frequency, severity) pairs for adverse consequences) have identical values for severity but different values of frequency, then it is not necessarily true that the one with the smaller value of frequency is preferable-and this is true no matter how frequency is defined. In general, there is not necessarily an increasing relation between the reciprocal of the mean time until an event occurs, its long-run average occurrences per year, and other criteria, such as the probability or expected number of times that it will happen over a specific interval of interest, such as the design life of a system. Risk depends on more than frequency and severity of consequences. It also depends on other information about the probability distribution for the time of a risk event that can become lost in simple measures of event "frequency." More flexible descriptions of risky processes, such as point process models can avoid these limitations.

  20. Continuous transdermal nitroglycerin therapy for menopausal hot flashes: a single-arm, dose-escalation trial.

    PubMed

    Huang, Alison J; Cummings, Steven R; Schembri, Michael; Vittinghoff, Eric; Ganz, Peter; Grady, Deborah

    2016-03-01

    To describe the efficacy and tolerability of continuous nitroglycerin for treatment of hot flashes. Perimenopausal and postmenopausal women reporting at least seven hot flashes per day were recruited into a single-arm, dose-escalation trial of continuous transdermal nitroglycerin. Participants were started on a generic 0.1 mg/hour nitroglycerin patch applied daily without patch-free periods. During 4 weeks, participants escalated dosage weekly to 0.2, 0.4, or 0.6 mg/hour as tolerated, then discontinued nitroglycerin during the final week. Changes in hot flash frequency and severity were assessed using symptom diaries. Paired t tests examined change in outcomes between baseline and maximal-dose therapy and after discontinuation of nitroglycerin. Of the 19 participants, mean age was 51.4 (±4.3) years. Women reported an average 10.6 (±3.0) hot flashes and 7.1 (±3.8) moderate-to-severe hot flashes per day at baseline. Eleven women escalated to 0.6 mg/hour, three to 0.4 mg/hour, two to 0.2 mg/hour, and one remained on 0.1 mg/hour nitroglycerin. Two discontinued nitroglycerin before the first outcomes assessment. Among the remaining 17 women, the average daily frequency of hot flashes decreased by 54% and the average frequency of moderate-to-severe hot flashes decreased by 69% from baseline to maximum-dose therapy (P < 0.001 for both). After discontinuing nitroglycerin, participants reported an average 23% increase in frequency of any hot flashes (P = 0.041) and 96% increase in moderate-to-severe hot flashes (P < 0.001). Continuous nitroglycerin may substantially and reversibly decrease hot flash frequency and severity. If confirmed in a randomized blinded trial, it may offer a novel nonhormonal hot flash treatment.

  1. Continuous Transdermal Nitroglycerin Therapy for Menopausal Hot Flashes: A Single-Arm Dose-Escalation Trial

    PubMed Central

    Huang, Alison J.; Cummings, Steven R.; Schembri, Michael; Vittinghoff, Eric; Ganz, Peter; Grady, Deborah

    2015-01-01

    Objective To describe the efficacy and tolerability of continuous nitroglycerin for treatment of hot flashes. Methods Peri- and postmenopausal women reporting at least 7 hot flashes per day were recruited into a single-arm, dose-escalation trial of continuous transdermal nitroglycerin. Participants were started on a generic 0.1 mg/hr nitroglycerin patch applied daily without patch-free periods. Over four weeks, participants escalated dosage weekly to 0.2, 0.4, or 0.6 mg/hr as tolerated, then discontinued nitroglycerin during the final week. Changes in hot flash frequency and severity were assessed using symptom diaries. Paired t-tests examined change in outcomes between baseline and maximal-dose therapy as well as after discontinuation of nitroglycerin. Results Of the 19 participants, mean age was 51.4 (±4.3) years. Women reported an average 10.6 (±3.0) hot flashes and 7.1 (±3.8) moderate-to-severe hot flashes per day at baseline. Eleven women escalated to 0.6 mg/hr, three to 0.4 mg/hr, two to 0.2 mg/hr, and one remained on 0.1 mg/hr nitroglycerin. Two discontinued nitroglycerin before the first outcomes assessment. Among the remaining 17 women, the average daily frequency of hot flashes decreased by 54% and the average frequency of moderate-to-severe hot flashes decreased by 69% from baseline to maximum-dose therapy (P<0.001 for both). After discontinuing nitroglycerin, participants reported an average 23% increase in frequency of any hot flashes (P=0.041) and 96% increase in moderate-to-severe hot flashes (P<0.001). Conclusions Continuous nitroglycerin may substantially and reversibly decrease hot flash frequency and severity. If confirmed in a randomized blinded trial, it may offer a novel non-hormonal hot flash treatment. PMID:26263283

  2. Variability of fractal dimension of solar radio flux

    NASA Astrophysics Data System (ADS)

    Bhatt, Hitaishi; Sharma, Som Kumar; Trivedi, Rupal; Vats, Hari Om

    2018-04-01

    In the present communication, the variation of the fractal dimension of solar radio flux is reported. Solar radio flux observations on a day to day basis at 410, 1415, 2695, 4995, and 8800 MHz are used in this study. The data were recorded at Learmonth Solar Observatory, Australia from 1988 to 2009 covering an epoch of two solar activity cycles (22 yr). The fractal dimension is calculated for the listed frequencies for this period. The fractal dimension, being a measure of randomness, represents variability of solar radio flux at shorter time-scales. The contour plot of fractal dimension on a grid of years versus radio frequency suggests high correlation with solar activity. Fractal dimension increases with increasing frequency suggests randomness increases towards the inner corona. This study also shows that the low frequency is more affected by solar activity (at low frequency fractal dimension difference between solar maximum and solar minimum is 0.42) whereas, the higher frequency is less affected by solar activity (here fractal dimension difference between solar maximum and solar minimum is 0.07). A good positive correlation is found between fractal dimension averaged over all frequencies and yearly averaged sunspot number (Pearson's coefficient is 0.87).

  3. A Seven-Year Longitudinal Claim Analysis to Assess the Factors Contributing to the Increased Severity of Work-Related Injuries.

    PubMed

    Kalia, Nimisha; Lavin, Robert A; Yuspeh, Larry; Bernacki, Edward J; Tao, Xuguang Grant

    2016-09-01

    In recent decades, the frequency of Medical Only (MO) and Lost Time (LT) workers' compensation claims has decreased, while average severity (medical and indemnity costs) has increased. The aim of this study was to compare claim frequency, mix, and severity (cost) over two periods using a claim cohort follow-up method. Sixty-two thousand five hundred thirty-three claims during two periods (1999 to 2002 and 2003 to 2006) were followed seven years postinjury. Descriptive analysis and significant testing methods were used to compare claim frequency and costs. The number of claims per $1 M of premium decreased 50.4% for MO claims and 35.6% for LT claims, consequently increasing the LT claim proportion. The average cost of LT claims did not increase. The severity increase is attributable to the proportional change in LT and MO claims. While the number of LT claims decreased, the inflation-adjusted average cost of LT claims did not increase.

  4. Development of a high-frequency and large-stroke fatigue testing system for rubber

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Wu, Hao; Gao, Jianwen; Lin, Qiang

    2017-04-01

    The limited capabilities of current fatigue testing machines have resulted in studies on the fatigue behavior of rubber under large-displacement amplitude and high frequency being very sparse. In this study, a fatigue testing system that can carry out large-displacement amplitude and high-frequency fatigue tests on rubber was developed using a moving magnet voice coil motor (MMVCM) actuator, with finite element analysis applied to analyze the thrust of the MMVCM actuator. The results of a series of cyclic tension tests conducted on vulcanized natural rubber specimens using the developed fatigue testing system verify that it has high precision, low noise, large-stroke, and high-frequency characteristics. Further, the load frame with the developed MMVCM actuator is feasible for material testing, especially for large-stroke and high-frequency fatigue tests.

  5. Spectral analysis of 87-lead body surface signal-averaged ECGs in patients with previous anterior myocardial infarction as a marker of ventricular tachycardia.

    PubMed

    Hosoya, Y; Kubota, I; Shibata, T; Yamaki, M; Ikeda, K; Tomoike, H

    1992-06-01

    There were few studies on the relation between the body surface distribution of high- and low-frequency components within the QRS complex and ventricular tachycardia (VT). Eighty-seven signal-averaged ECGs were obtained from 30 normal subjects (N group) and 30 patients with previous anterior myocardial infarction (MI) with VT (MI-VT[+] group, n = 10) or without VT (MI-VT[-] group, n = 20). The onset and offset of the QRS complex were determined from 87-lead root mean square values computed from the averaged (but not filtered) ECG waveforms. Fast Fourier transform analysis was performed on signal-averaged ECG. The resulting Fourier coefficients were attenuated by use of the transfer function, and then inverse transform was done with five frequency ranges (0-25, 25-40, 40-80, 80-150, and 150-250 Hz). From the QRS onset to the QRS offset, the time integration of the absolute value of reconstructed waveforms was calculated for each of the five frequency ranges. The body surface distributions of these areas were expressed as QRS area maps. The maximal values of QRS area maps were compared among the three groups. In the frequency ranges of 0-25 and 150-250 Hz, there were no significant differences in the maximal values among these three groups. Both MI groups had significantly smaller maximal values of QRS area maps in the frequency ranges of 25-40 and 40-80 Hz compared with the N group. The MI-VT(+) group had significantly smaller maximal values in the frequency ranges of 40-80 and 80-150 Hz than the MI-VT(-) group. These three groups were clearly differentiated by the maximal values of the 40-80-Hz QRS area map. It was suggested that the maximal value of the 40-80-Hz QRS area map was a new marker for VT after anterior MI.

  6. Tidal dissipation in rotating fluid bodies: the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Lin, Yufeng; Ogilvie, Gordon I.

    2018-02-01

    We investigate effects of the presence of a magnetic field on tidal dissipation in rotating fluid bodies. We consider a simplified model consisting of a rigid core and a fluid envelope, permeated by a background magnetic field (either a dipolar field or a uniform axial field). The wave-like tidal responses in the fluid layer are in the form of magnetic Coriolis waves, which are restored by both the Coriolis force and the Lorentz force. Energy dissipation occurs through viscous damping and Ohmic damping of these waves. Our numerical results show that the tidal dissipation can be dominated by Ohmic damping even with a weak magnetic field. The presence of a magnetic field smooths out the complicated frequency dependence of the dissipation rate, and broadens the frequency spectrum of the dissipation rate, depending on the strength of the background magnetic field. However, the frequency-averaged dissipation is independent of the strength and structure of the magnetic field, and of the dissipative parameters in the approximation that the wave-like response is driven only by the Coriolis force acting on the non-wavelike tidal flow. Indeed, the frequency-averaged dissipation quantity is in good agreement with previous analytical results in the absence of magnetic fields. Our results suggest that the frequency-averaged tidal dissipation of the wave-like perturbations is insensitive to detailed damping mechanisms and dissipative properties.

  7. Peak-flow frequency relations and evaluation of the peak-flow gaging network in Nebraska

    USGS Publications Warehouse

    Soenksen, Philip J.; Miller, Lisa D.; Sharpe, Jennifer B.; Watton, Jason R.

