Sample records for average local ionization

  1. A comparative study on carbon, boron-nitride, boron-phosphide and silicon-carbide nanotubes based on surface electrostatic potentials and average local ionization energies.

    PubMed

    Esrafili, Mehdi D; Behzadi, Hadi

    2013-06-01

    A density functional theory study was carried out to predict the electrostatic potentials as well as average local ionization energies on both the outer and the inner surfaces of carbon, boron-nitride (BN), boron-phosphide (BP) and silicon-carbide (SiC) single-walled nanotubes. For each nanotube, the effect of tube radius on the surface potentials and calculated average local ionization energies was investigated. It is found that SiC and BN nanotubes have much stronger and more variable surface potentials than do carbon and BP nanotubes. For the SiC, BN and BP nanotubes, there are characteristic patterns of positive and negative sites on the outer lateral surfaces. On the other hand, a general feature of all of the systems studied is that stronger potentials are associated with regions of higher curvature. According to the evaluated surface electrostatic potentials, it is concluded that, for the narrowest tubes, the water solubility of BN tubes is slightly greater than that of SiC followed by carbon and BP nanotubes.

  2. Conformational relaxation and water penetration coupled to ionization of internal groups in proteins.

    PubMed

    Damjanović, Ana; Brooks, Bernard R; García-Moreno, Bertrand

    2011-04-28

    Molecular dynamics simulations were used to examine the effects of ionization of internal groups on the structures of eighteen variants of staphylococcal nuclease (SNase) with internal Lys, Asp, or Glu. In most cases the RMSD values of internal ionizable side chains were larger when the ionizable moieties were charged than when they were neutral. Calculations of solvent-accessible surface area showed that the internal ionizable side chains were buried in the protein interior when they were neutral and moved toward crevices and toward the protein-water interface when they were charged. The only exceptions are Lys-36, Lys-62, and Lys-103, which remained buried even after charging. With the exception of Lys-38, the number of internal water molecules surrounding the ionizable group increased upon charging: the average number of water oxygen atoms within the first hydration shell increased by 1.7 for Lys residues, by 5.2 for Asp residues, and by 3.2 for Glu residues. The polarity of the microenvironment of the ionizable group also increased when the groups were charged: the average number of polar atoms of any kind within the first hydration shell increased by 2.7 for Lys residues, by 4.8 for Asp residues, and by 4.0 for Glu residues. An unexpected correlation was observed between the absolute value of the shifts in pK(a) values measured experimentally, and several parameters of structural relaxation: the net difference in the polarity of the microenvironment of the charged and neutral forms of the ionizable groups, the net difference in hydration of the charged and neutral forms of the ionizable groups, and the difference in RMSD values of the charged and neutral forms of the ionizable groups. The effects of ionization of internal groups on the conformation of the backbone were noticeable but mostly small and localized to the area immediately next to the internal ionizable moiety. Some variants did exhibit local unfolding.

  3. Ionization balance of impurities in turbulent scrape-off layer plasmas I: local ionization-recombination equilibrium

    NASA Astrophysics Data System (ADS)

    Guzman, F.; Marandet, Y.; Tamain, P.; Bufferand, H.; Ciraolo, G.; Ghendrih, Ph; Guirlet, R.; Rosato, J.; Valentinuzzi, M.

    2015-12-01

    In magnetized fusion devices, cross field impurity transport is often dominated by turbulence, in particular in the scrape-off layer. In these outer regions of the plasma, fluctuations of plasma parameters can be comparable to mean values, and the way ionization and recombination sources are treated in transport codes becomes questionnable. In fact, sources are calculated using the mean density and temperature values, with no account of fluctuations. In this work we investigate the modeling uncertainties introduced by this approximation, both qualitatively and quantitatively for the local ionization equilibrium. As a first step transport effects are neglected, and their role will be discussed in a companion paper. We show that temperature fluctuations shift the ionization balance towards lower temperatures, essentially because of the very steep temperature dependence of the ionization rate coefficients near the threshold. To reach this conclusion, a thorough analysis of the time scales involved is carried out, in order to devise a proper way of averaging over fluctuations. The effects are found to be substantial only for fairly large relative fluctuation levels for temperature, that is of the order of a few tens of percents.

  4. [The study on the characteristics and particle densities of lightning discharge plasma].

    PubMed

    Wang, Jie; Yuan, Ping; Zhang, Hua-ming; Shen, Xiao-zhi

    2008-09-01

    According to the wavelengths, relative intensities and transition parameters of lines in cloud-to-ground lightning spectra obtained by a slit-less spectrograph in Qinghai province and Xizang municipality, and by theoretical calculations of plasma, the average temperature and electron density for individual lightning discharge channel were calculated, and then, using Saha equations, electric charge conservation equations and particle conservation equations, the particle densities of every ionized-state, the mass density, pressure and the average ionization degree were obtained. Moreover, the average ionization degree and characteristics of particle distributions in each lightning discharge channel were analyzed. Local thermodynamic equilibrium and an optically thin emitting gas were assumed in the calculations. The result shows that the characteristics of lightning discharge plasma have strong relationships with lightning intensities. For a certain return stroke channel, both temperatures and electron densities of different positions show tiny trend of falling away with increasing height along the discharge channel. Lightning channels are almost completely ionized, and the first ionized particles occupy the main station while N II has the highest particle density. On the other hand, the relative concentrations of N II and O II are near a constant in lightning channels with different intensities. Generally speaking, the more intense the lightning discharge, the higher are the values of channel temperature, electron density and relative concentrations of highly ionized particles, but the lower the concentration of the neutral atoms. After considering the Coulomb interactions between positive and negative particles in the calculations, the results of ionization energies decrease, and the particle densities of atoms and first ionized ions become low while high-ionized ions become high. At a temperature of 28000 K, the pressure of the discharge channel due to electrons, atoms and ions is about 10 atmospheric pressure, and it changes for different lightning stroke with different intensity. The mass density of channel is lower and changes from 0.01 to 0.1 compared to the mass density of air at standard temperature and pressure (STP).

  5. Light breeze in the local Universe

    NASA Astrophysics Data System (ADS)

    Concas, A.; Popesso, P.; Brusa, M.; Mainieri, V.; Erfanianfar, G.; Morselli, L.

    2017-10-01

    We analyze a complete spectroscopic sample of galaxies ( 600 000) drawn from Sloan Digital Sky Survey (SDSS, DR7) to look for evidence of galactic winds in the local Universe. We focus on the shape of the [OIII]λ5007 emission line as a tracer of ionizing gas outflows. We stack our spectra in a fine grid of star formation rate (SFR) and stellar mass to analyze the dependence of winds on the position of galaxies in the SFR versus mass diagram. We do not find any significant evidence of broad and shifted [OIII]λ5007 emission line which we interpret as no evidence of outflowing ionized gas in the global population. We have also classified these galaxies as star-forming or AGN-dominated according to their position in the standard BPT diagram. We show how the average [OIII]λ5007 profile changes as a function of the nature of the dominant ionizing source. We find that in the star-forming dominated source the oxygen line is symmetric and governed by the gravitational potential well. The AGN or composite AGN/star-formation activity objects, in contrast, display a prominent and asymmetric profile that can be well described by a broad Gaussian component that is blue-shifted from a narrow symmetric core. In particular, we find that the blue wings of the average [OIII]λ5007 profiles are increasingly prominent in the LINERs and Seyfert galaxies. We conclude that, through the identification of strong bulk motion as traced by the warm ionized gas, in the low-redshift Universe, "pure" star-formation activity does not seem capable of driving ionized-gas outflows, while, the presence of optically selected AGN seems to play a primary role. We discuss the implications of these results for the role of the quenching mechanism in the present-day Universe.

  6. Organic chemical analysis on a microscopic scale using two-step laser desorption/laser ionization mass spectrometry

    NASA Technical Reports Server (NTRS)

    Kovalenko, L. J.; Philippoz, J.-M.; Bucenell, J. R.; Zenobi, R.; Zare, R. N.

    1991-01-01

    The distribution of PAHs in the Allende meteorite has been measured using two-step laser desorption and laser multiphoton-ionization mass spectrometry. This method enables in situ analysis (with a spatial resolution of 1 mm or better) of selected organic molecules. Results show that PAH concentrations are locally high compared to the average concentration found by analysis of pulverized samples, and are found primarily in the fine-grained matrix; no PAHs were detected in the interiors of individual chondrules at the detection limit (about 0.05 ppm).

  7. Non local-thermodynamical-equilibrium effects in the simulation of laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Klapisch, M.; Bar-Shalom, A.; Oreg, J.; Colombant, D.

    1998-05-01

    Local thermodynamic equilibrium (LTE) breaks down in directly or indirectly driven laser plasmas because of sharp gradients, energy deposition, etc. For modeling non-LTE effects in hydrodynamical simulations, Busquet's model [Phys. Fluids B 5, 4191 (1993)] is very convenient and efficient. It uses off-line generated LTE opacities and equation of states via an effective, radiation-dependent ionization temperature Tz. An overview of the model is given. The results are compared with an elaborate collisional radiative model based on superconfigurations. The agreements for average charge Z* and opacities are surprisingly good, even more so when the plasma is immersed in a radiation field. Some remaining discrepancy at low density is attributed to dielectronic recombination. Improvement appears possible, especially for emissivities, because the concept of ionization temperature seems to be validated.

  8. A quantum chemistry study on surface reactivity of pristine and carbon-substituted AlN nanotubes

    NASA Astrophysics Data System (ADS)

    Mahdaviani, Amir; Esrafili, Mehdi D.; Esrafili, Ali; Behzadi, Hadi

    2013-09-01

    A density functional theory investigation was performed to predict the surface reactivity of pristine and carbon-substituted (6,0) single-walled aluminum nitride nanotubes (AlNNTs). The properties determined include the electrostatic potentials VS(r) and average local ionization energies ĪS(r) on the surfaces of the investigated tubes. According to computed VS(r) results, the Al/N atoms in edge or cap regions show a different reactivity pattern than those at the middle portion of the tubes. Due to the carbon-substitution at the either Al or N sites of the tubes, the negative regions associated with nitrogen atoms are stronger than before. The prediction of surface reactivity and regioselectivity using average local ionization energies has been verified by atomic hydrogen chemisorption energies calculated for AlNNTs at the B3LYP/6-31 G* level. There is an acceptable correlation between the minima of ĪS(r) and the atomic hydrogen chemisorption energies, demonstrating that ĪS(r) provides an effective means for rapidly and economically assessing the relative reactivities of finite sized AlNNTs.

  9. Atomic structure data based on average-atom model for opacity calculations in astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Trzhaskovskaya, M. B.; Nikulin, V. K.

    2018-03-01

    Influence of the plasmas parameters on the electron structure of ions in astrophysical plasmas is studied on the basis of the average-atom model in the local thermodynamic equilibrium approximation. The relativistic Dirac-Slater method is used for the electron density estimation. The emphasis is on the investigation of an impact of the plasmas temperature and density on the ionization stages required for calculations of the plasmas opacities. The level population distributions and level energy spectra are calculated and analyzed for all ions with 6 ≤ Z ≤ 32 occurring in astrophysical plasmas. The plasma temperature range 2 - 200 eV and the density range 2 - 100 mg/cm3 are considered. The validity of the method used is supported by good agreement between our values of ionization stages for a number of ions, from oxygen up to uranium, and results obtained earlier by various methods among which are more complicated procedures.

  10. Density effects on electronic configurations in dense plasmas

    NASA Astrophysics Data System (ADS)

    Faussurier, Gérald; Blancard, Christophe

    2018-02-01

    We present a quantum mechanical model to describe the density effects on electronic configurations inside a plasma environment. Two different approaches are given by starting from a quantum average-atom model. Illustrations are shown for an aluminum plasma in local thermodynamic equilibrium at solid density and at a temperature of 100 eV and in the thermodynamic conditions of a recent experiment designed to characterize the effects of the ionization potential depression treatment. Our approach compares well with experiment and is consistent in that case with the approach of Stewart and Pyatt to describe the ionization potential depression rather than with the method of Ecker and Kröll.

  11. Atmospheric Ionizing Radiation and Human Exposure

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Mertens, Christopher J.; Goldhagen, Paul; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2005-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes. especially along the coastal plain and interior low lands, and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  12. Atmospheric Ionizing Radiation and Human Exposure

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagen, P.; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2004-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes especially along the coastal plain and interior low lands and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  13. Conformational responses to changes in the state of ionization of titrable groups in proteins

    NASA Astrophysics Data System (ADS)

    Richman, Daniel Eric

    Electrostatic energy links the structural properties of proteins with some of their important biological functions, including catalysis, energy transduction, and binding and recognition. Accurate calculation of electrostatic energy is essential for predicting and for analyzing function from structure. All proteins have many ionizable residues at the protein-water interface. These groups tend to have ionization equilibria (pK a values) shifted slightly relative to their values in water. In contrast, groups buried in the hydrophobic interior usually have highly anomalous p Ka values. These shifts are what structure-based calculations have to reproduce to allow examination of contributions from electrostatics to stability, solubility and interactions of proteins. Electrostatic energies are challenging to calculate accurately because proteins are heterogeneous dielectric materials. Any individual ionizable group can experience very different local environments with different dielectric properties. The studies in this thesis examine the hypothesis that proteins reorganize concomitant with changes in their state of ionization. It appears that the pKa value measured experimentally reflects the average of pKa values experienced in the different electrostatic environments corresponding to different conformational microstates. Current computational models fail to sample conformational reorganization of the backbone correctly. Staphyloccocal nuclease (SNase) was used as a model protein in nuclear magnetic resonance (NMR) spectroscopy studies to characterize the conformational rearrangements of the protein coupled to changes in the ionization state of titrable groups. One set of experiments tests the hypothesis that proton binding to surface Asp and Glu side chains drives local unfolding by stabilizing less-native, more water-solvated conformations in which the side chains have normalized pKa values. Increased backbone flexibility in the ps-ns timescale, hydrogen bond (H-bond) breaking on at least the mus timescale, and segmental unfolding were detected near titrating groups as pH decreased into the acidic range. The study identified local structural features and stabilities that modulate the magnitude of electrostatic effects. The data demonstrate that computational approaches to pK a calculations for surface groups must account for local fluctuations spanning a wide range of timescales. A comparative NMR spectroscopy study with the L25K and L125K variants of SNase, each with a Lys residue buried in the hydrophobic interior of the protein, determined locations, timescales, and amplitudes of backbone conformational reorganization coupled with ionization of the buried Lys residues. The L25K protein exhibited an ensemble of local fluctuations of the beta barrel in the hundreds of mus timescale and an ensemble of subglobally unfolded beta-barrel states in the hundreds of ms timescale with strong pH dependence. The L125K protein exhibited fluctuations of the helix around site 125 in the mus timescale, with negligible pH dependence. These data illustrate the diverse timescales and local structural properties of conformational reorganization coupled to ionization of buried groups, and the challenge to structure-based electrostatics calculations, which must capture these long-timescale processes.

  14. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe.

    PubMed

    Prevosto, L; Kelly, H; Mancinelli, B

    2013-12-01

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.

  15. Ion energies in high power impulse magnetron sputtering with and without localized ionization zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yuchen; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720; Tanaka, Koichi

    2015-03-23

    High speed imaging of high power impulse magnetron sputtering discharges has revealed that ionization is localized in moving ionization zones but localization disappears at high currents for high yield targets. This offers an opportunity to study the effect ionization zones have on ion energies. We measure that ions have generally higher energies when ionization zones are present, supporting the concept that these zones are associated with moving potential humps. We propose that the disappearance of ionization zones is caused by an increased supply of atoms from the target which cools electrons and reduces depletion of atoms to be ionized.

  16. Developing hybrid approaches to predict pKa values of ionizable groups

    PubMed Central

    Witham, Shawn; Talley, Kemper; Wang, Lin; Zhang, Zhe; Sarkar, Subhra; Gao, Daquan; Yang, Wei

    2011-01-01

    Accurate predictions of pKa values of titratable groups require taking into account all relevant processes associated with the ionization/deionization. Frequently, however, the ionization does not involve significant structural changes and the dominating effects are purely electrostatic in origin allowing accurate predictions to be made based on the electrostatic energy difference between ionized and neutral forms alone using a static structure. On another hand, if the change of the charge state is accompanied by a structural reorganization of the target protein, then the relevant conformational changes have to be taken into account in the pKa calculations. Here we report a hybrid approach that first predicts the titratable groups, which ionization is expected to cause conformational changes, termed “problematic” residues, then applies a special protocol on them, while the rest of the pKa’s are predicted with rigid backbone approach as implemented in multi-conformation continuum electrostatics (MCCE) method. The backbone representative conformations for “problematic” groups are generated with either molecular dynamics simulations with charged and uncharged amino acid or with ab-initio local segment modeling. The corresponding ensembles are then used to calculate the pKa of the “problematic” residues and then the results are averaged. PMID:21744395

  17. Factors that affect molecular weight distribution of Suwannee river fulvic acid as determined by electrospray ionization/mass spectrometry

    USGS Publications Warehouse

    Rostad, Colleen E.; Leenheer, Jerry A.

    2004-01-01

    Effects of methylation, molar response, multiple charging, solvents, and positive and negative ionization on molecular weight distributions of aquatic fulvic acid were investigated by electrospray ionization/mass spectrometry. After preliminary analysis by positive and negative modes, samples and mixtures of standards were derivatized by methylation to minimize ionization sites and reanalyzed.Positive ionization was less effective and produced more complex spectra than negative ionization. Ionization in methanol/water produced greater response than in acetonitrile/water. Molar response varied widely for the selected free acid standards when analyzed individually and in a mixture, but after methylation this range decreased. After methylation, the number average molecular weight of the Suwannee River fulvic acid remained the same while the weight average molecular weight decreased. These differences are probably indicative of disaggregation of large aggregated ions during methylation. Since the weight average molecular weight decreased, it is likely that aggregate formation in the fulvic acid was present prior to derivatization, rather than multiple charging in the mass spectra.

  18. Distribution and Kinematics of Ionized Gas in the central 500pc of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Hyland, Ella; Hicks, Erin K. S.; Kade, Kiana

    2018-06-01

    We have characterized the spatial distribution and kinematics of the ionized hydrogen gas in a sample of 40 Seyfert galaxies as part of the KONA (Keck OSIRIS Nearby AGN) survey. An analysis of the narrow Brackett Gamma emission (2.16 microns) in the central 500 pc of these local AGN will be presented. Measurements include the azimuthal averages of the flux distribution, velocity dispersion, and emission line equivalent width. In addition, the excitation of the Brackett Gamma emission is considered using the ratio of its flux with that of molecular hydrogen (2.12 microns) as a diagnostic. A comparison of the circumnuclear narrow Brackett Gamma emission characteristics in the Seyfert type 1 and type 2 subsamples will also be presented.

  19. Comparison of depth-dose distributions of proton therapeutic beams calculated by means of logical detectors and ionization chamber modeled in Monte Carlo codes

    NASA Astrophysics Data System (ADS)

    Pietrzak, Robert; Konefał, Adam; Sokół, Maria; Orlef, Andrzej

    2016-08-01

    The success of proton therapy depends strongly on the precision of treatment planning. Dose distribution in biological tissue may be obtained from Monte Carlo simulations using various scientific codes making it possible to perform very accurate calculations. However, there are many factors affecting the accuracy of modeling. One of them is a structure of objects called bins registering a dose. In this work the influence of bin structure on the dose distributions was examined. The MCNPX code calculations of Bragg curve for the 60 MeV proton beam were done in two ways: using simple logical detectors being the volumes determined in water, and using a precise model of ionization chamber used in clinical dosimetry. The results of the simulations were verified experimentally in the water phantom with Marcus ionization chamber. The average local dose difference between the measured relative doses in the water phantom and those calculated by means of the logical detectors was 1.4% at first 25 mm, whereas in the full depth range this difference was 1.6% for the maximum uncertainty in the calculations less than 2.4% and for the maximum measuring error of 1%. In case of the relative doses calculated with the use of the ionization chamber model this average difference was somewhat greater, being 2.3% at depths up to 25 mm and 2.4% in the full range of depths for the maximum uncertainty in the calculations of 3%. In the dose calculations the ionization chamber model does not offer any additional advantages over the logical detectors. The results provided by both models are similar and in good agreement with the measurements, however, the logical detector approach is a more time-effective method.

  20. Factors that affect molecular weight distribution of Suwannee river fulvic acid as determined by electrospray ionization/mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.; Leenheer, J.A.

    2004-01-01

    Effects of methylation, molar response, multiple charging, solvents, and positive and negative ionization on molecular weight distributions of aquatic fulvic acid were investigated by electrospray ionization/mass spectrometry. After preliminary analysis by positive and negative modes, samples and mixtures of standards were derivatized by methylation to minimize ionization sites and reanalyzed.Positive ionization was less effective and produced more complex spectra than negative ionization. Ionization in methanol/water produced greater response than in acetonitrile/water. Molar response varied widely for the selected free acid standards when analyzed individually and in a mixture, but after methylation this range decreased. After methylation, the number average molecular weight of the Suwannee River fulvic acid remained the same while the weight average molecular weight decreased. These differences are probably indicative of disaggregation of large aggregated ions during methylation. Since the weight average molecular weight decreased, it is likely that aggregate formation in the fulvic acid was present prior to derivatization, rather than multiple charging in the mass spectra. ?? 2004 Elsevier B.V. All rights reserved.

  1. Ionizable Nitroxides for Studying Local Electrostatic Properties of Lipid Bilayers and Protein Systems by EPR.

    PubMed

    Voinov, Maxim A; Smirnov, Alex I

    2015-01-01

    Electrostatic interactions are known to play a major role in the myriad of biochemical and biophysical processes. Here, we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that are based on an observation of reversible protonation of nitroxides by electron paramagnetic resonance (EPR). Two types of probes are described: (1) methanethiosulfonate derivatives of protonatable nitroxides for highly specific covalent modification of the cysteine's sulfhydryl groups and (2) spin-labeled phospholipids with a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and degree of rotational averaging, thus, allowing the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, the local electrostatic potential to be determined. Due to their small molecular volume, these probes cause a minimal perturbation to the protein or lipid system. Covalent attachment secures the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR, and also the methods to analyze the EPR spectra by simulations are outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide range of ca. 2.5-7.0 pH units, making them suitable to study a broad range of biophysical phenomena, especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for probe calibration, and examples of lipid bilayer surface potential studies, are also described. © 2015 Elsevier Inc. All rights reserved.

  2. Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, Adam P.; Laskin, Julia; Laskin, Alexander

    2012-07-02

    The applicability of high resolution electrospray ionization mass spectrometry (HR ESI-MS) to measurements of the average oxygen to carbon ratio (O/C) in organic aerosols was investigated. Solutions with known average O/C containing up to 10 standard compounds representative of secondary organic aerosol (SOA) were analyzed and corresponding electrospray ionization efficiencies were quantified. The assumption of equal ionization efficiency commonly used in estimating O/C ratios of organic aerosols was found to be reasonably accurate. We found that the accuracy of the measured O/C ratios increases by averaging the values obtained from both (+) and (-) modes. A correlation was found betweenmore » the ratio of the ionization efficiencies in the positive and negative ESI modes with the octanol-water partition constant, and more importantly, with the compound's O/C. To demonstrate the utility of this correlation for estimating average O/C values of unknown mixtures, we analyzed the ESI (+) and ESI (-) data for SOA produced by oxidation of limonene and isoprene and compared to online O/C measurements using an aerosol mass spectrometer (AMS). This work demonstrates that the accuracy of the HR ESI-MS methods is comparable to that of the AMS, with the added benefit of molecular identification of the aerosol constituents.« less

  3. Spinal curvature measurement by tracked ultrasound snapshots.

    PubMed

    Ungi, Tamas; King, Franklin; Kempston, Michael; Keri, Zsuzsanna; Lasso, Andras; Mousavi, Parvin; Rudan, John; Borschneck, Daniel P; Fichtinger, Gabor

    2014-02-01

    Monitoring spinal curvature in adolescent kyphoscoliosis requires regular radiographic examinations; however, the applied ionizing radiation increases the risk of cancer. Ultrasound imaging is favored over radiography because it does not emit ionizing radiation. Therefore, we tested an ultrasound system for spinal curvature measurement, with the help of spatial tracking of the ultrasound transducer. Tracked ultrasound was used to localize vertebral transverse processes as landmarks along the spine to measure curvature angles. The method was tested in two scoliotic spine models by localizing the same landmarks using both ultrasound and radiographic imaging and comparing the angles obtained. A close correlation was found between tracked ultrasound and radiographic curvature measurements. Differences between results of the two methods were 1.27 ± 0.84° (average ± SD) in an adult model and 0.96 ± 0.87° in a pediatric model. Our results suggest that tracked ultrasound may become a more tolerable and more accessible alternative to radiographic spine monitoring in adolescent kyphoscoliosis. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. Hydration effects on the photoionization energy of 2‧-deoxyguanosine 5‧-phosphate and activation barriers for guanine methylation by carcinogenic methane diazonium ions

    NASA Astrophysics Data System (ADS)

    Eichler, Daniel R.; Hamann, Haley A.; Harte, Katherine A.; Papadantonakis, George A.

    2017-07-01

    Results from DFT calculations indicate that states originating from gas-phase ionization of the phosphate and the base are degenerate in syn-5‧-dGMP- and that bulk hydration lowers the base-localized ionization energy by <0.5 eV. Local ionization maps show that micro-hydration leads to the formation of donor and acceptor hydrogen bonds and the ionization energy decreases or increases in each case respectively. The SN2 transition states of the methylation reactions of guanine with methane diazonium ions are lower at the N7 than at the O6 sites and they are influenced by local ionization energy and steric interference.

  5. Spatial averaging of fields from half-wave dipole antennas and corresponding SAR calculations in the NORMAN human voxel model between 65 MHz and 2 GHz.

    PubMed

    Findlay, R P; Dimbylow, P J

    2009-04-21

    If an antenna is located close to a person, the electric and magnetic fields produced by the antenna will vary in the region occupied by the human body. To obtain a mean value of the field for comparison with reference levels, the Institute of Electrical and Electronic Engineers (IEEE) and International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommend spatially averaging the squares of the field strength over the height the body. This study attempts to assess the validity and accuracy of spatial averaging when used for half-wave dipoles at frequencies between 65 MHz and 2 GHz and distances of lambda/2, lambda/4 and lambda/8 from the body. The differences between mean electric field values calculated using ten field measurements and that of the true averaged value were approximately 15% in the 600 MHz to 2 GHz range. The results presented suggest that the use of modern survey equipment, which takes hundreds rather than tens of measurements, is advisable to arrive at a sufficiently accurate mean field value. Whole-body averaged and peak localized SAR values, normalized to calculated spatially averaged fields, were calculated for the NORMAN voxel phantom. It was found that the reference levels were conservative for all whole-body SAR values, but not for localized SAR, particularly in the 1-2 GHz region when the dipole was positioned very close to the body. However, if the maximum field is used for normalization of calculated SAR as opposed to the lower spatially averaged value, the reference levels provide a conservative estimate of the localized SAR basic restriction for all frequencies studied.

  6. The slow ionized wind and rotating disklike system that are associated with the high-mass young stellar object G345.4938+01.4677

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzmán, Andrés E.; Garay, Guido; Bronfman, Leonardo

    2014-12-01

    We report the detection, made using ALMA, of the 92 GHz continuum and hydrogen recombination lines (HRLs) H40α, H42α, and H50β emission toward the ionized wind associated with the high-mass young stellar object G345.4938+01.4677. This is the luminous central dominating source located in the massive and dense molecular clump associated with IRAS 16562–3959. The HRLs exhibit Voigt profiles, which is a strong signature of Stark broadening. We successfully reproduce the observed continuum and HRLs simultaneously using a simple model of a slow ionized wind in local thermodynamic equilibrium, with no need for a high-velocity component. The Lorentzian line wings implymore » electron densities of 5 × 10{sup 7} cm{sup –3} on average. In addition, we detect SO and SO{sub 2} emission arising from a compact (∼3000 AU) molecular core associated with the central young star. The molecular core exhibits a velocity gradient that is perpendicular to the jet-axis, which we interpret as evidence of rotation. The set of observations toward G345.4938+01.4677 are consistent with it being a young high-mass star associated with a slow photo-ionized wind.« less

  7. Ionization of Local Interstellar Gas Based on STIS and FUSE spectra of Nearby Stars

    NASA Astrophysics Data System (ADS)

    Redfield, Seth; Linsky, J. L.

    2009-01-01

    The ultraviolet contains many resonance line transitions that are sensitive to a range of ionization stages of ions present in the local interstellar medium (LISM). We couple observations of high resolution ultraviolet spectrographs, STIS and GHRS on the Hubble Space Telescope (HST) and the Far-Ultraviolet Spectroscopic Explorer (FUSE) in order to make a comprehensive survey of the ionization structure of the local interstellar medium. In particular, we focus on the sight line toward G191-B2B, a nearby (69 pc) white dwarf. We present interstellar detections of highly ionized elements (e.g., SiIII, CIII, CIV, etc) and compare them directly to neutral or singly ionized LISM detections (e.g., SiII, CII, etc). The extensive observations of G191-B2B provides an opportunity for a broad study of ionization stages of several elements, while a survey of several sight lines provides a comprehensive look at the ionization structure of the LISM. We acknowledge support for this project through NASA FUSE Grant NNX06AD33G.

  8. Pseudopotentials for quantum Monte Carlo studies of transition metal oxides

    DOE PAGES

    Krogel, Jaron T.; Santana Palacio, Juan A.; Reboredo, Fernando A.

    2016-02-22

    Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentialsmore » to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.« less

  9. The mean free path of hydrogen ionizing photons during the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Rahmati, Alireza; Schaye, Joop

    2018-05-01

    We use the Aurora radiation-hydrodynamical simulations to study the mean free path (MFP) for hydrogen ionizing photons during the epoch of reionization. We directly measure the MFP by averaging the distance 1 Ry photons travel before reaching an optical depth of unity along random lines-of-sight. During reionization the free paths tend to end in neutral gas with densities near the cosmic mean, while after reionization the end points tend to be overdense but highly ionized. Despite the increasing importance of discrete, over-dense systems, the cumulative contribution of systems with NHI ≲ 1016.5 cm-2 suffices to drive the MFP at z ≈ 6, while at earlier times higher column densities are more important. After reionization the typical size of HI systems is close to the local Jeans length, but during reionization it is much larger. The mean free path for photons originating close to galaxies, {MFP_{gal}}, is much smaller than the cosmic MFP. After reionization this enhancement can remain significant up to starting distances of ˜1 comoving Mpc. During reionization, however, {MFP_{gal}} for distances ˜102 - 103 comoving kpc typically exceeds the cosmic MFP. These findings have important consequences for models that interpret the intergalactic MFP as the distance escaped ionizing photons can travel from galaxies before being absorbed and may cause them to under-estimate the required escape fraction from galaxies, and/or the required emissivity of ionizing photons after reionization.

  10. BADGER v1.0: A Fortran equation of state library

    NASA Astrophysics Data System (ADS)

    Heltemes, T. A.; Moses, G. A.

    2012-12-01

    The BADGER equation of state library was developed to enable inertial confinement fusion plasma codes to more accurately model plasmas in the high-density, low-temperature regime. The code had the capability to calculate 1- and 2-T plasmas using the Thomas-Fermi model and an individual electron accounting model. Ion equation of state data can be calculated using an ideal gas model or via a quotidian equation of state with scaled binding energies. Electron equation of state data can be calculated via the ideal gas model or with an adaptation of the screened hydrogenic model with ℓ-splitting. The ionization and equation of state calculations can be done in local thermodynamic equilibrium or in a non-LTE mode using a variant of the Busquet equivalent temperature method. The code was written as a stand-alone Fortran library for ease of implementation by external codes. EOS results for aluminum are presented that show good agreement with the SESAME library and ionization calculations show good agreement with the FLYCHK code. Program summaryProgram title: BADGERLIB v1.0 Catalogue identifier: AEND_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEND_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 41 480 No. of bytes in distributed program, including test data, etc.: 2 904 451 Distribution format: tar.gz Programming language: Fortran 90. Computer: 32- or 64-bit PC, or Mac. Operating system: Windows, Linux, MacOS X. RAM: 249.496 kB plus 195.630 kB per isotope record in memory Classification: 19.1, 19.7. Nature of problem: Equation of State (EOS) calculations are necessary for the accurate simulation of high energy density plasmas. Historically, most EOS codes used in these simulations have relied on an ideal gas model. This model is inadequate for low-temperature, high-density plasma conditions; the gaseous and liquid phases; and the solid phase. The BADGER code was developed to give more realistic EOS data in these regimes. Solution method: BADGER has multiple, user-selectable models to treat the ions, average-atom ionization state and electrons. Ion models are ideal gas and quotidian equation of state (QEOS), ionization models are Thomas-Fermi and individual accounting method (IEM) formulation of the screened hydrogenic model (SHM) with l-splitting, electron ionization models are ideal gas and a Helmholtz free energy minimization method derived from the SHM. The default equation of state and ionization models are appropriate for plasmas in local thermodynamic equilibrium (LTE). The code can calculate non-LTE equation of state (EOS) and ionization data using a simplified form of the Busquet equivalent-temperature method. Restrictions: Physical data are only provided for elements Z=1 to Z=86. Multiple solid phases are not currently supported. Liquid, gas and plasma phases are combined into a generalized "fluid" phase. Unusual features: BADGER divorces the calculation of average-atom ionization from the electron equation of state model, allowing the user to select ionization and electron EOS models that are most appropriate to the simulation. The included ion ideal gas model uses ground-state nuclear spin data to differentiate between isotopes of a given element. Running time: Example provided only takes a few seconds to run.

  11. Electron- and photon-impact ionization of furfural

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Ali, E.; Nixon, K. L.; Limão-Vieira, P.; Hubin-Franskin, M.-J.; Delwiche, J.; Ning, C. G.; Colgan, J.; Murray, A. J.; Madison, D. H.; Brunger, M. J.

    2015-11-01

    The He(i) photoelectron spectrum of furfural has been investigated, with its vibrational structure assigned for the first time. The ground and excited ionized states are assigned through ab initio calculations performed at the outer-valence Green's function level. Triple differential cross sections (TDCSs) for electron-impact ionization of the unresolved combination of the 4a″ + 21a' highest and next-highest occupied molecular orbitals have also been obtained. Experimental TDCSs are recorded in a combination of asymmetric coplanar and doubly symmetric coplanar kinematics. The experimental TDCSs are compared to theoretical calculations, obtained within a molecular 3-body distorted wave framework that employed either an orientation average or proper TDCS average. The proper average calculations suggest that they may resolve some of the discrepancies regarding the angular distributions of the TDCS, when compared to calculations employing the orbital average.

  12. Ionizable Nitroxides for Studying Local Electrostatic Properties of Lipid Bilayers and Protein Systems by EPR

    PubMed Central

    Voinov, Maxim A.; Smirnov, Alex I.

    2016-01-01

    Electrostatic interactions are known to play one of the major roles in the myriad of biochemical and biophysical processes. In this Chapter we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that is based on an observation of reversible protonation of nitroxides by EPR. Two types of the electrostatic probes are discussed. The first one includes methanethiosulfonate derivatives of protonatable nitroxides that could be used for highly specific covalent modification of the cysteine’s sulfhydryl groups. Such spin labels are very similar in magnetic parameters and chemical properties to conventional MTSL making them suitable for studying local electrostatic properties of protein-lipid interfaces. The second type of EPR probes is designed as spin-labeled phospholipids having a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and a degree of rotational averaging, thus, allowing one to determine the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, determining the local electrostatic potential. Due to their small molecular volume these probes cause a minimal perturbation to the protein or lipid system while covalent attachment secure the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR and also the methods to analyze the EPR spectra by least-squares simulations are also outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide pH range from ca. 2.5 to 7.0 pH units making them suitable to study a broad range of biophysical phenomena especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for calibrating such probes and example of studying surface potential of lipid bilayer is also described. PMID:26477252

  13. Advanced PIC-MCC simulation for the investigation of step-ionization effect in intermediate-pressure capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Jin Seok; Hur, Min Young; Kim, Chang Ho; Kim, Ho Jun; Lee, Hae June

    2018-03-01

    A two-dimensional parallelized particle-in-cell simulation has been developed to simulate a capacitively coupled plasma reactor. The parallelization using graphics processing units is applied to resolve the heavy computational load. It is found that the step-ionization plays an important role in the intermediate gas pressure of a few Torr. Without the step-ionization, the average electron density decreases while the effective electron temperature increases with the increase of gas pressure at a fixed power. With the step-ionization, however, the average electron density increases while the effective electron temperature decreases with the increase of gas pressure. The cases with the step-ionization agree well with the tendency of experimental measurement. The electron energy distribution functions show that the population of electrons having intermediate energy from 4.2 to 12 eV is relaxed by the step-ionization. Also, it was observed that the power consumption by the electrons is increasing with the increase of gas pressure by the step-ionization process, while the power consumption by the ions decreases with the increase of gas pressure.

  14. Solving the Excitation and Chemical Abundances in Shocks: The Case of HH 1

    NASA Astrophysics Data System (ADS)

    Giannini, T.; Antoniucci, S.; Nisini, B.; Bacciotti, F.; Podio, L.

    2015-11-01

    We present deep spectroscopic (3600-24700 Å ) X-shooter observations of the bright Herbig-Haro object HH 1, one of the best laboratories to study the chemical and physical modifications caused by protostellar shocks on the natal cloud. We observe atomic fine structure lines, H i and He i recombination lines and H2 ro-vibrational lines (more than 500 detections in total). Line emission was analyzed by means of Non-local Thermal Equilibiurm codes to derive the electron temperature and density, and for the first time we are able to accurately probe different physical regimes behind a dissociative shock. We find a temperature stratification in the range 4000 K \\div 80,000 K, and a significant correlation between temperature and ionization energy. Two density regimes are identified for the ionized gas, a more tenuous, spatially broad component (density ˜103 cm-3), and a more compact component (density ≥slant 105 cm-3) likely associated with the hottest gas. A further neutral component is also evidenced, having a temperature ≲10,000 K and a density >104 cm-3. The gas fractional ionization was estimated by solving the ionization equilibrium equations of atoms detected in different ionization stages. We find that neutral and fully ionized regions co-exist inside the shock. Also, indications in favor of at least partially dissociative shock as the main mechanism for molecular excitation are derived. Chemical abundances are estimated for the majority of the detected species. On average, abundances of non-refractory/refractory elements are lower than solar of about 0.15/0.5 dex. This indicates the presence of dust inside the medium, with a depletion factor of iron of ˜40%. Based on observations collected at the European Southern Observatory, (92.C-0058).

  15. Self-shielding of hydrogen in the IGM during the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Chardin, Jonathan; Kulkarni, Girish; Haehnelt, Martin G.

    2018-04-01

    We investigate self-shielding of intergalactic hydrogen against ionizing radiation in radiative transfer simulations of cosmic reionization carefully calibrated with Lyα forest data. While self-shielded regions manifest as Lyman-limit systems in the post-reionization Universe, here we focus on their evolution during reionization (redshifts z = 6-10). At these redshifts, the spatial distribution of hydrogen-ionizing radiation is highly inhomogeneous, and some regions of the Universe are still neutral. After masking the neutral regions and ionizing sources in the simulation, we find that the hydrogen photoionization rate depends on the local hydrogen density in a manner very similar to that in the post-reionization Universe. The characteristic physical hydrogen density above which self-shielding becomes important at these redshifts is about nH ˜ 3 × 10-3 cm-3, or ˜20 times the mean hydrogen density, reflecting the fact that during reionization photoionization rates are typically low enough that the filaments in the cosmic web are often self-shielded. The value of the typical self-shielding density decreases by a factor of 3 between redshifts z = 3 and 10, and follows the evolution of the average photoionization rate in ionized regions in a simple fashion. We provide a simple parameterization of the photoionization rate as a function of density in self-shielded regions during the epoch of reionization.

  16. Self-shielding of hydrogen in the IGM during the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Chardin, Jonathan; Kulkarni, Girish; Haehnelt, Martin G.

    2018-07-01

    We investigate self-shielding of intergalactic hydrogen against ionizing radiation in radiative transfer simulations of cosmic reionization carefully calibrated with Lyα forest data. While self-shielded regions manifest as Lyman limit systems in the post-reionization Universe, here we focus on their evolution during reionization (redshifts z = 6-10). At these redshifts, the spatial distribution of hydrogen-ionizing radiation is highly inhomogeneous, and some regions of the Universe are still neutral. After masking the neutral regions and ionizing sources in the simulation, we find that the hydrogen photoionization rate depends on the local hydrogen density in a manner very similar to that in the post-reionization Universe. The characteristic physical hydrogen density above which self-shielding becomes important at these redshifts is about nH ˜ 3 × 10-3 cm-3, or ˜20 times the mean hydrogen density, reflecting the fact that during reionization photoionization rates are typically low enough that the filaments in the cosmic web are often self-shielded. The value of the typical self-shielding density decreases by a factor of 3 between redshifts z = 3 and 10, and follows the evolution of the average photoionization rate in ionized regions in a simple fashion. We provide a simple parametrization of the photoionization rate as a function of density in self-shielded regions during the epoch of reionization.

  17. Charge transfer and charge localization in extended radical cations: Investigation of model molecules for peptides

    NASA Astrophysics Data System (ADS)

    Weinkauf, Rainer; Lehrer, Florian

    1998-12-01

    Molecules consisting of a flexible tail and an aromatic chromophore are used as model systems to understand the situation of a single chromophore in a small peptide. Their S0-S1 resonant multiphoton ionization (REMPI) spectra show, that in neutral molecules the tail-chromophore interaction is weak and electronic excitation is localized at the chromophore. For molecules, where the ionization energy of the tail is considerable higher than that of the chromophore, by high resolution REMPI photoelectron spectroscopy we find the charge to be localized on the aromatic chromophore. This scheme also in suitable peptides allows local ionization at the aromatic chromophore. An estimate for various charge positions in peptide chains, however, shows, that for most of the amino acids electron hole positions in the nitrogen and oxygen "lone pair" orbitals of the peptide bond are nearly degenerate. REMPI photoelectron spectra of phenylethylamine, which as a model system contains such two degenerate charge positions, show small energetic shift of the ionization energy but strong geometry changes upon electron removal. This result is interpreted as direct ionization into a mixed charge delocalized state. Consequences for the charge transfer mechanism in peptides are discussed.

  18. NLTE steady-state response matrix method.

    NASA Astrophysics Data System (ADS)

    Faussurier, G.; More, R. M.

    2000-05-01

    A connection between atomic kinetics and non-equilibrium thermodynamics has been recently established by using a collisional-radiative model modified to include line absorption. The calculated net emission can be expressed as a non-local thermodynamic equilibrium (NLTE) symmetric response matrix. In the paper, this connection is extended to both cases of the average-atom model and the Busquet's model (RAdiative-Dependent IOnization Model, RADIOM). The main properties of the response matrix still remain valid. The RADIOM source function found in the literature leads to a diagonal response matrix, stressing the absence of any frequency redistribution among the frequency groups at this order of calculation.

  19. Comparison of Atmospheric Pressure Chemical Ionization and Field Ionization Mass Spectrometry for the Analysis of Large Saturated Hydrocarbons.

    PubMed

    Jin, Chunfen; Viidanoja, Jyrki; Li, Mingzhe; Zhang, Yuyang; Ikonen, Elias; Root, Andrew; Romanczyk, Mark; Manheim, Jeremy; Dziekonski, Eric; Kenttämaa, Hilkka I

    2016-11-01

    Direct infusion atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was compared to field ionization mass spectrometry (FI-MS) for the determination of hydrocarbon class distributions in lubricant base oils. When positive ion mode APCI with oxygen as the ion source gas was employed to ionize saturated hydrocarbon model compounds (M) in hexane, only stable [M - H] + ions were produced. Ion-molecule reaction studies performed in a linear quadrupole ion trap suggested that fragment ions of ionized hexane can ionize saturated hydrocarbons via hydride abstraction with minimal fragmentation. Hence, APCI-MS shows potential as an alternative of FI-MS in lubricant base oil analysis. Indeed, the APCI-MS method gave similar average molecular weights and hydrocarbon class distributions as FI-MS for three lubricant base oils. However, the reproducibility of APCI-MS method was found to be substantially better than for FI-MS. The paraffinic content determined using the APCI-MS and FI-MS methods for the base oils was similar. The average number of carbons in paraffinic chains followed the same increasing trend from low viscosity to high viscosity base oils for the two methods.

  20. Electron-Impact Excitation and Ionization in Air

    DTIC Science & Technology

    2009-09-01

    average collision frequency, is more than 100 times larger. Even in the slightly ionized regime with only 1% electrons, the frequency of electron...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and...physics-based model of nonequilibrium chemistry and radiation in hypersonic flow, it is timely to investigate and update the electron collision cross

  1. Localized heating of electrons in ionization zones: Going beyond the Penning-Thornton paradigm in magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anders, Andre

    2014-12-07

    The fundamental question of how energy is supplied to a magnetron discharge is commonly answered by the Penning-Thornton paradigm invoking secondary electrons. Huo et al. (Plasma Sources Sci. Technol. 22, 045005, (2013)) used a global discharge model to show that electron heating in the electric field of the magnetic presheath is dominant. In this contribution, this concept is applied locally taking into account the electric potential structure of ionization zones. Images of ionization zones can and should be interpreted as diagrams of the localization of electric potential and related electron energy, where certain collisions promote or dampen their formation.

  2. SU-F-T-488: Comparison of the TG-51 and TG-51 Addendum Calibration Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaw, T; Hwang, M; Jang, S

    Purpose: To quantify differences between the TG51 and TG51 addendum calibration protocols. Methods: Beam energies of 6X, 6XSRS, 10X, 15X, 23X, 6XFFF, and 10XFFF were calibrated following both the TG51 and TG51 addendum protocols using both a Farmer and a scanning ionization chamber with traceable absorbed dose-to-water calibrations. For the TG51 addendum procedure, the collimating jaws were positioned to define a 10×10cm{sup 2} radiation field, a lead foil was only used for kQ measurements of FFF energies, and a volume-averaging correction was applied based on crossline and inline dose profiles. For the TG51 procedure, the collimating jaws were set tomore » 10×10cm{sup 2} according to the digital readout, and a lead foil was used for kQ measurements of energies greater than 10MV. Results: For beam energies with a flattening filter, absorbed dose-to-water determined by the two protocols differed by 0.1%–0.3%. For FFF beam energies, differences between the protocols were up to 0.2% and 0.8% for the scanning and Farmer ionization chambers, respectively. Differences between the protocols were due to kQ determination, volume-averaging correction, and measurement of raw ionization. Differences in kQ values between the two protocols were up to 0.4% and 0.2% for the scanning and Farmer ionization chambers, respectively. Volume-averaging corrections were less than 0.1% for the scanning ionization chamber, and up to 0.4% and 0.6% for the Farmer ionization chamber in beams with a flattening filter and FFF beams, respectively. Raw ionization measurements differed up to 0.3%±0.07% due to differences in jaw settings. Conclusion: The TG51 and TG51 addendum calibration protocols differed less than 0.3% for the scanning ionization chamber. For the Farmer chamber in FFF energies, volume-averaging corrections of up to 0.6% contributed to calibration differences of up to 0.8%. Failure to verify the radiation field size can produce calibration differences of up to 0.3%.« less

  3. Heating the warm ionized medium

    NASA Technical Reports Server (NTRS)

    Reynolds, R. J.; Cox, D. P.

    1992-01-01

    If photoelectric heating by grains within the diffuse ionized component of the interstellar medium is 10 exp -25 ergs/s per H atom, the average value within diffuse H I regions, then grain heating equals or exceeds photoionization heating of the ionized gas. This supplemental heat source would obviate the need for energetic ionizing photons to balance the observed forbidden-line cooling and could be responsible in part for enhanced intensities of some of the forbidden lines.

  4. Children and adults exposed to electromagnetic fields at the ICNIRP reference levels: theoretical assessment of the induced peak temperature increase.

    PubMed

    Bakker, J F; Paulides, M M; Neufeld, E; Christ, A; Kuster, N; van Rhoon, G C

    2011-08-07

    To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels. Restrictions on induced whole-body-averaged specific absorption rate (SAR(wb)) are provided to keep the whole-body temperature increase (T(body, incr)) under 1 °C during 30 min. Additional restrictions on the peak 10 g spatial-averaged SAR (SAR(10g)) are provided to prevent excessive localized tissue heating. The objective of this study is to assess the localized peak temperature increase (T(incr, max)) in children upon exposure at the reference levels. Finite-difference time-domain modeling was used to calculate T(incr, max) in six children and two adults exposed to orthogonal plane-wave configurations. We performed a sensitivity study and Monte Carlo analysis to assess the uncertainty of the results. Considering the uncertainties in the model parameters, we found that a peak temperature increase as high as 1 °C can occur for worst-case scenarios at the ICNIRP reference levels. Since the guidelines are deduced from temperature increase, we used T(incr, max) as being a better metric to prevent excessive localized tissue heating instead of localized peak SAR. However, we note that the exposure time should also be considered in future guidelines. Hence, we advise defining limits on T(incr, max) for specified durations of exposure.

  5. Influence of atomic kinetics in the simulation of plasma microscopic properties and thermal instabilities for radiative bow shock experiments.

    PubMed

    Espinosa, G; Rodríguez, R; Gil, J M; Suzuki-Vidal, F; Lebedev, S V; Ciardi, A; Rubiano, J G; Martel, P

    2017-03-01

    Numerical simulations of laboratory astrophysics experiments on plasma flows require plasma microscopic properties that are obtained by means of an atomic kinetic model. This fact implies a careful choice of the most suitable model for the experiment under analysis. Otherwise, the calculations could lead to inaccurate results and inappropriate conclusions. First, a study of the validity of the local thermodynamic equilibrium in the calculation of the average ionization, mean radiative properties, and cooling times of argon plasmas in a range of plasma conditions of interest in laboratory astrophysics experiments on radiative shocks is performed in this work. In the second part, we have made an analysis of the influence of the atomic kinetic model used to calculate plasma microscopic properties of experiments carried out on magpie on radiative bow shocks propagating in argon. The models considered were developed assuming both local and nonlocal thermodynamic equilibrium and, for the latter situation, we have considered in the kinetic model different effects such as external radiation field and plasma mixture. The microscopic properties studied were the average ionization, the charge state distributions, the monochromatic opacities and emissivities, the Planck mean opacity, and the radiative power loss. The microscopic study was made as a postprocess of a radiative-hydrodynamic simulation of the experiment. We have also performed a theoretical analysis of the influence of these atomic kinetic models in the criteria for the onset possibility of thermal instabilities due to radiative cooling in those experiments in which small structures were experimentally observed in the bow shock that could be due to this kind of instability.

  6. Influence of atomic kinetics in the simulation of plasma microscopic properties and thermal instabilities for radiative bow shock experiments

    NASA Astrophysics Data System (ADS)

    Espinosa, G.; Rodríguez, R.; Gil, J. M.; Suzuki-Vidal, F.; Lebedev, S. V.; Ciardi, A.; Rubiano, J. G.; Martel, P.

    2017-03-01

    Numerical simulations of laboratory astrophysics experiments on plasma flows require plasma microscopic properties that are obtained by means of an atomic kinetic model. This fact implies a careful choice of the most suitable model for the experiment under analysis. Otherwise, the calculations could lead to inaccurate results and inappropriate conclusions. First, a study of the validity of the local thermodynamic equilibrium in the calculation of the average ionization, mean radiative properties, and cooling times of argon plasmas in a range of plasma conditions of interest in laboratory astrophysics experiments on radiative shocks is performed in this work. In the second part, we have made an analysis of the influence of the atomic kinetic model used to calculate plasma microscopic properties of experiments carried out on magpie on radiative bow shocks propagating in argon. The models considered were developed assuming both local and nonlocal thermodynamic equilibrium and, for the latter situation, we have considered in the kinetic model different effects such as external radiation field and plasma mixture. The microscopic properties studied were the average ionization, the charge state distributions, the monochromatic opacities and emissivities, the Planck mean opacity, and the radiative power loss. The microscopic study was made as a postprocess of a radiative-hydrodynamic simulation of the experiment. We have also performed a theoretical analysis of the influence of these atomic kinetic models in the criteria for the onset possibility of thermal instabilities due to radiative cooling in those experiments in which small structures were experimentally observed in the bow shock that could be due to this kind of instability.

  7. Avalanche multiplication and impact ionization in amorphous selenium photoconductive target

    NASA Astrophysics Data System (ADS)

    Park, Wug-Dong; Tanioka, Kenkichi

    2014-03-01

    The avalanche multiplication factor and the hole ionization coefficient in the amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) target depend on the electric field. The phenomenon of avalanche multiplication and impact ionization in the 0.4-µm-thick a-Se HARP target is investigated. The hot carrier energy in the 0.4-µm-thick a-Se HARP target increases linearly as the target voltage increases. The energy relaxation length of hot carriers in the a-Se photoconductor of the 0.4-µm-thick HARP target saturates as the electric field increases. The average energy Eav of a hot carrier and the energy relaxation length λE in the a-Se photoconductor of the 0.4-µm-thick HARP target at 1 × 108 V/m were 0.25 eV and 2.5 nm, respectively. In addition, the hole ionization coefficient β and the avalanche multiplication factor M are derived as a function of the electric field, the average energy of a hot carrier, and the impact ionization energy. The experimental hole ionization coefficient β and the avalanche multiplication factor M in the 0.4-µm-thick a-Se HARP target agree with the theoretical results.

  8. Time-Dependent Photoionization of Gaseous Nebulae: The Pure Hydrogen Case

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Elhoussieny, E. E.; Bautista, M. A.; Kallman, Timothy R.

    2013-01-01

    We study the problem of time-dependent photoionization of low density gaseous nebulae subjected to sudden changes in the intensity of ionizing radiation. To this end, we write a computer code that solves the full timedependent energy balance, ionization balance, and radiation transfer equations in a self-consistent fashion for a simplified pure hydrogen case. It is shown that changes in the ionizing radiation yield ionizationthermal fronts that propagate through the cloud, but the propagation times and response times to such fronts vary widely and nonlinearly from the illuminated face of the cloud to the ionization front (IF). IFthermal fronts are often supersonic, and in slabs initially in pressure equilibrium such fronts yield large pressure imbalances that are likely to produce important dynamical effects in the cloud. Further, we studied the case of periodic variations in the ionizing flux. It is found that the physical conditions of the plasma have complex behaviors that differ from any steady-state solution. Moreover, even the time average of ionization and temperature is different from any steady-state case. This time average is characterized by overionization and a broader IF with respect to the steady-state solution for a mean value of the radiation flux. Around the time average of physical conditions there is a large dispersion in instantaneous conditions, particularly across the IF, which increases with the period of radiation flux variations. Moreover, the variations in physical conditions are asynchronous along the slab due to the combination of nonlinear propagation times for thermal frontsIFs and equilibration times.

  9. Attenuation characteristics of electromagnetic waves in a weak collisional and fully ionized dusty plasma

    NASA Astrophysics Data System (ADS)

    Dan, Li; Guo, Li-Xin; Li, Jiang-Ting; Chen, Wei; Yan, Xu; Huang, Qing-Qing

    2017-09-01

    The expression of complex dielectric permittivity for non-magnetized fully ionized dusty plasma is obtained based on the kinetic equation in the Fokker-Planck-Landau collision model and the charging equation of the statistical theory. The influences of density, average size of dust grains, and balanced charging of the charge number of dust particles on the attenuation properties of electromagnetic waves in fully ionized dusty plasma are investigated by calculating the attenuation constant. In addition, the attenuation characteristics of weakly ionized and fully ionized dusty plasmas are compared. Results enriched the physical mechanisms of microwave attenuation for fully ionized dusty plasma and provide a theoretical basis for future studies.

  10. Enhanced ionization efficiency in TIMS analyses of plutonium and americium using porous ion emitters

    DOE PAGES

    Baruzzini, Matthew L.; Hall, Howard L.; Watrous, Matthew G.; ...

    2016-12-05

    Investigations of enhanced sample utilization in thermal ionization mass spectrometry (TIMS) using porous ion emitter (PIE) techniques for the analyses of trace quantities of americium and plutonium were performed. Repeat ionization efficiency (i.e., the ratio of ions detected to atoms loaded on the filament) measurements were conducted on sample sizes ranging from 10–100 pg for americium and 1–100 pg for plutonium using PIE and traditional (i.e., a single, zone-refined rhenium, flat filament ribbon with a carbon ionization enhancer) TIMS filament sources. When compared to traditional filaments, PIEs exhibited an average boost in ionization efficiency of ~550% for plutonium and ~1100%more » for americium. A maximum average efficiency of 1.09% was observed at a 1 pg plutonium sample loading using PIEs. Supplementary trials were conducted using newly developed platinum PIEs to analyze 10 pg mass loadings of plutonium. As a result, platinum PIEs exhibited an additional ~134% boost in ion yield over standard PIEs and ~736% over traditional filaments at the same sample loading level.« less

  11. How Very Massive Metal-Free Stars Start Cosmological Reionization

    NASA Technical Reports Server (NTRS)

    Wise, John H.; Abel, Tom

    2008-01-01

    The initial conditions and relevant physics for the formation of the earliest galaxies are well specified in the concordance cosmology. Using ab initio cosmological Eulerian adaptive mesh refinement radiation hydrodynamical calculations, we discuss how very massive stars start the process of cosmological reionization. The models include nonequilibrium primordial gas chemistry and cooling processes and accurate radiation transport in the case B approximation using adaptively ray-traced photon packages, retaining the time derivative in the transport equation. Supernova feedback is modeled by thermal explosions triggered at parsec scales. All calculations resolve the local Jeans length by at least 16 grid cells at all times and as such cover a spatial dynamic range of approx.10(exp 6). These first sources of reionization are highly intermittent and anisotropic and first photoionize the small-scale voids surrounding the halos they form in, rather than the dense filaments they are embedded in. As the merging objects form larger, dwarf-sized galaxies, the escape fraction of UV radiation decreases and the H II regions only break out on some sides of the galaxies, making them even more anisotropic. In three cases, SN blast waves induce star formation in overdense regions that were formed earlier from ionization front instabilities. These stars form tens of parsecs away from the center of their parent DM halo. Approximately five ionizing photons are needed per sustained ionization when star formation in 10(exp 6) stellar Mass halos is dominant in the calculation. As the halos become larger than approx.10(exp 7) Stellar Mass, the ionizing photon escape fraction decreases, which in turn increases the number of photons per ionization to 15-50, in calculations with stellar feedback only. Radiative feedback decreases clumping factors by 25% when compared to simulations without star formation and increases the average temperature of ionized gas to values between 3000 and 10,000 K.

  12. Room temperature ferromagnetism in liquid-phase pulsed laser ablation synthesized nanoparticles of nonmagnetic oxides

    NASA Astrophysics Data System (ADS)

    Singh, S. C.; Kotnala, R. K.; Gopal, R.

    2015-08-01

    Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, related to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects.

  13. Room temperature ferromagnetism in liquid-phase pulsed laser ablation synthesized nanoparticles of nonmagnetic oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, S. C., E-mail: subhash.laserlab@gmail.com; Gopal, R.; Kotnala, R. K.

    2015-08-14

    Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, relatedmore » to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects.« less

  14. Ionization in the local interstellar and intergalactic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, K.

    1990-01-01

    Detailed photoionization calculations for the local interstellar medium (LISM) and the intergalactic medium (IGM) are presented. Constraints in the LISM are imposed by H I column density derived from IUE and Copernicus data toward nearby B stars and hot white dwarfs. The EUV radiation field is modeled including contributions from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10(exp 6) K coronal substrate. Lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.30 respectively are established. The derived limits have important implications for the interpretation of the H I andmore » He I backscattering results. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10(exp 6) K plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N(C III)/N(C II) and N(N II)/N(N I) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. The same photoionization model is applied to the intergalactic medium.« less

  15. Spectroscopic imaging of self-organization in high power impulse magnetron sputtering plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, Joakim; Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore; Ni, Pavel

    Excitation and ionization conditions in traveling ionization zones of high power impulse magnetron sputtering plasmas were investigated using fast camera imaging through interference filters. The images, taken in end-on and side-on views using light of selected gas and target atom and ion spectral lines, suggest that ionization zones are regions of enhanced densities of electrons, and excited atoms and ions. Excited atoms and ions of the target material (Al) are strongly concentrated near the target surface. Images from the highest excitation energies exhibit the most localized regions, suggesting localized Ohmic heating consistent with double layer formation.

  16. Spectroscopic imaging of self-organization in high power impulse magnetron sputtering plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore; Andersson, Joakim; Ni, Pavel

    Excitation and ionization conditions in traveling ionization zones of high power impulse magnetron sputtering plasmas were investigated using fast camera imaging through interference filters. The images, taken in end-on and side on views using light of selected gas and target atom and ion spectral lines, suggest that ionization zones are regions of enhanced densities of electrons, and excited atoms and ions. Excited atoms and ions of the target material (Al) are strongly concentrated near the target surface. Images from the highest excitation energies exhibit the most localized regions, suggesting localized Ohmic heating consistent with double layer formation.

  17. Experimental and theoretical study of the microsolvation of sodium atoms in methanol clusters: differences and similarities to sodium-water and sodium-ammonia.

    PubMed

    Dauster, Ingo; Suhm, Martin A; Buck, Udo; Zeuch, Thomas

    2008-01-07

    Methanol clusters are generated in a continuous He-seeded supersonic expansion and doped with sodium atoms in a pick-up cell. By this method, clusters of the type Na(CH(3)OH)(n) are formed and subsequently photoionized by applying a tunable dye-laser system. The microsolvation process of the Na 3s electron is studied by determining the ionization potentials (IPs) of these clusters size-selectively for n = 2-40. A decrease is found from n = 2 to 6 and a constant value of 3.19 +/- 0.07 eV for n = 6-40. The experimentally-determined ionization potentials are compared with ionization potentials derived from quantum-chemical calculations, assuming limiting vertical and adiabatic processes. In the first case, energy differences are calculated between the neutral and the ionized cationic clusters of the same geometry. In the second case, the ionized clusters are used in their optimized relaxed geometry. These energy differences and relative stabilities of isomeric clusters vary significantly with the applied quantum-chemical method (B3LYP or MP2). The comparison with the experiment for n = 2-7 reveals strong variations of the ionization potential with the cluster structure indicating that structural diversity and non-vertical pathways give significant signal contributions at the threshold. Based on these findings, a possible explanation for the remarkable difference in IP evolutions of methanol or water and ammonia is presented: for methanol and water a rather localized surface or semi-internal Na 3s electron is excited to either high Rydberg or more localized states below the vertical ionization threshold. This excitation is followed by a local structural relaxation that couples to an autoionization process. For small clusters with n < 6 for methanol and n < 4 for water the addition of solvent molecules leads to larger solvent-metal-ion interaction energies, which consequently lead to lower ionization thresholds. For n = 6 (methanol) and n = 4 (water) this effect comes to a halt, which may be connected with the completion of the first cationic solvation shell limiting the release of local relaxation energy. For Na(NH(3))(n), a largely delocalized and internal electron is excited to autoionizing electronic states, a process that is no longer local and consequently may depend on cluster size up to very large n.

  18. Flash ionization signature in coherent cyclotron emission from brown dwarfs

    NASA Astrophysics Data System (ADS)

    Vorgul, I.; Helling, Ch.

    2016-05-01

    Brown dwarfs (BDs) form mineral clouds in their atmospheres, where charged particles can produce large-scale discharges in the form of lightning resulting in substantial sudden increase of local ionization. BDs are observed to emit cyclotron radio emission. We show that signatures of strong transient atmospheric ionization events (flash ionization) can be imprinted on a pre-existing radiation. Detection of such flash ionization events will open investigations into the ionization state and atmospheric dynamics. Such events can also result from explosion shock waves, material outbursts or (volcanic) eruptions. We present an analytical model that describes the modulation of a pre-existing electromagnetic radiation by a time-dependent (flash) conductivity that is characteristic for flash ionization events like lightning. Our conductivity model reproduces the conductivity function derived from observations of terrestrial gamma-ray flashes, and is applicable to astrophysical objects with strong temporal variations in the local ionization, as in planetary atmospheres and protoplanetary discs. We show that the field responds with a characteristic flash-shaped pulse to a conductivity flash of intermediate intensity. More powerful ionization events result in smaller variations of the initial radiation, or in its damping. We show that the characteristic damping of the response field for high-power initial radiation carries information about the ionization flash magnitude and duration. The duration of the pulse amplification or the damping is consistently shorter for larger conductivity variations and can be used to evaluate the intensity of the flash ionization. Our work suggests that cyclotron emission could be probe signals for electrification processes inside BD atmosphere.

  19. Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium

    NASA Technical Reports Server (NTRS)

    Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.

  20. HEATING OF THE WARM IONIZED MEDIUM BY LOW-ENERGY COSMIC RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Mark A., E-mail: Mark.Walker@manlyastrophysics.org

    2016-02-10

    In light of evidence for a high ionization rate due to low-energy cosmic rays (LECR) in diffuse molecular gas in the solar neighborhood, we evaluate their heat input to the warm ionized medium (WIM). LECR are much more effective at heating plasma than they are at heating neutrals. We show that the upper end of the measured ionization rates corresponds to a local LECR heating rate sufficient to maintain the WIM against radiative cooling, independent of the nature of the ionizing particles or the detailed shape of their spectrum. Elsewhere in the Galaxy the LECR heating rates may be highermore » than those measured locally. In particular, higher fluxes of LECR have been suggested for the inner Galactic disk, based on the observed hard X-ray emission, with correspondingly larger heating rates implied for the WIM. We conclude that LECR play an important and perhaps dominant role in the thermal balance of the WIM.« less

  1. Equation-of-State Scaling Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scannapieco, Anthony J.

    2016-06-28

    Equation-of-State scaling factors are needed when using a tabular EOS in which the user de ned material isotopic fractions di er from the actual isotopic fractions used by the table. Additionally, if a material is dynamically changing its isotopic structure, then an EOS scaling will again be needed, and will vary in time and location. The procedure that allows use of a table to obtain information about a similar material with average atomic mass Ms and average atomic number Zs is described below. The procedure is exact for a fully ionized ideal gas. However, if the atomic number is replacemore » by the e ective ionization state the procedure can be applied to partially ionized material as well, which extends the applicability of the scaling approximation continuously from low to high temperatures.« less

  2. Equations of state and transport properties of mixtures in the warm dense regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Yong; Dai, Jiayu; Kang, Dongdong

    2015-02-15

    We have performed average-atom molecular dynamics to simulate the CH and LiH mixtures in the warm dense regime, and obtained equations of state and the ionic transport properties. The electronic structures are calculated by using the modified average-atom model, which have included the broadening of energy levels, and the ion-ion pair potentials of mixtures are constructed based on the temperature-dependent density functional theory. The ionic transport properties, such as ionic diffusion and shear viscosity, are obtained through the ionic velocity correlation functions. The equations of state and transport properties for carbon, hydrogen and lithium, hydrogen mixtures in a wide regionmore » of density and temperature are calculated. Through our computing the average ionization degree, average ion-sphere diameter and transition properties in the mixture, it is shown that transport properties depend not only on the ionic mass but also on the average ionization degree.« less

  3. Propagation direction reversal of ionization zones in the transition between high and low current magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    School of Materials Science and Engineering, State Key Lab for Materials Processing and Die & Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Department of Physics, University of California Berkeley, Berkeley, California 94720, USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA

    2014-12-11

    Past research has revealed the propagation of dense, asymmetric ionization zones in both high and low current magnetron discharges. Here we report about the direction reversal of ionization zone propagation as observed with fast cameras. At high currents, zones move in the E B direction with velocities of 103 to 104 m/s. However at lower currents, ionization zones are observed to move in the opposite, the -E B direction, with velocities ~;; 103 m/s. It is proposed that the direction reversal is associated with the local balance of ionization and supply of neutrals in the ionization zone.

  4. Spatially resolved organic analysis of the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Zenobi, Renato; Philippoz, Jean-Michel; Zare, Richard N.; Buseck, Peter R.

    1989-01-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in the Allende meteorite has been probed with two-step laser desorption/laser multiphoton ionization mass spectrometry. This method allows direct in situ analysis with a spatial resolution of 1 sq mm or better of selected organic molecules. Spectra from freshly fractured interior surfaces of the meteorite show that PAH concentrations are locally high compared to the average concentrations found by wet chemical analysis of pulverized samples. The data suggest that the PAHs are primarily associated with the fine-grained matrix, where the organic polymer occurs. In addition, highly substituted PAH skeletons were observed. Interiors of individual chondrules were devoid of PAHs at the detection limit (about 0.05 ppm).

  5. Free Radicals Generated by Ionizing Radiation Signal Nuclear Translocation of p53

    NASA Technical Reports Server (NTRS)

    Martinez, J. D.; Pennington, M. E.; Craven, M. T.; Warters, R. L.

    1997-01-01

    The p53 tumor suppressor is a transcription factor that regulates several pathways, which function collectively to maintain the integrity of the genome. Nuclear localization is critical for wild-type function. However, the signals that regulate subcellular localization of p53 have not been identified. Here, we examine the effect of ionizing radiation on the subcellular localization of p53 in two cell lines in which p63 is normally sequestered in the cytoplasm and found that ionizing radiation caused a biphasic translocation response. p53 entered the nucleus 1-2 hours postirradiation (early response), subsequently emerged from the nucleus, and then again entered the nucleus 12-24 hours after the cells had been irradiated (delayed response). These changes in subcellular localization could be completely blocked by the free radical scavenger, WR1065. By comparison, two DNA-damaging agents that do not generate free radicals, mitomycin C and doxorubicin, caused translocation only after 12-24 h of exposure to the drugs, and this effect could not be inhibited by WR1065. Hence, although all three DNA-damaging agents induced relocalization of p53 to the nucleus, only the translocation caused by radiation was sensitive to free radical scavenging. We suggest that the free radicals generated by ionizing radiation can signal p53 translocation to the nucleus.

  6. Propagation characteristics of electromagnetic waves in dusty plasma with full ionization

    NASA Astrophysics Data System (ADS)

    Dan, Li; Guo, Li-Xin; Li, Jiang-Ting

    2018-01-01

    This study investigates the propagation characteristics of electromagnetic (EM) waves in fully ionized dusty plasmas. The propagation characteristics of fully ionized plasma with and without dust under the Fokker-Planck-Landau (FPL) and Bhatnagar-Gross-Krook (BGK) models are compared to those of weakly ionized plasmas by using the propagation matrix method. It is shown that the FPL model is suitable for the analysis of the propagation characteristics of weakly collisional and fully ionized dusty plasmas, as is the BGK model. The influence of varying the dust parameters on the propagation properties of EM waves in the fully ionized dusty plasma was analyzed using the FPL model. The simulation results indicated that the densities and average radii of dust grains influence the reflection and transmission coefficients of fully ionized dusty plasma slabs. These results may be utilized to analyze the effects of interaction between EM waves and dusty plasmas, such as those associated with hypersonic vehicles.

  7. Self-organization and self-limitation in high power impulse magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anders, Andre

    The plasma over the racetrack in high power impulse magnetron sputtering develops in traveling ionization zones. Power densities can locally reach 10{sup 9} W/m{sup 2}, which is much higher than usually reported. Ionization zones move because ions are 'evacuated' by the electric field, exposing neutrals to magnetically confined, drifting electrons. Drifting secondary electrons amplify ionization of the same ionization zone where the primary ions came from, while sputtered and outgassing atoms are supplied to the following zone(s). Strong density gradients parallel to the target disrupt electron confinement: a negative feedback mechanism that stabilizes ionization runaway.

  8. Orbital Picture of Ionization and Its Breakdown in Nanoarrays of Quantum Dots

    NASA Astrophysics Data System (ADS)

    Bâldea, Ioan; Cederbaum, Lorenz S.

    2002-09-01

    We present exact numerical results indicating that ionization could be a useful tool to study electron correlations in artificial molecules and nanoarrays of metallic quantum dots. For nanorings consisting of Ag quantum dots of the type already fabricated, we demonstrate that the molecular orbital picture breaks down even for lowest energy ionization processes, in contrast to ordinary molecules. Our ionization results yield a transition point between localization and delocalization regimes in good agreement with various experimental data.

  9. Local reionization histories with a merger tree of the HII regions

    NASA Astrophysics Data System (ADS)

    Chardin, Jonathan; Aubert, Dominique; Ocvirk, Pierre

    2014-08-01

    Aims: We investigate simple properties of the initial stage of the reionization process around progenitors of galaxies, such as the extent of the initial HII region before its fusion with the UV background, and the duration of its propagation. Methods: We used a set of four reionization simulations with different resolutions and ionizing source prescriptions. By using a merger tree of the HII regions we compiled a catalog of the HII region properties. When the ionized regions undergo a major-merger event, we considered that they belong to the global UV background. From the lifetime of the region and from their volume until this moment we drew typical local reionization histories as a function of time and investigated the relation between these histories and the halo mass progenitors of the regions. We then used an average mass accretion history model (AMAH) to extrapolate the halo mass inside the region from high z to z = 0 to predict the past reionization histories of galaxies we see today. Results: We found that the later an HII region appears during the reionization period, the shorter their related lifetime is and the smaller their volume before they merge with the global UV background. Quantitatively, the duration and extent of the initial growth of an HII region is strongly dependent on the mass of the inner halo and can be as long as ~50% of the reionization epoch. We found that the more massive a halo is today, the earlier it appears and the larger is the extension and the longer the propagation duration of its HII region. Quantitative predictions differ depending on the box size or the source model: small simulated volumes are affected by proximity effects between HII regions, and halo-based source models predict smaller regions and slower I-front expansion than models that use star particles as ionizing sources. Applying this extrapolation to Milky Way-type halos leads to a maximal extent of 1.1 Mpc/h for the initial HII region that established itself in ~150-200 ± 20 Myr. This is consistent with the prediction made using constrained Local Group simulations. For halos with masses similar to those of the Local Group (MW + M31), our result suggests that statistically it has not been influenced by an external front coming from a Virgo-like cluster.

  10. Standard/Handbook for RF Ionization Breakdown Prevention in Spacecraft Components

    DTIC Science & Technology

    2015-06-19

    localized glow discharge of the plasma ( corona ) while RF power is being applied. 8.4.3 RF Performance Changes If a breakdown occurs and damages the...in spacecraft components and systems. Ionization breakdown is a high-energy radio frequency (RF) discharge that can occur when the insulating media...energy can be discharged in a small volume, releasing large amounts of heat, melting local surfaces, and generating debris, all of which will likely

  11. Standard/Handbook for RF Ionization Breakdown Prevention in Spacecraft Components

    DTIC Science & Technology

    2015-06-19

    localized glow discharge of the plasma ( corona ) while RF power is being applied. 8.4.3 RF Performance Changes If a breakdown occurs and damages the part...in spacecraft components and systems. Ionization breakdown is a high-energy radio frequency (RF) discharge that can occur when the insulating media...energy can be discharged in a small volume, releasing large amounts of heat, melting local surfaces, and generating debris, all of which will likely

  12. Clusters of DNA induced by ionizing radiation: formation of short DNA fragments. I. Theoretical modeling

    NASA Technical Reports Server (NTRS)

    Holley, W. R.; Chatterjee, A.

    1996-01-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the chromatin fibers in mammalian DNA.

  13. Red Geyser: A New Class of Galaxy with Large-scale AGN-driven Winds

    NASA Astrophysics Data System (ADS)

    Roy, Namrata; Bundy, Kevin; Cheung, Edmond; MaNGA Team

    2018-01-01

    A new class of quiescent (non-star-forming) galaxies harboring possible AGN-driven winds have been discovered using the spatially resolved optical spectroscopy from the ongoing SDSS-IV MaNGA (Sloan Digital Sky Survey-IV Mapping Nearby Galaxies at Apache Point Observatory) survey. These galaxies named "red geysers" constitute 5%-10% of the local quiescent galaxy population and are characterized by narrow bisymmetric ionized gas emission patterns. These enhanced patterns are seen in equivalent width maps of Hα, [OIII] and other strong emission lines. They are co-aligned with the ionized gas velocity gradients but significantly misaligned with stellar velocity gradients. They also show very high gas velocity dispersions (~200 km/s). Considering these observations in light of models of the gravitational potential, Cheung et al. argued that red geysers host large-scale AGN-driven winds of ionized gas that may play a role in suppressing star formation at late times. In this work, we test the hypothesis that AGN activity is ultimately responsible for the red geyser phenomenon. We compare the nuclear radio activity of the red geysers to a matched control sample of galaxies of similar stellar mass, redshift, rest frame NUV–r color and axis ratio. and additionally, control for the presence of ionized gas. We have used 1.4 GHz radio continuum data from the VLA FIRST Survey to stack the radio flux from the red geyser sample and control sample. We find that the red geysers have a higher average radio flux than the control galaxies at > 3σ significance. Our sample is restricted to rest-frame NUV–r color > 5, thus ruling out possible radio emission due to star formation activity. We conclude that red geysers are associated with more active AGN, supporting a feedback picture in which episodic AGN activity drives large-scale but relatively weak ionized winds in many in many early-type galaxies.

  14. AGN-enhanced outflows of low-ionization gas in star-forming galaxies at 1.7 < z < 4.6*

    NASA Astrophysics Data System (ADS)

    Talia, M.; Brusa, M.; Cimatti, A.; Lemaux, B. C.; Amorin, R.; Bardelli, S.; Cassarà, L. P.; Cucciati, O.; Garilli, B.; Grazian, A.; Guaita, L.; Hathi, N. P.; Koekemoer, A.; Le Fèvre, O.; Maccagni, D.; Nakajima, K.; Pentericci, L.; Pforr, J.; Schaerer, D.; Vanzella, E.; Vergani, D.; Zamorani, G.; Zucca, E.

    2017-11-01

    Fast and energetic winds are invoked by galaxy formation models as essential processes in the evolution of galaxies. These outflows can be powered either by star formation (SF) and/or active galactic nucleus (AGN) activity, but the relative dominance of the two mechanisms is still under debate. We use spectroscopic stacking analysis to study the properties of the low-ionization phase of the outflow in a sample of 1330 star-forming galaxies (SFGs) and 79 X-ray-detected (1042 < LX < 1045 erg s-1) Type 2 AGN at 1.7 < z < 4.6 selected from a compilation of deep optical spectroscopic surveys, mostly zCOSMOS-Deep and VIMOS Ultra Deep Survey (VUDS). We measure mean velocity offsets of ˜- 150 km s-1 in the SFGs, while in the AGN sample the velocity is much higher (˜- 950 km s-1), suggesting that the AGN is boosting the outflow up to velocities that could not be reached only with the SF contribution. The sample of X-ray AGN has on average a lower SF rate than non-AGN SFGs of similar mass: this, combined with the enhanced outflow velocity in AGN hosts, is consistent with AGN feedback in action. We further divide our sample of AGN into two X-ray luminosity bins: we measure the same velocity offsets in both stacked spectra, at odds with results reported for the highly ionized phase in local AGN, suggesting that the two phases of the outflow may be mixed only up to relatively low velocities, while the highest velocities can be reached only by the highly ionized phase.

