Sample records for average measured properties

  1. Average Dielectric Property Analysis of Complex Breast Tissue with Microwave Transmission Measurements

    PubMed Central

    Garrett, John D.; Fear, Elise C.

    2015-01-01

    Prior information about the average dielectric properties of breast tissue can be implemented in microwave breast imaging techniques to improve the results. Rapidly providing this information relies on acquiring a limited number of measurements and processing these measurement with efficient algorithms. Previously, systems were developed to measure the transmission of microwave signals through breast tissue, and simplifications were applied to estimate the average properties. These methods provided reasonable estimates, but they were sensitive to multipath. In this paper, a new technique to analyze the average properties of breast tissues while addressing multipath is presented. Three steps are used to process transmission measurements. First, the effects of multipath were removed. In cases where multipath is present, multiple peaks were observed in the time domain. A Tukey window was used to time-gate a single peak and, therefore, select a single path through the breast. Second, the antenna response was deconvolved from the transmission coefficient to isolate the response from the tissue in the breast interior. The antenna response was determined through simulations. Finally, the complex permittivity was estimated using an iterative approach. This technique was validated using simulated and physical homogeneous breast models and tested with results taken from a recent patient study. PMID:25585106

  2. Averages of $b$-hadron, $c$-hadron, and $$\\tau$$-lepton properties as of summer 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amhis, Y.; et al.

    2014-12-23

    This article reports world averages of measurements ofmore » $b$-hadron, $c$-hadron, and $$\\tau$$-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through summer 2014. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, $CP$ violation parameters, parameters of semileptonic decays and CKM matrix elements.« less

  3. Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016

    DOE PAGES

    Amhis, Y.; Banerjee, Sw.; Ben-Haim, E.; ...

    2017-12-21

    Here, this article reports world averages of measurements of b-hadron, c-hadron, and τ-lepton properties obtained by the Heavy Flavor Averaging Group using results available through summer 2016. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters,more » $$C\\!P$$  violation parameters, parameters of semileptonic decays, and Cabbibo–Kobayashi–Maskawa matrix elements.« less

  4. Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amhis, Y.; Banerjee, Sw.; Ben-Haim, E.

    Here, this article reports world averages of measurements of b-hadron, c-hadron, and τ-lepton properties obtained by the Heavy Flavor Averaging Group using results available through summer 2016. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters,more » $$C\\!P$$  violation parameters, parameters of semileptonic decays, and Cabbibo–Kobayashi–Maskawa matrix elements.« less

  5. Computed versus measured ion velocity distribution functions in a Hall effect thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrigues, L.; CNRS, LAPLACE, F-31062 Toulouse; Mazouffre, S.

    2012-06-01

    We compare time-averaged and time-varying measured and computed ion velocity distribution functions in a Hall effect thruster for typical operating conditions. The ion properties are measured by means of laser induced fluorescence spectroscopy. Simulations of the plasma properties are performed with a two-dimensional hybrid model. In the electron fluid description of the hybrid model, the anomalous transport responsible for the electron diffusion across the magnetic field barrier is deduced from the experimental profile of the time-averaged electric field. The use of a steady state anomalous mobility profile allows the hybrid model to capture some properties like the time-averaged ion meanmore » velocity. Yet, the model fails at reproducing the time evolution of the ion velocity. This fact reveals a complex underlying physics that necessitates to account for the electron dynamics over a short time-scale. This study also shows the necessity for electron temperature measurements. Moreover, the strength of the self-magnetic field due to the rotating Hall current is found negligible.« less

  6. Averages of B-Hadron, C-Hadron, and tau-lepton properties as of early 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amhis, Y.; et al.

    2012-07-01

    This article reports world averages of measurements of b-hadron, c-hadron, and tau-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through the end of 2011. In some cases results available in the early part of 2012 are included. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, CP violation parameters, parameters of semileptonic decays and CKM matrix elements.

  7. Feasibility of Coherent and Incoherent Backscatter Experiments from the AMPS Laboratory. Technical Section

    NASA Technical Reports Server (NTRS)

    Mozer, F. S.

    1976-01-01

    A computer program simulated the spectrum which resulted when a radar signal was transmitted into the ionosphere for a finite time and received for an equal finite interval. The spectrum derived from this signal is statistical in nature because the signal is scattered from the ionosphere, which is statistical in nature. Many estimates of any property of the ionosphere can be made. Their average value will approach the average property of the ionosphere which is being measured. Due to the statistical nature of the spectrum itself, the estimators will vary about this average. The square root of the variance about this average is called the standard deviation, an estimate of the error which exists in any particular radar measurement. In order to determine the feasibility of the space shuttle radar, the magnitude of these errors for measurements of physical interest must be understood.

  8. Retrievals of Ice Cloud Microphysical Properties of Deep Convective Systems using Radar Measurements

    NASA Astrophysics Data System (ADS)

    Tian, J.; Dong, X.; Xi, B.; Wang, J.; Homeyer, C. R.

    2015-12-01

    This study presents innovative algorithms for retrieving ice cloud microphysical properties of Deep Convective Systems (DCSs) using Next-Generation Radar (NEXRAD) reflectivity and newly derived empirical relationships from aircraft in situ measurements in Wang et al. (2015) during the Midlatitude Continental Convective Clouds Experiment (MC3E). With composite gridded NEXRAD radar reflectivity, four-dimensional (space-time) ice cloud microphysical properties of DCSs are retrieved, which is not possible from either in situ sampling at a single altitude or from vertical pointing radar measurements. For this study, aircraft in situ measurements provide the best-estimated ice cloud microphysical properties for validating the radar retrievals. Two statistical comparisons between retrieved and aircraft in situ measured ice microphysical properties are conducted from six selected cases during MC3E. For the temporal-averaged method, the averaged ice water content (IWC) and median mass diameter (Dm) from aircraft in situ measurements are 0.50 g m-3 and 1.51 mm, while the retrievals from radar reflectivity have negative biases of 0.12 g m-3 (24%) and 0.02 mm (1.3%) with correlations of 0.71 and 0.48, respectively. For the spatial-averaged method, the IWC retrievals are closer to the aircraft results (0.51 vs. 0.47 g m-3) with a positive bias of 8.5%, whereas the Dm retrievals are larger than the aircraft results (1.65 mm vs. 1.51 mm) with a positive bias of 9.3%. The retrieved IWCs decrease from ~0.6 g m-3 at 5 km to ~0.15 g m-3 at 13 km, and Dm values decrease from ~2 mm to ~0.7 mm at the same levels. In general, the aircraft in situ measured IWC and Dm values at each level are within one standard derivation of retrieved properties. Good agreements between microphysical properties measured from aircraft and retrieved from radar reflectivity measurements indicate the reasonable accuracy of our retrievals.