    1999-01-01

    Estimates of peak-flow magnitude and frequency are required for the efficient design of structures that convey flood flows or occupy floodways, such as bridges, culverts, and roads. The U.S. Geological Survey, in cooperation with the Nebraska Department of Roads, conducted a study to update peak-flow frequency analyses for selected streamflow-gaging stations, develop a new set of peak-flow frequency relations for ungaged streams, and evaluate the peak-flow gaging-station network for Nebraska. Data from stations located in or within about 50 miles of Nebraska were analyzed using guidelines of the Interagency Advisory Committee on Water Data in Bulletin 17B. New generalized skew relations were developed for use in frequency analyses of unregulated streams. Thirty-three drainage-basin characteristics related to morphology, soils, and precipitation were quantified using a geographic information system, related computer programs, and digital spatial data.For unregulated streams, eight sets of regional regression equations relating drainage-basin to peak-flow characteristics were developed for seven regions of the state using a generalized least squares procedure. Two sets of regional peak-flow frequency equations were developed for basins with average soil permeability greater than 4 inches per hour, and six sets of equations were developed for specific geographic areas, usually based on drainage-basin boundaries. Standard errors of estimate for the 100-year frequency equations (1percent probability) ranged from 12.1 to 63.8 percent. For regulated reaches of nine streams, graphs of peak flow for standard frequencies and distance upstream of the mouth were estimated.The regional networks of streamflow-gaging stations on unregulated streams were analyzed to evaluate how additional data might affect the average sampling errors of the newly developed peak-flow equations for the 100-year frequency occurrence. Results indicated that data from new stations, rather than more data from existing stations, probably would produce the greatest reduction in average sampling errors of the equations.

  8. Remote sensing of mesospheric electric fields using MF radars

    NASA Astrophysics Data System (ADS)

    Meek, C. E.; Manson, A. H.; Martynenko, S. I.; Rozumenko, V. T.; Tyrnov, O. F.

    2004-07-01

    Large mesospheric electric fields can play an essential role in middle atmospheric electrodynamics (see, e.g., Goldberg, R. A., Middle Atmospheric Electrodynamics during MAP, Adv. Space Res. 10 (10) (1990) 209). The V/m electric fields of atmospheric origin can be the possible cause of large variations in the electron collision frequency at mesospheric altitudes, and this provides a unique opportunity to take measurements of electric fields in the lower ionosphere by using remote sensing instruments employing radiowave techniques. A technique has been proposed for making estimates of large mesospheric electric field intensities on the lower edge of the ionosphere by using MF radar data and the inherent effective electron collision frequency. To do this, data collected in Canada and Ukraine were utilized. The developed technique permits the changes in mesospheric electric field intensities to be derived from MF radar data in real time. The statistical analysis of data consistent with large mesospheric electric field intensities in the 60-67km region resulted in the following inferences. There are at least two mechanisms for the generation of large mesospheric electric fields in the mesosphere. The most likely mechanism, with a probability of 60-70%, is the summation of random fields from a large number of elementary small-scale mesospheric generators, which results in a one-parameter Rayleigh distribution of the total large mesospheric electric field intensity E with a mean value of approximately 0.7-0.9V/m in the 60-67km altitude region, or in the corresponding one-parameter exponential distribution of the intensity squared E2 of large mesospheric electric fields. The second mechanism of unknown nature, with 5-15% probability, gives rise to the sporadic appearance of large mesospheric electric field intensities E>2.5V/m with a mean of 4V/m. Statistically significant seasonal differences in the averaged large mesospheric electric field parameters have not been revealed. The probability of the absence of local large mesospheric electric fields amounts to approximately 25% for Ukraine and approximately 30% for Canada. A comparison of the Ukrainian and Canadian data indicates the possible existence of a latitudinal dependence in mean large mesospheric electric field features. Hence, the large electric fields are an additional source of electron heating that must be taken into account in studying a disturbed lower ionosphere and radio wave propagation within it.

  9. Ten-channel InP-based large-scale photonic integrated transmitter fabricated by SAG technology

    NASA Astrophysics Data System (ADS)

    Zhang, Can; Zhu, Hongliang; Liang, Song; Cui, Xiao; Wang, Huitao; Zhao, Lingjuan; Wang, Wei

    2014-12-01

    A 10-channel InP-based large-scale photonic integrated transmitter was fabricated by selective area growth (SAG) technology combined with butt-joint regrowth (BJR) technology. The SAG technology was utilized to fabricate the electroabsorption modulated distributed feedback (DFB) laser (EML) arrays at the same time. The design of coplanar electrodes for electroabsorption modulator (EAM) was used for the flip-chip bonding package. The lasing wavelength of DFB laser could be tuned by the integrated micro-heater to match the ITU grids, which only needs one electrode pad. The average output power of each channel is 250 μW with an injection current of 200 mA. The static extinction ratios of the EAMs for 10 channels tested are ranged from 15 to 27 dB with a reverse bias of 6 V. The frequencies of 3 dB bandwidth of the chip for each channel are around 14 GHz. The novel design and simple fabrication process show its enormous potential in reducing the cost of large-scale photonic integrated circuit (LS-PIC) transmitter with high chip yields.

  10. Determining the physical processes behind four large eruptions in rapid sequence in the San Juan caldera cluster (Colorado, USA)

    NASA Astrophysics Data System (ADS)

    Curry, Adam; Caricchi, Luca; Lipman, Peter

    2017-04-01

    Large, explosive volcanic eruptions can have both immediate and long-term negative effects on human societies. Statistical analyses of volcanic eruptions show that the frequency of the largest eruptions on Earth (> ˜450 km3) differs from that observed for smaller eruptions, suggesting different physical processes leading to eruption. This project will characterize the petrography, whole-rock geochemistry, mineral chemistry, and zircon geochronology of four caldera-forming ignimbrites from the San Juan caldera cluster, Colorado, to determine the physical processes leading to eruption. We collected outflow samples along stratigraphy of the three caldera-forming ignimbrites of the San Luis caldera complex: the Nelson Mountain Tuff (>500 km3), Cebolla Creek Tuff (˜250 km3), and Rat Creek Tuff (˜150 km3); and we collected samples of both outflow and intracaldera facies of the Snowshoe Mountain Tuff (>500 km3), which formed the Creede caldera. Single-crystal sanidine 40Ar/39Ar ages show that these eruptions occurred in rapid succession between 26.91 ± 0.02 Ma (Rat Creek) and 26.87 ± 0.02 Ma (Snowshoe Mountain), providing a unique opportunity to investigate the physical processes leading to a rapid sequence of large, explosive volcanic eruptions. Recent studies show that the average flux of magma is an important parameter in determining the frequency and magnitude of volcanic eruptions. High-precision isotope-dilution thermal ionization mass spectrometry (ID-TIMS) zircon geochronology will be performed to determine magma fluxes, and cross-correlation of chemical profiles in minerals will be performed to determine the periodicity of magma recharge that preceded these eruptions. Our project intends to combine these findings with similar data from other volcanic regions around the world to identify physical processes controlling the regional and global frequency-magnitude relationships of volcanic eruptions.

  11. Power Spectrum of Atmospheric Scintillation for the Deep Space Network Goldstone Ka-Band Downlink

    NASA Technical Reports Server (NTRS)

    Ho, C.; Wheelon, A.

    2004-01-01

    Dynamic signal fluctuations due to atmospheric scintillations may impair the Ka-band (around 32-GHz) link sensitivities for a low-margin Deep Space Network (DSN) receiving system. The ranges of frequency and power of the fast fluctuating signals (time scale less than 1 min) are theoretically investigated using the spatial covariance and turbulence theory. Scintillation power spectrum solutions are derived for both a point receiver and a finite-aperture receiver. The aperture-smoothing frequency ((omega(sub s)), corner frequency ((omega(sub c)), and damping rate are introduced to define the shape of the spectrum for a finite-aperture antenna. The emphasis is put on quantitatively describing the aperture-smoothing effects and graphically estimating the corner frequency for a large aperture receiver. Power spectral shapes are analyzed parametrically in detail through both low- and high-frequency approximations. It is found that aperture-averaging effects become significant when the transverse correlation length of the scintillation is smaller than the antenna radius. The upper frequency or corner frequency for a finite-aperture receiver is controlled by both the Fresnel frequency and aperture-smoothing frequency. Above the aperture-smoothing frequency, the spectrum rolls off at a much faster rate of exp (-omega(sup 2)/omega(sup 2, sub s), rather than omega(sup -8/3), which is customary for a point receiver. However, a relatively higher receiver noise level can mask the fast falling-off shape and make it hard to be identified. We also predict that when the effective antenna radius a(sub r) less than or = 6 m, the corner frequency of its power spectrum becomes the same as that for a point receiver. The aperture-smoothing effects are not obvious. We have applied these solutions to the scenario of a DSN Goldstone 34-m-diameter antenna and predicted the power spectrum shape for the receiving station. The maximum corner frequency for the receiver (with omega(sub s) = 0.79 omega(sub 0) is found to be 0.44 Hz (or 1.0 omega(sub 0), while the fading rate (or fading slope) is about 0.06 dB/s.

  12. Estimating selected low-flow frequency statistics and harmonic-mean flows for ungaged, unregulated streams in Indiana

    USGS Publications Warehouse

    Martin, Gary R.; Fowler, Kathleen K.; Arihood, Leslie D.

    2016-09-06

    Information on low-flow characteristics of streams is essential for the management of water resources. This report provides equations for estimating the 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and the harmonic-mean flow at ungaged, unregulated stream sites in Indiana. These equations were developed using the low-flow statistics and basin characteristics for 108 continuous-record streamgages in Indiana with at least 10 years of daily mean streamflow data through the 2011 climate year (April 1 through March 31). The equations were developed in cooperation with the Indiana Department of Environmental Management.Regression techniques were used to develop the equations for estimating low-flow frequency statistics and the harmonic-mean flows on the basis of drainage-basin characteristics. A geographic information system was used to measure basin characteristics for selected streamgages. A final set of 25 basin characteristics measured at all the streamgages were evaluated to choose the best predictors of the low-flow statistics.Logistic-regression equations applicable statewide are presented for estimating the probability that selected low-flow frequency statistics equal zero. These equations use the explanatory variables total drainage area, average transmissivity of the full thickness of the unconsolidated deposits within 1,000 feet of the stream network, and latitude of the basin outlet. The percentage of the streamgage low-flow statistics correctly classified as zero or nonzero using the logistic-regression equations ranged from 86.1 to 88.9 percent.Generalized-least-squares regression equations applicable statewide for estimating nonzero low-flow frequency statistics use total drainage area, the average hydraulic conductivity of the top 70 feet of unconsolidated deposits, the slope of the basin, and the index of permeability and thickness of the Quaternary surficial sediments as explanatory variables. The average standard error of prediction of these regression equations ranges from 55.7 to 61.5 percent.Regional weighted-least-squares regression equations were developed for estimating the harmonic-mean flows by dividing the State into three low-flow regions. The Northern region uses total drainage area and the average transmissivity of the entire thickness of unconsolidated deposits as explanatory variables. The Central region uses total drainage area, the average hydraulic conductivity of the entire thickness of unconsolidated deposits, and the index of permeability and thickness of the Quaternary surficial sediments. The Southern region uses total drainage area and the percent of the basin covered by forest. The average standard error of prediction for these equations ranges from 39.3 to 66.7 percent.The regional regression equations are applicable only to stream sites with low flows unaffected by regulation and to stream sites with drainage basin characteristic values within specified limits. Caution is advised when applying the equations for basins with characteristics near the applicable limits and for basins with karst drainage features and for urbanized basins. Extrapolations near and beyond the applicable basin characteristic limits will have unknown errors that may be large. Equations are presented for use in estimating the 90-percent prediction interval of the low-flow statistics estimated by use of the regression equations at a given stream site.The regression equations are to be incorporated into the U.S. Geological Survey StreamStats Web-based application for Indiana. StreamStats allows users to select a stream site on a map and automatically measure the needed basin characteristics and compute the estimated low-flow statistics and associated prediction intervals.