  15. Radiation Induced Chromatin Conformation Changes Analysed by Fluorescent Localization Microscopy, Statistical Physics, and Graph Theory

    PubMed Central

    Müller, Patrick; Hillebrandt, Sabina; Krufczik, Matthias; Bach, Margund; Kaufmann, Rainer; Hausmann, Michael; Heermann, Dieter W.

    2015-01-01

    It has been well established that the architecture of chromatin in cell nuclei is not random but functionally correlated. Chromatin damage caused by ionizing radiation raises complex repair machineries. This is accompanied by local chromatin rearrangements and structural changes which may for instance improve the accessibility of damaged sites for repair protein complexes. Using stably transfected HeLa cells expressing either green fluorescent protein (GFP) labelled histone H2B or yellow fluorescent protein (YFP) labelled histone H2A, we investigated the positioning of individual histone proteins in cell nuclei by means of high resolution localization microscopy (Spectral Position Determination Microscopy = SPDM). The cells were exposed to ionizing radiation of different doses and aliquots were fixed after different repair times for SPDM imaging. In addition to the repair dependent histone protein pattern, the positioning of antibodies specific for heterochromatin and euchromatin was separately recorded by SPDM. The present paper aims to provide a quantitative description of structural changes of chromatin after irradiation and during repair. It introduces a novel approach to analyse SPDM images by means of statistical physics and graph theory. The method is based on the calculation of the radial distribution functions as well as edge length distributions for graphs defined by a triangulation of the marker positions. The obtained results show that through the cell nucleus the different chromatin re-arrangements as detected by the fluorescent nucleosomal pattern average themselves. In contrast heterochromatic regions alone indicate a relaxation after radiation exposure and re-condensation during repair whereas euchromatin seemed to be unaffected or behave contrarily. SPDM in combination with the analysis techniques applied allows the systematic elucidation of chromatin re-arrangements after irradiation and during repair, if selected sub-regions of nuclei are investigated. PMID:26042422

  16. Radiation induced chromatin conformation changes analysed by fluorescent localization microscopy, statistical physics, and graph theory.

    PubMed

    Zhang, Yang; Máté, Gabriell; Müller, Patrick; Hillebrandt, Sabina; Krufczik, Matthias; Bach, Margund; Kaufmann, Rainer; Hausmann, Michael; Heermann, Dieter W

    2015-01-01

    It has been well established that the architecture of chromatin in cell nuclei is not random but functionally correlated. Chromatin damage caused by ionizing radiation raises complex repair machineries. This is accompanied by local chromatin rearrangements and structural changes which may for instance improve the accessibility of damaged sites for repair protein complexes. Using stably transfected HeLa cells expressing either green fluorescent protein (GFP) labelled histone H2B or yellow fluorescent protein (YFP) labelled histone H2A, we investigated the positioning of individual histone proteins in cell nuclei by means of high resolution localization microscopy (Spectral Position Determination Microscopy = SPDM). The cells were exposed to ionizing radiation of different doses and aliquots were fixed after different repair times for SPDM imaging. In addition to the repair dependent histone protein pattern, the positioning of antibodies specific for heterochromatin and euchromatin was separately recorded by SPDM. The present paper aims to provide a quantitative description of structural changes of chromatin after irradiation and during repair. It introduces a novel approach to analyse SPDM images by means of statistical physics and graph theory. The method is based on the calculation of the radial distribution functions as well as edge length distributions for graphs defined by a triangulation of the marker positions. The obtained results show that through the cell nucleus the different chromatin re-arrangements as detected by the fluorescent nucleosomal pattern average themselves. In contrast heterochromatic regions alone indicate a relaxation after radiation exposure and re-condensation during repair whereas euchromatin seemed to be unaffected or behave contrarily. SPDM in combination with the analysis techniques applied allows the systematic elucidation of chromatin re-arrangements after irradiation and during repair, if selected sub-regions of nuclei are investigated.

  17. IR Fine-Structure Line Signatures of Central Dust-Bounded Nebulae in Luminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Fischer, J.; Allen, R.; Dudley, C. C.; Satyapal, S.; Luhman, M.; Wolfire, M.; Smith, H. A.

    2004-01-01

    To date, the only far-infrared spectroscopic observations of ultraluminous infrared galaxies have been obtained with the European Space Agency s Infrared Space Observatory Long Wavelength Spectrometer. The spectra of these galaxies are characterized by molecular absorption lines and weak emission lines from photodissociation regions (PDRs), but no far-infrared (greater than 40 microns) lines from ionized regions have been detected. ESA s Herschel Space Observatory, slated for launch in 2007, will likely be able to detect these lines in samples of local and moderate redshift ultra luminous galaxies and to enable measurement of the ionization parameters, the slope of the ionizing continuum, and densities present in the ionized regions of these galaxies. The higher spatial resolution of proposed observatories discussed in this workshop will enable isolation of the central regions of local galaxies and detection of these lines in high-redshift galaxies for study of the evolution of galaxies. Here we discuss evidence for the e.ects of absorption by dust within ionized regions and present the spectroscopic signatures predicted by photoionization modeling of dust-bounded regions.

  18. The unrestricted local properties: application in nanoelectronics and for predicting radicals reactivity.

    PubMed

    Dral, Pavlo O

    2014-03-01

    The local electron affinity (EA(L)) and the local ionization energy (IE(L)) are successfully used for predicting properties of closed-shell species for drug design and for nanoelectronics. Here the respective unrestricted Hartree-Fock variants of EA(L) and IE(L), i.e., the unrestricted local electron affinity (UHF-EA(L)) and ionization energy (UHF-IE(L)), have been shown to be useful for predicting properties of open-shell species. UHF-EA(L) and UHF-IE(L) have been applied for explaining unique electronic properties of an exemplary nanomaterial carbon peapod. It is also demonstrated that UHF-EA(L) is useful for predicting and better understanding reactivity of radicals related to alkanes activation.

  19. The ionized gas at the centre of IC 10: a possible localized chemical pollution by Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Á. R.; Mesa-Delgado, A.; López-Martín, L.; Esteban, C.

    2011-03-01

    We present results from integral field spectroscopy with the Potsdam Multi-Aperture Spectrograph at the 3.5-m telescope at Calar Alto Observatory of the intense star-forming region [HL90] 111 at the centre of the starburst galaxy IC 10. We have obtained maps with a spatial sampling of 1 × 1 arcsec2= 3.9× 3.9 pc2 of different emission lines and analysed the extinction, physical conditions, nature of the ionization and chemical abundances of the ionized gas, as well determined locally the age of the most recent star formation event. By defining several apertures, we study the main integrated properties of some regions within [HL90] 111. Two contiguous spaxels show an unambiguous detection of the broad He IIλ4686 emission line, this feature seems to be produced by a single late-type WN star. We also report a probable N and He enrichment in the precise spaxels where the Wolf-Rayet (WR) features are detected. The enrichment pattern is roughly consistent with that expected for the pollution of the ejecta of a single or a very small number of WR stars. Furthermore, this chemical pollution is very localized (˜2 arcsec ˜7.8 pc) and it should be difficult to detect in star-forming galaxies beyond the Local Volume. We also discuss the use of the most common empirical calibrations to estimate the oxygen abundances of the ionized gas in nearby galaxies from 2D spectroscopic data. The ionization degree of the gas plays an important role when applying these empirical methods, as they tend to give lower oxygen abundances with increasing ionization degree. Based on observations collected at the Centro Astrónomico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Plank Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Visiting Astronomer at the Instituto de Astrofísica de Canarias.

  20. A review of the processes by which ultrasound is generated through the interaction of ionizing radiation and irradiated materials: some possible applications.

    PubMed

    Baily, N A

    1992-01-01

    The production of acoustic waves following the absorption of energy deposited by ionizing radiation, with a consequent production of localized thermal spikes has been confirmed by a number of papers published in the physics literature. This paper reviews the basic theory and presents most of the supporting experimental data. Some of the experimental methods used and the results obtained are summarized. In addition to the rather straightforward and routine use of acoustic phenomena produced by ionizing radiation for the detection and measurements of such radiation, there are some special applications that appear to be especially attractive for medical physics. Some of these are unique to ionizing radiation in that the amplitude of the ultrasound wave is proportional to the energy deposited in small volumes at localized sites of these interactions, while others derive from methodologies already in use with nonionizing radiations. The detection and measurement of this ultrasonic radiation could possibly lead to methods for the study of such fundamental phenomenon as track structure, precision localization of therapeutic treatment beams, and even the possible imaging of internal anatomic structures to provide on-line portal images.

  1. SU-C-207-02: A Method to Estimate the Average Planar Dose From a C-Arm CBCT Acquisition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supanich, MP

    2015-06-15

    Purpose: The planar average dose in a C-arm Cone Beam CT (CBCT) acquisition had been estimated in the past by averaging the four peripheral dose measurements in a CTDI phantom and then using the standard 2/3rds peripheral and 1/3 central CTDIw method (hereafter referred to as Dw). The accuracy of this assumption has not been investigated and the purpose of this work is to test the presumed relationship. Methods: Dose measurements were made in the central plane of two consecutively placed 16cm CTDI phantoms using a 0.6cc ionization chamber at each of the 4 peripheral dose bores and in themore » central dose bore for a C-arm CBCT protocol. The same setup was scanned with a circular cut-out of radiosensitive gafchromic film positioned between the two phantoms to capture the planar dose distribution. Calibration curves for color pixel value after scanning were generated from film strips irradiated at different known dose levels. The planar average dose for red and green pixel values was calculated by summing the dose values in the irradiated circular film cut out. Dw was calculated using the ionization chamber measurements and film dose values at the location of each of the dose bores. Results: The planar average dose using both the red and green pixel color calibration curves were within 10% agreement of the planar average dose estimated using the Dw method of film dose values at the bore locations. Additionally, an average of the planar average doses calculated using the red and green calibration curves differed from the ionization chamber Dw estimate by only 5%. Conclusion: The method of calculating the planar average dose at the central plane of a C-arm CBCT non-360 rotation by calculating Dw from peripheral and central dose bore measurements is a reasonable approach to estimating the planar average dose. Research Grant, Siemens AG.« less

  2. Non-equilibrium ionization by a periodic electron beam. I. Synthetic coronal spectra and implications for interpretation of observations

    NASA Astrophysics Data System (ADS)

    Dzifčáková, E.; Dudík, J.; Mackovjak, Š.

    2016-05-01

    Context. Coronal heating is currently thought to proceed via the mechanism of nanoflares, small-scale and possibly recurring heating events that release magnetic energy. Aims: We investigate the effects of a periodic high-energy electron beam on the synthetic spectra of coronal Fe ions. Methods: Initially, the coronal plasma is assumed to be Maxwellian with a temperature of 1 MK. The high-energy beam, described by a κ-distribution, is then switched on every period P for the duration of P/ 2. The periods are on the order of several tens of seconds, similar to exposure times or cadences of space-borne spectrometers. Ionization, recombination, and excitation rates for the respective distributions are used to calculate the resulting non-equilibrium ionization state of Fe and the instantaneous and period-averaged synthetic spectra. Results: Under the presence of the periodic electron beam, the plasma is out of ionization equilibrium at all times. The resulting spectra averaged over one period are almost always multithermal if interpreted in terms of ionization equilibrium for either a Maxwellian or a κ-distribution. Exceptions occur, however; the EM-loci curves appear to have a nearly isothermal crossing-point for some values of κs. The instantaneous spectra show fast changes in intensities of some lines, especially those formed outside of the peak of the respective EM(T) distributions if the ionization equilibrium is assumed. Movies 1-5 are available in electronic form at http://www.aanda.org

  3. Reduced Sampling Size with Nanopipette for Tapping-Mode Scanning Probe Electrospray Ionization Mass Spectrometry Imaging

    PubMed Central

    Kohigashi, Tsuyoshi; Otsuka, Yoichi; Shimazu, Ryo; Matsumoto, Takuya; Iwata, Futoshi; Kawasaki, Hideya; Arakawa, Ryuichi

    2016-01-01

    Mass spectrometry imaging (MSI) with ambient sampling and ionization can rapidly and easily capture the distribution of chemical components in a solid sample. Because the spatial resolution of MSI is limited by the size of the sampling area, reducing sampling size is an important goal for high resolution MSI. Here, we report the first use of a nanopipette for sampling and ionization by tapping-mode scanning probe electrospray ionization (t-SPESI). The spot size of the sampling area of a dye molecular film on a glass substrate was decreased to 6 μm on average by using a nanopipette. On the other hand, ionization efficiency increased with decreasing solvent flow rate. Our results indicate the compatibility between a reduced sampling area and the ionization efficiency using a nanopipette. MSI of micropatterns of ink on a glass and a polymer substrate were also demonstrated. PMID:28101441

  4. Systematic Comparison of Photoionized Plasma Codes with Application to Spectroscopic Studies of AGN in X-Rays

    NASA Technical Reports Server (NTRS)

    Mehdipour, M.; Kaastra, J. S.; Kallman, T.

    2016-01-01

    Atomic data and plasma models play a crucial role in the diagnosis and interpretation of astrophysical spectra, thus influencing our understanding of the Universe. In this investigation we present a systematic comparison of the leading photoionization codes to determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionization equilibrium. We carry out our computations using the Cloudy, SPEX, and XSTAR photoionization codes, and compare their derived thermal and ionization states for various ionizing spectral energy distributions. We examine the resulting absorption-line spectra from these codes for the case of ionized outflows in active galactic nuclei. By comparing the ionic abundances as a function of ionization parameter, we find that on average there is about 30 deviation between the codes in where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in is smaller at about 10 on average. The comparison of the absorption-line spectra in the X-ray band shows that there is on average about 30 deviation between the codes in the optical depth of the lines produced at log 1 to 2, reducing to about 20 deviation at log 3. We also simulate spectra of the ionized outflows with the current and upcoming high-resolution X-ray spectrometers, on board XMM-Newton, Chandra, Hitomi, and Athena. From these simulations we obtain the deviation on the best-fit model parameters, arising from the use of different photoionization codes, which is about 10 to40. We compare the modeling uncertainties with the observational uncertainties from the simulations. The results highlight the importance of continuous development and enhancement of photoionization codes for the upcoming era of X-ray astronomy with Athena.

  5. Measurement of charged-particle stopping in warm-dense plasma

    DOE PAGES

    Zylstra, A.  B.; Frenje, J.  A.; Grabowski, P. E.; ...

    2015-05-27

    We measured the stopping of energetic protons in an isochorically-heated solid-density Be plasma with an electron temperature of ~32 eV, corresponding to moderately-coupled [(e²/a/(k BT e + E F ) ~ 0.3] and moderately-degenerate [k BT e/E F ~2] 'warm dense matter' (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad-hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is themore » first test of these theories in WDM plasma.« less

  6. High doses of ionizing radiation on bone repair: is there effect outside the irradiated site?

    PubMed

    Rocha, Flaviana Soares; Dias, Pâmella Coelho; Limirio, Pedro Henrique Justino Oliveira; Lara, Vitor Carvalho; Batista, Jonas Dantas; Dechichi, Paula

    2017-03-01

    Local ionizing radiation causes damage to bone metabolism, it reduces blood supply and cellularity over time. Recent studies indicate that radiation promotes biological response outside the treatment field. The aim of this study was to investigate the effects of ionizing radiation on bone repair outside the irradiated field. Ten healthy male Wistar rats were used; and five animals were submitted to radiotherapy on the left femur. After 4 weeks, in all animals were created bone defects in the right and left femurs. Seven days after surgery, animals were euthanized. The femurs were removed and randomly divided into 3 groups (n=5): Control (C) (right femur of the non-irradiated animals); Local ionizing radiation (IR) (left femur of the irradiated animals); Contralateral ionizing radiation (CIR) (right femur of the irradiated animals). The femurs were processed and embedded in paraffin; and bone histologic sections were evaluated to quantify the bone neoformation. Histomorphometric analysis showed that there was no significant difference between groups C (24.6±7.04) and CIR (25.3±4.31); and IR group not showed bone neoformation. The results suggest that ionizing radiation affects bone repair, but does not interfere in bone repair distant from the primary irradiated site. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Tunneling ionization and Wigner transform diagnostics in OSIRIS

    NASA Astrophysics Data System (ADS)

    Martins, S.; Fonseca, R. A.; Silva, L. O.; Deng, S.; Katsouleas, T.; Tsung, F.; Mori, W. B.

    2004-11-01

    We describe the ionization module implemented in the PIC code OSIRIS [1]. Benchmarks with previously published tunnel ionization results were made. Our ionization module works in 1D, 2D and 3D simulations with barrier suppression ionization or the ADK ionization model, and allows for moving ions. Several illustrative 3D numerical simulations were performed, namely of the propagation of a SLAC beam in a Li gas cell, for the parameters of [2]. We compare the performance of OSIRIS with/without the ionization module, concluding that much less simulation time is usually required when using the ionization module. A novel diagnostic over the electric field is implemented, the Wigner transform, that provides information on the local spectral content of the field. This diagnostic is applied to the analysis of the chirp induced in an ionizing laser pulse. [1] R. A. Fonseca et al., LNCS 2331, 342-351, (Springer, Heidelberg, 2002). [2] S. Deng et al., Phys. Rev. E 68, 047401 (2003).

  8. SOLAR HARD X-RAY SOURCE SIZES IN A BEAM-HEATED AND IONIZED CHROMOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Flannagain, Aidan M.; Gallagher, Peter T.; Brown, John C.

    2015-02-01

    Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by Kontar et al. using the Ramaty High-Energy Solar Spectroscopic Imager have shown that HXR source sizes are three to six times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionization (NUI) structure along the path of the electron beam has not been fully explored as amore » solution to this problem. Ionized plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionized region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to this effect, along with the associated density enhancement in the upper chromosphere, injection of a beam of electrons into a partially ionized plasma should result in an HXR source that is substantially more vertically extended relative to that for a neutral target. Here we present the results of a modification to the CTTM, which takes into account both a localized form of chromospheric NUI and an increased target density. We find 50 keV HXR source widths, with and without the inclusion of a locally ionized region, of ∼3 Mm and ∼0.7 Mm, respectively. This helps to provide a theoretical solution to the currently open question of overly extended HXR sources.« less

  9. Atomic and Molecular Systems in Intense Ultrashort Laser Pulses

    NASA Astrophysics Data System (ADS)

    Saenz, A.

    2008-07-01

    The full quantum mechanical treatment of atomic and molecular systems exposed to intense laser pulses is a so far unsolved challenge, even for systems as small as molecular hydrogen. Therefore, a number of simplified qualitative and quantitative models have been introduced in order to provide at least some interpretational tools for experimental data. The assessment of these models describing the molecular response is complicated, since a comparison to experiment requires often a number of averages to be performed. This includes in many cases averaging of different orientations of the molecule with respect to the laser field, focal volume effects, etc. Furthermore, the pulse shape and even the peak intensity is experimentally not known with very high precision; considering, e.g., the exponential intensity dependence of the ionization signal. Finally, experiments usually provide only relative yields. As a consequence of all these averagings and uncertainties, it is possible that different models may successfully explain some experimental results or features, although these models disagree substantially, if their predictions are compared before averaging. Therefore, fully quantum-mechanical approaches at least for small atomic and molecular systems are highly desirable and have been developed in our group. This includes efficient codes for solving the time-dependent Schrodinger equation of atomic hydrogen, helium or other effective one- or two-electron atoms as well as for the electronic motion in linear (effective) one-and two-electron diatomic molecules like H_2.Very recently, a code for larger molecular systems that adopts the so-called single-active electron approximation was also successfully implemented and applied. In the first part of this talk popular models describing intense laser-field ionization of atoms and their extensions to molecules are described. Then their validity is discussed on the basis of quantum-mechanical calculations. Finally, some peculiar molecular strong-field effects and the possibility of strong-field control mechanisms will be demonstrated. This includes phenomena like enhanced ionization and bond softening as well as the creation of vibrational wavepacket in the non-ionized electronic ground state of H_2 by creating a Schrodinger-cat state between the ionized and the non-ionized molecules. The latter, theoretically predicted phenomenon was very recently experimentally observed and lead to the real-time observation of the so far fastest molecular motion.

  10. First-principles investigations on ionization and thermal conductivity of polystyrene for inertial confinement fusion applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S. X., E-mail: shu@lle.rochester.edu; Goncharov, V. N.; McCrory, R. L.

    2016-04-15

    Using quantum molecular-dynamics (QMD) methods based on the density functional theory, we have performed first-principles investigations of the ionization and thermal conductivity of polystyrene (CH) over a wide range of plasma conditions (ρ = 0.5 to 100 g/cm{sup 3} and T = 15 625 to 500 000 K). The ionization data from orbital-free molecular-dynamics calculations have been fitted with a “Saha-type” model as a function of the CH plasma density and temperature, which gives an increasing ionization as the CH density increases even at low temperatures (T < 50 eV). The orbital-free molecular dynamics method is only used to gauge the average ionization behavior of CH under the average-atommore » model in conjunction with the pressure-matching mixing rule. The thermal conductivities (κ{sub QMD}) of CH, derived directly from the Kohn–Sham molecular-dynamics calculations, are then analytically fitted with a generalized Coulomb logarithm [(lnΛ){sub QMD}] over a wide range of plasma conditions. When compared with the traditional ionization and thermal conductivity models used in radiation–hydrodynamics codes for inertial confinement fusion simulations, the QMD results show a large difference in the low-temperature regime in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic deuterium–tritium targets with CH ablators on OMEGA and the National Ignition Facility using the QMD-derived ionization and thermal conductivity of CH have predicted ∼20% variation in target performance in terms of hot-spot pressure and neutron yield (gain) with respect to traditional model simulations.« less

  11. Ionization of biomolecular targets by ion impact: input data for radiobiological applications

    NASA Astrophysics Data System (ADS)

    de Vera, Pablo; Abril, Isabel; Garcia-Molina, Rafael; Solov'yov, Andrey V.

    2013-06-01

    In this work we review and further develop a semiempirical model recently proposed for the ion impact ionization of complex biological media. The model is based on the dielectric formalism, and makes use of a semiempirical parametrization of the optical energy-loss function of bioorganic compounds, allowing the calculation of single and total ionization cross sections and related quantities for condensed biological targets, such as liquid water, DNA and its components, proteins, lipids, carbohydrates or cell constituents. The model shows a very good agreement with experimental data for water, adenine and uracil, and allows the comparison of the ionization efficiency of different biological targets, and also the average kinetic energy of the ejected secondary electrons.

  12. Synthesis, crystal structure analysis, molecular docking studies and density functional theory predictions of the local reactive properties and degradation properties of a novel halochalcone

    NASA Astrophysics Data System (ADS)

    Arshad, Suhana; Pillai, Renjith Raveendran; Zainuri, Dian Alwani; Khalib, Nuridayanti Che; Razak, Ibrahim Abdul; Armaković, Stevan; Armaković, Sanja J.

    2017-09-01

    In the present study, single crystals of E)-3-(3,5-dichlorophenyl)-1-(4-fluorophenyl)prop-2-en-1-one, were prepared and structurally characterized by single crystal X-ray diffraction analysis. The molecular structure crystallized in monoclinic crystal system with P21/c space group. Sensitivity of the title molecule towards electrophilic attacks has been examined by calculations of average localized ionization energies (ALIE) and their mapping to electron density surface. Further determination of atoms that could be important reactive centres has been performed by calculations of Fukui functions. Sensitivity of title molecule towards autoxidation and hydrolysis mechanisms has been assessed by calculations of bond dissociation energies and radial distribution functions (RDF), respectively. Also, in order to explore possible binding mode of the title compound towards Dihydrofolate reductase enzyme, we have utilized in silico molecular docking to explore possible binding modes of the title compound with the DHFR enzyme.

  13. Systematic investigation of NLTE phenomena in the limit of small departures from LTE

    NASA Astrophysics Data System (ADS)

    Libby, S. B.; Graziani, F. R.; More, R. M.; Kato, T.

    1997-04-01

    In this paper, we begin a systematic study of Non-Local Thermal Equilibrium (NLTE) phenomena in near equilibrium (LTE) high energy density, highly radiative plasmas. It is shown that the principle of minimum entropy production rate characterizes NLTE steady states for average atom rate equations in the case of small departures form LTE. With the aid of a novel hohlraum-reaction box thought experiment, we use the principles of minimum entropy production and detailed balance to derive Onsager reciprocity relations for the NLTE responses of a near equilibrium sample to non-Planckian perturbations in different frequency groups. This result is a significant symmetry constraint on the linear corrections to Kirchoff's law. We envisage applying our strategy to a number of test problems which include: the NLTE corrections to the ionization state of an ion located near the edge of an otherwise LTE medium; the effect of a monochromatic radiation field perturbation on an LTE medium; the deviation of Rydberg state populations from LTE in recombining or ionizing plasmas; multi-electron temperature models such as that of Busquet; and finally, the effect of NLTE population shifts on opacity models.

  14. Interactive Ion-Neutral Dynamics in the Low Latitude Evening Ionosphere

    NASA Astrophysics Data System (ADS)

    Evonosky, W. R.; Richmond, A. D.; Fang, T. W.; Maute, A. I.

    2015-12-01

    Neutral winds in the ionosphere drive global electrodynamic phenomena which alter theupper-atmosphere so significantly that they can affect the orbit of satellites andground-to-spacecraft communications. Understanding these winds and what drives them is centralto prediction and risk management associated with such a dynamic upper atmosphere. This studyexamined the relationship between accelerations acting on neutral winds in the ionosphere and theformation of a vertical shear of those winds in low latitudes (between ±30 magnetic) and earlyevening local times (16-22 LT). Accelerations were calculated using variables output by thethermosphere ionosphere electrodynamics general circulation model (TIEGCM) under differentsolar activity and night-time ionization conditions and visualized both spatially and temporally. Ingeneral, with acceleration values averaged along magnetic latitudes between ±30 degrees(inclusive) and only considering medium solar activity conditions, we found that the ionosphereexhibits distinct layering defined by the dominant accelerations in each layer. We also found hintsthat during different night-time ionization levels, ion drag acceleration tends to remain constantwhile ion and neutral velocities change to conserve the difference between them. When consideringspecific latitudes and solar conditions, previously unreported structures appear which involveinteractions between the ion drag and viscous forces.

  15. Process of negative-muon-induced formation of an ionized acceptor center ({sub μ}A){sup –} in crystals with the diamond structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belousov, Yu. M., E-mail: theorphys@phystech.edu

    The formation of an ionized acceptor center by a negative muon in crystals with the diamond structure is considered. The negative muon entering a target is captured by a nucleus, forming a muonic atom {sub μ}A coupled to a lattice. The appearing radiation-induced defect has a significant electric dipole moment because of the violation of the local symmetry of the lattice and changes the phonon spectrum of the crystal. The ionized acceptor center is formed owing to the capture of an electron interacting with the electric dipole moment of the defect and with the radiation of a deformation-induced local-mode phonon.more » Upper and lower bounds of the formation rate of the ionized acceptor center in diamond, silicon, and germanium crystals are estimated. It is shown that the kinetics of the formation of the acceptor center should be taken into account when processing μSR experimental data.« less

  16. Alfvén ionization in an MHD-gas interactions code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, A. D.; Diver, D. A.

    A numerical model of partially ionized plasmas is developed in order to capture their evolving ionization fractions as a result of Alfvén ionization (AI). The mechanism of, and the parameter regime necessary for, AI is discussed and an expression for the AI rate based on fluid parameters, from a gas-MHD model, is derived. This AI term is added to an existing MHD-gas interactions' code, and the result is a linear, 2D, two-fluid model that includes momentum transfer between charged and neutral species as well as an ionization rate that depends on the velocity fields of both fluids. The dynamics ofmore » waves propagating through such a partially ionized plasma are investigated, and it is found that AI has a significant influence on the fluid dynamics as well as both the local and global ionization fraction.« less

  17. Extreme ultraviolet observations of G191-B2B and the local interstellar medium with the Hopkins Ultraviolet Telescope

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Davidsen, Arthur F.; Blair, William P.; Bowers, Charles W.; Van Dyke Dixon, W.; Durrance, Samuel T.; Feldman, Paul D.; Ferguson, Henry C.; Henry, Richard C.; Kriss, Gerard A.

    1993-01-01

    During the Astro-l mission in 1990 December, the Hopkins Ultraviolet Telescope (HUT) was used to observe the extreme ultraviolet spectrum (415-912 A) of the hot DA white dwarf GI91-B2B. Absorption by neutral helium shortward of the 504 A He I absorption edge is clearly detected in the raw spectrum. Model fits to the observed spectrum require interstellar neutral helium and neutral hydrogen column densities of 1.45 +/- 0.065 x 10 exp 17/sq cm and 1.69 +/- 0.12 x 10 exp 18/sq cm, respectively. Comparison of the neutral columns yields a direct assessment of the ionization state of the local interstellar cloud surrounding the Sun. The neutral hydrogen to helium ratio of 11.6 +/- 1.0 observed by HUT strongly contradicts the widespread view that hydrogen is much more ionized than helium in the local interstellar medium, a view which has motivated some exotic theoretical explanations for the supposed high ionization.

  18. Experimental Determination of the Ionization Energy in TlBr

    NASA Astrophysics Data System (ADS)

    Hitomi, Keitaro; Onodera, Toshiyuki; Kim, Seong-Yun; Shoji, Tadayoshi; Ishii, Keizo

    2015-06-01

    The average ionization energy required to excite an electron-hole pair in TlBr was estimated to be 5.50 ± 0.05 eV by comparing the peak position of 59.5-keV gamma rays obtained from four pixels of a pixelated TlBr detector to the peak position obtained from a Si PIN photodiode at room temperature.

  19. Smooth H I Low Column Density Outskirts in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Ianjamasimanana, R.; Walter, Fabian; de Blok, W. J. G.; Heald, George H.; Brinks, Elias

    2018-06-01

    The low column density gas at the outskirts of galaxies as traced by the 21 cm hydrogen line emission (H I) represents the interface between galaxies and the intergalactic medium, i.e., where galaxies are believed to get their supply of gas to fuel future episodes of star formation. Photoionization models predict a break in the radial profiles of H I at a column density of ∼5 × 1019 cm‑2 due to the lack of self-shielding against extragalactic ionizing photons. To investigate the prevalence of such breaks in galactic disks and to characterize what determines the potential edge of the H I disks, we study the azimuthally averaged H I column density profiles of 17 nearby galaxies from the H I Nearby Galaxy Survey and supplemented in two cases with published Hydrogen Accretion in LOcal GAlaxieS data. To detect potential faint H I emission that would otherwise be undetected using conventional moment map analysis, we line up individual profiles to the same reference velocity and average them azimuthally to derive stacked radial profiles. To do so, we use model velocity fields created from a simple extrapolation of the rotation curves to align the profiles in velocity at radii beyond the extent probed with the sensitivity of traditional integrated H I maps. With this method, we improve our sensitivity to outer-disk H I emission by up to an order of magnitude. Except for a few disturbed galaxies, none show evidence of a sudden change in the slope of the H I radial profiles: the alleged signature of ionization by the extragalactic background.

  20. Non LTE Effects in Laser Plasmas

    NASA Astrophysics Data System (ADS)

    Klapisch, Marcel

    1997-11-01

    Laser produced plasmas are not in Local Thermodynamical Equilibrium(LTE) because of the strong gradients and the escaping radiation. Departure from LTE changes the average charge state Z^*, and through it the electron temperature and other thermodynamical variables. Hydrodynamic simulations using LTE and non LTE modes show that in some cases the temperatures can change by an order of magnitude. Several rad/hydro models have solved the approximate atomic rate equations in-line within the average atom model(W. A. Lokke and W. H. Grasburger, LLNL, Report UCRL-52276 (1977),G. Pollack, LANL, Report LA-UR-90-2423 (1990)), or with global rates(M. Busquet, J. P. Raucourt and J. C. Gauthier, J. Quant. Spectrosc. Radiat. Transfer, 54, 81 (1995)). A new technique developed by Busquet, the Radiation Dependent Ionization Model (RADIOM)(M. Busquet, Phys. Fluids B, 5, 4191 (1993)) has been implemented in the NRL hydro-code. It uses an ionization temperature Tz to obtain the opacities and EOS in table look-ups. A very elaborate LTE atomic physics such as the STA code( A. Bar-Shalom and J. Oreg, Phys. Rev. E, 54, 1850 (1996), and ref. therein), or OPAL, can then be used off-line for generating the tables. The algorithm for Tz is very simple and quick. RADIOM has recently been benchmarked with a new detailed collisional radiative model SCROLL(A. Bar-Shalom, J. Oreg and M. Klapisch, Phys. Rev. E, to appear in July (1997)) on a range of temperatures, densities and atomic numbers. RADIOM has been surprisingly successful in calculations of non-LTE opacities.

  1. OH+ and H2O+: Probes of the Molecular Hydrogen Fraction and Cosmic-Ray Ionization Rate

    NASA Astrophysics Data System (ADS)

    Indriolo, Nick; Neufeld, D. A.; Gerin, M.; PRISMAS; WISH

    2014-01-01

    The fast ion-molecule chemistry that occurs in the interstellar medium (ISM) is initiated by cosmic-ray ionization of both atomic and molecular hydrogen. Species that are near the beginning of the network of interstellar chemistry such as the oxygen-bearing ions OH+ and H2O+ can be useful probes of the cosmic-ray ionization rate. This parameter is of particular interest as, to some extent, it controls the abundances of several molecules. Using observations of OH+ and H2O+ made with HIFI on board Herschel, we have inferred the cosmic-ray ionization rate of atomic hydrogen in multiple distinct clouds along 12 Galactic sight lines. These two molecules also allow us to determine the molecular hydrogen fraction (amount of hydrogen nuclei in H2 versus H) as OH+ and H2O+ abundances are dependent on the competition between dissociative recombination with electrons and hydrogen abstraction reactions involving H2. Our observations of OH+ and H2O+ indicate environments where H2 accounts for less than 10% of the available hydrogen nuclei, suggesting that these species primarily reside in the diffuse, atomic ISM. Average ionization rates in this gas are on the order of a few times 10-16 s-1, with most values in specific clouds above or below this average by a factor of 3 or so. This result is in good agreement with the most up-to-date determination of the distribution of cosmic-ray ionization rates in diffuse molecular clouds as inferred from observations of H3+.

  2. On the development and global oscillations of cometary ionospheres

    NASA Technical Reports Server (NTRS)

    Houpis, H. L. F.; Mendis, D. A.

    1981-01-01

    Representing the cometary ionosphere by a single fluid model characterized by an average ionization time scale, both the ionosphere's development as a comet approaches the sun and its response to sudden changes in solar wind conditions are investigated. Three different nuclear sizes (small, average, very large) and three different modes of energy addition to the atmosphere (adiabatic, isothermal, suprathermal) are considered. It is found that the crucial parameter determining both the nature and the size of the ionosphere is the average ionization time scale within the ionosphere. Two different scales are identified. It is noted that the ionosphere can also be characterized by the relative sizes of three different scale lengths: the neutral standoff distance from the nucleus, the ion standoff distance from the nucleus, and the nuclear distance at which the ions and the neutrals decouple collisionally.

  3. The Influence of the Photoionizing Radiation Spectrum on Metal-Line Ratios in Ly(alpha) Forest Clouds

    NASA Technical Reports Server (NTRS)

    Giroux, Mark L.; Shull, J. Michael

    1997-01-01

    Recent measurements of Si IV/C IV ratios in the high-redshift Ly(alpha) forest (Songaila & Cowie, AJ, 112, 335 (1996a); Savaglio et at., A&A (in press) (1997)) have opened a new window on chemical enrichment and the first generations of stars. However, the derivation of accurate Si/C abundances requires reliable ionization corrections, which are strongly dependent on the spectral shape of the metagalactic ionizing background and on the 'local effects' of hot stars in nearby galaxies. Recent models have assumed power-law quasar ionizing backgrounds plus a decrement at 4 Ryd to account for He II attenuation in intervening clouds. However, we show that realistic ionizing backgrounds based on cosmological radiative transfer models produce more complex ionizing spectra between 1-5 Ryd that are critical to interpreting ions of Si and C. We also make a preliminary investigation of the effects of He II ionization front nonoverlap. Because the attenuation and reemission by intervening clouds enhance Si IV relative to C the observed high Si IV/C IV ratios do not require an unrealistic Si overproduction (Si/C greater than or equal to 3 (Si/C)(solar mass)). If the ionizing spectrum is dominated by 'local effects' from massive stars, even larger Si IV/C IV ratios are possible. However, unless stellar radiation dominates quasars by more than a factor of 10, we confirm the evidence for some Si overproduction by massive stars; values Si/C approx. 2(Si/C)(solar mass) fit the measurements better than solar abundances. Ultimately, an adequate interpretation of the ratios of C IV, Si IV, and C II may require hot, collisionally ionized gas in a multiphase medium.

  4. Regiones Extendidas de gas ionizado en radiogalaxias FR II. Estudio espectroscópico y cinemático.

    NASA Astrophysics Data System (ADS)

    Reynaldi, V.; Feinstein, C.

    The EELR are regions of highly-excited ionized gas that extend throughout the outskirts of their host galaxies. Concerning FR II radio galaxies, alignment between optical and radio structures were found for several sources. We investigate the ionizing mechanisms of these regions through long-slit spectroscopic analysis. Photoionization models, where both the AGN and a mixed intergalactic medium may explain the ionization state of the regions are studied. But also the shock-ionization model is tested since it can provide a local budget of ionizing photons created by expanding radiative shock waves driven by the radio jet. Throughout this work we discuss spectroscopic and kinematical results obtained with GMOS/Gemini. FULL TEXT IN SPANISH

  5. First results on Ge resonant laser photoionization in hollow cathode lamp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarpa, Daniele, E-mail: daniele.scarpa@lnl.infn.it; Andrighetto, Alberto; Barzakh, Anatoly

    2016-02-15

    In the framework of the research and development activities of the SPES project regarding the optimization of the radioactive beam production, a dedicated experimental study has been recently started in order to investigate the possibility of in-source ionization of germanium using a set of tunable dye lasers. Germanium is one of the beams to be accelerated by the SPES ISOL facility, which is under construction at Legnaro INFN Laboratories. The three-step, two color ionization schemes have been tested using a Ge hollow cathode lamp. The slow and the fast optogalvanic signals were detected and averaged by an oscilloscope as amore » proof of the laser ionization inside the lamp. As a result, several wavelength scans across the resonances of ionization schemes were collected with the fast optogalvanic signal. Some comparisons of ionization efficiency for different ionization schemes were made. Furthermore, saturation curves of the first excitation transitions have been obtained. This investigation method and the setup built in the laser laboratory of the SPES project can be applied for the photo-ionization scheme studies also for the other possible radioactive elements.« less

  6. [The reentrant binomial model of nuclear anomalies growth in rhabdomyosarcoma RA-23 cell populations under increasing doze of rare ionizing radiation].

    PubMed

    Alekseeva, N P; Alekseev, A O; Vakhtin, Iu B; Kravtsov, V Iu; Kuzovatov, S N; Skorikova, T I

    2008-01-01

    Distributions of nuclear morphology anomalies in transplantable rabdomiosarcoma RA-23 cell populations were investigated under effect of ionizing radiation from 0 to 45 Gy. Internuclear bridges, nuclear protrusions and dumbbell-shaped nuclei were accepted for morphological anomalies. Empirical distributions of the number of anomalies per 100 nuclei were used. The adequate model of reentrant binomial distribution has been found. The sum of binomial random variables with binomial number of summands has such distribution. Averages of these random variables were named, accordingly, internal and external average reentrant components. Their maximum likelihood estimations were received. Statistical properties of these estimations were investigated by means of statistical modeling. It has been received that at equally significant correlation between the radiation dose and the average of nuclear anomalies in cell populations after two-three cellular cycles from the moment of irradiation in vivo the irradiation doze significantly correlates with internal average reentrant component, and in remote descendants of cell transplants irradiated in vitro - with external one.

  7. Preclinical Testing of Combination Therapy for Malignant Tumors Arising from Neurofibromas

    DTIC Science & Technology

    2012-06-01

    tested the influence of local ionizing radiation in NF90.8 and sNF96.2 cells implanted in the left and right flank in female nude mice. Ten days... local ionizing radiation (10 Gy) in MPNST tumor growth in xenograft implanted nude mice. Female nude mice bearing NF90.8 tumor in the right flank...0.96   Rosiglitazone     PPAR  gamma  agonist     576.2/0.84     1150/0.94     684.5/0.89   DCA     pyruvate

  8. Right/left assignment in drift chambers and proportional multiwire chambers (PWC's) using induced signals

    DOEpatents

    Walenta, Albert H.

    1979-01-01

    Improved multiwire chamber having means for resolving the left/right ambiguity in the location of an ionizing event. The chamber includes a plurality of spaced parallel anode wires positioned between spaced planar cathodes. Associated with each of the anode wires are a pair of localizing wires, one positioned on either side of the anode wire. The localizing wires are connected to a differential amplifier whose output polarity is determined by whether the ionizing event occurs to the right or left of the anode wire.

  9. Local chemical potential, local hardness, and dual descriptors in temperature dependent chemical reactivity theory.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2017-05-31

    In this work we establish a new temperature dependent procedure within the grand canonical ensemble, to avoid the Dirac delta function exhibited by some of the second order chemical reactivity descriptors based on density functional theory, at a temperature of 0 K. Through the definition of a local chemical potential designed to integrate to the global temperature dependent electronic chemical potential, the local chemical hardness is expressed in terms of the derivative of this local chemical potential with respect to the average number of electrons. For the three-ground-states ensemble model, this local hardness contains a term that is equal to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba, which integrates to the global hardness given by the difference in the first ionization potential, I, and the electron affinity, A, at any temperature. However, in the present approach one finds an additional temperature-dependent term that introduces changes at the local level and integrates to zero. Additionally, a τ-hard dual descriptor and a τ-soft dual descriptor given in terms of the product of the global hardness and the global softness multiplied by the dual descriptor, respectively, are derived. Since all these reactivity indices are given by expressions composed of terms that correspond to products of the global properties multiplied by the electrophilic or nucleophilic Fukui functions, they may be useful for studying and comparing equivalent sites in different chemical environments.

  10. Density, Velocity and Ionization Structure in Accretion-Disc Winds

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Technical Monitor); Long, Knox

    2004-01-01

    This was a project to exploit the unique capabilities of FUSE to monitor variations in the wind- formed spectral lines of the luminous, low-inclination, cataclysmic variables(CV) -- RW Sex. (The original proposal contained two additional objects but these were not approved.) These observations were intended to allow us to determine the relative roles of density and ionization state changes in the outflow and to search for spectroscopic signatures of stochastic small-scale structure and shocked gas. By monitoring the temporal behavior of blue-ward extended absorption lines with a wide range of ionization potentials and excitation energies, we proposed to track the changing physical conditions in the outflow. We planned to use a new Monte Carlo code to calculate the ionization structure of and radiative transfer through the CV wind. The analysis therefore was intended to establish the wind geometry, kinematics and ionization state, both in a time-averaged sense and as a function of time.

  11. Lyman continuum leaking AGN in the SSA22 field

    NASA Astrophysics Data System (ADS)

    Micheva, Genoveva; Iwata, Ikuru; Inoue, Akio K.

    2017-02-01

    Subaru/SuprimeCam narrow-band photometry of the SSA22 field reveals the presence of four Lyman continuum (LyC) candidates among a sample of 14 active galactic nuclei (AGNs). Two show offsets and likely have stellar LyCin nature or are foreground contaminants. The remaining two LyC candidates are type I AGN. We argue that the average LyC escape fraction of high-redshift, low-luminosity AGN is not likely to be unity, as often assumed in the literature. From direct measurement we obtain the average LyC-to-UV flux density ratio and ionizing emissivity for a number of AGN classes and find it at least a factor of 2 lower than values obtained assuming fesc = 1. Comparing to recent Ly α forest measurements, AGNs at redshift z ˜ 3 make up at most ˜12 per cent and as little as ˜5 per cent of the total ionizing budget. Our results suggest that AGNs are unlikely to dominate the ionization budget of the Universe at high redshifts.

  12. Size-dependent error of the density functional theory ionization potential in vacuum and solution

    DOE PAGES

    Sosa Vazquez, Xochitl A.; Isborn, Christine M.

    2015-12-22

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. As a result, in vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less

  13. Size-dependent error of the density functional theory ionization potential in vacuum and solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu

    2015-12-28

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less

  14. On the orientation of the backbone dipoles in native folds

    PubMed Central

    Ripoll, Daniel R.; Vila, Jorge A.; Scheraga, Harold A.

    2005-01-01

    The role of electrostatic interactions in determining the native fold of proteins has been investigated by analyzing the alignment of peptide bond dipole moments with the local electrostatic field generated by the rest of the molecule with and without solvent effects. This alignment was calculated for a set of 112 native proteins by using charges from a gas phase potential. Most of the peptide dipoles in this set of proteins are on average aligned with the electrostatic field. The dipole moments associated with α-helical conformations show the best alignment with the electrostatic field, followed by residues in β-strand conformations. The dipole moments associated with other secondary structure elements are on average better aligned than in randomly generated conformations. The alignment of a dipole with the local electrostatic field depends on both the topology of the native fold and the charge distribution assumed for all of the residues. The influences of (i) solvent effects, (ii) different sets of charges, and (iii) the charge distribution assumed for the whole molecule were examined with a subset of 22 proteins each of which contains <30 ionizable groups. The results show that alternative charge distribution models lead to significant differences among the associated electrostatic fields, whereas the electrostatic field is less sensitive to the particular set of the adopted charges themselves (empirical conformational energy program for peptides or parameters for solvation energy). PMID:15894608

  15. Theoretical and Experimental Triple Differential Cross Sections for Electron Impact Ionization of SF6

    NASA Astrophysics Data System (ADS)

    Chaluvadi, Hari; Nixon, Kate; Murray, Andrew; Ning, Chuangang; Colgan, James; Madison, Don

    2014-10-01

    Experimental and theoretical Triply Differential Cross Sections (TDCS) will be presented for electron-impact ionization of sulfur hexafluoride (SF6) for the molecular orbital 1t1g. M3DW (molecular 3-body distorted wave) results will be compared with experiment for coplanar geometry and for perpendicular plane geometry (a plane which is perpendicular to the incident beam direction). In both cases, the final state electron energies and observation angles are symmetric and the final state electron energies range from 5 eV to 40 eV. It will be shown that there is a large difference between using the OAMO (orientation averaged molecular orbital) approximation and the proper average over all orientations and also that the proper averaged results are in much better agreement with experiment. Work supported by NSF under Grant Number PHY-1068237. Computational work was performed with Institutional resources made available through Los Alamos National Laboratory.

  16. The Suppression of Star Formation in Low-Mass Galaxies Caused by the Reionization of their Local Patch

    NASA Astrophysics Data System (ADS)

    Dawoodbhoy, Taha; Shapiro, Paul R.; Choi, Jun-Hwan; Ocvirk, Pierre; Gillet, Nicolas; Aubert, Dominique; Iliev, Ilian T.; Teyssier, Romain; Yepes, Gustavo; Sullivan, David; Knebe, Alexander; Gottloeber, Stefan; D'Aloisio, Anson; Park, Hyunbae; Hoffman, Yehuda; Stranex, Timothy

    2017-01-01

    The first stars and galaxies released enough ionizing radiation into the intergalactic medium (IGM) to ionize almost all the hydrogen atoms there by redshift z ~ 6. This process was "patchy" --- ionized zones grew in size over time until they overlapped to finish reionization.The photoheating associated with reionization caused a negative feedback on the galactic sources of reionization that suppressed star formation in low-mass galactic halos, especially those below 109 M⊙. To establish the causal connection between reionization and this suppression, we analyze the results of CoDa ("Cosmic Dawn"), the first fully-coupled radiation-hydrodynamical simulation of reionization and galaxy formation in the Local Universe, in a volume large enough to model reionization globally but with enough resolving power to follow all the atomic-cooling galactic halos in that volume. A 90 Mpc box was simulated from a constrained realization of primordial fluctuations, chosen to reproduce present-day features of the Local Group, including the Milky Way and M31, and the local universe beyond, including the Virgo cluster, with 40963 N-body particles for the dark matter and 40963 cells for the atomic gas and ionizing radiation. We use these results to show that the star formation rate in haloes below 109 M⊙ in different patches of the universe declined when each patch was reionized. Star formation in much more massive haloes continued, however. As a result, the earliest patches to develop structure and reionize ultimately produced more stars than they needed to reionize themselves, exporting their starlight to help reionize the regions that developed structure late.

  17. The Suppression of Star Formation in Low-Mass Galaxies Caused by the Reionization of their Local Patch

    NASA Astrophysics Data System (ADS)

    Dawoodbhoy, Taha; Shapiro, Paul R.; Choi, Jun-Hwan; Ocvirk, Pierre; Gillet, Nicolas; Aubert, Dominique; Iliev, Ilian T.; Teyssier, Romain; Yepes, Gustavo; Sullivan, David; Knebe, Alexander; Gottloeber, Stefan; D'Aloisio, Anson; Park, Hyunbae; Hoffman, Yehuda; Stranex, Timothy

    2017-06-01

    The first stars and galaxies released enough ionizing radiation into the intergalactic medium (IGM) to ionize almost all the hydrogen atoms there by redshift z ~ 6. This process was "patchy" --- ionized zones grew in size over time until they overlapped to finish reionization. The photoheating associated with reionization caused a negative feedback on the galactic sources of reionization that suppressed star formation in low-mass galactic halos, especially those below 109 M⊙. To establish the causal connection between reionization and this suppression, we analyze the results of CoDa ("Cosmic Dawn"), the first fully-coupled radiation-hydrodynamical simulation of reionization and galaxy formation in the Local Universe, in a volume large enough to model reionization globally but with enough resolving power to follow all the atomic-cooling galactic halos in that volume. A 90 Mpc box was simulated from a constrained realization of primordial fluctuations, chosen to reproduce present-day features of the Local Group, including the Milky Way and M31, and the local universe beyond, including the Virgo cluster, with 40963 N-body particles for the dark matter and 40963 cells for the atomic gas and ionizing radiation. We use these results to show that the star formation rate in haloes below 109 M⊙ in different patches of the universe declined when each patch was reionized. Star formation in much more massive haloes continued, however. As a result, the earliest patches to develop structure and reionize ultimately produced more stars than they needed to reionize themselves, exporting their starlight to help reionize the regions that developed structure late.

  18. Dynamics of bulk electron heating and ionization in solid density plasmas driven by ultra-short relativistic laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, L. G., E-mail: lingen.huang@hzdr.de; Kluge, T.; Cowan, T. E.

    The dynamics of bulk heating and ionization is investigated both in simulations and theory, which determines the crucial plasma parameters such as plasma temperature and density in ultra-short relativistic laser-solid target interactions. During laser-plasma interactions, the solid density plasma absorbs a fraction of laser energy and converts it into kinetic energy of electrons. A portion of the electrons with relativistic kinetic energy goes through the solid density plasma and transfers energy into the bulk electrons, which results in bulk electron heating. The bulk electron heating is finally translated into the processes of bulk collisional ionization inside the solid target. Amore » simple model based on the Ohmic heating mechanism indicates that the local and temporal profile of bulk return current is essential to determine the temporal evolution of bulk electron temperature. A series of particle-in-cell simulations showing the local heating model is robust in the cases of target with a preplasma and without a preplasma. Predicting the bulk electron heating is then benefit for understanding the collisional ionization dynamics inside the solid targets. The connection of the heating and ionization inside the solid target is further studied using Thomas-Fermi model.« less

  19. Accuracy of theory for calculating electron impact ionization of molecules

    NASA Astrophysics Data System (ADS)

    Chaluvadi, Hari Hara Kumar

    The study of electron impact single ionization of atoms and molecules has provided valuable information about fundamental collisions. The most detailed information is obtained from triple differential cross sections (TDCS) in which the energy and momentum of all three final state particles are determined. These cross sections are much more difficult for theory since the detailed kinematics of the experiment become important. There are many theoretical approximations for ionization of molecules. One of the successful methods is the molecular 3-body distorted wave (M3DW) approximation. One of the strengths of the DW approximation is that it can be applied for any energy and any size molecule. One of the approximations that has been made to significantly reduce the required computer time is the OAMO (orientation averaged molecular orbital) approximation. In this dissertation, the accuracy of the M3DW-OAMO is tested for different molecules. Surprisingly, the M3DW-OAMO approximation yields reasonably good agreement with experiment for ionization of H2 and N2. On the other hand, the M3DW-OAMO results for ionization of CH4, NH3 and DNA derivative molecules did not agree very well with experiment. Consequently, we proposed the M3DW with a proper average (PA) calculation. In this dissertation, it is shown that the M3DW-PA calculations for CH4 and SF6 are in much better agreement with experimental data than the M3DW-OAMO results.

  20. LINER galaxy properties and the local environment

    NASA Astrophysics Data System (ADS)

    Coldwell, Georgina V.; Alonso, Sol; Duplancic, Fernanda; Mesa, Valeria

    2018-05-01

    We analyse the properties of a sample of 5560 low-ionization nuclear emission-line region (LINER) galaxies selected from SDSS-DR12 at low red shift, for a complete range of local density environments. The host LINER galaxies were studied and compared with a well-defined control sample of 5553 non-LINER galaxies matched in red shift, luminosity, morphology and local density. By studying the distributions of galaxy colours and the stellar age population, we find that LINERs are redder and older than the control sample over a wide range of densities. In addition, LINERs are older than the control sample, at a given galaxy colour, indicating that some external process could have accelerated the evolution of the stellar population. The analysis of the host properties shows that the control sample exhibits a strong relation between colours, ages and the local density, while more than 90 per cent of the LINERs are redder and older than the mean values, independently of the neighbourhood density. Furthermore, a detailed study in three local density ranges shows that, while control sample galaxies are redder and older as a function of stellar mass and density, LINER galaxies mismatch the known morphology-density relation of galaxies without low-ionization features. The results support the contribution of hot and old stars to the low-ionization emission although the contribution of nuclear activity is not discarded.

  1. NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit, E-mail: thomas.golding@astro.uio.no, E-mail: mats.carlsson@astro.uio.no, E-mail: jorrit.leenaarts@astro.su.se

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamicmore » equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.« less

  2. Interstellar PAH Emission in the 11-14 micron Region: New Insights and a Tracer of Ionized PAHs

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The Ames infrared spectral database of isolated, neutral and ionized polycyclic aromatic hydrocarbons (PAHs) shows that aromatic CH out-of-plane bending frequencies are significantly shifted upon ionization. For non-adjacent and doubly-adjacent CH groups, the shift is pronounced and consistently toward higher frequencies. The non-adjacent modes are blueshifted by an average of 27 per cm and the doubly-adjacent modes by an average of 17 per cm. For triply- and quadruply-adjacent CH out-of-plane modes the ionization shifts are more erratic and typically more modest. As a result of these ionization shifts, both the non-adjacent and doubly-adjacent CH out-of-plane modes move out of the regions classically associated with their respective vibrations in neutral PAHs. The doubly-adjacent modes of ionized PAHs tend to fall into the frequency range traditionally associated with the non-adjacent modes, while the non-adjacent modes are shifted to frequencies above those normally attributed to out-of-plane bending vibrations. Consequently, the origin of the interstellar infrared emission feature near 11.2 microns, traditionally attributed to the out-of-plane bending of non-adjacent CH groups on PAHs is rendered ambiguous. Instead, this feature likely reflects contributions from both non-adjacent CH units in neutral PAHs and doubly-adjacent CH units in PAH cations, the dominant charge state in the most energetic emission regions. This greatly relieves the structural constraints placed on the interstellar PAH population by the dominance of the 11.2 micron band in this region and eliminates the necessity to invoke extensive dehydrogenation of the emitting species. Furthermore, these results indicate that the emission between 926 and 904 per cm (10.8 and 11.1 microns) observed in many sources can be unambiguously attributed to the non-adjacent CH out-of-plane bending modes of moderately-sized (fewer than 50 carbon atom) PAH cations making this emission an unequivocal tracer of ionized interstellar PAHs.

  3. The Hartree product and the description of local and global quantities in atomic systems: A study within Kohn-Sham theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garza, Jorge; Nichols, Jeffrey A.; Dixon, David A.

    2000-01-15

    The Hartree product is analyzed in the context of Kohn-Sham theory. The differential equations that emerge from this theory are solved with the optimized effective potential using the Krieger, Li, and Iafrate approximation, in order to get a local potential as required by the ordinary Kohn-Sham procedure. Because the diagonal terms of the exact exchange energy are included in Hartree theory, it is self-interaction free and the exchange potential has the proper asymptotic behavior. We have examined the impact of this correct asymptotic behavior on local and global properties using this simple model to approximate the exchange energy. Local quantities,more » such as the exchange potential and the average local electrostatic potential are used to examine whether the shell structure in an atom is revealed by this theory. Global quantities, such as the highest occupied orbital energy (related to the ionization potential) and the exchange energy are also calculated. These quantities are contrasted with those obtained from calculations with the local density approximation, the generalized gradient approximation, and the self-interaction correction approach proposed by Perdew and Zunger. We conclude that the main characteristics in an atomic system are preserved with the Hartree theory. In particular, the behavior of the exchange potential obtained in this theory is similar to those obtained within other Kohn-Sham approximations. (c) 2000 American Institute of Physics.« less

  4. A novel convolution-based approach to address ionization chamber volume averaging effect in model-based treatment planning systems

    NASA Astrophysics Data System (ADS)

    Barraclough, Brendan; Li, Jonathan G.; Lebron, Sharon; Fan, Qiyong; Liu, Chihray; Yan, Guanghua

    2015-08-01

    The ionization chamber volume averaging effect is a well-known issue without an elegant solution. The purpose of this study is to propose a novel convolution-based approach to address the volume averaging effect in model-based treatment planning systems (TPSs). Ionization chamber-measured beam profiles can be regarded as the convolution between the detector response function and the implicit real profiles. Existing approaches address the issue by trying to remove the volume averaging effect from the measurement. In contrast, our proposed method imports the measured profiles directly into the TPS and addresses the problem by reoptimizing pertinent parameters of the TPS beam model. In the iterative beam modeling process, the TPS-calculated beam profiles are convolved with the same detector response function. Beam model parameters responsible for the penumbra are optimized to drive the convolved profiles to match the measured profiles. Since the convolved and the measured profiles are subject to identical volume averaging effect, the calculated profiles match the real profiles when the optimization converges. The method was applied to reoptimize a CC13 beam model commissioned with profiles measured with a standard ionization chamber (Scanditronix Wellhofer, Bartlett, TN). The reoptimized beam model was validated by comparing the TPS-calculated profiles with diode-measured profiles. Its performance in intensity-modulated radiation therapy (IMRT) quality assurance (QA) for ten head-and-neck patients was compared with the CC13 beam model and a clinical beam model (manually optimized, clinically proven) using standard Gamma comparisons. The beam profiles calculated with the reoptimized beam model showed excellent agreement with diode measurement at all measured geometries. Performance of the reoptimized beam model was comparable with that of the clinical beam model in IMRT QA. The average passing rates using the reoptimized beam model increased substantially from 92.1% to 99.3% with 3%/3 mm and from 79.2% to 95.2% with 2%/2 mm when compared with the CC13 beam model. These results show the effectiveness of the proposed method. Less inter-user variability can be expected of the final beam model. It is also found that the method can be easily integrated into model-based TPS.

  5. Angle-resolved high-order above-threshold ionization of a molecule: sensitive tool for molecular characterization.

    PubMed

    Busuladzić, M; Gazibegović-Busuladzić, A; Milosević, D B; Becker, W

    2008-05-23

    The strong-field approximation for ionization of diatomic molecules by an intense laser field is generalized to include rescattering of the ionized electron off the various centers of its molecular parent ion. The resulting spectrum and its interference structure strongly depend on the symmetry of the ground state molecular orbital. For N2, if the laser polarization is perpendicular to the molecular axis, we observe a distinct minimum in the emission spectrum, which survives focal averaging and allows determination of, e.g., the internuclear separation. In contrast, for O2, rescattering is absent in the same situation.

  6. Simultaneous ESI-APCI+ ionization and fragmentation pathways for nine benzodiazepines and zolpidem using single quadrupole LC-MS.

    PubMed

    Galaon, Toma; Vacaresteanu, Catalina; Anghel, Dan-Florin; David, Victor

    2014-05-01

    Nine important 1,4-benzodiazepines and zolpidem were characterized by liquid chromatography-mass spectrometry using a multimode ionization source able to generate ions using both electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), and a single quadrupole mass analyzer. An optimum chromatographic separation was applied for all target compounds in less than 8 minutes using a Zorbax Eclipse Plus column (100 × 4.6 mm, 3.5 µm) kept at 35°C and a 0.3% HCOOH/ACN/IPA (61:34:5) mobile phase pumped at 1 ml/min. Optimization of LC-MS method generated low limit of quantitation (LOQ) values situated in the range 0.3-20.5 ng/ml. Comparison between differences in method sensitivity, under specified chromatographic conditions, when using ESI-only, APCI-only, and simultaneous ESI-APCI ionization with such a multimode source was discussed. Mixed ESI-APCI(+) mode proved to be the most sensitive ionization generating an average 35% detector response increase compared to ESI-only ionization and 350% detector response increase with respect to APCI-only ionization. Characterization of the nine benzodiazepines and zolpidem concerning their MS fragmentation pathway following 'in-source' collision-induced dissociation is discussed in detail and some general trends regarding these fragmentations are set. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Quantitative Proteomic Profiling of Low-Dose Ionizing Radiation Effects in a Human Skin Model

    PubMed Central

    Hengel, Shawna M.; Aldrich, Joshua T.; Waters, Katrina M.; Pasa-Tolic, Ljiljana; Stenoien, David L.

    2014-01-01

    To assess responses to low-dose ionizing radiation (LD-IR) exposures potentially encountered during medical diagnostic procedures, nuclear accidents or terrorist acts, a quantitative proteomic approach was used to identify changes in protein abundance in a reconstituted human skin tissue model treated with 0.1 Gy of ionizing radiation. To improve the dynamic range of the assay, subcellular fractionation was employed to remove highly abundant structural proteins and to provide insight into radiation-induced alterations in protein localization. Relative peptide quantification across cellular fractions, control and irradiated samples was performing using 8-plex iTRAQ labeling followed by online two-dimensional nano-scale liquid chromatography and high resolution MS/MS analysis. A total of 107 proteins were detected with statistically significant radiation-induced change in abundance (>1.5 fold) and/or subcellular localization compared to controls. The top biological pathways identified using bioinformatics include organ development, anatomical structure formation and the regulation of actin cytoskeleton. From the proteomic data, a change in proteolytic processing and subcellular localization of the skin barrier protein, filaggrin, was identified, and the results were confirmed by western blotting. This data indicate post-transcriptional regulation of protein abundance, localization and proteolytic processing playing an important role in regulating radiation response in human tissues. PMID:28250387

  8. Ambient Mass Spectrometry Imaging Using Direct Liquid Extraction Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Julia; Lanekoff, Ingela

    2015-11-13

    Mass spectrometry imaging (MSI) is a powerful analytical technique that enables label-free spatial localization and identification of molecules in complex samples.1-4 MSI applications range from forensics5 to clinical research6 and from understanding microbial communication7-8 to imaging biomolecules in tissues.1, 9-10 Recently, MSI protocols have been reviewed.11 Ambient ionization techniques enable direct analysis of complex samples under atmospheric pressure without special sample pretreatment.3, 12-16 In fact, in ambient ionization mass spectrometry, sample processing (e.g., extraction, dilution, preconcentration, or desorption) occurs during the analysis.17 This substantially speeds up analysis and eliminates any possible effects of sample preparation on the localization of moleculesmore » in the sample.3, 8, 12-14, 18-20 Venter and co-workers have classified ambient ionization techniques into three major categories based on the sample processing steps involved: 1) liquid extraction techniques, in which analyte molecules are removed from the sample and extracted into a solvent prior to ionization; 2) desorption techniques capable of generating free ions directly from substrates; and 3) desorption techniques that produce larger particles subsequently captured by an electrospray plume and ionized.17 This review focuses on localized analysis and ambient imaging of complex samples using a subset of ambient ionization methods broadly defined as “liquid extraction techniques” based on the classification introduced by Venter and co-workers.17 Specifically, we include techniques where analyte molecules are desorbed from solid or liquid samples using charged droplet bombardment, liquid extraction, physisorption, chemisorption, mechanical force, laser ablation, or laser capture microdissection. Analyte extraction is followed by soft ionization that generates ions corresponding to intact species. Some of the key advantages of liquid extraction techniques include the ease of operation, ability to analyze samples in their native environments, speed of analysis, and ability to tune the extraction solvent composition to a problem at hand. For example, solvent composition may be optimized for efficient extraction of different classes of analytes from the sample or for quantification or online derivatization through reactive analysis. In this review, we will: 1) introduce individual liquid extraction techniques capable of localized analysis and imaging, 2) describe approaches for quantitative MSI experiments free of matrix effects, 3) discuss advantages of reactive analysis for MSI experiments, and 4) highlight selected applications (published between 2012 and 2015) that focus on imaging and spatial profiling of molecules in complex biological and environmental samples.« less

  9. Local shear instabilities in weakly ionized, weakly magnetized disks

    NASA Technical Reports Server (NTRS)

    Blaes, Omer M.; Balbus, Steven A.

    1994-01-01

    We extend the analysis of axisymmetric magnetic shear instabilities from ideal magnetohydrodynamic (MHD) flows to weakly ionized plasmas with coupling between ions and neutrals caused by collisions, ionization, and recombination. As part of the analysis, we derive the single-fluid MHD dispersion relation without invoking the Boussinesq approximation. This work expands the range of applications of these instabilities from fully ionized accretion disks to molecular disks in galaxies and, with somewhat more uncertainty, to protostellar disks. Instability generally requires the angular velocity to decrease outward, the magnetic field strengths to be subthermal, and the ions and neutrals to be sufficiently well coupled. If ionization and recombination processes can be neglected on an orbital timescale, adequate coupling is achieved when the collision frequency of a given neutral with the ions exceeds the local epicyclic freqency. When ionization equilibrium is maintained on an orbital timescale, a new feature is present in the disk dynamics: in contrast to a single-fluid system, subthermal azimuthal fields can affect the axisymmetric stability of weakly ionized two-fluid systems. We discuss the underlying causes for this behavior. Azimuthal fields tend to be stabilizing under these circumstances, and good coupling between the neutrals and ions requires the collision frequency to exceed the epicyclic frequency by a potentially large secant factor related to the magnetic field geometry. When the instability is present, subthermal azimuthal fields may also reduce the growth rate unless the collision frequency is high, but this is important only if the field strengths are very subthermal and/or the azimuthal field is the dominant field component. We briefly discuss our results in the context of the Galactic center circumnuclear disk, and suggest that the shear instability might be present there, and be responsible for the observed turbulent motions.

  10. Corona-glow transition in the atmospheric pressure RF-excited plasma needle

    NASA Astrophysics Data System (ADS)

    Sakiyama, Y.; Graves, D. B.

    2006-08-01

    We present clear evidence of two different discharge modes of the atmospheric pressure RF-excited plasma needle and the transition mechanism by the finite element method. The gas used is helium with 0.1% nitrogen addition. The needle has a point-to-plane geometry with a radius of 30 µm at the tip, 150 µm at the base and an inter-electrode gap of 1 mm. We employ the one-moment fluid model with the local field approximation. Our simulation results indicate that the plasma needle operates as a corona discharge at low power and that the discharge mode transitions to a glow discharge at a critical power. The discharge power increases but the discharge voltage drops abruptly by a factor of about 2 in the corona-glow transition. The plasma density and ionization is confined near the needle tip in corona-mode while it spreads back along the needle surface in glow-mode. The corona-glow transition is also characterized by a dramatic decrease in sheath thickness and an order of magnitude increase in plasma density and volume-averaged ionization. The transition is observed whether or not secondary electron emission is included in the model, and therefore we suggest that this is not an α -γ transition.

  11. Localizing high-lying Rydberg wave packets with two-color laser fields

    NASA Astrophysics Data System (ADS)

    Larimian, Seyedreza; Lemell, Christoph; Stummer, Vinzenz; Geng, Ji-Wei; Roither, Stefan; Kartashov, Daniil; Zhang, Li; Wang, Mu-Xue; Gong, Qihuang; Peng, Liang-You; Yoshida, Shuhei; Burgdörfer, Joachim; Baltuška, Andrius; Kitzler, Markus; Xie, Xinhua

    2017-08-01

    We demonstrate control over the localization of high-lying Rydberg wave packets in argon atoms with phase-locked orthogonally polarized two-color laser fields. With a reaction microscope, we measure ionization signals of high-lying Rydberg states induced by a weak dc field and blackbody radiation as a function of the relative phase between the two-color fields. We find that the dc-field-ionization yield of high-lying Rydberg argon atoms oscillates with the relative two-color phase with a period of 2 π while the photoionization signal by blackbody radiation shows a period of π . Accompanying simulations show that these observations are a clear signature of the asymmetric localization of electrons recaptured into very elongated (low angular momentum) high-lying Rydberg states after conclusion of the laser pulse. Our findings thus open an effective pathway to control the localization of high-lying Rydberg wave packets.

  12. Molecular-scale properties of MoO3 -doped pentacene

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Meyer, Jens; Kahn, Antoine

    2010-10-01

    The mechanisms of molecular doping in organic electronic materials are explored through investigation of pentacene p -doped with molybdenum trioxide (MoO3) . Doping is confirmed with ultraviolet photoelectron spectroscopy. Isolated dopants are imaged at the molecular scale using scanning tunneling microscopy (STM) and effects due to localized holes are observed. The results demonstrate that donated charges are localized by the counterpotential of ionized dopants in MoO3 -doped pentacene, generalizing similar effects previously observed for pentacene doped with tetrafluoro-tetracyanoquinodimethane. Such localized hole effects are only observed for low molecular weight MoO3 species. It is shown that for larger MoO3 polymers and clusters, the ionized dopant potential is sufficiently large as to mask the effect of the localized hole in STM images. Current-voltage measurements recorded using scanning tunneling spectroscopy reveal that electron conductivity decreases in MoO3 -doped films, as expected for electron capture and p -doping.

  13. Synthetic nebular emission from massive galaxies - I: origin of the cosmic evolution of optical emission-line ratios

    NASA Astrophysics Data System (ADS)

    Hirschmann, Michaela; Charlot, Stephane; Feltre, Anna; Naab, Thorsten; Choi, Ena; Ostriker, Jeremiah P.; Somerville, Rachel S.

    2017-12-01

    Galaxies occupy different regions of the [O III]λ5007/H β-versus-[N II]λ6584/H α emission-line ratio diagram in the distant and local Universe. We investigate the origin of this intriguing result by modelling self-consistently, for the first time, nebular emission from young stars, accreting black holes (BHs) and older, post-asymptotic giant branch (post-AGB) stellar populations in galaxy formation simulations in a full cosmological context. In post-processing, we couple new-generation nebular-emission models with high-resolution, cosmological zoom-in simulations of massive galaxies to explore which galaxy physical properties drive the redshift evolution of the optical-line ratios [O III]λ5007/H β, [N II]λ6584/H α, [S II]λλ6717, 6731/H α and [O I]λ6300/H α. The line ratios of simulated galaxies agree well with observations of both star-forming and active local Sloan Digital Sky Survey galaxies. Towards higher redshifts, at fixed galaxy stellar mass, the average [O III]/H β is predicted to increase and [N II]/H α, [S II]/H α and [O I]/H α to decrease - widely consistent with observations. At fixed stellar mass, we identify star formation history, which controls nebular emission from young stars via the ionization parameter, as the primary driver of the cosmic evolution of [O III]/H β and [N II]/H α. For [S II]/H α and [O I]/H α, this applies only to redshifts greater than z = 1.5, the evolution at lower redshift being driven in roughly equal parts by nebular emission from active galactic nuclei and post-AGB stellar populations. Instead, changes in the hardness of ionizing radiation, ionized-gas density, the prevalence of BH accretion relative to star formation and the dust-to-metal mass ratio (whose impact on the gas-phase N/O ratio we model at fixed O/H) play at most a minor role in the cosmic evolution of simulated galaxy line ratios.

  14. Galactic Cosmic Rays in the Outer Heliosphere

    NASA Technical Reports Server (NTRS)

    Florinski, V.; Washimi, H.; Pogorelov, N. V.; Adams, J. H.

    2010-01-01

    We report a next generation model of galactic cosmic ray (GCR) transport in the three dimensional heliosphere. Our model is based on an accurate three-dimensional representation of the heliospheric interface. This representation is obtained by taking into account the interaction between partially ionized, magnetized plasma flows of the solar wind and the local interstellar medium. Our model reveals that after entering the heliosphere GCRs are stored in the heliosheath for several years. The preferred GCR entry locations are near the nose of the heliopause and at high latitudes. Low-energy (hundreds of MeV) galactic ions observed in the heliosheath have spent, on average, a longer time in the solar wind than those observed in the inner heliosphere, which would explain their cooled-off spectra at these energies. We also discuss radial gradients in the heliosheath and the implications for future Voyager observations

  15. Effects of target heating on experiments using Kα and Kβ diagnostics.

    PubMed

    Palmeri, P; Boutoux, G; Batani, D; Quinet, P

    2015-09-01

    We describe the impact of heating and ionization on emission from the target of Kα and Kβ radiation induced by the propagation of hot electrons generated by laser-matter interaction. We consider copper as a test case and, starting from basic principles, we calculate the changes in emission wavelength, ionization cross section, and fluorescence yield as Cu is progressively ionized. We have finally considered the more realistic case when hot electrons have a distribution of energies with average energies of 50 and 500 keV (representative respectively of "shock ignition" and of "fast ignition" experiments) and in which the ions are distributed according to ionization equilibrium. In addition, by confronting our theoretical calculations with existing data, we demonstrate that this study offers a generic theoretical background for temperature diagnostics in laser-plasma interactions.

  16. Solubility, ionization, and partitioning behavior of unsymmetrical disulfide compounds: alkyl 2-imidazolyl disulfides.

    PubMed

    Hashash, Ahmad; Kirkpatrick, D Lynn; Lazo, John S; Block, Lawrence H

    2002-07-01

    Alkyl 2-imidazolyl disulfide compounds are novel antitumor agents, one of which is currently being evaluated in Phase I clinical trials. These molecules contain an unsymmetrical disulfide fragment, the lipophilic and electronic contributions of which are still not defined in the literature. Lipophilicity, ionization, and solubility of a number of alkyl 2-imidazolyl disulfides were studied. Based on the additivity of lipophilicity and ionization properties, the contribution of the unsymmetrical disulfide fragment to lipophilicity and ionization was elucidated. The unsymmetrical disulfide fragment contributed a Rekker's hydrophobic constant of 0.761 to the lipophilicity of these compounds and an approximated Hammett constant (sigma) of 0.30 to their ionization. The applicability of the general solubility equation (GSE) proposed by Jain and Yalkowsky in predicting the aqueous solubility of these analogs was evaluated. The GSE correctly ranked the aqueous solubilities of these compounds and estimated their log molar solubilities with an average absolute error of 0.35. Copyright 2002 Wiley-Liss Inc.

  17. A Search for Hot, Diffuse Gas in Superclusters

    NASA Technical Reports Server (NTRS)

    Boughn, Stephen P.

    1998-01-01

    The HEA01 A2 full sky, 2-10 keV X-ray map was searched for diffuse emission correlated with the plane of the local supercluster of galaxies and a positive correlation was found at the 99% confidence level. The most obvious interpretation is that the local supercluster contains a substantial amount of hot (10(exp 8) OK), diffuse gas, i.e. ionized hydrogen, with a density on the order of 2 - 3 x 10(exp -6) ions per cubic centimeter. This density is about an order of magnitude larger than the average baryon density of the universe and is consistent with a supercluster collapse factor of 10. The implied total mass is of the order of 10(exp 16) times the mass of the sun and would constitute a large fraction of the baryonic matter in the local universe. This result supports current thinking that most of the ordinary matter in the universe is in the form of ionized hydrogen; however, the high temperature implied by the X-ray emission is at the top of the range predicted by most theories. The presence of a large amount of hot gas would leave its imprint on the Cosmic Microwave Background (CMB) via the Sunyaev-Zel'dovich (SZ) effect. A marginal decrement (-17 muK) was found in the COBE 4-year 53 GHz CMB map coincident with the plane of the local supercluster. Although the detection is only 1beta, the level is consistent with the SZ effect predicted from the hot gas. If these results are confirmed by future observations they will have important implications for the formation of large-scale structure in the universe. Three other projects related directly to the HEAO 1 map or the X-ray background in general benefited from this NASA grant. They are: (1) "Correlations between the Cosmic X-ray and Microwave Backgrounds: Constraints on a Cosmological Constant"; (2) "Cross-correlation of the X-ray Background with Radio Sources: Constraining the Large-Scale Structure of the X-ray Background"; and (3) "Radio and X-ray Emission Mechanisms in Advection Dominated Accretion Flow".

  18. Bubble size statistics during reionization from 21-cm tomography

    NASA Astrophysics Data System (ADS)

    Giri, Sambit K.; Mellema, Garrelt; Dixon, Keri L.; Iliev, Ilian T.

    2018-01-01

    The upcoming SKA1-Low radio interferometer will be sensitive enough to produce tomographic imaging data of the redshifted 21-cm signal from the Epoch of Reionization. Due to the non-Gaussian distribution of the signal, a power spectrum analysis alone will not provide a complete description of its properties. Here, we consider an additional metric which could be derived from tomographic imaging data, namely the bubble size distribution of ionized regions. We study three methods that have previously been used to characterize bubble size distributions in simulation data for the hydrogen ionization fraction - the spherical-average (SPA), mean-free-path (MFP) and friends-of-friends (FOF) methods - and apply them to simulated 21-cm data cubes. Our simulated data cubes have the (sensitivity-dictated) resolution expected for the SKA1-Low reionization experiment and we study the impact of both the light-cone (LC) and redshift space distortion (RSD) effects. To identify ionized regions in the 21-cm data we introduce a new, self-adjusting thresholding approach based on the K-Means algorithm. We find that the fraction of ionized cells identified in this way consistently falls below the mean volume-averaged ionized fraction. From a comparison of the three bubble size methods, we conclude that all three methods are useful, but that the MFP method performs best in terms of tracking the progress of reionization and separating different reionization scenarios. The LC effect is found to affect data spanning more than about 10 MHz in frequency (Δz ∼ 0.5). We find that RSDs only marginally affect the bubble size distributions.