  9. The predictive power of local properties of financial networks

    NASA Astrophysics Data System (ADS)

    Caraiani, Petre

    2017-01-01

    The literature on analyzing the dynamics of financial networks has focused so far on the predictive power of global measures of networks like entropy or index cohesive force. In this paper, I show that the local network properties have similar predictive power. I focus on key network measures like average path length, average degree or cluster coefficient, and also consider the diameter and the s-metric. Using Granger causality tests, I show that some of these measures have statistically significant prediction power with respect to the dynamics of aggregate stock market. Average path length is most robust relative to the frequency of data used or specification (index or growth rate). Most measures are found to have predictive power only for monthly frequency. Further evidences that support this view are provided through a simple regression model.

  10. Plasma properties in electron-bombardment ion thrusters

    NASA Technical Reports Server (NTRS)

    Matossian, J. N.; Beattie, J. R.

    1987-01-01

    The paper describes a technique for computing volume-averaged plasma properties within electron-bombardment ion thrusters, using spatially varying Langmuir-probe measurements. Average values of the electron densities are defined by integrating the spatially varying Maxwellian and primary electron densities over the ionization volume, and then dividing by the volume. Plasma properties obtained in the 30-cm-diameter J-series and ring-cusp thrusters are analyzed by the volume-averaging technique. The superior performance exhibited by the ring-cusp thruster is correlated with a higher average Maxwellian electron temperature. The ring-cusp thruster maintains the same fraction of primary electrons as does the J-series thruster, but at a much lower ion production cost. The volume-averaged predictions for both thrusters are compared with those of a detailed thruster performance model.

  11. Index of Property Tax Non-Uniformity Among School Districts in New York State.

    ERIC Educational Resources Information Center

    New York State Div. of the Budget, Albany. Education Study Unit.

    This report measures the inequities in school taxes on New York State residential property that result from assessment nonuniformity. The index of nonuniformity is a measure of the average percentage difference in school tax bills paid by owners of like residential properties in the same school district but in separate assessing units. Using this…

  12. Asymptotic Time Decay in Quantum Physics: a Selective Review and Some New Results

    NASA Astrophysics Data System (ADS)

    Marchetti, Domingos H. U.; Wreszinski, Walter F.

    2013-05-01

    Decay of various quantities (return or survival probability, correlation functions) in time are the basis of a multitude of important and interesting phenomena in quantum physics, ranging from spectral properties, resonances, return and approach to equilibrium, to dynamical stability properties and irreversibility and the "arrow of time" in [Asymptotic Time Decay in Quantum Physics (World Scientific, 2013)]. In this review, we study several types of decay — decay in the average, decay in the Lp-sense, and pointwise decay — of the Fourier-Stieltjes transform of a measure, usually identified with the spectral measure, which appear naturally in different mathematical and physical settings. In particular, decay in the Lp-sense is related both to pointwise decay and to decay in the average and, from a physical standpoint, relates to a rigorous form of the time-energy uncertainty relation. Both decay on the average and in the Lp-sense are related to spectral properties, in particular, absolute continuity of the spectral measure. The study of pointwise decay for singular continuous measures (Rajchman measures) provides a bridge between ergodic theory, number theory and analysis, including the method of stationary phase. The theory is illustrated by some new results in the theory of sparse models.

  13. Remote atmospheric probing by ground to ground line of sight optical methods

    NASA Technical Reports Server (NTRS)

    Lawrence, R. S.

    1969-01-01

    The optical effects arising from refractive-index variations in the clear air are qualitatively described, and the possibilities are discussed of using those effects for remotely sensing the physical properties of the atmosphere. The effects include scintillations, path length fluctuations, spreading of a laser beam, deflection of the beam, and depolarization. The physical properties that may be measured include the average temperature along the path, the vertical temperature gradient, and the distribution along the path of the strength of turbulence and the transverse wind velocity. Line-of-sight laser beam methods are clearly effective in measuring the average properties, but less effective in measuring distributions along the path. Fundamental limitations to the resolution are pointed out and experiments are recommended to investigate the practicality of the methods.

  14. 12 CFR 3.41 - Operational requirements for securitization exposures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... loans 30, 60, and 90 days past due; default rates; prepayment rates; loans in foreclosure; property types; occupancy; average credit score or other measures of creditworthiness; average LTV ratio; and...

  15. 12 CFR 324.41 - Operational requirements for securitization exposures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... loans 30, 60, and 90 days past due; default rates; prepayment rates; loans in foreclosure; property types; occupancy; average credit score or other measures of creditworthiness; average LTV ratio; and...

  16. A new measure based on degree distribution that links information theory and network graph analysis

    PubMed Central

    2012-01-01

    Background Detailed connection maps of human and nonhuman brains are being generated with new technologies, and graph metrics have been instrumental in understanding the general organizational features of these structures. Neural networks appear to have small world properties: they have clustered regions, while maintaining integrative features such as short average pathlengths. Results We captured the structural characteristics of clustered networks with short average pathlengths through our own variable, System Difference (SD), which is computationally simple and calculable for larger graph systems. SD is a Jaccardian measure generated by averaging all of the differences in the connection patterns between any two nodes of a system. We calculated SD over large random samples of matrices and found that high SD matrices have a low average pathlength and a larger number of clustered structures. SD is a measure of degree distribution with high SD matrices maximizing entropic properties. Phi (Φ), an information theory metric that assesses a system’s capacity to integrate information, correlated well with SD - with SD explaining over 90% of the variance in systems above 11 nodes (tested for 4 to 13 nodes). However, newer versions of Φ do not correlate well with the SD metric. Conclusions The new network measure, SD, provides a link between high entropic structures and degree distributions as related to small world properties. PMID:22726594

  17. Understanding gas-surface interactions from direct force measurements using a specialized torsion balance

    NASA Technical Reports Server (NTRS)

    Cook, S. R.; Hoffbauer, M. A.

    1996-01-01

    The first comprehensive measurements of the magnitude and direction of the forces exerted on surfaces by molecular beams are discussed and used to obtain information about the microscopic properties of the gas-surface interactions. This unique approach is not based on microscopic measurements of the scattered molecules. The reduced force coefficients are introduced as a new set of parameters that completely describe the macroscopic average momentum transfer to a surface by an incident molecular beam. By using a specialized torsion balance and molecular beams of N2, CO, CO2, and H2, the reduced force coefficients are determined from direct measurements of the force components exerted on surface of a solar panel array material, Kapton, SiO2-coated Kapton, and Z-93 as a function of the angle of incidence ranging from 0 degrees to 85 degrees. The absolute flux densities of the molecular beams were measured using a different torsion balance with a beam-stop that nullified the force of the scattered molecules. Standard time-of-flight techniques were used to determine the flux-weighted average velocities of the various molecular beams ranging from 1600 m/s to 4600 m/s. The reduced force coefficients can be used to directly obtain macroscopic average properties of the scattered molecules, such as the flux-weighted average velocity and translational energy, that can then be used to determine microscopic details concerning gas-surface interactions without the complications associated with averaging microscopic measurements.