  13. Discovery of the Neutron Star Spin Frequency in EXO 0748-676

    NASA Technical Reports Server (NTRS)

    Villarreal, Adam R.; Strohmayer, Tod E.

    2004-01-01

    We report the results of a search for burst oscillations during thermonuclear X-ray bursts from the low mass X-ray binary (LMXB) EXO 0748-676. With the proportional counter array (PCA) onboard the Rossi X-ray Timing Explorer (RXTE) we have detected a 45 Hz oscillation in the average power spectrum of 38 thermonuclear X-ray bursts from this source. We computed power spectra with 1 Hz frequency resolution for both the rising and decaying portions of 38 X-ray bursts from the public RXTE archive. We averaged the 1 Hz power spectra and detected a significant signal at 45 Hz in the decaying phases of the bursts. The signal is detected at a significance level of 4 x 10 (exp -8) similar signal was detected in the rising intervals. The oscillation peak is unresolved at 1 Hz frequency resolution, indicating an oscillation quality factor, Q = nu (sub 0)/Delta nu (sub fwhm) greater than 45, and the average signal amplitude is approximately equal to 3% (rms) The detection of 45 Hz burst oscillations from EXO 0748-676 provides compelling evidence that this is the neutron star spin frequency in this system. We use the inferred spin frequency to model the widths of absorption lines from the neutron star surface and show that the widths of the absorption lines from EXO 0748-676 recently reported by Cottam et al. are consistent with a 45 Hz spin frequency as long as the neutron star radius is in the range from about 9.5 - 15 km. With a known spin frequency, precise modelling of the line profiles from EXO 0748-676 holds great promise for constraining the dense matter equation of state.

  14. The frequency-difference and frequency-sum acoustic-field autoproducts.

    PubMed

    Worthmann, Brian M; Dowling, David R

    2017-06-01

    The frequency-difference and frequency-sum autoproducts are quadratic products of solutions of the Helmholtz equation at two different frequencies (ω + and ω - ), and may be constructed from the Fourier transform of any time-domain acoustic field. Interestingly, the autoproducts may carry wave-field information at the difference (ω + - ω - ) and sum (ω + + ω - ) frequencies even though these frequencies may not be present in the original acoustic field. This paper provides analytical and simulation results that justify and illustrate this possibility, and indicate its limitations. The analysis is based on the inhomogeneous Helmholtz equation and its solutions while the simulations are for a point source in a homogeneous half-space bounded by a perfectly reflecting surface. The analysis suggests that the autoproducts have a spatial phase structure similar to that of a true acoustic field at the difference and sum frequencies if the in-band acoustic field is a plane or spherical wave. For multi-ray-path environments, this phase structure similarity persists in portions of the autoproduct fields that are not suppressed by bandwidth averaging. Discrepancies between the bandwidth-averaged autoproducts and true out-of-band acoustic fields (with potentially modified boundary conditions) scale inversely with the product of the bandwidth and ray-path arrival time differences.

  15. [Simulation study of air quality health index in 5 cities in China: 2013-2015].

    PubMed

    Wang, W T; Sun, Q H; Qin, J; Li, T T; Shi, X M

    2017-03-10

    Objective: To construct the air quality health index (AQHI) by inclusion of air pollutants PM(2.5) and O(3) in Guangzhou, Shanghai, Xi' an, Beijing, Shenyang, and explore scientificity and feasibility of its application in China. Methods: The daily average concentrations of PM(2.5) and O(3) in air, and daily average mortality from 2013 to 2015 in the 5 cities in China, the exposure-response coefficients of PM(2.5) and O(3) and total mortality from Meta studies in China were used to construct local AQHI. The health risk levels of air pollution in the 5 cities were calculated and compared with the characteristics of single pollutant concentrationof PM(2.5) or O(3). Results: In the 5 cities, the average concentration of PM(2.5) was highest in Beijing (82 μg/m(3)) and lowest in Guangzhou (46 μg/m(3)). And the average concentration of O(3) was highest in Shanghai (72 μg/m(3)) and lowest in Xi' an (45 μg/m(3)). In all the cities, the average concentration of PM(2.5) was highest in winter and lowest in summer. In summer, the average concentration of O(3) was lowest. But the health risk level of AQHI showed that the 5 cities had higher frequency of low or medium risk averagely. And Beijing had the highest frequency of high risk in summer (5.69%). Xi' an had the highest frequency of extremely high risk in winter (1.63%). Conclusions: In this study, AQHI could be constructed by using air PM(2.5) and O(3) concentration data which can be obtained in many areas in China. The application of this index is scientific and feasible in China.

  16. Time-Frequency and Non-Laplacian Phenomena at Radio Frequencies

    DTIC Science & Technology

    2017-01-22

    Unlimited UU UU UU UU 22-01-2017 30-Sep-2012 30-Sep-2016 Final Report: Time -Frequency and Non-Laplacian Phenomena at Radio Frequencies The views...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data... Time ‐Frequency and Non‐Laplacian Phenomena at Radio Frequencies  U.S. Army Research Office grant W911NF‐12‐1‐0526  Michael B. Steer  Department of

  17. Suppression of Phase Mixing in Drift-Kinetic Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Parker, J. T.; Dellar, P. J.; Schekochihin, A. A.; Highcock, E. G.

    2017-12-01

    The solar wind and interstellar medium are examples of strongly magnetised, weakly collisional, astrophysical plasmas. Their turbulent fluctuations are strongly anisotropic, with small amplitudes, and frequencies much lower than the Larmor frequency. This regime is described by gyrokinetic theory, a reduced five-dimensional kinetic system describing averages over Larmor orbits. A turbulent plasma may transfer free energy, a measure of fluctuation amplitudes, from injection at large scales, typically by an instability, to dissipation at small physical scales like a turbulent fluid. Alternatively, a turbulent plasma may form fine scale structures in velocity space via phase-mixing, the mechanism that leads to Landau damping in linear plasma theory. Macroscopic plasma properties like heat and momentum transport are affected by both mechanisms. While each is understood in isolation, their interaction is not. We study this interaction using a Hankel-Hermite velocity space representation of gyrokinetic theory. The Hankel transform interacts neatly with the Bessel functions that arise from averaging over Larmor orbits, so the perpendicular velocity space is decoupled for linearized problems. The Hermite transform expresses phase mixing as nearest-neighbor coupling between parallel velocity space scales represented by Hermite mode numbers. We use this representation to study transfer mechanisms in drift-kinetic plasma turbulence, the long wavelength limit of gyrokinetic theory. We show that phase space is divided into two regions, with one transfer mechanism dominating in each. Most energy is contained in the region where the fluid-like nonlinear cascade dominates. Moreover, in that region the nonlinear cascade interferes with phase mixing by exciting an "anti phase mixing" transfer of free energy from small to large velocity space scales. This cancels out the usual phase mixing, and renders the overall behavior fluid-like. These results profoundly change our understanding of free energy flow in drift-kinetic turbulence, and, moreover, explain previously observed spectra.

  18. Development of miniature, high frequency pulse tube cryocoolers

    NASA Astrophysics Data System (ADS)

    Radebaugh, Ray; Garaway, Isaac; Veprik, Alexander M.

    2010-04-01

    Because acoustic power density is proportional to frequency, the size of pulse tube cryocoolers for a given refrigeration power can be reduced by operating them at higher frequencies. A frequency of about 60 Hz had been considered the maximum frequency that could be used while maintaining high efficiency. Recently, we have shown through modeling that by decreasing the volume and hydraulic diameter of the regenerator and increasing the average pressure, it is possible to maintain high efficiency even for frequencies of several hundred hertz. Subsequent experimental results have demonstrated high efficiencies for frequencies of 100 to 140 Hz. The very high power density achieved at higher pressures and higher frequencies leads to very short cooldown times and very compact devices. The use of even higher frequencies requires the development of special compressors designed for such conditions and the development of regenerator matrices with hydraulic diameters less than about 30 Μm. To demonstrate the advantages of higher frequency operation, we discuss here the development of a miniature pulse tube cryocooler designed to operate at 80 K with a frequency of 150 Hz and an average pressure of 5.0 MPa. The regenerator diameter and length are 4.4 mm and 27 mm, respectively. The lowest temperature achieved to date has been 97 K, but a net refrigeration power of 530 mW was achieved at 120 K. Acoustic mismatches with existing compressors significantly limit the efficiency, but necessary modifications to improve the acoustic impedance match between the compressor and the cold head are discussed briefly.

  19. A Long-Term Comparison of GPS Carrierphase Frequency Transfer and Two-Way Satellite Time/Frequency Transfer

    DTIC Science & Technology

    2007-01-01

    and frequency transfer ( TWSTFT ) were performed along three transatlantic links over the 6-month period 29 January – 31 July 2006. The GPSCPFT and... TWSTFT results were subtracted in order to estimate the combined uncertainty of the methods. The frequency values obtained from GPSCPFT and TWSTFT ...values were equal to or less than the frequency-stability values σy(GPSCPFT) – y( TWSTFT ) (τ) (or TheoBR (τ)) computed for the corresponding averaging

  20. Passive acoustic monitoring, development of disturbance calls and differentiation of disturbance and advertisement calls in the Argentine croaker Umbrina canosai (Sciaenidae).

    PubMed

    Tellechea, J S; Fine, M L; Norbis, W

    2017-04-01

    Disturbance and advertisement calls of the Argentine croaker Umbrina canosai were recorded from coastal Uruguayan waters. Dissections indicate typical sciaenid extrinsic swimbladder muscles present exclusively in males. Disturbance calls were produced when captive U. canosai were startled, chased with a net or grabbed by the tail. Calls were unusual for sciaenids because each pulse consisted of multiple cycles. The number of cycles per pulse and dominant frequency did not change with U. canosai size, but pulse duration and interpulse interval increased. Advertisement calls were recorded from unseen choruses in the field and confirmed with captive individuals in a large tank. Advertisement calls were recorded throughout the known range of the species in Uruguay indicating a continuous belt of spawning populations. Tank recordings of the same individuals permitted explicit comparisons between the two calls. Advertisement call pulses averaged 2·4 more cycles (11·0-8·6) although pulses of both calls were basically similar as were durations and dominant frequencies. Pulse number, however, differed markedly, averaging 13·6 and 3·4 pulses for disturbance and advertisement calls respectively. Furthermore, disturbance calls were produced as a rapid series with an interpulse interval of 26-31 ms whereas advertisement call patterns were less stereotyped and ranged from <100 to 450 ms. Multicycle pulses distinguished U. canosai from other sympatric sciaenids. © 2017 The Fisheries Society of the British Isles.

  1. Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm.

    PubMed

    Li, Shutao; Zhang, Xingyu; Wang, Qingpu; Zhang, Xiaolei; Cong, Zhenhua; Zhang, Huaijin; Wang, Jiyang

    2007-10-15

    We report a linear-cavity high-power all-solid-state Q-switched yellow laser. The laser source comprises a diode-side-pumped Nd:YAG module that produces 1064 nm fundamental radiation, an intracavity BaWO(4) Raman crystal that generates a first-Stokes laser at 1180 nm, and a KTP crystal that frequency doubles the first-Stokes laser to 590 nm. A convex-plane cavity is employed in this configuration to counteract some of the thermal effect caused by high pump power. An average output power of 3.14 W at 590 nm is obtained at a pulse repetition frequency of 10 kHz.