  19. Modeling ionization and recombination from low energy nuclear recoils in liquid argon

    DOE PAGES

    Foxe, M.; Hagmann, C.; Jovanovic, I.; ...

    2015-03-27

    Coherent elastic neutrino-nucleus scattering (CENNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. Detection of CENNS could offer benefits for detection of supernova and solar neutrinos in astrophysics, or for detection of antineutrinos for nuclear reactor monitoring and nuclear nonproliferation. One challenge with detecting CENNS is the low energy deposition associated with a typical CENNS nuclear recoil. In addition, nuclear recoils result in lower ionization yields than those produced by electron recoils of the same energy. While a measurement of the nuclear recoil ionization yield in liquid argon in the keV energy range has been recentlymore » reported, a corresponding model for low-energy ionization yield in liquid argon does not exist. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 keV energies. The model consists of two distinct components: (1) simulation of the atomic collision cascade with production of ionization, and (2) the thermalization and drift of ionization electrons in an applied electric field including local recombination. As an application of our results we report updated estimates of detectable ionization in liquid argon from CENNS at a nuclear reactor.« less

  20. Radio frequency electromagnetic field compliance assessment of multi-band and MIMO equipped radio base stations.

    PubMed

    Thors, Björn; Thielens, Arno; Fridén, Jonas; Colombi, Davide; Törnevik, Christer; Vermeeren, Günter; Martens, Luc; Joseph, Wout

    2014-05-01

    In this paper, different methods for practical numerical radio frequency exposure compliance assessments of radio base station products were investigated. Both multi-band base station antennas and antennas designed for multiple input multiple output (MIMO) transmission schemes were considered. For the multi-band case, various standardized assessment methods were evaluated in terms of resulting compliance distance with respect to the reference levels and basic restrictions of the International Commission on Non-Ionizing Radiation Protection. Both single frequency and multiple frequency (cumulative) compliance distances were determined using numerical simulations for a mobile communication base station antenna transmitting in four frequency bands between 800 and 2600 MHz. The assessments were conducted in terms of root-mean-squared electromagnetic fields, whole-body averaged specific absorption rate (SAR) and peak 10 g averaged SAR. In general, assessments based on peak field strengths were found to be less computationally intensive, but lead to larger compliance distances than spatial averaging of electromagnetic fields used in combination with localized SAR assessments. For adult exposure, the results indicated that even shorter compliance distances were obtained by using assessments based on localized and whole-body SAR. Numerical simulations, using base station products employing MIMO transmission schemes, were performed as well and were in agreement with reference measurements. The applicability of various field combination methods for correlated exposure was investigated, and best estimate methods were proposed. Our results showed that field combining methods generally considered as conservative could be used to efficiently assess compliance boundary dimensions of single- and dual-polarized multicolumn base station antennas with only minor increases in compliance distances. © 2014 Wiley Periodicals, Inc.

  1. Fast combustion waves and chemi-ionization processes in a flame initiated by a powerful local plasma source in a closed reactor

    PubMed Central

    Artem'ev, K. V.; Berezhetskaya, N. K.; Kazantsev, S. Yu.; Kononov, N. G.; Kossyi, I. A.; Popov, N. A.; Tarasova, N. M.; Filimonova, E. A.; Firsov, K. N.

    2015-01-01

    Results are presented from experimental studies of the initiation of combustion in a stoichiometric methane–oxygen mixture by a freely localized laser spark and by a high-current multispark discharge in a closed chamber. It is shown that, preceding the stage of ‘explosive’ inflammation of a gas mixture, there appear two luminous objects moving away from the initiator along an axis: a relatively fast and uniform wave of ‘incomplete combustion’ under laser spark ignition and a wave with a brightly glowing plasmoid behind under ignition from high-current slipping surface discharge. The gas mixtures in both the ‘preflame’ and developed-flame states are characterized by a high degree of ionization as the result of chemical ionization (plasma density ne≈1012 cm−3) and a high frequency of electron–neutral collisions (νen≈1012 s−1). The role of chemical ionization in constructing an adequate theory for the ignition of a gas mixture is discussed. The feasibility of the microwave heating of both the preflame and developed-flame plasma, supplementary to a chemical energy source, is also discussed. PMID:26170426

  2. A Comparison of Tissue Spray and Lipid Extract Direct Injection Electrospray Ionization Mass Spectrometry for the Differentiation of Eutopic and Ectopic Endometrial Tissues

    NASA Astrophysics Data System (ADS)

    Chagovets, Vitaliy; Wang, Zhihao; Kononikhin, Alexey; Starodubtseva, Natalia; Borisova, Anna; Salimova, Dinara; Popov, Igor; Kozachenko, Andrey; Chingin, Konstantin; Chen, Huanwen; Frankevich, Vladimir; Adamyan, Leila; Sukhikh, Gennady

    2018-02-01

    Recent research revealed that tissue spray mass spectrometry enables rapid molecular profiling of biological tissues, which is of great importance for the search of disease biomarkers as well as for online surgery control. However, the payback for the high speed of analysis in tissue spray analysis is the generally lower chemical sensitivity compared with the traditional approach based on the offline chemical extraction and electrospray ionization mass spectrometry detection. In this study, high resolution mass spectrometry analysis of endometrium tissues of different localizations obtained using direct tissue spray mass spectrometry in positive ion mode is compared with the results of electrospray ionization analysis of lipid extracts. Identified features in both cases belong to three lipid classes: phosphatidylcholines, phosphoethanolamines, and sphingomyelins. Lipids coverage is validated by hydrophilic interaction liquid chromatography with mass spectrometry of lipid extracts. Multivariate analysis of data from both methods reveals satisfactory differentiation of eutopic and ectopic endometrium tissues. Overall, our results indicate that the chemical information provided by tissue spray ionization is sufficient to allow differentiation of endometrial tissues by localization with similar reliability but higher speed than in the traditional approach relying on offline extraction.

  3. Ionization Readout Electronics for SuperCDMS SNOLAB Employing a HEMT Front-End

    NASA Astrophysics Data System (ADS)

    Partridge, R.

    2014-09-01

    The SuperCDMS SNOLAB experiment seeks to deploy 200 kg of cryogenic Ge detectors employing phonon and ionization readout to identify dark matter interactions. One of the design challenges for the experiment is to provide amplification of the high impedance ionization signal while minimizing power dissipation and noise. This paper describes the design and expected performance of the ionization readout being developed for an engineering model of the SuperCDMS SNOLAB Ge Tower System. The readout features the use of a low-noise HEMT front end transistor operating at 4 K to achieve a power dissipation of 100 W per channel, local grounding to minimize noise injection, and biasing circuitry that allows precise control of the HEMT operating point.

  4. Ionization of elements in medium power capacitively coupled argon plasma torch with single and double ring electrodes.

    PubMed

    Ponta, Michaela; Frentiu, Maria; Frentiu, Tiberiu

    2012-06-01

    A medium power, low Ar consumption capacitively coupled plasma torch (275 W, 0.4 L min-1) with molybdenum tubular electrode and single or two ring electrodes in non-local thermodynamic equilibrium (LTE) was characterized with respect to its ability to achieve element ionization. Ionization degrees of Ca, Mg, Mn and Cd were determined from ionic-to-atomic emission ratio and ionization equilibrium according to Saha's equation. The ionization degrees resulted from the Saha equation were higher by 9-32% than those obtained from spectral lines intensity in LTE regime and closer to reality. A linear decrease of ionization with increase of ionization energy of elements was observed. Plasma torch with two ring electrodes provided higher ionization degrees (85 ± 7% Ca, 79 ± 7% Mn, 80 ± 7% Mg and 73 ± 8% Cd) than those in single ring arrangement (70 ± 6% Ca, 57 ± 7% Mn, 57 ± 8% Mg and 42 ± 9% Cd). The Ca ionization decreased linearly by up to 79 ± 4% and 53 ± 6% in plasma with two ring electrodes and single ring respectively in the presence of up to 400 µg mL-1 Na as interferent. The studied plasma was effective in element ionization and could be a potential ion source in mass spectrometry.

  5. ABSORPTION-LINE SPECTROSCOPY OF GRAVITATIONALLY LENSED GALAXIES: FURTHER CONSTRAINTS ON THE ESCAPE FRACTION OF IONIZING PHOTONS AT HIGH REDSHIFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leethochawalit, Nicha; Ellis, Richard S.; Zitrin, Adi

    2016-11-10

    The fraction of ionizing photons escaping from high-redshift star-forming galaxies is a key obstacle in evaluating whether galaxies were the primary agents of cosmic reionization. We previously proposed using the covering fraction of low-ionization gas, measured via deep absorption-line spectroscopy, as a proxy. We now present a significant update, sampling seven gravitationally lensed sources at 4 < z < 5. We show that the absorbing gas in our sources is spatially inhomogeneous, with a median covering fraction of 66%. Correcting for reddening according to a dust-in-cloud model, this implies an estimated absolute escape fraction of ≃19% ± 6%. With possiblemore » biases and uncertainties, collectively we find that the average escape fraction could be reduced to no less than 11%, excluding the effect of spatial variations. For one of our lensed sources, we have sufficient signal-to-noise ratio to demonstrate the presence of such spatial variations and scatter in its dependence on the Ly α equivalent width, consistent with recent simulations. If this source is typical, our lower limit to the escape fraction could be reduced by a further factor ≃2. Across our sample, we find a modest anticorrelation between the inferred escape fraction and the local star formation rate, consistent with a time delay between a burst and leaking Lyman continuum photons. Our analysis demonstrates considerable variations in the escape fraction, consistent with being governed by the small-scale behavior of star-forming regions, whose activities fluctuate over short timescales. This supports the suggestion that the escape fraction may increase toward the reionization era when star formation becomes more energetic and burst-like.« less

  6. Reduced atomic shadowing in HiPIMS: Role of the thermalized metal ions

    NASA Astrophysics Data System (ADS)

    Oliveira, João Carlos; Ferreira, Fábio; Anders, André; Cavaleiro, Albano

    2018-03-01

    In magnetron sputtering, the ability to tailor film properties depends primarily on the control of the flux of particles impinging on the growing film. Among deposition mechanisms, the shadowing effect leads to the formation of a rough surface and a porous, columnar microstructure. Re-sputtered species may be re-deposited in the valleys of the films surface and thereby contribute to a reduction of roughness and to fill the underdense regions. Both effects are non-local and they directly compete to shape the final properties of the deposited films. Additional control of the bombarding flux can be obtained by ionizing the sputtered flux, because ions can be controlled with respect to their energy and impinging direction, such as in High-Power Impulse Magnetron Sputtering (HiPIMS). In this work, the relation between ionization of the sputtered species and thin film properties is investigated in order to identify the mechanisms which effectively influence the shadowing effect in Deep Oscillation Magnetron Sputtering (DOMS), a variant of HiPIMS. The properties of two Cr films deposited using the same averaged target power by d.c. magnetron sputtering and DOMS have been compared. Additionally, the angle distribution of the Cr species impinging on the substrate was simulated using Monte Carlo-based programs while the energy distribution of the energetic particles bombarding the substrate was evaluated by energy-resolved mass analysis. It was found that the acceleration of the thermalized chromium ions at the substrate sheath in DOMS significantly reduces the high angle component of their impinging angle distribution and, thus, efficiently reduces atomic shadowing. Therefore, a high degree of ionization in HiPIMS results in almost shadowing effect-free film deposition and allows us to deposit dense and compact films without the need of high energy particle bombardment during growth.

  7. Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer. 2.3

    NASA Technical Reports Server (NTRS)

    Kriss, G. A.; Shull, J. M.; Oegerle, W.; Zheng, W.; Davidsen, A. F.; Songaila, A.; Tumlinson, J.; Cowie, L. L.; Dehavreng, J.-M.; Friedman, S. D.

    2001-01-01

    The neutral hydrogen and the ionized helium absorption in the spectra of high-redshift quasi-stellar objects (QSOs) are unique probes of structure in the universe at epochs intermediate between the earliest density fluctuations seen in the cosmic background radiation and the distribution of galaxies visible today. We present Far-Ultraviolet Spectroscopic Explorer (FUSE) observations of the line of sight to the QSO HE2347-4342 in the 1000-1187 angstrom band at a resolving power of 15,000. Above redshift z = 2.7, the IGM is largely opaque in He II Ly-alpha (304 angstroms). At lower redshifts, the optical depth gradually decreases to a mean value tau = 1 at z = 2.4. We resolve the He II Ly-alpha absorption as a discrete forest of absorption lines in the z = 2.3 - 2.7 redshift range. Approximately 50% of these spectral features have H I counterparts with column densities N(sub HI) > 10(exp 12.3)/sq cm visible in a Keck spectrum. These account for most of the observed opacity in He II Ly-alpha. The remainder have N(sub HI) < 10(exp 12.3)/sq cm, below the threshold for current observations. A short extrapolation of the power-law distribution of H I column densities to lower values can account for these new absorbers. The He II to H I column density ratio eta averages approximately 80, consistent with photoionization of the IGM by a hard ionizing spectrum resulting from the integrated light of quasars at high redshift, but there is considerable scatter. Values of eta > 100 in many locations indicate that there may be localized contributions from starbursts or heavily filtered QSO radiation.

  8. Ionization correction factors for H II regions in blue compact dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Holovatyi, V. V.; Melekh, B. Ya.

    2002-08-01

    Energy distributions in the spectra of the ionizing nuclei of H II regions beyond λ <= 91.2 nm were calculated. A grid of photoionization models of 270 H II regions was constructed. The free parameters of the model grid are the hydrogen density nH in the nebular gas, filling factor, energy Lc-spectrum of ionizing nuclei, and metallicity. The chemical composition from the studies of Izotov et al. were used for model grid initialization. The integral linear spectra calculated for the photoionization models were used to determine the concentration ne, temperatures Te of electrons, and ionic concentrations n(A+i)/n(H+) by the nebular gas diagnostic method. The averaged relative ionic abundances n(A+i)/n(H+) thus calculated were used to determine new expressions for ionization correction factors which we recommend for the determination of abundances in the H II regions of blue compact dwarf galaxies.

  9. Charge states of low energy ions from the sun. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sciambi, R. K.

    1975-01-01

    Measurements of ionization states and energy spectra of carbon, oxygen, and iron accelerated in ten solar flare particle events are reported, for energies between 15 keV per nucleon and 600 keV per nucleon. The ionization states were remarkably constant from flare to flare, despite great variations in other event parameters. The mean ionization state for carbon was 5.7, for oxygen 6.2, and for iron 11.7, values which are similar to the respective ionization states in the solar wind. The time profile of the He/C+N+O ratio was examined, and it was found that the ratio was small early in the event, and increased with time. The energy spectra of the medium ions showed a flattening below 100 keV per nucleon, which was highly correlated with event size as measured by the event averaged flux of 130 to 220 keV protons.

  10. Vibrational and Electronic Energy Transfer and Dissociation of Diatomic Molecules by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    At high altitudes and velocities equal to or greater than the geosynchronous return velocity (10 kilometers per second), the shock layer of a hypersonic flight will be in thermochemical nonequilibrium and partially ionized. The amount of ionization is determined by the velocity. For a trans atmospheric flight of 10 kilometers per second and at an altitude of 80 kilometers, a maximum of 1% ionization is expected. At a velocity of 12 - 17 kilometer per second, such as a Mars return mission, up to 30% of the atoms and molecules in the flow field will be ionized. Under those circumstances, electrons play an important role in determining the internal states of atoms and molecules in the flow field and hence the amount of radiative heat load and the distance it takes for the flow field to re-establish equilibrium. Electron collisions provide an effective means of transferring energy even when the electron number density is as low as 1%. Because the mass of an electron is 12,760 times smaller than the reduced mass of N2, its average speed, and hence its average collision frequency, is more than 100 times larger. Even in the slightly ionized regime with only 1% electrons, the frequency of electron-molecule collisions is equal to or larger than that of molecule-molecule collisions, an important consideration in the low density part of the atmosphere. Three electron-molecule collision processes relevant to hypersonic flows will be considered: (1) vibrational excitation/de-excitation of a diatomic molecule by electron impact, (2) electronic excitation/de-excitation, and (3) dissociative recombination in electron-diatomic ion collisions. A review of available data, both theory and experiment, will be given. Particular attention will be paid to tailoring the molecular physics to the condition of hypersonic flows. For example, the high rotational temperatures in a hypersonic flow field means that most experimental data carried out under room temperatures are not applicable. Also, the average electron temperature is expected to be between 10,000 and 20,000 K. Thus only data for low energy electrons are relevant to the model.

  11. Scaling Relations of Starburst-driven Galactic Winds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanner, Ryan; Cecil, Gerald; Heitsch, Fabian, E-mail: rytanner@augusta.edu

    2017-07-10

    Using synthetic absorption lines generated from 3D hydrodynamical simulations, we explore how the velocity of a starburst-driven galactic wind correlates with the star formation rate (SFR) and SFR density. We find strong correlations for neutral and low ionized gas, but no correlation for highly ionized gas. The correlations for neutral and low ionized gas only hold for SFRs below a critical limit set by the mass loading of the starburst, above which point the scaling relations flatten abruptly. Below this point the scaling relations depend on the temperature regime being probed by the absorption line, not on the mass loading.more » The exact scaling relation depends on whether the maximum or mean velocity of the absorption line is used. We find that the outflow velocity of neutral gas can be up to five times lower than the average velocity of ionized gas, with the velocity difference increasing for higher ionization states. Furthermore, the velocity difference depends on both the SFR and mass loading of the starburst. Thus, absorption lines of neutral or low ionized gas cannot easily be used as a proxy for the outflow velocity of the hot gas.« less

  12. Interstellar PAH emission in the 11-14 micron region: new insights from laboratory data and a tracer of ionized PAHs

    NASA Technical Reports Server (NTRS)

    Hudgins, D. M.; Allamandola, L. J.

    1999-01-01

    The Ames infrared spectral database of isolated, neutral and ionized polycyclic aromatic hydrocarbons (PAHS) shows that aromatic CH out-of-plane bending frequencies are significantly shifted upon ionization. For solo- and duet-CH groups, the shift is pronounced and consistently toward higher frequencies. The solo-CH modes are blueshifted by an average of 27 cm-1 and the duet-CH modes by an average of 17 cm-1. For trio- and quartet-CH groups, the ionization shifts of the out-of-plane modes are more erratic and typically more modest. As a result of these ionization shifts, the solo-CH out-of-plane modes move out of the region classically associated with these vibrations in neutral PAHS, falling instead at frequencies well above those normally attributed to out-of-plane bending, vibrations of any type. In addition, for the compact PAHs studied, the duet-CH out-of-plane modes are shifted into the frequency range traditionally associated with the solo-CH modes. These results refine our understanding of the origin of the dominant interstellar infrared emission feature near 11.2 microns, whose envelope has traditionally been attributed only to the out-of-plane bending of solo-CH groups on PAHS, and provide a natural explanation for the puzzling emission feature near 11.0 microns within the framework of the PAH model. Specifically, the prevalent but variable long-wavelength wing or shoulder that is often observed near 11.4 microns likely reflects the contributions of duet-CH units in PAH cations. Also, these results indicate that the emission between 926 and 904 cm-1 (10.8 and 11.1 microns) observed in many sources can be unambiguously attributed to the out-of-plane wagging, of solo-CH units in moderately sized (fewer than 50 carbon atom) PAH cations, making this emission an unequivocal tracer of ionized interstellar PAHS.

  13. Effect of the target power density on high-power impulse magnetron sputtering of copper

    NASA Astrophysics Data System (ADS)

    Kozák, Tomáš

    2012-04-01

    We present a model analysis of high-power impulse magnetron sputtering of copper. We use a non-stationary global model based on the particle and energy conservation equations in two zones (the high density plasma ring above the target racetrack and the bulk plasma region), which makes it possible to calculate time evolutions of the averaged process gas and target material neutral and ion densities, as well as the fluxes of these particles to the target and substrate during a pulse period. We study the effect of the increasing target power density under conditions corresponding to a real experimental system. The calculated target current waveforms show a long steady state and are in good agreement with the experimental results. For an increasing target power density, an analysis of the particle densities shows a gradual transition to a metal dominated discharge plasma with an increasing degree of ionization of the depositing flux. The average fraction of target material ions in the total ion flux onto the substrate is more than 90% for average target power densities higher than 500 W cm-2 in a pulse. The average ionized fraction of target material atoms in the flux onto the substrate reaches 80% for a maximum average target power density of 3 kW cm-2 in a pulse.

  14. Kinetics of a plasma streamer ionization front

    NASA Astrophysics Data System (ADS)

    Taccogna, Francesco; Pellegrini, Fabrizio

    2018-02-01

    A streamer is a non-linear and non-local gas breakdown mode. Its large-scale coherent structures, such as the ionization front, are the final results of a hierarchical cascade starting from the single particle dynamics. Therefore, this phenomenon covers, by definition, different space and time scales. In this study, we have reproduced the ionization front formation and development by means of a particle-based numerical methodology. The physical system investigated concerns of a high-voltage ns-pulsed surface dielectric barrier discharge. Different reduced electric field regimes ranging from 50 to 500 Td have been considered for two gases: pure atomic Ar and molecular N2. Results have shown the detailed structure of the negative streamer: the leading edge, the head, the interior and the tail. Its dynamical evolution and the front propagation velocity have been calculated for the different cases. Finally, the deviation of the electron energy distribution function from equilibrium behavior has been pointed out as a result of a fast and very localized phenomenon.

  15. Local thermodynamic equilibrium in rapidly heated high energy density plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aslanyan, V.; Tallents, G. J.

    Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates.more » The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance.« less

  16. Transit dosimetry in IMRT with an a-Si EPID in direct detection configuration

    NASA Astrophysics Data System (ADS)

    Sabet, Mahsheed; Rowshanfarzad, Pejman; Vial, Philip; Menk, Frederick W.; Greer, Peter B.

    2012-08-01

    In this study an amorphous silicon electronic portal imaging device (a-Si EPID) converted to direct detection configuration was investigated as a transit dosimeter for intensity modulated radiation therapy (IMRT). After calibration to dose and correction for a background offset signal, the EPID-measured absolute IMRT transit doses for 29 fields were compared to a MatriXX two-dimensional array of ionization chambers (as reference) using Gamma evaluation (3%, 3 mm). The MatriXX was first evaluated as reference for transit dosimetry. The accuracy of EPID measurements was also investigated by comparison of point dose measurements by an ionization chamber on the central axis with slab and anthropomorphic phantoms in a range of simple to complex fields. The uncertainty in ionization chamber measurements in IMRT fields was also investigated by its displacement from the central axis and comparison with the central axis measurements. Comparison of the absolute doses measured by the EPID and MatriXX with slab phantoms in IMRT fields showed that on average 96.4% and 97.5% of points had a Gamma index<1 in head and neck and prostate fields, respectively. For absolute dose comparisons with anthropomorphic phantoms, the values changed to an average of 93.6%, 93.7% and 94.4% of points with Gamma index<1 in head and neck, brain and prostate fields, respectively. Point doses measured by the EPID and ionization chamber were within 3% difference for all conditions. The deviations introduced in the response of the ionization chamber in IMRT fields were<1%. The direct EPID performance for transit dosimetry showed that it has the potential to perform accurate, efficient and comprehensive in vivo dosimetry for IMRT.

  17. The extreme ultraviolet spectrum of G191 - B2B and the ionization of the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Green, James; Jelinsky, Patrick; Bowyer, Stuart

    1990-01-01

    The measurement of the extreme ultraviolet spectrum of the nearby hot white dwarf G191 - B2B is reported. The results are used to derive interstellar neutral column densities of 1.6 + or - 0.2 x 10 to the 18th/sq cm and 9.8 + 2.8 or - 2.6 x 10 to the 16th/sq cm for H I and He I, respectively. This ratio of neutral hydrogen to neutral helium indicates that the ionization of hydrogen along the line of sight is less than about 30 percent unless significant helium ionization is present. The scenario in which the hydrogen is highly ionized and the helium is neutral is ruled out by this observation.

  18. First detection of winds in red giants by microwave continuum techniques

    NASA Technical Reports Server (NTRS)

    Drake, S. A.; Linsky, J. L.

    1983-01-01

    Eight red giants and supergiants have been observed at 4885 MHz (6 cm) with the Very Large Array in an attempt to detect continuum emission. The bright giant Alpha-1 Her (M5 II) was detected at an average flux density of 0.9 + or - 0.13 mJy. Since the likely source of this emission is an ionized, optically thick component of a stellar wind, this detection implies a mass loss rate of 2 x 10 to the -9th solar masses per yr for the ionized gas. The fraction of the outflow in Alpha-1 Her that is ionized (0.002-0.02) seems to be similar to that previously found for Alpha Ori and Alpha Sco A. Alpha Boo (K2 IIIp) and Beta Gem (K0 III) are probable and definite detections, respectively. The derived ionized mass loss rates for these two stars are about 1 x 10 to the -10th solar masses per yr, implying in the case of Alpha Boo that the wind is largely ionized.

  19. Breakdown assisted by a novel electron drift injection in the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Wang, Nengchao; Jin, Hai; Zhuang, Ge; Ding, Yonghua; Pan, Yuan; Cen, Yishun; Chen, Zhipeng; Huang, Hai; Liu, Dequan; Rao, Bo; Zhang, Ming; Zou, Bichen

    2014-07-01

    A novel electron drift injection (EDI) system aiming to improve breakdown behavior has been designed and constructed on the Joint Texas EXperiment Tokamak Tokamak. Electrons emitted by the system undergo the E×B drift, ∇B drift and curvature drift in sequence in order to traverse the confining magnetic field. A local electrostatic well, generated by a concave-shaped plate biased more negative than the cathode, is introduced to interrupt the emitted electrons moving along the magnetic field line (in the parallel direction) in an attempt to bring an enhancement of the injection efficiency and depth. A series of experiments have demonstrated the feasibility of this method, and a penetration distance deeper than 9.5 cm is achieved. Notable breakdown improvements, including the reduction of breakdown delay and average loop voltage, are observed for discharges assisted by EDI. The lower limit of successfully ionized pressure is expanded.

  20. Femtosecond laser generated gold nanoparticles and their plasmonic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Rupali, E-mail: phz148121@iitd.ac.in; Navas, M. P.; Soni, R. K.

    The pulsed laser ablation in liquid medium is now commonly used to generate stable colloidal nanoparticles (NPs) in absence of any chemical additives or stabilizer with diverse applications. In this paper, we report generation of gold NPs (Au NPs) by ultra-short laser pulses. Femtosecond (fs) laser radiation (λ = 800 nm) has been used to ablate a gold target in pure de-ionized water to produce gold colloids with smallsize distribution. The average size of the particles can be further controlled by subjecting to laser-induced post-irradiation providing a versatile physical method of size-selected gold nanoparticles. The optical extinction and morphological dimensions weremore » investigated with UV-Vis spectroscopy and Transmission Electron Microscopy measurements, respectively. Finite difference time domain (FDTD) method is employed to calculate localized surface plasmon (LSPR) wavelength and the near-field generated by Au NPs and their hybrids.« less

  1. Universal behavior of surface-dangling bonds in hydrogen-terminated Si, Ge, and Si/Ge nanowires.

    NASA Astrophysics Data System (ADS)

    Nunes, Ricardo; Kagimura, Ricardo; Chacham, Hélio

    2007-03-01

    We report an ab initio study of the electronic properties of surface dangling bond (SDB) states in hydrogen-terminated Si, Ge, and Si/Ge nanowires with diameters between 1 and 2 nm. We find that the charge transition levels ɛ(+/-) of SDB states are deep in the bandgap for Si wires, and shallow (near the valence band edge) for Ge wires. In both Si and Ge wires, the SDB states are localized. We also find that the SDB ɛ(+/-) levels behave as a ``universal" energy reference level among Si, Ge, and Si/Ge wires within a precision of 0.1 eV. By computing the average bewteen the electron affinity and ionization energy in the atomi limit of several atoms from the III, IV and V columns, we conjecture that the universality is a periodic-table atomic property.

  2. Determination of the Alternaria mycotoxin tenuazonic acid in cereals by high-performance liquid chromatography-electrospray ionization ion-trap multistage mass spectrometry after derivatization with 2,4-dinitrophenylhydrazine.

    PubMed

    Siegel, David; Rasenko, Tatjana; Koch, Matthias; Nehls, Irene

    2009-05-22

    Tenuazonic acid (TA) is a major Alternaria mycotoxin. In the present work a novel approach for the detection of TA in cereals by liquid chromatography-ion-trap multistage mass spectrometry after derivatization with 2,4-dinitrophenylhydrazine is described. The product of the derivatization reaction and its major MS(2) fragments were characterised by Fourier transform-ion cyclotron resonance tandem mass spectrometry. Without preconcentration, the established method features a limit of detection of 10 microg/kg using 2g of sample in a rapid workup procedure. Accuracy, precision and linearity were evaluated in the working range of 50-5000 microg/kg. TA was detected in 13 and quantified in 3 out of 27 cereal samples obtained from a local supermarket, the average content being 49 microg/kg (highest incidence: 851+/-41 microg/kg).

  3. The outer atmospheres of cool M giants: High-dispersion ultraviolet spectra of Rho Per, 2 Cen, and g Her

    NASA Technical Reports Server (NTRS)

    Eaton, Joel A.; Johnson, Hollis R.

    1986-01-01

    Long duration IUE spectra were obtained to extend coverage of cool giants studied in the ultraviolet at high dispersion to M6. The chromospheric spectra of the three stars, which consist of a profusion of Fe II lines and a few lines of Mg II, Mg I, Al II, C II, C I, Cr II, and Fe I, are remarkably similar, both among themselves and with respect to stars of earlier spectral type. These lines present a picture of a warm chromosphere that is static in the average but may be far from uniform in density and ionization. The Mg II emission lines of 2 Cen show 2 unresolved absorption components, the shorter at the velocity of the local interstellar medium. The longer is blueshifted from the star by 12 to 18 km/sec and must be one of very few observed shell lines uncontaminated by interstellar absorption.

  4. Cosmic Ray Modulation in the Outer Heliosphere During the Minimum of Solar Cycle 23/24

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Florinski, V.; Washimi, H.; Pogorelov, N. V.

    2011-01-01

    We report a next generation model of galactic cosmic ray (GCR) transport in the three dimensional heliosphere. Our model is based on an accurate three-dimensional representation of the heliospheric interface. This representation is obtained by taking into account the interaction between partially ionized, magnetized plasma flows of the solar wind and the local interstellar medium. Our model reveals that after entering the heliosphere GCRs are stored in the heliosheath for several years. The preferred GCR entry locations are near the nose of the heliopause and at high latitudes. Low-energy (hundreds of MeV) galactic ions observed in the heliosheath have spent, on average, a longer time in the solar wind than those observed in the inner heliosphere, which would explain their cooled-off spectra at these energies. We also discuss radial gradients in the heliosheath and the implications for future Voyager observations.

  5. Coherent electronic wave packet motion in C(60) controlled by the waveform and polarization of few-cycle laser fields.

    PubMed

    Li, H; Mignolet, B; Wachter, G; Skruszewicz, S; Zherebtsov, S; Süssmann, F; Kessel, A; Trushin, S A; Kling, Nora G; Kübel, M; Ahn, B; Kim, D; Ben-Itzhak, I; Cocke, C L; Fennel, T; Tiggesbäumker, J; Meiwes-Broer, K-H; Lemell, C; Burgdörfer, J; Levine, R D; Remacle, F; Kling, M F

    2015-03-27

    Strong laser fields can be used to trigger an ultrafast molecular response that involves electronic excitation and ionization dynamics. Here, we report on the experimental control of the spatial localization of the electronic excitation in the C_{60} fullerene exerted by an intense few-cycle (4 fs) pulse at 720 nm. The control is achieved by tailoring the carrier-envelope phase and the polarization of the laser pulse. We find that the maxima and minima of the photoemission-asymmetry parameter along the laser-polarization axis are synchronized with the localization of the coherent electronic wave packet at around the time of ionization.

  6. L -subshell ionization of Ce, Nd, and Lu by 4-10-MeV C ions

    NASA Astrophysics Data System (ADS)

    Lapicki, G.; Mandal, A. C.; Santra, S.; Mitra, D.; Sarkar, M.; Bhattacharya, D.; Sen, P.; Sarkadi, L.; Trautmann, D.

    2005-08-01

    Ll,Lα,Lβ,Lγ,Lγ1+5,Lγ2+3,Lγ4+4' x-ray production cross sections of Ce58 , Nd60 and Lu71 induced by 4-, 6-, 8-, and 10-MeV carbon ions were measured. For Lu, Lγ2+3 is separated from Lγ2+3+6 after revision of the technique of Datz so that Lγ1+5 was used instead of Lγ1 , the Lγ4+4'/Lγ1+5 ratio was corrected for multiple ionization, and uncertainties in Lγ4+4' were incorporated in the fitting process. L -subshell ionization cross sections were extracted as a weighted average from two combinations of these cross sections, {Lα,Lγ1+5,Lγ2+3} and {Lα,Lγ1+5,Lγ} . It is shown that, to within a few percent, the first of these two combinations results in the identical cross sections as this weighted average. Within 10%, permutations of different sets of single-hole atomic parameters yielded the same ionization cross sections. These cross sections are typically within 15% and at most 35% of the cross sections obtained with atomic parameters that were altered in two different ways for multiple ionization. Extracted subshell and total L -shell ionization cross sections as well as Ce and Nd data of Braziewicz are compared with the ECPSSR theory of Brandt and Lapicki that accounts for the energy-loss (E), Coulomb-deflection (C), perturbed-stationary-state (PSS) and relativistic (R) effects. These measurements are also compared with the ECPSSR theory after its corrections—in a separated and united atom (USA) treatment, and for the intrashell (IS) transitions with the factors of Sarkadi and Mukoyama normalized to match L -shell cross section with the sum of L -subshell cross sections—as well as with the similarly improved semiclassical approximation of Trautmann. For Ce and Nd, the agreement of the extracted ionization cross sections with these theories is poor for L1 and good for L2 , L3 , and total L shell ionization. For the L2 subshell, this agreement is better for Ce and Nd than for Lu. The ECPSSR theory corrected for the USA and IS effects is surprisingly good for the L1 -subshell ionization of Lu, while at 4MeV a similarly corrected semiclassical approximation is in excellent agreement with L2 and L3 data but overestimates the L1 measurement by almost a factor of 2.

  7. Efficient and robust photo-ionization loading of beryllium ions

    NASA Astrophysics Data System (ADS)

    Wolf, Sebastian; Studer, Dominik; Wendt, Klaus; Schmidt-Kaler, Ferdinand

    2018-02-01

    We demonstrate the efficient generation of Be^+ ions with a 60 ns and 150 nJ laser pulse near 235 nm for two-step photo-ionization, proven by subsequent counting of the number of ions loaded into a linear Paul trap. The bandwidth and power of the laser pulse are chosen in such a way that a first, resonant step fully saturates the entire velocity distribution of beryllium atoms effusing from a thermal oven. The second excitation step is driven by the same light field causing efficient non-resonant ionization. Our ion-loading scheme has a similar efficiency as compared to former pathways using two-photon continuous wave laser excitation, but with an order of magnitude lower than average UV light power.

  8. Exposure caused by wireless technologies used for short-range indoor communication in homes and offices.

    PubMed

    Schmid, G; Lager, D; Preiner, P; Uberbacher, R; Cecil, S

    2007-01-01

    In order to estimate typical radio frequency exposures from indoor used wireless communication technologies applied in homes and offices, WLAN, Bluetooth and Digital Enhanced Cordless Telecommunications systems, as well as baby surveillance devices and wireless headphones for indoor usage, have been investigated by measurements and numerical computations. Based on optimised measurement methods, field distributions and resulting exposure were assessed on selected products and real exposure scenarios. Additionally, generic scenarios have been investigated on the basis of numerical computations. The obtained results demonstrate that under usual conditions the resulting spatially (over body dimensions) averaged and 6-min time-averaged exposure for persons in the radio frequency fields of the considered applications is below approximately 0.1% of the reference level for power density according to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines published in 1998. Spatial and temporal peak values can be considerably higher by 2-3 orders of magnitude. In case of some transmitting devices operated in close proximity to the body (e.g. WLAN transmitters), local exposure can reach the same order of magnitude as the basic restriction; however, none of the devices considered in this study exceeded the limits according to the ICNIRP guidelines.

  9. The Luminosity Function of OB Associations in the Galaxy

    NASA Astrophysics Data System (ADS)

    McKee, Christopher F.; Williams, Jonathan P.

    1997-02-01

    OB associations ionize the interstellar medium, producing both localized H II regions and diffuse ionized gas. The supernovae resulting from these associations pressurize and stir the interstellar medium. Using Smith, Biermann, & Mezger's compilation of radio H II regions in the Galaxy, and Kennicutt, Edgar, & Hodge's optical study of H II regions in nearby galaxies, we show that the luminosity distribution of giant OB associations in the Galaxy can be fit by a truncated power law of the form \\Nscra(>S)=\\Nscrau[(Su/S)-1], where S is the ionizing photon luminosity, \\Nscra(>S) is the number of associations with a luminosity of at least S, and Su is the upper limit to the distribution. The coefficient \\Nscrau is the number of the most luminous associations, with a luminosity between 0.5Su and Su. For the Galaxy, \\Nscrau=6.1 the fact that the number of the most luminous associations is significantly larger than unity indicates that there is a physical limit to the maximum size of H II regions in the Galaxy. To extend the luminosity distribution to small H II regions, we assume that the birthrate of associations, \\Nscr\\dota(>\\Nscr*), is also a truncated power law, \\Nscr\\dota(>\\Nscr*)~[(\\Nscr*u/\\Nscr*)-1], where \\Nscr* is the number of stars in the association. For large associations, the ionizing luminosity is proportional to the number of stars, S~\\Nscr* for smaller associations, we use both an analytic and a Monte Carlo approach to find the resulting luminosity distribution \\Nscra(>S). H II regions are generally centrally concentrated, with only the dense central regions being bright enough to appear in radio catalogs. Anantharamaiah postulated that radio H II regions have extended envelopes in order to account for diffuse radio recombination line emission in the Galaxy. Some of these envelopes are visible as the ionized ``worms'' discussed by Heiles and coworkers. We estimate that on the average the envelopes of radio H II regions absorb about twice as many ionizing photons as the radio H II regions themselves. Allowing for the ionizing radiation that is absorbed by dust (about 25% of the total), we find that the maximum ionizing photon luminosity of a Galactic OB association is Su ~= 4.9 × 1051 photons s-1, corresponding to an Hα luminosity of about 5 × 1039 ergs s-1. The total ionizing luminosity of this distribution of OB associations can account for the thermal radio emission and the N II far-infrared emission of the Galaxy. The number of massive stars in the associations is consistent with estimates of the rate of massive star supernovae in the Galaxy. Associations produce several generations of stars over their lifetimes, and the largest associations are predicted to produce about 7000 supernova progenitors. Fitting the surface density of associations to an exponential of the form d\\Nscra(\\Nscr*)/dA~ exp (-R/HR) with a scale length HR = 3.5 kpc gives a number of OB associations in the solar neighborhood that is consistent with observation. The H II envelopes contribute to pulsar dispersion measures and can account for the increased dispersion measure observed in the inner Galaxy.

  10. New method for estimating clustering of DNA lesions induced by physical/chemical mutagens using fluorescence anisotropy.

    PubMed

    Akamatsu, Ken; Shikazono, Naoya; Saito, Takeshi

    2017-11-01

    We have developed a new method for estimating the localization of DNA damage such as apurinic/apyrimidinic sites (APs) on DNA using fluorescence anisotropy. This method is aimed at characterizing clustered DNA damage produced by DNA-damaging agents such as ionizing radiation and genotoxic chemicals. A fluorescent probe with an aminooxy group (AlexaFluor488) was used to label APs. We prepared a pUC19 plasmid with APs by heating under acidic conditions as a model for damaged DNA, and subsequently labeled the APs. We found that the observed fluorescence anisotropy (r obs ) decreases as averaged AP density (λ AP : number of APs per base pair) increases due to homo-FRET, and that the APs were randomly distributed. We applied this method to three DNA-damaging agents, 60 Co γ-rays, methyl methanesulfonate (MMS), and neocarzinostatin (NCS). We found that r obs -λ AP relationships differed significantly between MMS and NCS. At low AP density (λ AP  < 0.001), the APs induced by MMS seemed to not be closely distributed, whereas those induced by NCS were remarkably clustered. In contrast, the AP clustering induced by 60 Co γ-rays was similar to, but potentially more likely to occur than, random distribution. This simple method can be used to estimate mutagenicity of ionizing radiation and genotoxic chemicals. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. [An investigation of ionizing radiation dose in a manufacturing enterprise of ion-absorbing type rare earth ore].

    PubMed

    Zhang, W F; Tang, S H; Tan, Q; Liu, Y M

    2016-08-20

    Objective: To investigate radioactive source term dose monitoring and estimation results in a manufacturing enterprise of ion-absorbing type rare earth ore and the possible ionizing radiation dose received by its workers. Methods: Ionizing radiation monitoring data of the posts in the control area and supervised area of workplace were collected, and the annual average effective dose directly estimated or estimated using formulas was evaluated and analyzed. Results: In the control area and supervised area of the workplace for this rare earth ore, α surface contamination activity had a maximum value of 0.35 Bq/cm 2 and a minimum value of 0.01 Bq/cm 2 ; β radioactive surface contamination activity had a maximum value of 18.8 Bq/cm 2 and a minimum value of 0.22 Bq/cm 2 . In 14 monitoring points in the workplace, the maximum value of the annual average effective dose of occupational exposure was 1.641 mSv/a, which did not exceed the authorized limit for workers (5 mSv/a) , but exceeded the authorized limit for general personnel (0.25 mSv/a) . The radionuclide specific activity of ionic mixed rare earth oxides was determined to be 0.9. Conclusion: The annual average effective dose of occupational exposure in this enterprise does not exceed the authorized limit for workers, but it exceeds the authorized limit for general personnel. We should pay attention to the focus of the radiation process, especially for public works radiation.

  12. Drifting potential humps in ionization zones: The “propeller blades” of high power impulse magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anders, André; Ni, Pavel; Panjan, Matjaž

    2013-09-30

    Ion energy distribution functions measured for high power impulse magnetron sputtering show features, such as a broad peak at several 10 eV with an extended tail, as well as asymmetry with respect to E×B, where E and B are the local electric and magnetic field vectors, respectively. Here it is proposed that those features are due to the formation of a potential hump of several 10 V in each of the traveling ionization zones. Potential hump formation is associated with a negative-positive-negative space charge that naturally forms in ionization zones driven by energetic drifting electrons.

  13. Impact of ionization equilibrium on electrokinetic flow of weak electrolytes in nanochannels

    NASA Astrophysics Data System (ADS)

    Ji, Ziwei; Huang, Zhuo; Chen, Bowei; He, Yuhui; Tsutsui, Makusu; Miao, Xiangshui

    2018-07-01

    Weak electrolyte transport in nanochannels or nanopores has been actively explored in recent experiments. In this paper, we establish a new electrokinetic model where the ionization balance effect of weak electrolytes is outlined, and performed numerical calculations for H3PO4 concentration-biased nanochannel systems. By considering the roles of local chemical equilibrium in phosphorous acid ionization, the simulation results show quantitative agreement with experimental observations. Based on the model, we predict that enhanced energy harvesting capacity could be accomplished by utilizing weak electrolytes compared to the conventional strong electrolyte approaches in a concentration gradient-based power-generating system.

  14. Glycomics expression analysis of sulfated glycosaminoglycans of human colorectal cancer tissues and non-neoplastic mucosa by electrospray ionization mass spectrometry.

    PubMed

    Marolla, Ana Paula Cleto; Waisberg, Jaques; Saba, Gabriela Tognini; Waisberg, Daniel Reis; Margeotto, Fernando Beani; Pinhal, Maria Aparecida da Silva

    2015-01-01

    To determine the presence of glycosaminoglycans in the extracellular matrix of connective tissue from neoplastic and non-neoplastic colorectal tissues, since it has a central role in tumor development and progression. Tissue samples from neoplastic and non-neoplastic colorectal tissues were obtained from 64 operated patients who had colorectal carcinoma with no distant metastases. Expressions of heparan sulphate, chondroitin sulphate, dermatan sulphate and their fragments were analyzed by electrospray ionization mass spectrometry, with the technique for extraction and quantification of glycosaminoglycans after proteolysis and electrophoresis. The statistical analysis included mean, standard deviation, and Student'st test. The glycosaminoglycans extracted from colorectal tissue showed three electrophoretic bands in agarose gel. Electrospray ionization mass spectrometry showed characteristic disaccharide fragments from glycosaminoglycans, indicating their structural characterization in the tissues analyzed. Some peaks in the electrospray ionization mass spectrometry were not characterized as fragments of sugars, indicating the presence of fragments of the protein structure of proteoglycans generated during the glycosaminoglycan purification. The average amount of chondroitin and dermatan increased in the neoplastic tissue compared to normal tissue (p=0.01). On the other hand, the average amount of heparan decreased in the neoplastic tissue compared to normal tissue (p= 0.03). The method allowed the determination of the glycosaminoglycans structural profile in colorectal tissue from neoplastic and non-neoplastic colorectal tissue. Neoplastic tissues showed greater amounts of chondroitin sulphate and dermatan sulphate compared to non-neoplastic tissues, while heparan sulphate was decreased in neoplastic tissues.

  15. Matrix-assisted ultraviolet laser desorption/ionization time-of-flight mass spectrometry of beta-(1 --> 3), beta-(1 --> 4)-xylans from Nothogenia fastigiata using nor-harmane as matrix.

    PubMed

    Fukuyama, Yuko; Kolender, Adriana A; Nishioka, Masae; Nonami, Hiroshi; Matulewicz, María C; Erra-Balsells, Rosa; Cerezo, Alberto S

    2005-01-01

    Three xylan fractions isolated from the red seaweed Nothogenia fastigiata (Nemaliales) were analyzed by ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (UV-MALDI-TOFMS). UV-MALDI-TOFMS was carried out in the linear and reflectron modes, and as routine in the positive and negative ion modes. Of the several matrices tested, nor-harmane was the only effective one giving good spectra in the positive ion mode. The number-average molar masses of two of the fractions, calculated from the distribution profiles, were lower than those determined previously by (1)H NMR analysis, suggesting a decrease in the ionization efficiency with increasing molecular weight; weight-average molar mass and polydispersity index were also determined. As the xylans retained small but significant quantities of calcium salts, the influence of added Ca(2+) as CaCl(2) on UV-MALDI-MS was investigated. The simultaneous addition of sodium chloride and calcium chloride was also analyzed. Addition of sodium chloride did not change the distribution profile of the native sample showing that the inhibitory effect is due to Ca(2+) and not to Cl(-). Addition of calcium chloride with 1:1 analyte/salt molar ratio gave spectra with less efficient desorption/ionization of oligomers; the signals of these oligomers were completely suppressed when the addition of the salt became massive (1:100 analyte/salt molar ratio). Copyright (c) 2005 John Wiley & Sons, Ltd.

  16. Approaching reionization from two directions: high-redshift Lyman-alpha emitters and local analogs

    NASA Astrophysics Data System (ADS)

    Bagley, Micaela

    2018-01-01

    The dark ages that followed the recombination of the universe ended with the appearance of metal-free stars and the subsequent formation of numerous low-mass, metal-poor galaxies. The collective ionizing background from these newly-forming galaxies is thought to be responsible for the reionization of the diffuse hydrogen in the intergalactic medium between redshifts 10 and 6.5. The progression of the reionization history depends on the nature of these first sources -- their number densities, luminosities, clustering, and production rates of ionizing photons -- which is currently the subject of considerable observational and theoretical efforts.I will present results of a two-pronged approach to studying the Epoch of Reionization: a systematic search for Lyman-alpha emitting galaxies at redshifts greater than 6, and an analysis of high S/N spectra of a sample of local galaxies that are potential analogs to those responsible for the reionization. Selected for their large [OIII]/[OII] ratios and high H-alpha equivalent widths, the local galaxies have very low masses and are consistent with photoionization by stars with effective temperatures of 10^5 K. Both the emission lines and continua of the spectra are spatially extended, allowing for an analysis of galaxy properties such as gas temperature, elemental abundance, and ionizing power at different radii.

  17. Hyperthermia in the treatment of cancer: A review of the radiobiological basis

    NASA Technical Reports Server (NTRS)

    Baker, D. G.

    1978-01-01

    Temperatures in the range 41.5 C to 43.5 C tend to be more damaging to malignant than nonmalignant cells. Where local hyperthermia (41.5 C to 43.5 C) is combined with ionizing radiation, a significant therapeutic ratio may be realized. Total body hyperthermia, alone or combined with other therapeutic modalities, can provide palliation for some systemic malignancies but may not be as effective as local hyperthermia for treating local disease. The influence of hyperthermia on immune mechanisms and the risk of metastatic spread of potential tumor growth stimulation need further investigation. Among other questions needing elucidation before hyperthermia can be considered a standard treatment modality are the time-dose (for heating) relationships to produce an optimal therapeutic ratio and whether the late sequela of combined heat and ionizing radiation may result in an unacceptable risk of patient morbidity.

  18. Interconfigurational energies in transition-metal atoms using gradient-corrected density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutzler, F.W.; Painter, G.S.

    1991-03-15

    The rapid variation of charge and spin densities in atoms and molecules provides a severe test for local-density-functional theory and for the use of gradient corrections. In the study reported in this paper, we use the Langreth, Mehl, and Hu (LMH) functional and the generalized gradient approximation (GGA) of Perdew and Yue to calculate {ital s}-{ital d} transition energies, 4{ital s} ionization energies, and 3{ital d} ionization energies for the 3{ital d} transition-metal atoms. These calculations are compared with results from the local-density functional of Vosko, Wilk, and Nusair. By comparison with experimental energies, we find that the gradient functionalsmore » are only marginally more successful than the local-density approximation in calculating energy differences between states in transition-metal atoms. The GGA approximation is somewhat better than the LMH functional for most of the atoms studied, although there are several exceptions.« less

  19. The collapse of the local, Spitzer-Haerm formulation and a global-local generalization for heat flow in an inhomogeneous, fully ionized plasma

    NASA Technical Reports Server (NTRS)

    Scudder, J. D.; Olbert, S.

    1983-01-01

    The breakdown of the classical (CBES) field aligned transport relations for electrons in an inhomogeneous, fully ionized plasma as a mathematical issue of radius of convergence is addressed, the finite Knudsen number conditions when CBES results are accurate is presented and a global-local (GL) way to describe the results of Coulomb physics moderated conduction that is more nearly appropriate for astrophysical plasmas are defined. This paper shows the relationship to and points of departure of the present work from the CBES approach. The CBES heat law in current use is shown to be an especially restrictive special case of the new, more general GL result. A preliminary evaluation of the dimensionless heat function, using analytic formulas, shows that the dimensionless heat function profiles versus density of the type necessary for a conduction supported high speed solar wind appear possible.

  20. Electron-impact total ionization cross sections of DNA sugar-phosphate backbone and an additivity principle

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.

    2005-01-01

    The improved binary-encounter dipole (iBED) model [W.M. Huo, Phys. Rev. A64, 042719-1 (2001)l is used to study the total ionization cross sections of the DNA sugar-phosphate backbone by electron impact. Calculations using neutral fragments found that the total ionization cross sections of C3' - and C5', -deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3' - and C5" -deoxyribose-phospate cross sections, differing by less than 10%. The result implies that certain properties of the-DNA, like the total singly ionization cross section, are localized properties and a building-up or additivity principle may apply. This allows us to obtain accurate properties of larger molecular systems built up from the results of smaller subsystem fragments. Calculations are underway using a negatively charged sugar-phosphate backbone with a metal counter-ion.

  1. Particle in cell simulation on plasma grating contrast enhancement induced by infrared laser pulse

    NASA Astrophysics Data System (ADS)

    Li, M.; Yuan, T.; Xu, Y. X.; Wang, J. X.; Luo, S. N.

    2018-05-01

    The dynamics of plasma grating contrast enhancement (PGCE) irradiated by an infrared laser pulse is investigated with one dimensional particle-in-cell simulation where field ionization and impact ionization are simultaneously considered for the first time. The numeric results show that the impact ionization dominates the PGCE process. Upon the interaction with the laser pulse, abundant free electrons are efficiently accelerated and subsequently triggered massive impact ionizations in the density ridges of the plasma grating for the higher local plasma energy density, which efficiently enhances the grating contrast. Besides the dynamic analysis of PGCE, we explore the parameter space of the incident infrared laser pulse to optimize the PGCE effect, which can provide useful guidance to experiments related to laser-plasma-grating interactions and may find applications in prolonging the duration of the plasma grating.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inhester, Ludger; Oostenrijk, Bart; Patanen, Minna

    In many cases fragmentation of molecules upon inner-shell ionization is very unspecific with respect to the initially localized ionization site. Often this finding is interpreted in terms of an equilibration of internal energy into vibrational degrees of freedom after Auger decay. In this paper, we investigate the X-ray photofragmentation of ethyl trifluoroacetate upon core electron ionization at environmentally distinct carbon sites using photoelectron–photoion–photoion coincidence measurements and ab initio electronic structure calculations. For all four carbon ionization sites, the Auger decay weakens the same bonds and transfers the two charges to opposite ends of the molecule, which leads to a rapidmore » dissociation into three fragments, followed by further fragmentation steps. Finally, the lack of site specificity is attributed to the character of the dicationic electronic states after Auger decay instead of a fast equilibration of internal energy.« less

  3. A complete computational and spectroscopic study of 2-bromo-1, 4-dichlorobenzene - A frequently used benzene derivative

    NASA Astrophysics Data System (ADS)

    Vennila, P.; Govindaraju, M.; Venkatesh, G.; Kamal, C.; Mary, Y. Sheena; Panicker, C. Yohannan; Kaya, S.; Armaković, Stevan; Armaković, Sanja J.

    2018-01-01

    The coupled experimental and theoretical vibrational investigation of 2-bromo-1, 4-dichlorobenzene (BDB) molecule has been carried out and they have been duly compared with standard values in order to produce the reliability of the results. Results of DFT analysis carried out using B3LYP functional with 6-31 + G/6-311++G (d,p) basis set revealed that BDB has higher electronic density. The molecular geometry, 13C &1H Nuclear Magnetic Resonance (NMR), Natural Bond Orbital (NBO) and Natural Atomic Charge analyses have been obtained by DFT calculations. Nonlinear optical (NLO) properties, quantum chemical descriptors and first order hyperpolarizability have been calculated. In addition, Local reactivity properties reflected through average local ionization energies (ALIE), Fukui functions and bond dissociation energies have also been investigated. Besides investigation of docking properties, molecular dynamics simulations were also taken in account with a view to identify atoms that have relatively important interactions with water molecules. The title compound forms a stable complex with isopentenylpyrophosphate transferase with a binding affinity value as -4.6 kCal./Mol. and shows inhibitory activity against isopentenylpyrophosphate transferase.

  4. Synthesis, theoretical studies and molecular docking of a novel chlorinated tetracyclic: (Z/E)-3-(1,8-dichloro-9,10-dihydro-9,10-ethanoanthracen-11-yl)acrylaldehyde

    NASA Astrophysics Data System (ADS)

    Sultan, Mujeeb A.; Almansour, Abdulrahman I.; Pillai, Renjith Raveendran; Kumar, Raju Suresh; Arumugam, Natarajan; Armaković, Stevan; Armaković, Sanja J.; Soliman, Saied M.

    2017-12-01

    (Z/E)-3-(1,8-Dichloro-9,10-dihydro-9,10-ethanoanthracen-11-yl)acrylaldehyde 2 has been investigated experimentally and theoretically. The Wittig reaction of 1,8-dichloro-9,10-dihydro-9,10-ethanoanthracene-11-carbaldehyde 1 and (triphenylphosphoranylidene) acetaldehyde in toluene under reflux conditions resulted in compound 2. Spectroscopic characterization of compound 2 was performed by the Fourier-transform infrared spectroscopy, nuclear magnetic resonance, and high-resolution mass spectroscopy techniques. Density functional theory (DFT) calculations were conducted to study various global and local reactive properties. The spectra were also obtained by DFT calculations and corresponding comparisons were performed to validate the level of theory. Using DFT calculations, reactivity has been studied based on frontier molecular orbitals, charge distribution, average local ionization energies, Fukui functions, and bond dissociation energies for hydrogen abstraction. Molecular dynamics simulations have been used to investigate the influence of water as a solvent for compound 2. Finally, compound 2 was docked into the central and allosteric binding sites of the serotonin transporter enzyme and was found to be a good candidate as an antidepressant-like compound.

  5. Synthesis, XRD crystal structure, spectroscopic characterization, local reactive properties using DFT and molecular dynamics simulations and molecular docking study of (E)-1-(4-bromophenyl)-3-(4-(trifluoromethoxy)phenyl)prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Arshad, Suhana; Raveendran Pillai, Renjith; Zainuri, Dian Alwani; Khalib, Nuridayanti Che; Razak, Ibrahim Abdul; Armaković, Stevan; Armaković, Sanja J.; Renjith, Rishikesh; Panicker, C. Yohannan; Van Alsenoy, C.

    2017-06-01

    In the present study, the title compound named as (E)-1-(4-bromophenyl)-3-(4-(trifluoromethoxy)phenyl)prop-2-en-1-one was synthesized and structurally characterized by single-crystal X-ray diffraction. The FT-IR spectrum was recorded and interpreted in details with the aid of Density Functional Theory (DFT) calculations and Potential Energy Distribution (PED) analysis. Average local ionization energies (ALIE) and Fukui functions have been used as quantum-molecular descriptors to locate the molecule sites that could be of importance from the aspect of reactivity. Degradation properties have been assessed by calculations of bond dissociation energies (BDE) for hydrogen abstraction and the rest of the single acyclic bonds, while molecular dynamics (MD) simulations were used in order to calculate radial distribution functions and determine the atoms with significant interactions with water. In order to understand how the title molecule inhibits and hence increases the catalytic efficiency of MOA-B enzyme, molecular docking study was performed to fit the title compound into the binding site of MOA-B enzyme.

  6. Electronic structure of antibiotic erythromycin

    NASA Astrophysics Data System (ADS)

    Novak, Igor; Kovač, Branka

    2015-03-01

    The electronic structure of erythromycin A (ERYMA) molecule has been studied by UV photoelectron spectroscopy and assigned (in the low ionization energy region only) by empirical arguments. The two orbitals with highest energy (lowest ionization energy) are localized on the nitrogen of the desosamine sugar functional group and on the ester group of macrolide (lactone) ring. We discuss how these orbital energies can help to rationalize the known mode of binding of ERYMA to their biological receptors.

  7. Triacylglycerols profiling in plant oils important in food industry, dietetics and cosmetics using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Lísa, Miroslav; Holcapek, Michal

    2008-07-11

    Optimized non-aqueous reversed-phase high-performance liquid chromatography method using acetonitrile-2-propanol gradient elution and the column coupling in the total length of 45 cm has been applied for the high resolution separation of plant oils important in food industry, dietetics and cosmetics. Positive-ion atmospheric pressure chemical ionization mass spectrometry is used for the unambiguous identification and also the reliable quantitation with the response factors approach. Based on the precise determination of individual triacyglycerol concentrations, the calculation of average parameters important in the nutrition is performed, i.e. average carbon number, average double bond number, relative concentrations of essential, saturated, monounsaturated and polyunsaturated fatty acids. Results are reported in the form of both chromatographic fingerprints and tables containing relative concentrations for all triacylglycerols and fatty acids in individual samples. In total, 264 triacylglycerols consisting of 28 fatty acids with the alkyl chain length from 6 to 26 carbon atoms and 0 to 4 double bonds have been identified in 26 industrial important plant oils.

  8. Energetic electrons in the midlatitude nighttime E region

    NASA Technical Reports Server (NTRS)

    Smith, L. G.; Geller, M. A.; Voss, H. D.

    1973-01-01

    Nike Apache 14.439 was launched from Wallops Island at 0003 EST on 1 November 1972, a very disturbed night (K sub P = 8). A Geiger counter in the payload detected electrons ( keV) with a maximum flux of 1086 + or -261/sq cm/sec/ster. The height-averaged ionization rate in the upper E region is calculated from the measured electron density profile and has a value of 35 1/cu/cm/sec. The ionization rate can be reconciled with the observed flux of electrons ( 70 2 keV) if the spectrum ( keV) is of the form J ( E) = J sub O exp(-E/E sub O) with E sub O equal to 8.3 keV. The ionization rate on this and other nights is found to be strongly dependent on geomagnetic activity. It is suggested that energetic electrons are the principal source of ionization at midlatitudes in the upper E region near midnight, even under rather quiet geomagnetic conditions.

  9. Stokes-attenuated tunneling ionization of molecules

    NASA Astrophysics Data System (ADS)

    Kornev, Aleksei S.; Zon, Boris A.

    2018-03-01

    We set forth the quantum theory of ionic vibrational-level population by means of tunneling ionization of a molecule. Specific calculations are carried out for the H2 molecule. The results are in qualitative agreement with the experimental data [X. Urbain et al., Phys. Rev. Lett. 92, 163004 (2004), 10.1103/PhysRevLett.92.163004]. Our account for the excited vibrational levels reveals an interplay of two tendencies which contribute to the ionization rate: (i) It decreases due to additional energy absorption needed to populate these states and (ii) it increases together with the Franck-Condon factors which are large for these states. We show that these two tendencies practically compensate each other. The average quantitative disagreement between the theory and experiment amounts to ˜30 %. The same disagreement takes place when using the frozen approximation for the description of the nuclei motion. We demonstrated that the light-dressing effect for H2 leads to the dependence of the ionization rate on the angle between the molecule axis and the polarization vector of the radiation.

  10. Gain properties of doped GaAs/AlGaAs multiple quantum well avalanche photodiode structures

    NASA Technical Reports Server (NTRS)

    Menkara, H. M.; Wagner, B. K.; Summers, C. J.

    1995-01-01

    A comprehensive characterization has been made of the static and dynamical response of conventional and multiple quantum well (MQW) avalanche photodiodes (APDs). Comparison of the gain characteristics at low voltages between the MQW and conventional APDs show a direct experimental confirmation of a structure-induced carrier multiplication due to interband impact ionization. Similar studies of the bias dependence of the excess noise characteristics show that the low-voltage gain is primarily due to electron ionization in the MQW-APDS, and to both electron and hole ionization in the conventional APDS. For the doped MQW APDS, the average gain per stage was calculated by comparing gain data with carrier profile measurements, and was found to vary from 1.03 at low bias to 1.09 near avalanche breakdown.

  11. Flight evidence of spacecraft surface contamination rate enhancement by spacecraft charging obtained with a quartz crystal microbalance

    NASA Technical Reports Server (NTRS)

    Clark, D. M.; Hall, D. F.

    1980-01-01

    The significance of the fraction of the mass outgassed by a negatively charged space vehicle which is ionized within the vehicle plasma sheath and electrostatically reattracted to the space vehicle was determined. The ML-12 retarding potential analyzer/temperature controlled quartz crystal microbalances (RPA/TQCMs) distinguishes between charged and neutral molecules and investigates contamination mass transport mechanism. Two long term, quick look flight data sets indicate that on the average a significant fraction of mass arriving at one RPA/TQCM is ionized. It is assumed that vehicle frame charging during these periods was approximately uniformly distributed in degree and frequency. It is shown that electrostatic reattraction of ionized molecules is an important contamination mechanism at and near geosynchronous altitudes.

  12. Cosmic Dawn (CoDa): the First Radiation-Hydrodynamics Simulation of Reionization and Galaxy Formation in the Local Universe

    NASA Astrophysics Data System (ADS)

    Ocvirk, Pierre; Gillet, Nicolas; Shapiro, Paul R.; Aubert, Dominique; Iliev, Ilian T.; Teyssier, Romain; Yepes, Gustavo; Choi, Jun-Hwan; Sullivan, David; Knebe, Alexander; Gottlöber, Stefan; D'Aloisio, Anson; Park, Hyunbae; Hoffman, Yehuda; Stranex, Timothy

    2016-12-01

    Cosmic reionization by starlight from early galaxies affected their evolution, thereby impacting reionization itself. Star formation suppression, for example, may explain the observed underabundance of Local Group dwarfs relative to N-body predictions for cold dark matter. Reionization modelling requires simulating volumes large enough [˜ (100 Mpc)3] to sample reionization `patchiness', while resolving millions of galaxy sources above ˜108 M⊙ combining gravitational and gas dynamics with radiative transfer. Modelling the Local Group requires initial cosmological density fluctuations pre-selected to form the well-known structures of the Local Universe today. Cosmic Dawn (`CoDa') is the first such fully coupled, radiation-hydrodynamics simulation of reionization of the Local Universe. Our new hybrid CPU-GPU code, RAMSES-CUDATON, performs hundreds of radiative transfer and ionization rate-solver timesteps on the GPUs for each hydro-gravity timestep on the CPUs. CoDa simulated (91Mpc)3 with 40963 particles and cells, to redshift 4.23, on ORNL supercomputer Titan, utilizing 8192 cores and 8192 GPUs. Global reionization ended slightly later than observed. However, a simple temporal rescaling which brings the evolution of ionized fraction into agreement with observations also reconciles ionizing flux density, cosmic star formation history, CMB electron scattering optical depth and galaxy UV luminosity function with their observed values. Photoionization heating suppressed the star formation of haloes below ˜2 × 109 M⊙, decreasing the abundance of faint galaxies around MAB1600 = [-10, -12]. For most of reionization, star formation was dominated by haloes between 1010-1011 M⊙ , so low-mass halo suppression was not reflected by a distinct feature in the global star formation history. Intergalactic filaments display sheathed structures, with hot envelopes surrounding cooler cores, but do not self-shield, unlike regions denser than 100 <ρ>.

  13. Metallicity gradients in local field star-forming galaxies: insights on inflows, outflows, and the coevolution of gas, stars and metals

    NASA Astrophysics Data System (ADS)

    Ho, I.-Ting; Kudritzki, Rolf-Peter; Kewley, Lisa J.; Zahid, H. Jabran; Dopita, Michael A.; Bresolin, Fabio; Rupke, David S. N.

    2015-04-01

    We present metallicity gradients in 49 local field star-forming galaxies. We derive gas-phase oxygen abundances using two widely adopted metallicity calibrations based on the [O III]/Hβ, [N II]/Hα, and [N II]/[O II] line ratios. The two derived metallicity gradients are usually in good agreement within ± 0.14 dex R_{25}^{-1} (R25 is the B-band iso-photoal radius), but the metallicity gradients can differ significantly when the ionization parameters change systematically with radius. We investigate the metallicity gradients as a function of stellar mass (8 < log (M*/M⊙) < 11) and absolute B-band luminosity (-16 > MB > -22). When the metallicity gradients are expressed in dex kpc-1, we show that galaxies with lower mass and luminosity, on average, have steeper metallicity gradients. When the metallicity gradients are expressed in dex R_{25}^{-1}, we find no correlation between the metallicity gradients, and stellar mass and luminosity. We provide a local benchmark metallicity gradient of field star-forming galaxies useful for comparison with studies at high redshifts. We investigate the origin of the local benchmark gradient using simple chemical evolution models and observed gas and stellar surface density profiles in nearby field spiral galaxies. Our models suggest that the local benchmark gradient is a direct result of the coevolution of gas and stellar disc under virtually closed-box chemical evolution when the stellar-to-gas mass ratio becomes high (≫0.3). These models imply low current mass accretion rates ( ≲ 0.3 × SFR), and low-mass outflow rates ( ≲ 3 × SFR) in local field star-forming galaxies.

  14. Measurements on the development of cascades in a tungsten-scintillator ionization spectrometer

    NASA Technical Reports Server (NTRS)

    Cheshire, D. L.; Huggett, R. W.; Johnson, D. P.; Jones, W. V.; Rountree, S. P.; Schmidt, W. K. H.; Kurz, R. J.; Bowen, T.; Delise, D. A.; Krider, E. P.

    1975-01-01

    The response of a tungsten-scintillator ionization spectrometer to accelerated particle beams has been investigated. Results obtained from exposure of the approx. 1000 g/sq cm apparatus to 5, 10, and 15 GeV/c electrons and pions as well as to 2.1 GeV/nucleon C-12 and O-16 ions are presented. These results include cascade-development curves, fractions of the primary energy measured by the spectrometer, and resolutions of the apparatus for measuring the primary energies. For 15 GeV/c electrons, an average of about 82% of the incident energy is measured by the apparatus with resolution (normal standard deviation) of about 6%. For 15 GeV/c pions, an average of about 65% of the incident energy is measured with resolution of about 18%. The energy resolution improves with increasing energy and with increasing depth of the spectrometer.

  15. Photodissociation of aligned CH3I and C6H3F2I molecules probed with time-resolved Coulomb explosion imaging by site-selective extreme ultraviolet ionization

    PubMed Central

    Amini, Kasra; Savelyev, Evgeny; Brauße, Felix; Berrah, Nora; Bomme, Cédric; Brouard, Mark; Burt, Michael; Christensen, Lauge; Düsterer, Stefan; Erk, Benjamin; Höppner, Hauke; Kierspel, Thomas; Krecinic, Faruk; Lauer, Alexandra; Lee, Jason W. L.; Müller, Maria; Müller, Erland; Mullins, Terence; Redlin, Harald; Schirmel, Nora; Thøgersen, Jan; Techert, Simone; Toleikis, Sven; Treusch, Rolf; Trippel, Sebastian; Ulmer, Anatoli; Vallance, Claire; Wiese, Joss; Johnsson, Per; Küpper, Jochen; Rudenko, Artem; Rouzée, Arnaud; Stapelfeldt, Henrik; Rolles, Daniel; Boll, Rebecca

    2018-01-01

    We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon–iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules. PMID:29430482

  16. Photodissociation of aligned CH3I and C6H3F2I molecules probed with time-resolved Coulomb explosion imaging by site-selective extreme ultraviolet ionization.

    PubMed

    Amini, Kasra; Savelyev, Evgeny; Brauße, Felix; Berrah, Nora; Bomme, Cédric; Brouard, Mark; Burt, Michael; Christensen, Lauge; Düsterer, Stefan; Erk, Benjamin; Höppner, Hauke; Kierspel, Thomas; Krecinic, Faruk; Lauer, Alexandra; Lee, Jason W L; Müller, Maria; Müller, Erland; Mullins, Terence; Redlin, Harald; Schirmel, Nora; Thøgersen, Jan; Techert, Simone; Toleikis, Sven; Treusch, Rolf; Trippel, Sebastian; Ulmer, Anatoli; Vallance, Claire; Wiese, Joss; Johnsson, Per; Küpper, Jochen; Rudenko, Artem; Rouzée, Arnaud; Stapelfeldt, Henrik; Rolles, Daniel; Boll, Rebecca

    2018-01-01

    We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon-iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules.

  17. New upper limits on the local metagalactic ionizing radiation density

    NASA Technical Reports Server (NTRS)

    Vogel, Stuart N.; Weymann, Ray; Rauch, Michael; Hamilton, Tom

    1995-01-01

    We have obtained H-alpha observations with the Maryland-Caltech Fabry-Perot Spectrometer attached to the Cassegrain focus of the 1.5 m telescope at Palomer Observatory in order to set limits on the number of ionizing photons from the local metagalactic radiation field. We have observed the SW component of the Haynes-Giovanelli cloud H I 1225+01, an intergalactic cloud which should be optimum for measuring the metagalactic flux because it is nearly opaque to ionizing photons, it does not appear to be significantly shielded from the metagalactic radiation field, and the limits on embedded or nearby ionizing sources are unusually low. For the area of the cloud with an H I column density greater than 10(exp 19)/sq cm we set a 2 sigma limit of 1.1 x 10(exp -19) ergs/sq cm/s/sq arcsec (20 mR) for the surface brightness of diffuse H-alpha. This implies a 2 sigma upper limit on the incident one-sided ionizing flux of Phi(sub ex) is less than 3 x 10(exp 4)/sq cm/s. For a radiation field of the form J(sub nu) is approximately nu(exp -1.4), this yields a firm 2 sigma upper limit on the local metagalactic photoionization rate of Gamma is less than 2 x 10(exp -13)/s, and an upper limit for the radiation field J(sub nu) at the Lyman limit of J(sub nu0) is less than 8 x 10(exp -23) ergs/sq cm/Hz/sr. We discuss previous efforts to constrain the metagalactic ionizing flux using H-alpha surface brightness observations and also other methods, and conclude that our result places the firmest upper limit on this flux. We also observed the 7 min diameter region centered on 3C 273 in which H-alpha emission at a velocity of approximately 1700 km/s was initially reported by Williams and Schommer. In agreement with T. B. Williams (private communication) we find the initial detection was spurious. We obtain a 2 sigma upper limit of 1.8 x 10(exp -19) ergs/sq cm/s/sq arcsec (32 mR) for the mean surface brightness of diffuse H-alpha, about a factor of 6 below the published value.

  18. Nanosecond laser-cluster interactions at 109-1012 W/cm 2

    NASA Astrophysics Data System (ADS)

    Singh, Rohtash; Tripathi, V. K.; Vatsa, R. K.; Das, D.

    2017-08-01

    An analytical model and a numerical code are developed to study the evolution of multiple charge states of ions by irradiating clusters of atoms of a high atomic number (e.g., Xe) by 1.06 μm and 0.53 μm nanosecond laser pulses of an intensity in the range of 109-1012 W/cm 2 . The laser turns clusters into plasma nanoballs. Initially, the momentum randomizing collisions of electrons are with neutrals, but soon these are taken over by collisions with ions. The ionization of an ion to the next higher state of ionization is taken to be caused by an energetic free electron impact, and the rates of impact ionization are suitably modelled by having an inverse exponential dependence of ionizing collision frequency on the ratio of ionization potential to electron temperature. Cluster expansion led adiabatic cooling is a major limiting mechanism on electron temperature. In the intensity range considered, ionization states up to 7 are expected with nanosecond pulses. Another possible mechanism, filamentation of the laser, has also been considered to account for the observation of higher charged states. However, filamentation is seen to be insufficient to cause substantial local enhancement in the intensity to affect electron heating rates.

  19. Understanding reactivity of two newly synthetized imidazole derivatives by spectroscopic characterization and computational study

    NASA Astrophysics Data System (ADS)

    Hossain, Mossaraf; Thomas, Renjith; Mary, Y. Sheena; Resmi, K. S.; Armaković, Stevan; Armaković, Sanja J.; Nanda, Ashis Kumar; Vijayakumar, G.; Van Alsenoy, C.

    2018-04-01

    Two newly synthetized imidazole derivatives (1-(4-methoxyphenyl)-4,5-dimethyl-1H-imidazole-2-yl acetate (MPDIA) and 1-(4-bromophenyl)-4,5-dimethyl-1H-imidazole-2-yl acetate (BPDIA)) have been prepared by solvent-free synthesis pathway and their specific spectroscopic and reactive properties have been discussed based on combined experimental and computational approaches. Aside of synthesis, experimental part of this work included measurements of IR, FT-Raman and NMR spectra. All of the aforementioned spectra were also obtained computationally, within the framework of density functional theory (DFT) approach. Additionally, DFT calculations have been used in order to investigate local reactivity properties based on molecular orbital theory, molecular electrostatic potential (MEP), average local ionization energy (ALIE), Fukui functions and bond dissociation energy (BDE). Molecular dynamics (MD) simulations have been used in order to obtain radial distribution functions (RDF), which were used for identification of the atoms with pronounced interactions with water molecules. MEP showed negative regions are mainly localized over N28, O29, O35 atoms, it is represent with red colour in rainbow color scheme for MPDIA and BPDIA (which are most reactive sites for electrophilic attack). The first order hyperpolarizabilities of MPDIA and BPDIA are 20.15 and 6.10 times that of the standard NLO material urea. Potential interaction with antihypertensive protein hydrolase.

  20. TU-G-BRD-04: A Round Robin Dosimetry Intercomparison of Gamma Stereotactic Radiosurgery Calibration Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drzymala, R; Alvarez, P; Bednarz, G

    2015-06-15

    Purpose: The purpose of this multi-institutional study was to compare two new gamma stereotactic radiosurgery (GSRS) dosimetry protocols to existing calibration methods. The ultimate goal was to guide AAPM Task Group 178 in recommending a standard GSRS dosimetry protocol. Methods: Nine centers (ten GSRS units) participated in the study. Each institution made eight sets of dose rate measurements: six with two different ionization chambers in three different 160mm-diameter spherical phantoms (ABS plastic, Solid Water and liquid water), and two using the same ionization chambers with a custom in-air positioning jig. Absolute dose rates were calculated using a newly proposed formalismmore » by the IAEA working group for small and non-standard radiation fields and with a new air-kerma based protocol. The new IAEA protocol requires an in-water ionization chamber calibration and uses previously reported Monte-Carlo generated factors to account for the material composition of the phantom, the type of ionization chamber, and the unique GSRS beam configuration. Results obtained with the new dose calibration protocols were compared to dose rates determined by the AAPM TG-21 and TG-51 protocols, with TG-21 considered as the standard. Results: Averaged over all institutions, ionization chambers and phantoms, the mean dose rate determined with the new IAEA protocol relative to that determined with TG-21 in the ABS phantom was 1.000 with a standard deviation of 0.008. For TG-51, the average ratio was 0.991 with a standard deviation of 0.013, and for the new in-air formalism it was 1.008 with a standard deviation of 0.012. Conclusion: Average results with both of the new protocols agreed with TG-21 to within one standard deviation. TG-51, which does not take into account the unique GSRS beam configuration or phantom material, was not expected to perform as well as the new protocols. The new IAEA protocol showed remarkably good agreement with TG-21. Conflict of Interests: Paula Petti, Josef Novotny, Gennady Neyman and Steve Goetsch are consultants for Elekta Instrument A/B; Elekta Instrument AB, PTW Freiburg GmbH, Standard Imaging, Inc., and The Phantom Laboratory, Inc. loaned equipment for use in these experiments; The University of Wisconsin Accredited Dosimetry Calibration Laboratory provided calibration services.« less

  1. Technical Note: Impact of the geometry dependence of the ion chamber detector response function on a convolution-based method to address the volume averaging effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barraclough, Brendan; Lebron, Sharon; Li, Jonathan G.