  18. Characterization of soot properties in two-meter JP-8 pool fires.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suo-Anttila, Jill Marie; Jensen, Kirk A.; Blevins, Linda Gail

    2005-02-01

    The thermal hazard posed by large hydrocarbon fires is dominated by the radiative emission from high temperature soot. Since the optical properties of soot, especially in the infrared region of the electromagnetic spectrum, as well as its morphological properties, are not well known, efforts are underway to characterize these properties. Measurements of these soot properties in large fires are important for heat transfer calculations, for interpretation of laser-based diagnostics, and for developing soot property models for fire field models. This research uses extractive measurement diagnostics to characterize soot optical properties, morphology, and composition in 2 m pool fires. For measurementmore » of the extinction coefficient, soot extracted from the flame zone is transported to a transmission cell where measurements are made using both visible and infrared lasers. Soot morphological properties are obtained by analysis via transmission electron microscopy of soot samples obtained thermophoretically within the flame zone, in the overfire region, and in the transmission cell. Soot composition, including carbon-to-hydrogen ratio and polycyclic aromatic hydrocarbon concentration, is obtained by analysis of soot collected on filters. Average dimensionless extinction coefficients of 8.4 {+-} 1.2 at 635 nm and 8.7 {+-} 1.1 at 1310 nm agree well with recent measurements in the overfire region of JP-8 and other fuels in lab-scale burners and fires. Average soot primary particle diameters, radius of gyration, and fractal dimensions agree with these recent studies. Rayleigh-Debye-Gans theory of scattering applied to the measured fractal parameters shows qualitative agreement with the trends in measured dimensionless extinction coefficients. Results of the density and chemistry are detailed in the report.« less

  19. BioCompoundML: A General Biofuel Property Screening Tool for Biological Molecules Using Random Forest Classifiers

    DOE PAGES

    Whitmore, Leanne S.; Davis, Ryan W.; McCormick, Robert L.; ...

    2016-09-15

    Screening a large number of biologically derived molecules for potential fuel compounds without recourse to experimental testing is important in identifying understudied yet valuable molecules. Experimental testing, although a valuable standard for measuring fuel properties, has several major limitations, including the requirement of testably high quantities, considerable expense, and a large amount of time. This paper discusses the development of a general-purpose fuel property tool, using machine learning, whose outcome is to screen molecules for desirable fuel properties. BioCompoundML adopts a general methodology, requiring as input only a list of training compounds (with identifiers and measured values) and a listmore » of testing compounds (with identifiers). For the training data, BioCompoundML collects open data from the National Center for Biotechnology Information, incorporates user-provided features, imputes missing values, performs feature reduction, builds a classifier, and clusters compounds. BioCompoundML then collects data for the testing compounds, predicts class membership, and determines whether compounds are found in the range of variability of the training data set. We demonstrate this tool using three different fuel properties: research octane number (RON), threshold soot index (TSI), and melting point (MP). Here we provide measures of its success with these properties using randomized train/test measurements: average accuracy is 88% in RON, 85% in TSI, and 94% in MP; average precision is 88% in RON, 88% in TSI, and 95% in MP; and average recall is 88% in RON, 82% in TSI, and 97% in MP. The receiver operator characteristics (area under the curve) were estimated at 0.88 in RON, 0.86 in TSI, and 0.87 in MP. We also measured the success of BioCompoundML by sending 16 compounds for direct RON determination. Finally, we provide a screen of 1977 hydrocarbons/oxygenates within the 8696 compounds in MetaCyc, identifying compounds with high predictive strength for high or low RON.« less

  20. Application of method of volume averaging coupled with time resolved PIV to determine transport characteristics of turbulent flows in porous bed

    NASA Astrophysics Data System (ADS)

    Patil, Vishal; Liburdy, James

    2012-11-01

    Turbulent porous media flows are encountered in catalytic bed reactors and heat exchangers. Dispersion and mixing properties of these flows play an essential role in efficiency and performance. In an effort to understand these flows, pore scale time resolved PIV measurements in a refractive index matched porous bed were made. Pore Reynolds numbers, based on hydraulic diameter and pore average velocity, were varied from 400-4000. Jet-like flows and recirculation regions associated with large scale structures were found to exist. Coherent vortical structures which convect at approximately 0.8 times the pore average velocity were identified. These different flow regions exhibited different turbulent characteristics and hence contributed unequally to global transport properties of the bed. The heterogeneity present within a pore and also from pore to pore can be accounted for in estimating transport properties using the method of volume averaging. Eddy viscosity maps and mean velocity field maps, both obtained from PIV measurements, along with the method of volume averaging were used to predict the dispersion tensor versus Reynolds number. Asymptotic values of dispersion compare well to existing correlations. The role of molecular diffusion was explored by varying the Schmidt number and molecular diffusion was found to play an important role in tracer transport, especially in recirculation regions. Funding by NSF grant 0933857, Particulate and Multiphase Processing.

  1. Correlation of Spatially Filtered Dynamic Speckles in Distance Measurement Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, Dmitry V.; Nippolainen, Ervin; Kamshilin, Alexei A.

    2008-04-15

    In this paper statistical properties of spatially filtered dynamic speckles are considered. This phenomenon was not sufficiently studied yet while spatial filtering is an important instrument for speckles velocity measurements. In case of spatial filtering speckle velocity information is derived from the modulation frequency of filtered light power which is measured by photodetector. Typical photodetector output is represented by a narrow-band random noise signal which includes non-informative intervals. Therefore more or less precious frequency measurement requires averaging. In its turn averaging implies uncorrelated samples. However, conducting research we found that correlation is typical property not only of dynamic speckle patternsmore » but also of spatially filtered speckles. Using spatial filtering the correlation is observed as a response of measurements provided to the same part of the object surface or in case of simultaneously using several adjacent photodetectors. Found correlations can not be explained using just properties of unfiltered dynamic speckles. As we demonstrate the subject of this paper is important not only from pure theoretical point but also from the point of applied speckle metrology. E.g. using single spatial filter and an array of photodetector can greatly improve accuracy of speckle velocity measurements.« less