  2. Subsurface Ice Detection via Low Frequency Surface Electromagnetic Method

    NASA Astrophysics Data System (ADS)

    Stillman, D. E.; Grimm, R. E.; Mcginnis, R. N.

    2014-12-01

    The geophysical detection of ice in the Cryosphere is typically conducted by measuring the absence of water. These interpretations can become non-unique in dry soils or in clay- and silt-rich soils that contain significant quantities of unfrozen water. Extensive laboratory measurements of electrical properties were made on permafrost samples as a function of frequency, temperature, and water content. These laboratory measurements show that the amount of ice can be uniquely obtained by measuring a frequency dependence of the electrical properties over a large frequency range (20 kHz - 10 Hz). In addition, the electrical properties of permafrost are temperature dependent, which can allow for an estimate of subsurface temperature. In order to test this approach in the field, we performed field surveys at four locations in Alaska. We used three low frequency electromagnetic methods: Spectral Induced Polarization (SIP: 20 kHz - 10 Hz), Capacively Coupled Resistivity (CCR: OhmMapper - 16.5 kHz), and DC Resistivity (Syscal ~ 8 Hz). At the Cold Regions Research and Engineering Laboratory permafrost tunnel near Fox, AK, we used SIP to measure the average ice concentration of 80 v% and determined the temperature to be -3±1°C by matching survey results to lab data. SIP data acquisition is very slow; therefore, at three sites near Tok, AK, we used CCR to perform reconnaissance of the area. Then SIP and DC resistivity were performed at anomalous areas. The three survey types give very similar absolute resistivity values. We found that while SIP gives the most quantitative results, the frequency dependence from the CCR and DC resistivity surveys is all that are needed to determine ice content in permafrost.

  3. From regular text to artistic writing and artworks: Fourier statistics of images with low and high aesthetic appeal

    PubMed Central

    Melmer, Tamara; Amirshahi, Seyed A.; Koch, Michael; Denzler, Joachim; Redies, Christoph

    2013-01-01

    The spatial characteristics of letters and their influence on readability and letter identification have been intensely studied during the last decades. There have been few studies, however, on statistical image properties that reflect more global aspects of text, for example properties that may relate to its aesthetic appeal. It has been shown that natural scenes and a large variety of visual artworks possess a scale-invariant Fourier power spectrum that falls off linearly with increasing frequency in log-log plots. We asked whether images of text share this property. As expected, the Fourier spectrum of images of regular typed or handwritten text is highly anisotropic, i.e., the spectral image properties in vertical, horizontal, and oblique orientations differ. Moreover, the spatial frequency spectra of text images are not scale-invariant in any direction. The decline is shallower in the low-frequency part of the spectrum for text than for aesthetic artworks, whereas, in the high-frequency part, it is steeper. These results indicate that, in general, images of regular text contain less global structure (low spatial frequencies) relative to fine detail (high spatial frequencies) than images of aesthetics artworks. Moreover, we studied images of text with artistic claim (ornate print and calligraphy) and ornamental art. For some measures, these images assume average values intermediate between regular text and aesthetic artworks. Finally, to answer the question of whether the statistical properties measured by us are universal amongst humans or are subject to intercultural differences, we compared images from three different cultural backgrounds (Western, East Asian, and Arabic). Results for different categories (regular text, aesthetic writing, ornamental art, and fine art) were similar across cultures. PMID:23554592

  4. Tension-time index, fatigue, and energetics in isolated rat diaphragm: a new experimental model.

    PubMed

    Klawitter, Paul F; Clanton, Thomas L

    2004-01-01

    The tension-time index (TTI) has been used to estimate mechanical load, energy utilization, blood flow, and susceptibility to fatigue in contracting muscle. The TTI can be defined, for a rhythmically contracting muscle, as the product of average force development divided by maximum tetanic force times duty cycle [contraction time / (contraction + relaxation time)]. In this study, the TTI concept was applied to isolated diaphragm via a method that allowed TTI to be clamped at a predetermined value. The hypothesis tested was that, at constant TTI, muscle energetics and the extent of fatigue would vary with stimulation frequency. Isolated diaphragm strips were stimulated at 25, 50, 75, or 100 Hz for 4 min, one per second. Duty cycle was continuously adjusted to maintain TTI at 0.07, which was near the highest TTI tolerated for 4 min, at 20-Hz stimulation. At the end of the fatigue run, muscles were either immediately frozen for determination ATP, creatine, and creatine phosphate concentrations (n = 6) or stimulated for evaluation of low- and high-frequency fatigue (n = 5). Results demonstrated no difference in the extent of fatigue or in the final ATP and creatine phosphate concentrations between groups. Large within-run increases in duty cycle were required at low stimulation frequencies, but only small increases were required at the highest frequencies. The results demonstrate that, at a constant TTI, similar fatigue properties predominate at all stimulation frequencies with no clear distinction between high- and low-frequency fatigue. The method of clamping TTI during fatigue may be useful for evaluating energetics and contractile function between treatment groups in isolated muscle when treatment influences baseline contractile characteristics.

  5. Decision-aided ICI mitigation with time-domain average approximation in CO-OFDM

    NASA Astrophysics Data System (ADS)

    Ren, Hongliang; Cai, Jiaxing; Ye, Xin; Lu, Jin; Cao, Quanjun; Guo, Shuqin; Xue, Lin-lin; Qin, Yali; Hu, Weisheng

    2015-07-01

    We introduce and investigate the feasibility of a novel iterative blind phase noise inter-carrier interference (ICI) mitigation scheme for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The ICI mitigation scheme is performed through the combination of frequency-domain symbol decision-aided estimation and the ICI phase noise time-average approximation. An additional initial decision process with suitable threshold is introduced in order to suppress the decision error symbols. Our proposed ICI mitigation scheme is proved to be effective in removing the ICI for a simulated CO-OFDM with 16-QAM modulation format. With the slightly high computational complexity, it outperforms the time-domain average blind ICI (Avg-BL-ICI) algorithm at a relatively wide laser line-width and high OSNR.

  6. 47 CFR 5.85 - Frequencies and policy governing their assignment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Stations within 4.8 kilometers (3 statute miles) with 50 watts or more average ERP in the primary plane of... statute miles) with 1 kW or more average ERP in the primary plane of polarization in the azimuthal... more average ERP in the primary plane of polarization in the azimuthal direction of the Monitoring...

  7. Frequency Distribution of Seismic Intensity in Japan between 1950 and 2009

    NASA Astrophysics Data System (ADS)

    Kato, M.; Kohayakawa, Y.

    2012-12-01

    JMA Seismic Intensity is an index of seismic ground motion which is frequently used and reported in the media. While it is always difficult to represent complex ground motion with one index, the fact that it is widely accepted in the society makes the use of JMA Seismic Intensity preferable when seismologists communicate with the public and discuss hazard assessment and risk management. With the introduction on JMA Instrumental Intensity in 1996, the number of seismic intensity observation sites has substantially increased and the spatial coverage has improved vastly. Together with a long history of non-instrumental intensity records, the intensity data represent some aspects of the seismic ground motion in Japan. We investigate characteristics of seismic ground motion between 1950 and 2009 utilizing JMA Seismic Intensity Database. Specifically we are interested in the frequency distribution of intensity recordings. Observations of large intensity is rare compared to those of small intensity, and previous studies such as Ikegami [1961] demonstrated that frequency distribution of observed intensity obeys an exponential law, which is equivalent to the Ishimoto-Iida law [Ishimoto & Iida, 1939]. Such behavior could be used to empirically construct probabilistic seismic hazard maps [e.g., Kawasumi, 1951]. For the recent instrumental intensity data as well as pre-instrumental data, we are able to confirm that Ishimoto-Iida law explains the observation. Exponents of the Ishimoto-Iida law, or slope of the exponential law in the semi-log plot, is approximately 0.5. At stations with long recordings, there is no apparent difference between pre-instrumental and instrumental intensities when Ishimoto-Iida law is used as a measure. Numbers of average intensity reports per year and exponents of the frequency distribution curve vary regionally and local seismicity is apparently the controlling factor. The observed numbers of large intensity is slightly less than extrapolated and predicted from those of small intensity assuming the exponential relation.

  8. Electrically Guided Assembly of Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Ristenpart, W. D.; Aksay, I. A.; Saville, D. A.

    2002-11-01

    In earlier work it was shown that the strength and frequency of an applied electric field alters the dynamic arrangement of particles on an electrode. Two-dimensional 'gas,' 'liquid' and 'solid' arrangements were formed, depending on the field strength and frequency. Since the particles are similarly charged, yet migrate over large distances under the influence of steady or oscillatory fields, it is clear that both hydrodynamic and electrical processes are involved. Here we report on an extensive study of electrically induced ordering in a parallel electrode cell. First, we discuss the kinetics of aggregation in a DC field as measured using video microscopy and digital image analysis. Rate constants were determined as a function of applied electric field strength and particle zeta potential. The kinetic parameters are compared to models based on electrohydrodynamic and electroosmotic fluid flow mechanisms Second, using monodisperse micron-sized particles, we examined the average interparticle spacing over a wide range of applied frequencies and field strengths. Variation of these parameters allows formation of closely-spaced arrangements and ordered arrays of widely separated particles. We find that there is a strong dependence on frequency, but there is surprisingly little influence of the electric field strength past a small threshold. Last, we present experiments with binary suspensions of similarly sized particles with negative but unequal surface potentials. A long-range lateral attraction is observed in an AC field. Depending on the frequency, this attractive interaction results in a diverse set of aggregate morphologies, including superstructured hexagonal lattices. These results are discussed in terms of induced dipole-dipole interactions and electrohydrodynamic flow. Finally, we explore the implications for practical applications.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H., E-mail: cristina@fisica.ufmg.br

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We findmore » that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.« less

  10. Frequency-dependent local field factors in dielectric liquids by a polarizable force field and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof

    2015-12-01

    A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities.

  11. Thermal characteristics of time-periodic electroosmotic flow in a circular microchannel

    NASA Astrophysics Data System (ADS)

    Moghadam, Ali Jabari

    2015-10-01

    A theoretical analysis is performed to explore the thermal characteristics of electroosmotic flow in a circular microchannel under an alternating electric field. An analytical approach is presented to solve energy equation, and then, the exact solution of temperature profiles is obtained by using the Green's function method. This study reveals that the temperature field repeats itself for each half-period. Frequency has a strong influence on the thermal behavior of the flow field. For small values of the dimensionless frequency (small channel size, large kinematic viscosity, or small frequency), the advection mechanism is dominant in the whole domain and the resultant heating (Joule heating and wall heat flux) can be transferred by the complete flow field in the axial direction; while, the middle portion of the flow field at high dimensionless frequencies does not have sufficient time to transfer heat by advection, and the bulk fluid temperature, especially in heating, may consequently become greater than the wall temperature. In a particular instance of cooling mode, a constant surface temperature case is temporarily occurred in which the axial temperature gradient will be zero. For relatively high frequencies, the unsteady bulk fluid temperature in some radial positions at some moments may be equal to the wall temperature; hence instantaneous cylindrical surfaces with zero radial heat flux may occur over a period of time. Depending on the value and sign of the thermal scale ratio, the quasi-steady-state Nusselt number (time-averaged at one period) approaches a specific value as the electrokinetic radius becomes infinity.

  12. Factors constraining the benefit to speech understanding of combining information from low-frequency hearing and a cochlear implant.