    2016-05-15

    Purpose: To investigate the geometry dependence of the detector response function (DRF) of three commonly used scanning ionization chambers and its impact on a convolution-based method to address the volume averaging effect (VAE). Methods: A convolution-based approach has been proposed recently to address the ionization chamber VAE. It simulates the VAE in the treatment planning system (TPS) by iteratively convolving the calculated beam profiles with the DRF while optimizing the beam model. Since the convolved and the measured profiles are subject to the same VAE, the calculated profiles match the implicit “real” ones when the optimization converges. Three DRFs (Gaussian,more » Lorentzian, and parabolic function) were used for three ionization chambers (CC04, CC13, and SNC125c) in this study. Geometry dependent/independent DRFs were obtained by minimizing the difference between the ionization chamber-measured profiles and the diode-measured profiles convolved with the DRFs. These DRFs were used to obtain eighteen beam models for a commercial TPS. Accuracy of the beam models were evaluated by assessing the 20%–80% penumbra width difference (PWD) between the computed and diode-measured beam profiles. Results: The convolution-based approach was found to be effective for all three ionization chambers with significant improvement for all beam models. Up to 17% geometry dependence of the three DRFs was observed for the studied ionization chambers. With geometry dependent DRFs, the PWD was within 0.80 mm for the parabolic function and CC04 combination and within 0.50 mm for other combinations; with geometry independent DRFs, the PWD was within 1.00 mm for all cases. When using the Gaussian function as the DRF, accounting for geometry dependence led to marginal improvement (PWD < 0.20 mm) for CC04; the improvement ranged from 0.38 to 0.65 mm for CC13; for SNC125c, the improvement was slightly above 0.50 mm. Conclusions: Although all three DRFs were found adequate to represent the response of the studied ionization chambers, the Gaussian function was favored due to its superior overall performance. The geometry dependence of the DRFs can be significant for clinical applications involving small fields such as stereotactic radiotherapy.« less

  2. Technical Note: Impact of the geometry dependence of the ion chamber detector response function on a convolution-based method to address the volume averaging effect.

    PubMed

    Barraclough, Brendan; Li, Jonathan G; Lebron, Sharon; Fan, Qiyong; Liu, Chihray; Yan, Guanghua

    2016-05-01

    To investigate the geometry dependence of the detector response function (DRF) of three commonly used scanning ionization chambers and its impact on a convolution-based method to address the volume averaging effect (VAE). A convolution-based approach has been proposed recently to address the ionization chamber VAE. It simulates the VAE in the treatment planning system (TPS) by iteratively convolving the calculated beam profiles with the DRF while optimizing the beam model. Since the convolved and the measured profiles are subject to the same VAE, the calculated profiles match the implicit "real" ones when the optimization converges. Three DRFs (Gaussian, Lorentzian, and parabolic function) were used for three ionization chambers (CC04, CC13, and SNC125c) in this study. Geometry dependent/independent DRFs were obtained by minimizing the difference between the ionization chamber-measured profiles and the diode-measured profiles convolved with the DRFs. These DRFs were used to obtain eighteen beam models for a commercial TPS. Accuracy of the beam models were evaluated by assessing the 20%-80% penumbra width difference (PWD) between the computed and diode-measured beam profiles. The convolution-based approach was found to be effective for all three ionization chambers with significant improvement for all beam models. Up to 17% geometry dependence of the three DRFs was observed for the studied ionization chambers. With geometry dependent DRFs, the PWD was within 0.80 mm for the parabolic function and CC04 combination and within 0.50 mm for other combinations; with geometry independent DRFs, the PWD was within 1.00 mm for all cases. When using the Gaussian function as the DRF, accounting for geometry dependence led to marginal improvement (PWD < 0.20 mm) for CC04; the improvement ranged from 0.38 to 0.65 mm for CC13; for SNC125c, the improvement was slightly above 0.50 mm. Although all three DRFs were found adequate to represent the response of the studied ionization chambers, the Gaussian function was favored due to its superior overall performance. The geometry dependence of the DRFs can be significant for clinical applications involving small fields such as stereotactic radiotherapy.

  3. Determination of short chain carboxylic acids in vegetable oils and fats using ion exclusion chromatography electrospray ionization mass spectrometry.

    PubMed

    Viidanoja, Jyrki

    2015-02-27

    A new method for quantification of short chain C1-C6 carboxylic acids in vegetable oils and fats by employing Liquid Chromatography Mass Spectrometry (LC-MS) has been developed. The method requires minor sample preparation and applies non-conventional Electrospray Ionization (ESI) liquid phase chemistry. Samples are first dissolved in chloroform and then extracted using water that has been spiked with stable isotope labeled internal standards that are used for signal normalization and absolute quantification of selected acids. The analytes are separated using Ion Exclusion Chromatography (IEC) and detected with Electrospray Ionization Mass Spectrometry (ESI-MS) as deprotonated molecules. Prior to ionization the eluent that contains hydrochloric acid is modified post-column to ensure good ionization efficiency of the analytes. The averaged within run precision and between run precision were generally lower than 8%. The accuracy was between 85 and 115% for most of the analytes. The Lower Limit of Quantification (LLOQ) ranged from 0.006 to 7mg/kg. It is shown that this method offers good selectivity in cases where UV detection fails to produce reliable results. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. MEASUREMENT OF THE INTENSITY OF THE PROTON BEAM OF THE HARVARD UNIVERSITY SYNCHROCYCLOTRON FOR ENERGY-SPECTRAL MEASUREMENTS OF NUCLEAR SECONDARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santoro, R.T.; Peelle, R.W.

    1964-03-01

    Two thin helium-filled parallel-plate ionization chambers were designed for use in continuously monitoring the 160-Mev proton beam of the Harvard University Synchrocyclotron over an intensity range from 10/sup 5/ to 10/sup 10/ protons/ sec. The ionlzation chambers were calibrated by two independert methods. In four calibrations the charge collected in the ionization chambers was compared with that deposited in a Faraday cup which followed the ionization chambers in the proton beam. In a second method, a calibration was made by individually counting beam protons with a pnir of thin scintillation detectors. The ionization chamber response was found to be flatmore » within 2% for a five-decade range of beam intensity. Comparison of the Faraday-cup calibrations with that from proton counting shows agreement to within 5%, which is considered satisfactory. The experimental results were also in agreement, within estimated errors, with the ionization chamber response calculated using an accepted value of the average energy loss per ion pair for helium. A slow shift in the calibrations with time is ascribed to a gradual contamination of the helium of the chambers by air leakage. (auth)« less

  5. Ion formation mechanisms in UV-MALDI.

    PubMed

    Knochenmuss, Richard

    2006-09-01

    Matrix Assisted Laser Desorption/Ionization (MALDI) is a very widely used analytical method, but has been developed in a highly empirical manner. Deeper understanding of ionization mechanisms could help to design better methods and improve interpretation of mass spectra. This review summarizes current mechanistic thinking, with emphasis on the most common MALDI variant using ultraviolet laser excitation. A two-step framework is gaining acceptance as a useful model for many MALDI experiments. The steps are primary ionization during or shortly after the laser pulse, followed by secondary reactions in the expanding plume of desorbed material. Primary ionization in UV-MALDI remains somewhat controversial, the two main approaches are the cluster and pooling/photoionization models. Secondary events are less contentious, ion-molecule reaction thermodynamics and kinetics are often invoked, but details differ. To the extent that local thermal equilibrium is approached in the plume, the mass spectra may be straightforwardly interpreted in terms of charge transfer thermodynamics.

  6. Gas-phase study on uridine: Conformation and X-ray photofragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itälä, Eero, E-mail: ersita@utu.fi; Kooser, Kuno; Levola, Helena

    2015-05-21

    Fragmentation of RNA nucleoside uridine, induced by carbon 1s core ionization, has been studied. The measurements by combined electron and ion spectroscopy have been performed in gas phase utilizing synchrotron radiation. As uridine is a combination of d-ribose and uracil, which have been studied earlier with the same method, this study also considers the effect of chemical environment and the relevant functional groups. Furthermore, since in core ionization the initial core hole is always highly localized, charge migration prior to fragmentation has been studied here. This study also demonstrates the destructive nature of core ionization as in most cases themore » C 1s ionization of uridine leads to concerted explosions producing only small fragments with masses ≤43 amu. In addition to fragmentation patterns, we found out that upon evaporation the sugar part of the uridine molecule attains hexagonal form.« less

  7. Chemical Understanding of the Limited Site-Specificity in Molecular Inner-Shell Photofragmentation

    DOE PAGES

    Inhester, Ludger; Oostenrijk, Bart; Patanen, Minna; ...

    2018-02-14

    In many cases fragmentation of molecules upon inner-shell ionization is very unspecific with respect to the initially localized ionization site. Often this finding is interpreted in terms of an equilibration of internal energy into vibrational degrees of freedom after Auger decay. In this paper, we investigate the X-ray photofragmentation of ethyl trifluoroacetate upon core electron ionization at environmentally distinct carbon sites using photoelectron–photoion–photoion coincidence measurements and ab initio electronic structure calculations. For all four carbon ionization sites, the Auger decay weakens the same bonds and transfers the two charges to opposite ends of the molecule, which leads to a rapidmore » dissociation into three fragments, followed by further fragmentation steps. Finally, the lack of site specificity is attributed to the character of the dicationic electronic states after Auger decay instead of a fast equilibration of internal energy.« less

  8. The inception of pulsed discharges in air: simulations in background fields above and below breakdown

    NASA Astrophysics Data System (ADS)

    Sun, Anbang; Teunissen, Jannis; Ebert, Ute

    2014-11-01

    We investigate discharge inception in air, in uniform background electric fields above and below the breakdown threshold. We perform 3D particle simulations that include a natural level of background ionization in the form of positive and \\text{O}2- ions. In background fields below breakdown, we use a strongly ionized seed of electrons and positive ions to enhance the field locally. In the region of enhanced field, we observe the growth of positive streamers, as in previous simulations with 2D plasma fluid models. The inclusion of background ionization has little effect in this case. When the background field is above the breakdown threshold, the situation is very different. Electrons can then detach from \\text{O}2- and start ionization avalanches in the whole volume. These avalanches together create one extended discharge, in contrast to the ‘double-headed’ streamers found in many fluid simulations.

  9. Distinguishing models of reionization using future radio observations of 21-cm 1-point statistics

    NASA Astrophysics Data System (ADS)

    Watkinson, C. A.; Pritchard, J. R.

    2014-10-01

    We explore the impact of reionization topology on 21-cm statistics. Four reionization models are presented which emulate large ionized bubbles around overdense regions (21CMFAST/global-inside-out), small ionized bubbles in overdense regions (local-inside-out), large ionized bubbles around underdense regions (global-outside-in) and small ionized bubbles around underdense regions (local-outside-in). We show that first generation instruments might struggle to distinguish global models using the shape of the power spectrum alone. All instruments considered are capable of breaking this degeneracy with the variance, which is higher in outside-in models. Global models can also be distinguished at small scales from a boost in the power spectrum from a positive correlation between the density and neutral-fraction fields in outside-in models. Negative skewness is found to be unique to inside-out models and we find that pre-Square Kilometre Array (SKA) instruments could detect this feature in maps smoothed to reduce noise errors. The early, mid- and late phases of reionization imprint signatures in the brightness-temperature moments, we examine their model dependence and find pre-SKA instruments capable of exploiting these timing constraints in smoothed maps. The dimensional skewness is introduced and is shown to have stronger signatures of the early and mid-phase timing if the inside-out scenario is correct.

  10. Glycomics expression analysis of sulfated glycosaminoglycans of human colorectal cancer tissues and non-neoplastic mucosa by electrospray ionization mass spectrometry

    PubMed Central

    Marolla, Ana Paula Cleto; Waisberg, Jaques; Saba, Gabriela Tognini; Waisberg, Daniel Reis; Margeotto, Fernando Beani; Pinhal, Maria Aparecida da Silva

    2015-01-01

    ABSTRACT Objective To determine the presence of glycosaminoglycans in the extracellular matrix of connective tissue from neoplastic and non-neoplastic colorectal tissues, since it has a central role in tumor development and progression. Methods Tissue samples from neoplastic and non-neoplastic colorectal tissues were obtained from 64 operated patients who had colorectal carcinoma with no distant metastases. Expressions of heparan sulphate, chondroitin sulphate, dermatan sulphate and their fragments were analyzed by electrospray ionization mass spectrometry, with the technique for extraction and quantification of glycosaminoglycans after proteolysis and electrophoresis. The statistical analysis included mean, standard deviation, and Student’s t test. Results The glycosaminoglycans extracted from colorectal tissue showed three electrophoretic bands in agarose gel. Electrospray ionization mass spectrometry showed characteristic disaccharide fragments from glycosaminoglycans, indicating their structural characterization in the tissues analyzed. Some peaks in the electrospray ionization mass spectrometry were not characterized as fragments of sugars, indicating the presence of fragments of the protein structure of proteoglycans generated during the glycosaminoglycan purification. The average amount of chondroitin and dermatan increased in the neoplastic tissue compared to normal tissue (p=0.01). On the other hand, the average amount of heparan decreased in the neoplastic tissue compared to normal tissue (p= 0.03). Conclusion The method allowed the determination of the glycosaminoglycans structural profile in colorectal tissue from neoplastic and non-neoplastic colorectal tissue. Neoplastic tissues showed greater amounts of chondroitin sulphate and dermatan sulphate compared to non-neoplastic tissues, while heparan sulphate was decreased in neoplastic tissues. PMID:26761548

  11. Determination of relative ion chamber calibration coefficients from depth-ionization measurements in clinical electron beams

    NASA Astrophysics Data System (ADS)

    Muir, B. R.; McEwen, M. R.; Rogers, D. W. O.

    2014-10-01

    A method is presented to obtain ion chamber calibration coefficients relative to secondary standard reference chambers in electron beams using depth-ionization measurements. Results are obtained as a function of depth and average electron energy at depth in 4, 8, 12 and 18 MeV electron beams from the NRC Elekta Precise linac. The PTW Roos, Scanditronix NACP-02, PTW Advanced Markus and NE 2571 ion chambers are investigated. The challenges and limitations of the method are discussed. The proposed method produces useful data at shallow depths. At depths past the reference depth, small shifts in positioning or drifts in the incident beam energy affect the results, thereby providing a built-in test of incident electron energy drifts and/or chamber set-up. Polarity corrections for ion chambers as a function of average electron energy at depth agree with literature data. The proposed method produces results consistent with those obtained using the conventional calibration procedure while gaining much more information about the behavior of the ion chamber with similar data acquisition time. Measurement uncertainties in calibration coefficients obtained with this method are estimated to be less than 0.5%. These results open up the possibility of using depth-ionization measurements to yield chamber ratios which may be suitable for primary standards-level dissemination.

  12. Spectrally resolved opacities and Rosseland and Planck mean opacities of lowly ionized gold plasmas: a detailed level-accounting investigation.

    PubMed

    Zeng, Jiaolong; Yuan, Jianmin

    2007-08-01

    Calculation details of radiative opacity for lowly ionized gold plasmas by using our developed fully relativistic detailed level-accounting approach are presented to show the importance of accurate atomic data for a quantitative reproduction of the experimental observations. Even though a huge number of transition lines are involved in the radiative absorption of high- Z plasmas so that one believes that statistical models can often give a reasonable description of their opacities, we first show in detail that an adequate treatment of physical effects, in particular the configuration interaction (including the core-valence electron correlation), is essential to produce atomic data of bound-bound and bound-free processes for gold plasmas, which are accurate enough to correctly explain the relative intensity of two strong absorption peaks experimentally observed located near photon energy of 70 and 80 eV. A detailed study is also carried out for gold plasmas of an average ionization degree sequence of 10, for both spectrally resolved opacities and Rosseland and Planck means. For comparison, results obtained by using an average atom model are also given to show that even for a relatively higher density of matter, correlation effects are also important to predict the correct positions of absorption peaks of transition arrays.

  13. INTERSTELLAR PICK-UP IONS OBSERVED BETWEEN 11 AND 22 AU BY NEW HORIZONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randol, B. M.; McComas, D. J.; Schwadron, N. A., E-mail: brentrandol@gmail.com

    We report new observations by the Solar Wind Around Pluto instrument on the New Horizons spacecraft, which measures energy per charge (E/q) spectra of solar wind and interstellar pick-up ions (PUIs) between 11 AU and 22 AU from the Sun. The data provide an unprecedented look at PUIs as there have been very few measurements of PUIs beyond 10 AU. We analyzed the PUI part of the spectra by comparing them to the classic Vasyliunas and Siscoe PUI model. Our analysis indicates that PUIs are usually well-described by this distribution. We derive parameters relevant to PUI studies, such as themore » ionization rate normalized to 1 AU. Our result for the average ionization rate between 11 and 12 AU agrees with an independently derived average value found during the same time. Later, we find a general increase in the ionization rate, which is consistent with the increase in solar activity. We also calculate the PUI thermal pressure, which appears to be roughly consistent with previous results. Through fitting of the solar wind proton peaks in our spectra, we derive solar wind thermal pressures. Based on our analysis, we predict a ratio of PUI thermal pressure to solar wind thermal pressure just inside the termination shock to be between 100 and >1000.« less

  14. Ion/molecule reactions to chemically deconvolute the electrospray ionization mass spectra of synthetic polymers.

    PubMed

    Lennon, John D; Cole, Scott P; Glish, Gary L

    2006-12-15

    A new approach has been developed to analyze synthetic polymers via electrospray ionization mass spectrometry. Ion/molecule reactions, a unique feature of trapping instruments such as quadrupole ion trap mass spectrometers, can be used to chemically deconvolute the molecular mass distribution of polymers from the charge-state distribution generated by electrospray ionization. The reaction involves stripping charge from multiply charged oligomers to reduce the number of charge states. This reduces or eliminates the overlapping of oligomers from adjacent charge states. 15-Crown-5 was used to strip alkali cations (Na+) from several narrow polydisperse poly(ethylene glycol) standards. The charge-state distribution of each oligomer is reduced to primarily one charge state. Individual oligomers can be resolved, and the average molecular mass and polydispersities can be calculated for the polymers examined here. In most cases, the measured number-average molecular mass values are within 10% of the manufacturers' reported values obtained by gel permeation chromatography. The polydispersity was typically underestimated compared to values reported by the suppliers. Mn values were obtained with 0.5% RSD and are independent, over several orders of magnitude, of the polymer and cation concentration. The distributions that were obtained fit quite well to the Gaussian distribution indicating no high- or low-mass discriminations.

  15. Bactericidal effects of negative air ions on airborne and surface Salmonella enteritidis from an artificially generated aerosol.

    PubMed

    Seo, K H; Mitchell, B W; Holt, P S; Gast, R K

    2001-01-01

    The bactericidal effect of high levels of negative ions was studied using a custom-built electrostatic space charge device. To investigate whether the ion-enriched air exerted a bactericidal effect, an aerosol containing Salmonella Enteritidis (SE) was pumped into a sealed plastic chamber. Plates of XLT4 agar were attached to the walls, top, and bottom of the chamber and exposed to the aerosol for 3 h with and without the ionizer treatment. The plates were then removed from the chamber, incubated at 37 degrees C for 24 h, and colonies were counted. An average of greater than 10(3) CFU/plate were observed on plates exposed to the aerosol without the ionizer treatment (control) compared with an average of less than 53 CFU/plate on the ionizer-treated plates. In another series of experiments, the SE aerosol was pumped for 3 h into an empty chamber containing only the ionizer and allowed to collect on the internal surfaces. The inside surfaces of the chamber were then rinsed with 100 ml phosphate-buffered saline that was then plated onto XLT4 plates. While the rinse from the control chamber contained colony counts greater than 400 CFU/ml of wash, no colonies were found in the rinse from the ionizer-treatment chamber. These results indicate that high levels of negative air ions can have a significant impact on the airborne microbial load, and that most of this effect is through direct killing of the organisms. This technology, which also causes significant reduction in airborne dust, has already been successfully applied for poultry hatching cabinets and caged layer rooms. Other potential applications include any enclosed space such as food processing areas, medical institutions, the workplace, and the home, where reduction of airborne and surface pathogens is desired.

  16. The MOSDEF Survey: Direct Observational Constraints on the Ionizing Photon Production Efficiency, ξ ion, at z ∼ 2

    NASA Astrophysics Data System (ADS)

    Shivaei, Irene; Reddy, Naveen A.; Siana, Brian; Shapley, Alice E.; Kriek, Mariska; Mobasher, Bahram; Freeman, William R.; Sanders, Ryan L.; Coil, Alison L.; Price, Sedona H.; Fetherolf, Tara; Azadi, Mojegan; Leung, Gene; Zick, Tom

    2018-03-01

    We combine Hα and Hβ spectroscopic measurements and UV photometry for a sample of 673 galaxies from the MOSDEF survey to constrain hydrogen-ionizing photon production efficiencies ({ξ }ion}) at z = 1.4–2.6. We find < {log}({ξ }ion}/[{{{s}}}-1/{erg} {{{s}}}-1 {Hz}}-1])> = 25.06 (25.34), assuming the Calzetti (SMC) curve for the UV dust correction and a scatter of 0.28 dex in the {ξ }ion} distribution. After accounting for observational uncertainties and variations in dust attenuation, we conclude that the remaining scatter in {ξ }ion} is likely dominated by galaxy-to-galaxy variations in stellar populations, including the slope and upper-mass cutoff of the initial mass function, stellar metallicity, star formation burstiness, and stellar evolution (e.g., single/binary star evolution). Moreover, {ξ }ion} is elevated in galaxies with high ionization states (high [O III]/[O II]) and low oxygen abundances (low [N II]/Hα and high [O III]/Hβ) in the ionized ISM. However, {ξ }ion} does not correlate with the offset from the z ∼ 0 star-forming locus in the BPT diagram, suggesting no change in the hardness of the ionizing radiation accompanying the offset from the z ∼ 0 sequence. We also find that galaxies with blue UV spectral slopes (< β > =-2.1) have {ξ }ion} elevated by a factor of ∼2 relative to the average {ξ }ion} of the sample (< β > =-1.4). If these blue galaxies are similar to those at z > 6, our results suggest that a lower Lyman-continuum escape fraction is required for galaxies to maintain reionization, compared to the canonical {ξ }ion} predictions from stellar population models. Furthermore, we demonstrate that even with robustly dust-corrected Hα, the UV dust attenuation can cause on average a ∼0.3 dex systematic uncertainty in {ξ }ion} calculations.

  17. Towards a full reference library of MS(n) spectra. Testing of a library containing 3126 MS2 spectra of 1743 compounds.

    PubMed

    Milman, Boris L

    2005-01-01

    A library consisting of 3766 MS(n) spectra of 1743 compounds, including 3126 MS2 spectra acquired mainly using ion trap (IT) and triple-quadrupole (QqQ) instruments, was composed of numerous collections/sources. Ionization techniques were mainly electrospray ionization and also atmospheric pressure chemical ionization and chemical ionization. The library was tested for the performance in identification of unknowns, and in this context this work is believed to be the largest of all known tests of product-ion mass spectral libraries. The MS2 spectra of the same compounds from different collections were in turn divided into spectra of 'unknown' and reference compounds. For each particular compound, library searches were performed resulting in selection by taking into account the best matches for each spectral collection/source. Within each collection/source, replicate MS2 spectra differed in the collision energy used. Overall, there were up to 950 search results giving the best match factors and their ranks in corresponding hit lists. In general, the correct answers were obtained as the 1st rank in up to 60% of the search results when retrieved with (on average) 2.2 'unknown' and 6.2 reference replicates per compound. With two or more replicates of both 'unknown' and reference spectra (the average numbers of replicates were 4.0 and 7.8, respectively), the fraction of correct answers in the 1st rank increased to 77%. This value is close to the performance of established electron ionization mass spectra libraries (up to 79%) found by other workers. The hypothesis that MS2 spectra better match reference spectra acquired using the same type of tandem mass spectrometer (IT or QqQ) was neither strongly proved nor rejected here. The present work shows that MS2 spectral libraries containing sufficiently numerous different entries for each compound are sufficiently efficient for identification of unknowns and suitable for use with different tandem mass spectrometers. 2005 John Wiley & Sons, Ltd.

  18. Characterization of charge separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) ion source for mass spectrometry.

    PubMed

    Forbes, Thomas P; Dixon, R Brent; Muddiman, David C; Degertekin, F Levent; Fedorov, Andrei G

    2009-09-01

    An initial investigation into the effects of charge separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) ion source is reported to gain understanding of ionization mechanisms and to improve analyte ionization efficiency and operation stability. In RF-only mode, AMUSE ejects, on average, an equal number of slightly positive and slightly negative charged droplets due to random charge fluctuations, providing inefficient analyte ionization. Charge separation at the nozzle orifice is achieved by the application of an external electric field. By bringing the counter electrode close to the nozzle array, strong electric fields can be applied at relatively low DC potentials. It has been demonstrated, through a number of electrode/electrical potential configurations, that increasing charge separation leads to improvement in signal abundance, signal-to-noise ratio, and signal stability.

  19. Neutral ISM, Ly α , and Lyman-continuum in the Nearby Starburst Haro 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera-Thorsen, T. Emil; Östlin, Göran; Hayes, Matthew

    2017-03-01

    Star-forming galaxies are believed to be a major source of Lyman continuum (LyC) radiation responsible for reionizing the early universe. Direct observations of escaping ionizing radiation have however been sparse and with low escape fractions. In the local universe, only 10 emitters have been observed, with typical escape fractions of a few percent. The mechanisms regulating this escape need to be strongly evolving with redshift in order to account for the epoch of reionization. Gas content and star formation feedback are among the main suspects, known to both regulate neutral gas coverage and evolve with cosmic time. In this paper,more » we reanalyze Hubble Space Telescope ( HST )-Cosmic Origins Spectrograph (COS) spectrocopy of the first detected local LyC leaker, Haro 11. We examine the connection between LyC leakage and Ly α line shape, and feedback-influenced neutral interstellar medium (ISM) properties like kinematics and gas distribution. We discuss the two extremes of an optically thin, density bounded ISM and a riddled, optically thick, ionization bounded ISM, and how Haro 11 fits into theoretical predictions. We find that the most likely ISM model is a clumpy neutral medium embedded in a highly ionized medium with a combined covering fraction of unity and a residual neutral gas column density in the ionized medium high enough to be optically thick to Ly α , but low enough to be at least partly transparent to LyC and undetected in Si ii. This suggests that star formation feedback and galaxy-scale interaction events play a major role in opening passageways for ionizing radiation through the neutral medium.« less

  20. Contribution of counterions and degree of ionization for birefringence creation and relaxation kinetics parameters of PAH/PAZO films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raposo, Maria, E-mail: mfr@fct.unl.pt; Monteiro Timóteo, Ana Rita; Ribeiro, Paulo A.

    2015-09-21

    Photo induced birefringent materials can be used to develop optical and conversion energy devices, and consequently, the study of the variables that influences the creation and relaxation of birefringence should be carefully analyzed. In this work, the parameters of birefringence creation and relaxation kinetics curves obtained on layer-by-layer (LBL) films, prepared from azo-polyectrolyte poly[1-[4-(3-carboxy-4 hydroxyphenylazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and poly(allylamine hydrochloride)(PAH), are related with the presence of counterions and the degree of ionization of the polyelectrolytes. Those kinetics curves obtained on PAH/PAZO LBL films, prepared from PAH solutions with different pHs and maintaining the pH of PAZO solutionmore » constant at pH = 9, were analyzed taking into account the films composition which was characterized by X-ray photoelectron spectroscopy. The creation and relaxation birefringence curves are justified by two processes: one associated to local mobility of the azobenzene with a characteristic time 30 s and intensity constant and other associated with polymeric chains mobility with the characteristic time and intensity decreasing with pH. These results allow us to conclude that the birefringence creation process, associated to local mobility of azobenzenes is independent of the degree of ionization and of number of counterions or co-ions present while the birefringence creation process associated to mobility of chains have its characteristic time and intensity dependent of both degree of ionization and number of counterions. The birefringence relaxation processes are dependent of the degree of ionization. The analysis of the films composition revealed, in addition, the presence of a protonated secondary or tertiary amine revealing that PAZO may have positive charges and consequently a zwitterionic behavior.« less

  1. Metabolomic Analysis of Oxidative and Glycolytic Skeletal Muscles by Matrix-Assisted Laser Desorption/IonizationMass Spectrometric Imaging (MALDI MSI)

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Hsuan; Garrett, Timothy J.; Carter, Christy S.; Yost, Richard A.

    2015-06-01

    Skeletal muscles are composed of heterogeneous muscle fibers that have different physiological, morphological, biochemical, and histological characteristics. In this work, skeletal muscles extensor digitorum longus, soleus, and whole gastrocnemius were analyzed by matrix-assisted laser desorption/ionization mass spectrometry to characterize small molecule metabolites of oxidative and glycolytic muscle fiber types as well as to visualize biomarker localization. Multivariate data analysis such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to extract significant features. Different metabolic fingerprints were observed from oxidative and glycolytic fibers. Higher abundances of biomolecules such as antioxidant anserine as well as acylcarnitines were observed in the glycolytic fibers, whereas taurine and some nucleotides were found to be localized in the oxidative fibers.

  2. Parallel Study of HEND, RAD, and DAN Instrument Response to Martian Radiation and Surface Conditions

    NASA Technical Reports Server (NTRS)

    Martiniez Sierra, Luz Maria; Jun, Insoo; Litvak, Maxim; Sanin, Anton; Mitrofanov, Igor; Zeitlin, Cary

    2015-01-01

    Nuclear detection methods are being used to understand the radiation environment at Mars. JPL (Jet Propulsion Laboratory) assets on Mars include: Orbiter -2001 Mars Odyssey [High Energy Neutron Detector (HEND)]; Mars Science Laboratory Rover -Curiosity [(Radiation Assessment Detector (RAD); Dynamic Albedo Neutron (DAN))]. Spacecraft have instruments able to detect ionizing and non-ionizing radiation. Instrument response on orbit and on the surface of Mars to space weather and local conditions [is discussed] - Data available at NASA-PDS (Planetary Data System).

  3. Percolation simulation of laser-guided electrical discharges.

    PubMed

    Sasaki, Akira; Kishimoto, Yasuaki; Takahashi, Eiichi; Kato, Susumu; Fujii, Takashi; Kanazawa, Seiji

    2010-08-13

    A three-dimensional simulation of laser-guided discharges based on percolation is presented. The model includes both local growth of a streamer due to the enhanced electric field at the streamer's tip and propagation of a leader by remote ionization such as that caused by runaway electrons. The stochastic behavior of the discharge through a preformed plasma channel is reproduced by the calculation, which shows complex path with detouring and bifurcation. The probability of guiding is investigated with respect to the ionized, conductive fraction along the channel.

  4. IONIZING RADIATION EXPOSURE OF THE POPULATION OF THE U.S.

    EPA Science Inventory

    This report updates information published by the National Council on Radiation Protection and Measurements (NCRP) in 1987. NCRP reports are considered the authoritative reference for the sources and magnitude of average background exposure to the U.S. population.

  5. Diamond Pixel Detectors

    NASA Astrophysics Data System (ADS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Gobbi, B.; Grim, G. P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L. S.; Pernicka, M.; Perera, L.; Pirollo, S.; Plano, R.; Procario, M.; Riester, J. L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M.

    2001-06-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.

  6. What Can Be Learned from X-Ray Spectroscopy Concerning Hot Gas in the Local Bubble and Charge Exchange Processes?

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.

    2008-01-01

    Both solar wind charge exchange emission and diffuse thermal emission from the Local Bubble are strongly dominated in the soft X-ray band by lines from highly ionized elements. While both processes share many of the same lines, the spectra should differ significantly due to the different production mechanisms, abundances, and ionization states. Despite their distinct spectral signatures, current and past observatories have lacked the spectral resolution to adequately distinguish between the two sources. High-resolution X-ray spectroscopy instrumentation proposed for future missions has the potential to answer fundamental questions such as whether there is any hot plasma in the Local Hot Bubble, and if so, what are the abundances of the emitting plasma and whether the plasma is in equilibrium. Such instrumentation will provide dynamic information about the solar wind including data on ion species which are currently difficult to track. It will also make possible remote sensing of the solar wind.

  7. A coincidence study of electron and positron impact ionization of Ar (3p) at 1 keV

    NASA Astrophysics Data System (ADS)

    Campeanu, Radu I.; Walters, James H. R.; Whelan, Colm T.

    2015-10-01

    Distorted-wave calculations of the triple differential cross section (TDCS) are presented for electron and positron impact ionization of Ar(3p) in coplanar asymmetric geometry at an impact energy of 1 keV and are compared with a recent experiment. The experiment indicates that the positron TDCS is generally larger than the equivalent electron TDCS. It is shown that the magnitude of the TDCS is extremely sensitive to the energy of the ejected electron and that only when the cross section is averaged over energy do we get a reasonable agreement with experiment.

  8. SU-E-T-291: Dosimetric Accuracy of Multitarget Single Isocenter Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tannazi, F; Huang, M; Thomas, E

    2015-06-15

    Purpose: To evaluate the accuracy of single-isocenter multiple-target VMAT radiosurgery (SIMT-VMAT-SRS) by analysis of pre-treatment verification measurements. Methods: Our QA procedure used a phantom having a coronal plane for EDR2 film and a 0.125 cm3 ionization chamber. Film measurements were obtained for the largest and smallest targets for each plan. An ionization chamber measurement (ICM) was obtained for sufficiently large targets. Films were converted to dose using a patient-specific calibration curve and compared to treatment planning system calculations. Alignment error was estimated using image registration. The gamma index was calculated for 3%/3 and 3%/1 mm criteria. The median dose inmore » the target region and, for plans having an ICM, the average dose in the central 5 mm was calculated. Results: The average equivalent target diameter of the 48 targets was 15 mm (3–43 mm). Twenty of the 24 plans had an ICM for the plan corresponding to the largest target (diameter 11–43 mm) with a mean ratio of chamber reading to expected dose (ED) and the mean ratio of film to ED (averaged over the central 5 mm) was 1.001 (0.025 SD) and 1.000 (0.029 SD), respectively. For all plans, the mean film to ED (from the median dose in the target region) was 0.997 (0.027 SD). The mean registration vector was (0.15,0.29) mm, with an average magnitude of 0.96 mm. Before (after) registration, the average fraction of pixels having gamma < 1 was 99.3% (99.6%) and 89.1% (97.6%) for 3%/3mm and 3%/1mm, respectively. Conclusion: Our results demonstrate dosimetric accuracy of SIMT-VMAT-SRS for targets as small as 3 mm. Film dosimetry provides accurate assessment of the absolute dose delivered to targets too small for an ionization chamber measurement; however, the relatively large registration vector indicates that image-guidance should replace laser-based setup for patient-specific evaluation of geometric accuracy.« less

  9. Annual Progress Report, Fiscal Year 1980

    DTIC Science & Technology

    1980-10-01

    Stress Rating Scales Heat Stroke Respiratory Control Hepatic Necrosis Survey Analysis Load Carriage Sustained/Continuous Operations Human Performances...wire placed percutaneously into one of the external jugular veins, under local anesthesia. Ventilatory measurements were made with the goat wearing a...electrical apparatus that produces positive air ions or in closed artificial environments which deplete negative air ions. Local positive ionization may

  10. Local Electronic Structure Changes in Polycrystalline CdTe with CdCl 2 Treatment and Air Exposure

    DOE PAGES

    Berg, Morgann; Kephart, Jason M.; Munshi, Amit; ...

    2018-03-12

    Postdeposition CdCl 2 treatment of polycrystalline CdTe is known to increase the photovoltaic device efficiency. However, the precise chemical, structural, and electronic changes that underpin this improvement are still debated. In this work, spectroscopic photoemission electron microscopy was used to spatially map the vacuum level and ionization energy of CdTe films, enabling the identification of electronic structure variations between grains and grain boundaries (GBs). In vacuo preparation and inert transfer of oxide-free CdTe surfaces isolated the separate effects of CdCl 2 treatment and ambient oxygen exposure. Qualitatively, grain boundaries displayed lower work function and downward band bending relative to grainmore » interiors, but only after air exposure of CdCl 2-treated CdTe. Analysis of numerous space charge regions at grain boundaries showed an average depletion width of 290 nm and an average band bending magnitude of 70 meV, corresponding to a GB trap density of 10 11 cm –2 and a net carrier density of 10 15 cm –3. Finally, these results suggest that both CdCl 2 treatment and oxygen exposure may be independently tuned to enhance the CdTe photovoltaic performance by engineering the interface and bulk electronic structure.« less

  11. Local Electronic Structure Changes in Polycrystalline CdTe with CdCl 2 Treatment and Air Exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Morgann; Kephart, Jason M.; Munshi, Amit

    Postdeposition CdCl 2 treatment of polycrystalline CdTe is known to increase the photovoltaic device efficiency. However, the precise chemical, structural, and electronic changes that underpin this improvement are still debated. In this work, spectroscopic photoemission electron microscopy was used to spatially map the vacuum level and ionization energy of CdTe films, enabling the identification of electronic structure variations between grains and grain boundaries (GBs). In vacuo preparation and inert transfer of oxide-free CdTe surfaces isolated the separate effects of CdCl 2 treatment and ambient oxygen exposure. Qualitatively, grain boundaries displayed lower work function and downward band bending relative to grainmore » interiors, but only after air exposure of CdCl 2-treated CdTe. Analysis of numerous space charge regions at grain boundaries showed an average depletion width of 290 nm and an average band bending magnitude of 70 meV, corresponding to a GB trap density of 10 11 cm –2 and a net carrier density of 10 15 cm –3. Finally, these results suggest that both CdCl 2 treatment and oxygen exposure may be independently tuned to enhance the CdTe photovoltaic performance by engineering the interface and bulk electronic structure.« less

  12. 'Direct' Gas-Phase Metallicities, Stellar Properties, and Local Environments of Emission-Line Galaxies at Redshifts Below 0.90

    NASA Technical Reports Server (NTRS)

    Ly, Chun; Malkan, Matthew A.; Nagao, Tohru; Kashikawa, Nobunari; Shimasaku, Kazuhiro; Hayashi, Masao

    2013-01-01

    Using deep narrow-band (NB) imaging and optical spectroscopy from the Keck telescope and the Multi Mirror Telescope (MMT), we identify a sample of 20 emission-line galaxies (ELGs) at z = 0.065-0.90 where the weak auroral emission line, [O iii] lambda4363, is detected at >=3sigma. These detections allow us to determine the gas-phase metallicity using the "direct" method. With electron temperature measurements, and dust attenuation corrections from Balmer decrements, we find that 4 of these low-mass galaxies are extremely metal-poor with 12+log(O/H) <= 7.65 or one-tenth solar. Our most metal-deficient galaxy has 12+log(O/H)= 7.24(+0.45 / -0.30) (95% confidence), similar to some of the lowest metallicity galaxies identified in the local universe. We find that our galaxies are all undergoing significant star formation with average specific star formation rate (SFR) of (100 Myra)(exp -1), and that they have high central SFR surface densities (average of 0.5 Solar M / yr/ sq. kpc). In addition, more than two-thirds of our galaxies have between one and four nearby companions within a projected radius of 100 kpc, which we find is an excess among star-forming galaxies at z =0.4 -- 0.85. We also find that the gas-phase metallicities for a given stellar mass and SFR lie systematically lower than the local stellar M-Z-(SFR) relation by approx. = 0.2 dex (2 sigma significance). These results are partly due to selection effects, since galaxies with strong star formation and low metallicity are more likely to yield [O iii] lambda4363 detections. Finally, the observed higher ionization parameter and high electron density suggest that they are lower redshift analogs to typical z approx. > 1 galaxies.

  13. Solar coronal temperature diagnostics using emission line from multiple stages of ionization of iron

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.; Davila, Joseph M.; Thomas, Roger J.; Thompson, William T.

    1994-01-01

    We obtained spatially resolved extreme-ultraviolet (EUV) spectra of AR 6615 on 1991 May 7 with NASA/ Goddard Space Flight Center's Solar EUV Rocket Telescope and Spectrograph (SERTS). Included are emission lines from four different stages of ionization of iron: Fe(+15) lambda 335 A, Fe(+14) lambda 327 A, Fe(+13) lambda 334 A, and Fe(+12) lambda 348 A. Using intensity ratios from among these lines, we have calculated the active region coronal temperature along the Solar Extreme Ultraviolet Telescope and Spectrograph (SERTS) slit. Temperatures derived from line ratios which incorporate adjacent stages of ionization are most sensitive to measurement uncertainties and yield the largest scatter. Temperatures derived from line ratios which incorporate nonadjacent stages of ionization are less sensitive to measurement uncertainties and yield little scatter. The active region temperature derived from these latter ratios has an average value of 2.54 x 10(exp 6) K, with a standard deviation approximately 0.12 x 10(exp 6) K, and shows no significant variation with position along the slit.

  14. Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) of low molecular weight organic compounds and synthetic polymers using zinc oxide (ZnO) nanoparticles.

    PubMed

    Watanabe, Takehiro; Kawasaki, Hideya; Yonezawa, Tetsu; Arakawa, Ryuichi

    2008-08-01

    We have developed surface-assisted laser desorption/ionization mass spectrometry using zinc oxide (ZnO) nanoparticles with anisotropic shapes (ZnO-SALDI-MS). The mass spectra showed low background noises in the low m/z, i.e. less than 500 u region. Thus, we succeeded in SALDI ionization on low molecular weight organic compounds, such as verapamil hydrochloride, testosterone, and polypropylene glycol (PPG) (average molecular weight 400) without using a liquid matrix or buffers such as citric acids. In addition, we found that ZnO-SALDI has advantages in post-source decay (PSD) analysis and produced a simple mass spectrum for phospholipids. The ZnO-SALDI spectra for synthetic polymers of polyethylene glycol (PEG), polystyrene (PS) and polymethylmethacrylate (PMMA) showed the sensitivity and molecular weight distribution to be comparable to matrix-assisted laser desorption/ionization (MALDI) spectra with a 2,5-dihydroxybenzoic acid (DHB) matrix. ZnO-SALDI shows good performance for synthetic polymers as well as low molecular weight organic compounds. Copyright (c) 2008 John Wiley & Sons, Ltd.

  15. Atmospheric helium and geomagnetic field reversals.

    NASA Technical Reports Server (NTRS)

    Sheldon, W. R.; Kern, J. W.

    1972-01-01

    The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.

  16. The effects of pre-ionization on the impurity and x-ray level in a dense plasma focus device

    NASA Astrophysics Data System (ADS)

    Piriaei, D.; Yousefi, H. R.; Mahabadi, T. D.; Salar Elahi, A.; Ghoranneviss, M.

    2017-02-01

    In this study, the effects of pre-ionization on the reduction of the impurities and non-uniformities, the increased stability of the pinch plasma, the enhancement of the total hard x-ray yield, the plasmoid x-ray yield, and the current sheath dynamics of the argon gas at different pressures in a Mather type plasma focus device were investigated. For this purpose, different shunt resistors together with two x-ray detectors were used, and the data gathered from the x-ray signals showed that the optimum shunt resistor could cause the maximum total hard and plasmoid hard x-ray emissions. Moreover, in order to calculate the average speed of the current sheath, two axial magnetic probes were used. It was revealed that the pre-ionization could increase the whole range of the emitted x-rays and produce a more uniform current sheath layer, which moved faster, and this technique could lead to the reduction of the impurities, creating a more stabilized pinched plasma, which was capable of emitting more x-rays than the usual case without using pre-ionization.

  17. Energetic particles and ionization in the nighttime middle and low latitude ionosphere

    NASA Technical Reports Server (NTRS)

    Voss, H. D.; Smith, L. G.

    1977-01-01

    Seven Nike Apache rockets, each equipped with an energetic particle spectrometer (12 E 80 keV) and electron-density experiments, were launched from Wallops Island, Virginia and Chilca, Peru, under varying geomagnetic conditions near midnight. At Wallops Island the energetic particle flux (E 40 keV) is found to be strongly dependent on Kp. The pitch-angle distribution is asymmetrical about a peak at 90 D signifying a predominately quasi-trapped flux and explaining the linear increase of count rate with altitute in the altitude region 120 to 200 km. The height-averaged ionization rates derived from the electron-density profiles are consistent with the rates calculated from the observed total particle flux for magnetic index Kp 3. In the region 90 to 110 km it is found that the nighttime ionization is primarily a result of Ly-beta radiation from the geocorona and interplanetary hydrogen for even very disturbed conditions. Below 90 km during rather disturbed conditions energetic electrons can be a significant ionization source. Two energetic particle precipitation zones have been identified at midlatitudes.

  18. Ionized magnesium in plasma and erythrocytes for the assessment of low magnesium status in alcohol dependent patients.

    PubMed

    Ordak, Michal; Maj-Zurawska, Magdalena; Matsumoto, Halina; Bujalska-Zadrozny, Magdalena; Kieres-Salomonski, Ilona; Nasierowski, Tadeusz; Muszynska, Elzbieta; Wojnar, Marcin

    2017-09-01

    Studies on the homeostasis of magnesium in alcohol-dependent patients have often been characterized by low hypomagnesemia detection rates. This may be due to the fact that the content of magnesium in blood serum constitutes only 1% of the average magnesium level within the human body. However, the concentration of ionized magnesium is more physiologically important and makes up 67% of the total magnesium within a human organism. There are no data concerning the determination of the ionized fraction of magnesium in patients addicted to alcohol and its influence on mental health status. This study included 100 alcohol-dependent patients and 50 healthy subjects. The free magnesium fraction was determined using the potentiometric method by means of using ion-selective electrodes. The total magnesium level was determined by using a biochemical Indiko Plus analyzer. In this study, different psychometric scales were applied. Our results confirm the usefulness of ionized magnesium concentrations in erythrocytes and plasma as a diagnostic parameter of low magnesium status in alcohol-dependent patients. The lower the concentration of ionized magnesium, the worse the quality of life an alcohol-dependent person might experience. In the case of total magnesium, no such correlation was determined. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Enhanced signal generation for use in the analysis of synthetic pyrethroids using chemical ionization tandem quadrupole ion trap mass spectrometry.

    PubMed

    Sichilongo, Kwenga

    2004-12-01

    Synthetic pyrethroids fragment extensively under electron ionization (EI) conditions to give low mass ions, most of them with the same m/z ratios. This fragmentation is primarily due to the labile ester linkage found in these compounds. In this research we established the best gas chromatography (GC) conditions in the EI mode that served as a benchmark in the development of a chemical ionization (CI) protocol for ten selected synthetic pyrethroids. Based on proton affinity data, several reagent gases were evaluated in the positive CI ionization mode. Methanol was found to produce higher average ion counts relative to the other gases evaluated, which led to the development of an optimized method consisting of selective ejection chemical ionization (SECI) and MS/MS. Standard stainless steel ion trap electrodes produced significant degradation of chromatographic performance on late eluting compounds, which was attributed to electrode surface chemistry. A dramatic improvement in signal-to-noise (S/N) ratios was observed when the chromatographically inert Silcosteel coated electrodes were used. The resulting method, that has significant S/N ratio improvements resulting from a combination of septum programmable injections (SPI), optimized CI and inert Silcosteel-coated electrodes, was used to determine instrument detection limits.

  20. Medical students' knowledge of ionizing radiation and radiation protection.

    PubMed

    Hagi, Sarah K; Khafaji, Mawya A

    2011-05-01

    To assess the knowledge of fourth-year medical students in ionizing radiation, and to study the effect of a 3-hour lecture in correcting their misconceptions. A cohort study was conducted on fourth-year medical students at King Abdul-Aziz University, Jeddah, Kingdom of Saudi Arabia during the academic year 2009-2010. A 7-question multiple choice test-type questionnaire administered before, and after a 3-hour didactic lecture was used to assess their knowledge. The data was collected from December 2009 to February 2010. The lecture was given to 333 (72%) participants, out of the total of 459 fourth-year medical students. It covered topics in ionizing radiation and radiation protection. The questionnaire was validated and analyzed by 6 content experts. Of the 333 who attended the lecture, only 253 (76%) students completed the pre- and post questionnaire, and were included in this study. The average student score improved from 47-78% representing a gain of 31% in knowledge (p=0.01). The results indicated that the fourth-year medical students' knowledge regarding ionizing radiation and radiation protection is inadequate. Additional lectures in radiation protection significantly improved their knowledge of the topic, and correct their current misunderstanding. This study has shown that even with one dedicated lecture, students can learn, and absorb general principles regarding ionizing radiation.

  1. Microhydration of LiOH: Insight from electronic decays of core-ionized states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryzhevoi, Nikolai V., E-mail: nikolai.kryzhevoi@pci.uni-heidelberg.de

    2016-06-28

    We compute and compare the autoionization spectra of a core-ionized LiOH molecule both in its isolated and microhydrated states. Stepwise microhydration of LiOH leads to gradual elongation of the Li–OH bond length and finally to molecular dissociation. The accompanying changes in the local environment of the OH{sup −} and Li{sup +} counterions are reflected in the computed O 1s and Li 1s spectra. The role of solvent water molecules and the counterion in the spectral shape formation is assessed. Electronic decays of the microhydrated LiOH are found to be mostly intermolecular since the majority of the populated final states havemore » at least one outer-valence vacancy outside the initially core-ionized ion, mainly on a neighboring water molecule. The charge delocalization occurs through the intermolecular Coulombic and electron transfer mediated decays. Both mechanisms are highly efficient that is partly attributed to hybridization of molecular orbitals. The computed spectral shapes are sensitive to the counterion separation as well as to the number and arrangement of solvent molecules. These sensitivities can be used for studying the local hydration structure of solvated ions in aqueous solutions.« less

  2. Sequential Double lonization: The Timing of Release

    NASA Astrophysics Data System (ADS)

    Pfeiffer, A.

    2011-05-01

    The timing of electron release in strong field double ionization poses great challenges both for conceptual definition and for conducting experimental measurement. Here we present coincidence momentum measurements of the doubly charged ion and of the two electrons arising from double ionization of Argon using elliptically (close to circularly) polarized laser pulses. Based on a semi-classical model, the ionization times are calculated from the measured electron momenta across a large intensity range. Exploiting the attoclock technique we have direct access to timings on a coarse and on a fine scale, similar to the hour and the minute hand of a clock. In our attoclock, the magnitude of the electron momenta follows the envelope of the laser pulse and gives a coarse timing for the electron releases (the hour hand), while the fine timing (the minute hand) is provided by the emission angle of the electrons. The first of our findings is that due to depletion the averaged ionization time moves towards the beginning of the pulse with increasing intensity, confirming the results of Maharjan et al., and that the ion momentum distribution projected onto the minor polarization axis shows a bifurcation from a 3-peak to a 4-peak structure. This effect can be fully understood by modeling the process semi-classically in the independent electron approximation following the simple man's model. The ionization time measurement performed with the attoclock shows that the release time of the first electron is in good agreement with the semi-classical simulation performed on the basis of Sequential Double lonization (SDI), whereas the ionization of the second electron occurs significantly earlier than predicted. This observation suggests that electron correlation and other Non-Sequential Double lonization (NSDI) mechanisms may play an important role also in the case of strong field double ionization by close-to-circularly polarized laser pulses. The timing of electron release in strong field double ionization poses great challenges both for conceptual definition and for conducting experimental measurement. Here we present coincidence momentum measurements of the doubly charged ion and of the two electrons arising from double ionization of Argon using elliptically (close to circularly) polarized laser pulses. Based on a semi-classical model, the ionization times are calculated from the measured electron momenta across a large intensity range. Exploiting the attoclock technique we have direct access to timings on a coarse and on a fine scale, similar to the hour and the minute hand of a clock. In our attoclock, the magnitude of the electron momenta follows the envelope of the laser pulse and gives a coarse timing for the electron releases (the hour hand), while the fine timing (the minute hand) is provided by the emission angle of the electrons. The first of our findings is that due to depletion the averaged ionization time moves towards the beginning of the pulse with increasing intensity, confirming the results of Maharjan et al., and that the ion momentum distribution projected onto the minor polarization axis shows a bifurcation from a 3-peak to a 4-peak structure. This effect can be fully understood by modeling the process semi-classically in the independent electron approximation following the simple man's model. The ionization time measurement performed with the attoclock shows that the release time of the first electron is in good agreement with the semi-classical simulation performed on the basis of Sequential Double lonization (SDI), whereas the ionization of the second electron occurs significantly earlier than predicted. This observation suggests that electron correlation and other Non-Sequential Double lonization (NSDI) mechanisms may play an important role also in the case of strong field double ionization by close-to-circularly polarized laser pulses. In collaboration with C. Cirelli and M. Smolarski, Physics Department, ETH Zurich, 8093 Zurich, Switzerland; R. Doerner, Institut fiir Kernphysik, Johann Wolfgang Goethe Universitat, 60438 Frankfurt am Main, Germany; and U. Keller, ETH Zurich.

  3. Hot interstellar gas and ionization of embedded clouds

    NASA Technical Reports Server (NTRS)

    Cheng, K.-P.; Bruhweiler, F.

    1990-01-01

    Researchers present detailed photoionization calculations for the instellar cloud in which the Sun is embedded. They consider the EUV radiation field with contribution from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10 to the 6th power k coronal substrate. They establish lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.29 respectively. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10 to the 6th k plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N (CIII)/N (CII) and N (NII)/N (NI) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. Spacecraft such as Lyman which is designed to obtain high resolution spectral data down to the Lyman limit at 912 A could sample interstellar lines of these ions.

  4. HST images of very compact blue galaxies at z approximately 0.2

    NASA Technical Reports Server (NTRS)

    Koo, David C.; Bershady, Matthew A.; Wirth, Gregory D.; Stanford, S. Adam; Majewski, Steven R.

    1994-01-01

    We present the results of Hubble Space Telescope (HST) Wide-Field Camera (WFC) imaging of seven very compact, very blue galaxies with B less than or equal to 21 and redshifts z approximately 0.1 to 0.35. Based on deconvolved images, we estimate typical half-light diameters of approximately 0.65 sec, corresponding to approximately 1.4 h(exp -1) kpc at redshifts z approximately 0.2. The average rest frame surface brightness within this diameter is mu(sub v) approximately 20.5 mag arcsec(exp -2), approximately 1 mag brighter than that of typical late-type blue galaxies. Ground-based spectra show strong, narrow emission lines indicating high ionization; their very blue colors suggest recent bursts of star-formation; their typical luminosities are approximately 4 times fainter than that of field galaxies. These characteristics suggest H II galaxies as likely local counterparts of our sample, though our most luminous targets appear to be unusually compact for their luminosities.

  5. GW100: Benchmarking G0W0 for Molecular Systems.

    PubMed

    van Setten, Michiel J; Caruso, Fabio; Sharifzadeh, Sahar; Ren, Xinguo; Scheffler, Matthias; Liu, Fang; Lischner, Johannes; Lin, Lin; Deslippe, Jack R; Louie, Steven G; Yang, Chao; Weigend, Florian; Neaton, Jeffrey B; Evers, Ferdinand; Rinke, Patrick

    2015-12-08

    We present the GW100 set. GW100 is a benchmark set of the ionization potentials and electron affinities of 100 molecules computed with the GW method using three independent GW codes and different GW methodologies. The quasi-particle energies of the highest-occupied molecular orbitals (HOMO) and lowest-unoccupied molecular orbitals (LUMO) are calculated for the GW100 set at the G0W0@PBE level using the software packages TURBOMOLE, FHI-aims, and BerkeleyGW. The use of these three codes allows for a quantitative comparison of the type of basis set (plane wave or local orbital) and handling of unoccupied states, the treatment of core and valence electrons (all electron or pseudopotentials), the treatment of the frequency dependence of the self-energy (full frequency or more approximate plasmon-pole models), and the algorithm for solving the quasi-particle equation. Primary results include reference values for future benchmarks, best practices for convergence within a particular approach, and average error bars for the most common approximations.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilchen, M.; Hartmann, G.; Rupprecht, P.

    The angle-resolved inner-shell photoionization of R-trifluoromethyloxirane, C 3H 3F 3O, is studied experimentally and theoretically. Thereby, we investigate the photoelectron circular dichroism (PECD) for nearly symmetric O 1s and F 1s electronic orbitals, which are localized on different molecular sites. The respective dichroic β 1 and angular distribution β 2 parameters are measured at the photoelectron kinetic energies from 1 to 16 eV by using variably polarized synchrotron radiation and velocity map imaging spectroscopy. The present experimental results are in good agreement with the outcome of ab initio electronic structure calculations. We report a sizable chiral asymmetry β 1 ofmore » up to about 9% for the K -shell photoionization of oxygen atom. For the individual fluorine atoms, the present calculations predict asymmetries of similar size. However, being averaged over all fluorine atoms, it drops down to about 2%, as also observed in the present experiment. Our study demonstrates a strong emitter and site sensitivity of PECD in the one-photon inner-shell ionization of this chiral molecule.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindgren, Ingvar; Salomonson, Sten

    The locality theorem in density-functional theory (DFT) states that the functional derivative of the Hohenberg-Kohn universal functional can be expressed as a local multiplicative potential function, and this is the basis of DFT and of the successful Kohn-Sham model. Nesbet has in several papers [Phys. Rev. A 58, R12 (1998); ibid.65, 010502 (2001); Adv. Quant. Chem, 43, 1 (2003)] claimed that this theorem is in conflict with fundamental quantum physics, and as a consequence that the Hohenberg-Kohn theory cannot be generally valid. We have commented upon these works [Comment, Phys. Rev. A 67, 056501 (2003)] and recently extended the argumentsmore » [Adv. Quantum Chem. 43, 95 (2003)]. We have shown that there is no such conflict and that the locality theorem is inherently exact. In the present work we have furthermore verified this numerically by constructing a local Kohn-Sham potential for the 1s2s{sup 3}S state of helium that generates the many-body electron density and shown that the corresponding 2s Kohn-Sham orbital eigenvalue agrees with the ionization energy to nine digits. Similar result is obtained with the Hartree-Fock density. Therefore, in addition to verifying the locality theorem, this result also confirms the so-called ionization-potential theorem.« less

  8. Quantitative Proteomic Profiling of Low Dose Ionizing Radiation Effects in a Human Skin Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hengel, Shawna; Aldrich, Joshua T.; Waters, Katrina M.

    2014-07-29

    To assess molecular responses to low doses of radiation that may be encountered during medical diagnostic procedures, nuclear accidents, or terrorist acts, a quantitative global proteomic approach was used to identify protein alterations in a reconstituted human skin tissue treated with 10 cGy of ionizing radiation. Subcellular fractionation was employed to remove highly abundant structural proteins and provide insight on radiation induced alterations in protein abundance and localization. In addition, peptides were post-fractionated using high resolution 2-dimensional liquid chromatography to increase the dynamic range of detection of protein abundance and translocation changes. Quantitative data was obtained by labeling peptides withmore » 8-plex isobaric iTRAQ tags. A total of 207 proteins were detected with statistically significant alterations in abundance and/or subcellular localization compared to sham irradiated tissues. Bioinformatics analysis of the data indicated that the top canonical pathways affected by low dose radiation are related to cellular metabolism. Among the proteins showing alterations in abundance, localization and proteolytic processing was the skin barrier protein filaggrin which is consistent with our previous observation that ionizing radiation alters profilaggrin processing with potential effects on skin barrier functions. In addition, a large number of proteases and protease regulators were affected by low dose radiation exposure indicating that altered proteolytic activity may be a hallmark of low dose radiation exposure. While several studies have demonstrated altered transcriptional regulation occurs following low dose radiation exposures, the data presented here indicates post-transcriptional regulation of protein abundance, localization, and proteolytic processing play an important role in regulating radiation responses in complex human tissues.« less

  9. X-ray scattering measurements on imploding CH spheres at the National Ignition Facility

    DOE PAGES

    Kraus, D.; Chapman, D. A.; Kritcher, A. L.; ...

    2016-07-21

    In this study, we have performed spectrally resolved x-ray scattering measurements on highly compressed polystyrene at pressures of several tens of TPa (100 Mbar) created by spherically convergent shocks at the National Ignition Facility. Scattering data of line radiation at 9.0 keV were recorded from the dense plasma shortly after shock coalescence. Accounting for spatial gradients, opacity effects, and source broadening, we demonstrate the sensitivity of the elastic scattering component to carbon K -shell ionization while at the same time constraining the temperature of the dense plasma. Finally, for six times compressed polystyrene, we find an average temperature of 86more » eV and carbon ionization state of 4.9, indicating that widely used ionization models need revision in order to be suitable for the extreme states of matter tested in our experiment.« less

  10. Axial Structure of High-Vacuum Planar Magnetron Discharge Space

    NASA Astrophysics Data System (ADS)

    Miura, Tsutomu

    1999-09-01

    The spatial structure of high-vacuum planar magnetron discharge is theoretically investigated taking into account the electron confinement. The boundary xes of the electron confinement region depends on BA with Ea/BA as the parameter (BA: the magnetic flux density at the anode, Ea: the average electric field strength). The location at which the frequency of ionization events takes the maximum is expressed as CnNxiep (CnN: a factor related to the electron density distribution, xiep: the distance of the location from the cathode at which the ionization is most efficient). With increasing Ea and BA at a fixed Ea/BA, the density of the confined energetic electrons increases. With increasing Ea, the region where ionization is efficient shifts to the cathode side to give a high efficiency of the magnet. The boundary xes as determined by the probe method agreed with the theoretical prediction.

  11. Characterization of Charge Separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) Ion Source for Mass Spectrometry

    PubMed Central

    Forbes, Thomas P.; Dixon, R. Brent; Muddiman, David C.; Degertekin, F. Levent; Fedorov, Andrei G.

    2009-01-01

    An initial investigation into the effects of charge separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) ion source is reported in order to gain understanding of ionization mechanisms and to improve analyte ionization efficiency and operation stability. In RF-only mode, AMUSE ejects on average, an equal number of slightly positive and slightly negative charged droplets due to random charge fluctuations, providing inefficient analyte ionization. Charge separation at the nozzle orifice is achieved by the application of an external electric field. By bringing the counter electrode close to the nozzle array, strong electric fields can be applied at relatively low DC potentials. It has been demonstrated, through a number of electrode/electrical potential configurations that increasing charge separation leads to improvement in signal abundance, signal-to-noise ratio, and signal stability. PMID:19525123

  12. On ionizing shock waves

    NASA Astrophysics Data System (ADS)

    Kaniel, A.; Igra, O.; Ben-Dor, G.; Mond, M.

    The flow field in the ionizing relaxation zone developed behind a normal shock wave in an electrically neutral, homogeneous, two temperature mixture of thermally ideal gases (molecules, atoms, ions, electrons) was numerically solved. The heat transfer between the electron gas and the other components was taken into account while all the other transport phenomena (molecular, turbulent and radiative) were neglected in the relaxation zone, since it is dominated by inelastic collisions. The threshold cross sections measured by Specht (1981), for excitation of argon by electron collisions, were used. The calculated results show good agreement with the results of the shock tube experiments presented by Glass and Liu (1978), especially in the electron avalanche region. A critical examination was made of the common assumptions regarding the average energy with which electrons are produced by atom-atom collisions and the relative effectiveness of atom-atom collisions (versus electron-atom collisions) in ionizing excited argon.

  13. Molecular frame photoelectron angular distributions for core ionization of ethane, carbon tetrafluoride and 1,1-difluoroethylene

    DOE PAGES

    Menssen, A.; Trevisan, C. S.; Schöffler, M. S.; ...

    2016-02-15

    Molecular frame photoelectron angular distributions (MFPADs) are measured in this paper in electron–ion momentum imaging experiments and compared with complex Kohn variational calculations for carbon K-shell ionization of carbon tetrafluoride (CF 4), ethane (C 2H 6) and 1,1-difluoroethylene (C 2H 2F 2). While in ethane the polarization averaged MFPADs show a tendency at low energies for the photoelectron to be emitted in the directions of the bonds, the opposite effect is seen in CF 4. A combination of these behaviors is seen in difluoroethylene where ionization from the two carbons can be distinguished experimentally because of their different K-shell ionizationmore » potentials. Excellent agreement is found between experiment and simple static-exchange or coupled two-channel theoretical calculations. Finally, however, simple electrostatics do not provide an adequate explanation of the suggestively simple angular distributions at low electron ejection energies.« less

  14. Theory of the stopping power of fast multicharged ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yudin, G.L.

    1991-12-01

    The processes of Coulomb excitation and ionization of atoms by a fast charged particle moving along a classical trajectory are studied. The target electrons are described by the Dirac equation, while the field of the incident particle is described by the Lienard-Wiechert potential. The theory is formulated in the form most convenient for investigation of various characteristics of semiclassical atomic collisions. The theory of sudden perturbations, which is valid at high enough velocities for a high projectile charge, is employed to obtain probabilities and cross sections of the Coulomb excitation and ionization of atomic hydrogen by fast multiply charged ions.more » Based on the semiclassical sudden Born approximation, the ionization cross section and the average electronic energy loss of a fast ion in a single collision with an atom are investigated over a wide specific energy range from 500 keV/amu to 50 MeV/amu.« less

  15. Global structure of magnetorotationally turbulent protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Flaig, M.; Ruoff, Patrick; Kley, W.; Kissmann, R.

    2012-03-01

    The aim of this paper is to investigate the spatial structure of a protoplanetary disc whose dynamics is governed by magnetorotational turbulence. We perform a series of local three-dimensional chemoradiative magnetohydrodynamic simulations located at different radii of a disc which is twice as massive as the standard minimum mass solar nebula of Hayashi. The ionization state of the disc is calculated by including collisional ionization, stellar X-rays, cosmic rays and the decay of radionuclides as ionization sources, and by solving a simplified chemical network which includes the effect of the absorption of free charges by μm-sized dust grains. In the region where the ionization is too low to ensure good coupling between matter and magnetic fields, a non-turbulent central 'dead zone' forms, which ranges approximately from a distance of 2 to 4 au from the central star. The approach taken in this work allows for the first time to derive the global spatial structure of a protoplanetary disc from a set of physically realistic numerical simulations.

  16. Nanomanipulation-Coupled Matrix-Assisted Laser Desorption/ Ionization-Direct Organelle Mass Spectrometry: A Technique for the Detailed Analysis of Single Organelles

    NASA Astrophysics Data System (ADS)

    Phelps, Mandy S.; Sturtevant, Drew; Chapman, Kent D.; Verbeck, Guido F.

    2016-02-01

    We describe a novel technique combining precise organelle microextraction with deposition and matrix-assisted laser desorption/ionization (MALDI) for a rapid, minimally invasive mass spectrometry (MS) analysis of single organelles from living cells. A dual-positioner nanomanipulator workstation was utilized for both extraction of organelle content and precise co-deposition of analyte and matrix solution for MALDI-direct organelle mass spectrometry (DOMS) analysis. Here, the triacylglycerol (TAG) profiles of single lipid droplets from 3T3-L1 adipocytes were acquired and results validated with nanoelectrospray ionization (NSI) MS. The results demonstrate the utility of the MALDI-DOMS technique as it enabled longer mass analysis time, higher ionization efficiency, MS imaging of the co-deposited spot, and subsequent MS/MS capabilities of localized lipid content in comparison to NSI-DOMS. This method provides selective organellar resolution, which complements current biochemical analyses and prompts for subsequent subcellular studies to be performed where limited samples and analyte volume are of concern.

  17. Mass-loading, pile-up, and mirror-mode waves at comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Volwerk, M.; Richter, I.; Tsurutani, B.; Götz, C.; Altwegg, K.; Broiles, T.; Burch, J.; Carr, C.; Cupido, E.; Delva, M.; Dósa, M.; Edberg, N. J. T.; Eriksson, A.; Henri, P.; Koenders, C.; Lebreton, J.-P.; Mandt, K. E.; Nilsson, H.; Opitz, A.; Rubin, M.; Schwingenschuh, K.; Stenberg Wieser, G.; Szegö, K.; Vallat, C.; Vallieres, X.; Glassmeier, K.-H.

    2016-01-01

    The data from all Rosetta plasma consortium instruments and from the ROSINA COPS instrument are used to study the interaction of the solar wind with the outgassing cometary nucleus of 67P/Churyumov-Gerasimenko. During 6 and 7 June 2015, the interaction was first dominated by an increase in the solar wind dynamic pressure, caused by a higher solar wind ion density. This pressure compressed the draped magnetic field around the comet, and the increase in solar wind electrons enhanced the ionization of the outflow gas through collisional ionization. The new ions are picked up by the solar wind magnetic field, and create a ring/ring-beam distribution, which, in a high-β plasma, is unstable for mirror mode wave generation. Two different kinds of mirror modes are observed: one of small size generated by locally ionized water and one of large size generated by ionization and pick-up farther away from the comet.

  18. Mass-loading, pile-up, and mirror-mode waves at comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Volwerk, Martin

    2016-04-01

    The data from all Rosetta Plasma Consortium instruments and from the ROSINA COPS instrument are used to study the interaction of the solar wind with the outgassing cometary nucleus of 67P/Churyumov-Gerasimenko. During 6 and 7 June 2015, the interaction was first dominated by an increase in the solar wind dynamic pressure, caused by a higher solar wind ion density. This pressure compressed the draped magnetic field around the comet, and the increase in solar wind electrons enhanced the ionization of the outflow gas through collisional ionization. The new ions are picked up by the solar wind magnetic field, and create a ring/ring-beam distribution, which, in a high-β plasma, is unstable for mirror mode wave generation. Two different kinds of mirror modes are observed: one of small size generated by locally ionized water and one of large size generated by ionization and pick-up farther away from the comet.

  19. Molecular dynamics simulation of Coulomb explosion, melting and shock wave creation in silicon after an ionization pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhongyu; Shao, Lin, E-mail: lshao@tamu.edu; Chen, Di

    Strong electronic stopping power of swift ions in a semiconducting or insulating substrate can lead to localized electron stripping. The subsequent repulsive interactions among charged target atoms can cause Coulomb explosion. Using molecular dynamics simulation, we simulate Coulomb explosion in silicon by introducing an ionization pulse lasting for different periods, and at different substrate temperatures. We find that the longer the pulse period, the larger the melting radius. The observation can be explained by a critical energy density model assuming that melting required thermal energy density is a constant value and the total thermal energy gained from Coulomb explosion ismore » linearly proportional to the ionization period. Our studies also show that melting radius is larger at higher substrate temperatures. The temperature effect is explained due to a longer structural relaxation above the melting temperature at original ionization boundary due to lower heat dissipation rates. Furthermore, simulations show the formation of shock waves, created due to the compression from the melting core.« less

  20. Ionization behavior of polyphosphoinositides determined via the preparation of pH titration curves using solid-state 31P NMR.

    PubMed

    Graber, Zachary T; Kooijman, Edgar E

    2013-01-01

    Detailed knowledge of the degree of ionization of lipid titratable groups is important for the evaluation of protein-lipid and lipid-lipid interactions. The degree of ionization is commonly evaluated by acid-base titration, but for lipids localized in a multicomponent membrane interface this is not a suitable technique. For phosphomonoester-containing lipids such as the polyphosphoinositides, phosphatidic acid, and ceramide-1-phosphate, this is more conveniently accomplished by (31)P NMR. Here, we describe a solid-state (31)P NMR procedure to construct pH titration curves to determine the degree of ionization of phosphomonoester groups in polyphosphoinositides. This procedure can also be used, with suitable sample preparation conditions, for other important signaling lipids. Access to a solid-state, i.e., magic angle spinning, capable NMR spectrometer is assumed. The procedures described here are valid for a Bruker instrument, but can be adapted for other spectrometers as needed.

  1. 21 CFR 886.5200 - Eyelid thermal pulsation system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... use in the application of localized heat and pressure therapy to the eyelids. The device is used in...-ionizing radiation; (2) Design, description, and performance data should validate safeguards related to the...

  2. 21 CFR 886.5200 - Eyelid thermal pulsation system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... use in the application of localized heat and pressure therapy to the eyelids. The device is used in...-ionizing radiation; (2) Design, description, and performance data should validate safeguards related to the...

  3. Synthesis, characterization and computational study of the newly synthetized sulfonamide molecule

    NASA Astrophysics Data System (ADS)

    Murthy, P. Krishna; Suneetha, V.; Armaković, Stevan; Armaković, Sanja J.; Suchetan, P. A.; Giri, L.; Rao, R. Sreenivasa

    2018-02-01

    A new compound N-(2,5-dimethyl-4-nitrophenyl)-4-methylbenzenesulfonamide (NDMPMBS) has been derived from 2,5-dimethyl-4-nitroaniline and 4-methylbenzene-1-sulfonyl chloride. Structure was characterized by SCXRD studies and spectroscopic tools. Compound crystallized in the monoclinic crystal system with P21/c space group a = 10.0549, b = 18.967, c = 8.3087, β = 103.18 and Z = 4. Type and nature of intermolecular interaction in crystal state investigated by 3D-Hirshfeld surface and 2D-finger print plots revealed that title compound stabilized by several interactions. The structural and electronic properties of title compound have been calculated at DFT/B3LYP/6-311G++(d,p) level of theory. Computationally obtained spectral data was compared with experimental results, showing excellent mutual agreement. Assignment of each vibrational wave number was done on the basis of potential energy distribution (PED). Investigation of local reactivity descriptors encompassed visualization of molecular electrostatic potential (MEP) and average local ionization energy (ALIE) surfaces, visualization of Fukui functions, natural bond order (NBO) analysis, bond dissociation energies for hydrogen abstraction (H-BDE) and radial distribution functions (RDF) after molecular dynamics (MD) simulations. MD simulations were also used in order to investigate interaction of NDMPMBS molecule with 1WKR and 3ETT proteins protein.

  4. The detection of interstellar C I in the immediate vicinity of the sun

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Kondo, Y.

    1982-01-01

    Multiple stacked IUE spectra reveal the presence of interstellar C I 1657 in the trough of a corresponding photospheric feature in the nearby star, Alpha PsA (d = 7 pc). This represents the first detection of this neutral atom in the interstellar medium within the immediate vicinity of the sun. It is suggested that C I may be a much better diagnostic tool in studying the local interstellar medium than the neutral species K I and Na I, which are observable at visual wavelengths. Variations in C I column density, coupled with b-values deduced from the Mg II doublet ratio, may prove to be an important means to unravel density and temperature fluctuations in the very local interstellar medium. Comparison of the line of sight toward Alpha PsA with previous Copernicus interstellar Mg II results for that of Alpha Leo tentatively indicates that the distribution of Mg II in the local cloud is not homogeneous about the sun. Rough constraints on the ionization fraction of hydrogen toward Alpha PsA do not conflict with previous data, implying that the very local interstellar medium is significantly ionized.

  5. Quantification of evaporation induced error in atom probe tomography using molecular dynamics simulation.

    PubMed

    Chen, Shu Jian; Yao, Xupei; Zheng, Changxi; Duan, Wen Hui

    2017-11-01

    Non-equilibrium molecular dynamics was used to simulate the dynamics of atoms at the atom probe surface and five objective functions were used to quantify errors. The results suggested that before ionization, thermal vibration and collision caused the atoms to displace up to 1Å and 25Å respectively. The average atom displacements were found to vary between 0.2 and 0.5Å. About 9 to 17% of the atoms were affected by collision. Due to the effects of collision and ion-ion repulsion, the back-calculated positions were on average 0.3-0.5Å different from the pre-ionized positions of the atoms when the number of ions generated per pulse was minimal. This difference could increase up to 8-10Å when 1.5ion/nm 2 were evaporated per pulse. On the basis of the results, surface ion density was considered an important factor that needed to be controlled to minimize error in the evaporation process. Copyright © 2017. Published by Elsevier B.V.

  6. Refreshing the Aged Latent Fingerprints with Ionizing Radiation Prior to the Cyanoacrylate Fuming Procedure: A Preliminary Study.

    PubMed

    Ristova, Mimoza M; Radiceska, Pavlina; Bozinov, Igorco; Barandovski, Lambe

    2016-05-01

    One of the crucial factors determining the cyanoacrylate deposit quality over latent fingerprints appeared to be the extent of the humidity. This work focuses on the enhancement/refreshment of age-degraded latent fingerprints by irradiating the samples with UV, X-ray, or thermal neutrons prior to the cyanoacrylate (CA) fuming. Age degradation of latent fingerprints deposited on glass surfaces was examined through the decrease in the number of characteristic minutiae counts over time. A term "critical day" was introduced for the time at which the average number of identifiable minutiae definitions drops to one-half. Fingerprints older than their "critical day" were exposed to either UV, X-ray, or thermal neutrons. Identical reference samples were kept unexposed. All samples, both reference and irradiated, were developed during a single CA fuming procedure. Comparative latent fingerprint analysis showed that exposure to ionizing radiation enhances the CA fuming, yielding a 20-30% increase in average minutiae count. © 2015 American Academy of Forensic Sciences.

  7. X-ray ionization of the intergalactic medium by quasars

    NASA Astrophysics Data System (ADS)

    Graziani, Luca; Ciardi, B.; Glatzle, M.

    2018-06-01

    We investigate the impact of quasars on the ionization of the surrounding intergalactic medium (IGM) with the radiative transfer code CRASH4, now accounting for X-rays and secondary electrons. After comparing with analytic solutions, we post-process a cosmic volume (≈1.5 × 104 Mpc3h-3) containing a ULAS J1120+0641-like quasar (QSO) hosted by a 5 × 1011M⊙h-1 dark matter (DM) halo. We find that: (i) the average HII region (R ˜ 3.2 pMpc in a lifetime tf = 107 yrs) is mainly set by UV flux, in agreement with semi-analytic scaling relations; (ii) a largely neutral (xHII < 0.001), warm (T ˜ 103 K) tail extends up to few Mpc beyond the ionization front, as a result of the X-ray flux; (iii) LyC-opaque inhomogeneities induce a line of sight (LOS) scatter in R as high as few physical Mpc, consistent with the DLA scenario proposed to explain the anomalous size of the ULAS J1120+0641 ionized region. On the other hand, with an ionization rate \\dot{N}_{γ ,0} ˜ 10^{57} s-1, the assumed DLA clustering and gas opacity, only one LOS shows an HII region compatible with the observed one. We deduce that either the ionization rate of the QSO is at least one order of magnitude lower or the ULAS J1120+0641 bright phase is shorter than 107 yrs.

  8. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    DOE PAGES

    Kim, Michelle J.; Zoerb, Matthew C.; Campbell, Nicole R.; ...