  2. A method for safety testing of radiofrequency/microwave-emitting devices using MRI.

    PubMed

    Alon, Leeor; Cho, Gene Y; Yang, Xing; Sodickson, Daniel K; Deniz, Cem M

    2015-11-01

    Strict regulations are imposed on the amount of radiofrequency (RF) energy that devices can emit to prevent excessive deposition of RF energy into the body. In this study, we investigated the application of MR temperature mapping and 10-g average specific absorption rate (SAR) computation for safety evaluation of RF-emitting devices. Quantification of the RF power deposition was shown for an MRI-compatible dipole antenna and a non-MRI-compatible mobile phone via phantom temperature change measurements. Validation of the MR temperature mapping method was demonstrated by comparison with physical temperature measurements and electromagnetic field simulations. MR temperature measurements alongside physical property measurements were used to reconstruct 10-g average SAR. The maximum temperature change for a dipole antenna and the maximum 10-g average SAR were 1.83°C and 12.4 W/kg, respectively, for simulations and 1.73°C and 11.9 W/kg, respectively, for experiments. The difference between MR and probe thermometry was <0.15°C. The maximum temperature change and the maximum 10-g average SAR for a cell phone radiating at maximum output for 15 min was 1.7°C and 0.54 W/kg, respectively. Information acquired using MR temperature mapping and thermal property measurements can assess RF/microwave safety with high resolution and fidelity. © 2014 Wiley Periodicals, Inc.

  3. A Method for Safety Testing of Radiofrequency/Microwave-Emitting Devices Using MRI

    PubMed Central

    Alon, Leeor; Cho, Gene Y.; Yang, Xing; Sodickson, Daniel K.; Deniz, Cem M.

    2015-01-01

    Purpose Strict regulations are imposed on the amount of radiofrequency (RF) energy that devices can emit to prevent excessive deposition of RF energy into the body. In this study, we investigated the application of MR temperature mapping and 10-g average specific absorption rate (SAR) computation for safety evaluation of RF-emitting devices. Methods Quantification of the RF power deposition was shown for an MRI-compatible dipole antenna and a non–MRI-compatible mobile phone via phantom temperature change measurements. Validation of the MR temperature mapping method was demonstrated by comparison with physical temperature measurements and electromagnetic field simulations. MR temperature measurements alongside physical property measurements were used to reconstruct 10-g average SAR. Results The maximum temperature change for a dipole antenna and the maximum 10-g average SAR were 1.83° C and 12.4 W/kg, respectively, for simulations and 1.73° C and 11.9 W/kg, respectively, for experiments. The difference between MR and probe thermometry was <0.15° C. The maximum temperature change and the maximum 10-g average SAR for a cell phone radiating at maximum output for 15 min was 1.7° C and 0.54 W/kg, respectively. Conclusion Information acquired using MR temperature mapping and thermal property measurements can assess RF/microwave safety with high resolution and fidelity. PMID:25424724

  4. Size dependence of magnetorheological properties of cobalt ferrite ferrofluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radhika, B.; Sahoo, Rasmita; Srinath, S., E-mail: srinath@uohyd.ac.in

    2015-06-24

    Cobalt Ferrite nanoparticles were synthesized using co-precipitation method at reaction temperatures of 40°C and 80°C. X-Ray diffraction studies confirm cubic phase formation. The average crystallite sizes were found to be ∼30nm and ∼48nm for 40°C sample and 80°C sample respectively. Magnetic properties measured using vibrating sample magnetometer show higher coercivety and magnetization for sample prepared at 80°C. Magnetorheological properties of CoFe2O4 ferrofluids were measured and studied.

  5. Measures of Consumer Satisfaction in Social Welfare and Behavioral Health: A Systematic Review

    ERIC Educational Resources Information Center

    Fraser, Mark W.; Wu, Shiyou

    2016-01-01

    This article reviews the origins, conceptual bases, psychometric properties, and limitations of consumer satisfaction measures in social welfare and behavioral health. Based on a systematic review of research reports published between 2003 and 2013, we identify 58 consumer satisfaction measures. On average, these measures have acceptable…

  6. Intrinsic dependence of the magnetic properties of CoFe2O4 nanoparticles prepared via chemical methods with addition of chelating agents

    NASA Astrophysics Data System (ADS)

    Mendonça, E. C.; Tenório, Mayara A.; Mecena, S. G.; Zucolotto, B.; Silva, L. S.; Jesus, C. B. R.; Meneses, C. T.; Duque, J. G. S.

    2015-12-01

    In this work, the effect of addition of different chelating agents on the magnetic properties of cobalt ferrite nanoparticles produced by the combining of both co-precipitation and hydrothermal methods is reported. The Rietveld analyses of X-ray diffraction patterns reveal that our samples are single phase (space group: Fd-3m) with small average sizes. The weight losses observed in the thermogravimetric measurements together with the M×H curves show that the organic contamination coming from chelating agent decomposition can give rise to misinterpretation of the magnetization measurements. Besides, analyses of the zero-field-cooled (ZFC) and field-cooled (FC) magnetization measurements and the M×H curves measured at room temperature allows us to state that both the average blocking temperature and particles size distribution are sensitive to the kind of chelating agent.

  7. The wire-mesh sensor as a two-phase flow meter

    NASA Astrophysics Data System (ADS)

    Shaban, H.; Tavoularis, S.

    2015-01-01

    A novel gas and liquid flow rate measurement method is proposed for use in vertical upward and downward gas-liquid pipe flows. This method is based on the analysis of the time history of area-averaged void fraction that is measured using a conductivity wire-mesh sensor (WMS). WMS measurements were collected in vertical upward and downward air-water flows in a pipe with an internal diameter of 32.5 mm at nearly atmospheric pressure. The relative frequencies and the power spectral density of area-averaged void fraction were calculated and used as representative properties. Independent features, extracted from these properties using Principal Component Analysis and Independent Component Analysis, were used as inputs to artificial neural networks, which were trained to give the gas and liquid flow rates as outputs. The present method was shown to be accurate for all four encountered flow regimes and for a wide range of flow conditions. Besides providing accurate predictions for steady flows, the method was also tested successfully in three flows with transient liquid flow rates. The method was augmented by the use of the cross-correlation function of area-averaged void fraction determined from the output of a dual WMS unit as an additional representative property, which was found to improve the accuracy of flow rate prediction.