    PubMed

    Dorman, Michael F; Cook, Sarah; Spahr, Anthony; Zhang, Ting; Loiselle, Louise; Schramm, David; Whittingham, JoAnne; Gifford, Rene

    2015-04-01

    Many studies have documented the benefits to speech understanding when cochlear implant (CI) patients can access low-frequency acoustic information from the ear opposite the implant. In this study we assessed the role of three factors in determining the magnitude of bimodal benefit - (i) the level of CI-only performance, (ii) the magnitude of the hearing loss in the ear with low-frequency acoustic hearing and (iii) the type of test material. The patients had low-frequency PTAs (average of 125, 250 and 500 Hz) varying over a large range (<30 dB HL to >70 dB HL) in the ear contralateral to the implant. The patients were tested with (i) CNC words presented in quiet (n = 105) (ii) AzBio sentences presented in quiet (n = 102), (iii) AzBio sentences in noise at +10 dB signal-to-noise ratio (SNR) (n = 69), and (iv) AzBio sentences at +5 dB SNR (n = 64). We find maximum bimodal benefit when (i) CI scores are less than 60 percent correct, (ii) hearing loss is less than 60 dB HL in low-frequencies and (iii) the test material is sentences presented against a noise background. When these criteria are met, some bimodal patients can gain 40-60 percentage points in performance relative to performance with a CI. This article is part of a Special Issue entitled . Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Initial Beam Dynamics Simulations of a High-Average-Current Field-Emission Electron Source in a Superconducting RadioFrequency Gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohsen, O.; Gonin, I.; Kephart, R.

    High-power electron beams are sought-after tools in support to a wide array of societal applications. This paper investigates the production of high-power electron beams by combining a high-current field-emission electron source to a superconducting radio-frequency (SRF) cavity. We especially carry out beam-dynamics simulations that demonstrate the viability of the scheme to formmore » $$\\sim$$ 300 kW average-power electron beam using a 1+1/2-cell SRF gun.« less

  14. Unsteady design-point flow phenomena in transonic compressors

    NASA Technical Reports Server (NTRS)

    Gertz, J. B.; Epstein, A. H.

    1986-01-01

    High-frequency response probes which had previously been used exclusively in the MIT Blowndown Facility were successfully employed in two conventional steady state axial flow compressor facilities to investigate the unsteady flowfields of highly loaded transonic compressors at design point operation. Laser anemometry measurements taken simultaneously with the high response data were also analyzed. The time averaged high response data of static and total pressure agreed quite well with the conventional steady state instrumentation except for flow angle which showed a large spread in values at all radii regardless of the type of instrumentation used. In addition, the time resolved measurements confirmed earlier test results obtained in the MIT Blowdown Facility for the same compressor. The results of these tests have further revealed that the flowfields of highly loaded transonic compressors are heavily influenced by unsteady flow phenomena. The high response measurements exhibited large variations in the blade to blade flow and in the blade passage flow. The observed unsteadiness in the blade wakes is explained in terms of the rotor blades' shed vorticity in periodic vortex streets. The wakes were modeled as two-dimensional vortex streets with finite size cores. The model fit the data quite well as it was able to reproduce the average wake shape and bi-modal probability density distributions seen in the laser anemometry data. The presence of vortex streets in the blade wakes also explains the large blade to blade fluctuations seen by the high response probes which is simply due to the intermittent sampling of the vortex street as it is swept past a stationary probe.

  15. Across-frequency behavioral estimates of the contribution of inner and outer hair cell dysfunction to individualized audiometric loss

    PubMed Central

    Johannesen, Peter T.; Pérez-González, Patricia; Lopez-Poveda, Enrique A.

    2014-01-01

    Identifying the multiple contributors to the audiometric loss of a hearing impaired (HI) listener at a particular frequency is becoming gradually more useful as new treatments are developed. Here, we infer the contribution of inner (IHC) and outer hair cell (OHC) dysfunction to the total audiometric loss in a sample of 68 hearing aid candidates with mild-to-severe sensorineural hearing loss, and for test frequencies of 0.5, 1, 2, 4, and 6 kHz. It was assumed that the audiometric loss (HLTOTAL) at each test frequency was due to a combination of cochlear gain loss, or OHC dysfunction (HLOHC), and inefficient IHC processes (HLIHC), all of them in decibels. HLOHC and HLIHC were estimated from cochlear I/O curves inferred psychoacoustically using the temporal masking curve (TMC) method. 325 I/O curves were measured and 59% of them showed a compression threshold (CT). The analysis of these I/O curves suggests that (1) HLOHC and HLIHC account on average for 60–70 and 30–40% of HLTOTAL, respectively; (2) these percentages are roughly constant across frequencies; (3) across-listener variability is large; (4) residual cochlear gain is negatively correlated with hearing loss while residual compression is not correlated with hearing loss. Altogether, the present results support the conclusions from earlier studies and extend them to a wider range of test frequencies and hearing-loss ranges. Twenty-four percent of I/O curves were linear and suggested total cochlear gain loss. The number of linear I/O curves increased gradually with increasing frequency. The remaining 17% I/O curves suggested audiometric losses due mostly to IHC dysfunction and were more frequent at low (≤1 kHz) than at high frequencies. It is argued that in a majority of listeners, hearing loss is due to a common mechanism that concomitantly alters IHC and OHC function and that IHC processes may be more labile in the apex than in the base. PMID:25100940

  16. Optimising 4-D surface change detection: an approach for capturing rockfall magnitude-frequency

    NASA Astrophysics Data System (ADS)

    Williams, Jack G.; Rosser, Nick J.; Hardy, Richard J.; Brain, Matthew J.; Afana, Ashraf A.

    2018-02-01

    We present a monitoring technique tailored to analysing change from near-continuously collected, high-resolution 3-D data. Our aim is to fully characterise geomorphological change typified by an event magnitude-frequency relationship that adheres to an inverse power law or similar. While recent advances in monitoring have enabled changes in volume across more than 7 orders of magnitude to be captured, event frequency is commonly assumed to be interchangeable with the time-averaged event numbers between successive surveys. Where events coincide, or coalesce, or where the mechanisms driving change are not spatially independent, apparent event frequency must be partially determined by survey interval.The data reported have been obtained from a permanently installed terrestrial laser scanner, which permits an increased frequency of surveys. Surveying from a single position raises challenges, given the single viewpoint onto a complex surface and the need for computational efficiency associated with handling a large time series of 3-D data. A workflow is presented that optimises the detection of change by filtering and aligning scans to improve repeatability. An adaptation of the M3C2 algorithm is used to detect 3-D change to overcome data inconsistencies between scans. Individual rockfall geometries are then extracted and the associated volumetric errors modelled. The utility of this approach is demonstrated using a dataset of ˜ 9 × 103 surveys acquired at ˜ 1 h intervals over 10 months. The magnitude-frequency distribution of rockfall volumes generated is shown to be sensitive to monitoring frequency. Using a 1 h interval between surveys, rather than 30 days, the volume contribution from small (< 0.1 m3) rockfalls increases from 67 to 98 % of the total, and the number of individual rockfalls observed increases by over 3 orders of magnitude. High-frequency monitoring therefore holds considerable implications for magnitude-frequency derivatives, such as hazard return intervals and erosion rates. As such, while high-frequency monitoring has potential to describe short-term controls on geomorphological change and more realistic magnitude-frequency relationships, the assessment of longer-term erosion rates may be more suited to less-frequent data collection with lower accumulative errors.

  17. General expressions for the coupling coefficient, quality and filling factors for a cavity with an insert using energy coupled mode theory.

    PubMed

    Elnaggar, Sameh Y; Tervo, Richard; Mattar, Saba M

    2014-05-01

    A cavity (CV) with a dielectric resonator (DR) insert forms an excellent probe for the use in electron paramagnetic resonance (EPR) spectrometers. The probe's coupling coefficient, κ, the quality factor, Q, and the filling factor, η are vital in assessing the EPR spectrometer's performance. Coupled mode theory (CMT) is used to derive general expressions for these parameters. For large permittivity the dominating factor in κ is the ratio of the DR and CV cross sectional areas rather than the dielectric constant. Thus in some cases, resonators with low dielectric constant can couple much stronger with the cavity than do resonators with a high dielectric constant. When the DR and CV frequencies are degenerate, the coupled η is the average of the two uncoupled ones. In practical EPR probes the coupled η is approximately half of that of the DR. The Q of the coupled system generally depends on the eigenvectors, uncoupled frequencies (ω1,ω2) and the individual quality factors (Q1,Q2). It is calculated for different probe configurations and found to agree with the corresponding HFSS® simulations. Provided there is a large difference between the Q1, Q2 pair and the frequencies of DR and CV are degenerate, Q is approximately equal to double the minimum of Q1 and Q2. In general, the signal enhancement ratio, Iwithinsert/Iempty, is obtained from Q and η. For low loss DRs it only depends on η1/η2. However, when the DR has a low Q, the uncoupled Qs are also needed. In EPR spectroscopy it is desirable to excite only a single mode. The separation between the modes, Φ, is calculated as a function of κ and Q. It is found to be significantly greater than five times the average bandwidth. Thus for practical probes, it is possible to excite one of the coupled modes without exciting the other. The CMT expressions derived in this article are quite general and are in excellent agreement with the lumped circuit approach and finite numerical simulations. Hence they can also be applied to a loop-gap resonator in a cavity. For the design effective EPR probes, one needs to consider the κ, Q and η parameters. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. General expressions for the coupling coefficient, quality and filling factors for a cavity with an insert using energy coupled mode theory

    NASA Astrophysics Data System (ADS)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-05-01

    A cavity (CV) with a dielectric resonator (DR) insert forms an excellent probe for the use in electron paramagnetic resonance (EPR) spectrometers. The probe’s coupling coefficient, κ, the quality factor, Q, and the filling factor, η are vital in assessing the EPR spectrometer’s performance. Coupled mode theory (CMT) is used to derive general expressions for these parameters. For large permittivity the dominating factor in κ is the ratio of the DR and CV cross sectional areas rather than the dielectric constant. Thus in some cases, resonators with low dielectric constant can couple much stronger with the cavity than do resonators with a high dielectric constant. When the DR and CV frequencies are degenerate, the coupled η is the average of the two uncoupled ones. In practical EPR probes the coupled η is approximately half of that of the DR. The Q of the coupled system generally depends on the eigenvectors, uncoupled frequencies (ω1, ω2) and the individual quality factors (Q1, Q2). It is calculated for different probe configurations and found to agree with the corresponding HFSS® simulations. Provided there is a large difference between the Q1, Q2 pair and the frequencies of DR and CV are degenerate, Q is approximately equal to double the minimum of Q1 and Q2. In general, the signal enhancement ratio, I/Iempty, is obtained from Q and η. For low loss DRs it only depends on η1/η2. However, when the DR has a low Q, the uncoupled Qs are also needed. In EPR spectroscopy it is desirable to excite only a single mode. The separation between the modes, Φ, is calculated as a function of κ and Q. It is found to be significantly greater than five times the average bandwidth. Thus for practical probes, it is possible to excite one of the coupled modes without exciting the other. The CMT expressions derived in this article are quite general and are in excellent agreement with the lumped circuit approach and finite numerical simulations. Hence they can also be applied to a loop-gap resonator in a cavity. For the design effective EPR probes, one needs to consider the κ, Q and η parameters.