    2016-04-05

    Here, benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e., DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical-ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt −1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a much weaker electric field, demonstrated that ion–molecule reactions likely proceed through amore » combination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The in-field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer, where measurements from the two instruments were highly correlated ( R 2 > 0.95, 10 s averages) over a wide range of sampling conditions.« less

  9. On the use of unshielded cables in ionization chamber dosimetry for total-skin electron therapy.

    PubMed

    Chen, Z; Agostinelli, A; Nath, R

    1998-03-01

    The dosimetry of total-skin electron therapy (TSET) usually requires ionization chamber measurements in a large electron beam (up to 120 cm x 200 cm). Exposing the chamber's electric cable, its connector and part of the extension cable to the large electron beam will introduce unwanted electronic signals that may lead to inaccurate dosimetry results. While the best strategy to minimize the cable-induced electronic signal is to shield the cables and its connector from the primary electrons, as has been recommended by the AAPM Task Group Report 23 on TSET, cables without additional shielding are often used in TSET dosimetry measurements for logistic reasons, for example when an automatic scanning dosimetry is used. This paper systematically investigates the consequences and the acceptability of using an unshielded cable in ionization chamber dosimetry in a large TSET electron beam. In this paper, we separate cable-induced signals into two types. The type-I signal includes all charges induced which do not change sign upon switching the chamber polarity, and type II includes all those that do. The type-I signal is easily cancelled by the polarity averaging method. The type-II cable-induced signal is independent of the depth of the chamber in a phantom and its magnitude relative to the true signal determines the acceptability of a cable for use under unshielded conditions. Three different cables were evaluated in two different TSET beams in this investigation. For dosimetry near the depth of maximum buildup, the cable-induced dosimetry error was found to be less than 0.2% when the two-polarity averaging technique was applied. At greater depths, the relative dosimetry error was found to increase at a rate approximately equal to the inverse of the electron depth dose. Since the application of the two-polarity averaging technique requires a constant-irradiation condition, it was demonstrated than an additional error of up to 4% could be introduced if the unshielded cable's spatial configuration were altered during the two-polarity measurements. This suggests that automatic scanning systems with unshielded cables should not be used in TSET ionization chamber dosimetry. However, the data did show that an unshielded cable may be used in TSET ionization chamber dosimetry if the size of cable-induced error in a given TSET beam is pre-evaluated and the measurement is carefully conducted. When such an evaluation has not been performed, additional shielding should be applied to the cable being used, making measurements at multiple points difficult.

  10. Ionizing radiation-induced acoustics for radiotherapy and diagnostic radiology applications.

    PubMed

    Hickling, Susannah; Xiang, Liangzhong; Jones, Kevin C; Parodi, Katia; Assmann, Walter; Avery, Stephen; Hobson, Maritza; El Naqa, Issam

    2018-04-21

    Acoustic waves are induced via the thermoacoustic effect in objects exposed to a pulsed beam of ionizing radiation. This phenomenon has interesting potential applications in both radiotherapy dosimetry and treatment guidance as well as low dose radiological imaging. After initial work in the field in the 1980s and early 1990s, little research was done until 2013 when interest was rejuvenated, spurred on by technological advances in ultrasound transducers and the increasing complexity of radiotherapy delivery systems. Since then, many studies have been conducted and published applying ionizing radiation-induced acoustic principles into three primary research areas: Linear accelerator photon beam dosimetry, proton therapy range verification, and radiological imaging. This review article introduces the theoretical background behind ionizing radiation-induced acoustic waves, summarizes recent advances in the field, and provides an outlook on how the detection of ionizing radiation-induced acoustic waves can be used for relative and in vivo dosimetry in photon therapy, localization of the Bragg peak in proton therapy, and as a low-dose medical imaging modality. Future prospects and challenges for clinical implementation of these techniques are discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Confluence or independence of microwave plasma bullets in atmospheric argon plasma jet plumes

    NASA Astrophysics Data System (ADS)

    Li, Ping; Chen, Zhaoquan; Mu, Haibao; Xu, Guimin; Yao, Congwei; Sun, Anbang; Zhou, Yuming; Zhang, Guanjun

    2018-03-01

    Plasma bullet is the formation and propagation of a guided ionization wave (streamer), normally generated in atmospheric pressure plasma jet (APPJ). In most cases, only an ionization front produces in a dielectric tube. The present study shows that two or three ionization fronts can be generated in a single quartz tube by using a microwave coaxial resonator. The argon APPJ plumes with a maximum length of 170 mm can be driven by continuous microwaves or microwave pulses. When the input power is higher than 90 W, two or three ionization fronts propagate independently at first; thereafter, they confluence to form a central plasma jet plume. On the other hand, the plasma bullets move independently as the lower input power is applied. For pulsed microwave discharges, the discharge images captured by a fast camera show the ionization process in detail. Another interesting finding is that the strongest lightening plasma jet plumes always appear at the shrinking phase. Both the discharge images and electromagnetic simulations suggest that the confluence or independent propagation of plasma bullets is resonantly excited by the local enhanced electric fields, in terms of wave modes of traveling surface plasmon polaritons.

  12. Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy.

    PubMed

    Izotov, Y I; Orlitová, I; Schaerer, D; Thuan, T X; Verhamme, A; Guseva, N G; Worseck, G

    2016-01-14

    One of the key questions in observational cosmology is the identification of the sources responsible for ionization of the Universe after the cosmic 'Dark Ages', when the baryonic matter was neutral. The currently identified distant galaxies are insufficient to fully reionize the Universe by redshift z ≈ 6 (refs 1-3), but low-mass, star-forming galaxies are thought to be responsible for the bulk of the ionizing radiation. As direct observations at high redshift are difficult for a variety of reasons, one solution is to identify local proxies of this galaxy population. Starburst galaxies at low redshifts, however, generally are opaque to Lyman continuum photons. Small escape fractions of about 1 to 3 per cent, insufficient to ionize much surrounding gas, have been detected only in three low-redshift galaxies. Here we report far-ultraviolet observations of the nearby low-mass star-forming galaxy J0925+1403. The galaxy is leaking ionizing radiation with an escape fraction of about 8 per cent. The total number of photons emitted during the starburst phase is sufficient to ionize intergalactic medium material that is about 40 times as massive as the stellar mass of the galaxy.

  13. On-site Rapid Diagnosis of Intracranial Hematoma using Portable Multi-slice Microwave Imaging System.

    PubMed

    Mobashsher, Ahmed Toaha; Abbosh, A M

    2016-11-29

    Rapid, on-the-spot diagnostic and monitoring systems are vital for the survival of patients with intracranial hematoma, as their conditions drastically deteriorate with time. To address the limited accessibility, high costs and static structure of currently used MRI and CT scanners, a portable non-invasive multi-slice microwave imaging system is presented for accurate 3D localization of hematoma inside human head. This diagnostic system provides fast data acquisition and imaging compared to the existing systems by means of a compact array of low-profile, unidirectional antennas with wideband operation. The 3D printed low-cost and portable system can be installed in an ambulance for rapid on-site diagnosis by paramedics. In this paper, the multi-slice head imaging system's operating principle is numerically analysed and experimentally validated on realistic head phantoms. Quantitative analyses demonstrate that the multi-slice head imaging system is able to generate better quality reconstructed images providing 70% higher average signal to clutter ratio, 25% enhanced maximum signal to clutter ratio and with around 60% hematoma target localization compared to the previous head imaging systems. Nevertheless, numerical and experimental results demonstrate that previous reported 2D imaging systems are vulnerable to localization error, which is overcome in the presented multi-slice 3D imaging system. The non-ionizing system, which uses safe levels of very low microwave power, is also tested on human subjects. Results of realistic phantom and subjects demonstrate the feasibility of the system in future preclinical trials.

  14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits

    NASA Technical Reports Server (NTRS)

    Jensen, R. V.; Sanders, M. M.; Saraceno, M.; Sundaram, B.

    1989-01-01

    A new quantum mechanism for the suppression of chaotic ionization of highly excited hydrogen atoms explains the appearance of anomalously stable states in the microwave ionization experiments of Koch et al. A novel phase-space representation of the perturbed wave functions reveals that the inhibition of quantum transport is due to the selective excitation of wave functions that are highly localized near unstable periodic orbits in the chaotic classical phase space. The 'scarred' wave functions provide a new basis for the quantum description of a variety of classically chaotic systems.

  15. Above-Threshold Ionization by an Elliptically Polarized Field: Quantum Tunneling Interferences and Classical Dodging

    NASA Astrophysics Data System (ADS)

    Paulus, G. G.; Zacher, F.; Walther, H.; Lohr, A.; Becker, W.; Kleber, M.

    1998-01-01

    Measurements of above-threshold ionization electron spectra in an elliptically polarized field as a function of the ellipticity are presented. In the rescattering regime, electron yields quickly drop with increasing ellipticity. The yields of lower-energy electrons rise again when circular polarization is approached. A classical explanation for these effects is provided. Additional local maxima in the yields of lower-energy electrons can be interpreted as being due to interferences of electron trajectories that tunnel out at different times within one cycle of the field.

  16. The Contribution of Ionizing Stars to the Far-Infrared and Radio Emission in the Galaxy

    NASA Astrophysics Data System (ADS)

    Terebey, S.; Fich, M.; Taylor, R.

    1999-12-01

    A summary of research activities carried out in this eighth and final progress report. The final report includes: this summary document, copies of three published research papers, plus a draft manuscript of a fourth research paper entitled "The Contribution of Ionizing Stars to the FarInfrared and Radio Emission in the Milky Way; Evidence for a Swept-up Shell and Diffuse Ionized Halo around the W4 Chimney/Supershell." The main activity during the final quarterly reporting period was research on W4, including analysis of the radio and far-infrared images, generation of shell models, a literature search, and preparation of a research manuscript. There will be additional consultation with co-authors prior to submission of the paper to the Astrophysical Journal. The results will be presented at the 4th Tetons Summer Conference on "Galactic Structure, Stars, and the ISM" in May 2000. In this fourth and last paper we show W4 has a swept-up partially ionized shell of gas and dust which is powered by the OCl 352 star cluster. Analysis shows there is dense interstellar material directly below the shell, evidence that that the lower W4 shell "ran into a brick wall" and stalled, whereas the upper W4 shell achieved "breakout" to form a Galactic chimney. An ionized halo is evidence of Lyman continuum leakage which ionizes the WIM (warm ionized medium). It has long been postulated that the strong winds and abundant ionizing photons from massive stars are responsible for much of the large scale structure in the interstellar medium (ISM), including the ISM in other galaxies. However standard HII region theory predicts few photons will escape the local HII region. The significance of W4 and this work is it provides a direct example of how stellar winds power a galactic chimney, which in turn leads to a low density cavity from which ionizing photons can escape to large distances to ionize the WIM.

  17. The Contribution of Ionizing Stars to the Far-Infrared and Radio Emission in the Galaxy

    NASA Technical Reports Server (NTRS)

    Terebey, S.; Fich, M.; Taylor, R.

    1999-01-01

    A summary of research activities carried out in this eighth and final progress report. The final report includes: this summary document, copies of three published research papers, plus a draft manuscript of a fourth research paper entitled "The Contribution of Ionizing Stars to the FarInfrared and Radio Emission in the Milky Way; Evidence for a Swept-up Shell and Diffuse Ionized Halo around the W4 Chimney/Supershell." The main activity during the final quarterly reporting period was research on W4, including analysis of the radio and far-infrared images, generation of shell models, a literature search, and preparation of a research manuscript. There will be additional consultation with co-authors prior to submission of the paper to the Astrophysical Journal. The results will be presented at the 4th Tetons Summer Conference on "Galactic Structure, Stars, and the ISM" in May 2000. In this fourth and last paper we show W4 has a swept-up partially ionized shell of gas and dust which is powered by the OCl 352 star cluster. Analysis shows there is dense interstellar material directly below the shell, evidence that that the lower W4 shell "ran into a brick wall" and stalled, whereas the upper W4 shell achieved "breakout" to form a Galactic chimney. An ionized halo is evidence of Lyman continuum leakage which ionizes the WIM (warm ionized medium). It has long been postulated that the strong winds and abundant ionizing photons from massive stars are responsible for much of the large scale structure in the interstellar medium (ISM), including the ISM in other galaxies. However standard HII region theory predicts few photons will escape the local HII region. The significance of W4 and this work is it provides a direct example of how stellar winds power a galactic chimney, which in turn leads to a low density cavity from which ionizing photons can escape to large distances to ionize the WIM.

  18. Evidence for Ultra-fast Outflows in Radio-quiet Active Galactic Nuclei. II. Detailed Photoionization Modeling of Fe K-shell Absorption Lines

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.

    2011-11-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet active galactic nuclei (AGNs). These have been detected essentially through blueshifted Fe XXV/XXVI K-shell transitions. In the previous paper of this series we defined UFOs as those highly ionized absorbers with an outflow velocity higher than 10,000 km s-1 and assessed the statistical significance of the associated blueshifted absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. The present paper is an extension of that work. First, we report a detailed curve of growth analysis of the main Fe XXV/XXVI transitions in photoionized plasmas. Then, we estimate an average spectral energy distribution for the sample sources and directly model the Fe K absorbers in the XMM-Newton spectra with the detailed Xstar photoionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35% and that the majority of the Fe K absorbers are indeed associated with UFOs. The outflow velocity distribution spans from ~10,000 km s-1 (~0.03c) up to ~100,000 km s-1 (~0.3c), with a peak and mean value of ~42,000 km s-1 (~0.14c). The ionization parameter is very high and in the range log ξ ~ 3-6 erg s-1 cm, with a mean value of log ξ ~ 4.2 erg s-1 cm. The associated column densities are also large, in the range N H ~ 1022-1024 cm-2, with a mean value of N H ~ 1023 cm-2. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7 keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton-thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can provide important clues on the connection between accretion disks, winds, and jets.

  19. Plasma properties in electron-bombardment ion thrusters

    NASA Technical Reports Server (NTRS)

    Matossian, J. N.; Beattie, J. R.

    1987-01-01

    The paper describes a technique for computing volume-averaged plasma properties within electron-bombardment ion thrusters, using spatially varying Langmuir-probe measurements. Average values of the electron densities are defined by integrating the spatially varying Maxwellian and primary electron densities over the ionization volume, and then dividing by the volume. Plasma properties obtained in the 30-cm-diameter J-series and ring-cusp thrusters are analyzed by the volume-averaging technique. The superior performance exhibited by the ring-cusp thruster is correlated with a higher average Maxwellian electron temperature. The ring-cusp thruster maintains the same fraction of primary electrons as does the J-series thruster, but at a much lower ion production cost. The volume-averaged predictions for both thrusters are compared with those of a detailed thruster performance model.

  20. The VIMOS Ultra Deep Survey: Nature, ISM properties, and ionizing spectra of CIII]λ1909 emitters at z = 2-4

    NASA Astrophysics Data System (ADS)

    Nakajima, K.; Schaerer, D.; Le Fèvre, O.; Amorín, R.; Talia, M.; Lemaux, B. C.; Tasca, L. A. M.; Vanzella, E.; Zamorani, G.; Bardelli, S.; Grazian, A.; Guaita, L.; Hathi, N. P.; Pentericci, L.; Zucca, E.

    2018-05-01

    Context. Ultraviolet (UV) emission-line spectra are used to spectroscopically confirm high-z galaxies and increasingly also to determine their physical properties. Aims: We construct photoionization models to interpret the observed UV spectra of distant galaxies in terms of the dominant radiation field and the physical condition of the interstellar medium (ISM). These models are applied to new spectroscopic observations from the VIMOS Ultra Deep Survey (VUDS). Methods: We construct a large grid of photoionization models, which use several incident radiation fields (stellar populations, active galactic nuclei (AGNs), mix of stars and AGNs, blackbodies, and others), and cover a wide range of metallicities and ionization parameters. From these models we derive new spectral UV line diagnostics using equivalent widths (EWs) of [CIII]λ1909 doublet, CIVλ1549 doublet and the line ratios of [CIII], CIV, and He IIλ1640 recombination lines. We apply these diagnostics to a sample of 450 [CIII]-emitting galaxies at redshifts z = 2-4 previously identified in VUDS. Results: We demonstrate that our photoionization models successfully reproduce observations of nearby and high-redshift sources with known radiation field and/or metallicity. For star-forming galaxies our models predict that [CIII] EW peaks at sub-solar metallicities, whereas CIV EW peaks at even lower metallicity. Using the UV diagnostics, we show that the average star-forming galaxy (EW([CIII]) 2 Å) based on the composite of the 450 UV-selected galaxies' spectra The inferred metallicity and ionization parameter is typically Z = 0.3-0.5 Z⊙ and logU = -2.7 to - 3, in agreement with earlier works at similar redshifts. The models also indicate an average age of 50-200 Myr since the beginning of the current star-formation, and an ionizing photon production rate, ξion, of logξion/erg-1 Hz = 25.3-25.4. Among the sources with EW([CIII]) >= 10 Å, approximately 30% are likely dominated by AGNs. The metallicity derived for galaxies with EW(CIII) = 10-20 Å is low, Z = 0.02-0.2 Z⊙, and the ionization parameter higher (logU -1.7) than the average star-forming galaxy. To explain the average UV observations of the strongest but rarest [CIII] emitters (EW([CIII]) > 20 Å), we find that stellar photoionization is clearly insufficient. A radiation field consisting of a mix of a young stellar population (logξion/erg-1 Hz 25.7) plus an AGN component is required. Furthermore an enhanced C/O abundance ratio (up to the solar value) is needed for metallicities Z = 0.1-0.2 Z⊙ and logU = -1.7 to - 1.5. Conclusions: A large grid of photoionization models has allowed us to propose new diagnostic diagrams to classify the nature of the ionizing radiation field (star formation or AGN) of distant galaxies using UV emission lines, and to constrain their ISM properties. We have applied this grid to a sample of [CIII]-emitting galaxies at z = 2-4 detected in VUDS, finding a range of physical properties and clear evidence for significant AGN contribution in rare sources with very strong [CIII] emission. The UV diagnostics we propose should also serve as an important basis for the interpretation of upcoming observations of high-redshift galaxies. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791.JSPS Overseas Research Fellow.

  1. Identifying and managing the risks of medical ionizing radiation in endourology.

    PubMed

    Yecies, Todd; Averch, Timothy D; Semins, Michelle J

    2018-02-01

    The risks of exposure to medical ionizing radiation is of increasing concern both among medical professionals and the general public. Patients with nephrolithiasis are exposed to high levels of ionizing radiation through both diagnostic and therapeutic modalities. Endourologists who perform a high-volume of fluoroscopy guided procedures are also exposed to significant quantities of ionizing radiation. The combination of judicious use of radiation-based imaging modalities, application of new imaging techniques such as ultra-low dose computed tomography (CT) scan, and modifying use of current technology such as increasing ultrasound and pulsed fluoroscopy utilization offers the possibility of significantly reducing radiation exposure. We present a review of the literature regarding the risks of medical ionizing radiation to patients and surgeons as it pertains to the field of endourology and interventions that can be performed to limit this exposure. A review of the current state of the literature was performed using MEDLINE and PubMed. Interventions designed to limit patient and surgeon radiation exposure were identified and analyzed. Summaries of the data were compiled and synthesized in the body of the text. While no level 1 evidence exists demonstrating the risk of secondary malignancy with radiation exposure, the preponderance of evidence suggests a dose and age dependent increase in malignancy risk from ionizing radiation. Patients with nephrolithiasis were exposed to an average effective dose of 37mSv over a 2 year period. Multiple evidence-based interventions to limit patient and surgeon radiation exposure and associated risk were identified. Current evidence suggest an age and dose dependent risk of secondary malignancy from ionizing radiation. Urologists must act in accordance with ALARA principles to safely manage nephrolithiasis while minimizing radiation exposure.

  2. Spectral Evidence for Ionization in Air-Filled Glow Discharge Tubes: Application to Sprites

    NASA Astrophysics Data System (ADS)

    Armstrong, R. A.; Williams, E. R.; Golka, R. K.; Williams, D. R.

    2001-12-01

    The question of ionization in sprites and the evidence for VLF backscatter from sprites has motivated a quantitative spectral analysis of the various (classical) regions of the glow discharge tube under DC excitation and at air densities appropriate for sprites in the mesosphere. A PR-650 colorimeter (Photo Research, Inc.) has enabled calibrated irradiance measurements for localized zones along the axis of the discharge tube--in the dominantly blue negative glow, in the Faraday dark space and in the red/pink positive column. Consistent with historical nomenclature, nitrogen first and second positive emission is dominant in the positive column (associated with neutral N2), and nitrogen first negative emission, with a prominent peak at 4278 A, is dominant in the blue negative glow (associated with ionized N2+). Whereas nitrogen first and second positive emission are also detected in the negative glow, no spectral evidence for ionization (no 4279, no 3914, no Meinel) is found in the red/pink positive column. This negative result is attributed not to an absence of ionization in the positive column, but rather to a sparse population of N2+ relative to neutral nitrogen in this region, and to the prominent emission in the blue part of the spectrum due to nitrogen second positive. A similar interpretation may be appropriate for the time-integrated spectra from the red body of sprites, also lacking direct evidence for ionization.

  3. Hydraulic effects in a radiative atmosphere with ionization

    NASA Astrophysics Data System (ADS)

    Bhat, P.; Brandenburg, A.

    2016-03-01

    Context. In his 1978 paper, Eugene Parker postulated the need for hydraulic downward motion to explain magnetic flux concentrations at the solar surface. A similar process has also recently been seen in simplified (e.g., isothermal) models of flux concentrations from the negative effective magnetic pressure instability (NEMPI). Aims: We study the effects of partial ionization near the radiative surface on the formation of these magnetic flux concentrations. Methods: We first obtain one-dimensional (1D) equilibrium solutions using either a Kramers-like opacity or the H- opacity. The resulting atmospheres are then used as initial conditions in two-dimensional (2D) models where flows are driven by an imposed gradient force that resembles a localized negative pressure in the form of a blob. To isolate the effects of partial ionization and radiation, we ignore turbulence and convection. Results: Because of partial ionization, an unstable stratification always forms near the surface. We show that the extrema in the specific entropy profiles correspond to the extrema in the degree of ionization. In the 2D models without partial ionization, strong flux concentrations form just above the height where the blob is placed. Interestingly, in models with partial ionization, such flux concentrations always form at the surface well above the blob. This is due to the corresponding negative gradient in specific entropy. Owing to the absence of turbulence, the downflows reach transonic speeds. Conclusions: We demonstrate that, together with density stratification, the imposed source of negative pressure drives the formation of flux concentrations. We find that the inclusion of partial ionization affects the entropy profile dramatically, causing strong flux concentrations to form closer to the surface. We speculate that turbulence effects are needed to limit the strength of flux concentrations and homogenize the specific entropy to a stratification that is close to marginal.

  4. Methods for Creation and Detection of Ultra-Strong Artificial Ionization in the Upper Atmosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Siefring, C. L.; Briczinski, S. J.; Kendall, E. A.; Watkins, B. J.; Bristow, W. A.; Michell, R.

    2013-12-01

    The High Frequency Active Auroral Research Program (HAARP) transmitter in Alaska has been used to produce localized regions of artificial ionization at altitudes between 150 and 250 km. High power radio waves tuned near harmonics of the electron gyro frequency were discovered by Todd Pederson of the Air Force Research Laboratory to produce ionosonde traces that looked like artificial ionization layers below the natural F-region. The initial regions of artificial ionization (AI) were not stable but had moved down in altitude over a period of 15 minutes. Recently, artificial ionization has been produced by the 2nd, 3rd, 4th and 6th harmonics transmissions by the HAARP. In march 2013, the artificial ionization clouds were sustained for more the 5 hours using HAARP tuned to the 4 fce at the full power of 3.6 Mega-Watts with a twisted-beam antenna pattern. Frequency selection with narrow-band sweeps and antenna pattern shaping has been employed for optimal generation of AI. Recent research at HAARP has produced the longest lived and denser artificial ionization clouds using HF transmissions at the harmonics of the electron cyclotron frequency and ring-shaped radio beams tailored to prevent the descent of the clouds. Detection of artificial ionization employs (1) ionosonde echoes, (2) coherent backscatter from the Kodiak SuperDARN radar, (3) enhanced ion and plasma line echoes from the HAARP MUIR radar at 400 MHz, (4) high resolution optical image from ground sites, and (5) unique stimulated electromagnetic emissions, and (6) strong UHF and L-Band scintillation induced into trans-ionospheric signals from satellite radio beacons. Future HAARP experiments will determine the uses of long-sustained AI for enhanced HF communications.

  5. Localization of sclerotic-type chronic graft-vs-host disease to sites of skin injury: potential insight into the mechanism of isomorphic and isotopic responses.

    PubMed

    Martires, Kathryn J; Baird, Kristin; Citrin, Deborah E; Hakim, Fran T; Pavletic, Steven Z; Cowen, Edward W

    2011-09-01

    The mechanisms responsible for the variable manifestations of chronic cutaneous graft-vs-host disease (cGVHD) are poorly understood. Localization of sclerotic-type chronic graft-vs-host disease to sites of skin injury (isomorphic and isotopic responses), a recognized phenomenon in morphea, suggests a potential common pathway between cGVHD and other sclerotic skin conditions. Four cases of sclerotic-type cGVHD developed at the site of disparate skin injuries (ionizing radiotherapy, repeated needle sticks, central catheter site, and varicella-zoster virus infection). We review the spectrum of previously reported cases of sclerotic and nonsclerotic cGVHD relating to external forces on the skin. Localization of sclerotic-type cGVHD may occur after many types of skin injury, including UV and ionizing radiotherapy, needle sticks, viral infection, and pressure or friction. Recognition of this phenomenon may be helpful for the early diagnosis of sclerotic disease. Recent insights into the immunological consequences of minor skin injury may provide important clues to the underlying pathogenesis of cGVHD-mediated skin disease.

  6. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costes, Sylvain V; Chiolo, Irene; Pluth, Janice M.

    2009-09-15

    DNA damage sensing proteins have been shown to localize to the sites of DSB within seconds to minutes following ionizing radiation (IR) exposure, resulting in the formation of microscopically visible nuclear domains referred to as radiation-induced foci (RIF). This review characterizes the spatio-temporal properties of RIF at physiological doses, minutes to hours following exposure to ionizing radiation, and it proposes a model describing RIF formation and resolution as a function of radiation quality and nuclear densities. Discussion is limited to RIF formed by three interrelated proteins ATM (Ataxia telangiectasia mutated), 53BP1 (p53 binding protein 1) and ?H2AX (phosphorylated variant histonemore » H2AX). Early post-IR, we propose that RIF mark chromatin reorganization, leading to a local nuclear scaffold rigid enough to keep broken DNA from diffusing away, but open enough to allow the repair machinery. We review data indicating clear kinetic and physical differences between RIF emerging from dense and uncondensed regions of the nucleus. At later time post-IR, we propose that persistent RIF observed days following exposure to ionizing radiation are nuclear ?scars? marking permanent disruption of the chromatin architecture. When DNA damage is resolved, such chromatin modifications should not necessarily lead to growth arrest and it has been shown that persistent RIF can replicate during mitosis. Thus, heritable persistent RIF spanning over tens of Mbp may affect the transcriptome of a large progeny of cells. This opens the door for a non DNA mutation-based mechanism of radiation-induced phenotypes.« less

  7. Understanding end water quality in hospitals and other large buildings

    EPA Science Inventory

    Local hospitals are depending on the use of copper silver ionization treatment to control Legionella in premise plumbing. Discussion will show some results that speak to the effectiveness of this treatment to control opportunistic pathogens.

  8. Cosmic Reionization On Computers III. The Clumping Factor

    DOE PAGES

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    2015-09-09

    We use fully self-consistent numerical simulations of cosmic reionization, completed under the Cosmic Reionization On Computers project, to explore how well the recombinations in the ionized intergalactic medium (IGM) can be quantified by the effective "clumping factor." The density distribution in the simulations (and, presumably, in a real universe) is highly inhomogeneous and more-or-less smoothly varying in space. However, even in highly complex and dynamic environments, the concept of the IGM remains reasonably well-defined; the largest ambiguity comes from the unvirialized regions around galaxies that are over-ionized by the local enhancement in the radiation field ("proximity zones"). This ambiguity precludesmore » computing the IGM clumping factor to better than about 20%. Furthermore, we discuss a "local clumping factor," defined over a particular spatial scale, and quantify its scatter on a given scale and its variation as a function of scale.« less

  9. Oxygen, Neon, and Iron X-Ray Absorption in the Local Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Gatuzz, Efrain; Garcia, Javier; Kallman, Timothy R.; Mendoza, Claudio

    2016-01-01

    We present a detailed study of X-ray absorption in the local interstellar medium by analyzing the X-ray spectra of 24 galactic sources obtained with the Chandra High Energy Transmission Grating Spectrometer and the XMM-Newton Reflection Grating Spectrometer. Methods. By modeling the continuum with a simple broken power-law and by implementing the new ISMabs X-ray absorption model, we have estimated the total H, O, Ne, and Fe column densities towards the observed sources. Results. We have determined the absorbing material distribution as a function of source distance and galactic latitude longitude. Conclusions. Direct estimates of the fractions of neutrally, singly, and doubly ionized species of O, Ne, and Fe reveal the dominance of the cold component, thus indicating an overall low degree of ionization. Our results are expected to be sensitive to the model used to describe the continuum in all sources.

  10. Cosmic Reionization On Computers III. The Clumping Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    We use fully self-consistent numerical simulations of cosmic reionization, completed under the Cosmic Reionization On Computers project, to explore how well the recombinations in the ionized intergalactic medium (IGM) can be quantified by the effective "clumping factor." The density distribution in the simulations (and, presumably, in a real universe) is highly inhomogeneous and more-or-less smoothly varying in space. However, even in highly complex and dynamic environments, the concept of the IGM remains reasonably well-defined; the largest ambiguity comes from the unvirialized regions around galaxies that are over-ionized by the local enhancement in the radiation field ("proximity zones"). This ambiguity precludesmore » computing the IGM clumping factor to better than about 20%. Furthermore, we discuss a "local clumping factor," defined over a particular spatial scale, and quantify its scatter on a given scale and its variation as a function of scale.« less

  11. COSMIC REIONIZATION ON COMPUTERS. III. THE CLUMPING FACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaurov, Alexander A.; Gnedin, Nickolay Y., E-mail: kaurov@uchicago.edu, E-mail: gnedin@fnal.gov

    We use fully self-consistent numerical simulations of cosmic reionization, completed under the Cosmic Reionization On Computers project, to explore how well the recombinations in the ionized intergalactic medium (IGM) can be quantified by the effective “clumping factor.” The density distribution in the simulations (and, presumably, in a real universe) is highly inhomogeneous and more-or-less smoothly varying in space. However, even in highly complex and dynamic environments, the concept of the IGM remains reasonably well-defined; the largest ambiguity comes from the unvirialized regions around galaxies that are over-ionized by the local enhancement in the radiation field (“proximity zones”). That ambiguity precludesmore » computing the IGM clumping factor to better than about 20%. We also discuss a “local clumping factor,” defined over a particular spatial scale, and quantify its scatter on a given scale and its variation as a function of scale.« less

  12. Non-equilibrium ionization by a periodic electron beam. II. Synthetic Si IV and O IV transition region spectra

    NASA Astrophysics Data System (ADS)

    Dzifčáková, Elena; Dudík, Jaroslav

    2018-03-01

    Context. Transition region (TR) spectra typically show the Si IV 1402.8 Å line to be enhanced by a factor of 5 or more compared to the neighboring O IV 1401.2 Å, contrary to predictions of ionization equilibrium models and the Maxwellian distribution of particle energies. Non-equilibrium effects in TR spectra are therefore expected. Aims: To investigate the combination of non-equilibrium ionization and high-energy particles, we apply the model of the periodic electron beam, represented by a κ-distribution that recurs at periods of several seconds, to plasma at chromospheric temperatures of 104 K. This simple model can approximate a burst of energy release involving accelerated particles. Methods: Instantaneous time-dependent charge states of silicon and oxygen were calculated and used to synthesize the instantaneous and period-averaged spectra of Si IV and O IV. Results: The electron beam drives the plasma out of equilibrium. At electron densities of Ne = 1010 cm-3, the plasma is out of ionization equilibrium at all times in all cases we considered, while for a higher density of Ne = 1011 cm-3, ionization equilibrium can be reached toward the end of each period, depending on the conditions. In turn, the character of the period-averaged synthetic spectra also depends on the properties of the beam. While the case of κ = 2 results in spectra with strong or even dominant O IV, higher values of κ can approximate a range of observed TR spectra. Spectra similar to typically observed spectra, with the Si IV 1402.8 Å line about a factor 5 higher than O IV 1401.2 Å, are obtained for κ = 3. An even higher value of κ = 5 results in spectra that are exclusively dominated by Si IV, with negligible O IV emission. This is a possible interpretation of the TR spectra of UV (Ellerman) bursts, although an interpretation that requires a density that is 1-3 orders of magnitude lower than for equilibrium estimates. Movies associated to Fig. A.1 are available at http://https://www.aanda.org

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Michelle J.; Zoerb, Matthew C.; Campbell, Nicole R.

    Here, benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e., DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical-ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt −1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a much weaker electric field, demonstrated that ion–molecule reactions likely proceed through amore » combination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The in-field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer, where measurements from the two instruments were highly correlated ( R 2 > 0.95, 10 s averages) over a wide range of sampling conditions.« less

  14. Ionizing radiation and taxonomic, functional and evolutionary diversity of bird communities.

    PubMed

    Morelli, Federico; Benedetti, Yanina; Mousseau, Timothy A; Møller, Anders Pape

    2018-08-15

    Ionizing radiation from nuclear accidents at Chernobyl, Fukushima and elsewhere has reduced the abundance, species richness and diversity of ecosystems. Here we analyzed the taxonomic, functional and evolutionary diversity of bird communities in forested areas around Chernobyl. Species richness decreased with increasing radiation, mainly in 2007. Functional richness, but not functional evenness and divergence, decreased with increasing level of ionizing radiation. Evolutionary distinctiveness of bird communities was higher in areas with higher levels of ionizing radiation. Regression tree models revealed that species richness was higher in bird communities in areas with radiation levels lower than 0.7 μSv/h. In contrast, when radiation levels were higher than 16.67 μSv/h, bird species richness reached a minimum. Functional richness was affected by two variables: Forest cover and radiation level. Higher functional richness was found in bird communities in areas with forest cover lower than 50%. In the areas with forest cover higher than 50%, the functional richness was lower when radiation level was higher than 0.91 μSv/h. Finally, the average evolutionary distinctiveness of bird communities was higher in areas with forest cover exceeding 50%. These findings imply that level of ionizing radiation interacted with forest cover to affect species richness and its component parts, i.e. taxonomic, functional, and evolutionary diversity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Towards phasing using high X-ray intensity

    DOE PAGES

    Galli, Lorenzo; Son, Sang -Kil; Barends, Thomas R. M.; ...

    2015-09-30

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting schememore » is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.« less

  16. What is the maximum mass of a Population III galaxy?

    NASA Astrophysics Data System (ADS)

    Visbal, Eli; Bryan, Greg L.; Haiman, Zoltán

    2017-08-01

    We utilize cosmological hydrodynamic simulations to study the formation of Population III (Pop III) stars in dark matter haloes exposed to strong ionizing radiation. We simulate the formation of three haloes subjected to a wide range of ionizing fluxes, and find that for high flux, ionization and photoheating can delay gas collapse and star formation up to halo masses significantly larger than the atomic cooling threshold. The threshold halo mass at which gas first collapses and cools increases with ionizing flux for intermediate values, and saturates at a value approximately an order of magnitude above the atomic cooling threshold for extremely high flux (e.g. ≈5 × 108 M⊙ at z ≈ 6). This behaviour can be understood in terms of photoheating, ionization/recombination and Ly α cooling in the pressure-supported, self-shielded gas core at the centre of the growing dark matter halo. We examine the spherically averaged radial velocity profiles of collapsing gas and find that a gas mass of up to ≈106 M⊙ can reach the central regions within 3 Myr, providing an upper limit on the amount of massive Pop III stars that can form. The ionizing radiation increases this limit by a factor of a few compared to strong Lyman-Werner radiation alone. We conclude that the bright He II 1640 Å emission recently observed from the high-redshift galaxy CR7 cannot be explained by Pop III stars alone. However, in some haloes, a sufficient number of Pop III stars may form to be detectable with future telescopes such as the James Webb Space Telescope.

  17. Local protoplanetary disk ionisation by T Tauri star energetic particles

    NASA Astrophysics Data System (ADS)

    Fraschetti, F.; Drake, J.; Cohen, O.; Garraffo, C.

    2017-10-01

    The evolution of protoplanetary disks is believed to be driven largely by viscosity. The ionization of the disk that gives rise to viscosity is caused by X-rays from the central star or by energetic particles released by shock waves travelling into the circumstellar medium. We have performed test-particle numerical simulations of GeV-scale protons traversing a realistic magnetised wind of a young solar mass star with a superposed small-scale turbulence. The large-scale field is generated via an MHD model of a T Tauri wind, whereas the isotropic (Kolmogorov power spectrum) turbulent component is synthesised along the particles' trajectories. We have combined Chandra observations of T Tauri flares with solar flare scaling for describing the energetic particle spectrum. In contrast with previous models, we find that the disk ionization is dominated by X-rays except within narrow regions where the energetic particles are channelled onto the disk by the strongly tangled and turbulent field lines; the radial thickness of such regions broadens with the distance from the central star (5 stellar radii or more). In those regions, the disk ionization due to energetic particles can locally dominate the stellar X-rays, arguably, out to large distances (10, 100 AU) from the star.

  18. The road to the red sequence via secular and environmental processes: insights from the local Universe

    NASA Astrophysics Data System (ADS)

    Consolandi, Guido

    2017-04-01

    The evolution of galaxies can be thought as the result of the cumulative effects of two broad classes of processes: (i) secular (internal) processes determined by the very nature of the galaxy, and (ii) external processes that are determined by the environment in which the object is embedded. In this thesis I face both aspects of galaxy evolution. Among secular processes, I investigated the effects of stellar bars on the gaseous components of galaxies and their consequences on their evolution. In particular I show how bars affect both the ionized and cold gas in two different samples: the sample of the Halpha3 survey, an Halpha imaging survey of galaxies selected from ALFALFA in the Local and Coma superclusters; the Herschel Reference Sample, a representative sample of 323 local galaxies observed with the space-based Herschel observatory sensitive to the far-infrared emission of dust, a good tracer of cold gas. Owing to the Halpha3 data I demonstrate that main sequence barred galaxies have specific star formation rate suppressed with respect to pure disks. Here I propose a simple model in which bars drive the evolution of disk galaxies. Hydrodynamical simulations indeed show that a barred potential funnels the gas inside the corotation radius toward the center of the galaxy where it reaches high densities, cools and can be consumed by a burst of star formation. At the same time the dynamical torque of the bar keeps the gas outside the corotation radius in place, cutting the gas supply to the central region that consequently stops its star formation activity. Taking advantage of the images of the HRS sample, we show the evidences of such quenching. The aforementioned model is further tested by studying the stellar population properties of galaxies belonging to a sample of 6000 galaxies extracted from SDSS. To this aim, I designed in-house IDL codes that automatically perform aperture photometry and isophotal fitting recovering reliable magnitudes, colors, ellipticity, position angle (P.A.) and color pr! ofiles. The automatic procedure is complemented by an automatic bar finder able to extract a fairly pure sample of barred galaxies on the basis of their P.A. and ellipticity profiles. The analysis of color profiles show that disk galaxies have their central regions redder (therefore quenched) than their outer regions and that this is more evident at high mass. The high local bar fraction that we extrapolate as well as the analysis of the average color profile of barred galaxies shows the strong contribution of bars to the observed colors. In a second part, I present the work done in the field of environmental processes. The work is focused on the analysis of the observations, carried on with the IFU MUSE, of a system belonging to the nearby galaxy cluster A1367. These observations mosaicked the galaxies UGC-66967 and CGCG-97087N, two galaxies suffering ram pressure stripping and that have possibly interacted, as hinted by the presence of gas in the region between them. Owing to in-house automatic Python codes and by comparing the gas velocities to the stellar kinematics, we could separate the emission of the ionized gas in a stripped component and a component still attached to the potential of the galaxy. While the gas onboard the galaxy shows low velocity dispersions and ionizations states consistent with photoionization by stars, the stripped gas is more turbulent and ionized by shocks. The HII regions that formed in the tail of UGC-66967 (but are absent in the tail of CGCG-97087N) are systematically found in regions where the velocity dispersion of the gas is lower than 50 km/s, while the stripped gas show typical velocity dispersions about or greater than 100 km/s.

  19. A collisional-radiative model of iron vapour in a thermal arc plasma

    NASA Astrophysics Data System (ADS)

    Baeva, M.; Uhrlandt, D.; Murphy, A. B.

    2017-06-01

    A collisional-radiative model for the ground state and fifty effective excited levels of atomic iron, and one level for singly-ionized iron, is set up for technological plasmas. Attention is focused on the population of excited states of atomic iron as a result of excitation, de-excitation, ionization, recombination and spontaneous emission. Effective rate coefficients for ionization and recombination, required in non-equilibrium plasma transport models, are also obtained. The collisional-radiative model is applied to a thermal arc plasma. Input parameters for the collisional-radiative model are provided by a magnetohydrodynamic simulation of a gas-metal welding arc, in which local thermodynamic equilibrium is assumed and the treatment of the transport of metal vapour is based on combined diffusion coefficients. The results clearly identify the conditions in the arc, under which the atomic state distribution satisfies the Boltzmann distribution, with an excitation temperature equal to the plasma temperature. These conditions are met in the central part of the arc, even though a local temperature minimum occurs here. This provides assurance that diagnostic methods based on local thermodynamic equilibrium, in particular those of optical emission spectroscopy, are reliable here. In contrast, deviations from the equilibrium atomic-state distribution are obtained in the near-electrode and arc fringe regions. As a consequence, the temperatures determined from the ratio of line intensities and number densities obtained from the emission coefficient in these regions are questionable. In this situation, the collisional-radiative model can be used as a diagnostic tool to assist in the interpretation of spectroscopic measurements.

  20. Physical conditions of the interstellar medium in star-forming galaxies at z ˜ 1.5

    NASA Astrophysics Data System (ADS)

    Hayashi, Masao; Ly, Chun; Shimasaku, Kazuhiro; Motohara, Kentaro; Malkan, Matthew A.; Nagao, Tohru; Kashikawa, Nobunari; Goto, Ryosuke; Naito, Yoshiaki

    2015-10-01

    We present results from Subaru Fiber Multi Object Spectrograph near-infrared spectroscopy of 118 star-forming galaxies at z ˜ 1.5 in the Subaru Deep Field. These galaxies are selected as [O II]λ3727 emitters at z ≈ 1.47 and 1.62 from narrow-band imaging. We detect the Hα emission line in 115 galaxies, the [O III]λ5007 emission line in 45 galaxies, and Hβ, [N II]λ6584, and [S II]λλ6716, 6731 in 13, 16, and 6 galaxies, respectively. Including the [O II] emission line, we use the six strong nebular emission lines in the individual and composite rest-frame optical spectra to investigate the physical conditions of the interstellar medium in star-forming galaxies at z ˜ 1.5. We find a tight correlation between Hα and [O II], which suggests that [O II] can be a good star formation rate indicator for galaxies at z ˜ 1.5. The line ratios of Hα/[O II] are consistent with those of local galaxies. We also find that [O II] emitters have strong [O III] emission lines. The [O III]/[O II] ratios are larger than normal star-forming galaxies in the local universe, suggesting a higher ionization parameter. Less massive galaxies have larger [O III]/[O II] ratios. With evidence that the electron density is consistent with local galaxies, the high ionization of galaxies at high redshifts may be attributed to a harder radiation field by a young stellar population and/or an increase in the number of ionizing photons from each massive star.

  1. New constraints on the average escape fraction of Lyman continuum radiation in z 4 galaxies from the VIMOS Ultra Deep Survey (VUDS)

    NASA Astrophysics Data System (ADS)

    Marchi, F.; Pentericci, L.; Guaita, L.; Ribeiro, B.; Castellano, M.; Schaerer, D.; Hathi, N. P.; Lemaux, B. C.; Grazian, A.; Le Fèvre, O.; Garilli, B.; Maccagni, D.; Amorin, R.; Bardelli, S.; Cassata, P.; Fontana, A.; Koekemoer, A. M.; Le Brun, V.; Tasca, L. A. M.; Thomas, R.; Vanzella, E.; Zamorani, G.; Zucca, E.

    2017-05-01

    Context. Determining the average fraction of Lyman continuum (LyC) photons escaping high redshift galaxies is essential for understanding how reionization proceeded in the z> 6 Universe. Aims: We want to measure the LyC signal from a sample of sources in the Chandra Deep Field South (CDFS) and COSMOS fields for which ultra-deep VIMOS spectroscopy as well as multi-wavelength Hubble Space Telescope (HST) imaging are available. Methods: We select a sample of 46 galaxies at z 4 from the VIMOS Ultra Deep Survey (VUDS) database, such that the VUDS spectra contain the LyC part, that is, the rest-frame range 880-910 Å. Taking advantage of the HST imaging, we apply a careful cleaning procedure and reject all the sources showing nearby clumps with different colours, that could potentially be lower-redshift interlopers. After this procedure, the sample is reduced to 33 galaxies. We measure the ratio between ionizing flux (LyC at 895 Å) and non-ionizing emission (at 1500 Å) for all individual sources. We also produce a normalized stacked spectrum of all sources. Results: Assuming an intrinsic average Lν(1470) /Lν(895) of 3, we estimate the individual and average relative escape fraction. We do not detect ionizing radiation from any individual source, although we identify a possible LyC emitter with very high Lyα equivalent width (EW). From the stacked spectrum and assuming a mean transmissivity for the sample, we measure a relative escape fraction . We also look for correlations between the limits in the LyC flux and source properties and find a tentative correlation between LyC flux and the EW of the Lyα emission line. Conclusions: Our results imply that the LyC flux emitted by V = 25-26 star-forming galaxies at z 4 is at most very modest, in agreement with previous upper limits from studies based on broad and narrow band imaging. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791.

  2. Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs: III - Location and Energetics

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-01-01

    Using the results of a previous X-ray photo-ionization modelling of blue-shifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval approx.0.0003-0.03pc (approx.10(exp 2)-10(exp 4)tau(sub s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are constrained between approx.0.01- 1 Stellar Mass/y, corresponding to approx. or >5-10% of the accretion rates. The average lower-upper limits on the mechanical power are logE(sub K) approx. or = 42.6-44.6 erg/s. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN r.osmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyferts galaxies .

  3. MICROLENSING OF QUASAR BROAD EMISSION LINES: CONSTRAINTS ON BROAD LINE REGION SIZE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerras, E.; Mediavilla, E.; Jimenez-Vicente, J.

    2013-02-20

    We measure the differential microlensing of the broad emission lines between 18 quasar image pairs in 16 gravitational lenses. We find that the broad emission lines are in general weakly microlensed. The results show, at a modest level of confidence (1.8{sigma}), that high ionization lines such as C IV are more strongly microlensed than low ionization lines such as H{beta}, indicating that the high ionization line emission regions are more compact. If we statistically model the distribution of microlensing magnifications, we obtain estimates for the broad line region size of r{sub s} = 24{sup +22} {sub -15} and r{sub s}more » = 55{sup +150} {sub -35} lt-day (90% confidence) for the high and low ionization lines, respectively. When the samples are divided into higher and lower luminosity quasars, we find that the line emission regions of more luminous quasars are larger, with a slope consistent with the expected scaling from photoionization models. Our estimates also agree well with the results from local reveberation mapping studies.« less

  4. Simulating Cosmic Reionization and Its Observable Consequences

    NASA Astrophysics Data System (ADS)

    Shapiro, Paul

    2017-01-01

    I summarize recent progress in modelling the epoch of reionization by large- scale simulations of cosmic structure formation, radiative transfer and their interplay, which trace the ionization fronts that swept across the IGM, to predict observable signatures. Reionization by starlight from early galaxies affected their evolution, impacting reionization, itself, and imprinting the galaxies with a memory of reionization. Star formation suppression, e.g., may explain the observed underabundance of Local Group dwarfs relative to N-body predictions for Cold Dark Matter. I describe CoDa (''Cosmic Dawn''), the first fully-coupled radiation-hydrodynamical simulation of reionization and galaxy formation in the Local Universe, in a volume large enough to model reionization globally but with enough resolving power to follow all the atomic-cooling galactic halos in that volume. A 90 Mpc box was simulated from a constrained realization of primordial fluctuations, chosen to reproduce present-day features of the Local Group, including the Milky Way and M31, and the local universe beyond, including the Virgo cluster. The new RAMSES-CUDATON hybrid CPU-GPU code took 11 days to perform this simulation on the Titan supercomputer at Oak Ridge National Laboratory, with 4096-cubed N-body particles for the dark matter and 4096-cubed cells for the atomic gas and ionizing radiation.

  5. Argon laser phototherapy could eliminate the damage effects induced by the ionizing radiation "gamma radiation" in irradiated rabbits.

    PubMed

    Abdul-Aziz, Karolin Kamel; Tuorkey, M J

    2010-04-02

    The ionizing radiations could be taken in considerate as an integral part in our life, since, living organisms are actually exposed to a constant shower of ionizing radiations whether from the natural or artificial resources. The radio-protective efficiency of several chemicals has been confirmed in animal trails, whereas, due to their accumulative toxicity, their clinical utility is limited. Therefore, we aimed in the present work to investigate the possibility of using argon laser to recuperate the damaged tissues due to exposing to the ionizing radiation. The rabbits were used in this study, and they were designed as control, gamma irradiated, laser, and gamma plus laser groups. Lipid peroxidation, reduced glutathione (GSH), glutathione peroxidase (GSH-Px) and glucose-6-phosphate dehydrogenase (G-6-PD) in blood and liver were evaluated. As well as, the level of protein thiol was evaluated in the plasma among each group. Results of this study revealed the potential therapeutic performance of the treatment by laser argon to decline the damaging effect of the ionized radiation whether at systematic or local levels. In conclusion, argon laser therapy appears propitious protective effect against the hazard effects of gamma radiation. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Radiative transfer in dusty nebulae. III - The effects of dust albedo

    NASA Technical Reports Server (NTRS)

    Petrosian, V.; Dana, R. A.

    1980-01-01

    The effects of an albedo of internal dust, such as ionization structure and temperature of dust grain, were studied by the quasi-diffusion method with an iterative technique for solving the radiative heat transfer equations. It was found that the generalized on-the-spot approximation solution is adequate for most astrophysical applications for a zero albedo; for a nonzero albedo, the Eddington approximation is more accurate. The albedo increases the average energy of the diffuse photons, increasing the ionization level of hydrogen and heavy elements if the Eddington approximation is applied; the dust thermal gradient is reduced so that the infrared spectrum approaches blackbody spectrum with an increasing albedo.

  7. Influence of Plasma Environment on K-Line Emission in Highly Ionized Iron Atoms Evaluated Using a Debye-Huckel Model

    NASA Technical Reports Server (NTRS)

    Deprince, J.; Fritzsche, S.; Kallman, T. R.; Palmeri, P.; Quinet, P.

    2017-01-01

    The influence of plasma environment on the atomic parameters associated with the K-vacancy states has been investigated theoretically for several iron ions. To do this, a time-averaged Debye-Huckel potential for both the electron-nucleus and electron-electron interactions has been considered in the framework of relativistic multiconfiguration Dirac-Fock computations. More particularly, the plasma screening effects on ionization potentials, K-thresholds, transition energies, and radiative rates have been estimated in the astrophysical context of accretion disks around black holes. In the present paper, we describe the behavior of those atomic parameters for Ne-, Na-, Ar-, and K-like iron ions.

  8. Analysis Of Ultra Compact Ionized Hydrogen Regions Within The Northern Half Of The Galactic Disk

    NASA Astrophysics Data System (ADS)

    Bruce, John

    2011-01-01

    From a catalog of 199 candidate ultra compact (UC) HII regions 123 sources included in the the intersection of the GLIMPSE (8 μm),Cornish (6 cm), and Bolocam ( 1.1 mm) galactic plane surveys (BGPS) were analyzed. The sources were sorted based on 6 cm morphology and coincidence with 8 μm bubbles. The 1.1 mm flux attributes were measured and calculations were performed to determine the ionized hydrogen contributions to the 1.1 mm flux. The category averages and frequencies were obtained as well. Significant differences in HII percentages were present among the morphology groups but ranged widely, without apparent distinction, between the bubble forming and triggered source categories.

  9. [Determination of 27 industrial dyes in juice and wine using ultra performance liquid chromatography with electrospray ionization tandem quadrupole mass spectrometry].

    PubMed

    Zhao, Shan; Zhang, Jing; Yang, Yi; Shao, Bing

    2010-04-01

    A method for the determination of 27 industrial dyes in juice and wine has been developed using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/ MS). Acetonitrile was used as extraction solvent, and sodium chloride was added to salt out the analytes from the samples. Chromatographic separation was performed on a C18 column with the gradient elution and the mass spectrometric acquisition was carried out under the mode of multiple reaction monitoring (MRM). Twenty-four of the 27 dyes were detected under positive ionization mode using the mobile phase of acetonitrile and water containing 0.1% formic acid. The other 3 dyes were analyzed under negative ionization mode with the mobile phase of acetonitrile and water. As a result, the average recoveries of 27 dyes spiked in juice ranged from 57.0% to 117.7% with the relative standard deviations (RSDs) of 2.4%-17.7%, and the average recoveries of 27 dyes spiked in wine ranged from 40.8% to 109.4% with the RSDs of 1.6%-17.9%. The limits of quantification (LOQs) of 27 dyes spiked in juice were in the range of 0.1-50 microg/kg, and 0.2-50 microg/kg for those spiked in wine. This method can be applied to rapid detection of illegally added dyes in soft drinks due to its simplicity and high sensitivity.

  10. Estimating the risks of cancer mortality and genetic defects resulting from exposures to low levels of ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buhl, T.E.; Hansen, W.R.

    1984-05-01

    Estimators for calculating the risk of cancer and genetic disorders induced by exposure to ionizing radiation have been recommended by the US National Academy of Sciences Committee on the Biological Effects of Ionizing Radiations, the UN Scientific Committee on the Effects of Atomic Radiation, and the International Committee on Radiological Protection. These groups have also considered the risks of somatic effects other than cancer. The US National Council on Radiation Protection and Measurements has discussed risk estimate procedures for radiation-induced health effects. The recommendations of these national and international advisory committees are summarized and compared in this report. Based onmore » this review, two procedures for risk estimation are presented for use in radiological assessments performed by the US Department of Energy under the National Environmental Policy Act of 1969 (NEPA). In the first procedure, age- and sex-averaged risk estimators calculated with US average demographic statistics would be used with estimates of radiation dose to calculate the projected risk of cancer and genetic disorders that would result from the operation being reviewed under NEPA. If more site-specific risk estimators are needed, and the demographic information is available, a second procedure is described that would involve direct calculation of the risk estimators using recommended risk-rate factors. The computer program REPCAL has been written to perform this calculation and is described in this report. 25 references, 16 tables.« less

  11. From clusters to bulk: A relativistic density functional investigation on a series of gold clusters Aun, n=6,…,147

    NASA Astrophysics Data System (ADS)

    Häberlen, Oliver D.; Chung, Sai-Cheong; Stener, Mauro; Rösch, Notker

    1997-03-01

    A series of gold clusters spanning the size range from Au6 through Au147 (with diameters from 0.7 to 1.7 nm) in icosahedral, octahedral, and cuboctahedral structure has been theoretically investigated by means of a scalar relativistic all-electron density functional method. One of the main objectives of this work was to analyze the convergence of cluster properties toward the corresponding bulk metal values and to compare the results obtained for the local density approximation (LDA) to those for a generalized gradient approximation (GGA) to the exchange-correlation functional. The average gold-gold distance in the clusters increases with their nuclearity and correlates essentially linearly with the average coordination number in the clusters. An extrapolation to the bulk coordination of 12 yields a gold-gold distance of 289 pm in LDA, very close to the experimental bulk value of 288 pm, while the extrapolated GGA gold-gold distance is 297 pm. The cluster cohesive energy varies linearly with the inverse of the calculated cluster radius, indicating that the surface-to-volume ratio is the primary determinant of the convergence of this quantity toward bulk. The extrapolated LDA binding energy per atom, 4.7 eV, overestimates the experimental bulk value of 3.8 eV, while the GGA value, 3.2 eV, underestimates the experiment by almost the same amount. The calculated ionization potentials and electron affinities of the clusters may be related to the metallic droplet model, although deviations due to the electronic shell structure are noticeable. The GGA extrapolation to bulk values yields 4.8 and 4.9 eV for the ionization potential and the electron affinity, respectively, remarkably close to the experimental polycrystalline work function of bulk gold, 5.1 eV. Gold 4f core level binding energies were calculated for sites with bulk coordination and for different surface sites. The core level shifts for the surface sites are all positive and distinguish among the corner, edge, and face-centered sites; sites in the first subsurface layer show still small positive shifts.

  12. SU-F-T-552: A One-Year Evaluation of the QABeamChecker+ for Use with the CyberKnife System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gersh, J; Spectrum Medical Physics, LLC, Greenville, SC

    Purpose: By attaching an adapter plate with fiducial markers to the QA BeamChecker+ (Standard Imaging, Inc., Middleton, WI), the output of the CyberKnife can be accurately, efficiently, and consistently evaluated. The adapter plate, known as the Cutting Board, allows for automated alignment of the QABC+ using the CK’s stereoscopic kV image-based treatment localization system (TLS). Described herein is an evaluation of the system following a year of clinical utilization. Methods: Based on a CT scan of the QABC+ and CB, a treatment plan is generated which delivers a beam to each of the 5 plane-parallel ionization chambers. Following absolute calibrationmore » of the CK, the QA plan is delivered, and baseline measurements are acquired (and automatically corrected for temperature and pressure). This test was performed at the beginning of each treatment day for a year. A calibration evaluation (using a water-equivalent slab and short thimble chamber) is performed every four weeks, or whenever the QABC+ detects a deviation of more than 1.0%. Results: During baseline evaluation, repeat measurements (n=10) were performed, with an average output of 0.25% with an SD of 0.11%. As a test of the reposition of the QABC+ and CB, ten additional measurements were performed where between each acquisition, the entire system was removed and re-positioned using the TLS. The average output deviation was 0.30% with a SD of 0.13%. During the course of the year, 187 QABC+ measurements and 13 slab-based measurements were performed. The output measurements of the QABC+ correlated well with slab-based measurements (R2=0.909). Conclusion: By using the QABC+ and CB, daily output was evaluated accurately, efficiently, and consistently. From setup to break-down (including analysis), this test required 5 minutes instead of approximately 15 using traditional techniques (collimator-mounted ionization chambers). Additionally, by automatically saving resultant output deviation to a database, trend analysis was simplified. Spectrum Medical Physics, LLC of Greenville, SC has a consulting contract with Standard Imaging of Middleton, WI.« less

  13. The FUSE Survey of 0 VI in the Galactic Halo

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Savage, B. D.; Wakker, B. P.; Sembach, K. R.; Jenkins, E. B.; Moos, H. W.; Shull, J. M.

    2003-01-01

    This paper summarizes the results of the Far-Ultraviolet Spectroscopic Explorer (FUSE) program to study 0 VI in the Milky Way halo. Spectra of 100 extragalactic objects and two distant halo stars are analyzed to obtain measures of O VI absorption along paths through the Milky Way thick disk/halo. Strong O VI absorption over the velocity range from -100 to 100 km/s reveals a widespread but highly irregular distribution of O VI, implying the existence of substantial amounts of hot gas with T approx. 3 x 10(exp 5) K in the Milky Way thick disk/halo. The overall distribution of O VI is not well described by a symmetrical plane-parallel layer of patchy O VI absorption. The simplest departure from such a model that provides a reasonable fit to the observations is a plane-parallel patchy absorbing layer with an average O VI mid-plane density of n(sub 0)(O VI) = 1.7 x 10(exp -2)/cu cm, a scale height of approx. 2.3 kpc, and a approx. 0.25 dex excess of O VI in the northern Galactic polar region. The distribution of O VI over the sky is poorly correlated with other tracers of gas in the halo, including low and intermediate velocity H I, Ha emission from the warm ionized gas at approx. l0(exp 4) K, and hot X-ray emitting gas at approx. l0(exp 6) K . The O VI has an average velocity dispersion, b approx. 60 km/s and standard deviation of 15 km/s. Thermal broadening alone cannot explain the large observed profile widths. A combination of models involving the radiative cooling of hot fountain gas, the cooling of supernova bubbles in the halo, and the turbulent mixing of warm and hot halo gases is required to explain the presence of O VI and other highly ionized atoms found in the halo. The preferential venting of hot gas from local bubbles and superbubbles into the northern Galactic polar region may explain the enhancement of O VI in the North.

  14. Ionization of Interstellar Hydrogen

    NASA Astrophysics Data System (ADS)

    Whang, Y. C.

    1996-09-01

    Interstellar hydrogen can penetrate through the heliopause, enter the heliosphere, and may become ionized by photoionization and by charge exchange with solar wind protons. A fluid model is introduced to study the flow of interstellar hydrogen in the heliosphere. The flow is governed by moment equations obtained from integration of the Boltzmann equation over the velocity space. Under the assumption that the flow is steady axisymmetric and the pressure is isotropic, we develop a method of solution for this fluid model. This model and the method of solution can be used to study the flow of neutral hydrogen with various forms of ionization rate β and boundary conditions for the flow on the upwind side. We study the solution of a special case in which the ionization rate β is inversely proportional to R2 and the interstellar hydrogen flow is uniform at infinity on the upwind side. We solve the moment equations directly for the normalized density NH/NN∞, bulk velocity VH/VN∞, and temperature TH/TN∞ of interstellar hydrogen as functions of r/λ and z/λ, where λ is the ionization scale length. The solution is compared with the kinetic theory solution of Lallement et al. The fluid solution is much less time-consuming than the kinetic theory solutions. Since the ionization rate for production of pickup protons is directly proportional to the local density of neutral hydrogen, the high-resolution solution of interstellar neutral hydrogen obtained here will be used to study the global distribution of pickup protons.

  15. Helium on Venus - Implications for uranium and thorium

    NASA Technical Reports Server (NTRS)

    Prather, M. J.; Mcelroy, M. B.

    1983-01-01

    Helium is removed at an average rate of 10 to the 6th atoms per square centimeter per second from Venus's atmosphere by the solar wind following ionization above the plasmapause. The surface source of helium-4 on Venus is similar to that on earth, suggesting comparable abundances of crustal uranium and thorium.

  16. Quantitative ionization chamber alignment to a water surface: Theory and simulation.

    PubMed

    Siebers, Jeffrey V; Ververs, James D; Tessier, Frédéric

    2017-07-01

    To examine the response properties of cylindrical cavity ionization chambers (ICs) in the depth-ionization buildup region so as to obtain a robust chamber-signal - based method for definitive water surface identification, hence absolute ionization chamber depth localization. An analytical model with simplistic physics and geometry is developed to explore the theoretical aspects of ionization chamber response near a phantom water surface. Monte Carlo simulations with full physics and ionization chamber geometry are utilized to extend the model's findings to realistic ion chambers in realistic beams and to study the effects of IC design parameters on the entrance dose response. Design parameters studied include full and simplified IC designs with varying central electrode thickness, wall thickness, and outer chamber radius. Piecewise continuous fits to the depth-ionization signal gradient are used to quantify potential deviation of the gradient discontinuity from the chamber outer radius. Exponential, power, and hyperbolic sine functional forms are used to model the gradient for chamber depths of zero to the depth of the gradient discontinuity. The depth-ionization gradient as a function of depth is maximized and discontinuous when a submerged IC's outer radius coincides with the water surface. We term this depth the gradient chamber alignment point (gCAP). The maximum deviation between the gCAP location and the chamber outer radius is 0.13 mm for a hypothetical 4 mm thick wall, 6.45 mm outer radius chamber using the power function fit, however, the chamber outer radius is within the 95% confidence interval of the gCAP determined by this fit. gCAP dependence on the chamber wall thickness is possible, but not at a clinically relevant level. The depth-ionization gradient has a discontinuity and is maximized when the outer-radius of a submerged IC coincides with the water surface. This feature can be used to auto-align ICs to the water surface at the time of scanning and/or be applied retrospectively to scan data to quantify absolute IC depth. Utilization of the gCAP should yield accurate and reproducible depth calibration for clinical depth-ionization measurements between setups and between users. © 2017 American Association of Physicists in Medicine.

  17. Indoor External Radiation Risk in Densely Populated Regions of Southern Nigeria

    NASA Astrophysics Data System (ADS)

    Ife-Adediran, Oluwatobi O.; Uwadiae, Iyobosa B.

    2018-02-01

    It is known that certain types of building materials contain significant concentrations of natural radionuclides; consequently, exposure to indoor background radiation is from the combined radioactivity from the soil as well as building materials; indoor exposures therefore have higher radiation hazard potentials than outdoor exposures in this regard and hence, need to be monitored. In this paper, an evaluation of background ionizing radiation from different buildings in Lagos and Ibadan, Southwestern Nigeria was carried out to determine the exposure rate of the general public to indoor ionizing radiation. 630 in situ measurements from the different buildings were taken using a Geiger Muller counter (model GQ-320 Plus). The indoor dose rates (i.e., 50-120 nGy/h) were within the world average values while the Annual Effective Dose for most of the buildings were above the world average AED for indoor gamma exposure from building materials. The mean AED for Lagos and Ibadan due to indoor exposures were 0.37 and 0.39 mSv/y with Excess Lifetime Cancer Risk of 0.99E-3 and 1.05E-3, respectively.

  18. Indoor External Radiation Risk in Densely Populated Regions of Southern Nigeria

    NASA Astrophysics Data System (ADS)

    Ife-Adediran, Oluwatobi O.; Uwadiae, Iyobosa B.

    2018-05-01

    It is known that certain types of building materials contain significant concentrations of natural radionuclides; consequently, exposure to indoor background radiation is from the combined radioactivity from the soil as well as building materials; indoor exposures therefore have higher radiation hazard potentials than outdoor exposures in this regard and hence, need to be monitored. In this paper, an evaluation of background ionizing radiation from different buildings in Lagos and Ibadan, Southwestern Nigeria was carried out to determine the exposure rate of the general public to indoor ionizing radiation. 630 in situ measurements from the different buildings were taken using a Geiger Muller counter (model GQ-320 Plus). The indoor dose rates (i.e., 50-120 nGy/h) were within the world average values while the Annual Effective Dose for most of the buildings were above the world average AED for indoor gamma exposure from building materials. The mean AED for Lagos and Ibadan due to indoor exposures were 0.37 and 0.39 mSv/y with Excess Lifetime Cancer Risk of 0.99E-3 and 1.05E-3, respectively.

  19. Ionization imaging—A new method to search for 0- ν ββ decay

    NASA Astrophysics Data System (ADS)

    Chinowski, W.; Goldschmidt, A.; Nygren, D.; Bernstein, A.; Heffner, M.; Millaud, J.

    2007-10-01

    We present a new method to search for 0- ν ββ decay in 136Xe, the Ionization Imaging Chamber. This concept is based on 3-D track reconstruction by detection of ionization, without avalanche gain, in a novel time projection chamber (TPC) geometry. The rejection efficiency of external charged particle backgrounds is optimized by the realization of a maximal, fully active, closed, and ex post facto variable fiducial surface. Event localization within the fiducial volume and detailed event reconstruction mitigate external neutral particle backgrounds; larger detectors offer higher rejection efficiencies. Energy resolution at the Q-value of 2.5 MeV is expected to be better than 1% FWHM, reducing the potential impact of allowed 2- ν ββ decays. Scaling from ˜25 kg prototype to 1000+ kg target mass is graceful. A new possible methodology for the identification of the daughter barium nucleus is also described.

  20. Mispairs with Watson-Crick base-pair geometry observed in ternary complexes of an RB69 DNA polymerase variant.

    PubMed

    Xia, Shuangluo; Konigsberg, William H

    2014-04-01

    Recent structures of DNA polymerase complexes with dGMPCPP/dT and dCTP/dA mispairs at the insertion site have shown that they adopt Watson-Crick geometry in the presence of Mn(2+) indicating that the tautomeric or ionization state of the base has changed. To see whether the tautomeric or ionization state of base-pair could be affected by its microenvironment, we determined 10 structures of an RB69 DNA polymerase quadruple mutant with dG/dT or dT/dG mispairs at position n-1 to n-5 of the Primer/Template duplex. Different shapes of the mispairs, including Watson-Crick geometry, have been observed, strongly suggesting that the local environment of base-pairs plays an important role in their tautomeric or ionization states. © 2014 The Protein Society.

  1. Ionization-induced annealing of pre-existing defects in silicon carbide

    DOE PAGES

    Zhang, Yanwen; Sachan, Ritesh; Pakarinen, Olli H.; ...

    2015-08-12

    A long-standing objective in materials research is to find innovative ways to remove preexisting damage and heal fabrication defects or environmentally induced defects in materials. Silicon carbide (SiC) is a fascinating wide-band gap semiconductor for high-temperature, high-power, high-frequency applications. Its high corrosion and radiation resistance makes it a key refractory/structural material with great potential for extremely harsh radiation environments. Here we show that the energy transferred to the electron system of SiC by energetic ions via inelastic ionization processes results in a highly localized thermal spike that can effectively heal preexisting defects and restore the structural order. This work revealsmore » an innovative self-healing process using highly ionizing ions, and it describes a critical aspect to be considered in modeling SiC performance as either a functional or a structural material for device applications or high-radiation environments.« less

  2. Generating high-brightness electron beams via ionization injection by transverse colliding lasers in a plasma-wakefield accelerator.

    PubMed

    Li, F; Hua, J F; Xu, X L; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Chen, H B; Tang, C X; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2013-07-05

    The production of ultrabright electron bunches using ionization injection triggered by two transversely colliding laser pulses inside a beam-driven plasma wake is examined via three-dimensional particle-in-cell simulations. The relatively low intensity lasers are polarized along the wake axis and overlap with the wake for a very short time. The result is that the residual momentum of the ionized electrons in the transverse plane of the wake is reduced, and the injection is localized along the propagation axis of the wake. This minimizes both the initial thermal emittance and the emittance growth due to transverse phase mixing. Simulations show that ultrashort (~8 fs) high-current (0.4 kA) electron bunches with a normalized emittance of 8.5 and 6 nm in the two planes, respectively, and a brightness of 1.7×10(19) A rad(-2) m(-2) can be obtained for realistic parameters.

  3. Carrier-envelope-phase control of asymmetries in the multiphoton ionization of xenon atoms by ultrashort bichromatic fields

    NASA Astrophysics Data System (ADS)

    Kerbstadt, S.; Pengel, D.; Englert, L.; Bayer, T.; Wollenhaupt, M.

    2018-06-01

    We report on bichromatic multiphoton ionization of xenon atoms (Xe) to demonstrate carrier-envelope-phase (CEP) control of lateral asymmetries in the photoelectron momentum distribution. In the experiments, we employ a 4 f polarization pulse shaper to sculpture bichromatic fields with commensurable center frequencies ω1:ω2=7 :8 from an over-octave-spanning CEP-stable white light supercontinuum by spectral amplitude and phase modulation. The bichromatic fields are spectrally tailored to induce controlled interferences of 7- vs 8-photon quantum pathways in the 5 P3 /2 ionization continuum of Xe. The CEP sensitivity of the asymmetric final-state wave function arises from coherent superposition of continuum states with opposite parity. Our results demonstrate that shaper-generated bichromatic fields with tailored center frequency ratio are a suitable tool to localize CEP-sensitive asymmetries in a specific photoelectron kinetic-energy window.

  4. The effect of working gas impurities on plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X. Y.; He, M. B., E-mail: pulhmb@mail.hust.edu.cn; IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240

    Air intrusion reduced the purity of working gas inside the tube for plasma jet, and thereby, affected the discharge dynamics. In this paper, the effect of using working gas with different purity level (helium purity 99.99999%, 99.99%, 99.9%, and 99%) on photoionization and the chemical reactivity of plasma jet were studied using a 2 dimensional plasma jet model. Photoionization of air species acted as a source of pre-ionization in front of the ionization region, which facilitated the transition from localized discharge to streamers inside the tube. The density of reactive species inside the tube was found to increase with themore » concentration of working gas impurities. For the highest purity helium (99.99999%), despite a low photoionization rate and the distance between the photoionization region and ionization region inside the tube, by increasing the applied voltage and decreasing the distance between the electrode and nozzle, plasma jets were formed.« less

  5. Anomalous photo-ionization of 4d shell in medium-Z ionized atoms

    NASA Astrophysics Data System (ADS)

    Klapisch, M.; Busquet, M.

    2013-09-01

    Photoionization (PI) cross sections (PICS) are necessary for the simulation of astrophysical and ICF plasmas. In order to be used in plasma modeling, the PICS are usually fit to simple analytical formulas. We observed an unusual spectral shape of the PICS of the 4d shell of ionized Xe and other elements, computed with different codes: a local minimum occurs around twice the threshold energy. We explain this phenomenon as interference between the bound 4d wavefunction and the free electron wavefunction, which is similar to the Cooper minima for neutral atoms. Consequently, the usual fitting formulas, which consist of a combination of inverse powers of the frequency beyond threshold, may yield rates for PI and radiative recombination (RR) that are incorrect by orders of magnitude. A new fitting algorithm is proposed and is included in the latest version of HULLAC.v9.5.

  6. First Spectroscopic Evidence for High Ionization State and Low Oxygen Abundance in Lyα Emitters

    NASA Astrophysics Data System (ADS)

    Nakajima, Kimihiko; Ouchi, Masami; Shimasaku, Kazuhiro; Hashimoto, Takuya; Ono, Yoshiaki; Lee, Janice C.

    2013-05-01

    We present results from Keck/NIRSPEC and Magellan/MMIRS follow-up spectroscopy of Lyα emitters (LAEs) at z = 2.2 identified in our Subaru narrowband survey. We successfully detect Hα emission from seven LAEs, and perform a detailed analysis of six LAEs free from active galactic nucleus activity, two out of which, CDFS-3865 and COSMOS-30679, have [O II] and [O III] line detections. They are the first [O II]-detected LAEs at high-z, and their [O III]/[O II] ratios and R23-indices provide the first simultaneous determinations of ionization parameter and oxygen abundance for LAEs. CDFS-3865 has a very high ionization parameter (q_{ion}=2.5^{+1.7}_{-0.8} \\times 10^8 cm s-1) and a low oxygen abundance (12+log (O/H)=7.84^{+0.24}_{-0.25}) in contrast with moderate values of other high-z galaxies such as Lyman break galaxies (LBGs). COSMOS-30679 also possesses a relatively high ionization parameter (q_{ion}=8^{+10}_{-4} \\times 10^7 cm s-1) and a low oxygen abundance (12+log (O/H)=8.18^{+0.28}_{-0.28}). Both LAEs appear to fall below the mass-metallicity relation of z ~ 2 LBGs. Similarly, a low metallicity of 12 + log (O/H) < 8.4 is independently indicated for typical LAEs from a composite spectrum and the [N II]/Hα index. Such high ionization parameters and low oxygen abundances can be found in local star-forming galaxies, but this extreme local population occupies only ~0.06% of the Sloan Digital Sky Survey spectroscopic galaxy sample with a number density ~100 times smaller than that of LAEs. With their high ionization parameters and low oxygen abundances, LAEs would represent an early stage of galaxy formation dominated by massive stars in compact star-forming regions. High-q ion galaxies like LAEs would produce ionizing photons efficiently with a high escape fraction achieved by density-bounded H II regions, which would significantly contribute to cosmic reionization at z > 6. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  7. The ratio of neutral hydrogen to neutral helium in the local interstellar medium

    NASA Astrophysics Data System (ADS)

    Green, James Carswell

    The results are described from a sounding rocket borne EUV spectrometer that was designed and built. This instrument operated from 400 to 1150A with a spectral resolution of approx. 15A. The instrument effective area was about 1 sq cm. The instrument was successfully launched, and observed the nearby DA white dwarf G191-B2B. From this observation, it was determined that the stellar effective temperature is 61,000 + or -4000 to 6000K, and the ratio of helium to hydrogen in the stellar photosphere is 1.0 + or -0.68 to 2.2 x 10-4. Additionally, the neutral column densities of helium and hydrogen were measured to the star. The neutral helium column density was determined from the first observation of the interstellar absorption edge at 504A. The ratio of neutral helium to neutral hydrogen constrains the mean ionization of the warm gas along the line of sight to G191-B2B. The fractional ionization of hydrogen (H II/H) is approx. less than 20 percent, unless significant helium ionization is present as well. The scenario where the fractional ionization of hydrogen is high (H II/H) approx. less than 40 percent and the helium is neutral is ruled out with 99 percent certainty. This result is consistent with some recent theoretical calculations. Using these results, a self-consistent model of the local interstellar medium along the line of sight to G191-B2B is developed. In addition, an unexpected emission feature at 584A was detected in this observation with a high level of significance. Possible sources of this emission are examined, including the companion K dwarf G191-B2A, and an emission nebula near or around G191-B2B.

  8. Differential Lipid Profiles of Normal Human Brain Matter and Gliomas by Positive and Negative Mode Desorption Electrospray Ionization – Mass Spectrometry Imaging

    PubMed Central

    Pirro, Valentina; Hattab, Eyas M.; Cohen-Gadol, Aaron A.; Cooks, R. Graham

    2016-01-01

    Desorption electrospray ionization—mass spectrometry (DESI-MS) imaging was used to analyze unmodified human brain tissue sections from 39 subjects sequentially in the positive and negative ionization modes. Acquisition of both MS polarities allowed more complete analysis of the human brain tumor lipidome as some phospholipids ionize preferentially in the positive and others in the negative ion mode. Normal brain parenchyma, comprised of grey matter and white matter, was differentiated from glioma using positive and negative ion mode DESI-MS lipid profiles with the aid of principal component analysis along with linear discriminant analysis. Principal component–linear discriminant analyses of the positive mode lipid profiles was able to distinguish grey matter, white matter, and glioma with an average sensitivity of 93.2% and specificity of 96.6%, while the negative mode lipid profiles had an average sensitivity of 94.1% and specificity of 97.4%. The positive and negative mode lipid profiles provided complementary information. Principal component–linear discriminant analysis of the combined positive and negative mode lipid profiles, via data fusion, resulted in approximately the same average sensitivity (94.7%) and specificity (97.6%) of the positive and negative modes when used individually. However, they complemented each other by improving the sensitivity and specificity of all classes (grey matter, white matter, and glioma) beyond 90% when used in combination. Further principal component analysis using the fused data resulted in the subgrouping of glioma into two groups associated with grey and white matter, respectively, a separation not apparent in the principal component analysis scores plots of the separate positive and negative mode data. The interrelationship of tumor cell percentage and the lipid profiles is discussed, and how such a measure could be used to measure residual tumor at surgical margins. PMID:27658243

  9. Insight into the reactive properties of newly synthesized 1,2,4-triazole derivative by combined experimental (FT-IR and FR-Raman) and theoretical (DFT and MD) study

    NASA Astrophysics Data System (ADS)

    Mary, Y. Sheena; Al-Omary, Fatmah A. M.; Mostafa, Gamal A. E.; El-Emam, Ali A.; Manjula, P. S.; Sarojini, B. K.; Narayana, B.; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.