  8. Measures and limits of models of fixation selection.

    PubMed

    Wilming, Niklas; Betz, Torsten; Kietzmann, Tim C; König, Peter

    2011-01-01

    Models of fixation selection are a central tool in the quest to understand how the human mind selects relevant information. Using this tool in the evaluation of competing claims often requires comparing different models' relative performance in predicting eye movements. However, studies use a wide variety of performance measures with markedly different properties, which makes a comparison difficult. We make three main contributions to this line of research: First we argue for a set of desirable properties, review commonly used measures, and conclude that no single measure unites all desirable properties. However the area under the ROC curve (a classification measure) and the KL-divergence (a distance measure of probability distributions) combine many desirable properties and allow a meaningful comparison of critical model performance. We give an analytical proof of the linearity of the ROC measure with respect to averaging over subjects and demonstrate an appropriate correction of entropy-based measures like KL-divergence for small sample sizes in the context of eye-tracking data. Second, we provide a lower bound and an upper bound of these measures, based on image-independent properties of fixation data and between subject consistency respectively. Based on these bounds it is possible to give a reference frame to judge the predictive power of a model of fixation selection. We provide open-source python code to compute the reference frame. Third, we show that the upper, between subject consistency bound holds only for models that predict averages of subject populations. Departing from this we show that incorporating subject-specific viewing behavior can generate predictions which surpass that upper bound. Taken together, these findings lay out the required information that allow a well-founded judgment of the quality of any model of fixation selection and should therefore be reported when a new model is introduced.

  9. Modeling transit bus fuel consumption on the basis of cycle properties.

    PubMed

    Delgado, Oscar F; Clark, Nigel N; Thompson, Gregory J

    2011-04-01

    A method exists to predict heavy-duty vehicle fuel economy and emissions over an "unseen" cycle or during unseen on-road activity on the basis of fuel consumption and emissions data from measured chassis dynamometer test cycles and properties (statistical parameters) of those cycles. No regression is required for the method, which relies solely on the linear association of vehicle performance with cycle properties. This method has been advanced and examined using previously published heavy-duty truck data gathered using the West Virginia University heavy-duty chassis dynamometer with the trucks exercised over limited test cycles. In this study, data were available from a Washington Metropolitan Area Transit Authority emission testing program conducted in 2006. Chassis dynamometer data from two conventional diesel buses, two compressed natural gas buses, and one hybrid diesel bus were evaluated using an expanded driving cycle set of 16 or 17 different driving cycles. Cycle properties and vehicle fuel consumption measurements from three baseline cycles were selected to generate a linear model and then to predict unseen fuel consumption over the remaining 13 or 14 cycles. Average velocity, average positive acceleration, and number of stops per distance were found to be the desired cycle properties for use in the model. The methodology allowed for the prediction of fuel consumption with an average error of 8.5% from vehicles operating on a diverse set of chassis dynamometer cycles on the basis of relatively few experimental measurements. It was found that the data used for prediction should be acquired from a set that must include an idle cycle along with a relatively slow transient cycle and a relatively high speed cycle. The method was also applied to oxides of nitrogen prediction and was found to have less predictive capability than for fuel consumption with an average error of 20.4%.

  10. Aerosol-Induced Radiative Flux Changes Off the United States Mid-Atlantic Coast: Comparison of Values Calculated from Sunphotometer and In Situ Data with Those Measured by Airborne Pyranometer

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Hignett, P.; Kinne, S.; Wong, J.; Chien, A.; Bergstrom, R.; Durkee, P.; Hobbs, P. V.

    2000-01-01

    The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) measured a variety of aerosol radiative effects (including flux changes) while simultaneously measuring the chemical, physical, and optical properties of the responsible aerosol particles. Here we use TARFOX-determined aerosol and surface properties to compute shortwave radiative flux changes for a variety of aerosol situations, with midvisible optical depths ranging from 0.06 to 0.55. We calculate flux changes by several techniques with varying degrees of sophistication, in part to investigate the sensitivity of results to computational approach. We then compare computed flux changes to those determined from aircraft measurements. Calculations using several approaches yield downward and upward flux changes that agree with measurements. The agreement demonstrates closure (i.e. consistency) among the TARFOX-derived aerosol properties, modeling techniques, and radiative flux measurements. Agreement between calculated and measured downward flux changes is best when the aerosols are modeled as moderately absorbing (midvisible single-scattering albedos between about 0.89 and 0.93), in accord with independent measurements of the TARPOX aerosol. The calculated values for instantaneous daytime upwelling flux changes are in the range +14 to +48 W/sq m for midvisible optical depths between 0.2 and 0.55. These values are about 30 to 100 times the global-average direct forcing expected for the global-average sulfate aerosol optical depth of 0.04. The reasons for the larger flux changes in TARFOX include the relatively large optical depths and the focus on cloud-free, daytime conditions over the dark ocean surface. These are the conditions that produce major aerosol radiative forcing events and contribute to any global-average climate effect.

  11. Measurements of Heat-Transfer and Friction Coefficients for Helium Flowing in a Tube at Surface Temperatures up to 5900 Deg R

    NASA Technical Reports Server (NTRS)

    Taylor, Maynard F.; Kirchgessner, Thomas A.

    1959-01-01

    Measurements of average heat transfer and friction coefficients and local heat transfer coefficients were made with helium flowing through electrically heated smooth tubes with length-diameter ratios of 60 and 92 for the following range of conditions: Average surface temperature from 1457 to 4533 R, Reynolds numbe r from 3230 to 60,000, heat flux up to 583,200 Btu per hr per ft2 of heat transfer area, and exit Mach numbe r up to 1.0. The results indicate that, in the turbulent range of Reynolds number, good correlation of the local heat transfer coefficients is obtained when the physical properties and density of helium are evaluated at the surface temperature. The average heat transfer coefficients are best correlated on the basis that the coefficient varies with [1 + (L/D))(sup -0,7)] and that the physical properties and density are evaluated at the surface temperature. The average friction coefficients for the tests with no heat addition are in complete agreement with the Karman-Nikuradse line. The average friction coefficients for heat addition are in poor agreement with the accepted line.

  12. Aerosol optical properties inferred from in-situ and path-averaged measurements

    NASA Astrophysics Data System (ADS)

    van Binsbergen, Sven A.; Grossmann, Peter; Cohen, Leo H.; van Eijk, Alexander M. J.; Stein, Karin U.

    2017-09-01

    This paper compares in-situ and path-averaged measurements of the electro-optical transmission, with emphasis on aerosol effects. The in-situ sensors consisted of optical particle counters (OPC) and a visibility meter, the path-averaged data was provided by a 7-wavelength transmissometer (MSRT) and a scintillometer (BLS). Data was collected at a test site in Northern Germany. A retrieval algorithm was developed to infer characteristics of the aerosol size distribution (Junge approximation) from the MSRT data. A comparison of the various sensors suggests that the optical particle counters are over-optimistic in their estimate of the transmission.

  13. Dielectric properties of single wall carbon nanotubes-based gelatin phantoms

    NASA Astrophysics Data System (ADS)

    Altarawneh, M. M.; Alharazneh, G. A.; Al-Madanat, O. Y.