  19. Dynamic Cerebral Autoregulation is Preserved During Acute Head-down Tilt

    DTIC Science & Technology

    2003-06-27

    relationship of mean arterial pressure to mean cerebral blood flow velocity transfer function gain at the high and low frequencies, respectively; TCD-PHASE...HF and TCD-PHASE-LF, phase angle between mean arterial pressure and mean cerebral blood flow veloc- ity at high and low frequencies, respectively...arterial pressure and mean ce- rebral blood flow oscillations decrease from low- to high -frequency ranges. Average phase angles were 68° at low frequencies

  20. Reliability of MEG source imaging of anterior temporal spikes: analysis of an intracranially characterized spike focus.

    PubMed

    Wennberg, Richard; Cheyne, Douglas

    2014-05-01

    To assess the reliability of MEG source imaging (MSI) of anterior temporal spikes through detailed analysis of the localization and orientation of source solutions obtained for a large number of spikes that were separately confirmed by intracranial EEG to be focally generated within a single, well-characterized spike focus. MSI was performed on 64 identical right anterior temporal spikes from an anterolateral temporal neocortical spike focus. The effects of different volume conductors (sphere and realistic head model), removal of noise with low frequency filters (LFFs) and averaging multiple spikes were assessed in terms of the reliability of the source solutions. MSI of single spikes resulted in scattered dipole source solutions that showed reasonable reliability for localization at the lobar level, but only for solutions with a goodness-of-fit exceeding 80% using a LFF of 3 Hz. Reliability at a finer level of intralobar localization was limited. Spike averaging significantly improved the reliability of source solutions and averaging 8 or more spikes reduced dependency on goodness-of-fit and data filtering. MSI performed on topographically identical individual spikes from an intracranially defined classical anterior temporal lobe spike focus was limited by low reliability (i.e., scattered source solutions) in terms of fine, sublobar localization within the ipsilateral temporal lobe. Spike averaging significantly improved reliability. MSI performed on individual anterior temporal spikes is limited by low reliability. Reduction of background noise through spike averaging significantly improves the reliability of MSI solutions. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Glacial versus interglacial sedimentation rates and turbidite frequency in the Bahamas

    NASA Astrophysics Data System (ADS)

    Droxler, Andre W.; Schlager, Wolfgang

    1985-11-01

    The southern Tongue of the Ocean is a 1300-m-deep, flat-floored basin in the Bahamas that receives large amounts of sediment from the carbonate platforms surrounding it on three sides. We have examined five 8 13-m-long piston cores and determined bulk sedimentation rates, turbidite frequency, and turbidite accumulation rates for the past two glacial and interglacial periods. The mean of bulk sedimentation rates is four to six times higher in interglacial periods; average accumulation rates of recognizable turbidites are higher by a factor of 21 to 45, and interglacial turbidite frequency is higher by a factor of 6 to 14. Sediment composition indicates that increased interglacial rates are due to higher accumulation of platform-derived material. Additional data from other Bahamian basins as well as published material from the Caribbean strongly suggest that highstand shedding is a general trend in pure carbonate depositional systems. Carbonate platforms without a siliciclastic component export more material during highstands of sea level when the platform tops are flooded and produce sediment. The response of carbonate platforms to Quaternary sea-level cycles is opposed to that of siliciclastic ocean margins, where sediment is stored on the inner shelf during highstands and passed on to continental rises and abyssal plains during lowstands of sea level.

  2. A delicate case of unidirectional proton transfer from water to an aromatic heterocyclic anion.

    PubMed

    Biswas, Sohag; Mallik, Bhabani S

    2016-11-21

    We present the characteristic proton transfer process from water to the pyrazole anion, infrared signatures of hydroxyl groups and the free energy profile of the process in aqueous solution combining first principles simulations, wavelet analysis and metadynamics. Our results show that the presence of minimum three water molecules in the gas phase cluster with a particular arrangement is sufficient to facilitate the proton transfer process from water to the anion. The overall reaction is very rapid in aqueous solution, and the free energy barrier for this process is found to be 4.2 kcal mol -1 . One of the earlier reported fundamental reasons for the transfer of proton from water to the anion is the change in the acidity of OH groups surrounding the anion. We have correlated the stretching frequencies of the surrounding OH groups with this acidity. We find that the development of less energetic vibrational states, and the OH mode having lowest average stretching frequency contains the most acidic proton. A large frequency shift of the OH mode belonging to one of the surrounding water molecules is observed during the transfer of proton from water to the anion; this shift is due to the change in acidity of the adjacent hydroxyl groups in the vicinity of the anion.

  3. Sex-biased sound symbolism in english-language first names.

    PubMed

    Pitcher, Benjamin J; Mesoudi, Alex; McElligott, Alan G

    2013-01-01

    Sexual selection has resulted in sex-based size dimorphism in many mammals, including humans. In Western societies, average to taller stature men and comparatively shorter, slimmer women have higher reproductive success and are typically considered more attractive. This size dimorphism also extends to vocalisations in many species, again including humans, with larger individuals exhibiting lower formant frequencies than smaller individuals. Further, across many languages there are associations between phonemes and the expression of size (e.g. large /a, o/, small /i, e/), consistent with the frequency-size relationship in vocalisations. We suggest that naming preferences are a product of this frequency-size relationship, driving male names to sound larger and female names smaller, through sound symbolism. In a 10-year dataset of the most popular British, Australian and American names we show that male names are significantly more likely to contain larger sounding phonemes (e.g. "Thomas"), while female names are significantly more likely to contain smaller phonemes (e.g. "Emily"). The desire of parents to have comparatively larger, more masculine sons, and smaller, more feminine daughters, and the increased social success that accompanies more sex-stereotyped names, is likely to be driving English-language first names to exploit sound symbolism of size in line with sexual body size dimorphism.

  4. Sex-Biased Sound Symbolism in English-Language First Names

    PubMed Central

    Pitcher, Benjamin J.; Mesoudi, Alex; McElligott, Alan G.

    2013-01-01

    Sexual selection has resulted in sex-based size dimorphism in many mammals, including humans. In Western societies, average to taller stature men and comparatively shorter, slimmer women have higher reproductive success and are typically considered more attractive. This size dimorphism also extends to vocalisations in many species, again including humans, with larger individuals exhibiting lower formant frequencies than smaller individuals. Further, across many languages there are associations between phonemes and the expression of size (e.g. large /a, o/, small /i, e/), consistent with the frequency-size relationship in vocalisations. We suggest that naming preferences are a product of this frequency-size relationship, driving male names to sound larger and female names smaller, through sound symbolism. In a 10-year dataset of the most popular British, Australian and American names we show that male names are significantly more likely to contain larger sounding phonemes (e.g. “Thomas”), while female names are significantly more likely to contain smaller phonemes (e.g. “Emily”). The desire of parents to have comparatively larger, more masculine sons, and smaller, more feminine daughters, and the increased social success that accompanies more sex-stereotyped names, is likely to be driving English-language first names to exploit sound symbolism of size in line with sexual body size dimorphism. PMID:23755148

  5. Strategies for Energy Efficient Resource Management of Hybrid Programming Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dong; Supinski, Bronis de; Schulz, Martin

    2013-01-01

    Many scientific applications are programmed using hybrid programming models that use both message-passing and shared-memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared-memory or message-passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoptionmore » of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74% on average and up to 13.8%) with some performance gain (up to 7.5%) or negligible performance loss.« less

  6. Distributed Smart Grid Asset Control Strategies for Providing Ancillary Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalsi, Karanjit; Zhang, Wei; Lian, Jianming

    2013-10-30

    With large-scale plans to integrate renewable generation driven mainly by state-level renewable portfolio requirements, more resources will be needed to compensate for the uncertainty and variability associated with intermittent generation resources. Distributed assets can be used to mitigate the concerns associated with renewable energy resources and to keep costs down. Under such conditions, performing primary frequency control using only supply-side resources becomes not only prohibitively expensive but also technically difficult. It is therefore important to explore how a sufficient proportion of the loads could assume a routine role in primary frequency control to maintain the stability of the system atmore » an acceptable cost. The main objective of this project is to develop a novel hierarchical distributed framework for frequency based load control. The framework involves two decision layers. The top decision layer determines the optimal gain for aggregated loads for each load bus. The gains are computed using decentralized robust control methods, and will be broadcast to the corresponding participating loads every control period. The second layer consists of a large number of heterogeneous devices, which switch probabilistically during contingencies so that aggregated power change matches the desired amount according to the most recently received gains. The simulation results show great potential to enable systematic design of demand-side primary frequency control with stability guarantees on the overall power system. The proposed design systematically accounts for the interactions between the total load response and bulk power system frequency dynamics. It also guarantees frequency stability under a wide range of time varying operating conditions. The local device-level load response rules fully respect the device constraints (such as temperature setpoint, compressor time delays of HVACs, or arrival and departure of the deferrable loads), which are crucial for implementing real load control programs. The promise of autonomous, Grid Friendly™ response by smart appliances in the form of under-frequency load shedding was demonstrated in the GridWise Olympic Peninsula Demonstration in 2006. Each controller monitored the power grid voltage signal and requested that electrical load be shed by its appliance whenever electric power-grid frequency fell below 59.95 Hz. The controllers and their appliances responded reliably to each shallow under-frequency event, which was an average of one event per day and shed their loads for the durations of these events. Another objective of this project was to perform extensive simulation studies to investigate the impact of a population of Grid Friendly™ Appliances (GFAs) on the bulk power system frequency stability. The GFAs considered in this report are represented as demonstration units with water heaters individually modeled.« less

  7. Evidence of conformational exchange averaging in the thermal rotational spectrum of ethyl cyanoformate.

    PubMed

    True, Nancy S

    2006-06-15

    The Stark modulated low resolution microwave spectrum of ethyl cyanoformate between 21.5 and 24.0 GHz at 210, 300, and 358 K, which shows the J + 1 <-- J = 8 <-- 7 bands of three species, is compared to simulations based on electronic structure calculations at the MP2/6-311++G theory level. Calculations at this theory level reproduce the relative energies of the syn-anti and syn-gauche conformers, obtained in a previous study, and indicate that the barrier to conformer exchange is approximately 360 cm(-1) higher in energy than the syn-anti minimum. Simulated spectra of the eigenstates of the calculated O-ethyl torsional potential function reproduce the relative intensities and shapes of the lower and higher frequency bands which correspond to transitions of the syn-anti and syn-gauche conformers, respectively, but fail to reproduce the intense center band in the experimental spectra. A model incorporating exchange averaging reproduces the intensity of the center band and its temperature dependence. These simulations indicate that a large fraction of the thermal population at all three temperatures undergoes conformational exchange with an average energy specific rate constant, , of approximately 25 GHz. This model can explain anomalies present in rotational spectra of many other compounds composed of mixtures of conformers.

  8. Real-world volatile organic compound emission rates from seated adults and children for use in indoor air studies.

    PubMed

    Stönner, C; Edtbauer, A; Williams, J

    2018-01-01

    Human beings emit many volatile organic compounds (VOCs) of both endogenous (internally produced) and exogenous (external source) origin. Here we present real-world emission rates of volatile organic compounds from cinema audiences (50-230 people) as a function of time in multiple screenings of three films. The cinema location and film selection allowed high-frequency measurement of human-emitted VOCs within a room flushed at a known rate so that emissions rates could be calculated for both adults and children. Gas-phase emission rates are analyzed as a function of time of day, variability during the film, and age of viewer. The average emission rates of CO 2 , acetone, and isoprene were lower (by a factor of ~1.2-1.4) for children under twelve compared to adults while for acetaldehyde emission rates were equivalent. Molecules influenced by exogenous sources such as decamethylcyclopentasiloxanes and methanol tended to decrease over the course of day and then rise for late evening screenings. These results represent average emission rates of people under real-world conditions and can be used in indoor air quality assessments and building design. Averaging over a large number of people generates emission rates that are less susceptible to individual behaviors. © 2017 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  9. The Ontario Uterine Fibroid Embolization Trial. Part 1. Baseline patient characteristics, fibroid burden, and impact on life.