    2017-08-01

    The vibrational spectral analysis has been carried out on 4-[(E)-(4-hydroxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione (HBAMTT) in order explore the chemical and pharmacological properties. The most important reactive sites have been identified employing molecular electrostatic potential map. Nonlinear optical properties are identified and the first hyperpolarizability is 80.35 times that of urea, which is standard NLO material. The molecular activity is studied from the dislocation of the frontier molecular orbitals and NBO analysis is carried to gain an insight into the charge transfer within the molecular system. Using molecular electrostatic potential map, the electrophilic and nucleophilic sites are identified. Title molecule was further investigated from the aspect of local reactivity properties by calculations of average local ionization energies (ALIE) and Fukui functions. Vulnerability towards autoxidation and hydrolysis mechanisms has been assessed thanks to the calculations of bond dissociation energies (BDE) and radial distribution functions (RDF), respectively. This information was also valuable for the initial investigation of degradation properties of the title molecule. Thanks to the molecular docking studies, it can be concluded that docked ligand forms a stable complex with AChE and could be used as a new drug for the Alzheimer's disease, myasthenia gravis and glaucoma.

  10. FT-IR, FT-Raman and NMR characterization of 2-isopropyl-5-methylcyclohexyl quinoline-2-carboxylate and investigation of its reactive and optoelectronic properties by molecular dynamics simulations and DFT calculations

    NASA Astrophysics Data System (ADS)

    Menon, Vidya V.; Fazal, Edakot; Mary, Y. Sheena; Panicker, C. Yohannan; Armaković, Stevan; Armaković, Sanja J.; Nagarajan, Subban; Van Alsenoy, C.

    2017-01-01

    The FT-IR and FT-Raman spectra of the synthesized compound, 2-isopropyl-5-methylcyclohexyl quinoline-2-carboxylate is recorded and analyzed. Optimized molecular structure, wave numbers, corresponding assignments regarding 2-isopropyl-5-methylcyclohexyl quinoline-2-carboxylate has become screened tentatively as well as hypothetically using Gaussian09 program package. Natural bonding orbital assessment has been completed with a reason to clarify charge transfer or conjugative interaction, the intra-molecular re-hybridization and delocalization of electron density within the molecule. The NMR spectral assessment had been made choosing structure property relationship by chemical shifts along with the magnetic shielding effects regarding the title compound. The first and second hyperpolarizabilities were calculated. The calculated first order hyperpolarizability is commensurate with the documented worth of very similar derivatives and could be an interesting object for more experiments on nonlinear optics. Local reactivity properties have been investigated using average local ionization energies and Fukui functions. Investigation of optoelectronic properties encompassed calculations of reorganization energies and hopping rates of charge carriers within the framework of Marcus semi-empiric approach. The docked ligand title compound forms a stable complex with CDK inhibitors and gives a binding affinity value of -9.7 kcal/mol and molecular docking results suggest that the compound might exhibit inhibitory activity against CDK inhibitors.

  11. Combined spectroscopic, DFT, TD-DFT and MD study of newly synthesized thiourea derivative

    NASA Astrophysics Data System (ADS)

    Menon, Vidya V.; Sheena Mary, Y.; Shyma Mary, Y.; Panicker, C. Yohannan; Bielenica, Anna; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, Christian

    2018-03-01

    A novel thiourea derivative, 1-(3-bromophenyl)-3-[3-(trifluoromethyl)phenyl]thiourea (ANF-22) is synthesized and characterized by FTIR, FT-Raman and NMR spectroscopy experimentally and theoretically. A detailed conformational analysis of the title molecule has been conducted in order to locate the lowest energy geometry, which was further subjected to the detailed investigation of spectroscopic, reactive, degradation and docking studies by density functional theory (DFT) calculations and molecular dynamics (MD) simulations. Time dependent DFT (TD-DFT) calculations have been used also in order to simulate UV spectra and investigate charge transfer within molecule. Natural bond orbital analysis has been performed analyzing the charge delocalization and using HOMO and LUMO energies the electronic properties are analyzed. Molecular electrostatic potential map is used for the quantitative measurement of active sites in the molecule. In order to determine the locations possibly prone to electrophilic attacks we have calculated average local ionization energies and mapped them to the electron density surface. Further insight into the local reactivity properties have been obtained by calculation of Fukui functions, also mapped to the electron density surface. Possible degradation properties by the autoxidation mechanism have been assessed by calculations of bond dissociation energies for hydrogen abstraction. Atoms of title molecule with significant interactions with water molecules have been determined by calculations of radial distribution functions. The title compound can be a lead compound for developing new analgesic drug.

  12. First Detections of the [NII] 122 Micrometer Line at High Redshift: Demonstrating the Utility of the Line for Studying Galaxies in the Early Universe

    NASA Technical Reports Server (NTRS)

    Ferkinhoff, Carl; Brisbin, Drew; Nikola, Thomas; Parshley, Stephen C.; Stacey, Gordon J.; Phillips, Thomas G.; Falgarone, Edith; Benford, Dominic J.; Staguhn, Johannes G.; Tucker, Carol E.

    2011-01-01

    We report the first detections of the [NIl] 122 {\\mu} m line from a high redshift galaxy. The line was strongly (> 6{\\sigma}) detected from SMMJ02399-0136, and HI413+ 117 (the Cloverleaf QSO) using the Redshift(z) and Early Universe Spectrometer (ZEUS) on the CSO. The lines from both sources are quite bright with line-to-FIR continuum luminosity ratios that are approx.7.0x10(exp -4) (Cloverleaf) and 2.1x10(exp -3) (SMMJ02399). With ratios 2-10 times larger than the average value for nearby galaxies, neither source exhibits the line-to-continuum deficits seen in nearby sources. The line strengths also indicate large ionized gas fractions, approx.8 to 17% of the molecular gas mass. The [OIII]/[NII] line ratio is very sensitive to the effective temperature of ionizing stars and the ionization parameter for emission arising in the narrow-line region (NLR) of an AGN. Using our previous detection of the [01II] 88 {\\mu}m line, the [OIII]/ [NIl] line ratio for SMMJ02399-0136 indicates the dominant source of the line emission is either stellar HII regions ionized by 09.5 stars, or the NLR of the AGN with ionization parameter 10g(U) = -3.3 to -4.0. A composite system, where 30 to 50% of the FIR lines arise in the NLR also matches the data. The Cloverleaf is best modeled by a superposition of approx.200 M82like starbursts accounting for all of the FIR emission and 43% of the [NIl] line. The remainder may come from the NLR. This work demonstrates the utility of the [NIl] and [OIII] lines in constraining properties of the ionized medium.

  13. The GBT Diffuse Ionized Gas Survey (GDIGS)

    NASA Astrophysics Data System (ADS)

    Luisi, Matteo; Anderson, Loren Dean; Liu, Bin; Bania, Thomas; Balser, Dana; Wenger, Trey; Haffner, Lawrence Matthew

    2018-01-01

    Diffuse ionized gas in the Galactic mid-plane known as the "Warm Ionized Medium" (WIM) makes up ~20% of the gas mass of the Milky Way and >90% of its ionized gas. It is the last major component of the interstellar medium (ISM) that has not yet been studied at high spatial and spectral resolution, and therefore many of its fundamental properties remain unclear. The Green Bank Telescope (GBT) Diffuse Ionized Gas Survey (GDIGS) is a new large survey of the Milky Way disk at C-band (4-8 GHz). The main goals of GDIGS are to investigate the properties of the WIM and to determine the connection between the WIM and high-mass star formation over the Galactic longitude and latitude range of 32 deg > l > -5 deg, |b| < 0.5 deg. We use the new VEGAS spectrometer to simultaneously observe 22 Hn-alpha radio recombination lines, 25 Hn-beta lines, 8 Hn-gamma lines, and 9 molecular lines (namely CH3OH and H2CO), and also continuum at ~60 frequencies. We average the Hn-alpha lines to produce Nyquist-sampled maps on a spatial grid of 1 arcmin, a velocity resolution of 0.5 km/s and rms sensitivities of ~3 mJy per beam. GDIGS observations are currently underway and are expected to be completed by late 2018. These data will allow us to: 1) Study for the first time the inner-Galaxy WIM unaffected by confusion from discrete HII regions, 2) determine the distribution of the inner Galaxy WIM, 3) investigate the ionization state of the WIM, 4) explore the connection between the WIM and HII regions, and 5) analyze the effect of leaked photons from HII regions on ISM dust temperatures.

  14. Detector to detector corrections: a comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams.

    PubMed

    Azangwe, Godfrey; Grochowska, Paulina; Georg, Dietmar; Izewska, Joanna; Hopfgartner, Johannes; Lechner, Wolfgang; Andersen, Claus E; Beierholm, Anders R; Helt-Hansen, Jakob; Mizuno, Hideyuki; Fukumura, Akifumi; Yajima, Kaori; Gouldstone, Clare; Sharpe, Peter; Meghzifene, Ahmed; Palmans, Hugo

    2014-07-01

    The aim of the present study is to provide a comprehensive set of detector specific correction factors for beam output measurements for small beams, for a wide range of real time and passive detectors. The detector specific correction factors determined in this study may be potentially useful as a reference data set for small beam dosimetry measurements. Dose response of passive and real time detectors was investigated for small field sizes shaped with a micromultileaf collimator ranging from 0.6 × 0.6 cm(2) to 4.2 × 4.2 cm(2) and the measurements were extended to larger fields of up to 10 × 10 cm(2). Measurements were performed at 5 cm depth, in a 6 MV photon beam. Detectors used included alanine, thermoluminescent dosimeters (TLDs), stereotactic diode, electron diode, photon diode, radiophotoluminescent dosimeters (RPLDs), radioluminescence detector based on carbon-doped aluminium oxide (Al2O3:C), organic plastic scintillators, diamond detectors, liquid filled ion chamber, and a range of small volume air filled ionization chambers (volumes ranging from 0.002 cm(3) to 0.3 cm(3)). All detector measurements were corrected for volume averaging effect and compared with dose ratios determined from alanine to derive a detector correction factors that account for beam perturbation related to nonwater equivalence of the detector materials. For the detectors used in this study, volume averaging corrections ranged from unity for the smallest detectors such as the diodes, 1.148 for the 0.14 cm(3) air filled ionization chamber and were as high as 1.924 for the 0.3 cm(3) ionization chamber. After applying volume averaging corrections, the detector readings were consistent among themselves and with alanine measurements for several small detectors but they differed for larger detectors, in particular for some small ionization chambers with volumes larger than 0.1 cm(3). The results demonstrate how important it is for the appropriate corrections to be applied to give consistent and accurate measurements for a range of detectors in small beam geometry. The results further demonstrate that depending on the choice of detectors, there is a potential for large errors when effects such as volume averaging, perturbation and differences in material properties of detectors are not taken into account. As the commissioning of small fields for clinical treatment has to rely on accurate dose measurements, the authors recommend the use of detectors that require relatively little correction, such as unshielded diodes, diamond detectors or microchambers, and solid state detectors such as alanine, TLD, Al2O3:C, or scintillators.

  15. The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068

    NASA Technical Reports Server (NTRS)

    Spinoglio, Luigi; Smith, Howard A.; Gonzalez-Alfonso, Eduardo; Fisher, Jacqueline

    2005-01-01

    We report on the analysis of the first complete far-infrared spectrum (43-197 microns) of the Seyfert 2 galaxy NGC 1068 as observed with the Long Wavelength Spectrometer (LWS) onboard the Infrared Space Observatory (ISO). In addition to the 7 expected ionic fine structure emission lines, the OH rotational lines at 79, 119 and 163 microns were all detected in emission, which is unique among galaxies with full LWS spectra, where the 119 micron line, where detected, is always in absorption. The observed line intensities were modelled together with IS0 Short Wavelength Spectrometer (SWS) and optical and ultraviolet line intensities from the literature, considering two independent emission components: the AGN component and the starburst component in the circumnuclear ring of approximately 3kpc in size. Using the UV to mid-IR emission line spectrum to constrain the nuclear ionizing continuum, we have confirmed previous results: a canonical power-law ionizing spectrum is a poorer fit than one with a deep absorption trough, while the presence of a big blue bump is ruled out. Based on the instantaneous starburst age of 5 Myr constrained by the Br gamma equivalent width in the starburst ring, and starburst synthesis models of the mid- and far-infrared fine-structure line emission, a low ionization parameter (U=10(exp -3.5)) and low densities (n=100 cm (exp -3)) are derived. Combining the AGN and starburst components, we succeed in modeling the overall UV to far-IR atomic spectrum of SGC 1068, reproducing the line fluxes to within a factor 2.0 on average with a standard deviation of 1.4. The OH 119 micron emission indicates that the line is collisionally excited, and arises in a warm and dense region. The OH emission has been modeled using spherically symmetric, non-local, non-LTE radiative transfer models. The models indicate that the bulk of the emission arises from the nuclear region, although some extended contribution from the starburst is not ruled out. The OH abundance in the nuclear region is expected to be approximately 10(exp -5), characteristic of X-ray dominated regions.

  16. Label-free, direct localization and relative quantitation of the RNA nucleobase methylations m6A, m5C, m3U, and m5U by top-down mass spectrometry.

    PubMed

    Glasner, Heidelinde; Riml, Christian; Micura, Ronald; Breuker, Kathrin

    2017-07-27

    Nucleobase methylations are ubiquitous posttranscriptional modifications of ribonucleic acids (RNA) that can substantially increase the structural diversity of RNA in a highly dynamic fashion with implications for gene expression and human disease. However, high throughput, deep sequencing does not generally provide information on posttranscriptional modifications (PTMs). A promising alternative approach for the characterization of PTMs, i.e. their identification, localization, and relative quantitation, is top-down mass spectrometry (MS). In this study, we have investigated how specific nucleobase methylations affect RNA ionization in electrospray ionization (ESI), and backbone cleavage in collisionally activated dissociation (CAD) and electron detachment dissociation (EDD). For this purpose, we have developed two new approaches for the characterization of RNA methylations in mixtures of either isomers of RNA or nonisomeric RNA forms. Fragment ions from dissociation experiments were analyzed to identify the modification type, to localize the modification sites, and to reveal the site-specific, relative extent of modification for each site. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. X-ray Evidence for Ultra-Fast Outflows in Local AGNs

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Sambruna, R. M.; Reeves, J. N.; Reynolds, C. S.; Braito, V.; Dadina, M.

    2012-08-01

    X-ray evidence for ultra-fast outflows (UFOs) has been recently reported in a number of local AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 Broad-Line Radio Galaxies (BLRGs) observed with XMM-Newton and Suzaku. We detect UFOs in ga 40% of the sources. Their outflow velocities are in the range ˜ 0.03-0.3c, with a mean value of ˜ 0.14c. The ionization is high, in the range logℰ ˜3-6rm erg s-1 cm, and also the associated column densities are large, in the interval ˜ 1022-1024rm cm-2. Overall, these results point to the presence of highly ionized and massive outflowing material in the innermost regions of AGNs. Their variability and location on sub-pc scales favor a direct association with accretion disk winds/outflows. This also suggests that UFOs may potentially play a significant role in the AGN cosmological feedback besides jets, and their study can provide important clues on the connection between accretion disks, winds, and jets.

  18. Microscopic properties of xenon plasmas for density and temperature regimes of laboratory astrophysics experiments on radiative shocks.

    PubMed

    Rodríguez, R; Espinosa, G; Gil, J M; Stehlé, C; Suzuki-Vidal, F; Rubiano, J G; Martel, P; Mínguez, E

    2015-05-01

    This work is divided into two parts. In the first one, a study of radiative properties (such as monochromatic and the Rosseland and Planck mean opacities, monochromatic emissivities, and radiative power loss) and of the average ionization and charge state distribution of xenon plasmas in a range of plasma conditions of interest in laboratory astrophysics and extreme ultraviolet lithography is performed. We have made a particular emphasis in the analysis of the validity of the assumption of local thermodynamic equilibrium and the influence of the atomic description in the calculation of the radiative properties. Using the results obtained in this study, in the second part of the work we have analyzed a radiative shock that propagated in xenon generated in an experiment carried out at the Prague Asterix Laser System. In particular, we have addressed the effect of plasma self-absorption in the radiative precursor, the influence of the radiation emitted from the shocked shell and the plasma self-emission in the radiative precursor, the cooling time in the cooling layer, and the possibility of thermal instabilities in the postshock region.

  19. Helium escape from the Earth's atmosphere - The charge exchange mechanism revisited

    NASA Technical Reports Server (NTRS)

    Lie-Svendsen, O.; Rees, M. H.; Stamnes, K.

    1992-01-01

    We have studied the escape of neutral helium from the terrestrial atmosphere through exothermic charge exchange reactions between He(+) ions and the major atmospheric constituents N2, O2 and O. Elastic collisions with the neutral background particles were treated quantitatively using a recently developed kinetic theory approach. An interhemispheric plasma transport model was employed to provide a global distribution of He(+) ions as a function of altitude, latitude and local solar time and for different levels of solar ionization. Combining these ion densities with neutral densities from an MSIS model and best estimates for the reaction rate coefficients of the charge exchange reactions, we computed the global distribution of the neutral He escape flux. The escape rates show large diurnal and latitudinal variations, while the global average does not vary by more than a factor of three over a solar cycle. We find that this escape mechanism is potentially important for the overall balance of helium in the Earth's atmosphere. However, more accurate values for the reaction rate coefficients of the charge exchange reactions are required to make a definitive assessment of its importance.

  20. Emitter-site-selective photoelectron circular dichroism of trifluoromethyloxirane

    DOE PAGES

    Ilchen, M.; Hartmann, G.; Rupprecht, P.; ...

    2017-05-30

    The angle-resolved inner-shell photoionization of R-trifluoromethyloxirane, C 3H 3F 3O, is studied experimentally and theoretically. Thereby, we investigate the photoelectron circular dichroism (PECD) for nearly symmetric O 1s and F 1s electronic orbitals, which are localized on different molecular sites. The respective dichroic β 1 and angular distribution β 2 parameters are measured at the photoelectron kinetic energies from 1 to 16 eV by using variably polarized synchrotron radiation and velocity map imaging spectroscopy. The present experimental results are in good agreement with the outcome of ab initio electronic structure calculations. We report a sizable chiral asymmetry β 1 ofmore » up to about 9% for the K -shell photoionization of oxygen atom. For the individual fluorine atoms, the present calculations predict asymmetries of similar size. However, being averaged over all fluorine atoms, it drops down to about 2%, as also observed in the present experiment. Our study demonstrates a strong emitter and site sensitivity of PECD in the one-photon inner-shell ionization of this chiral molecule.« less

  1. Energy balance in the solar transition region. I - Hydrostatic thermal models with ambipolar diffusion

    NASA Technical Reports Server (NTRS)

    Fontenla, J. M.; Avrett, E. H.; Loeser, R.

    1990-01-01

    The energy balance in the lower transition region is analyzed by constructing theoretical models which satisfy the energy balance constraint. The energy balance is achieved by balancing the radiative losses and the energy flowing downward from the corona. This energy flow is mainly in two forms: conductive heat flow and hydrogen ionization energy flow due to ambipolar diffusion. Hydrostatic equilibrium is assumed, and, in a first calculation, local mechanical heating and Joule heating are ignored. In a second model, some mechanical heating compatible with chromospheric energy-balance calculations is introduced. The models are computed for a partial non-LTE approach in which radiation departs strongly from LTE but particles depart from Maxwellian distributions only to first order. The results, which apply to cases where the magnetic field is either absent, or uniform and vertical, are compared with the observed Lyman lines and continuum from the average quiet sun. The approximate agreement suggests that this type of model can roughly explain the observed intensities in a physically meaningful way, assuming only a few free parameters specified as chromospheric boundary conditions.

  2. Physical Conditions of the Interstellar Medium in Star-forming Galaxies at z1.5

    NASA Technical Reports Server (NTRS)

    Hayashi, Masao; Ly, Chun; Shimasaku, Kazuhiro; Motohara, Kentaro; Malkan, Matthew A.; Nagao, Tohru; Kashikawa, Nobunari; Goto, Ryosuke; Naito, Yoshiaki

    2015-01-01

    We present results from Subaru/FMOS near-infrared (NIR) spectroscopy of 118 star-forming galaxies at z approximately equal to 1.5 in the Subaru Deep Field. These galaxies are selected as [O II] lambda 3727 emitters at z approximately equal to 1.47 and 1.62 from narrow-band imaging. We detect H alpha emission line in 115 galaxies, [O III] lambda 5007 emission line in 45 galaxies, and H Beta, [N II] lambda 6584, and [S II]lambda lambda 6716, 6731 in 13, 16, and 6 galaxies, respectively. Including the [O II] emission line, we use the six strong nebular emission lines in the individual and composite rest-frame optical spectra to investigate physical conditions of the interstellar medium in star-forming galaxies at z approximately equal to 1.5. We find a tight correlation between H alpha and [O II], which suggests that [O II] can be a good star formation rate (SFR) indicator for galaxies at z approximately equal to 1.5. The line ratios of H alpha / [O II] are consistent with those of local galaxies. We also find that [O II] emitters have strong [O III] emission lines. The [O III]/[O II] ratios are larger than normal star-forming galaxies in the local Universe, suggesting a higher ionization parameter. Less massive galaxies have larger [O III]/[O II] ratios. With evidence that the electron density is consistent with local galaxies, the high ionization of galaxies at high redshifts may be attributed to a harder radiation field by a young stellar population and/or an increase in the number of ionizing photons from each massive star.

  3. Red shift of the SF6 vibration spectrum induced by the electron absorption: An ab initio study

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Zhang, Long-Fei; Han, Fang-Yuan; Luo, Zong-Chang; Liang, Qin-Qin; Liu, Chen-Yao; Zhu, Li-Ping; Zhang, Jie-Ming

    2018-01-01

    As a widely used gas insulator, sulfur hexafluoride (SF6) has a large cross section for electron absorption, which may make the molecule ionized to the -1 charge state in the high-voltage environment. Using ab initio calculations, we show that the absorbed electron is located averagely on the six F atoms, occupying the antibonding level of the s-p σ bonds and increasing the S-F bond length. The ionized SF6- molecule decreases its decomposition energy to only 1.5 eV, much lower than that of the neutral molecule (4.8 eV), which can be understood according to the occupying of the antibonding orbital and thus weakening of the s-p σ bonds. The weakening of the bonds results in an obvious red shift in the vibrational modes of the ionized SF6- molecule by 120-270 cm-1, compared to those of the neutral molecule. The detailed origin of these vibrational modes is analyzed. Since the appearance of the ionized SF6- molecules is before the decomposition reaction of the SF6- molecule into low-fluoride sulfides, this method may improve the sensitivity of the defection of the partial discharge and save more time for the prevention of the insulation failure in advance.

  4. Are physicians aware enough of patient radiation protection? Results from a survey among physicians of Pavia District- Italy.

    PubMed

    Campanella, Francesca; Rossi, Laura; Giroletti, Elio; Micheletti, Piero; Buzzi, Fabio; Villani, Simona

    2017-06-14

    Radiological practices are the first anthropic sources of ionizing radiation exposure of the population. However, a review of recent publications underlines inadequate doctors' knowledge about doses imparted in medical practices and about patient protection that might explain unnecessary radiological prescriptions. We investigated the knowledge of the physicians of Pavia District (Italy) on the risk of radiation exposure. A cross sectional study was performed involving the Medical Association of Pavia District. Data were collected with a self-administered questionnaire, available on-line with private login and password. Four hundred nineteen physicians fulfilled the questionnaire; 48% of participants reported training about radiation protection. The average percentage of correct answers on the knowledge on ionizing radiation was 62.29%, with a significantly higher result between radiologist. Around 5 and 13% of the responders do not know that, respectively, ultrasonography and magnetic resonance do not expose patients to ionizing radiations. Only 5% of the physicians properly identified the cancer risk rate associated to abdomen computed tomography. The findings show a quite good level of the general knowledge about ionizing radiations, higher that reported in literature. Nevertheless, we believe the usefulness of training on the risk linked to radiation exposure in medicine for physicians employed in every area.

  5. Ionospheric absorption, typical ionization, conductivity, and possible synoptic heating parameters in the upper atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, J.K.; Bhatnagar, V.P.

    1989-04-01

    Relations for the average energetic particle heating and the typical Hall and Pedersen conductances, as functions of the ground-based Hf radio absorption, are determined. Collis and coworkers used the geosynchronous GEOS 2 particle data to relate or ''calibrate'' the auroral absorption on the same magnetic field lines with five levels of D region ionization. These ionospheric models are related to a Chapman layer that extends these models into the E region. The average energetic particle heating is calculated for each of these models using recent expressions for the effective recombination coefficient. The corresponding height-integrated heating rates are determined and relatedmore » to the absorption with a quadratic expression. The average Hall and Pedersen conductivities are calculated for each of the nominal absorption ionospheric models. The corresponding height-integrated conductances for nighttime conditions are determined and related to the absorption. Expressions for these conductances during disturbed sunlit conditions are also determined. These relations can be used in conjunction with simultaneous ground-based riometric and magnetic observations to determines the average Hall and Pedersen currents and the Joule heating. The typical daily rate of temperature increase in the mesosphere for storm conditions is several 10 K for both the energetic particle and the Joule heating. The increasing importance of these parameters of the upper and middle atmospheres is discussed. It is proposed that northern hemisphere ionospheric, current, and heating synoptic models and parameters be investigated for use on a regular basis. copyright American Geophysical Union 1989« less

  6. Ion Chemistry in Atmospheric and Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Dalgarno, A.; Fox, J. L.

    1994-01-01

    There are many differences and also remarkable similarities between the ion chemistry and physics of planetary ionospheres and the ion chemistry and physics of astronomical environments beyond the solar system. In the early Universe, an expanded cooling gas of hydrogen and helium was embedded in the cosmic background radiation field and ionized by it. As the Universe cooled by adiabatic expansion, recombination occurred and molecular formation was driven by catalytic reactions involving the relict electrons and protons. Similar chemical processes are effective in the ionized zones of gaseous and planetary nebulae and in stellar winds where the ionization is due to radiation from the central stars, in the envelopes of supernovae where the ionization is initiated by the deposition of gamma-rays, in dissociative shocks where the ionization arises from electron impacts in a hot gas and in quasar broad-line region clouds where the quasar is responsible for the ionization. At high altitudes in the atmospheres of the Jovian planets, the main constituents are hydrogen and helium and the ion chemistry and physics is determined by the same processes, the source of the ionization being solar ultraviolet radiation and cosmic rays. After the collapse of the first distinct astronomical entities to emerge from the uniform flow, heavy elements were created by nuclear burning in the cores of the collapsed objects and distributed throughout the Universe by winds and explosions. The chemistry and physics became more complicated. Over 90 distinct molecular species have been identified in interstellar clouds where they are ionized globally by cosmic ray impacts and locally by radiation and shocks associated with star formation and evolution. Complex molecules have also been found in circumstellar shells of evolved stars. At intermediate and low altitudes in the Jovian atmospheres, the ion chemistry is complicated by the increasing abundance of heavy elements such as carbon, and an extensive array of complex molecules has been predicted. Reactions involving heavy elements dominate the structure of the ionspheres of the terrestrial planets and the satellites Titan and Triton.

  7. Dissociative recombination in planetary ionospheres

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1993-01-01

    Ionization in planetary atmospheres can be produced by solar photoionization, photoelectron impact ionization, and, in auroral regions, by impact of precipitating particles. This ionization is lost mainly in dissociative recombination (DR) of molecular ions. Although atomic ions cannot undergo DR, they can be transformed locally through ion-molecule reactions into molecular ions, or they may be transported vertically or horizontally to regions of the atmosphere where such transformations are possible. Because DR reactions tend to be very exothermic, they can be an important source of kinetically or internally excited fragments. In interplanetary thermospheres, the neutral densities decrease exponentially with altitude. Below the homopause (or turbopause), the atmosphere is assumed to be throughly mixed by convection and/or turbulence. Above the homopause, diffusion is the major transport mechanism, and each species is distributed according to its mass, with the logarithmic derivative of the density with repect to altitude given approximately by -1/H, where H = kT/mg is the scale height. In this expression, T is the neutral temperature, g is the local acceleratiion of gravity, and m is the mass of the species. Thus lighter species become relatively more abundant, and heavier species less abundant, as the altitude increases. This variation of the neutral composition can lead to changes in the ion composition; furthermore, as the neutral densities decrease, dissociative recombination becomes more important relative to ion-neutral reactions as a loss mechanism for molecular ions.

  8. Distribution and Kinematics of O VI in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Savage, B. D.; Sembach, K. R.; Wakker, B. P.; Richter, P.; Meade, M.; Jenkins, E. B.; Shull, J. M.; Moos, H. W.; Sonneborn, G.

    2003-05-01

    Far-Ultraviolet Spectroscopic Explorer (FUSE) spectra of 100 extragalactic objects and two distant halo stars are analyzed to obtain measures of O VI λλ1031.93, 1037.62 absorption along paths through the Milky Way thick disk/halo. Strong O VI absorption over the velocity range from -100 to 100 km s-1 reveals a widespread but highly irregular distribution of O VI, implying the existence of substantial amounts of hot gas with T~3×105 K in the Milky Way thick disk/halo. The integrated column density, log[N(O VI) cm-2], ranges from 13.85 to 14.78 with an average value of 14.38 and a standard deviation of 0.18. Large irregularities in the gas distribution are found to be similar over angular scales extending from <1° to 180°, implying a considerable amount of small- and large-scale structure in the absorbing gas. The overall distribution of O VI is not well described by a symmetrical plane-parallel layer of patchy O VI absorption. The simplest departure from such a model that provides a reasonable fit to the observations is a plane-parallel patchy absorbing layer with an average O VI midplane density of n0(O VI)=1.7×10-8 cm-3, a scale height of ~2.3 kpc, and a ~0.25 dex excess of O VI in the northern Galactic polar region. The distribution of O VI over the sky is poorly correlated with other tracers of gas in the halo, including low- and intermediate-velocity H I, Hα emission from the warm ionized gas at ~104 K, and hot X-ray-emitting gas at ~106 K. The O VI has an average velocity dispersion, b~60 km s-1, and standard deviation of 15 km s-1. Thermal broadening alone cannot explain the large observed profile widths. The average O VI absorption velocities toward high-latitude objects (|b|>45deg) range from -46 to 82 km s-1, with a high-latitude sample average of 0 km s-1 and a standard deviation of 21 km s-1. High positive velocity O VI absorbing wings extending from ~100 to ~250 km s-1 observed along 21 lines of sight may be tracing the flow of O VI into the halo. A combination of models involving the radiative cooling of hot fountain gas, the cooling of supernova bubbles in the halo, and the turbulent mixing of warm and hot halo gases is required to explain the presence of O VI and other highly ionized atoms found in the halo. The preferential venting of hot gas from local bubbles and superbubbles into the northern Galactic polar region may explain the enhancement of O VI in the north. If a fountain flow dominates, a mass flow rate of approximately 1.4 Msolar yr-1 of cooling hot gas to each side of the Galactic plane with an average density of 10-3 cm-3 is required to explain the average value of log[N(O VI)sin|b|] observed in the southern Galactic hemisphere. Such a flow rate is comparable to that estimated for the Galactic intermediate-velocity clouds.

  9. Real-time ultrasound image classification for spine anesthesia using local directional Hadamard features.

    PubMed

    Pesteie, Mehran; Abolmaesumi, Purang; Ashab, Hussam Al-Deen; Lessoway, Victoria A; Massey, Simon; Gunka, Vit; Rohling, Robert N

    2015-06-01

    Injection therapy is a commonly used solution for back pain management. This procedure typically involves percutaneous insertion of a needle between or around the vertebrae, to deliver anesthetics near nerve bundles. Most frequently, spinal injections are performed either blindly using palpation or under the guidance of fluoroscopy or computed tomography. Recently, due to the drawbacks of the ionizing radiation of such imaging modalities, there has been a growing interest in using ultrasound imaging as an alternative. However, the complex spinal anatomy with different wave-like structures, affected by speckle noise, makes the accurate identification of the appropriate injection plane difficult. The aim of this study was to propose an automated system that can identify the optimal plane for epidural steroid injections and facet joint injections. A multi-scale and multi-directional feature extraction system to provide automated identification of the appropriate plane is proposed. Local Hadamard coefficients are obtained using the sequency-ordered Hadamard transform at multiple scales. Directional features are extracted from local coefficients which correspond to different regions in the ultrasound images. An artificial neural network is trained based on the local directional Hadamard features for classification. The proposed method yields distinctive features for classification which successfully classified 1032 images out of 1090 for epidural steroid injection and 990 images out of 1052 for facet joint injection. In order to validate the proposed method, a leave-one-out cross-validation was performed. The average classification accuracy for leave-one-out validation was 94 % for epidural and 90 % for facet joint targets. Also, the feature extraction time for the proposed method was 20 ms for a native 2D ultrasound image. A real-time machine learning system based on the local directional Hadamard features extracted by the sequency-ordered Hadamard transform for detecting the laminae and facet joints in ultrasound images has been proposed. The system has the potential to assist the anesthesiologists in quickly finding the target plane for epidural steroid injections and facet joint injections.

  10. When Is the Local Average Treatment Close to the Average? Evidence from Fertility and Labor Supply

    ERIC Educational Resources Information Center

    Ebenstein, Avraham

    2009-01-01

    The local average treatment effect (LATE) may differ from the average treatment effect (ATE) when those influenced by the instrument are not representative of the overall population. Heterogeneity in treatment effects may imply that parameter estimates from 2SLS are uninformative regarding the average treatment effect, motivating a search for…

  11. On the Structure of the Iron K-Edge

    NASA Technical Reports Server (NTRS)

    Palmeri, P.; Mendoza, C.; Kallman, T. R.; Bautista, M. A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    It is shown that the commonly held view of a sharp Fe K edge must be modified if the decay pathways of the series of resonances converging to the K thresholds are adequately taken into account. These resonances display damped Lorentzian profiles of nearly constant widths that are smeared to impose continuity across the threshold. By modeling the effects of K damping on opacities, it is found that the broadening of the K edge grows with the ionization level of the plasma, and the appearance at high ionization of a localized absorption feature at 7.2 keV is identified as the Kbeta unresolved transition array.

  12. Molecular three-body Brauner-Briggs-Klar theory for ion-impact ionization of molecules

    NASA Astrophysics Data System (ADS)

    Ghanbari-Adivi, E.

    2016-12-01

    Molecular three-body Brauner-Briggs-Klar (M3BBK) theory is developed to study the single ionization of diatomic molecules by ion impact. The orientation-averaged molecular orbital (OAMO) approximation is used to reduce the required computer time without sacrificing the performance of the method. The post-collision interaction (PCI) between the scattered projectile and the ejected electron is included. The theory is applied to collision of protons with hydrogen molecules. Results are obtained for two different kinematical regimes: i) fast collisions and low emission energies, and ii) not so fast collisions and higher emission energies. For both considered regimes, experimental fully differential cross-sections as well as different theoretical calculations are available for comparison. These comparisons are carried out and discussed.

  13. Ionized cluster beam deposition

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.

    1983-01-01

    Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.

  14. Analytical solutions for avalanche-breakdown voltages of single-diffused Gaussian junctions

    NASA Astrophysics Data System (ADS)

    Shenai, K.; Lin, H. C.

    1983-03-01

    Closed-form solutions of the potential difference between the two edges of the depletion layer of a single diffused Gaussian p-n junction are obtained by integrating Poisson's equation and equating the magnitudes of the positive and negative charges in the depletion layer. By using the closed form solution of the static Poisson's equation and Fulop's average ionization coefficient, the ionization integral in the depletion layer is computed, which yields the correct values of avalanche breakdown voltage, depletion layer thickness at breakdown, and the peak electric field as a function of junction depth. Newton's method is used for rapid convergence. A flowchart to perform the calculations with a programmable hand-held calculator, such as the TI-59, is shown.

  15. Rapid Detection and Identification of Candidemia by Direct Blood Culturing on Solid Medium by Use of Lysis-Centrifugation Method Combined with Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS).

    PubMed

    Idelevich, Evgeny A; Grünastel, Barbara; Becker, Karsten

    2017-01-01

    Candida sepsis is a life-threatening condition with increasing prevalence. In this study, direct blood culturing on solid medium using a lysis-centrifugation procedure enabled successful Candida species identification by matrix-assisted laser desorption-ionization time of flight mass spectrometry on average 3.8 h (Sabouraud agar) or 7.4 h (chocolate agar) before the positivity signal for control samples in Bactec mycosis-IC/F or Bactec Plus aerobic/F bottles, respectively. Direct culturing on solid medium accelerated candidemia diagnostics compared to that with automated broth-based systems. Copyright © 2016 American Society for Microbiology.

  16. Loss of oxygen from Venus

    NASA Astrophysics Data System (ADS)

    McElroy, M. B.; Prather, M. J.; Rodriguez, J. M.

    1982-06-01

    Ionization of thermal and nonthermal oxygen atoms above the plasmapause on Venus supplies an escape flux for O averaging 6 x 10 to the 6th atoms/sq cm-sec. Hydrogen and oxygen atoms escape with stoichiometry characteristic of water. It is argued that escape of H is controlled by the oxidation state of the atmosphere, regulated by escape of O.

  17. The Gum nebula

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.

    1972-01-01

    The distance from the sun to the center of the star, Gamma Velorium, is determined in an effort to draw a physical model and identify the ionized energy source of the Gum nebula. The distance is calculated from the local hydrogen density of radio astronomy studies and the hydrogen measure.

  18. Distribution Analysis of Anthocyanins, Sugars, and Organic Acids in Strawberry Fruits Using Matrix-Assisted Laser Desorption/Ionization-Imaging Mass Spectrometry.

    PubMed

    Enomoto, Hirofumi; Sato, Kei; Miyamoto, Koji; Ohtsuka, Akira; Yamane, Hisakazu

    2018-05-16

    Anthocyanins, sugars, and organic acids contribute to the appearance, health benefits, and taste of strawberries. However, their spatial distribution in the ripe fruit has been fully unrevealed. Therefore, we performed matrix-assisted laser desorption/ionization, MALDI-IMS, analysis to investigate their spatial distribution in ripe strawberries. The detection sensitivity was improved by using the TM-Sprayer for matrix application. In the receptacle, pelargonidins were distributed in the skin, cortical, and pith tissues, whereas cyanidins and delphinidins were slightly localized in the skin. In the achene, mainly cyanidins were localized in the outside of the skin. Citric acid was mainly distributed in the upper and bottom side of cortical tissue. Although hexose was distributed almost equally throughout the fruits, sucrose was mainly distributed in the upper side of cortical and pith tissues. These results suggest that using the TM-Sprayer in MALDI-IMS was useful for microscopic distribution analysis of anthocyanins, sugars, and organic acids in strawberries.

  19. Spatial and Temporal Localization of Flavonoid Metabolites in Strawberry Fruit (Fragaria × ananassa).

    PubMed

    Crecelius, Anna C; Hölscher, Dirk; Hoffmann, Thomas; Schneider, Bernd; Fischer, Thilo C; Hanke, Magda-Viola; Flachowsky, Henryk; Schwab, Wilfried; Schubert, Ulrich S

    2017-05-03

    Flavonoids are important metabolites in strawberries (Fragaria × ananassa) because they accomplish an extensive collection of physiological functions and are valuable for human health. However, their localization within the fruit tissue has not been extensively explored. Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) was employed to shed light on the spatial distribution of flavonoids during fruit development. One wild-type (WT) and two transgenic lines were compared, wherein the transgenic enzymes anthocyanidin reductase (ANRi) and flavonol synthase (FLSi), respectively, were down-regulated using an RNAi-based silencing approach. In most cases, fruit development led to a reduction of the investigated flavonoids in the fruit tissue; as a consequence, they were exclusively present in the skin of mature red fruits. In the case of (epi)catechin dimer, both the ANRi and the WT phenotypes revealed low levels in mature red fruits, whereas the ANRi line bore the lowest relative concentration, as analyzed by liquid chromatography-electrospray ionization multiple-step mass spectrometry (LC-ESI-MS n ).

  20. Calculations with the quasirelativistic local-spin-density-functional theory for high-Z atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Y.; Whitehead, M.A.

    1988-10-01

    The generalized-exchange local-spin-density-functional theory (LSD-GX) with relativistic corrections of the mass velocity and Darwin terms has been used to calculate statistical total energies for the neutral atoms, the positive ions, and the negative ions for high-Z elements. The effect of the correlation and relaxation correction on the statistical total energy is discussed. Comparing the calculated results for the ionization potentials and electron affinities for the atoms (atomic number Z from 37 to 56 and 72 to 80) with experiment, shows that for the atoms rubidium to barium both the LSD-GX and the quasirelativistic LSD-GX, with self-interaction correction, Gopinathan, Whitehead, andmore » Bogdanovic's Fermi-hole parameters (Phys. Rev. A 14, 1 (1976)), and Vosko, Wilk, and Nusair's correlation correction (Can. J. Phys. 58, 1200 (1980)), are very good methods for calculating ionization potentials and electron affinities. For the atoms hafnium to mercury the relativistic effect has to be considered.« less

  1. The Diagnostic Potential of Fe Lines Applied to Protostellar Jets

    NASA Astrophysics Data System (ADS)

    Giannini, T.; Nisini, B.; Antoniucci, S.; Alcalá, J. M.; Bacciotti, F.; Bonito, R.; Podio, L.; Stelzer, B.; Whelan, E. T.

    2013-11-01

    We investigate the diagnostic capabilities of iron lines for tracing the physical conditions of shock-excited gas in jets driven by pre-main sequence stars. We have analyzed the 3000-25000 Å, X-shooter spectra of two jets driven by the pre-main sequence stars ESO-Hα 574 and Par-Lup 3-4. Both spectra are very rich in [Fe II] lines over the whole spectral range; in addition, lines from [Fe III] are detected in the ESO-Hα 574 spectrum. Non-local thermal equilibrium codes solving the equations of the statistical equilibrium along with codes for the ionization equilibrium are used to derive the gas excitation conditions of electron temperature and density and fractional ionization. An estimate of the iron gas-phase abundance is provided by comparing the iron lines emissivity with that of neutral oxygen at 6300 Å. The [Fe II] line analysis indicates that the jet driven by ESO-Hα 574 is, on average, colder (T e ~ 9000 K), less dense (n e ~ 2 × 104 cm-3), and more ionized (x e ~ 0.7) than the Par-Lup 3-4 jet (T e ~ 13,000 K, n e ~ 6 × 104 cm-3, x e < 0.4), even if the existence of a higher density component (n e ~ 2 × 105 cm-3) is probed by the [Fe III] and [Fe II] ultra-violet lines. The physical conditions derived from the iron lines are compared with shock models suggesting that the shock at work in ESO-Hα 574 is faster and likely more energetic than the Par-Lup 3-4 shock. This latter feature is confirmed by the high percentage of gas-phase iron measured in ESO-Hα 574 (50%-60% of its solar abundance in comparison with less than 30% in Par-Lup 3-4), which testifies that the ESO-Hα 574 shock is powerful enough to partially destroy the dust present inside the jet. This work demonstrates that a multiline Fe analysis can be effectively used to probe the excitation and ionization conditions of the gas in a jet without any assumption on ionic abundances. The main limitation on the diagnostics resides in the large uncertainties of the atomic data, which, however, can be overcome through a statistical approach involving many lines. Based on observations collected with X-shooter at the Very Large Telescope on Cerro Paranal (Chile), operated by the European Southern Observatory (ESO). Program ID: 085.C-0238(A).

  2. The effect of pi-stacking, h-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: adenine-adenine, thymine-thymine and adenine-thymine dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bravaya, Ksenia B.; Kostko, Oleg; Ahmed, Musahid

    A combined theoretical and experimental study of the ionized dimers of thymine and adenine, TT, AA, and AT, is presented. Adiabatic and vertical ionization energies(IEs) for monomers and dimers as well as thresholds for the appearance of the protonated species are reported and analyzed. Non-covalent interactions stronglyaffect the observed IEs. The magnitude and the nature of the effect is different for different isomers of the dimers. The computations reveal that for TT, the largestchanges in vertical IEs (0.4 eV) occur in asymmetric h-bonded and symmetric pi- stacked isomers, whereas in the lowest-energy symmetric h-bonded dimer the shiftin IEs is muchmore » smaller (0.1 eV). The origin of the shift and the character of the ionized states is different in asymmetric h-bonded and symmetric stacked isomers. Inthe former, the initial hole is localized on one of the fragments, and the shift is due to the electrostatic stabilization of the positive charge of the ionized fragment by thedipole moment of the neutral fragment. In the latter, the hole is delocalized, and the change in IE is proportional to the overlap of the fragments' MOs. The shifts in AAare much smaller due to a less effcient overlap and a smaller dipole moment. The ionization of the h-bonded dimers results in barrierless (or nearly barrierless) protontransfer, whereas the pi-stacked dimers relax to structures with the hole stabilized by the delocalization or electrostatic interactions.« less

  3. Efficient pre-ionization by direct X-B mode conversion in VEST

    NASA Astrophysics Data System (ADS)

    Jo, JongGab; Lee, H. Y.; Kim, S. C.; Kim, S. H.; An, Y. H.; Hwang, Y. S.

    2017-01-01

    Pre-ionization experiments with pure toroidal field have been carried out in VEST (Versatile Experiment Spherical Torus) to investigate the feasibility of direct XB mode conversion from perpendicular LFS (Low Field Side) injection for efficient pre-ionization. Pre-ionization plasmas are studied by measuring the electron density and temperature profiles with respect to microwave power and toroidal field strength, and 2D full wave cold plasma simulation using the COMSOL Multiphysics is performed for the comparison. It is experimentally figured out that exceeding the threshold microwave power (>3 kW), the parametric decay and localized collisional heating is observed near the UHR (Upper Hybrid Resonance), and the efficient XB mode conversion can be achieved in both short density scale length (Ln) and magnetic scale length (LB) region positioned at outboard and inboard sides, respectively. From the 2D full wave simulations, the reflection and tunneling of X-wave near the R-cutoff layer according to the measured electron density profiles are analyzed with electric field polarization and power flow. Threshold electric field and wave power density for parametric decay are evaluated at least more than 4.8 × 104 V/m and 100 W/cm2, respectively. This study shows that efficient pre-ionization schemes using direct XB mode conversion can be realized by considering the key factors such as Ln, LB, and transmitted wave power at the UHR. Application to Ohmic start-up experiment is carried out to confirm the effect of the pre-ionization schemes on tokamak plasma start-up in VEST.

  4. Chemical Protection Against Ionizing Radiation.

    DTIC Science & Technology

    1984-08-01

    defenses of these cells may be sufficient to prevent significant lipid peroxidation from occurring [139,485]. The localization of repair enzymes and...In the mouse, for example, abdominal hernia can be produced by irradiation on the 4th to the 16th day, cleft palate on day 8, 10, or 11, skeletal...products of water radiolysis are formed in mall localized regions known as spurs, of approximately 2 n radius. The e’aq is formed throughout the spur

  5. Io plasma torus ion composition: Voyager, Galileo, and Cassini

    NASA Astrophysics Data System (ADS)

    Nerney, Edward G.; Bagenal, Fran; Steffl, Andrew J.

    2017-01-01

    The Io torus produces ultraviolet emissions diagnostic of plasma conditions. We revisit data sets obtained by the Voyager 1, Galileo, and Cassini missions at Jupiter. With the latest version (8.0) of the CHIANTI atomic database we analyze UV spectra to determine ion composition. We compare ion composition obtained from observations from these three missions with a theoretical model of the physical chemistry of the torus by Delamere et al. (2005). We find ion abundances from the Voyager data similar to the Cassini epoch, consistent with the dissociation and ionization of SO2, but with a slightly higher average ionization state for sulfur, consistent with the higher electron temperature measured by Voyager. This reanalysis of the Voyager data produces a much lower oxygen:sulfur ratio than earlier analysis by Shemansky (1988), which was also reported by Bagenal (1994). We derive fractional ion compositions in the center of the torus to be S+/Ne 5%, S++/Ne 20%, S+++/Ne 5%, O+/Ne 20%, O++/Ne 3%, and Σ(On+)/Σ(Sn+) 0.8, leaving about 10-15% of the charge as protons. The radial profile of ion composition indicates a slightly higher average ionization state, a modest loss of sulfur relative to oxygen, and Σ(On+)/Σ(Sn+) 1.2 at about 8 RJ, beyond which the composition is basically frozen in. The Galileo observations of UV emissions from the torus suggest that the composition in June 1996 may have comprised a lower abundance of oxygen than usual, consistent with observations made at the same time by the EUVE satellite.

  6. Global Infrared–Radio Spectral Energy Distributions of Galactic Massive Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Povich, Matthew Samuel; Binder, Breanna Arlene

    2018-01-01

    We present a multiwavelength study of 30 Galactic massive star-forming regions. We fit multicomponent dust, blackbody, and power-law continuum models to 3.6 µm through 10 mm spectral energy distributions obtained from Spitzer, MSX, IRAS, Herschel, and Planck archival survey data. Averaged across our sample, ~20% of Lyman continuum photons emitted by massive stars are absorbed by dust before contributing to the ionization of H II regions, while ~50% of the stellar bolometric luminosity is absorbed and reprocessed by dust in the H II regions and surrounding photodissociation regions. The most luminous, infrared-bright regions that fully sample the upper stellar initial mass function (ionizing photon rates NC ≥ 1050 s–1 and total infrared luminosity LTIR ≥ 106.8 L⊙) have higher percentages of absorbed Lyman continuum photons (~40%) and dust-reprocessed starlight (~80%). The monochromatic 70-µm luminosity L70 is linearly correlated with LTIR, and on average L70/LTIR = 50%, in good agreement with extragalactic studies. Calibrated against the known massive stellar content in our sampled H II regions, we find that star formation rates based on L70 are in reasonably good agreement with extragalactic calibrations, when corrected for the smaller physical sizes of the Galactic regions. We caution that absorption of Lyman continuum photons prior to contributing to the observed ionizing photon rate may reduce the attenuation-corrected Hα emission, systematically biasing extragalactic calibrations toward lower star formation rates when applied to spatially-resolved studies of obscured star formation.This work was supported by the National Science Foundation under award CAREER-1454333.

  7. Highly sensitive and selective analysis of urinary steroids by comprehensive two-dimensional gas chromatography combined with positive chemical ionization quadrupole mass spectrometry

    PubMed Central

    Zhang, Ying; Tobias, Herbert J.; Brenna, J. Thomas

    2014-01-01

    Comprehensive two dimensional gas chromatography (GC×GC) provides greater separation space than conventional GC. Because of fast peak elution, a time of flight mass spectrometer (TOFMS) is the usual structure-specific detector of choice. The quantitative capabilities of a novel GC×GC fast quadrupole MS were investigated with electron ionization (EI), and CH4 or NH3 positive chemical ionization (PCI) for analysis of endogenous urinary steroids targeted in anti-doping tests. Average precisions for steroid quantitative analysis from replicate urine extractions were 6% (RSD) for EI and 8% for PCI-NH3. The average limits of detection (LOD) calculated by quantification ions for 12 target steroids spiked into steroid-free urine matrix (SFUM) were 2.6 ng mL−1 for EI, 1.3 ng mL−1 for PCI-CH4, and 0.3 ng mL−1 for PCI-NH3, all in mass scanning mode. The measured limits of quantification (LOQ) with full mass scan GC×GC-qMS were comparable with the LOQ values measured by one-dimensional GC-MS in single ion monitoring (SIM) mode. PCI-NH3 yields fewer fragments and greater (pseudo)molecular ion abundances than EI or PCI-CH4. These data show a benchtop GC×GC-qMS system has the sensitivity, specificity, and resolution to analyze urinary steroids at normal urine concentrations, and that PCI-NH3, not currently available on most GC×GC-TOFMS instruments, is of particular value for generation of structure-specific ions. PMID:22606686

  8. The Fifth ISM Phase as Revealed by Faraday Rotation

    NASA Astrophysics Data System (ADS)

    Heiles, Carl E.

    2011-01-01

    In the diffuse ISM, phases are classically categorized as largely ionized or neutral. The neutral phases come in two flavors, the Cold and Warm Neutral Media (the CNM and WNM), which have typical temperatures 50 and 5000 K. The ionized phases also come in two flavors, again classified by temperature: the Warm and Hot Ionized Media (the WIM and the HIM), which have typical temperatures 8000 and 106 K. There lurks a fifth phase, the Warm Partially Ionized Medium (WPIM). This is not widely recognized, mainly because it's presence is hard to establish observationally. It is well represented by the Local Interstellar Cloud (LIC), whose properties are very well specified in a series of papers by Redfield and Linsky. This fifth phase has a relatively high electron column but low emission measure, so it is not easily seen in H alpha. However, if the region is permeated by a typical magnetic field ( 6 microGauss), then it can produce a recognizable signature in Faraday rotation. We show a few examples and discuss the potential for large-scale mapping of this fifth ISM phase. Support for this work was provided in part by NSF grant AST-0908572.

  9. Observations of the missing baryons in the warm-hot intergalactic medium.

    PubMed

    Nicastro, F; Kaastra, J; Krongold, Y; Borgani, S; Branchini, E; Cen, R; Dadina, M; Danforth, C W; Elvis, M; Fiore, F; Gupta, A; Mathur, S; Mayya, D; Paerels, F; Piro, L; Rosa-Gonzalez, D; Schaye, J; Shull, J M; Torres-Zafra, J; Wijers, N; Zappacosta, L

    2018-06-01

    It has been known for decades that the observed number of baryons in the local Universe falls about 30-40 per cent short 1,2 of the total number of baryons predicted 3 by Big Bang nucleosynthesis, as inferred 4,5 from density fluctuations of the cosmic microwave background and seen during the first 2-3 billion years of the Universe in the so-called 'Lyman α forest' 6,7 (a dense series of intervening H I Lyman α absorption lines in the optical spectra of background quasars). A theoretical solution to this paradox locates the missing baryons in the hot and tenuous filamentary gas between galaxies, known as the warm-hot intergalactic medium. However, it is difficult to detect them there because the largest by far constituent of this gas-hydrogen-is mostly ionized and therefore almost invisible in far-ultraviolet spectra with typical signal-to-noise ratios 8,9 . Indeed, despite large observational efforts, only a few marginal claims of detection have been made so far 2,10 . Here we report observations of two absorbers of highly ionized oxygen (O VII) in the high-signal-to-noise-ratio X-ray spectrum of a quasar at a redshift higher than 0.4. These absorbers show no variability over a two-year timescale and have no associated cold absorption, making the assumption that they originate from the quasar's intrinsic outflow or the host galaxy's interstellar medium implausible. The O VII systems lie in regions characterized by large (four times larger than average 11 ) galaxy overdensities and their number (down to the sensitivity threshold of our data) agrees well with numerical simulation predictions for the long-sought warm-hot intergalactic medium. We conclude that the missing baryons have been found.

  10. Absolute Quantification of Rifampicin by MALDI Imaging Mass Spectrometry Using Multiple TOF/TOF Events in a Single Laser Shot

    NASA Astrophysics Data System (ADS)

    Prentice, Boone M.; Chumbley, Chad W.; Caprioli, Richard M.

    2017-01-01

    Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) allows for the visualization of molecular distributions within tissue sections. While providing excellent molecular specificity and spatial information, absolute quantification by MALDI IMS remains challenging. Especially in the low molecular weight region of the spectrum, analysis is complicated by matrix interferences and ionization suppression. Though tandem mass spectrometry (MS/MS) can be used to ensure chemical specificity and improve sensitivity by eliminating chemical noise, typical MALDI MS/MS modalities only scan for a single MS/MS event per laser shot. Herein, we describe TOF/TOF instrumentation that enables multiple fragmentation events to be performed in a single laser shot, allowing the intensity of the analyte to be referenced to the intensity of the internal standard in each laser shot while maintaining the benefits of MS/MS. This approach is illustrated by the quantitative analyses of rifampicin (RIF), an antibiotic used to treat tuberculosis, in pooled human plasma using rifapentine (RPT) as an internal standard. The results show greater than 4-fold improvements in relative standard deviation as well as improved coefficients of determination (R2) and accuracy (>93% quality controls, <9% relative errors). This technology is used as an imaging modality to measure absolute RIF concentrations in liver tissue from an animal dosed in vivo. Each microspot in the quantitative image measures the local RIF concentration in the tissue section, providing absolute pixel-to-pixel quantification from different tissue microenvironments. The average concentration determined by IMS is in agreement with the concentration determined by HPLC-MS/MS, showing a percent difference of 10.6%.

  11. Neutral ISM, Lyα, and Lyman-continuum in the Nearby Starburst Haro11

    NASA Astrophysics Data System (ADS)

    Rivera-Thorsen, T. Emil; Östlin, Göran; Hayes, Matthew; Puschnig, Johannes

    2017-03-01

    Star-forming galaxies are believed to be a major source of Lyman continuum (LyC) radiation responsible for reionizing the early universe. Direct observations of escaping ionizing radiation have however been sparse and with low escape fractions. In the local universe, only 10 emitters have been observed, with typical escape fractions of a few percent. The mechanisms regulating this escape need to be strongly evolving with redshift in order to account for the epoch of reionization. Gas content and star formation feedback are among the main suspects, known to both regulate neutral gas coverage and evolve with cosmic time. In this paper, we reanalyze Hubble Space Telescope (HST)-Cosmic Origins Spectrograph (COS) spectrocopy of the first detected local LyC leaker, Haro 11. We examine the connection between LyC leakage and Lyα line shape, and feedback-influenced neutral interstellar medium (ISM) properties like kinematics and gas distribution. We discuss the two extremes of an optically thin, density bounded ISM and a riddled, optically thick, ionization bounded ISM, and how Haro 11 fits into theoretical predictions. We find that the most likely ISM model is a clumpy neutral medium embedded in a highly ionized medium with a combined covering fraction of unity and a residual neutral gas column density in the ionized medium high enough to be optically thick to Lyα, but low enough to be at least partly transparent to LyC and undetected in Si II. This suggests that star formation feedback and galaxy-scale interaction events play a major role in opening passageways for ionizing radiation through the neutral medium. Based on observations with HST-COS, program GO 13017, obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts.

  12. Effect of the radio frequency discharge on the dust charging process in a weakly collisional and fully ionized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motie, Iman; Bokaeeyan, Mahyar, E-mail: Mehyar9798@gmail.com

    2015-02-15

    A close analysis of dust charging process in the presence of radio frequency (RF) discharge on low pressure and fully ionized plasma for both weak and strong discharge's electric field is considered. When the electromagnetic waves pass throughout fully ionized plasma, the collision frequency of the plasma is derived. Moreover, the disturbed distribution function of plasma particles in the presence of the RF discharge is obtained. In this article, by using the Krook model, we separate the distribution function in two parts, the Maxwellian part and the perturbed part. The perturbed part of distribution can make an extra current, so-calledmore » the accretion rate of electron (or ion) current, towards a dust particle as a function of the average electron-ion collision frequency. It is proven that when the potential of dust grains increases, the accretion rate of electron current experiences an exponential reduction. Furthermore, the accretion rate of electron current for a strong electric field is relatively smaller than that for a weak electric field. The reasons are elaborated.« less

  13. Checking the validity of Busquet's ionization temperature with detailed collisional radiative models.

    NASA Astrophysics Data System (ADS)

    Klapisch, M.; Bar-Shalom, A.

    1997-12-01

    Busquet's RADIOM model for effective ionization temperature Tz is an appealing and simple way to introduce non LTE effects in hydrocodes. The authors report checking the validity of RADIOM in the optically thin case by comparison with two collisional radiative models, MICCRON (level-by-level) for C and Al and SCROLL (superconfiguration- by-superconfiguration) for Lu and Au. MICCRON is described in detail. The agreement between the average ion charge >Z< and the corresponding Tz obtained from RADIOM on the one hand, and from MICCRON on the other hand for C and Al is excellent. The absorption spectra at Tz agree very well with the one generated by SCROLL near LTE conditions (small β). Farther from LTE (large β) the agreement is still good, but another effective temperature gives an excellent agreement. It is concluded that the model of Busquet is very good in most cases. There is however room for improvement when the departure from LTE is more pronounced for heavy atoms and for emissivity. Improvement appears possible because the concept of ionization temperature seems to hold in a broader range of parameters.

  14. Mutational influences of low-dose and high let ionizing radiation in drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Lei, Huang; Fanjun, Kong; Sun, Yeqing

    For cosmic environment consists of a varying kinds of radiation particles including high Z and energy ions which was charactered with low-dose and high RBE, it is important to determine the possible biofuctions of high LET radiation on human beings. To analyse the possible effectes of mutational influences of low-dose and high-LET ionizing radiation, wild fruit flies drosophila melanogaster were irradiated by 12C6+ ions in two LET levels (63.3 and 30 keV/µum) with different low doses from 2mGy to 2000mGy (2, 20, 200, 2000mGy) in HIRFL (Heavy ion radiation facility laboratory, lanzhou, China).In the same LET value group, the average polymorphic frequency was elevated along with adding doses of irradation, the frequency in 2000 mGy dose samples was significantly higher than other samples (p<0.01).These results suggest that genomic DNA sequence could be effected by low-dose and high-LET ionizing radiation, the irradiation dose is an important element in genomic mutation frequency origination.

  15. A preliminary comparison of Na lidar and meteor radar zonal winds during geomagnetic quiet and disturbed conditions

    NASA Astrophysics Data System (ADS)

    Kishore Kumar, G.; Nesse Tyssøy, H.; Williams, Bifford P.

    2018-03-01

    We investigate the possibility that sufficiently large electric fields and/or ionization during geomagnetic disturbed conditions may invalidate the assumptions applied in the retrieval of neutral horizontal winds from meteor and/or lidar measurements. As per our knowledge, the possible errors in the wind estimation have never been reported. In the present case study, we have been using co-located meteor radar and sodium resonance lidar zonal wind measurements over Andenes (69.27°N, 16.04°E) during intense substorms in the declining phase of the January 2005 solar proton event (21-22 January 2005). In total, 14 h of measurements are available for the comparison, which covers both quiet and disturbed conditions. For comparison, the lidar zonal wind measurements are averaged over the same time and altitude as the meteor radar wind measurements. High cross correlations (∼0.8) are found in all height regions. The discrepancies can be explained in light of differences in the observational volumes of the two instruments. Further, we extended the comparison to address the electric field and/or ionization impact on the neutral wind estimation. For the periods of low ionization, the neutral winds estimated with both instruments are quite consistent with each other. During periods of elevated ionization, comparatively large differences are noticed at the highermost altitude, which might be due to the electric field and/or ionization impact on the wind estimation. At present, one event is not sufficient to make any firm conclusion. Further study with more co-located measurements are needed to test the statistical significance of the result.

  16. Photoionization of High-altitude Gas in a Supernova-driven Turbulent Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Wood, Kenneth; Hill, Alex S.; Joung, M. Ryan; Mac Low, Mordecai-Mark; Benjamin, Robert A.; Haffner, L. Matthew; Reynolds, R. J.; Madsen, G. J.

    2010-10-01

    We investigate models for the photoionization of the widespread diffuse ionized gas (DIG) in galaxies. In particular, we address the long standing question of the penetration of Lyman continuum photons from sources close to the galactic midplane to large heights in the galactic halo. We find that recent hydrodynamical simulations of a supernova-driven interstellar medium (ISM) have low-density paths and voids that allow for ionizing photons from midplane OB stars to reach and ionize gas many kiloparsecs above the midplane. We find that ionizing fluxes throughout our simulation grids are larger than predicted by one-dimensional slab models, thus allowing for photoionization by O stars of low altitude neutral clouds in the Galaxy that are also detected in Hα. In previous studies of such clouds, the photoionization scenario had been rejected and the Hα had been attributed to enhanced cosmic ray ionization or scattered light from midplane H II regions. We do find that the emission measure distributions in our simulations are wider than those derived from Hα observations in the Milky Way. In addition, the horizontally averaged height dependence of the gas density in the hydrodynamical models is lower than inferred in the Galaxy. These discrepancies are likely due to the absence of magnetic fields in the hydrodynamic simulations and we discuss how magnetohydrodynamic effects may reconcile models and observations. Nevertheless, we anticipate that the inclusion of magnetic fields in the dynamical simulations will not alter our primary finding that midplane OB stars are capable of producing high-altitude DIG in a realistic three-dimensional ISM.

  17. Simulator training to minimize ionizing radiation exposure in the catheterization laboratory.

    PubMed

    Katz, Aric; Shtub, Avraham; Solomonica, Amir; Poliakov, Adva; Roguin, Ariel

    2017-03-01

    To learn about radiation and how to lower it. Patients and operators are routinely exposed to high doses of ionizing radiation during catheterization procedures. This increased exposure to ionizing radiation is partially due to a lack of awareness to the effects of ionizing radiation, and lack of knowledge on the distribution and behavior of scattered radiation. A simulator, which incorporates data on scattered ionizing radiation, was built based on multiple phantom measurements and used for teaching radiation safety. The validity of the simulator was confirmed in three catheterization laboratories and tested by 20 interventional cardiologists. All evaluators were tested by an objective knowledge examination before, immediately following, and 12 weeks after simulator-based learning and training. A subjective Likert questionnaire on satisfaction with simulation-based learning and training was also completed. The 20 evaluators learned and retained the knowledge that they gained from using the simulator: the average scores of the knowledge examination pre-simulator training was 54 ± 15% (mean ± standard deviation), and this score significantly increased after training to 94 ± 10% (p < 0.001). The evaluators also reported high levels of satisfaction following simulation-based learning and training according to the results of the subjective Likert questionnaire. Simulators can be used to train cardiology staff and fellows and to further educate experienced personnel on radiation safety. As a result of simulator training, the operator gains knowledge, which can then be applied in the catheterization laboratory in order to reduce radiation doses to the patient and to the operator, thereby improving the safety of the intervention.

  18. Femtoscopy with identified charged pions in proton-lead collisions at s NN = 5.02 TeV with ATLAS

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-12-28

    Bose-Einsmore » tein correlations between identified charged pions are measured for p+Pb collisions at s NN =5.02 TeV using data recorded by the ATLAS detector at the CERN Large Hadron Collider corresponding to a total integrated luminosity of 28nb-1. Pions are identified using ionization energy loss measured in the pixel detector. Two-particle correlation functions and the extracted source radii are presented as a function of collision centrality as well as the average transverse momentum (kT) and rapidity (yππ) of the pair. Pairs are selected with a rapidity -2 < yππ < 1 and with an average transverse momentum 0.1 < kT < 0.8GeV. The effect of jet fragmentation on the two-particle correlation function is studied, and a method using opposite-charge pair data to constrain its contributions to the measured correlations is described. The measured source sizes are substantially larger in more central collisions and are observed to decrease with increasing pair kT. A correlation of the radii with the local charged-particle density is demonstrated. The scaling of the extracted radii with the mean number of participating nucleons is also used to compare a selection of initial-geometry models. The cross term Rol is measured as a function of rapidity, and a nonzero value is observed with 5.1σ combined significance for -1 < yππ < 1 in the most central events.« less

  19. Femtoscopy with identified charged pions in proton-lead collisions at s NN = 5.02 TeV with ATLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    Bose-Einsmore » tein correlations between identified charged pions are measured for p+Pb collisions at s NN =5.02 TeV using data recorded by the ATLAS detector at the CERN Large Hadron Collider corresponding to a total integrated luminosity of 28nb-1. Pions are identified using ionization energy loss measured in the pixel detector. Two-particle correlation functions and the extracted source radii are presented as a function of collision centrality as well as the average transverse momentum (kT) and rapidity (yππ) of the pair. Pairs are selected with a rapidity -2 < yππ < 1 and with an average transverse momentum 0.1 < kT < 0.8GeV. The effect of jet fragmentation on the two-particle correlation function is studied, and a method using opposite-charge pair data to constrain its contributions to the measured correlations is described. The measured source sizes are substantially larger in more central collisions and are observed to decrease with increasing pair kT. A correlation of the radii with the local charged-particle density is demonstrated. The scaling of the extracted radii with the mean number of participating nucleons is also used to compare a selection of initial-geometry models. The cross term Rol is measured as a function of rapidity, and a nonzero value is observed with 5.1σ combined significance for -1 < yππ < 1 in the most central events.« less

  20. Femtoscopy with identified charged pions in proton-lead collisions at √{sNN}=5.02 TeV with ATLAS

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconadaâ Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Alvarezâ Gonzalez, B.; Álvarezâ Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaralâ Coutinho, Y.; Amelung, C.; Amidei, D.; Amorâ Dosâ Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperioâ Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barrancoâ Navarro, L.; Barreiro, F.; Barreiroâ Guimarãesâ Daâ Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benharâ Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaasâ Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaiaâ Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbaoâ Deâ Mendizabal, J.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossioâ Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breadenâ Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckmanâ Deâ Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabreraâ Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calventeâ Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camachoâ Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminalâ Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Canoâ Bret, M.; Cantero, J.; Cao, T.; Capeansâ Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Castilloâ Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerdaâ Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavezâ Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaouiâ Elâ Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Condeâ Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispinâ Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadarâ Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Onofrio, M.; Daâ Cunhaâ Sargedasâ Deâ Sousa, M. J.; Daâ Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Danoâ Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; Deâ Asmundis, R.; Deâ Benedetti, A.; Deâ Castro, S.; Deâ Cecco, S.; Deâ Groot, N.; Deâ Jong, P.; Deâ Laâ Torre, H.; Deâ Lorenzi, F.; Deâ Maria, A.; Deâ Pedis, D.; Deâ Salvo, A.; Deâ Sanctis, U.; Deâ Santo, A.; Deâ Vivieâ Deâ Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Delâ Gaudio, M.; Delâ Peso, J.; Delâ Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Dellaâ Pietra, M.; Dellaâ Volpe, D.; Delmastro, M.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Diâ Ciaccio, A.; Diâ Ciaccio, L.; Diâ Clemente, W. K.; Diâ Donato, C.; Diâ Girolamo, A.; Diâ Girolamo, B.; Diâ Micco, B.; Diâ Nardo, R.; Diâ Simone, A.; Diâ Sipio, R.; Diâ Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díezâ Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Doâ Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Duranâ Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Elâ Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucciâ Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandezâ Martinez, P.; Fernandezâ Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreiraâ Deâ Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferrettoâ Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Floresâ Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullanaâ Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garayâ Walls, F. M.; García, C.; Garcíaâ Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gasconâ Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalvesâ Pintoâ Firminoâ Daâ Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; Gonzálezâ Deâ Laâ Hoz, S.; Gonzalezâ Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrezâ Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Hadef, A.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriquesâ Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernándezâ Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbeâ Ponce, J. M.; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenezâ Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Justeâ Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Laâ Rosa, A.; Laâ Rosaâ Navarro, J. L.; Laâ Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagniâ Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Leâ Dortz, O.; Leâ Guirriec, E.; Leâ Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmannâ Miotto, G.; Lei, X.; Leight, W. A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Li, B.; Li, Changqiao; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorenteâ Merino, J.; Lloyd, S. L.; Loâ Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopezâ Mateos, D.; Lopezâ Paredes, B.; Lopezâ Paz, I.; Lopezâ Solis, A.; Lorenz, J.; Lorenzoâ Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machadoâ Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaesâ Deâ Andradeâ Filho, L.; Manjarresâ Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martinâ Ditâ Latour, B.; Martinez, M.; Martinezâ Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Melladoâ Garcia, B. R.; Melo, M.; Meloni, F.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyerâ Zuâ Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejoâ Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Morenoâ Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munozâ Sanchez, F. J.; Murilloâ Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjoâ Garcia, R. F.; Narayan, R.; Narriasâ Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nguyenâ Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiroâ Seabra, L. F.; Olivaresâ Pino, S. A.; Oliveiraâ Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Oteroâ Yâ Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pachecoâ Pages, A.; Pachecoâ Rodriguez, L.; Padillaâ Aranda, C.; Paganâ Griso, S.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduroâ Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredesâ Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedrazaâ Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perezâ Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozoâ Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguezâ Perez, A.; Rodriguezâ Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romanoâ Saez, S. M.; Romeroâ Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safaiâ Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazarâ Loyola, J. E.; Salek, D.; Salesâ Deâ Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sánchez, J.; Sanchezâ Martinez, V.; Sanchezâ Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyoâ Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoalehâ Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solansâ Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapiaâ Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavaresâ Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temple, D.; Tenâ Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Ticseâ Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Torróâ Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdesâ Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallsâ Ferrer, J. A.; Vanâ Denâ Wollenberg, W.; Vanâ Derâ Deijl, P. C.; Vanâ Derâ Graaf, H.; Vanâ Eldik, N.; Vanâ Gemmeren, P.; Vanâ Nieuwkoop, J.; Vanâ Vulpen, I.; Vanâ Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquezâ Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickeyâ Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplanaâ Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; Vonâ Derâ Schmitt, H.; Vonâ Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjesâ Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wolf, T. M. H.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yauâ Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zurâ Nedden, M.; Zwalinski, L.; Atlas Collaboration

    2017-12-01

    Bose-Einstein correlations between identified charged pions are measured for p +Pb collisions at √{sNN}=5.02 TeV using data recorded by the ATLAS detector at the CERN Large Hadron Collider corresponding to a total integrated luminosity of 28 nb-1 . Pions are identified using ionization energy loss measured in the pixel detector. Two-particle correlation functions and the extracted source radii are presented as a function of collision centrality as well as the average transverse momentum (kT) and rapidity (yππ ★) of the pair. Pairs are selected with a rapidity -2

  1. Leukemia in childhood and adolescence and exposure to ionizing radiation in homes built from uranium-containing alum shale concrete.

    PubMed

    Axelson, Olav; Fredrikson, Mats; Akerblom, Gustav; Hardell, Lennart

    2002-03-01

    Concerns in Sweden about indoor radon around 1980 prompted measurements of gamma-radiation from the facades of houses to identify those constructed of uranium-containing alum shale concrete, with potentially high radon concentrations. To evaluate any possible risk of acute lymphocytic leukemia from exposure to elevated gamma-radiation in these homes, we identified the acute lymphocytic leukemia cases less than 20 years of age in Sweden during 1980-1989 as well as eight controls per case from the population registry, matching on age, gender, and county. Using the existing measurements, exposure was assessable for 312 cases and 1,418 controls from 151 properly measured municipalities. A conditional logistic odds ratio of 1.4 (95% confidence interval = 1.0-1.9) was obtained for those ever having lived in alum shale concrete houses, with the average exposure exceeding 0.10 microsieverts per hour. Comparing those who ever lived in alum shale concrete houses (divided by higher and lower annual average exposure) with those who never lived in such houses, we found a weak dose-response relation. The results suggest some risk of acute lymphocytic leukemia from indoor ionizing radiation among children and young adults.

  2. [Evaluation of dental X-ray apparatus in terms of patient exposure to ionizing radiation].

    PubMed

    Olszewski, Jerzy; Wrzesień, Małgorzata

    2017-06-27

    The use of X-ray in dental procedures causes exposure of the patient to ionizing radiation. This exposure depends primarily on the parameters used in tooth examination. The aim of the study was to determine the patients exposure and to assess the technical condition of X-ray tubes. Seventeen hundred dental offices were covered by the questionnaire survey and 740 questionnaires were sent back. Direct measurements were performed in 100 units by using the thermoluminescent detectors and X-ray films. The results showed that the most commonly used exposure time is 0.22±0.16 s. The average entrance dose for the parameters used most commonly by dentists is 1.7±1.4 mGy. The average efficiency of X-ray tube estimated on the basis of exposures is 46.5±23.7 μGy/mAs. The study results indicate that the vast majority of X-ray tubes meet the requirements specified in the binding regulations. Med Pr 2017;67(4):491-496. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  3. Triple Differential Cross Sections for single ionization of the Ethane molecule

    NASA Astrophysics Data System (ADS)

    Ali, Esam; Nixon, Kate; Ning, Chuangang; Murray, Andrew; Madison, Don

    2015-09-01

    We report experimental and theoretical results for electron-impact (e,2e) ionization of the Ethane molecule (C2H6) in the coplanar scattering geometry for four different ejected electron energies Ea = 5,10,15, and 20 eV respectively, and for each ejected electron energy, the projectile scattering angle is fixed at 10°. We will show that the TDCS is very sensitive for the case of two heavy nuclei surrounded by lighter H nuclei. On the theoretical side, we have used the M3DW coupled with the Orientation Averaged Molecular Orbital (OAMO) approximation and proper average (PA) over all orientations. These approximations show good agreement with experimental data for the binary peaks. However, for the recoil peak region, experiment finds a noticeable peak while theory predicts no peak. No recoil peak suggests no (or very weak) nuclear scattering, so we have investigated the importance of nuclear scattering by moving the nuclei closer to the center of mass. This work is supported by the US National Science Foundation under Grant No. PHY-1068237 and XSEDE resources provided by the Texas Advanced Computing Center (Grant No. TG-MCA07S029).

  4. High density plasma gun generates plasmas at 190 kilometers per second

    NASA Technical Reports Server (NTRS)

    Espy, P. N.

    1971-01-01

    Gun has thin metal foil disc which positions or localizes gas to be ionized during electrical discharge cycle, overcoming major limiting factor in obtaining such plasmas. Expanding plasma front travels at 190 km/sec, compared to plasmas of 50 to 60 km/sec previously achieved.

  5. Atmospheric consequences of cosmic ray variability in the extragalactic shock model: 2. Revised ionization levels and their consequences

    NASA Astrophysics Data System (ADS)

    Melott, Adrian L.; Atri, Dimitra; Thomas, Brian C.; Medvedev, Mikhail V.; Wilson, Graham W.; Murray, Michael J.