    In this work, we report the dielectric properties of Single wall Carbon Nanotubes (SWCNTs)-based phantom that is mainly composed of gelatin and water. The fabricated gelatin-based phantom with desired dielectric properties was fabricated and doped with different concentrations of SWCNTs (e.g., 0%, 0.05%, 0.10%, 0.15%, 0.2%, 0.4% and 0.6%). The dielectric constants (real ɛ‧ and imaginary ɛ‧‧) were measured at different positions for each sample as a function of frequency (0.5-20GHz) and concentrations of SWCNTs and their averages were found. The Cole-Cole plot (ɛ‧ versus ɛ‧‧) was obtained for each concentration of SWCNTs and was used to obtain the static dielectric constant ɛs, the dielectric constant at the high limit of frequency ɛ∞ and the average relaxation time τ. The measurements showed that the fabricated samples are in good homogeneity and the SWCNTs are dispersed well in the samples as an acceptable standard deviation is achieved. The study showed a linear increase in the static dielectric constant ɛs and invariance of the average relaxation time τ and the value of ɛ∞ at room temperature for the investigated concentrations of SWCNTs.

  14. A full set of langatate high-temperature acoustic wave constants: elastic, piezoelectric, dielectric constants up to 900°C.

    PubMed

    Davulis, Peter M; da Cunha, Mauricio Pereira

    2013-04-01

    A full set of langatate (LGT) elastic, dielectric, and piezoelectric constants with their respective temperature coefficients up to 900°C is presented, and the relevance of the dielectric and piezoelectric constants and temperature coefficients are discussed with respect to predicted and measured high-temperature SAW propagation properties. The set of constants allows for high-temperature acoustic wave (AW) propagation studies and device design. The dielectric constants and polarization and conductive losses were extracted by impedance spectroscopy of parallel-plate capacitors. The measured dielectric constants at high temperatures were combined with previously measured LGT expansion coefficients and used to determine the elastic and piezoelectric constants using resonant ultrasound spectroscopy (RUS) measurements at temperatures up to 900°C. The extracted LGT piezoelectric constants and temperature coefficients show that e11 and e14 change by up to 62% and 77%, respectively, for the entire 25°C to 900°C range when compared with room-temperature values. The LGT high-temperature constants and temperature coefficients were verified by comparing measured and predicted phase velocities (vp) and temperature coefficients of delay (TCD) of SAW delay lines fabricated along 6 orientations in the LGT plane (90°, 23°, Ψ) up to 900°C. For the 6 tested orientations, the predicted SAW vp agree within 0.2% of the measured vp on average and the calculated TCD is within 9.6 ppm/°C of the measured value on average over the temperature range of 25°C to 900°C. By including the temperature dependence of both dielectric and piezoelectric constants, the average discrepancies between predicted and measured SAW properties were reduced, on average: 77% for vp, 13% for TCD, and 63% for the turn-over temperatures analyzed.

  15. Dielectric properties of lava flows west of Ascraeus Mons, Mars

    USGS Publications Warehouse

    Carter, L.M.; Campbell, B.A.; Holt, J.W.; Phillips, R.J.; Putzig, N.E.; Mattei, S.; Seu, R.; Okubo, C.H.; Egan, A.F.

    2009-01-01

    The SHARAD instrument on the Mars Reconnaissance Orbiter detects subsurface interfaces beneath lava flow fields northwest of Ascraeus Mons. The interfaces occur in two locations; a northern flow that originates south of Alba Patera, and a southern flow that originates at the rift zone between Ascraeus and Pavonis Montes. The northern flow has permittivity values, estimated from the time delay of echoes from the basal interface, between 6.2 and 17.3, with an average of 12.2. The southern flow has permittivity values of 7.0 to 14.0, with an average of 9.8. The average permittivity values for the northern and southern flows imply densities of 3.7 and 3.4 g cm-3, respectively. Loss tangent values for both flows range from 0.01 to 0.03. The measured bulk permittivity and loss tangent values are consistent with those of terrestrial and lunar basalts, and represent the first measurement of these properties for dense rock on Mars. Copyright 2009 by the American Geophysical Union.

  16. Scale dependence of entrainment-mixing mechanisms in cumulus clouds

    DOE PAGES

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie; ...

    2014-12-17

    This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasingmore » scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.« less

  17. Estimating patient-specific soft-tissue properties in a TKA knee.

    PubMed

    Ewing, Joseph A; Kaufman, Michelle K; Hutter, Erin E; Granger, Jeffrey F; Beal, Matthew D; Piazza, Stephen J; Siston, Robert A

    2016-03-01

    Surgical technique is one factor that has been identified as critical to success of total knee arthroplasty. Researchers have shown that computer simulations can aid in determining how decisions in the operating room generally affect post-operative outcomes. However, to use simulations to make clinically relevant predictions about knee forces and motions for a specific total knee patient, patient-specific models are needed. This study introduces a methodology for estimating knee soft-tissue properties of an individual total knee patient. A custom surgical navigation system and stability device were used to measure the force-displacement relationship of the knee. Soft-tissue properties were estimated using a parameter optimization that matched simulated tibiofemoral kinematics with experimental tibiofemoral kinematics. Simulations using optimized ligament properties had an average root mean square error of 3.5° across all tests while simulations using generic ligament properties taken from literature had an average root mean square error of 8.4°. Specimens showed large variability among ligament properties regardless of similarities in prosthetic component alignment and measured knee laxity. These results demonstrate the importance of soft-tissue properties in determining knee stability, and suggest that to make clinically relevant predictions of post-operative knee motions and forces using computer simulations, patient-specific soft-tissue properties are needed. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  18. Properties of PSCs and Cirrus Determined from AVHRR Data

    NASA Technical Reports Server (NTRS)

    Hervig, Mark; Pagan, Kathy; Foschi, Patricia G.

    1999-01-01

    Polar stratospheric clouds (PSCS) and cirrus have been investigated using thermal emission measurements at 10.8 and 12 micrometers wavelength (channels 4 and 5) from the Advanced Very High Resolution Radiometer (AVHRR). The AVHRR signal was evaluated from a theoretical basis to understand the emission from clear and cloudy skies, and models were developed to simulate the AVHRR signal. Signal simulations revealed that nitric acid PSCs are invisible to AVHRR, while ice PSCs and cirrus are readily detectable. Methods were developed to retrieve cloud optical depths, average temperatures, average effective radii, and ice water paths, from AVHRR channels 4 and 5. Properties of ice PSCs retrieved from AVHRR were compared to values derived from coincident radiosondes and from the Polar Ozone and Aerosol Measurement II instrument, showing good agreement.