    PubMed

    Pron, Gaylene; Cohen, Marsha; Soucie, Jennifer; Garvin, Greg; Vanderburgh, Leslie; Bell, Stuart

    2003-01-01

    To determine baseline characteristics of women undergoing uterine artery embolization (UAE) for symptomatic fibroids. Multicenter, prospective, single-arm clinical treatment trial. Eight Ontario university and community hospitals. Five hundred fifty-five women undergoing UAE for fibroids. Baseline questionnaires completed before UAE. Questionnaires were analyzed for demographic, medical, and gynecologic histories. Fibroid symptoms, impact of symptoms, previous consultations, and treatments were also analyzed. The Ontario cohort (66% white, 23% black, 11% other races) had an average age of 43. Thirty-one percent were under age 40. Most women were university educated (68%) and working outside the home (85%). Women reported heavy menstrual bleeding (80%), urinary urgency/frequency (73%), pain during intercourse (41%), and work absences (40%). They experienced fibroid-related symptoms for an average of 5 years and consulted with on average of three gynecologists before UAE. High fibroid life-impact scores were reported by 58%. Black women were significantly younger (40.7 vs. 44.0 years), more likely to experience symptoms longer (7 vs. 5 years), and more likely to undergo myomectomy before UAE (24% vs. 9%) than white women. Our study illustrates that large numbers of women with highly symptomatic fibroid disease are averse to surgery despite their burden of suffering and are actively seeking alternatives to hysterectomy.

  10. Prevalence and consequences of chromosomal abnormalities in Canadian commercial swine herds.

    PubMed

    Quach, Anh T; Revay, Tamas; Villagomez, Daniel A F; Macedo, Mariana P; Sullivan, Alison; Maignel, Laurence; Wyss, Stefanie; Sullivan, Brian; King, W Allan

    2016-09-12

    Structural chromosome abnormalities are well known as factors that reduce fertility rate in domestic pigs. According to large-scale national cytogenetic screening programs that are implemented in France, it is estimated that new chromosome abnormalities occur at a rate of 0.5 % in fertility-unproven boars. This work aimed at estimating the prevalence and consequences of chromosome abnormalities in commercial swine operations in Canada. We found pig carriers at a frequency of 1.64 % (12 out of 732 boars). Carrier pigs consistently showed lower fertility values. The total number of piglets born for litters from carrier boars was between 4 and 46 % lower than the herd average. Similarly, carrier boars produced litters with a total number of piglets born alive that was between 6 and 28 % lower than the herd average. A total of 12 new structural chromosome abnormalities were identified. Reproductive performance is significantly reduced in sires with chromosome abnormalities. The incidence of such abnormal sires appears relatively high in populations without routine cytogenetic screening such as observed for Canada in this study. Systematic cytogenetic screening of potential breeding boars would minimise the risk of carriers of chromosome aberrations entering artificial insemination centres. This would avoid the large negative effects on productivity for the commercial sow herds and reduce the risk of transmitting abnormalities to future generations in nucleus farms.

  11. STOCHASTIC OPTICS: A SCATTERING MITIGATION FRAMEWORK FOR RADIO INTERFEROMETRIC IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Michael D., E-mail: mjohnson@cfa.harvard.edu

    2016-12-10

    Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio telescopes. We present a scattering mitigation framework for radio imaging with very long baseline interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,” derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) effects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously reconstructing an unscattered image and its refractive perturbations. Its advantages over direct imagingmore » come from utilizing the many deterministic properties of the scattering—such as the time-averaged “blurring,” polarization independence, and the deterministic evolution in frequency and time—while still accounting for the stochastic image distortions on large scales. These distortions are identified in the image reconstructions through regularization by their time-averaged power spectrum. Using synthetic data, we show that this framework effectively removes the blurring from diffractive scattering while reducing the spurious image features from refractive scattering. Stochastic optics can provide significant improvements over existing scattering mitigation strategies and is especially promising for imaging the Galactic Center supermassive black hole, Sagittarius A*, with the Global mm-VLBI Array and with the Event Horizon Telescope.« less

  12. Contribution of inter-muscular synchronization in the modulation of tremor intensity in Parkinson's disease.

    PubMed

    He, Xin; Hao, Man-Zhao; Wei, Ming; Xiao, Qin; Lan, Ning

    2015-12-01

    Involuntary central oscillations at single and double tremor frequencies drive the peripheral neuromechanical system of muscles and joints to cause tremor in Parkinson's disease (PD). The central signal of double tremor frequency was found to correlate more directly to individual muscle EMGs (Timmermann et al. 2003). This study is aimed at investigating what central components of oscillation contribute to inter-muscular synchronization in a group of upper extremity muscles during tremor in PD patients. 11 idiopathic, tremor dominant PD subjects participated in this study. Joint kinematics during tremor in the upper extremity was recorded along with EMGs of six upper arm muscles using a novel experimental apparatus. The apparatus provided support for the upper extremity on a horizontal surface with reduced friction, so that resting tremor in the arm can be recorded with a MotionMonitor II system. In each subject, the frequencies of rhythmic firings in upper arm muscles were determined using spectral analysis. Paired and pool-averaged coherence analyses of EMGs for the group of muscles were performed to correlate the level of inter-muscular synchronization to tremor amplitudes at shoulder and elbow. The phase shift between synchronized antagonistic muscle pairs was calculated to aid coherence analysis in the muscle pool. Recorded EMG revealed that rhythmic firings were present in most recorded muscles, which were either synchronized to form phase-locked bursting cycles at a subject specific frequency, or unsynchronized with a random phase distribution. Paired coherence showed a stronger synchronization among a subset of recorded arm muscles at tremor frequency than that at double tremor frequency. Furthermore, the number of synchronized muscles in the arm was positively correlated to tremor amplitudes at elbow and shoulder. Pool-averaged coherence at tremor frequency also showed a better correlation with the amplitude of resting tremor than that of double tremor frequency, indicating that the neuromechanical coupling in peripheral neuromuscular system was stronger at tremor frequency. Both paired and pool-averaged coherences are more consistent indexes to correlate to tremor intensity in a group of upper extremity muscles of PD patients. The central drive at tremor frequency contributes mainly to synchronize peripheral muscles in the modulation of tremor intensity.

  13. Extreme pressure differences at 0900 NZST and winds across New Zealand

    NASA Astrophysics Data System (ADS)

    Salinger, M. James; Griffiths, Georgina M.; Gosai, Ashmita

    2005-07-01

    Trends in extremes in station daily sea-level pressure differences at 0900 NZST are examined, and extreme daily wind gusts, across New Zealand, since the 1960s. Annual time series were examined (with indices of magnitude and frequency over threshold percentiles) from the daily indices selected. These follow from earlier indices of normalized monthly mean sea-level pressure differences between station pairs, except the daily indices are not normalized. The frequency statistics quantify the number of extreme zonal (westerly and easterly), or extreme meridional (southerly or northerly), pressure gradient events. The frequency and magnitude of extreme westerly episodes has increased slightly over New Zealand, with a significant increase in the westerly extremes to the south of New Zealand. In contrast, the magnitude and frequency of easterly extremes has decreased over New Zealand, but increased to the south, with some trends weakly significant. The frequency and magnitude of daily southerly extremes has decreased significantly in the region.Extreme daily wind gust events at key climate stations in New Zealand and at Hobart, Australia, are highly likely to be associated with an extreme daily pressure difference. The converse was less likely to hold: extreme wind gusts were not always observed on days with extreme daily pressure difference, probably due to the strong influence that topography has on localized station winds. Significant correlations exist between the frequency indices and both annual-average mean sea-level pressures around the Australasian region and annual-average sea surface temperature (SST) anomalies in the Southern Hemisphere. These correlations are generally stronger for indices of extreme westerly or extreme southerly airflows. Annual-average pressures in the Tasman Sea or Southern Ocean are highly correlated to zonal indices (frequency of extreme westerlies). SST anomalies in the NINO3 region or on either side of the South Island are significantly correlated with the frequency of extreme westerly airflows.

  14. The phanerozoic impact cratering rate: Evidence from the farside of the Moon

    USGS Publications Warehouse

    McEwen, A.S.; Moore, Johnnie N.; Shoemaker, E.M.

    1997-01-01

    The relatively recent (< 1 b.y.) flux of asteroids and comets forming large craters on the Earth and Moon may be accurately recorded by craters with bright rays on the Moon's farside. Many previously unknown farside rayed craters are clearly distinguished in the low-phase-angle images returned by the Clementine spacecraft. Some large rayed craters on the lunar nearside are probably significantly older than 1 Ga; rays remain visible over the maria due to compositional contrasts long after soils have reached optical maturity. Most of the farside crust has a more homogeneous composition and only immature rays are visible. The size-frequency distribution of farside rayed craters is similar to that measured for Eratosthenian craters (up to 3.2 b.y.) at diameters larger than 15 km. The areal density of farside rayed craters matches that of a corrected tabulation of nearside Copernican craters. Hence the presence of bright rays due to immature soils around large craters provides a consistent time-stratigraphic basis for defining the base of the Copernican System. The density of large craters less than ???3.2 b.y. old is ???3.2 times higher than that of large farside rayed craters alone. This observation can be interpreted in two ways: (1) the average cratering rate has been constant over the past 3.2 b.y. and the base of the Copernican is ???1 Ga, or (2) the cratering rate has increased in recent geologic time and the base of the Copernican is less than 1 Ga. We favor the latter interpretation because the rays of Copernicus (800-850 m.y. old) appear to be very close to optical maturity, suggesting that the average Copernican cratering rate was ???35% higher than the average Eratosthenian rate. Other lines of evidence for an increase in the Phanerozoic (545 Ga) cratering rate are (1) the densities of small craters superimposed on Copernicus and Apollo landing sites, (2) the rates estimated from well-dated terrestrial craters (??? 120 m.y.) and from present-day astronomical observations, and (3) the Proterozoic rate suggested by the crater record of Australia. The hypothesis most consistent with several key observations is that the cratering rate has increased by ???2x during the past ???300 m.y. Copyright 1997 by the American Geophysical Union.