    2010-08-01

    It has been suggested that galactic shock asymmetry induced by our galaxy's infall toward the Virgo Cluster may be a source of periodicity in cosmic ray exposure as the solar system oscillates perpendicular to the galactic plane, thereby, inducing an observed terrestrial periodicity in biodiversity. There are a number of plausible mechanisms by which cosmic rays might affect terrestrial biodiversity. Here we investigate one of these mechanisms, the consequent ionization and dissociation in the atmosphere, resulting in changes in atmospheric chemistry that culminate in the depletion of ozone and a resulting increase in the dangerous solar UVB flux on the ground. We use a heuristic model of the cosmic ray intensity enhancement originally suggested by Medvedev and Melott (2007) to compute steady state atmospheric effects. This paper is a reexamination of an issue we have studied before with a simplified approximation for the distribution of incidence angles. The new results are based on an improved ionization background computation averaged over a massive ensemble (about 7 × 105) shower simulations at various energies and incidence angles. We adopt a range with a minimal model and a fit to full exposure to the postulated extragalactic background. The atmospheric effects are greater than they were with our earlier, simplified ionization model. At the lower end of the intensity range, we find that the effects are too small to be of serious consequence. At the upper end of this range, ˜6% global average loss of ozone column density exceeds that currently experienced due to anthropogenic effects such as accumulated chlorofluorocarbons. We discuss some of the possible effects. The intensity of the atmospheric effects is less than those of a nearby supernova or galactic γ ray burst, but the duration of the effects would be about 106 times longer. Present UVB enhancement from current ozone depletion ˜3% is a documented stress on the biosphere, but a depletion of the magnitude found at the upper end of our range would approximately double the global average UVB flux. We conclude that for estimates at the upper end of the reasonable range of the cosmic ray variability over geologic time, the mechanism of atmospheric ozone depletion may provide a major biological stress, which could easily bring about major loss of biodiversity. It is possible that future high-energy astrophysical observations will resolve the question of whether such depletion is likely.

  6. Targeted Multiplex Imaging Mass Spectrometry in Transmission Geometry for Subcellular Spatial Resolution

    PubMed Central

    Lavenant, Gwendoline Thiery; Zavalin, Andrey I.; Caprioli, Richard M.

    2013-01-01

    Targeted multiplex Imaging Mass Spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This manuscript describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet. PMID:23397138

  7. Inner-shell radiation from wire array implosions on the Zebra generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouart, N. D.; Giuliani, J. L.; Dasgupta, A.

    2014-03-15

    Implosions of brass wire arrays on Zebra have produced L-shell radiation as well as inner-shell Kα and Kβ transitions. The L-shell radiation comes from ionization stages around the Ne-like charge state that is largely populated by a thermal electron energy distribution function, while the K-shell photons are a result of high-energy electrons ionizing or exciting an inner-shell (1s) electron from ionization stages around Ne-like. The K- and L-shell radiations were captured using two time-gated and two axially resolved time-integrated spectrometers. The electron beam was measured using a Faraday cup. A multi-zone non-local thermodynamic equilibrium pinch model with radiation transport ismore » used to model the x-ray emission from experiments for the purpose of obtaining plasma conditions. These plasma conditions are used to discuss some properties of the electron beam generated by runaway electrons. A simple model for runaway electrons is examined to produce the Kα radiation, but it is found to be insufficient.« less

  8. The difficulty of ultraviolet emssion from supernovae

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.

    1971-01-01

    There are certain conceptual difficulties in the theory of the generation of ultraviolet radiation which is presumed for the creation of the optical fluorescence mechanism of supernova light emission and ionization of a nebula as large as the Gum nebula. Requirements concerning the energy distribution of the ultraviolet photons are: 1) The energy of the greater part of the photons must be sufficient to cause both helium fluorescence and hydrogen ionization. 2) If the photons are emitted in an approximate black body spectrum, the fraction of energy emitted in the optical must be no more than what is already observed. Ultraviolet black body emission depends primarily on the energy source. The probability that the wide mixture of elements present in the interstellar medium and supernova ejecta results in an emission localized in a limited region with less than 0.001 emission in the visible, for either ionization or fluorescence ultraviolet, is remote. Therefore transparent emission must be excluded as unlikely, and black body or at least quasi-black-body emission is more probable.

  9. Targeted Multiplex Imaging Mass Spectrometry in Transmission Geometry for Subcellular Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Thiery-Lavenant, Gwendoline; Zavalin, Andre I.; Caprioli, Richard M.

    2013-04-01

    Targeted multiplex imaging mass spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This article describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet.

  10. Impact of local electrostatic field rearrangement on field ionization

    NASA Astrophysics Data System (ADS)

    Katnagallu, Shyam; Dagan, Michal; Parviainen, Stefan; Nematollahi, Ali; Grabowski, Blazej; Bagot, Paul A. J.; Rolland, Nicolas; Neugebauer, Jörg; Raabe, Dierk; Vurpillot, François; Moody, Michael P.; Gault, Baptiste

    2018-03-01

    Field ion microscopy allows for direct imaging of surfaces with true atomic resolution. The high charge density distribution on the surface generates an intense electric field that can induce ionization of gas atoms. We investigate the dynamic nature of the charge and the consequent electrostatic field redistribution following the departure of atoms initially constituting the surface in the form of an ion, a process known as field evaporation. We report on a new algorithm for image processing and tracking of individual atoms on the specimen surface enabling quantitative assessment of shifts in the imaged atomic positions. By combining experimental investigations with molecular dynamics simulations, which include the full electric charge, we confirm that change is directly associated with the rearrangement of the electrostatic field that modifies the imaging gas ionization zone. We derive important considerations for future developments of data reconstruction in 3D field ion microscopy, in particular for precise quantification of lattice strains and characterization of crystalline defects at the atomic scale.

  11. EFFECTS OF ULTRAVIOLET BACKGROUND AND LOCAL STELLAR RADIATION ON THE H I COLUMN DENSITY DISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagamine, Kentaro; Choi, Jun-Hwan; Yajima, Hidenobu, E-mail: kn@physics.unlv.ed

    We study the impact of ultraviolet background (UVB) radiation field and the local stellar radiation on the H I column density distribution f(N{sub H{sub I}}) of damped Ly{alpha} systems (DLAs) and sub-DLAs at z = 3 using cosmological smoothed particle hydrodynamics simulations. We find that, in the previous simulations with an optically thin approximation, the UVB was sinking into the H I cloud too deeply, and therefore we underestimated the f(N{sub H{sub I}}) at 19 < log N{sub H{sub I}} < 21.2 compared to the observations. If the UVB is shut off in the high-density regions with n{sub gas}>6 xmore » 10{sup -3} cm{sup -3}, then we reproduce the observed f(N{sub H{sub I}}) at z = 3 very well. We also investigate the effect of local stellar radiation by postprocessing our simulation with a radiative transfer code and find that the local stellar radiation does not change the f(N{sub H{sub I}}) very much. Our results show that the shape of f(N{sub H{sub I}}) is determined primarily by the UVB with a much weaker effect by the local stellar radiation and that the optically thin approximation often used in cosmological simulation is inadequate to properly treat the ionization structure of neutral gas in and out of DLAs. Our result also indicates that the DLA gas is closely related to the transition region from optically thick neutral gas to optically thin ionized gas within dark matter halos.« less

  12. High-order above-threshold ionization beyond the electric dipole approximation

    NASA Astrophysics Data System (ADS)

    Brennecke, Simon; Lein, Manfred

    2018-05-01

    Photoelectron momentum distributions from strong-field ionization are calculated by numerical solution of the one-electron time-dependent Schrödinger equation for a model atom including effects beyond the electric dipole approximation. We focus on the high-energy electrons from rescattering and analyze their momentum component along the field propagation direction. We show that the boundary of the calculated momentum distribution is deformed in accordance with the classical three-step model including the beyond-dipole Lorentz force. In addition, the momentum distribution exhibits an asymmetry in the signal strengths of electrons emitted in the forward/backward directions. Taken together, the two non-dipole effects give rise to a considerable average forward momentum component of the order of 0.1 a.u. for realistic laser parameters.

  13. Propagation of intense short laser pulses in the atmosphere.

    PubMed

    Sprangle, P; Peñano, J R; Hafizi, B

    2002-10-01

    The propagation of short, intense laser pulses in the atmosphere is investigated theoretically and numerically. A set of three-dimensional (3D), nonlinear propagation equations is derived, which includes the effects of dispersion, nonlinear self-focusing, stimulated molecular Raman scattering, multiphoton and tunneling ionization, energy depletion due to ionization, relativistic focusing, and ponderomotively excited plasma wakefields. The instantaneous frequency spread along a laser pulse in air, which develops due to various nonlinear effects, is analyzed and discussed. Coupled equations for the power, spot size, and electron density are derived for an intense ionizing laser pulse. From these equations we obtain an equilibrium for a single optical-plasma filament, which involves a balancing between diffraction, nonlinear self-focusing, and plasma defocusing. The equilibrium is shown to require a specific distribution of power along the filament. It is found that in the presence of ionization a self-guided optical filament is not realizable. A method for generating a remote spark in the atmosphere is proposed, which utilizes the dispersive and nonlinear properties of air to cause a low-intensity chirped laser pulse to compress both longitudinally and transversely. For optimally chosen parameters, we find that the transverse and longitudinal focal lengths can be made to coincide, resulting in rapid intensity increase, ionization, and white light generation in a localized region far from the source. Coupled equations for the laser spot size and pulse duration are derived, which can describe the focusing and compression process in the low-intensity regime. More general examples involving beam focusing, compression, ionization, and white light generation near the focal region are studied by numerically solving the full set of 3D, nonlinear propagation equations.

  14. The kinematics of the diffuse ionized gas in NGC 4666

    NASA Astrophysics Data System (ADS)

    Voigtländer, P.; Kamphuis, P.; Marcelin, M.; Bomans, D. J.; Dettmar, R.-J.

    2013-06-01

    Context. The global properties of the interstellar medium with processes such as infall and outflow of gas and a large scale circulation of matter and its consequences for star formation and chemical enrichment are important for the understanding of galaxy evolution. Aims: In this paper we studied the kinematics and morphology of the diffuse ionized gas (DIG) in the disk and in the halo of the star forming spiral galaxy NGC 4666 to derive information about its kinematical properties. Especially, we searched for infalling and outflowing ionized gas. Methods: We determined surface brightness, radial velocity, and velocity dispersion of the warm ionized gas via high spectral resolution (R ≈ 9000) Fabry-Pérot interferometry. This allows the determination of the global velocity field and the detection of local deviations from this velocity field. We calculated models of the DIG distribution and its kinematics for comparison with the measured data. In this way we determined fundamental parameters such as the inclination and the scale height of NGC 4666, and established the need for an additional gas component to fit our observed data. Results: We found individual areas, especially along the minor axis, with gas components reaching into the halo which we interpret as an outflowing component of the DIG. As the main result of our study, we were able to determine that the vertical structure of the DIG distribution in NGC 4666 is best modeled with two components of ionized gas, a thick and a thin disk with 0.8 kpc and 0.2 kpc scale height, respectively. Therefore, the enhanced star formation in NGC 4666 drives an outflow and also maintains a thick ionized gas layer reminiscent of the Reynold's layer in the Milky Way.

  15. ALMA Reveals Weak [N II] Emission in "Typical" Galaxies and Intense Starbursts at z = 5-6

    NASA Astrophysics Data System (ADS)

    Pavesi, Riccardo; Riechers, Dominik A.; Capak, Peter L.; Carilli, Christopher L.; Sharon, Chelsea E.; Stacey, Gordon J.; Karim, Alexander; Scoville, Nicholas Z.; Smolčić, Vernesa

    2016-12-01

    We report interferometric measurements of [N II] 205 μm fine-structure line emission from a representative sample of three galaxies at z = 5-6 using the Atacama Large (sub)Millimeter Array (ALMA). These galaxies were previously detected in [C II] and far-infrared continuum emission and span almost two orders of magnitude in star formation rate (SFR). Our results show at least two different regimes of ionized interstellar medium properties for galaxies in the first billion years of cosmic time, separated by their {L}[{{C}{{II}}]}/{L}[{{N}{{II}}]} ratio. We find extremely low [N II] emission compared to [C II] ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}={68}-28+200) from a “typical” ˜ {L}{UV}* star-forming galaxy, likely directly or indirectly (by its effect on the radiation field) related to low dust abundance and low metallicity. The infrared-luminous modestly star-forming Lyman-break galaxy (LBG) in our sample is characterized by an ionized-gas fraction ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}≲ 20) typical of local star-forming galaxies and shows evidence for spatial variations in its ionized-gas fraction across an extended gas reservoir. The extreme SFR, warm and compact dusty starburst AzTEC-3 shows an ionized fraction higher than expected given its SFR surface density ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}=22+/- 8) suggesting that [N II] dominantly traces a diffuse ionized medium rather than star-forming H II regions in this type of galaxy. This highest redshift sample of [N II] detections provides some of the first constraints on ionized and neutral gas modeling attempts and on the structure of the interstellar medium at z = 5-6 in “normal” galaxies and starbursts.

  16. The relative impact of photoionizing radiation and stellar winds on different environments

    NASA Astrophysics Data System (ADS)

    Haid, S.; Walch, S.; Seifried, D.; Wünsch, R.; Dinnbier, F.; Naab, T.

    2018-05-01

    Photoionizing radiation and stellar winds from massive stars deposit energy and momentum into the interstellar medium (ISM). They might disperse the local ISM, change its turbulent multi-phase structure, and even regulate star formation. Ionizing radiation dominates the massive stars' energy output, but the relative effect of winds might change with stellar mass and the properties of the ambient ISM. We present simulations of the interaction of stellar winds and ionizing radiation of 12, 23, and 60 M⊙ stars within a cold neutral (CNM, n0 = 100 cm-3), warm neutral (WNM, n0 = 1, 10 cm-3) or warm ionized (WIM, n0 = 0.1 cm-3) medium. The FLASH simulations adopt the novel tree-based radiation transfer algorithm TREERAY. With the On-the-Spot approximation and a temperature-dependent recombination coefficient, it is coupled to a chemical network with radiative heating and cooling. In the homogeneous CNM, the total momentum injection ranges from 1.6× 104 to 4× 105 M⊙ km s-1 and is always dominated by the expansion of the ionized HII region. In the WIM, stellar winds dominate (2× 102 to 5× 103 M⊙ km s-1), while the input from radiation is small (˜ 102 M⊙ km s-1). The WNM (n0 = 1 cm-3) is a transition regime. Energetically, stellar winds couple more efficiently to the ISM (˜ 0.1 percent of wind luminosity) than radiation (< 0.001 percent of ionizing luminosity). For estimating the impact of massive stars, the strongly mass-dependent ratios of wind to ionizing luminosity and the properties of the ambient medium have to be considered.

  17. Ultraviolet spectra of extreme nearby star-forming regions - approaching a local reference sample for JWST

    NASA Astrophysics Data System (ADS)

    Senchyna, Peter; Stark, Daniel P.; Vidal-García, Alba; Chevallard, Jacopo; Charlot, Stéphane; Mainali, Ramesh; Jones, Tucker; Wofford, Aida; Feltre, Anna; Gutkin, Julia

    2017-12-01

    Nearby dwarf galaxies provide a unique laboratory in which to test stellar population models below Z⊙/2. Such tests are particularly important for interpreting the surprising high-ionization ultraviolet (UV) line emission detected at z > 6 in recent years. We present HST/COS UV spectra of 10 nearby metal-poor star-forming galaxies selected to show He II emission in SDSS optical spectra. The targets span nearly a dex in gas-phase oxygen abundance (7.8 < 12 + log O/H < 8.5) and present uniformly large specific star formation rates (sSFR ∼102 Gyr-1). The UV spectra confirm that metal-poor stellar populations can power extreme nebular emission in high-ionization UV lines, reaching C III] equivalent widths comparable to those seen in systems at z ∼ 6-7. Our data reveal a marked transition in UV spectral properties with decreasing metallicity, with systems below 12 + log O/H ≲ 8.0 (Z/Z⊙ ≲ 1/5) presenting minimal stellar wind features and prominent nebular emission in He II and C IV. This is consistent with nearly an order of magnitude increase in ionizing photon production beyond the He+-ionizing edge relative to H-ionizing flux as metallicity decreases below a fifth solar, well in excess of standard stellar population synthesis predictions. Our results suggest that often-neglected sources of energetic radiation such as stripped binary products and very massive O-stars produce a sharper change in the ionizing spectrum with decreasing metallicity than expected. Consequently, nebular emission in C IV and He II powered by these stars may provide useful metallicity constraints in the reionization era.

  18. Ionospheric Impacts on UHF Space Surveillance

    NASA Astrophysics Data System (ADS)

    Jones, J. C.

    2017-12-01

    Earth's atmosphere contains regions of ionized plasma caused by the interaction of highly energetic solar radiation. This region of ionization is called the ionosphere and varies significantly with altitude, latitude, local solar time, season, and solar cycle. Significant ionization begins at about 100 km (E layer) with a peak in the ionization at about 300 km (F2 layer). Above the F2 layer, the atmosphere is mostly ionized but the ion and electron densities are low due to the unavailability of neutral molecules for ionization so the density decreases exponentially with height to well over 1000 km. The gradients of these variations in the ionosphere play a significant role in radio wave propagation. These gradients induce variations in the index of refraction and cause some radio waves to refract. The amount of refraction depends on the magnitude and direction of the electron density gradient and the frequency of the radio wave. The refraction is significant at HF frequencies (3-30 MHz) with decreasing effects toward the UHF (300-3000 MHz) range. UHF is commonly used for tracking of space objects in low Earth orbit (LEO). While ionospheric refraction is small for UHF frequencies, it can cause errors in range, azimuth angle, and elevation angle estimation by ground-based radars tracking space objects. These errors can cause significant errors in precise orbit determinations. For radio waves transiting the ionosphere, it is important to understand and account for these effects. Using a sophisticated radio wave propagation tool suite and an empirical ionospheric model, we calculate the errors induced by the ionosphere in a simulation of a notional space surveillance radar tracking objects in LEO. These errors are analyzed to determine daily, monthly, annual, and solar cycle trends. Corrections to surveillance radar measurements can be adapted from our simulation capability.

  19. UV DRIVEN EVAPORATION OF CLOSE-IN PLANETS: ENERGY-LIMITED, RECOMBINATION-LIMITED, AND PHOTON-LIMITED FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, James E.; Alvarez, Marcelo A., E-mail: jowen@ias.edu

    2016-01-01

    We have investigated the evaporation of close-in exoplanets irradiated by ionizing photons. We find that the properties of the flow are controlled by the ratio of the recombination time to the flow timescale. When the recombination timescale is short compared to the flow timescale, the flow is in approximate local ionization equilibrium with a thin ionization front where the photon mean free path is short compared to the flow scale. In this “recombination-limited” flow the mass-loss scales roughly with the square root of the incident flux. When the recombination time is long compared to the flow timescale the ionization frontmore » becomes thick and encompasses the entire flow with the mass-loss rate scaling linearly with flux. If the planet's potential is deep, then the flow is approximately “energy-limited”; however, if the planet's potential is shallow, then we identify a new limiting mass-loss regime, which we term “photon-limited.” In this scenario, the mass-loss rate is purely limited by the incoming flux of ionizing photons. We have developed a new numerical approach that takes into account the frequency dependence of the incoming ionizing spectrum and performed a large suite of 1D simulations to characterize UV driven mass-loss around low-mass planets. We find that the flow is “recombination-limited” at high fluxes but becomes “energy-limited” at low fluxes; however, the transition is broad occurring over several orders of magnitude in flux. Finally, we point out that the transitions between the different flow types do not occur at a single flux value but depend on the planet's properties, with higher-mass planets becoming “energy-limited” at lower fluxes.« less

  20. Spatial Fluctuations of the Intergalactic Temperature-Density Relation After Hydrogen Reionization

    NASA Astrophysics Data System (ADS)

    Keating, Laura C.; Puchwein, Ewald; Haehnelt, Martin G.

    2018-04-01

    The thermal state of the post-reionization IGM is sensitive to the timing of reionization and the nature of the ionizing sources. We have modelled here the thermal state of the IGM in cosmological radiative transfer simulations of a realistic, extended, spatially inhomogeneous hydrogen reionization process, carefully calibrated with Lyα forest data. We compare these with cosmological simulations run using a spatially homogeneous ionizing background. The simulations with a realistic growth of ionized regions and a realistic spread in reionization redshifts show, as expected, significant spatial fluctuations in the temperature-density relation (TDR) of the post-reionization IGM. The most recently ionized regions are hottest and exhibit a flatter TDR. In simulations consistent with the average TDR inferred from Lyα forest data, these spatial fluctuations have a moderate but noticeable effect on the statistical properties of the Lyα opacity of the IGM at z ˜ 4 - 6. This should be taken into account in accurate measurements of the thermal properties of the IGM and the free-streaming of dark matter from Lyα forest data in this redshift range. The spatial variations of the TDR predicted by our simulations are, however, smaller by about a factor two than would be necessary to explain the observed large spatial opacity fluctuations on large (≥ 50 h-1 comoving Mpc) scales at z ≳ 5.5.

  1. Spatial fluctuations of the intergalactic temperature-density relation after hydrogen reionization

    NASA Astrophysics Data System (ADS)

    Keating, Laura C.; Puchwein, Ewald; Haehnelt, Martin G.

    2018-07-01

    The thermal state of the post-reionization IGM is sensitive to the timing of reionization and the nature of the ionizing sources. We have modelled here the thermal state of the IGM in cosmological radiative transfer simulations of a realistic, extended, spatially inhomogeneous hydrogen reionization process, carefully calibrated with Ly α forest data. We compare these with cosmological simulations run using a spatially homogeneous ionizing background. The simulations with a realistic growth of ionized regions and a realistic spread in reionization redshifts show, as expected, significant spatial fluctuations in the temperature-density relation (TDR) of the post-reionization IGM. The most recently ionized regions are hottest and exhibit a flatter TDR. In simulations consistent with the average TDR inferred from Ly α forest data, these spatial fluctuations have a moderate but noticeable effect on the statistical properties of the Ly α opacity of the IGM at z ˜ 4-6. This should be taken into account in accurate measurements of the thermal properties of the IGM and the free-streaming of dark matter from Ly α forest data in this redshift range. The spatial variations of the TDR predicted by our simulations are, however, smaller by about a factor of 2 than would be necessary to explain the observed large spatial opacity fluctuations on large (≥50 h-1 comoving Mpc) scales atz ≳ 5.5.

  2. Comparison of two equation-of-state models for partially ionized aluminum: Zel'dovich and Raizer's model versus the activity expansion code

    NASA Astrophysics Data System (ADS)

    Harrach, Robert J.; Rogers, Forest J.

    1981-09-01

    Two equation-of-state (EOS) models for multipy ionized matter are evaluated for the case of an aluminum plasma in the temperature range from about one eV to several hundred eV, spanning conditions of weak to strong ionization. Specifically, the simple analytical mode of Zel'dovich and Raizer and the more comprehensive model comprised by Rogers' plasma physics avtivity expansion code (ACTEX) are used to calculate the specific internal energy ɛ and average degree of ionization Z¯*, as functons of temperature T and density ρ. In the absence of experimental data, these results are compared against each other, covering almost five orders-of-magnitude variation in ɛ and the full range of Z¯* We find generally good agreement between the two sets of results, especially for low densities and for temperatures near the upper end of the rage. Calculated values of ɛ(T) agree to within ±30% over nearly the full range in T for densities below about 1 g/cm3. Similarly, the two models predict values of Z¯*(T) which track each other fairly well; above 20 eV the discrepancy is less than ±20% fpr ρ≲1 g/cm3. Where the calculations disagree, we expect the ACTEX code to be more accurate than Zel'dovich and Raizer's model, by virtue of its more detailed physics content.

  3. Detecting local heterogeneity and ionization ability in the head group region of different lipidic phases using modified fluorescent probes

    NASA Astrophysics Data System (ADS)

    Abou-Zied, Osama K.; Zahid, N. Idayu; Khyasudeen, M. Faisal; Giera, David S.; Thimm, Julian C.; Hashim, Rauzah

    2015-03-01

    Local heterogeneity in lipid self-assembly is important for executing the cellular membrane functions. In this work, we chemically modified 2-(2'-hydroxyphenyl)benzoxazole (HBO) and attached a C8 alkyl chain in two different locations to probe the microscopic environment of four lipidic phases of dodecyl β-maltoside. The fluorescence change in HBO and the new probes (HBO-1 and HBO-2) shows that in all phases (micellar, hexagonal, cubic and lamellar) three HBO tautomeric species (solvated syn-enol, anionic, and closed syn-keto) are stable. The formation of multi tautomers reflects the heterogeneity of the lipidic phases. The results indicate that HBO and HBO-1 reside in a similar location within the head group region, whereas HBO-2 is slightly pushed away from the sugar-dominated area. The stability of the solvated syn-enol tautomer is due to the formation of a hydrogen bond between the OH group of the HBO moiety and an adjacent oxygen atom of a sugar unit. The detected HBO anions was proposed to be a consequence of this solvation effect where a hydrogen ion abstraction by the sugar units is enhanced. Our results point to a degree of local heterogeneity and ionization ability in the head group region as a consequence of the sugar amphoterism.

  4. Reactive, spectroscopic and antimicrobial assessments of 5-[(4-methylphenyl) acetamido]-2-(4-tert-butylphenyl)benzoxazole: Combined experimental and computational study

    NASA Astrophysics Data System (ADS)

    Mary, Y. Sheena; Alzoman, Nourah Z.; Menon, Vidya V.; Al-Abdullah, Ebtehal S.; El-Emam, Ali A.; Panicker, C. Yohannan; Temiz-Arpaci, Ozlem; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.

    2017-01-01

    The synthesis, FT-IR, FT-Raman and NMR spectral analysis of an antimicrobial active benzoxazole derivative, 5-[(4-methylphenyl)acetamido]-2-(4-tert-butylphenyl) benzoxazole (MPATB) is reported. The localization of HOMO, LUMO plots in the title compound over the title molecule shows the charge transfer in the molecular system through the conjugated paths.The electrophilic and nucleophilic sites are revealed from the molecular electrostatic potential map. The first hyperpolarizability of the title compound is greater than that of the standard nonlinear optical material urea and the title compound and its derivatives are good objects for further research in nonlinear optical analysis. Molecule sites prone to electrophilic attacks have been detected by calculation of average local ionization energies, while calculations of Fukui functions have provided additional information about the local reactivity properties. Bond dissociation energies have been calculated in order to investigate autoxidation possibilities of the title molecule, as well as to determine the weakest bonds and therefore the sites where process of degradation could start. Reactive properties with water have been investigated by molecular dynamics simulations and calculations of radial distribution functions. The compound possessed broad spectrum activity against all of the tested Gram-positive and Gram-negative bacteria and yeasts, their minimum inhibitory concentrations ranging between 8 and 128 μg/ml. The compound exhibited significant antifungal activity (64 μg/ml) against Candida krusei, at same potency with the compared standard drugs fluconazole. The docked title compound forms a stable complex with thymidylate synthase and got a binding affinity value of -8.5 kcal/mol and the title compound can be a lead compound for developing new anti-cancerous drug.

  5. The Inhomogeneous Reionization Times of Present-day Galaxies

    NASA Astrophysics Data System (ADS)

    Aubert, Dominique; Deparis, Nicolas; Ocvirk, Pierre; Shapiro, Paul R.; Iliev, Ilian T.; Yepes, Gustavo; Gottlöber, Stefan; Hoffman, Yehuda; Teyssier, Romain

    2018-04-01

    Today’s galaxies experienced cosmic reionization at different times in different locations. For the first time, reionization (50% ionized) redshifts, z R , at the location of their progenitors are derived from new, fully coupled radiation-hydrodynamics simulation of galaxy formation and reionization at z > 6, matched to N-body simulation to z = 0. Constrained initial conditions were chosen to form the well-known structures of the local universe, including the Local Group and Virgo, in a (91 Mpc)3 volume large enough to model both global and local reionization. Reionization simulation CoDa I-AMR, by CPU-GPU code EMMA, used (2048)3 particles and (2048)3 initial cells, adaptively refined, while N-body simulation CoDa I-DM2048, by Gadget2, used (2048)3 particles, to find reionization times for all galaxies at z = 0 with masses M(z = 0) ≥ 108 M ⊙. Galaxies with M(z=0)≳ {10}11 {M}ȯ reionized earlier than the universe as a whole, by up to ∼500 Myr, with significant scatter. For Milky Way–like galaxies, z R ranged from 8 to 15. Galaxies with M(z=0)≲ {10}11 {M}ȯ typically reionized as late or later than globally averaged 50% reionization at < {z}R> =7.8, in neighborhoods where reionization was completed by external radiation. The spread of reionization times within galaxies was sometimes as large as the galaxy-to-galaxy scatter. The Milky Way and M31 reionized earlier than global reionization but later than typical for their mass, neither dominated by external radiation. Their most-massive progenitors at z > 6 had z R =9.8 (MW) and 11 (M31), while their total masses had z R = 8.2 (both).

  6. Structure factors for tunneling ionization rates of molecules: General Hartree-Fock-based integral representation

    NASA Astrophysics Data System (ADS)

    Madsen, Lars Bojer; Jensen, Frank; Dnestryan, Andrey I.; Tolstikhin, Oleg I.

    2017-07-01

    In the leading-order approximation of the weak-field asymptotic theory (WFAT), the dependence of the tunneling ionization rate of a molecule in an electric field on its orientation with respect to the field is determined by the structure factor of the ionizing molecular orbital. The WFAT yields an expression for the structure factor in terms of a local property of the orbital in the asymptotic region. However, in general quantum chemistry approaches molecular orbitals are expanded in a Gaussian basis which does not reproduce their asymptotic behavior correctly. This hinders the application of the WFAT to polyatomic molecules, which are attracting increasing interest in strong-field physics. Recently, an integral-equation approach to the WFAT for tunneling ionization of one electron from an arbitrary potential has been developed. The structure factor is expressed in an integral form as a matrix element involving the ionizing orbital. The integral is not sensitive to the asymptotic behavior of the orbital, which resolves the difficulty mentioned above. Here, we extend the integral representation for the structure factor to many-electron systems treated within the Hartree-Fock method and show how it can be implemented on the basis of standard quantum chemistry software packages. We validate the methodology by considering noble-gas atoms and the CO molecule, for which accurate structure factors exist in the literature. We also present benchmark results for CO2 and for NH3 in the pyramidal and planar geometries.

  7. The Origins of [C ii] Emission in Local Star-forming Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croxall, K. V.; Smith, J. D.; Pellegrini, E.

    The [C ii] 158 μ m fine-structure line is the brightest emission line observed in local star-forming galaxies. As a major coolant of the gas-phase interstellar medium, [C ii] balances the heating, including that due to far-ultraviolet photons, which heat the gas via the photoelectric effect. However, the origin of [C ii] emission remains unclear because C{sup +} can be found in multiple phases of the interstellar medium. Here we measure the fractions of [C ii] emission originating in the ionized and neutral gas phases of a sample of nearby galaxies. We use the [N ii] 205 μ m fine-structuremore » line to trace the ionized medium, thereby eliminating the strong density dependence that exists in the ratio of [C ii]/[N ii] 122 μ m. Using the FIR [C ii] and [N ii] emission detected by the KINGFISH (Key Insights on Nearby Galaxies: a Far- Infrared Survey with Herschel ) and Beyond the Peak Herschel programs, we show that 60%–80% of [C ii] emission originates from neutral gas. We find that the fraction of [C ii] originating in the neutral medium has a weak dependence on dust temperature and the surface density of star formation, and has a stronger dependence on the gas-phase metallicity. In metal-rich environments, the relatively cooler ionized gas makes substantially larger contributions to total [C ii] emission than at low abundance, contrary to prior expectations. Approximate calibrations of this metallicity trend are provided.« less

  8. Massive Stars and the Ionization of the Diffuse Medium

    NASA Astrophysics Data System (ADS)

    Kahre, Lauren E.; Walterbos, Rene A. M.

    2015-08-01

    Diffuse ionized Gas (DIG, sometimes called the warm ionized medium or WIM) has been recognized as a major component of the interstellar medium (ISM) in disk galaxies. A general understanding of the characteristics of the DIG is emerging, but several questions remain unanswered. One of these is the ionization mechanism for this gas, believed to be connected to OB stars and HII regions. Using 5-band (NUV (2750 A), U, V, B, and I) photometric imaging data from the Hubble Space Telescope (HST) Legacy Extragalactic Ultraviolet Survey (LEGUS) and ground-based Halpha data from the Local Volume Legacy (LVL) survey and HST Halpha data from LEGUS, we will investigate the photoionization of HII regions and DIG in nearly 50 galaxies. The 5-band photometry will enable us to determine properties of the most massive stars and reddening corrections for specific regions within a galaxy. Luminosities and ages for groups and clusters will be obtained from SED-fitting of photometric data. For individual stars ages will be determined from isochrone-fitting using reddening-corrected color-magnitude diagrams. We can then obtain estimates of the ionizing luminosities by matching these photometric properties for massive stars and clusters to various stellar atmosphere models. We will compare these predictions to the inferred Lyman continuum production rates from reddening-corrected ground- and HST-based Halpha data for HII regions and DIG. This particular presentation will demonstrate the above process for a set of selected regions in galaxies within the LEGUS sample. It will subsequently be expanded to cover the full LEGUS sample, with the overall goals of obtaining a better understanding of the radiative energy feedback from massive stars on the ISM, particularly their ability to ionize the surrounding ISM over a wide range of spatial scales and SFR surface densities, and to connect the ionization of the ISM to HII region morphologies.

  9. Three-Dimensional Imaging of Lipids and Metabolites in Tissues by Nanospray Desorption Electrospray Ionization Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanekoff, Ingela T.; Burnum-Johnson, Kristin E.; Thomas, Mathew

    Abstract Three-dimensional (3D) imaging of tissue sections is a new frontier in mass spectrometry imaging (MSI). Here we report on fast 3D imaging of lipids and metabolites associated with mouse uterine decidual cells and embryo at the implantation site on day 6 of pregnancy. 2D imaging of 16-20 serial tissue sections deposited on the same glass slide was performed using nanospray desorption electrospray ionization (nano-DESI) – an ambient ionization technique that enables sensitive localized analysis of analytes on surfaces without special sample pre-treatment. In this proof-of-principle study, nano-DESI was coupled to a high-resolution Q-Exactive instrument operated at high repetition ratemore » of >5 Hz with moderate mass resolution of 35,000 (m/Δm at m/z 200), which enabled acquisition of the entire 3D image with a spatial resolution of ~150 μm in less than 4.5 hours. The results demonstrate localization of acetylcholine in the primary decidual zone (PDZ) of the implantation site throughout the depth of the tissue examined, indicating an important role of this signaling molecule in decidualization. Choline and phosphocholine – metabolites associated with cell growth – are enhanced in the PDZ and abundant in other cellular regions of the implantation site. Very different 3D distributions were obtained for fatty acids (FA), oleic acid and linoleic acid (FA 18:1 and FA 18:2), differing only by one double bond. Localization of FA 18:2 in the PDZ indicates its important role in decidualization while FA 18:1 is distributed more evenly throughout the tissue. In contrast, several lysophosphatidylcholines (LPC) observed in this study show donut-like distributions with localization around the PDZ. Complementary distributions with minimal overlap were observed for LPC 18:0 and FA 18:2 while the 3D image of the potential precursor phosphatidylcholine (PC 36:2) showed a significant overlap with both LPC 18:0 and FA 18:2.« less

  10. Galaxy Properties and UV Escape Fractions during the Epoch of Reionization: Results from the Renaissance Simulations

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Wise, John H.; Norman, Michael L.; Ahn, Kyungjin; O'Shea, Brian W.

    2016-12-01

    Cosmic reionization is thought to be primarily fueled by the first generations of galaxies. We examine their stellar and gaseous properties, focusing on the star formation rates and the escape of ionizing photons, as a function of halo mass, redshift, and environment using the full suite of the Renaissance Simulations with an eye to provide better inputs to global reionization simulations. This suite probes overdense, average, and underdense regions of the universe of several hundred comoving Mpc3, each yielding a sample of over 3000 halos in the mass range of 107-109.5 {M}⊙ at their final redshifts of 15, 12.5, and 8, respectively. In the process, we simulate the effects of radiative and supernova feedback from 5000 to 10,000 Population III stars in each simulation. We find that halos as small as 107 {M}⊙ are able to host bursty star formation due to metal-line cooling from earlier enrichment by massive Population III stars. Using our large sample, we find that the galaxy-halo occupation fraction drops from unity at virial masses above 108.5 {M}⊙ to ˜50% at 108 {M}⊙ and ˜10% at 107 {M}⊙ , quite independent of redshift and region. Their average ionizing escape fraction is ˜5% in the mass range of 108-109 {M}⊙ and increases with decreasing halo mass below this range, reaching 40%-60% at 107 {M}⊙ . Interestingly, we find that the escape fraction varies between 10%-20% in halos with virial masses of ˜3 × 109 {M}⊙ . Taken together, our results confirm the importance of the smallest galaxies as sources of ionizing radiation contributing to the reionization of the universe.

  11. New Insights into the Mechanism Underlying the Synergistic Action of Ionizing Radiation With Platinum Chemotherapeutic Drugs: The Role of Low-Energy Electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezaee, Mohammad, E-mail: Mohammad.Rezaee@USherbrooke.ca; Hunting, Darel John; Sanche, Léon

    Purpose: To investigate the efficiencies of platinum chemotherapeutic drugs (Pt-drugs) in the sensitization of DNA to the direct effects of ionizing radiation and to determine the role of low-energy electrons (LEEs) in this process. Methods and Materials: Complexes of supercoiled plasmid DNA covalently bound to either cisplatin, carboplatin, or oxaliplatin were prepared in different molar ratios. Solid films of DNA and DNA modified by Pt-drugs were irradiated with either 10-KeV or 10-eV electrons. Damages to DNA were quantified by gel electrophoresis, and the yields for damage formation were obtained from exposure–response curves. Results: The presence of an average of 2more » Pt-drug–DNA adducts (Pt-adducts) in 3199-bp plasmid DNA increases the probability of a double-strand break by factors of 3.1, 2.5, and 2.4 for carboplatin, cisplatin, and oxaliplatin, respectively. Electrons with energies of 10 eV and 10 KeV interact with Pt-adducts to preferentially enhance the formation of cluster lesions. The maximum increase in radiosensitivity per Pt-adduct is found at ratios up to 3.1 × 10{sup −4} Pt-adducts per nucleotide, which is equivalent to an average of 2 adducts per plasmid. Carboplatin and oxaliplatin show higher efficiencies than cisplatin in the radiosensitization of DNA. Because carboplatin and cisplatin give rise to identical reactive species that attach to DNA, carboplatin must be considered as a better radiosensitizer for equal numbers of Pt-adducts. Conclusion: Platinum chemotherapeutic drugs preferentially enhance the formation of cluster damage to DNA induced by the direct effect of ionizing radiation, and LEEs are the main species responsible for such an enhancement via the formation of electron resonances.« less

  12. The sensitivity of benzene cluster cation chemical ionization mass spectrometry to select biogenic terpenes

    NASA Astrophysics Data System (ADS)

    Lavi, Avi; Vermeuel, Michael P.; Novak, Gordon A.; Bertram, Timothy H.

    2018-06-01

    Benzene cluster cations are a sensitive and selective reagent ion for chemical ionization of select biogenic volatile organic compounds. We have previously reported the sensitivity of a field deployable chemical ionization time-of-flight mass spectrometer (CI-ToFMS), using benzene cluster cation ion chemistry, for detection of dimethyl sulfide, isoprene and α-pinene. Here, we present laboratory measurements of the sensitivity of the same instrument to a series of terpenes, including isoprene, α-pinene, β-pinene, D-limonene, ocimene, β-myrcene, farnesene, α-humulene, β-caryophyllene, and isolongifolene at atmospherically relevant mixing ratios (< 100 pptv). In addition, we determine the dependence of CI-ToFMS sensitivity on the reagent ion neutral delivery concentration and water vapor concentration. We show that isoprene is primarily detected as an adduct (C5H8 ṡ C6H6+) with a sensitivity ranging between 4 and 10 ncps ppt-1, which depends strongly on the reagent ion precursor concentration, de-clustering voltages, and specific humidity (SH). Monoterpenes are detected primarily as the molecular ion (C10H16+) with an average sensitivity, across the five measured compounds, of 14 ± 3 ncps ppt-1 for SH between 7 and 14 g kg-1, typical of the boreal forest during summer. Sesquiterpenes are detected primarily as the molecular ion (C15H24+) with an average sensitivity, across the four measured compounds, of 9.6 ± 2.3 ncps ppt-1, that is also independent of specific humidity. Comparable sensitivities across broad classes of terpenes (e.g., monoterpenes and sesquiterpenes), coupled to the limited dependence on specific humidity, suggest that benzene cluster cation CI-ToFMS is suitable for field studies of biosphere-atmosphere interactions.

  13. Density functional study of double ionization energies

    NASA Astrophysics Data System (ADS)

    Chong, D. P.

    2008-02-01

    In this paper, double ionization energies (DIEs) of gas-phase atoms and molecules are calculated by energy difference method with density functional theory. To determine the best functional for double ionization energies, we first study 24 main group atoms in the second, third, and fourth periods. An approximation is used in which the electron density is first obtained from a density functional computation with the exchange-correlation potential Vxc known as statistical average of orbital potentials, after which the energy is computed from that density with 59 different exchange-correlation energy functionals Exc. For the 24 atoms, the two best Exc functional providing DIEs with average absolute deviation (AAD) of only 0.25eV are the Perdew-Burke-Ernzerhof functional modified by Hammer et al. [Phys. Rev. B 59, 6413 (1999)] and one known as the Krieger-Chen-Iafrate-Savin functional modified by Krieger et al. (unpublished). Surprisingly, none of the 20 available hybrid functionals is among the top 15 functionals for the DIEs of the 24 atoms. A similar procedure is then applied to molecules, with opposite results: Only hybrid functionals are among the top 15 functionals for a selection of 29molecules. The best Exc functional for the 29molecules is found to be the Becke 1997 functional modified by Wilson et al. [J. Chem. Phys. 115, 9233 (2001)]. With that functional, the AAD from experiment for DIEs of 29molecules is just under 0.5eV. If the two suspected values for C2H2 and Fe(CO)5 are excluded, the AAD improves to 0.32eV. Many other hybrid functionals perform almost as well.

  14. Correction of measured Gamma-Knife output factors for angular dependence of diode detectors and PinPoint ionization chamber.

    PubMed

    Hršak, Hrvoje; Majer, Marija; Grego, Timor; Bibić, Juraj; Heinrich, Zdravko

    2014-12-01

    Dosimetry for Gamma-Knife requires detectors with high spatial resolution and minimal angular dependence of response. Angular dependence and end effect time for p-type silicon detectors (PTW Diode P and Diode E) and PTW PinPoint ionization chamber were measured with Gamma-Knife beams. Weighted angular dependence correction factors were calculated for each detector. The Gamma-Knife output factors were corrected for angular dependence and end effect time. For Gamma-Knife beams angle range of 84°-54°. Diode P shows considerable angular dependence of 9% and 8% for the 18 mm and 14, 8, 4 mm collimator, respectively. For Diode E this dependence is about 4% for all collimators. PinPoint ionization chamber shows angular dependence of less than 3% for 18, 14 and 8 mm helmet and 10% for 4 mm collimator due to volumetric averaging effect in a small photon beam. Corrected output factors for 14 mm helmet are in very good agreement (within ±0.3%) with published data and values recommended by vendor (Elekta AB, Stockholm, Sweden). For the 8 mm collimator diodes are still in good agreement with recommended values (within ±0.6%), while PinPoint gives 3% less value. For the 4 mm helmet Diodes P and E show over-response of 2.8% and 1.8%, respectively. For PinPoint chamber output factor of 4 mm collimator is 25% lower than Elekta value which is generally not consequence of angular dependence, but of volumetric averaging effect and lack of lateral electronic equilibrium. Diodes P and E represent good choice for Gamma-Knife dosimetry. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. New insights into the mechanism underlying the synergistic action of ionizing radiation with platinum chemotherapeutic drugs: the role of low-energy electrons.

    PubMed

    Rezaee, Mohammad; Hunting, Darel John; Sanche, Léon

    2013-11-15

    To investigate the efficiencies of platinum chemotherapeutic drugs (Pt-drugs) in the sensitization of DNA to the direct effects of ionizing radiation and to determine the role of low-energy electrons (LEEs) in this process. Complexes of supercoiled plasmid DNA covalently bound to either cisplatin, carboplatin, or oxaliplatin were prepared in different molar ratios. Solid films of DNA and DNA modified by Pt-drugs were irradiated with either 10-KeV or 10-eV electrons. Damages to DNA were quantified by gel electrophoresis, and the yields for damage formation were obtained from exposure-response curves. The presence of an average of 2 Pt-drug-DNA adducts (Pt-adducts) in 3199-bp plasmid DNA increases the probability of a double-strand break by factors of 3.1, 2.5, and 2.4 for carboplatin, cisplatin, and oxaliplatin, respectively. Electrons with energies of 10 eV and 10 KeV interact with Pt-adducts to preferentially enhance the formation of cluster lesions. The maximum increase in radiosensitivity per Pt-adduct is found at ratios up to 3.1×10(-4) Pt-adducts per nucleotide, which is equivalent to an average of 2 adducts per plasmid. Carboplatin and oxaliplatin show higher efficiencies than cisplatin in the radiosensitization of DNA. Because carboplatin and cisplatin give rise to identical reactive species that attach to DNA, carboplatin must be considered as a better radiosensitizer for equal numbers of Pt-adducts. Platinum chemotherapeutic drugs preferentially enhance the formation of cluster damage to DNA induced by the direct effect of ionizing radiation, and LEEs are the main species responsible for such an enhancement via the formation of electron resonances. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. New Insights into the Mechanism Underlying the Synergistic Action of Ionizing Radiation with Platinum Chemotherapeutic Drugs: The Role of Low-Energy Electrons

    PubMed Central

    Rezaee, Mohammad; Hunting, Darel John; Sanche, Léon

    2013-01-01

    Purpose To investigate the efficiencies of platinum chemotherapeutic drugs (Pt-drugs) in the sensitization of DNA to the direct effects of ionizing radiation and to determine the role of low-energy electrons (LEEs) in this process. Methods and Materials Complexes of supercoiled plasmid DNA covalently bound to either cisplatin, carboplatin or oxaliplatin were prepared in different molar ratios. Solid films of DNA and DNA modified by Pt-drugs were irradiated with either 10-KeV or 10-eV electrons. DNA damages were quantified by gel electrophoresis, and the yields for damage formation were obtained from exposure-response curves. Results The presence of an average of two Pt-adducts in 3199-bp plasmid DNA increases the probability of a double-strand break by factors of 3.1, 2.5 and 2.4 for carboplatin, cisplatin and oxaliplatin, respectively. Electrons with energies of 10-eV and 10-KeV interact with Pt-adducts to preferentially enhance the formation of cluster lesions. The maximum increase in radiosensitivity per Pt-adduct is found at ratios up to 3.1 × 10−4 Pt-adducts per nucleotide which is equivalent to an average of two adducts per plasmid. Carboplatin and oxaliplatin show higher efficiencies than cisplatin in the radiosensitization of DNA. Since carboplatin and cisplatin give rise to identical reactive species which attach to DNA, carboplatin must be considered as a better radiosensitizers for equal number of Pt-adducts. Conclusion Pt-drugs preferentially enhance the formation of cluster damage to DNA induced by the direct effect of ionizing radiation and LEEs are the main species responsible for such an enhancement via the formation of electron resonances. PMID:23910707

  17. Dosimetry for Small and Nonstandard Fields

    NASA Astrophysics Data System (ADS)

    Junell, Stephanie L.

    The proposed small and non-standard field dosimetry protocol from the joint International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine working group introduces new reference field conditions for ionization chamber based reference dosimetry. Absorbed dose beam quality conversion factors (kQ factors) corresponding to this formalism were determined for three different models of ionization chambers: a Farmer-type ionization chamber, a thimble ionization chamber, and a small volume ionization chamber. Beam quality correction factor measurements were made in a specially developed cylindrical polymethyl methacrylate (PMMA) phantom and a water phantom using thermoluminescent dosimeters (TLDs) and alanine dosimeters to determine dose to water. The TLD system for absorbed dose to water determination in high energy photon and electron beams was fully characterized as part of this dissertation. The behavior of the beam quality correction factor was observed as it transfers the calibration coefficient from the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) 60Co reference beam to the small field calibration conditions of the small field formalism. TLD-determined beam quality correction factors for the calibration conditions investigated ranged from 0.97 to 1.30 and had associated standard deviations from 1% to 3%. The alanine-determined beam quality correction factors ranged from 0.996 to 1.293. Volume averaging effects were observed with the Farmer-type ionization chamber in the small static field conditions. The proposed small and non-standard field dosimetry protocols new composite-field reference condition demonstrated its potential to reduce or remove ionization chamber volume dependancies, but the measured beam quality correction factors were not equal to the standard CoP's kQ, indicating a change in beam quality in the small and non-standard field dosimetry protocols new composite-field reference condition relative to the standard broad beam reference conditions. The TLD- and alanine-determined beam quality correction factors in the composite-field reference conditions were approximately 3% greater and differed by more than one standard deviation from the published TG-51 kQ values for all three chambers.

  18. Electrochemical Ionization and Analyte Charging in the Array of Micromachined UltraSonic Electrospray (AMUSE) Ion Source

    PubMed Central

    Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.

    2010-01-01

    Electrochemistry and ion transport in a planar array of mechanically-driven, droplet-based ion sources are investigated using an approximate time scale analysis and in-depth computational simulations. The ion source is modeled as a controlled-current electrolytic cell, in which the piezoelectric transducer electrode, which mechanically drives the charged droplet generation using ultrasonic atomization, also acts as the oxidizing/corroding anode (positive mode). The interplay between advective and diffusive ion transport of electrochemically generated ions is analyzed as a function of the transducer duty cycle and electrode location. A time scale analysis of the relative importance of advective vs. diffusive ion transport provides valuable insight into optimality, from the ionization prospective, of alternative design and operation modes of the ion source operation. A computational model based on the solution of time-averaged, quasi-steady advection-diffusion equations for electroactive species transport is used to substantiate the conclusions of the time scale analysis. The results show that electrochemical ion generation at the piezoelectric transducer electrodes located at the back-side of the ion source reservoir results in poor ionization efficiency due to insufficient time for the charged analyte to diffuse away from the electrode surface to the ejection location, especially at near 100% duty cycle operation. Reducing the duty cycle of droplet/analyte ejection increases the analyte residence time and, in turn, improves ionization efficiency, but at an expense of the reduced device throughput. For applications where this is undesirable, i.e., multiplexed and disposable device configurations, an alternative electrode location is incorporated. By moving the charging electrode to the nozzle surface, the diffusion length scale is greatly reduced, drastically improving ionization efficiency. The ionization efficiency of all operating conditions considered is expressed as a function of the dimensionless Peclet number, which defines the relative effect of advection as compared to diffusion. This analysis is general enough to elucidate an important role of electrochemistry in ionization efficiency of any arrayed ion sources, be they mechanically-driven or electrosprays, and is vital for determining optimal design and operation conditions. PMID:20607111

  19. A Global Photoionization Response to Prompt Emission and Outliers: Different Origin of Long Gamma-ray Bursts?

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xin, L. P.; Qiu, Y. L.; Xu, D. W.; Wei, J. Y.

    2018-03-01

    By using the line ratio C IV λ1549/C II λ1335 as a tracer of the ionization ratio of the interstellar medium (ISM) illuminated by a long gamma-ray burst (LGRB), we identify a global photoionization response of the ionization ratio to the photon luminosity of the prompt emission assessed by either L iso/E peak or {L}iso}/{E}peak}2. The ionization ratio increases with both L iso/E peak and L iso/E 2 peak for a majority of the LGRBs in our sample, although there are a few outliers. The identified dependence of C IV/C II on {L}iso}/{E}peak}2 suggests that the scatter of the widely accepted Amati relation is related to the ionization ratio in the ISM. The outliers tend to have relatively high C IV/C II values as well as relatively high C IV λ1549/Si IV λ1403 ratios, which suggests an existence of Wolf–Rayet stars in the environment of these LGRBs. We finally argue that the outliers and the LGRBs following the identified C IV/C II‑L iso/E peak ({L}iso}/{E}peak}2) correlation might come from different progenitors with different local environments.

  20. Densities and filling factors of the diffuse ionized gas in the Solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Berkhuijsen, E. M.; Müller, P.

    2008-10-01

    Aims: We analyse electron densities and filling factors of the diffuse ionized gas (DIG) in the Solar neighbourhood. Methods: We have combined dispersion measures and emission measures towards 38 pulsars at distances known to better than 50%, from which we derived the mean density in clouds, N_c, and their volume filling factor, F_v, averaged along the line of sight. The emission measures were corrected for absorption by dust and contributions from beyond the pulsar distance. Results: The scale height of the electron layer for our sample is 0.93± 0.13 kpc and the midplane electron density is 0.023± 0.004 cm-3, in agreement with earlier results. The average density along the line of sight is < n_e> = 0.018± 0.002 cm-3 and is nearly constant. Since < n_e> = F_vN_c, an inverse relationship between Fv and Nc is expected. We find F_v(N_c) = (0.011± 0.003) N_c-1.20± 0.13, which holds for the ranges N_c= 0.05-1 cm-3 and F_v= 0.4-0.01. Near the Galactic plane the dependence of Fv on Nc is significantly stronger than away from the plane. Fv does not systematically change along or perpendicular to the Galactic plane, but the spread about the mean value of 0.08± 0.02 is considerable. The total pathlength through the ionized regions increases linearly to about 80 pc towards |z| = 1 kpc. Conclusions: Our study of Fv and Nc of the DIG is the first one based on a sample of pulsars with known distances. We confirm the existence of a tight, nearly inverse correlation between Fv and Nc in the DIG. The exact form of this relation depends on the regions in the Galaxy probed by the pulsar sample. The inverse F_v-Nc relation is consistent with a hierarchical, fractal density distribution in the DIG caused by turbulence. The observed near constancy of < n_e> then is a signature of fractal structure in the ionized medium, which is most pronounced outside the thin disk.

  1. First Detections of the [N II] 122 micron Line at High Redshift: Demonstrating the Utility of the Line for Studying Galaxies in the Early Universe

    NASA Technical Reports Server (NTRS)

    Ferkinhoff, Carl; Brisbin, Drew; Nikola, Thomas; Parshley, Stephen C.; Stacey, Gordon J.; Phillips, Thomas G.; Falgarone, Edith; Benford, Dominic J.; Staguhn, Johannes G.; Tucker, Carol E.

    2011-01-01

    We report the first detections of the [N II] 122 micron line from a high-redshift galaxy. The line was strongly (>6(sigma)) detected from SMMJ02399-0136, and H1413 + 117 (the Cloverleaf QSO) using the Redshift (zeta) and Early Universe Spectrometer on the Caltech Submillimeter Observatory. The lines from both sources are quite bright with line to far-infrared (FIR) continuum luminosity ratios that are approx.7.0 x 10(exp -4) (Cloverleaf) and 2.1 x 10(exo -3) (SMMJ02399). With ratios 2-10 times larger than the average value for nearby galaxies, neither source exhibits the line to continuum deficits seen in nearby sources. The line strengths also indicate large ionized gas fractions, approx.8%-17% of the molecUlar gas mass. The [O III]/[N II] line ratio is very sensitive to the effective temperature of ionizing stars and the ionization parameter for emission arising in the narrow-line region (NLR) of an active galactic nucleus (AGN). Using Our previous detection of the [O III] 88 micron line, the [O III]/[N II]line ratio for SMMJ02399-0136 indicates that the dominant source of the line emission is either stellar H II regions ionized by O9.5 stars, or the NLR of the AGN with ionization parameter log(U) = -3.3 to -4.0. A composite system, where 30%-50% of the FIR lines arise in the NLR also matches the data. The Cloverleaf is best modeled by a superposition of approx.200 M82-like starbursts accounting for all of the FIR emission and 43% of the [N II]line. The remainder may come from the NLR. This war!< demonstrates the utility of the [N II] and [O III] lines in constraining properties of the ionized medium.

  2. Average waiting time in FDDI networks with local priorities

    NASA Technical Reports Server (NTRS)

    Gercek, Gokhan

    1994-01-01

    A method is introduced to compute the average queuing delay experienced by different priority group messages in an FDDI node. It is assumed that no FDDI MAC layer priorities are used. Instead, a priority structure is introduced to the messages at a higher protocol layer (e.g. network layer) locally. Such a method was planned to be used in Space Station Freedom FDDI network. Conservation of the average waiting time is used as the key concept in computing average queuing delays. It is shown that local priority assignments are feasable specially when the traffic distribution is asymmetric in the FDDI network.

  3. Magnetic Reconnection in the Solar Chromosphere

    NASA Astrophysics Data System (ADS)

    Lukin, Vyacheslav S.; Ni, Lei; Murphy, Nicholas Arnold

    2017-08-01

    We report on the most recent efforts to accurately and self-consistently model magnetic reconnection processes in the context of the solar chromosphere. The solar chromosphere is a notoriously complex and highly dynamic boundary layer of the solar atmosphere where local variations in the plasma parameters can be of the order of the mean values. At the same time, the interdependence of the physical processes such as magnetic field evolution, local and global energy transfer between internal and electromagnetic plasma energy, radiation transport, plasma reactivity, and dissipation mechanisms make it a particularly difficult system to self-consistently model and understand. Several recent studies have focused on the micro-physics of multi-fluid magnetic reconnection at magnetic nulls in the weakly ionized plasma environment of the lower chromosphere[1-3]. Here, we extend the previous work by considering a range of spatial scales and magnetic field strengths in a configuration with component magnetic reconnection, i.e., for magnetic reconnection with a guide field. We show that in all cases the non-equilibrium reactivity of the plasma and the dynamic interaction among the plasma processes play important roles in determining the structure of the reconnection region. We also speculate as to the possible observables of chromospheric magnetic reconnection and the likely plasma conditions required for generation of Ellerman and IRIS bombs.[1] Leake, Lukin, Linton, and Meier, “Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” ApJ 760 (2012).[2] Leake, Lukin, and Linton, “Magnetic reconnection in a weakly ionized plasma,” PoP 20 (2013).[3] Murphy and Lukin, “Asymmetric magnetic reconnection in weakly ionized chromospheric plasmas,” ApJ 805 (2015).[*Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

  4. The MASSIVE Survey. VI. The Spatial Distribution and Kinematics of Warm Ionized Gas in the Most Massive Local Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Pandya, Viraj; Greene, Jenny E.; Ma, Chung-Pei; Veale, Melanie; Ene, Irina; Davis, Timothy A.; Blakeslee, John P.; Goulding, Andy D.; McConnell, Nicholas J.; Nyland, Kristina; Thomas, Jens

    2017-03-01

    We present the first systematic investigation of the existence, spatial distribution, and kinematics of warm ionized gas as traced by the [O II] 3727 Å emission line in 74 of the most massive galaxies in the local universe. All of our galaxies have deep integral-field spectroscopy from the volume- and magnitude-limited MASSIVE survey of early-type galaxies with stellar mass {log}({M}* /{M}⊙ )> 11.5 (M K < -25.3 mag) and distance D < 108 Mpc. Of the 74 galaxies in our sample, we detect warm ionized gas in 28, which yields a global detection fraction of 38 ± 6% down to a typical [O II] equivalent width limit of 2 Å. MASSIVE fast rotators are more likely to have gas than MASSIVE slow rotators with detection fractions of 80 ± 10% and 28 ± 6%, respectively. The spatial extents span a wide range of radii (0.6-18.2 kpc; 0.1-4R e ), and the gas morphologies are diverse, with 17/28 ≈ 61 ± 9% being centrally concentrated, 8/28 ≈ 29 ± 9% exhibiting clear rotation out to several kiloparsecs, and 3/28 ≈ 11 ± 6% being extended but patchy. Three out of four fast rotators show kinematic alignment between the stars and gas, whereas the two slow rotators with robust kinematic measurements available exhibit kinematic misalignment. Our inferred warm ionized gas masses are roughly ˜105 M ⊙. The emission line ratios and radial equivalent width profiles are generally consistent with excitation of the gas by the old underlying stellar population. We explore different gas origin scenarios for MASSIVE galaxies and find that a variety of physical processes are likely at play, including internal gas recycling, cooling out of the hot gaseous halo, and gas acquired via mergers.

  5. How localized acceptors limit p-type conductivity in GaN

    NASA Astrophysics Data System (ADS)

    Lyons, John L.

    2013-03-01

    Despite the impressive development of GaN as an optoelectronic material, p-type conductivity is still limited. Only a single acceptor impurity, magnesium, is known to lead to p-type GaN. But Mg is far from a well-behaved acceptor. Hydrogen is known to passivate Mg, necessitating a post-growth anneal for acceptor activation. In addition, the ionization energy is quite large (~ 200 meV in GaN), meaning only a few percent of Mg acceptors are ionized at room temperature. Thus, hole conductivity is limited, and high concentrations of Mg are required to achieve moderately p-type GaN. Other acceptor impurities have not proven to be effective p-type dopants, for reasons that are still unresolved. Using advanced first-principles calculations based on a hybrid functional, we investigate the electrical and optical properties of the isolated Mg acceptor and its complexes with hydrogen in GaN, InN, and AlN.[2] We employ a technique that overcomes the band-gap-problem of traditional density functional theory, and allows for quantitative predictions of acceptor ionization energies and optical transition energies. Our results allow us to explain the deep or shallow nature of the Mg acceptor and its relation to the optical signals observed in Mg-doped GaN. We also revisit the properties of other group-II acceptors in GaN. We find that all cation-site acceptors show behavior similar to MgGa, and lead to highly localized holes. The ZnGa and BeGa acceptors have ionization energies that are even larger than that of Mg, making them ineffective dopants. All acceptors cause large lattice distortions in their neutral charge state, in turn leading to deep, broad luminescence signals that can serve as a means of experimentally verifying the deep nature of these acceptors. This work was performed in collaboration with Audrius Alkauskas, Anderson Janotti, and Chris G. Van de Walle. It was supported by the NSF and by the Solid State Lighting and Energy Center at UCSB.

  6. Solar abundances as derived from solar energetic particles

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1989-01-01

    Recent studies have shown that there are well defined average abundances of heavy (Z above 2) solar energetic particles (SEPs), with variations in the acceleration and propagation producing a systematic flare-to-flare fractionation that depends on the charge per unit mass of the ion. Correcting the average SEP abundances for this fractionation yields SEP-derived coronal abundances for 20 elements. High-resolution SEP studies have also provided isotopic abundances for five elements. SEP-derived abundances indicate that elements with high first ionization potentials (greater than 10 eV) are depleted in the corona relative to the photosphere and provide new information on the solar abundance of C and Ne-22.

  7. Performance Theory of Diagonal Conducting Wall MHD Accelerators

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.

    2003-01-01

    The theoretical performance of diagonal conducting wall crossed field accelerators is examined on the basis of an infinite segmentation assumption using a cross-plane averaged generalized Ohm's law for a partially ionized gas, including ion slip. The desired accelerator performance relationships are derived from the cross-plane averaged Ohm's law by imposing appropriate configuration and loading constraints. A current dependent effective voltage drop model is also incorporated to account for cold-wall boundary layer effects including gasdynamic variations, discharge constriction, and electrode falls. Definition of dimensionless electric fields and current densities lead to the construction of graphical performance diagrams, which further illuminate the rudimentary behavior of crossed field accelerator operation.

  8. Flux Jacobian Matrices For Equilibrium Real Gases

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1990-01-01

    Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.

  9. Methane and nitrous oxide emissions from livestock agriculture in 16 local administrative districts of Korea.

    PubMed

    Ji, Eun Sook; Park, Kyu-Hyun

    2012-12-01

    This study was conducted to evaluate methane (CH4) and nitrous oxide (N2O) emissions from livestock agriculture in 16 local administrative districts of Korea from 1990 to 2030. National Inventory Report used 3 yr averaged livestock population but this study used 1 yr livestock population to find yearly emission fluctuations. Extrapolation of the livestock population from 1990 to 2009 was used to forecast future livestock population from 2010 to 2030. Past (yr 1990 to 2009) and forecasted (yr 2010 to 2030) averaged enteric CH4 emissions and CH4 and N2O emissions from manure treatment were estimated. In the section of enteric fermentation, forecasted average CH4 emissions from 16 local administrative districts were estimated to increase by 4%-114% compared to that of the past except for Daejeon (-63%), Seoul (-36%) and Gyeonggi (-7%). As for manure treatment, forecasted average CH4 emissions from the 16 local administrative districts were estimated to increase by 3%-124% compared to past average except for Daejeon (-77%), Busan (-60%), Gwangju (-48%) and Seoul (-8%). For manure treatment, forecasted average N2O emissions from the 16 local administrative districts were estimated to increase by 10%-153% compared to past average CH4 emissions except for Daejeon (-60%), Seoul (-4.0%), and Gwangju (-0.2%). With the carbon dioxide equivalent emissions (CO2-Eq), forecasted average CO2-Eq from the 16 local administrative districts were estimated to increase by 31%-120% compared to past average CH4 emissions except Daejeon (-65%), Seoul (-24%), Busan (-18%), Gwangju (-8%) and Gyeonggi (-1%). The decreased CO2-Eq from 5 local administrative districts was only 34 kt, which was insignificantly small compared to increase of 2,809 kt from other 11 local administrative districts. Annual growth rates of enteric CH4 emissions, CH4 and N2O emissions from manure management in Korea from 1990 to 2009 were 1.7%, 2.6%, and 3.2%, respectively. The annual growth rate of total CO2-Eq was 2.2%. Efforts by the local administrative offices to improve the accuracy of activity data are essential to improve GHG inventories. Direct measurements of GHG emissions from enteric fermentation and manure treatment systems will further enhance the accuracy of the GHG data. (Key Words: Greenhouse Gas, Methane, Nitrous Oxide, Carbon Dioxide Equivalent Emission, Climate Change).

  10. Modeling and Simulation of Plasma-Assisted Ignition and Combustion

    DTIC Science & Technology

    2013-10-01

    local plasma chemistry effects over heat transport in achieving “volumetric” ignition using pulse nanosecond discharges. •detailed parametric studies...electrical breakdown • cathode sheath formation • electron impact dynamics PLASMA DISCHARGE DYNAMICS Plasma Chemistry Ionization, Excitation...quenching of excited species nonequilibrium plasma chemistry low temperature radical chemistry high temperature combustion chemistry School of

  11. Imaging Nicotine in Rat Brain Tissue by Use of Nanospray Desorption Electrospray Ionization Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanekoff, Ingela T.; Thomas, Mathew; Carson, James P.

    Imaging mass spectrometry offers simultaneous detection of drugs, drug metabolites and endogenous substances in a single experiment. This is important when evaluating effects of a drug on a complex organ system such as the brain, where there is a need to understand how regional drug distribution impacts function. Nicotine is an addictive drug and its action in the brain is of high interest. Here we use nanospray desorption electrospray ionization, nano-DESI, imaging to discover the localization of nicotine in rat brain tissue after in vivo administration of nicotine. Nano-DESI is a new ambient technique that enables spatially-resolved analysis of tissuemore » samples without special sample pretreatment. We demonstrate high sensitivity of nano-DESI imaging that enables detection of only 0.7 fmole nicotine per pixel in the complex brain matrix. Furthermore, by adding deuterated nicotine to the solvent, we examined how matrix effects, ion suppression, and normalization affect the observed nicotine distribution. Finally, we provide preliminary results suggesting that nicotine localizes to the hippocampal substructure called dentate gyrus.« less

  12. Cluster model studies of anion and molecular specificities via electrospray ionization photoelectron spectroscopy

    DOE PAGES

    Wang, Xue -Bin

    2017-01-06

    Ion specificity, a widely observed macroscopic phenomenon in condensed phases and at interfaces, is essentially a fundamental chemical physical issue. We have been investigating such effects using cluster models in an “atom-by-atom” and “molecule-by-molecule” fashion not possible with condensed-phase methods. We use electrospray ionization (ESI) to generate molecular and ionic clusters to simulate key molecular entities involved in local binding regions, and characterize them employing negative ion photoelectron spectroscopy (NIPES). Inter- and intramolecular interactions and binding configurations are directly obtained as functions of cluster size and composition, providing insightful molecular-level description and characterization over the local active sites that playmore » crucial roles in determining solution chemistry and condensed phase phenomena. Finally, the topics covered in this article are relevant to a wide scope of research fields ranging from ion specific effects in electrolyte solutions, ion selectivity/recognition in normal functioning of life, to molecular specificity in aerosol particle formation, as well as in rational material design and synthesis.« less

  13. Self-consistent discharge growing model of helicon plasma

    NASA Astrophysics Data System (ADS)

    Isayama, Shogo; Hada, Tohru; Shinohara, Shunjiro; Tanikawa, Takao

    2015-11-01

    Helicon plasma is a high-density and low-temperature plasma generated by the electromagnetic (Helicon) wave excited in the plasma. It is thought to be useful for various applications including electric thrusters. Physics of helicon plasma production involves such fundamental processes as the wave propagation (dispersion relation), collisional and non-collisional wave damping, plasma heating, ionization/recombination of neutral particles, and modification of the dispersion relation by newly ionized plasma. There remain a number of unsolved physical issues such as, how the Helicon and the TG modes influence the plasma density, electron temperature and their spatial profiles. While the Helicon mode is absorbed in the bulk plasma, the TG mode is mostly absorbed near the edge of the plasma. The local power deposition in the helicon plasma is mostly balanced by collisional loss. This local power balance can give rise to the inhomogeneous electron temperature profile that leads to time evolution of density profile and dispersion relation. In our study, we construct a self-consistent model of the discharge evolution that includes the wave excitation, electron heat transfer, and diffusion of charged particles.

  14. Low frequency azimuthal stability of the ionization region of the Hall thruster discharge. II. Global analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escobar, D.; Ahedo, E., E-mail: eduardo.ahedo@uc3m.es

    2015-10-15

    The linear stability of the Hall thruster discharge is analysed against axial-azimuthal perturbations in the low frequency range using a time-dependent 2D code of the discharge. This azimuthal stability analysis is spatially global, as opposed to the more common local stability analyses, already afforded previously (D. Escobar and E. Ahedo, Phys. Plasmas 21(4), 043505 (2014)). The study covers both axial and axial-azimuthal oscillations, known as breathing mode and spoke, respectively. The influence on the spoke instability of different operation parameters such as discharge voltage, mass flow, and thruster size is assessed by means of different parametric variations and compared againstmore » experimental results. Additionally, simplified models are used to unveil and characterize the mechanisms driving the spoke. The results indicate that the spoke is linked to azimuthal oscillations of the ionization process and to the Bohm condition in the transition to the anode sheath. Finally, results obtained from local and global stability analyses are compared in order to explain the discrepancies between both methods.« less

  15. Exploration of dynamical regimes of irradiated small protonated water clusters

    NASA Astrophysics Data System (ADS)

    Ndongmouo Taffoti, U. F.; Dinh, P. M.; Reinhard, P.-G.; Suraud, E.; Wang, Z. P.

    2010-05-01

    We explore from a theoretical perspective the dynamical response of small water clusters, (H2O)nH3O+ with n=1,2,3, to a short laser pulse for various frequencies, from infrared (IR) to ultra-violet (UV) and intensities (from 6×10^{13} W/cm^2 to 5×10^{14} W/cm^2). To that end, we use time-dependent local-density approximation for the electrons, coupled to molecular dynamics for the atomic cores (TDLDA-MD). The local-density approximation is augmented by a self-interaction correction (SIC) to allow for a correct description of electron emission. For IR frequencies, we see a direct coupling of the laser field to the very light H+ ions in the clusters. Resonant coupling (in the UV) and/or higher intensities lead to fast ionization with subsequent Coulomb explosion. The stability against Coulomb pressure increases with system size. Excitation to lower ionization stages induced strong ionic vibrations. The latter maintain a rather harmonic pattern in spite of the sizeable amplitudes (often 10% of the bond length).

  16. Laser-driven atomic-probe-beam diagnostics

    NASA Astrophysics Data System (ADS)

    Knyazev, B. A.; Greenly, J. B.; Hammer, D. A.

    2000-12-01

    A new laser-driven atomic-probe-beam diagnostic (LAD) is proposed for local, time-resolved measurements of electric field and ion dynamics in the accelerating gap of intense ion beam diodes. LAD adds new features to previous Stark-shift diagnostics which have been progressively developed in several laboratories, from passive observation of Stark effect on ion species or fast (charge-exchanged) neutrals present naturally in diodes, to active Stark atomic spectroscopy (ASAS) in which selected probe atoms were injected into the gap and excited to suitable states by resonant laser radiation. The LAD scheme is a further enhancement of ASAS in which the probe atoms are also used as a local (laser-ionized) ion source at an instant of time. Analysis of the ion energy and angular distribution after leaving the gap enables measurement, at the chosen ionization location in the gap, of both electrostatic potential and the development of ion divergence. Calculations show that all of these quantities can be measured with sub-mm and ns resolution. Using lithium or sodium probe atoms, fields from 0.1 to 10 MV/cm can be measured.

  17. Gas-phase ionization energetics, electron-transfer kinetics, and ion solvation thermochemistry of decamethylmetallocenes, chromocene, and cobaltocene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, M.F.; Richardson, D.E.; Lichtenberger, D.L.

    1994-04-01

    The gas-phase free energies of ionization, [Delta]G[sub i][degrees] for Cp*[sub 2]Mn, Cp*[sub 2]Fe, Cp*[sub 2]Ni, Cp*[sub 2]Os, Cp[sub 2]Cr, and Cp[sub 2]Co (Cp = [eta][sup 5]-cyclopentadienyl, Cp[sup *] = [eta][sup 5]-pentamethylcyclopentadienyl) have been determined by using the electron-transfer equilibrium (ETE) technique and Fourier transform ion cyclotron resonance mass spectrometry. The high-resolution valence photoelectron spectra of bis(benzene)chromium(0), Bz[sub 2]Cr, Cp*[sub 2]Os, and Cp*[sub 2]Ru have also been measured. Most of the [Delta]G[sub i][degrees] values are referenced to the estimated [Delta]G[sub i][degrees] value of Bz[sub 2]Cr, for which the narrow first ionization band at 5.473 [+-] 0.005 eV is assigned as themore » adiabatic ionization potential. The [Delta]S[sub i][degrees] for ionization of Bz[sub 2]Cr is assumed to be equal to the electronic entropy change, [Delta]S[sub elec][degrees] (=1.4 cal mol[sup [minus]1] K[sup [minus]1]), and the difference between the integrated heat capacities for Bz[sub 2]Cr and Bz[sub 2]Cr[sup +] is also assumed to be negligible near room temperature [Delta]H[sub i,0][degrees] [approx] [Delta]H[sub i,350][degrees], leading to [Delta]G[sub i][degrees] (Bz[sub 2]-Cr) = 125.6 [+-] 1.0 kcal mol[sup [minus]1]. Through the use of thermochemical cycles, estimates are given for the average heterolytic and homolytic M-Cp bond disruption enthalpies of Cp[sub 2]Cr[sup +/0] and Cp[sub 2]Co[sup +/0]. 46 refs., 7 figs., 4 tabs.« less

  18. Herschel Galactic Plane Survey of [NII] Fine Structure Emission

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul F.; Yıldız, Umut A.; Langer, William D.; Pineda, Jorge L.

    2015-12-01

    We present the first large-scale high angular resolution survey of ionized nitrogen in the Galactic Plane through emission of its two fine structure transitions ([N ii]) at 122 and 205 μm. The observations were largely obtained with the PACS instrument onboard the Herschel Space Observatory. The lines of sight were in the Galactic plane, following those of the Herschel OTKP project GOT C+. Both lines are reliably detected at the 10-8-10-7 Wm-2 sr-1 level over the range -60° ≤ l ≤ 60°. The rms of the intensity among the 25 PACS spaxels of a given pointing is typically less than one third of the mean intensity, showing that the emission is extended. [N ii] is produced in gas in which hydrogen is ionized, and collisional excitation is by electrons. The ratio of the two fine structure transitions provides a direct measurement of the electron density, yielding n(e) largely in the range 10-50 cm-3 with an average value of 29 cm-3 and N+ column densities 1016-1017 cm-2. [N ii] emission is highly correlated with that of [C ii], and we calculate that between 1/3 and 1/2 of the [C ii] emission is associated with the ionized gas. The relatively high electron densities indicate that the source of the [N ii] emission is not the warm ionized medium (WIM), which has electron densities more than 100 times smaller. Possible origins of the observed [N ii] include the ionized surfaces of dense atomic and molecular clouds, the extended low-density envelopes of H ii regions, and low-filling factor high-density fluctuations of the WIM.

  19. Calculation of the spin-polarized electronic structure of an interstitial iron impurity in silicon

    NASA Astrophysics Data System (ADS)

    Katayama-Yoshida, H.; Zunger, Alex

    1985-06-01

    We apply our self-consistent, all-electron, spin-polarized Green's-function method within an impurity-centered, dynamic basis set to study the interstitial iron impurity in silicon. We use two different formulations of the interelectron interactions: the local-spin-density (LSD) formalism and the self-interaction-corrected (SIC) local-spin-density (SIC-LSD) formalism. We find that the SIC-LSD approach is needed to obtain the correct high-spin ground state of Si:Fe+. We propose a quantitative explanation to the observed donor ionization energy and the high-spin ground states for Si:Fe+ within the SIC-LSD approach. For both Si:Fe0 and Si:Fe+, this approach leads to a hyperfine field, contact spin density, and ionization energy in better agreement with experiments than the simple LSD approach. The apparent dichotomy between the covalently delocalized nature of Si:Fe as suggested on the one hand by its reduced hyperfine field (relative to the free atom) and extended spin density and by the occurrence of two closely spaced, stable charge states (within 0.4 eV) and on the other hand by the atomically localized picture (suggested, for example, by the stability of a high-spin, ground-state configuration) is resolved. We find a large reduction in the hyperfine field and contact spin density due to the covalent hybridization between the impurity 3d orbitals and the tails of the delocalized sp3 hybrid orbitals of the surrounding silicon atoms. Using the calculated results, we discuss (i) the underlying mechanism for the stability and plurality of charged states, (ii) the covalent reduction in the hyperfine field, (iii) the remarkable constancy of the impurity Mössbauer isomer shift for different charged states, (iv) comparison with the multiple charged states in ionic crystals, and (v) some related speculation about the mechanism of (Fe2+/Fe3+) oxidation-reduction ionizations in heme proteins and electron-transporting biological systems.

  20. The Physical Conditions of a Lensed Star-Forming Galaxy at Z=1.7

    NASA Technical Reports Server (NTRS)

    Rigby, Jane; Wuyts, E.; Gladders, M.; Sharon, K.; Becker, G.