  19. EFFECTS OF MINERAL CONTENT ON THE FRACTURE PROPERTIES OF EQUINE CORTICAL BONE IN DOUBLE-NOTCHED BEAMS

    PubMed Central

    McCormack, Jordan; Stover, Susan M.; Gibeling, Jeffery C.; Fyhrie, David P.

    2012-01-01

    We recently developed a method to measure cortical bone fracture initiation toughness using a double-notched beam in four-point bending. This method was used to test the hypothesis that mineralization around the two notch roots is correlated with fracture toughness and crack extension (physical damage). Total energy absorbed to failure negatively correlated with average mineralization of the beam (r2=0.62), but not with notch root mineralization. Fracture initiation toughness was positively correlated to mineralization at the broken notch root (r2=0.34). Crack length extension at the unbroken notch was strongly negatively correlated with the average mineralization of the notch roots (r2=0.81) whereas crack length extension at the broken notch did not correlate with any of the mineralization measurements. Mineralization at the notch roots and the average mineralization contributed independently to the mechanical and damage properties. The data are consistent with an hypothesis that a) high notch root mineralization results in less stable crack length extension but high force to initiate unstable crack propagation while b) higher average mineralization leads to low post-yield (and total) energy absorption to failure. PMID:22394589

  20. Noncontact thermophysical property measurement by levitation of a thin liquid disk.

    PubMed

    Lee, Sungho; Ohsaka, Kenichi; Rednikov, Alexei; Sadhal, Satwindar Singh

    2006-09-01

    The purpose of the current research program is to develop techniques for noncontact measurement of thermophysical properties of highly viscous liquids. The application would be for undercooled liquids that remain liquid even below the freezing point when suspended without a container. The approach being used here consists of carrying out thermocapillary flow and temperature measurements in a horizontally levitated, laser-heated thin glycerin disk. In a levitated state, the disk is flattened by an intense acoustic field. Such a disk has the advantage of a relatively low gravitational potential over the thickness, thus mitigating the buoyancy effects, and helping isolate the thermocapillary-driven flows. For the purpose of predicting the thermal properties from these measurements, it is necessary to develop a theoretical model of the thermal processes. Such a model has been developed, and, on the basis of the observed shape, the thickness is taken to be a minimum at the center with a gentle parabolic profile at both the top and the bottom surfaces. This minimum thickness is much smaller than the radius of disk drop and the ratio of thickness to radius becomes much less than unity. It is heated by laser beam in normal direction to the edge. A general three-dimensional momentum equation is transformed into a two-variable vorticity equation. For the highly viscous liquid, a few millimeters in size, Stokes equations adequately describe the flow. Additional approximations are made by considering average flow properties over the disk thickness in a manner similar to lubrication theory. In the same way, the three-dimensional energy equation is averaged over the disk thickness. With convection boundary condition at the surfaces, we integrate a general three-dimensional energy equation to get an averaged two-dimensional energy equation that has convection terms, conduction terms, and additional source terms corresponding to a Biot number. A finite-difference numerical approach is used to solve these steady-state governing equations in the cylindrical coordinate system. The calculations yield the temperature distribution and the thermally driven flow field. These results have been used to formulate a model that, in conjunction with experiments, has enabled the development of a method for the noncontact thermophysical property measurement of liquids.

  1. Continuous Record of Permeability inside the Wenchuan Earthquake Fault Zone

    NASA Astrophysics Data System (ADS)

    Xue, Lian; Li, Haibing; Brodsky, Emily

    2013-04-01

    Faults are complex hydrogeological structures which include a highly permeable damage zone with fracture-dominated permeability. Since fractures are generated by earthquakes, we would expect that in the aftermath of a large earthquake, the permeability would be transiently high in a fault zone. Over time, the permeability may recover due to a combination of chemical and mechanical processes. However, the in situ fault zone hydrological properties are difficult to measure and have never been directly constrained on a fault zone immediately after a large earthquake. In this work, we use water level response to solid Earth tides to constrain the hydraulic properties inside the Wenchuan Earthquake Fault Zone. The transmissivity and storage determine the phase and amplitude response of the water level to the tidal loading. By measuring phase and amplitude response, we can constrain the average hydraulic properties of the damage zone at 800-1200 m below the surface (~200-600 m from the principal slip zone). We use Markov chain Monte Carlo methods to evaluate the phase and amplitude responses and the corresponding errors for the largest semidiurnal Earth tide M2 in the time domain. The average phase lag is ~ 30o, and the average amplitude response is 6×10-7 strain/m. Assuming an isotropic, homogenous and laterally extensive aquifer, the average storage coefficient S is 2×10-4 and the average transmissivity T is 6×10-7 m2 using the measured phase and the amplitude response. Calculation for the hydraulic diffusivity D with D=T/S, yields the reported value of D is 3×10-3 m2/s, which is two orders of magnitude larger than pump test values on the Chelungpu Fault which is the site of the Mw 7.6 Chi-Chi earthquake. If the value is representative of the fault zone, then this means the hydrology processes should have an effect on the earthquake rupture process. This measurement is done through continuous monitoring and we could track the evolution for hydraulic properties after Wenchuan earthquake. We observed the permeability decreases 35% per year. For the purpose of comparison, we convert the permeability measurements to into equivalent seismic velocity. The possible range of seismic wave velocity increase is 0.03%~ 0.8% per year. Our results are comparable to the results of the previous hydraulic and seismic studies after earthquakes. This temporal decrease of permeability may reflect the healing process after Wenchuan Earthquake.

  2. Continuous Record of Permeability inside the Wenchuan Earthquake Fault Zone

    NASA Astrophysics Data System (ADS)

    Xue, L.; Li, H.; Brodsky, E. E.; Wang, H.; Pei, J.

    2012-12-01

    Faults are complex hydrogeological structures which include a highly permeable damage zone with fracture-dominated permeability. Since fractures are generated by earthquakes, we would expect that in the aftermath of a large earthquake, the permeability would be transiently high in a fault zone. Over time, the permeability may recover due to a combination of chemical and mechanical processes. However, the in situ fault zone hydrological properties are difficult to measure and have never been directly constrained on a fault zone immediately after a large earthquake. In this work, we use water level response to solid Earth tides to constrain the hydraulic properties inside the Wenchuan Earthquake Fault Zone. The transmissivity and storage determine the phase and amplitude response of the water level to the tidal loading. By measuring phase and amplitude response, we can constrain the average hydraulic properties of the damage zone at 800-1200 m below the surface (˜200-600 m from the principal slip zone). We use Markov chain Monte Carlo methods to evaluate the phase and amplitude responses and the corresponding errors for the largest semidiurnal Earth tide M2 in the time domain. The average phase lag is ˜30°, and the average amplitude response is 6×10-7 strain/m. Assuming an isotropic, homogenous and laterally extensive aquifer, the average storage coefficient S is 2×10-4 and the average transmissivity T is 6×10-7 m2 using the measured phase and the amplitude response. Calculation for the hydraulic diffusivity D with D=T/S, yields the reported value of D is 3×10-3 m2/s, which is two orders of magnitude larger than pump test values on the Chelungpu Fault which is the site of the Mw 7.6 Chi-Chi earthquake. If the value is representative of the fault zone, then this means the hydrology processes should have an effect on the earthquake rupture process. This measurement is done through continuous monitoring and we could track the evolution for hydraulic properties after Wenchuan earthquake. We observed the permeability decreases 35% per year. For the purpose of comparison, we convert the permeability measurements to into equivalent seismic velocity. The possible range of seismic wave velocity increase is 0.03%~ 0.8% per year. Our results are comparable to the results of the previous hydraulic and seismic studies after earthquakes. This temporal decrease of permeability may reflect the healing process after Wenchuan Earthquake.