  15. Genome-wide meta-analysis of common variant differences between men and women

    PubMed Central

    Boraska, Vesna; Jerončić, Ana; Colonna, Vincenza; Southam, Lorraine; Nyholt, Dale R.; William Rayner, Nigel; Perry, John R.B.; Toniolo, Daniela; Albrecht, Eva; Ang, Wei; Bandinelli, Stefania; Barbalic, Maja; Barroso, Inês; Beckmann, Jacques S.; Biffar, Reiner; Boomsma, Dorret; Campbell, Harry; Corre, Tanguy; Erdmann, Jeanette; Esko, Tõnu; Fischer, Krista; Franceschini, Nora; Frayling, Timothy M.; Girotto, Giorgia; Gonzalez, Juan R.; Harris, Tamara B.; Heath, Andrew C.; Heid, Iris M.; Hoffmann, Wolfgang; Hofman, Albert; Horikoshi, Momoko; Hua Zhao, Jing; Jackson, Anne U.; Hottenga, Jouke-Jan; Jula, Antti; Kähönen, Mika; Khaw, Kay-Tee; Kiemeney, Lambertus A.; Klopp, Norman; Kutalik, Zoltán; Lagou, Vasiliki; Launer, Lenore J.; Lehtimäki, Terho; Lemire, Mathieu; Lokki, Marja-Liisa; Loley, Christina; Luan, Jian'an; Mangino, Massimo; Mateo Leach, Irene; Medland, Sarah E.; Mihailov, Evelin; Montgomery, Grant W.; Navis, Gerjan; Newnham, John; Nieminen, Markku S.; Palotie, Aarno; Panoutsopoulou, Kalliope; Peters, Annette; Pirastu, Nicola; Polašek, Ozren; Rehnström, Karola; Ripatti, Samuli; Ritchie, Graham R.S.; Rivadeneira, Fernando; Robino, Antonietta; Samani, Nilesh J.; Shin, So-Youn; Sinisalo, Juha; Smit, Johannes H.; Soranzo, Nicole; Stolk, Lisette; Swinkels, Dorine W.; Tanaka, Toshiko; Teumer, Alexander; Tönjes, Anke; Traglia, Michela; Tuomilehto, Jaakko; Valsesia, Armand; van Gilst, Wiek H.; van Meurs, Joyce B.J.; Smith, Albert Vernon; Viikari, Jorma; Vink, Jacqueline M.; Waeber, Gerard; Warrington, Nicole M.; Widen, Elisabeth; Willemsen, Gonneke; Wright, Alan F.; Zanke, Brent W.; Zgaga, Lina; Boehnke, Michael; d'Adamo, Adamo Pio; de Geus, Eco; Demerath, Ellen W.; den Heijer, Martin; Eriksson, Johan G.; Ferrucci, Luigi; Gieger, Christian; Gudnason, Vilmundur; Hayward, Caroline; Hengstenberg, Christian; Hudson, Thomas J.; Järvelin, Marjo-Riitta; Kogevinas, Manolis; Loos, Ruth J.F.; Martin, Nicholas G.; Metspalu, Andres; Pennell, Craig E.; Penninx, Brenda W.; Perola, Markus; Raitakari, Olli; Salomaa, Veikko; Schreiber, Stefan; Schunkert, Heribert; Spector, Tim D.; Stumvoll, Michael; Uitterlinden, André G.; Ulivi, Sheila; van der Harst, Pim; Vollenweider, Peter; Völzke, Henry; Wareham, Nicholas J.; Wichmann, H.-Erich; Wilson, James F.; Rudan, Igor; Xue, Yali; Zeggini, Eleftheria

    2012-01-01

    The male-to-female sex ratio at birth is constant across world populations with an average of 1.06 (106 male to 100 female live births) for populations of European descent. The sex ratio is considered to be affected by numerous biological and environmental factors and to have a heritable component. The aim of this study was to investigate the presence of common allele modest effects at autosomal and chromosome X variants that could explain the observed sex ratio at birth. We conducted a large-scale genome-wide association scan (GWAS) meta-analysis across 51 studies, comprising overall 114 863 individuals (61 094 women and 53 769 men) of European ancestry and 2 623 828 common (minor allele frequency >0.05) single-nucleotide polymorphisms (SNPs). Allele frequencies were compared between men and women for directly-typed and imputed variants within each study. Forward-time simulations for unlinked, neutral, autosomal, common loci were performed under the demographic model for European populations with a fixed sex ratio and a random mating scheme to assess the probability of detecting significant allele frequency differences. We do not detect any genome-wide significant (P < 5 × 10−8) common SNP differences between men and women in this well-powered meta-analysis. The simulated data provided results entirely consistent with these findings. This large-scale investigation across ∼115 000 individuals shows no detectable contribution from common genetic variants to the observed skew in the sex ratio. The absence of sex-specific differences is useful in guiding genetic association study design, for example when using mixed controls for sex-biased traits. PMID:22843499

  16. Source discrimination between Mining blasts and Earthquakes in Tianshan orogenic belt, NW China

    NASA Astrophysics Data System (ADS)

    Tang, L.; Zhang, M.; Wen, L.

    2017-12-01

    In recent years, a large number of quarry blasts have been detonated in Tianshan Mountains of China. It is necessary to discriminate those non-earthquake records from the earthquake catalogs in order to determine the real seismicity of the region. In this study, we have investigated spectral ratios and amplitude ratios as discriminants for regional seismic-event identification using explosions and earthquakes recorded at Xinjiang Seismic Network (XJSN) of China. We used a data set that includes 1071 earthquakes and 2881 non-earthquakes as training data recorded by the XJSN between years of 2009 and 2016, with both types of events in a comparable local magnitude range (1.5 to 2.9). The non-earthquake and earthquake groups were well separated by amplitude ratios of Pg/Sg, with the separation increasing with frequency when averaged over three stations. The 8- to 15-Hz Pg/Sg ratio was proved to be the most precise and accurate discriminant, which works for more than 90% of the events. In contrast, the P spectral ratio performed considerably worse with a significant overlap (about 60% overlap) between the earthquake and explosion populations. The comparison results show amplitude ratios between compressional and shear waves discriminate better than low-frequency to high-frequency spectral ratios for individual phases. In discriminating between explosions and earthquakes, none of two discriminants were able to completely separate the two populations of events. However, a joint discrimination scheme employing simple majority voting reduces misclassifications to 10%. In the region of the study, 44% of the examined seismic events were determined to be non-earthquakes and 55% to be earthquakes. The earthquakes occurring on land are related to small faults, while the blasts are concentrated in large quarries.

  17. LOFAR reveals the giant: a low-frequency radio continuum study of the outflow in the nearby FR I radio galaxy 3C 31

    NASA Astrophysics Data System (ADS)

    Heesen, V.; Croston, J. H.; Morganti, R.; Hardcastle, M. J.; Stewart, A. J.; Best, P. N.; Broderick, J. W.; Brüggen, M.; Brunetti, G.; ChyŻy, K. T.; Harwood, J. J.; Haverkorn, M.; Hess, K. M.; Intema, H. T.; Jamrozy, M.; Kunert-Bajraszewska, M.; McKean, J. P.; Orrú, E.; Röttgering, H. J. A.; Shimwell, T. W.; Shulevski, A.; White, G. J.; Wilcots, E. M.; Williams, W. L.

    2018-03-01

    We present a deep, low-frequency radio continuum study of the nearby Fanaroff-Riley class I (FR I) radio galaxy 3C 31 using a combination of LOw Frequency ARray (LOFAR; 30-85 and 115-178 MHz), Very Large Array (VLA; 290-420 MHz), Westerbork Synthesis Radio Telescope (WSRT; 609 MHz) and Giant Metre Radio Telescope (GMRT; 615 MHz) observations. Our new LOFAR 145-MHz map shows that 3C 31 has a largest physical size of 1.1 Mpc in projection, which means 3C 31 now falls in the class of giant radio galaxies. We model the radio continuum intensities with advective cosmic ray transport, evolving the cosmic ray electron population and magnetic field strength in the tails as functions of distance to the nucleus. We find that if there is no in situ particle acceleration in the tails, then decelerating flows are required that depend on radius r as v∝rβ (β ≈ -1). This then compensates for the strong adiabatic losses due to the lateral expansion of the tails. We are able to find self-consistent solutions in agreement with the entrainment model of Croston & Hardcastle, where the magnetic field provides ≈1/3 of the pressure needed for equilibrium with the surrounding intracluster medium. We obtain an advective time-scale of ≈190 Myr, which, if equated to the source age, would require an average expansion Mach number M ≈ 5 over the source lifetime. Dynamical arguments suggest that instead either the outer tail material does not represent the oldest jet plasma or else the particle ages are underestimated due to the effects of particle acceleration on large scales.

  18. Characterization of bone-implant fixation using modal analysis: Application to a press-fit implant model

    PubMed Central

    Swider, P.; Guérin, G.; Baas, Joergen; Søballe, Kjeld; Bechtold, Joan E.

    2013-01-01

    Orthopaedic implant fixation is strongly dependant upon the effective mechanical properties of newly formed tissue. In this study, we evaluated the potential of modal analysis to derive viscoelastic properties of periprosthetic tissue. We hypothesized that Young's modulus and loss factor could be obtained by a combined theoretical, computational and experimental modal analysis approach. This procedure was applied to ex vivo specimens from a cylindrical experimental implant placed in cancellous bone in an unloaded press-fit configuration, obtained after a four week observation period. Four sections each from seven textured titanium implants were investigated. The first resonant frequency and loss factor were measured. Average experimentally determined loss factor was 2% (SD 0.4%) and average first resonant frequency was 2.1 KHz (SD: 50). A 2D axisymmetric finite element (FE) model identified effective Young's modulus of tissue using experimental resonant frequencies as input. Average value was 42 MPa (SD: 2.4) and no significant difference between specimens was observed. In this pilot study, the non-destructive method allowed accurate measure of dynamic loss factor and resonant frequency and derivation of effective Young's modulus. Prior to implementing this dynamic protocol for broader mechanical evaluation of experimental implant fixation, further work is needed to determine if this affects results from subsequent destructive shear push-out tests. PMID:19464687

  19. The attenuation of Fourier amplitudes for rock sites in eastern North America

    USGS Publications Warehouse

    Atkinson, Gail M.; Boore, David M.

    2014-01-01

    We develop an empirical model of the decay of Fourier amplitudes for earthquakes of M 3–6 recorded on rock sites in eastern North America and discuss its implications for source parameters. Attenuation at distances from 10 to 500 km may be adequately described using a bilinear model with a geometric spreading of 1/R1.3 to a transition distance of 50 km, with a geometric spreading of 1/R0.5 at greater distances. For low frequencies and distances less than 50 km, the effective geometric spreading given by the model is perturbed using a frequency‐ and hypocentral depth‐dependent factor defined in such a way as to increase amplitudes at lower frequencies near the epicenter but leave the 1 km source amplitudes unchanged. The associated anelastic attenuation is determined for each event, with an average value being given by a regional quality factor of Q=525f 0.45. This model provides a match, on average, between the known seismic moment of events and the inferred low‐frequency spectral amplitudes at R=1  km (obtained by correcting for the attenuation model). The inferred Brune stress parameters from the high‐frequency source terms are about 600 bars (60 MPa), on average, for events of M>4.5.

  20. Frequency domain averaging based experimental evaluation of gear fault without tachometer for fluctuating speed conditions

    NASA Astrophysics Data System (ADS)

    Sharma, Vikas; Parey, Anand

    2017-02-01

    In the purview of fluctuating speeds, gear fault diagnosis is challenging due to dynamic behavior of forces. Various industrial applications employing gearbox which operate under fluctuating speed conditions. For diagnostics of a gearbox, various vibrations based signal processing techniques viz FFT, time synchronous averaging and time-frequency based wavelet transform, etc. are majorly employed. Most of the time, theories about data or computational complexity limits the use of these methods. In order to perform fault diagnosis of a gearbox for fluctuating speeds, frequency domain averaging (FDA) of intrinsic mode functions (IMFs) after their dynamic time warping (DTW) has been done in this paper. This will not only attenuate the effect of fluctuating speeds but will also extract the weak fault feature those masked in vibration signal. Experimentally signals were acquired from Drivetrain Diagnostic Simulator for different gear health conditions i.e., healthy pinion, pinion with tooth crack, chipped tooth and missing tooth and were analyzed for the different fluctuating profiles of speed. Kurtosis was calculated for warped IMFs before DTW and after DTW of the acquired vibration signals. Later on, the application of FDA highlights the fault frequencies present in the FFT of faulty gears. The result suggests that proposed approach is more effective towards the fault diagnosing with fluctuating speed.

Top