    2011-01-01

    We report rest-frame optical Keck/NIRSPEC spectroscopy of the brightest lensed galaxy yet discovered, RCSGA 032727-132609 at z=1.7037. From precise measurements of the nebular lines, we infer a number of physical properties: redshift ' extinction, star formation rate ' ionization parameter, electron density, electron temperature, oxygen abundance, and N/O, Ne/O, and Ar/O abundance ratios, The limit on [O III] 4363 A tightly constrains the oxygen abundance via the "direct" or Te method, for the first time in an average-metallicity galaxy at z approx.2. We compare this result to several standard "bright-line" O abundance diagnostics, thereby testing these empirically-calibrated diagnostics in situ. Finally, we explore the positions of lensed and unlensed galaxies in standard diagnostic diagrams, to explore the diversity of ionization conditions and mass-metallicity ratios at z=2.

  1. Single electron impact ionization of the methane molecule

    NASA Astrophysics Data System (ADS)

    Bouamoud, Mammar; Sahlaoui, Mohammed; Benmansour, Nour El Houda; Atomic and Molecular Collisions Team

    2014-10-01

    Triply differential cross sections (TDCS) results of electron-impact ionization of the inner 2a1 molecular orbital of CH4 are presented in the framework of the Second Born Approximation and compared with the experimental data performed in coplanar asymmetric geometry. The cross sections are averaged on the random orientations of the molecular target for accurate comparison with experiments and are compared also with the theoretical calculations of the Three Coulomb wave (3CW) model. Our results are in good agreement with experiments and 3CW results in the binary peak. In contrast the Second Born Approximation yields a significant higher values compared to the 3CW results for the recoil peak and seems to describe suitably the recoil region where higher order effects can occur with the participation of the recoiling ion in the collision process.

  2. Quantification of short chain amines in aqueous matrices using liquid chromatography electrospray ionization tandem mass spectrometry.

    PubMed

    Viidanoja, Jyrki

    2017-01-13

    A new liquid chromatography-electrospray ionization-tandem Mass Spectrometry (LC-ESI-MS/MS) method was developed for the determination of more than 20 C 1 -C 6 alkyl and alkanolamines in aqueous matrices. The method employs Hydrophilic Interaction Liquid Chromatography Multiple Reaction Monitoring (HILIC-MRM) with a ZIC-pHILIC column and four stable isotope labeled amines as internal standards for signal normalization and quantification of the amines. The method was validated using a refinery process water sample that was obtained from a cooling cycle of crude oil distillation. The averaged within run precision, between run precision and accuracy were generally within 2-10%, 1-9% and 80-120%, respectively, depending on the analyte and concentration level. Selected aqueous process samples were analyzed with the method. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Quantum dynamics of charge state in silicon field evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silaeva, Elena P.; Uchida, Kazuki; Watanabe, Kazuyuki, E-mail: kazuyuki@rs.kagu.tus.ac.jp

    2016-08-15

    The charge state of an ion field-evaporating from a silicon-atom cluster is analyzed using time-dependent density functional theory coupled to molecular dynamics. The final charge state of the ion is shown to increase gradually with increasing external electrostatic field in agreement with the average charge state of silicon ions detected experimentally. When field evaporation is triggered by laser-induced electronic excitations the charge state also increases with increasing intensity of the laser pulse. At the evaporation threshold, the charge state of the evaporating ion does not depend on the electrostatic field due to the strong contribution of laser excitations to themore » ionization process both at low and high laser energies. A neutral silicon atom escaping the cluster due to its high initial kinetic energy is shown to be eventually ionized by external electrostatic field.« less

  4. PopIII-star siblings in IZw18 and metal-poor WR galaxies unveiled from integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Vílchez, J. M.; Pérez-Montero, E.; Iglesias-Páramo, J.; Brinchmann, J.; Crowther, P. A.; Durret, F.; Kunth, D.

    Here, we highlight our recent results from the IFS study of Mrk178, the closest metal-poor WR galaxy, and of IZw18, the most metal-poor star-forming galaxy known in the local Universe. The IFS data of Mrk178 show the importance of aperture effects on the search for WR features, and the extent to which physical variations in the ISM properties can be detected. Our IFS data of IZw18 reveal its entire nebular HeIIλ4686-emitting region, and indicate for the very first time that peculiar, hot (nearly) metal-free ionizing stars (called here PopIII-star siblings) might hold the key to the HeII-ionization in IZw18.

  5. In Situ Probing of Cholesterol in Astrocytes at the Single Cell Level using Laser Desorption Ionization Mass Spectrometric Imaging with Colloidal Silver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perdian, D.C.; Cha, Sangwon; Oh, Jisun

    2010-03-18

    Mass spectrometric imaging has been utilized to localize individual astrocytes and to obtain cholesterol populations at the single-cell level in laser desorption ionization (LDI) with colloidal silver. The silver ion adduct of membrane-bound cholesterol was monitored to detect individual cells. Good correlation between mass spectrometric and optical images at different cell densities indicates the ability to perform single-cell studies of cholesterol abundance. The feasibility of quantification is confirmed by the agreement between the LDI-MS ion signals and the results from a traditional enzymatic fluorometric assay. We propose that this approach could be an effective tool to study chemical populations atmore » the cellular level.« less

  6. The Farley-Buneman Instability in the Solar Chromosphere

    NASA Astrophysics Data System (ADS)

    Madsen, Chad A.; Dimant, Yakov S.; Oppenheim, Meers M.; Fontenla, Juan M.

    2012-10-01

    Strong currents drive the Farley-Buneman Instability (FBI) in the E-region ionosphere creating turbulence and heating. The solar chromosphere is a similar weakly ionized region with strong local Pedersen currents, and the FBI may play a role in sustaining the thin layer of enhanced temperature observed there. The plasma of the solar chromosphere requires a new theory of the FBI accounting for the presence of multiple ion species, higher temperatures and collisions between ionized metals and neutral hydrogen. This paper discusses the assumptions underlying the derivation of the multi-species FBI dispersion relation. It presents the predicted critical electron drift velocity needed to trigger the instability. Finally, this work argues that observed chromospheric neutral flow speeds are sufficiently large to trigger the multi-species FBI.

  7. HOW TO FIND YOUNG MASSIVE CLUSTER PROGENITORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bressert, E.; Longmore, S.; Testi, L.

    2012-10-20

    We propose that bound, young massive stellar clusters form from dense clouds that have escape speeds greater than the sound speed in photo-ionized gas. In these clumps, radiative feedback in the form of gas ionization is bottled up, enabling star formation to proceed to sufficiently high efficiency so that the resulting star cluster remains bound even after gas removal. We estimate the observable properties of the massive proto-clusters (MPCs) for existing Galactic plane surveys and suggest how they may be sought in recent and upcoming extragalactic observations. These surveys will potentially provide a significant sample of MPC candidates that willmore » allow us to better understand extreme star-formation and massive cluster formation in the Local Universe.« less

  8. Numerical Studies of Impurities in Fusion Plasmas

    DOE R&D Accomplishments Database

    Hulse, R. A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.

  9. Public Exposure from Indoor Radiofrequency Radiation in the City of Hebron, West Bank-Palestine.

    PubMed

    Lahham, Adnan; Sharabati, Afefeh; ALMasri, Hussien

    2015-08-01

    This work presents the results of measured indoor exposure levels to radiofrequency (RF) radiation emitting sources in one of the major cities in the West Bank-the city of Hebron. Investigated RF emitters include FM, TV broadcasting stations, mobile telephony base stations, cordless phones [Digital Enhanced Cordless Telecommunications (DECT)], and wireless local area networks (WLAN). Measurements of power density were conducted in 343 locations representing different site categories in the city. The maximum total power density found at any location was about 2.3 × 10 W m with a corresponding exposure quotient of about 0.01. This value is well below unity, indicating compliance with the guidelines of the International Commission on Non-ionizing Radiation Protection (ICNIRP). The average total exposure from all RF sources was 0.08 × 10 W m. The relative contributions from different sources to the total exposure in terms of exposure quotient were evaluated and found to be 46% from FM radio, 26% from GSM900, 15% from DECT phones, 9% from WLAN, 3% from unknown sources, and 1% from TV broadcasting. RF sources located outdoors contribute about 73% to the population exposure indoors.

  10. Newly synthesized dihydroquinazoline derivative from the aspect of combined spectroscopic and computational study

    NASA Astrophysics Data System (ADS)

    El-Azab, Adel S.; Mary, Y. Sheena; Mary, Y. Shyma; Panicker, C. Yohannan; Abdel-Aziz, Alaa A.-M.; El-Sherbeny, Magda A.; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, Christian

    2017-04-01

    In this work, spectroscopic characterization of 2-(2-(4-oxo-3-phenethyl-3,4-dihydroquinazolin-2-ylthio)ethyl)isoindoline-1,3-dione have been obtained with experimentally and theoretically. Complete assignments of fundamental vibrations were performed on the basis of the potential energy distribution of the vibrational modes and good agreement between the experimental and scaled wavenumbers has been achieved. Frontier molecular orbitals have been used as indicators of stability and reactivity. Intramolecular interactions have been investigated by NBO analysis. The dipole moment, linear polarizability and first and second order hyperpolarizability values were also computed. In order to determine molecule sites prone to electrophilic attacks DFT calculations of average local ionization energy (ALIE) and Fukui functions have been performed as well. Intra-molecular non-covalent interactions have been determined and analyzed by the analysis of charge density. Stability of title molecule have also been investigated from the aspect of autoxidation, by calculations of bond dissociation energies (BDE), and hydrolysis, by calculations of radial distribution functions after molecular dynamics (MD) simulations. In order to assess the biological potential of the title compound a molecular docking study towards breast cancer type 2 complex has been performed.

  11. The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas (MegaSaura). I. The Sample and the Spectra

    NASA Astrophysics Data System (ADS)

    Rigby, J. R.; Bayliss, M. B.; Sharon, K.; Gladders, M. D.; Chisholm, J.; Dahle, H.; Johnson, T.; Paterno-Mahler, R.; Wuyts, E.; Kelson, D. D.

    2018-03-01

    We introduce Project MEGaSaURA: the Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas. MEGaSaURA comprises medium-resolution, rest-frame ultraviolet spectroscopy of N = 15 bright gravitationally lensed galaxies at redshifts of 1.68 < z < 3.6, obtained with the MagE spectrograph on the Magellan telescopes. The spectra cover the observed-frame wavelength range 3200 < λ o < 8280 Å the average spectral resolving power is R = 3300. The median spectrum has a signal-to-noise ratio (S/N) = 21 per resolution element at 5000 Å. As such, the MEGaSaURA spectra have superior S/N and wavelength coverage compared to what COS/HST provides for starburst galaxies in the local universe. This paper describes the sample, the observations, and the data reduction. We compare the measured redshifts for the stars, the ionized gas as traced by nebular lines, and the neutral gas as traced by absorption lines; we find the expected bulk outflow of the neutral gas, and no systemic offset between the redshifts measured from nebular lines and the redshifts measured from the stellar continuum. We provide the MEGaSaURA spectra to the astronomical community through a data release.

  12. Spectroscopic analysis and molecular docking of imidazole derivatives and investigation of its reactive properties by DFT and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Thomas, Renjith; Hossain, Mossaraf; Mary, Y. Sheena; Resmi, K. S.; Armaković, Stevan; Armaković, Sanja J.; Nanda, Ashis Kumar; Ranjan, Vivek Kumar; Vijayakumar, G.; Van Alsenoy, C.

    2018-04-01

    Solvent-free synthesis pathway for obtaining two imidazole derivatives (2-chloro-1-(4-methoxyphenyl)-4,5-dimethyl-1H-imidazole (CLMPDI) and 1-(4-bromophenyl)-2-chloro-4,5-dimethyl-1H-imidazole (BPCLDI) has been reported in this work, followed by detailed experimental and computational spectroscopic characterization and reactivity study. Spectroscopic methods encompassed IR, FT-Raman and NMR techniques, with the mutual comparison of experimentally and computationally obtained results at DFT/B3LYP level of theory. Reactivity study based on DFT calculations encompassed molecular orbitals analysis, followed by calculations of molecular electrostatic potential (MEP) and average local ionization energy (ALIE) values, Fukui functions and bond dissociation energies (BDE). Additionally, the stability of title molecules in water has been investigated via molecular dynamics (MD) simulations, while interactivity with aspulvinonedimethylallyl transferase protein has been evaluated by molecular docking procedure. CLMPDI compound showed antimicrobial activity against all four bacterial strain in both gram positive and gram negative bacteria while, BPCLDI showed only in gram positive bacteria, Staphylococcus Aureus (MTCC1144). The first order hyperpolarizability of CLMPDI and BPCLDI are 20.15 and 6.10 times that of the standard NLO material urea.

  13. Mid-Gap States and Normal vs Inverted Bonding in Luminescent Cu+- and Ag+-Doped CdSe Nanocrystals.

    PubMed

    Nelson, Heidi D; Hinterding, Stijn O M; Fainblat, Rachel; Creutz, Sidney E; Li, Xiaosong; Gamelin, Daniel R

    2017-05-10

    Mid-gap luminescence in copper (Cu + )-doped semiconductor nanocrystals (NCs) involves recombination of delocalized conduction-band electrons with copper-localized holes. Silver (Ag + )-doped semiconductor NCs show similar mid-gap luminescence at slightly (∼0.3 eV) higher energy, suggesting a similar luminescence mechanism, but this suggestion appears inconsistent with the large difference between Ag + and Cu + ionization energies (∼1.5 eV), which should make hole trapping by Ag + highly unfavorable. Here, Ag + -doped CdSe NCs (Ag + :CdSe) are studied using time-resolved variable-temperature photoluminescence (PL) spectroscopy, magnetic circularly polarized luminescence (MCPL) spectroscopy, and time-dependent density functional theory (TD-DFT) to address this apparent paradox. In addition to confirming that Ag + :CdSe and Cu + :CdSe NCs display similar broad PL with large Stokes shifts, we demonstrate that both also show very similar temperature-dependent PL lifetimes and magneto-luminescence. Electronic-structure calculations further predict that both dopants generate similar localized mid-gap states. Despite these strong similarities, we conclude that these materials possess significantly different electronic structures. Specifically, whereas photogenerated holes in Cu + :CdSe NCs localize primarily in Cu(3d) orbitals, formally oxidizing Cu + to Cu 2+ , in Ag + :CdSe NCs they localize primarily in 4p orbitals of the four neighboring Se 2- ligands, and Ag + is not oxidized. This difference reflects a shift from "normal" to "inverted" bonding going from Cu + to Ag + . The spectroscopic similarities are explained by the fact that, in both materials, photogenerated holes are localized primarily within covalent [MSe 4 ] dopant clusters (M = Ag + , Cu + ). These findings reconcile the similar spectroscopies of Ag + - and Cu + -doped semiconductor NCs with the vastly different ionization potentials of their Ag + and Cu + dopants.

  14. Professional exposure to ionizing radiations in health workers and white blood cells.

    PubMed

    Caciari, T; Capozzella, A; Tomei, F; Nieto, H A; Gioffrè, P A; Valentini, V; Scala, B; Andreozzi, G; De Sio, S; Chighine, A; Tomei, G; Ciarrocca, M

    2012-01-01

    The aim of this study is to estimate if low dose of occupational exposure to ionizing radiations can cause alterations of plasma concentrations of total white blood cells, lymphocytes, monocytes and granulocytes (eosinophils, basophils, neutrophils), in the health workers of a big hospital. 266 non smokers subjects of both sexes (133 health workers and 133 controls) were included in this study, compared on the basis of sex, age and working seniority. The complete blood count (CBC) was performed in all included workers. The differences between the mean values were compared using Student T-test for unpaired data. The frequencies of the single variables were compared using Chi (2) test with Yates correction. The differences were considered significant when the P values were < 0.05. The mean values and the distribution of the mean values of total white blood cell were significantly decreased in health workers of both sexes compared to controls. The average values of granulocytes neutrophils were significantly low in female health workers compared to female controls. The obtained results suggest that low dose of occupational exposure to ionizing radiations is able to influence some lines of the hematopoietic system in exposed workers.

  15. Solar photoionization as a loss mechanism of neutral interstellar hydrogen in interplanetary space

    NASA Technical Reports Server (NTRS)

    Ogawa, H. S.; Wu, C. Y. Robert; Gangopadhyay, P.; Judge, D. L.

    1995-01-01

    Two primary loss mechanisms of interstellar neutral hydrogen in interplanetary space are resonance charge exchange ionization with solar wind protons and photoionization by solar EUV radiation. The later process has often been neglected since the average photoionization rate has been estimated to be as much as 5 to 10 times smaller than the charge exchange rate. These factors are based on ionization rates from early measurements of solar EUV and solar wind fluxes. Using revised solar EUV and solar wind fluxes measured near the ecliptic plane we have reinvestigated the ionization rates of interplanetary hydrogen. The result of our analysis indicates that indeed the photoionization rate during solar minimum can be smaller than charge exchange by a factor of 5; however, during solar maximum conditions when solar EUV fluxes are high, and solar wind fluxes are low, photoionization can be over 60% of the charge exchange rate at Earth orbit. To obtain an accurate estimate of the importance of photoionization relative to charge exchange, we have included photoionization from both the ground and metastable states of hydrogen. We find, however, that the photoionization from the metastable state does not contribute significantly to the overall photoionization rate.

  16. Characteristics study of projectile's lightest fragment for 84Kr36-emulsion interaction at around 1 A GeV

    NASA Astrophysics Data System (ADS)

    Marimuthu, N.; Singh, V.; Inbanathan, S. S. R.

    2017-04-01

    In this article, we present the results of our investigations on the projectile's lightest fragment (proton) multiplicity and probability distributions with 84Kr36 emulsion collision at around 1 A GeV. The multiplicity and normalized multiplicity of projectile's lightest fragment (proton) are correlated with the compound particles, shower particles, black particles, grey particles; alpha (helium nucleus) fragments and heavily ionizing charged particles. It is found that projectile's lightest fragment (proton) is strongly correlated with compound particles and shower particles rather than other particles and the average multiplicity of projectile's lightest fragment (proton) increases with increasing compound, shower and heavily ionizing charge particles. Normalized projectile's lightest fragment (proton) is strongly correlated with compound particles, shower particles and heavily ionizing charge particles. The multiplicity distribution of the projectile's lightest fragment (proton) emitted in the 84Kr36 + emulsion interaction at around 1 A GeV with different target has been well explained by KNO scaling. The mean multiplicity of projectile's lightest fragments (proton) depends on the mass number of the projectile and does not significantly dependent of the projectile energy. The mean multiplicity of projectile's lightest fragment (proton) increases with increasing the target mass number.

  17. Preliminary Spectroscopic Measurements for a Gallium Electromagnetic (GEM) Thruster

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Glumac, Nick G.; Polzin, Kurt A.

    2007-01-01

    As a propellant option for electromagnetic thrusters, liquid ,gallium appears to have several advantages relative to other propellants. The merits of using gallium in an electromagnetic thruster (EMT) are discussed and estimates of discharge current levels and mass flow rates yielding efficient operation are given. The gallium atomic weight of 70 predicts high efficiency in the 1500-2000 s specific impulse range, making it ideal for higher-thrust, near-Earth missions. A spatially and temporally broad spectroscopic survey in the 220-520 nm range is used to determine which species are present in the plasma and estimate electron temperature. The spectra show that neutral, singly, and doubly ionized gallium species are present in a 20 J, 1.8 kA (peak) are discharge. With graphite present on the insulator to facilitate breakdown, singly and doubly ionized carbon atoms are also present, and emission is observed from molecular carbon (CZ) radicals. A determination of the electron temperature was attempted using relative emission line data, and while the spatially and temporally averaged, spectra don't fit well to single temperatures, the data and presence of doubly ionized gallium are consistent with distributions in the 1-3 eV range.

  18. Comparison of the recommendations of the AAPM TG-51 and TG-51 addendum reference dosimetry protocols.

    PubMed

    McCaw, Travis J; Hwang, Min-Sig; Jang, Si Young; Huq, M Saiful

    2017-07-01

    This work quantified differences between recommendations of the TG-51 and TG-51 addendum reference dosimetry protocols. Reference dosimetry was performed for flattened photon beams with nominal energies of 6, 10, 15, and 23 MV, as well as flattening-filter free (FFF) beam energies of 6 and 10 MV, following the recommendations of both the TG-51 and TG-51 addendum protocols using both a Farmer ® ionization chamber and a scanning ionization chamber with calibration coefficients traceable to absorbed dose-to-water (D w ) standards. Differences in D w determined by the two protocols were 0.1%-0.3% for beam energies with a flattening filter, and up to 0.2% and 0.8% for FFF beams measured with the scanning and Farmer ® ionization chambers, respectively, due to k Q determination, volume-averaging correction, and collimator jaw setting. Combined uncertainty was between 0.91% and 1.2% (k = 1), varying by protocol and detector. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  19. Estimation of NOx Production from Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Cramer, E. S.; Briggs, M. S.; Liu, N.; Mailyan, B.; Rassoul, H.; Dwyer, J. R.

    2016-12-01

    The motivation of this work is to understand the effects of TGFs on the ozone layer. One of the main ozone-destroying mechanisms is the production of NOx in the stratospheric region. We first review the mechanisms for NOx production in this region, specifically looking at the global rate produced by lightning. Terrestrial Gamma-ray Flashes, with runaway electron avalanches and the subsequent bremsstrahlung gamma rays, produce atmospheric ionization at all altitudes of the atmosphere. TGFs might have a greater impact on the ozone concentration in the stratosphere since they directly produce ionization and thus NOx in the ozone layer. In order to study the effect from TGFs, we use the runaway electron avalanche model (REAM) to simulate a typical TGF. The photons are then transported through Earth's atmosphere, where they deposit some of their energy as ionization in the ozone layer. We then calculate the number of NOx molecules produced by considering the average energy required to produce one electron-ion pair (W = 35 eV). The W factor has been experimentally quantified and is constant for various types of radiation and over large energy ranges and electric fields. Finally, the effect of TGF NOx production is estimated using the global annual rate of TGFs.

  20. Tunneling Time and Weak Measurement in Strong Field Ionization.

    PubMed

    Zimmermann, Tomáš; Mishra, Siddhartha; Doran, Brent R; Gordon, Daniel F; Landsman, Alexandra S

    2016-06-10

    Tunneling delays represent a hotly debated topic, with many conflicting definitions and little consensus on when and if such definitions accurately describe the physical observables. Here, we relate these different definitions to distinct experimental observables in strong field ionization, finding that two definitions, Larmor time and Bohmian time, are compatible with the attoclock observable and the resonance lifetime of a bound state, respectively. Both of these definitions are closely connected to the theory of weak measurement, with Larmor time being the weak measurement value of tunneling time and Bohmian trajectory corresponding to the average particle trajectory, which has been recently reconstructed using weak measurement in a two-slit experiment [S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011)]. We demonstrate a big discrepancy in strong field ionization between the Bohmian and weak measurement values of tunneling time, and we suggest this arises because the tunneling time is calculated for a small probability postselected ensemble of electrons. Our results have important implications for the interpretation of experiments in attosecond science, suggesting that tunneling is unlikely to be an instantaneous process.

  1. Spitzer Infrared Spectrograph Observations of the Galactic Center: Quantifying the Extreme Ultraviolet/Soft X-ray Fluxes

    NASA Astrophysics Data System (ADS)

    Simpson, Janet P.

    2018-04-01

    It has long been shown that the extreme ultraviolet spectrum of the ionizing stars of H II regions can be estimated by comparing the observed line emission to detailed models. In the Galactic Center (GC), however, previous observations have shown that the ionizing spectral energy distribution (SED) of the local photon field is strange, producing both very low excitation ionized gas (indicative of ionization by late O stars) and also widespread diffuse emission from atoms too highly ionized to be found in normal H II regions. This paper describes the analysis of all GC spectra taken by Spitzer's Infrared Spectrograph and downloaded from the Spitzer Heritage Archive. In it, H II region densities and abundances are described, and serendipitously discovered candidate planetary nebulae, compact shocks, and candidate young stellar objects are tabulated. Models were computed with Cloudy, using SEDs from Starburst99 plus additional X-rays, and compared to the observed mid-infrared forbidden and recombination lines. The ages inferred from the model fits do not agree with recent proposed star formation sequences (star formation in the GC occurring along streams of gas with density enhancements caused by close encounters with the black hole, Sgr A*), with Sgr B1, Sgr C, and the Arches Cluster being all about the same age, around 4.5 Myr old, with similar X-ray requirements. The fits for the Quintuplet Cluster appear to give a younger age, but that could be caused by higher-energy photons from shocks from stellar winds or from a supernova.

  2. Immunohistochemical evidence of rapid extracellular matrix remodeling after iron-particle irradiation of mouse mammary gland

    NASA Technical Reports Server (NTRS)

    Ehrhart, E. J.; Gillette, E. L.; Barcellos-Hoff, M. H.; Chaterjee, A. (Principal Investigator)

    1996-01-01

    High-LET radiation has unique physical and biological properties compared to sparsely ionizing radiation. Recent studies demonstrate that sparsely ionizing radiation rapidly alters the pattern of extracellular matrix expression in several tissues, but little is known about the effect of heavy-ion radiation. This study investigates densely ionizing radiation-induced changes in extracellular matrix localization in the mammary glands of adult female BALB/c mice after whole-body irradiation with 0.8 Gy 600 MeV iron particles. The basement membrane and interstitial extracellular matrix proteins of the mammary gland stroma were mapped with respect to time postirradiation using immunofluorescence. Collagen III was induced in the adipose stroma within 1 day, continued to increase through day 9 and was resolved by day 14. Immunoreactive tenascin was induced in the epithelium by day 1, was evident at the epithelial-stromal interface by day 5-9 and persisted as a condensed layer beneath the basement membrane through day 14. These findings parallel similar changes induced by gamma irradiation but demonstrate different onset and chronicity. In contrast, the integrity of epithelial basement membrane, which was unaffected by sparsely ionizing radiation, was disrupted by iron-particle irradiation. Laminin immunoreactivity was mildly irregular at 1 h postirradiation and showed discontinuities and thickening from days 1 to 9. Continuity was restored by day 14. Thus high-LET radiation, like sparsely ionizing radiation, induces rapid-remodeling of the stromal extracellular matrix but also appears to alter the integrity of the epithelial basement membrane, which is an important regulator of epithelial cell proliferation and differentiation.

  3. Role of electrostatic fluctuations in doped semiconductors upon the transition from band to hopping conduction (by the example of p-Ge:Ga)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poklonski, N. A., E-mail: poklonski@bsu.by; Vyrko, S. A.; Poklonskaya, O. N.

    The electrostatic model of ionization equilibrium between hydrogen-like acceptors and v-band holes in crystalline covalent p-type semiconductors is developed. The range of applicability of the model is the entire insulator side of the insulator–metal (Mott) phase transition. The density of the spatial distribution of acceptor- and donor-impurity atoms and holes over a crystal was assumed to be Poissonian and the fluctuations of their electrostatic potential energy, to be Gaussian. The model takes into account the effect of a decrease in the energy of affinity of an ionized acceptor to a v-band hole due to Debye–Hückel ion screening by both freemore » v-band holes and localized holes hopping over charge states (0) and (–1) of acceptors in the acceptor band. All donors are in charge state (+1) and are not directly involved in the screening, but ensure the total electroneutrality of a sample. In the quasiclassical approximation, analytical expressions for the root-mean-square fluctuation of the v-band hole energy W{sub p} and effective acceptor bandwidth W{sub a} are obtained. In calculating W{sub a}, only fluctuations caused by the Coulomb interaction between two nearest point charges (impurity ions and holes) are taken into account. It is shown that W{sub p} is lower than W{sub a}, since electrostatic fluctuations do not manifest themselves on scales smaller than the average de Broglie wavelength of a free hole. The delocalization threshold for v-band holes is determined as the sum of the diffusive-percolation threshold and exchange energy of holes. The concentration of free v-band holes is calculated at the temperature T{sub j} of the transition from dc band conductivity to conductivity implemented via hopping over acceptor states, which is determined from the virial theorem. The dependence of the differential energy of the thermal ionization of acceptors at the temperature 3T{sub j}/2 on their concentration N and degree of compensation K (the ratio between the donor and acceptor concentrations) is determined. Good quantitative agreement between the results of the calculation and data on the series of neutron transmutation doped p-Ge samples is obtained up to the Mott transition without using any fitting parameters.« less

  4. Adaptive response in human blood lymphocytes exposed to non-ionizing radiofrequency fields: resistance to ionizing radiation-induced damage.

    PubMed

    Sannino, Anna; Zeni, Olga; Romeo, Stefania; Massa, Rita; Gialanella, Giancarlo; Grossi, Gianfranco; Manti, Lorenzo; Vijayalaxmi; Scarfì, Maria Rosaria

    2014-03-01

    The aim of this preliminary investigation was to assess whether human peripheral blood lymphocytes which have been pre-exposed to non-ionizing radiofrequency fields exhibit an adaptive response (AR) by resisting the induction of genetic damage from subsequent exposure to ionizing radiation. Peripheral blood lymphocytes from four healthy donors were stimulated with phytohemagglutinin for 24 h and then exposed for 20 h to 1950 MHz radiofrequency fields (RF, adaptive dose, AD) at an average specific absorption rate of 0.3 W/kg. At 48 h, the cells were subjected to a challenge dose (CD) of 1.0 or 1.5 Gy X-irradiation (XR, challenge dose, CD). After a 72 h total culture period, cells were collected to examine the incidence of micronuclei (MN). There was a significant decrease in the number of MN in lymphocytes exposed to RF + XR (AD + CD) as compared with those subjected to XR alone (CD). These observations thus suggested a RF-induced AR and induction of resistance to subsequent damage from XR. There was variability between the donors in RF-induced AR. The data reported in our earlier investigations also indicated a similar induction of AR in human blood lymphocytes that had been pre-exposed to RF (AD) and subsequently treated with a chemical mutagen, mitomycin C (CD). Since XR and mitomycin-C induce different kinds of lesions in cellular DNA, further studies are required to understand the mechanism(s) involved in the RF-induced adaptive response.

  5. Observation of variable pre-eclipse dips and disk winds in the eclipsing LMXB XTE J1710-281

    NASA Astrophysics Data System (ADS)

    Raman, Gayathri; Maitra, Chandreyee; Paul, Biswajit

    2018-04-01

    We report the first detection of highly ionized Fe species in the X-ray spectrum of the eclipsing and dipping Low Mass X-ray Binary XTE J1710-281. Using archival Chandra and Suzaku observations, we have carried out a spectro-timing analysis of the source during three different epochs. We compare the average orbital profile and obtain differences in pre-eclipse dip morphologies between different observation epochs. We observe an orbit to orbit evolution of the dips for the first time in this source in both the Chandra observations, reflecting changes in the structure of the accretion disc in timescales of hours. We further perform intensity resolved spectroscopy for both the Chandra and the Suzaku data to characterize the changes in the spectral parameters from the persistent to the dipping intervals. We find that the absorbers responsible for the dips, can be best described using a partially ionized partial covering absorber, with an ionization parameter, log(ξ) of ˜2. The photon index of the source remained at ˜2 during both the Chandra and the Suzaku observations. In the 0.6-9 keV Suzaku spectra, we detect a broad 0.72 keV Fe L-alpha emission line complex and two narrow absorption lines at ˜6.60 keV and ˜7.01 keV. The highly ionized Fe line signatures, being an indicator of accretion disc-winds, has been observed for the first time in XTE J1710-281.

  6. Adaptive response in human blood lymphocytes exposed to non-ionizing radiofrequency fields: resistance to ionizing radiation-induced damage

    PubMed Central

    Sannino, Anna; Zeni, Olga; Romeo, Stefania; Massa, Rita; Gialanella, Giancarlo; Grossi, Gianfranco; Manti, Lorenzo; Vijayalaxmi; Scarfì, Maria Rosaria

    2014-01-01

    The aim of this preliminary investigation was to assess whether human peripheral blood lymphocytes which have been pre-exposed to non-ionizing radiofrequency fields exhibit an adaptive response (AR) by resisting the induction of genetic damage from subsequent exposure to ionizing radiation. Peripheral blood lymphocytes from four healthy donors were stimulated with phytohemagglutinin for 24 h and then exposed for 20 h to 1950 MHz radiofrequency fields (RF, adaptive dose, AD) at an average specific absorption rate of 0.3 W/kg. At 48 h, the cells were subjected to a challenge dose (CD) of 1.0 or 1.5 Gy X-irradiation (XR, challenge dose, CD). After a 72 h total culture period, cells were collected to examine the incidence of micronuclei (MN). There was a significant decrease in the number of MN in lymphocytes exposed to RF + XR (AD + CD) as compared with those subjected to XR alone (CD). These observations thus suggested a RF-induced AR and induction of resistance to subsequent damage from XR. There was variability between the donors in RF-induced AR. The data reported in our earlier investigations also indicated a similar induction of AR in human blood lymphocytes that had been pre-exposed to RF (AD) and subsequently treated with a chemical mutagen, mitomycin C (CD). Since XR and mitomycin-C induce different kinds of lesions in cellular DNA, further studies are required to understand the mechanism(s) involved in the RF-induced adaptive response. PMID:23979077

  7. Crosslinking of SAVY-4000 O-rings as a Function of Aging Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Buskirk, Caleb Griffith

    SAVY-4000 containers were developed as a part of DOE M 441.1-1 to protect workers who handle stored nuclear material from exposure due to loss of containment.1 The SAVY-4000 is comprised of three parts: a lid, a container, and a cross-linked fluoropolymer O-ring. Degradation of the O-ring during use could limit the lifetime of the SAVY-4000. In order to quantify the chemical changes of the Oring over time, the molecular weight between crosslinks was determined as a function of aging conditions using a swelling technique. Because the O-ring is a cross-linked polymer, it will absorb solvent into its matrix without dissolving.more » The relative amount of solvent uptake can be related to the degree of crosslinking using an equation developed by Paul Flory and John Rehner Jr3. This method was used to analyze O-ring samples aged under thermal and ionizing-radiation conditions. It was found that at the harsher thermal gaining conditions in absence of ionizing-radiation the average molecular weight between crosslinks decreased, indicating a rise in crosslinks, which may be attributable to advanced aging with no ionizing radiation present. Inversely, in the presence of ionizing radiation it was found that material has a higher level of cross-linking with age. This information could be used to help predict the lifetime of the O-rings in SAVY-4000 containers under service conditions.« less

  8. [C ii] 158 μm line detection of the warm ionized medium in the Scutum-Crux spiral arm tangency

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.; Pineda, J. L.; Goldsmith, P. F.

    2012-05-01

    Context. The Herschel HIFI GOT C+ Galactic plane [C ii] spectral survey has detected strong emission at the spiral arm tangencies. Aims: We use the unique viewing geometry of the Scutum-Crux (S-C) tangency nearl = 30° to detect the warm ionized medium (WIM) component traced by [CII] and to study the effects of spiral density waves on Interstellar Medium (ISM) gas. Methods: We compare [C ii] velocity features with ancillary H i, 12CO and 13CO data near tangent velocities at each longitude to separate the cold neutral medium and the warm neutral + ionized components in the S-C tangency, then we identify [C ii] emission at the highest velocities without any contribution from 12CO clouds, as WIM. Results: We present the GOT C+ results for the S-C tangency. We interpret the diffuse and extended excess [C ii] emission at and above the tangent velocities as arising in the electron-dominated warm ionized gas in the WIM. We derive an electron density in the range of 0.2-0.9 cm-3 at each longitude, a factor of several higher than the average value from Hα and pulsar dispersion. Conclusions: We interpret the excess [C ii] in S-C tangency as shock compression of the WIM induced by the spiral density waves. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  9. Density PDFs of diffuse gas in the Milky Way

    NASA Astrophysics Data System (ADS)

    Berkhuijsen, E. M.; Fletcher, A.

    2012-09-01

    The probability distribution functions (PDFs) of the average densities of the diffuse ionized gas (DIG) and the diffuse atomic gas are close to lognormal, especially when lines of sight at |b| < 5∘ and |b|≥ 5∘ are considered separately. Our results provide strong support for the existence of a lognormal density PDF in the diffuse ISM, consistent with a turbulent origin of density structure in the diffuse gas.

  10. Total Kinetic Energy and Fragment Mass Distribution of Neutron-Induced Fission of U-233

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, Daniel James; Schmitt, Kyle Thomas; Mosby, Shea Morgan

    Properties of fission in U-233 were studied at the Los Alamos Neutron Science Center (LANSCE) at incident neutron energies from thermal to 40 MeV at both the Lujan Neutron Scattering Center flight path 12 and at WNR flight path 90-Left from Dec 2016 to Jan 2017. Fission fragments are observed in coincidence using a twin ionization chamber with Frisch grids. The average total kinetic energy (TKE) released from fission and fragment mass distributions are calculated from observations of energy deposited in the detector and conservation of mass and momentum. Accurate experimental measurements of these parameters are necessary to better understandmore » the fission process and obtain data necessary for calculating criticality. The average TKE released from fission has been well characterized for several isotopes at thermal neutron energy, however, few measurements have been made at fast neutron energies. This experiment expands on previous successful experiments using an ionization chamber to measure TKE and fragment mass distributions of U-235, U-238, and Pu-239. This experiment requires the full spectrum of neutron energies and can therefore only be performed at a small number of facilities in the world. The required full neutron energy spectrum is obtained by combining measurements from WNR 90L and Lujan FP12 at LANSCE.« less

  11. Analysis of genomic instability in the offspring of fathers exposed to low doses of ionizing radiation.

    PubMed

    Aghajanyan, Anna; Kuzmina, Nina; Sipyagyna, Alla; Baleva, Larisa; Suskov, Igor

    2011-08-01

    Transgenerational genomic instability was studied in nonirradiated children born from fathers who were irradiated with low doses of ionizing radiation while working as clean-up workers at the Chernobyl Nuclear Power Plant (liquidators) and nonirradiated mothers from nuclear families. Aberrant cell frequencies (ACFs), chromosomal type aberration frequencies, and chromatid break frequencies (CBFs) in the lymphocytes of fathers-liquidators, and their children were significantly higher when compared with the control group (P < 0.05). Individual ACFs, aberration frequencies, and CBFs were independent of the time between irradiation of the father and conception of the child (1 month to 18 years). Chromosomes were categorized into seven groups (A through G). Analysis of aberrant chromosomes within these groups showed no differences in the average frequency of aberrant chromosomes between children and fathers-liquidators. However, significant differences were observed in the average frequency of aberrant chromosomes in groups A, B, and C between children and mothers in the families of liquidators. These results suggest that low doses of radiation induce genomic instability in fathers. Moreover, low radiation doses might be responsible for individual peculiarities in transgenerational genomic instability in children (as a consequence of response to primary DNA damage). Thus, genomic instability may contribute to increased morbidity over the lifetime of these children. Copyright © 2011 Wiley-Liss, Inc.

  12. Relative permittivity and Hubbard U of pentacene extracted from scanning tunneling microscopy studies of p-doped films

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Qi, Yabing; Kahn, Antoine

    2010-08-01

    Temperature-dependent I- V measurements determine that pentacene is effectively p-doped by tetrafluoro-tetracyanoquinodimethane (F 4-TCNQ). It has been shown by scanning tunneling microscopy (STM) that the donated hole is localized by the ionized dopant counter potential, and that the hole can be visualized [4]. Here, it is argued that the effect of the localized hole on STM images should depend on distance as 1/ ɛr, as per the Coulomb potential. By fitting line profiles of localized hole features to the Coulomb potential, it is shown that approximate values for the relative permittivity and Hubbard U of pentacene can be extracted.

  13. Electronic structure of oxygen-vacancy defects in amorphous In-Ga-Zn-O semiconductors

    NASA Astrophysics Data System (ADS)

    Noh, Hyeon-Kyun; Chang, K. J.; Ryu, Byungki; Lee, Woo-Jin

    2011-09-01

    We perform first-principles density functional calculations to investigate the atomic and electronic properties of various O-vacancy (VO) defects in amorphous indium gallium zinc oxides (a-IGZO). The formation energies of VO have a tendency to increase with increasing number of neighboring Ga atoms, whereas they are generally low in the environment surrounded with In atoms. Thus, adding Ga atoms suppresses the formation of O-deficiency defects, which are considered as the origin of device instability in a-IGZO-based thin film transistors. The conduction band edge state is characterized by the In s orbital and insensitive to disorder, in good agreement with the experimental finding that increasing the In content enhances the carrier density and mobility. In a-IGZO, while most VO defects are deep donors, some of the defects act as shallow donors due to local environments different from those in crystalline oxides. As ionized O vacancies can capture electrons, it is suggested that these defects are responsible for positive shifts of the threshold voltage observed under positive gate bias stress. Under light illumination stress, VO defects can be ionized, becoming VO2+ defects due to the negative-U behavior. When electrons are captured by applying a negative bias voltage, ionized VO2+ defects return to the original neutral charge state. Through molecular dynamics simulations, we find that the initial neutral state is restored by annealing, in good agreement with experiments, although the annealing temperature depends on the local environment. Our calculations show that VO defects play an important role in the instability of a-IGZO-based devices.

  14. Localized traveling ionization zones and their importance for the high power impulse magnetron sputtering process

    NASA Astrophysics Data System (ADS)

    Maszl, Christian

    2016-09-01

    High power impulse magnetron sputtering (HiPIMS) is a technique to deposit thin films with superior quality. A high ionization degree up to 90% and the natural occurence of high energetic metal ions are the reason why HiPIMS exceeds direct current magnetron sputtering in terms of coating quality. On the other hand HiPIMS suffers from a reduced efficiency, especially if metal films are produced. Therefore, a lot of research is done by experimentalists and theoreticians to clarify the transport mechanisms from target to substrate and to identify the energy source of the energetic metal ions. Magnetron plasmas are prone to a wide range of wave phenomena and instabilities. Especially, during HiPIMS at elevated power/current densities, symmetry breaks and self-organization in the plasma torus are observed. In this scenario localized travelling ionization zones with certain quasi-mode numbers are present which are commonly referred to as spokes. Because of their high rotation speed compared to typical process times of minutes their importance for thin film deposition was underestimated at first. Recent investigations show that spokes have a strong impact on particle transport, are probably the source of the high energetic metal ions and are therefore the essence of HiPIMS plasmas. In this contribution we will describe the current understanding of spokes, discuss implications for thin film synthesis and highlight open questions. This project is supported by the DFG (German Science Foundation) within the framework of the Coordinated Research Center SFB-TR 87 and the Research Department ``Plasmas with Complex Interactions'' at Ruhr-University Bochum.

  15. Dynamics of near-surface electric discharges and mechanisms of their interaction with the airflow

    NASA Astrophysics Data System (ADS)

    Leonov, Sergey B.; Adamovich, Igor V.; Soloviev, Victor R.

    2016-12-01

    The main focus of the review is on dynamics and kinetics of near-surface discharge plasmas, such as surface dielectric barrier discharges sustained by AC and repetitively pulsed waveforms, pulsed DC discharges, and quasi-DC discharges, generated in quiescent air and in the airflow. A number of technical issues related to plasma flow control applications are discussed in detail, including discharge development via surface ionization waves, charge transport and accumulation on dielectric surface, discharge contraction, different types of flow perturbations generated by surface discharges, and effect of high-speed flow on discharge dynamics. In the first part of the manuscript, plasma morphology and results of electrical and optical emission spectroscopy measurements are discussed. Particular attention is paid to dynamics of surface charge accumulation and dissipation, both in diffuse discharges and during development of ionization instabilities resulting in discharge contraction. Contraction leads to significant increase of both the surface area of charge accumulation and the energy coupled to the plasma. The use of alternating polarity pulse waveforms accelerates contraction of surface dielectric barrier discharges and formation of filamentary plasmas. The second part discusses the interaction of discharge plasmas with quiescent air and the external airflow. Four major types of flow perturbations have been identified: (1) low-speed near-surface jets generated by electrohydrodynamic interaction (ion wind); (2) spanwise and streamwise vortices formed by both electrohydrodynamic and thermal effects; (3) weak shock waves produced by rapid heating in pulsed discharges on sub-microsecond time scale; and (4) near-surface localized stochastic perturbations, on sub-millisecond time, detected only recently. The mechanism of plasma-flow interaction remains not fully understood, especially in filamentary surface dielectric barrier discharges. Localized quasi-DC surface discharges sustained in a high-speed flow are discussed in the third part of the review. Although dynamics of this type of the discharge is highly transient, due to its strong interaction with the flow, the resultant flow structure is stationary, including the oblique shock and the flow separation region downstream of the discharge. The oblique shock is attached to a time-averaged, wedge-shaped, near-wall plasma layer, with the shock angle controlled by the discharge power, which makes possible changing the flow structure and parameters in a controlled way. Finally, unresolved and open-ended issues are discussed in the summary.

  16. Investigation of the chemical interface in the soybean–aphid and rice–bacteria interactions using MALDI-mass spectrometry imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Adam T.; Yagnik, Gargey B.; Hohenstein, Jessica D.

    Mass spectrometry imaging (MSI) is an emerging technology for high-resolution plant biology. It has been utilized to study plant–pest interactions, but limited to the surface interfaces. Here we expand the technology to explore the chemical interactions occurring inside the plant tissues. Two sample preparation methods, imprinting and fracturing, were developed and applied, for the first time, to visualize internal metabolites of leaves in matrix-assisted laser desorption ionization (MALDI)-MSI. This is also the first time nanoparticle-based ionization was implemented to ionize diterpenoid phytochemicals that were difficult to analyze with traditional organic matrices. The interactions between rice–bacterium and soybean–aphid were investigated asmore » two model systems to demonstrate the capability of high-resolution MSI based on MALDI. Localized molecular information on various plant- or pest-derived chemicals provided valuable insight for the molecular processes occurring during the plant–pest interactions. Basically, salicylic acid and isoflavone based resistance was visualized in the soybean–aphid system and antibiotic diterpenoids in rice–bacterium interactions.« less

  17. Investigation of the chemical interface in the soybean–aphid and rice–bacteria interactions using MALDI-mass spectrometry imaging

    DOE PAGES

    Klein, Adam T.; Yagnik, Gargey B.; Hohenstein, Jessica D.; ...

    2015-04-27

    Mass spectrometry imaging (MSI) is an emerging technology for high-resolution plant biology. It has been utilized to study plant–pest interactions, but limited to the surface interfaces. Here we expand the technology to explore the chemical interactions occurring inside the plant tissues. Two sample preparation methods, imprinting and fracturing, were developed and applied, for the first time, to visualize internal metabolites of leaves in matrix-assisted laser desorption ionization (MALDI)-MSI. This is also the first time nanoparticle-based ionization was implemented to ionize diterpenoid phytochemicals that were difficult to analyze with traditional organic matrices. The interactions between rice–bacterium and soybean–aphid were investigated asmore » two model systems to demonstrate the capability of high-resolution MSI based on MALDI. Localized molecular information on various plant- or pest-derived chemicals provided valuable insight for the molecular processes occurring during the plant–pest interactions. Basically, salicylic acid and isoflavone based resistance was visualized in the soybean–aphid system and antibiotic diterpenoids in rice–bacterium interactions.« less

  18. Increasing the applicability of density functional theory. IV. Consequences of ionization-potential improved exchange-correlation potentials.

    PubMed

    Verma, Prakash; Bartlett, Rodney J

    2014-05-14

    This paper's objective is to create a "consistent" mean-field based Kohn-Sham (KS) density functional theory (DFT) meaning the functional should not only provide good total energy properties, but also the corresponding KS eigenvalues should be accurate approximations to the vertical ionization potentials (VIPs) of the molecule, as the latter condition attests to the viability of the exchange-correlation potential (VXC). None of the prominently used DFT approaches show these properties: the optimized effective potential VXC based ab initio dft does. A local, range-separated hybrid potential cam-QTP-00 is introduced as the basis for a "consistent" KS DFT approach. The computed VIPs as the negative of KS eigenvalue have a mean absolute error of 0.8 eV for an extensive set of molecule's electron ionizations, including the core. Barrier heights, equilibrium geometries, and magnetic properties obtained from the potential are in good agreement with experiment. A similar accuracy with less computational efforts can be achieved by using a non-variational global hybrid variant of the QTP-00 approach.

  19. Simulation on the dynamic charge behavior of vacuum flashover developing across insulator involving outgassing

    NASA Astrophysics Data System (ADS)

    Sun, Guang-Yu; Guo, Bao-Hong; Song, Bai-Peng; Su, Guo-Qiang; Mu, Hai-Bao; Zhang, Guan-Jun

    2018-06-01

    A 2D simulation based on particle-in-cell and Monte Carlo collision algorithm is implemented to investigate the accumulation and dissipation of surface charges on an insulator during flashover with outgassing in vacuum. A layer of positive charges is formed on the insulator after the secondary electrons emission (SEE) reaches saturation. With the build-up of local pressure resulting from gas desorption, the incident energy of electrons is affected by electron-neutral collisions and field distortion, remarkably decreasing the charge density on the insulator. Gas desorption ionization initiates near the anode, culminating, and then abates, followed by a steady and gradual augmentation as the negatively charged surface spreads towards the cathode and halts the SEE nearby. The initiation of flashover development is discussed in detail, and a subdivision of flashover development is proposed, including an anode-initiated desorption ionization avalanche, establishment of a plasma sheath, and plasma expansion. The transform from saturation to explosion of space charges and dissipation of the surface charge are revealed, which can be explained by the competition between multipactor electrons and ionized electrons.

  20. MALDI-Imaging Mass Spectrometry of Ochratoxin A and Fumonisins in Mold-Infected Food.

    PubMed

    Hickert, Sebastian; Cramer, Benedikt; Letzel, Matthias C; Humpf, Hans-Ulrich

    2016-09-06

    Mycotoxins are toxic secondary metabolites produced by various fungi. Their distribution within contaminated material is of high interest to obtain insight into infection mechanisms and the possibility of reducing contamination during food processing. Various vegetable foodstuffs were infected with fungi of the genera Fusarium and Aspergillus. The localization of the produced mycotoxins was studied by matrix assisted laser desorption ionization time of flight imaging mass spectrometry (MALDI-MSI) of cryosections obtained from infected material. The results were confirmed by HPLC-electrospray ionization triple quadrupole mass spectrometry (HPLC/MS/MS). The mycotoxins ochratoxin A (OTA) and fumonisins of the B- and C-series (FB 1 , FB 2 , FB 3 , FB 4 , FC 2/3 , and FC 4 ) as well as partially hydrolyzed fumonisins (pHFB 1 , pHFB 2 , pHFB 3 , pHFC 1 , and pHFC 2/3 ) could successfully be detected by MALDI-IMS in mold-infested foodstuffs. The toxins are distributed differently in the material: OTA is co-localized with visible fungal spoilage while fumonisins could be detected throughout the whole sample. This work shows the applicability of MALDI-Imaging Mass Spectrometry (MALDI-MSI) to mycotoxin analysis. It has been demonstrated that the analyzed mycotoxins are differently distributed within moldy foodstuffs. These findings show the potential of MALDI-MSI for the localization of these hazardous compounds in various plant tissues. This article is protected by copyright. All rights reserved.

  1. Femtoscopy with identified charged pions in proton-lead collisions at s NN = 5.02 TeV with ATLAS

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-12-28

    Here, Bose-Einstein correlations between identified charged pions are measured for p+Pb collisions at √ sNN = 5.02TeV using data recorded by the ATLAS detector at the CERN Large Hadron Collider corresponding to a total integrated luminosity of 28nb –1. Pions are identified using ionization energy loss measured in the pixel detector. Two-particle correlation functions and the extracted source radii are presented as a function of collision centrality as well as the average transverse momentum (k T) and rapidity (y* ππ) of the pair. Pairs are selected with a rapidity –2 < y* ππ < 1 and with an average transversemore » momentum 0.1 < k T < 0.8GeV. The effect of jet fragmentation on the two-particle correlation function is studied, and a method using opposite-charge pair data to constrain its contributions to the measured correlations is described. The measured source sizes are substantially larger in more central collisions and are observed to decrease with increasing pair k T. A correlation of the radii with the local charged-particle density is demonstrated. The scaling of the extracted radii with the mean number of participating nucleons is also used to compare a selection of initial-geometry models. The cross term Rol is measured as a function of rapidity, and a nonzero value is observed with 5.1σ combined significance for –1 < y* ππ < 1 in the most central events.« less

  2. Comparison of sodium naphthenate and air-ionization corona discharge as surface treatments for the ethylene-tetrafluoroethylene polymer (ETFE) to improve adhesion between ETFE and acrylonitrile-butadiene-styrene polymer (ABS) in the presence of a cyanoacrylate adhesive (CAA)

    NASA Astrophysics Data System (ADS)

    Lucía Johanning-Solís, Ana; Stradi-Granados, Benito A.

    2014-09-01

    This study compares two ethylene-tetrafluoroethylene (ETFE) surface activation treatments, namely chemical attack with a solution of sodium naphthenate and plasma erosion via air-ionization corona discharge in order to improve the adhesive properties of the ETFE. An experimental design was prepared for both treatments in order to assess the effect of the treatment characteristics on the tensile load needed to break the bond between the ETFE and the acrylonitrile-butadiene-styrene polymer (ABS) formed with a cyanoacrylate adhesive (CAA) applied between them. The reason for the selection of this problem is that both polymers are frequently used in the biomedical industry for their properties, and they need to be joined firmly in biomedical devices, and the cyanoacrylate adhesive is the adhesive traditionally used for fluoropolymers, in this case the ETFE, and the same CAA has also shown good adhesion with ABS. However, the strength of the bond for the triplet ETFE-CAA-ABS has not been reported and the improvement of the strength of the bond with surface treatments is not found in scholarly journals for modern medical devices such as stents and snares. Both treatments were compared based on the aforementioned design of experiments. The case where ETFE receives no surface treatment serves as the reference. The results indicated that the three factors evaluated (initial drying of the material, temperature of the chemical bath, and immersion time), and their interactions have no significant effect over the tensile load at failure (tensile strength) of the adhesive bond being evaluated. For the air-ionization corona discharge treatment, two factors were evaluated: discharge exposition time and air pressure. The results obtained from this experimental design indicate that there is no significant difference between the levels of the factors evaluated. These results were unexpected as the ranges used were representative of the maximum ranges permissible in manufacturing operations. As for the comparison of the treatments, it was determined that the treatments have statistically significant differences. It was also determined that there is a significant statistical difference between the processes where a surface treatment is performed and the process where no surface treatment is applied to the ETFE. The chemical treatment results in a higher tensile load at failure (tensile strength) of 276.6 N on average, the air ionization treatment has an average of 248.4 N, and the process with no treatment has the lower ultimate tensile strength average of 53 N. This comparison has demonstrated that the best treatment is the chemical treatment with sodium naphthenate under the conditions tested.

  3. Coherent control of D2/H2 dissociative ionization by a mid-infrared two-color laser field

    NASA Astrophysics Data System (ADS)

    Wanie, Vincent; Ibrahim, Heide; Beaulieu, Samuel; Thiré, Nicolas; Schmidt, Bruno E.; Deng, Yunpei; Alnaser, Ali S.; Litvinyuk, Igor V.; Tong, Xiao-Min; Légaré, François

    2016-01-01

    Steering the electrons during an ultrafast photo-induced process in a molecule influences the chemical behavior of the system, opening the door to the control of photochemical reactions and photobiological processes. Electrons can be efficiently localized using a strong laser field with a well-designed temporal shape of the electric component. Consequently, many experiments have been performed with laser sources in the near-infrared region (800 nm) in the interest of studying and enhancing the electron localization. However, due to its limited accessibility, the mid-infrared (MIR) range has barely been investigated, although it allows to efficiently control small molecules and even more complex systems. To push further the manipulation of basic chemical mechanisms, we used a MIR two-color (1800 and 900 nm) laser field to ionize H2 and D2 molecules and to steer the remaining electron during the photo-induced dissociation. The study of this prototype reaction led to the simultaneous control of four fragmentation channels. The results are well reproduced by a theoretical model solving the time-dependent Schrödinger equation for the molecular ion, identifying the involved dissociation mechanisms. By varying the relative phase between the two colors, asymmetries (i.e., electron localization selectivity) of up to 65% were obtained, corresponding to enhanced or equivalent levels of control compared to previous experiments. Experimentally easier to implement, the use of a two-color laser field leads to a better electron localization than carrier-envelope phase stabilized pulses and applying the technique in the MIR range reveals more dissociation channels than at 800 nm.

  4. Prevention of deaths and injuries caused by house fires: survey of local authority smoke alarm policies.

    PubMed

    Rowland, Diane; Afolabi, Elizabeth; Roberts, Ian

    2002-09-01

    Despite an increased risk of fire in disadvantaged households, smoke alarm ownership is considerably lower than in the general population. The government currently recommends that local authorities install battery-operated smoke alarms in all public sector properties regardless of tenure. However, the extent to which local authorities comply is currently not known. We conducted a survey of local authorities to establish the extent of their smoke alarm provision to public sector households. A telephone survey of all 405 local authorities within England and Wales was carried out. We obtained responses from 390 (97 per cent) local authorities, 266 of which had responsibility for housing. Over half of all public-sector households are offered smoke alarms by the local authorities. The majority of local authorities offer ionization and/or optical sensor alarm types (78 per cent), with many local authorities providing battery-operated alarms alone (17 per cent) or in combination with hardwired alarms (31 per cent). Many local authorities offer smoke alarm provision to their public-sector households. Whether this represents an effective and cost-effective use of resources requires further investigation.

  5. Extreme gaseous outflows in radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Xu, D. W.; Wagner, A. Y.

    2018-07-01

    We present four radio-loud narrow-line Seyfert 1 (NLS1) galaxies with extreme emission-line shifts, indicating radial outflow velocities of the ionized gas of up to 2450 km s-1, above the escape velocity of the host galaxies. The forbidden lines show strong broadening, up to 2270 km s-1. An ionization stratification (higher line shift at higher ionization potential) implies that we see a large-scale outflow rather than single, localized jet-cloud interactions. Similarly, the paucity of zero-velocity [O III] λ5007 emitting gas implies the absence of a second narrow-line region (NLR) component at rest, and therefore a large part of the high-ionization NLR is affected by the outflow. Given the radio loudness of these NLS1 galaxies, the observations are consistent with a pole on view onto their central engines, so that the effects of polar outflows are maximized. In addition, a very efficient driving mechanism is required to reach the high observed velocities. We explore implications from recent hydrodynamic simulations of the interaction between fast winds or jets with the large-scale NLR. Overall, the best agreement with observations (and especially the high outflow speeds of the [Ne V] emitting gas) can be reached if the NLS1 galaxies are relatively young sources with lifetimes not much exceeding 1 Myr. These systems represent sites of strong feedback at NLR scales at work, well below redshift one.

  6. Extreme Gaseous Outflows in Radio-Loud Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Xu, D. W.; Wagner, A. Y.

    2018-04-01

    We present four radio-loud NLS1 galaxies with extreme emission-line shifts, indicating radial outflow velocities of the ionized gas of up to 2450 km/s, above the escape velocity of the host galaxies. The forbidden lines show strong broadening, up to 2270 km/s. An ionization stratification (higher line shift at higher ionization potential) implies that we see a large-scale outflow rather than single, localized jet-cloud interactions. Similarly, the paucity of zero-velocity [OIII]λ5007 emitting gas implies the absence of a second narrow-line region (NLR) component at rest, and therefore a large part of the high-ionization NLR is affected by the outflow. Given the radio loudness of these NLS1 galaxies, the observations are consistent with a pole on view onto their central engines, so that the effects of polar outflows are maximized. In addition, a very efficient driving mechanism is required, to reach the high observed velocities. We explore implications from recent hydrodynamic simulations of the interaction between fast winds or jets with the large-scale NLR. Overall, the best agreement with observations (and especially the high outflow speeds of the [NeV] emitting gas) can be reached if the NLS1 galaxies are relatively young sources with lifetimes not much exceeding 1 Myr. These systems represent sites of strong feedback at NLR scales at work, well below redshift one.

  7. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobashigawa, Shinko, E-mail: kobashin@nagasaki-u.ac.jp; Suzuki, Keiji; Yamashita, Shunichi

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We report first time that ionizing radiation induces mitochondrial dynamic changes. Black-Right-Pointing-Pointer Radiation-induced mitochondrial fission was caused by Drp1 localization. Black-Right-Pointing-Pointer We found that radiation causes delayed ROS from mitochondria. Black-Right-Pointing-Pointer Down regulation of Drp1 rescued mitochondrial dysfunction after radiation exposure. -- Abstract: Ionizing radiation is known to increase intracellular level of reactive oxygen species (ROS) through mitochondrial dysfunction. Although it has been as a basis of radiation-induced genetic instability, the mechanism involving mitochondrial dysfunction remains unclear. Here we studied the dynamics of mitochondrial structure in normal human fibroblast like cells exposed to ionizing radiation. Delayed mitochondrial O{submore » 2}{sup {center_dot}-} production was peaked 3 days after irradiation, which was coupled with accelerated mitochondrial fission. We found that radiation exposure accumulated dynamin-related protein 1 (Drp1) to mitochondria. Knocking down of Drp1 expression prevented radiation induced acceleration of mitochondrial fission. Furthermore, knockdown of Drp1 significantly suppressed delayed production of mitochondrial O{sub 2}{sup {center_dot}-}. Since the loss of mitochondrial membrane potential, which was induced by radiation was prevented in cells knocking down of Drp1 expression, indicating that the excessive mitochondrial fission was involved in delayed mitochondrial dysfunction after irradiation.« less

  8. Direct detection of MeV-scale dark matter utilizing germanium internal amplification for the charge created by the ionization of impurities

    NASA Astrophysics Data System (ADS)

    Mei, D.-M.; Wang, G.-J.; Mei, H.; Yang, G.; Liu, J.; Wagner, M.; Panth, R.; Kooi, K.; Yang, Y.-Y.; Wei, W.-Z.

    2018-03-01

    Light, MeV-scale dark matter (DM) is an exciting DM candidate that is undetectable by current experiments. A germanium (Ge) detector utilizing internal charge amplification for the charge carriers created by the ionization of impurities is a promising new technology with experimental sensitivity for detecting MeV-scale DM. We analyze the physics mechanisms of the signal formation, charge creation, charge internal amplification, and the projected sensitivity for directly detecting MeV-scale DM particles. We present a design for a novel Ge detector at helium temperature (˜ 4 K) enabling ionization of impurities from DM impacts. With large localized E-fields, the ionized excitations can be accelerated to kinetic energies larger than the Ge bandgap at which point they can create additional electron-hole pairs, producing intrinsic amplification to achieve an ultra-low energy threshold of ˜ 0.1 eV for detecting low-mass DM particles in the MeV scale. Correspondingly, such a Ge detector with 1 kg-year exposure will have high sensitivity to a DM-nucleon cross section of ˜ 5 × 10^{-45} cm2 at a DM mass of ˜ 10 MeV/c2 and a DM-electron cross section of ˜ 5 × 10^{-46} cm2 at a DM mass of ˜ 1 MeV/c^2.

  9. Performance Theory of Diagonal Conducting Wall Magnetohydrodynamic Accelerators

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.

    2004-01-01

    The theoretical performance of diagonal conducting wall crossed-field accelerators is examined on the basis of an infinite segmentation assumption using a cross-plane averaged generalized Ohm s law for a partially ionized gas, including ion slip. The desired accelerator performance relationships are derived from the cross-plane averaged Ohm s law by imposing appropriate configuration and loading constraints. A current-dependent effective voltage drop model is also incorporated to account for cold-wall boundary layer effects, including gasdynamic variations, discharge constriction, and electrode falls. Definition of dimensionless electric fields and current densities leads to the construction of graphical performance diagrams, which further illuminate the rudimentary behavior of crossed-field accelerator operation.

  10. Evaluation of polymer gels and MRI as a 3-D dosimeter for intensity-modulated radiation therapy.

    PubMed

    Low, D A; Dempsey, J F; Venkatesan, R; Mutic, S; Markman, J; Mark Haacke, E; Purdy, J A

    1999-08-01

    BANG gel (MGS Research, Inc., Guilford, CT) has been evaluated for measuring intensity-modulated radiation therapy (IMRT) dose distributions. Treatment plans with target doses of 1500 cGy were generated by the Peacock IMRT system (NOMOS Corp., Sewickley, PA) using test target volumes. The gels were enclosed in 13 cm outer diameter cylindrical glass vessels. Dose calibration was conducted using seven smaller (4 cm diameter) cylindrical glass vessels irradiated to 0-1800 cGy in 300 cGy increments. Three-dimensional maps of the proton relaxation rate R2 were obtained using a 1.5 T magnetic resonance imaging (MRI) system (Siemens Medical Systems, Erlangen, Germany) and correlated with dose. A Hahn spin echo sequence was used with TR = 3 s, TE = 20 and 100 ms, NEX = 1, using 1 x 1 x 3 mm3 voxels. The MRI measurements were repeated weekly to identify the gel-aging characteristics. Ionization chamber, thermoluminescent dosimetry (TLD), and film dosimetry measurements of the IMRT dose distributions were obtained to compare against the gel results. The other dosimeters were used in a phantom with the same external cross-section as the gel phantom. The irradiated R2 values of the large vessels did not precisely track the smaller vessels, so the ionization chamber measurements were used to normalize the gel dose distributions. The point-to-point standard deviation of the gel dose measurements was 7.0 cGy. When compared with the ionization chamber measurements averaged over the chamber volume, 1% agreement was obtained. Comparisons against radiographic film dose distribution measurements and the treatment planning dose distribution calculation were used to determine the spatial localization accuracy of the gel and MRI. Spatial localization was better than 2 mm, and the dose was accurately determined by the gel both within and outside the target. The TLD chips were placed throughout the phantom to determine gel measurement precision in high- and low-dose regions. A multidimensional dose comparison tool that simultaneously examines the dose-difference and distance-to-agreement was used to evaluate the gel in both low-and high-dose gradient regions. When 3% and 3 mm criteria were used for the comparisons, more than 90% of the TLD measurements agreed with the gel, with the worst of 309 TLD chip measurements disagreeing by 40% of the criteria. All four MRI measurement session gel-measured dose distributions were compared to evaluate the time behavior of the gel. The low-dose regions were evaluated by comparison with TLD measurements at selected points, while high-dose regions were evaluated by directly comparing measured dose distributions. Tests using the multidimensional comparison tool showed detectable degradation beyond one week postirradiation, but all low-dose measurements passed relative to the test criteria and the dose distributions showed few regions that failed.

  11. Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O)n (n = 2-90)

    NASA Astrophysics Data System (ADS)

    Dierking, Christoph W.; Zurheide, Florian; Zeuch, Thomas; Med, Jakub; Parez, Stanislav; Slavíček, Petr

    2017-06-01

    Soft ionization of sodium tagged polar clusters is increasingly used as a powerful technique for sizing and characterization of small aerosols with possible application, e.g., in atmospheric chemistry or combustion science. Understanding the structure and photoionization of the sodium doped clusters is critical for such applications. In this work, we report on measurements of photoionization spectra for sodium doped water clusters containing 2-90 water molecules. While most of the previous studies focused on the ionization threshold of the Na(H2O)n clusters, we provide for the first time full photoionization spectra, including the high-energy region, which are used as reference for a comparison with theory. As reported in previous work, we have seen an initial drop of the appearance ionization energy with cluster size to values of about 3.2 eV for n <5 . In the size range from n = 5 to n = 15, broad ion yield curves emerge; for larger clusters, a constant range between signal appearance (˜2.8 eV) and signal saturation (˜4.1 eV) has been observed. The measurements are interpreted with ab initio calculations and ab initio molecular dynamics simulations for selected cluster sizes (n ≤ 15). The simulations revealed theory shortfalls when aiming at quantitative agreement but allowed us identifying structural motifs consistent with the observed ionization energy distributions. We found a decrease in the ionization energy with increasing coordination of the Na atom and increasing delocalization of the Na 3s electron cloud. The appearance ionization energy is determined by isomers with fully solvated sodium and a highly delocalized electron cloud, while both fully and incompletely solvated isomers with localized electron clouds can contribute to the high energy part of the photoionization spectrum. Simulations at elevated temperatures show an increased abundance of isomers with low ionization energies, an entropic effect enabling size selective infrared action spectroscopy, based on near threshold photoionization of Na(H2O)n clusters. In addition, simulations of the sodium pick-up process were carried out to study the gradual formation of the hydrated electron which is the basis of the sodium-tagging sizing.

  12. Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O)n (n = 2-90).

    PubMed

    Dierking, Christoph W; Zurheide, Florian; Zeuch, Thomas; Med, Jakub; Parez, Stanislav; Slavíček, Petr

    2017-06-28

    Soft ionization of sodium tagged polar clusters is increasingly used as a powerful technique for sizing and characterization of small aerosols with possible application, e.g., in atmospheric chemistry or combustion science. Understanding the structure and photoionization of the sodium doped clusters is critical for such applications. In this work, we report on measurements of photoionization spectra for sodium doped water clusters containing 2-90 water molecules. While most of the previous studies focused on the ionization threshold of the Na(H 2 O) n clusters, we provide for the first time full photoionization spectra, including the high-energy region, which are used as reference for a comparison with theory. As reported in previous work, we have seen an initial drop of the appearance ionization energy with cluster size to values of about 3.2 eV for n<5. In the size range from n = 5 to n = 15, broad ion yield curves emerge; for larger clusters, a constant range between signal appearance (∼2.8 eV) and signal saturation (∼4.1 eV) has been observed. The measurements are interpreted with ab initio calculations and ab initio molecular dynamics simulations for selected cluster sizes (n≤ 15). The simulations revealed theory shortfalls when aiming at quantitative agreement but allowed us identifying structural motifs consistent with the observed ionization energy distributions. We found a decrease in the ionization energy with increasing coordination of the Na atom and increasing delocalization of the Na 3s electron cloud. The appearance ionization energy is determined by isomers with fully solvated sodium and a highly delocalized electron cloud, while both fully and incompletely solvated isomers with localized electron clouds can contribute to the high energy part of the photoionization spectrum. Simulations at elevated temperatures show an increased abundance of isomers with low ionization energies, an entropic effect enabling size selective infrared action spectroscopy, based on near threshold photoionization of Na(H 2 O) n clusters. In addition, simulations of the sodium pick-up process were carried out to study the gradual formation of the hydrated electron which is the basis of the sodium-tagging sizing.

  13. Fluctuations of the intergalactic ionization field at redshift z ~ 2

    NASA Astrophysics Data System (ADS)

    Agafonova, I. I.; Levshakov, S. A.; Reimers, D.; Hagen, H.-J.; Tytler, D.

    2013-04-01

    Aims: To probe the spectral energy distribution (SED) of the ionizing background radiation at z ≲ 2 and to specify the sources contributing to the intergalactic radiation field. Methods: The spectrum of a bright quasar HS 1103+6416 (zem = 2.19) contains five successive metal-line absorption systems at zabs = 1.1923, 1.7193, 1.8873, 1.8916, and 1.9410. The systems are optically thin and reveal multiple lines of different metal ions with the ionization potentials lying in the extreme ultraviolet (EUV) range (~1 Ryd to ~0.2 keV). For each system, the EUV SED of the underlying ionization field is reconstructed by means of a special technique developed for solving the inverse problem in spectroscopy. For the zabs = 1.8916 system, the analysis also involves the He I resonance lines of the Lyman series and the He iλ504 Å continuum, which are seen for the first time in any cosmic object except the Sun. Results: From one system to another, the SED of the ionizing continuum changes significantly, indicating that the intergalactic ionization field at z ≲ 2 fluctuates at the scale of at least Δz ~ 0.004. This is consistent with Δz ≲ 0.01 estimated from He II and H I Lyman-α forest measurements between the redshifts 2 and 3. A radiation intensity break by approximately an order of magnitude at E = 4 Ryd in SEDs restored for the zabs = 1.1923, 1.8873, 1.8916, and 1.9410 systems points to quasars as the main sources of the ionizing radiation. The SED variability is mostly caused by a small number of objects contributing at any given redshift to the ionizing background; at scales Δz ≳ 0.05, the influence of local radiation sources becomes significant. A remarkable SED restored for the zabs = 1.7193 system, with a sharp break shifted to E ~ 3.5 Ryd and a subsequent intensity decrease by ~1.5 dex, indicates a source with comparable inputs of both hard (active galactic nuclei, AGN) and soft (stellar) radiation components. Such a continuum can be emitted by (ultra) luminous infrared galaxies, many of which reveal both a strong AGN activity and intense star formation in the circumnuclear regions.

  14. Use of spatiotemporal characteristics of ambient PM2.5 in rural South India to infer local versus regional contributions.

    PubMed

    Kumar, M Kishore; Sreekanth, V; Salmon, Maëlle; Tonne, Cathryn; Marshall, Julian D

    2018-08-01

    This study uses spatiotemporal patterns in ambient concentrations to infer the contribution of regional versus local sources. We collected 12 months of monitoring data for outdoor fine particulate matter (PM 2.5 ) in rural southern India. Rural India includes more than one-tenth of the global population and annually accounts for around half a million air pollution deaths, yet little is known about the relative contribution of local sources to outdoor air pollution. We measured 1-min averaged outdoor PM 2.5 concentrations during June 2015-May 2016 in three villages, which varied in population size, socioeconomic status, and type and usage of domestic fuel. The daily geometric-mean PM 2.5 concentration was ∼30 μg m -3 (geometric standard deviation: ∼1.5). Concentrations exceeded the Indian National Ambient Air Quality standards (60 μg m -3 ) during 2-5% of observation days. Average concentrations were ∼25 μg m -3 higher during winter than during monsoon and ∼8 μg m -3 higher during morning hours than the diurnal average. A moving average subtraction method based on 1-min average PM 2.5 concentrations indicated that local contributions (e.g., nearby biomass combustion, brick kilns) were greater in the most populated village, and that overall the majority of ambient PM 2.5 in our study was regional, implying that local air pollution control strategies alone may have limited influence on local ambient concentrations. We compared the relatively new moving average subtraction method against a more established approach. Both methods broadly agree on the relative contribution of local sources across the three sites. The moving average subtraction method has broad applicability across locations. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. New molecular descriptors based on local properties at the molecular surface and a boiling-point model derived from them.

    PubMed

    Ehresmann, Bernd; de Groot, Marcel J; Alex, Alexander; Clark, Timothy

    2004-01-01

    New molecular descriptors based on statistical descriptions of the local ionization potential, local electron affinity, and the local polarizability at the surface of the molecule are proposed. The significance of these descriptors has been tested by calculating them for the Maybridge database in addition to our set of 26 descriptors reported previously. The new descriptors show little correlation with those already in use. Furthermore, the principal components of the extended set of descriptors for the Maybridge data show that especially the descriptors based on the local electron affinity extend the variance in our set of descriptors, which we have previously shown to be relevant to physical properties. The first nine principal components are shown to be most significant. As an example of the usefulness of the new descriptors, we have set up a QSPR model for boiling points using both the old and new descriptors.

  16. 49 CFR 826.6 - Allowable fees and expenses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... these rules may exceed $75 indexed as follows: ER14JN94.001 The CPI to be used is the annual average CPI, All Urban Consumers, U.S. City Average, All Items, except where a local, All Item index is available. Where a local index is available, but results in a manifest inequity vis-a-vis the U.S. City Average...

  17. 49 CFR 826.6 - Allowable fees and expenses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... these rules may exceed $75 indexed as follows: ER14JN94.001 The CPI to be used is the annual average CPI, All Urban Consumers, U.S. City Average, All Items, except where a local, All Item index is available. Where a local index is available, but results in a manifest inequity vis-a-vis the U.S. City Average...

  18. Matrix effects in pesticide multi-residue analysis by liquid chromatography-mass spectrometry.

    PubMed

    Kruve, Anneli; Künnapas, Allan; Herodes, Koit; Leito, Ivo

    2008-04-11

    Three sample preparation methods: Luke method (AOAC 985.22), QuEChERS (quick, easy, cheap, effective, rugged and safe) and matrix solid-phase dispersion (MSPD) were applied to different fruits and vegetables for analysis of 14 pesticide residues by high-performance liquid chromatography with electrospray ionization-mass spectrometry (HPLC/ESI/MS). Matrix effect, recovery and process efficiency of the sample preparation methods applied to different fruits and vegetables were compared. The Luke method was found to produce least matrix effect. On an average the best recoveries were obtained with the QuEChERS method. MSPD gave unsatisfactory recoveries for some basic pesticide residues. Comparison of matrix effects for different apple varieties showed high variability for some residues. It was demonstrated that the amount of co-extracting compounds that cause ionization suppression of aldicarb depends on the apple variety as well as on the sample preparation method employed.

  19. Magnetospheric convection and the high-latitude F2 ionosphere

    NASA Technical Reports Server (NTRS)

    Knudsen, W. C.

    1974-01-01

    Behavior of the polar ionospheric F layer as it is convected through the cleft, over the polar cap, and through the nightside F layer trough zone is investigated. Passage through the cleft adds approximately 200,000 ions per cu cm in the vicinity of the F2 peak and redistributes the ionization above approximately 400-km altitude to conform with an increased electron temperature. The redistribution of ionization above 400-km altitude forms the 'averaged' plasma ring seen at 1000-km altitude. The F layer is also raised by approximately 20 km in altitude by the convection electric field. The time required for passage across the polar cap (25 deg) is about the same as that required for the F layer peak concentration to decay by e. The F layer response to passage through the nightside soft electron precipitation zone should be similar to but less than its response to passage through the cleft.

  20. Corona Discharge Suppression in Negative Ion Mode Nanoelectrospray Ionization via Trifluoroethanol Addition.

    PubMed

    McClory, Phillip J; Håkansson, Kristina

    2017-10-03

    Negative ion mode nanoelectrospray ionization (nESI) is often utilized to analyze acidic compounds, from small molecules to proteins, with mass spectrometry (MS). Under high aqueous solvent conditions, corona discharge is commonly observed at emitter tips, resulting in low ion abundances and reduced nESI needle lifetimes. We have successfully reduced corona discharge in negative ion mode by trace addition of trifluoroethanol (TFE) to aqueous samples. The addition of as little as 0.2% TFE increases aqueous spray stability not only in nESI direct infusion, but also in nanoflow liquid chromatography (nLC)/MS experiments. Negative ion mode spray stability with 0.2% TFE is approximately 6× higher than for strictly aqueous samples. Upon addition of 0.2% TFE to the mobile phase of nLC/MS experiments, tryptic peptide identifications increased from 93 to 111 peptides, resulting in an average protein sequence coverage increase of 18%.

Top