  3. North Atlantic Aerosol Radiative Impacts Based on Satellite Measurements and Aerosol Intensive Properties from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert A.; Russell, Philip B.

    2000-01-01

    We estimate the impact of North Atlantic aerosols on the net shortwave flux at the tropopause by combining maps of satellite-derived aerosol optical depth (AOD) with model aerosol properties. We exclude African dust, primarily by restricting latitudes to 25-60 N. Aerosol properties were determined via column closure analyses in two recent experiments, TARFOX and ACE 2. The analyses use in situ measurements of aerosol composition and air- and ship-borne sunphotometer measurements of AOD spectra. The resulting aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. It has a midvisible single- scattering albedo of 0.9, which is in the range obtained from in situ measurements of aerosol scattering and absorption in both TARFOX and ACE 2. Combining seasonal maps of AVHRR-derived midvisible AOD with the aerosol model yields maps of 24-hour average net radiative flux changes at the tropopause. For cloud-free conditions, results range from -9 W/sq m near the eastern US coastline in the summer to -1 W/sq m in the mid-Atlantic during winter; the regional annual average is -3.5 W/sq m. Using a non- absorbing aerosol model increases these values by about 30%. We estimate the effect of clouds using ISCCP cloud-fraction maps. Because ISCCP midlatitude North Atlantic cloud fractions are relatively large, they greatly reduce the computed aerosol-induced flux changes. For example, the regional annual average decreases from -3.5 W/sq m to -0.8 W/sq m. We compare results to previous model calculations for a variety of aerosol types.

  4. North Atlantic Aerosol Radiative Effects Based on Satellite Measurements and Aerosol Intensive Properties from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.

    2000-01-01

    We estimate the impact of North Atlantic aerosols on the net shortwave flux at the tropopause by combining maps of satellite-derived aerosol optical depth (AOD) with model aerosol properties. We exclude African dust, primarily by restricting latitudes to 25-60 N. Aerosol properties were determined via column closure analyses in two recent experiments, TARFOX and ACE 2. The analyses use in situ measurements of aerosol composition and air- and ship-borne sunphotometer measurements of AOD spectra. The resulting aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. It has a midvisible single-scattering albedo of 0.9, which is in the range obtained from in situ measurements of aerosol scattering and absorption in both TARFOX and ACE 2. Combining seasonal maps of AVHRR-derived midvisible AOD with the aerosol model yields maps of 24-hour average net radiative flux changes at the tropopause. For cloud-free conditions, results range from -9 W/sq m near the eastern US coastline in the summer to -1 W/sq m in the mid-Atlantic during winter; the regional annual average is -3.5 W/sq m. Using a non- absorbing aerosol model increases these values by about 30%. We estimate the effect of clouds using ISCCP cloud-fraction maps. Because ISCCP midlatitude North Atlantic cloud fractions are relatively large, they greatly reduce the computed aerosol-induced flux changes. For example, the regional annual average decreases from -3.5 W/sq m to -0.8 W/sq m. We compare results to previous model calculations for a variety of aerosol types.

  5. North Atlantic Aerosol Radiative Impacts Based on Satellite Measurements and Aerosol Intensive Properties from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Bergstrom, Robert W.; Schmid, Beat; Livingston, John M.

    2000-01-01

    We estimate the impact of North Atlantic aerosols on the net shortwave flux at the tropopause by combining maps of satellite-derived aerosol optical depth (AOD) with model aerosol properties. We exclude African dust, primarily by restricting latitudes to 25-60 N. Aerosol properties were determined via column closure analyses in two recent experiments, TARFOX and ACE 2. The analyses use in situ measurements of aerosol composition and air- and ship-borne sunphotometer measurements of AOD spectra. The resulting aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. It has a midvisible single-scattering albedo of 0.9, which is in the range obtained from in situ measurements of aerosol scattering and absorption in both TARFOX and ACE 2. Combining seasonal maps of AVHRR-derived midvisible AOD with the aerosol model yields maps of 24-hour average net radiative flux changes at the tropopause. For cloud-free conditions, results range from -9 W/sq m near the eastern US coastline in the summer to -1 W/sq m in the mid-Atlantic during winter; the regional annual average is -3.5 W/sq m. Using a non- absorbing aerosol model increases these values by about 30%. We estimate the effect of clouds using ISCCP cloud-fraction maps. Because ISCCP midlatitude North Atlantic cloud fractions are relatively large, they greatly reduce the computed aerosol-induced flux changes. For example, the regional annual average decreases from -3.5 W/sq m to -0.8 W/sq m. We compare results to previous model calculations for a variety of aerosol types.

  6. Instantaneous and time-averaged dispersion and measurement models for estimation theory applications with elevated point source plumes

    NASA Technical Reports Server (NTRS)

    Diamante, J. M.; Englar, T. S., Jr.; Jazwinski, A. H.

    1977-01-01

    Estimation theory, which originated in guidance and control research, is applied to the analysis of air quality measurements and atmospheric dispersion models to provide reliable area-wide air quality estimates. A method for low dimensional modeling (in terms of the estimation state vector) of the instantaneous and time-average pollutant distributions is discussed. In particular, the fluctuating plume model of Gifford (1959) is extended to provide an expression for the instantaneous concentration due to an elevated point source. Individual models are also developed for all parameters in the instantaneous and the time-average plume equations, including the stochastic properties of the instantaneous fluctuating plume.

  7. Systematic Satellite Observations of the Impact of Aerosols from Passive Volcanic Degassing on Local Cloud Properties

    NASA Technical Reports Server (NTRS)

    Ebmeier, S. K.; Sayer, A. M.; Grainger, R. G.; Mather, T. A.; Carboni, E.

    2014-01-01

    The impact of volcanic emissions is a significant source of uncertainty in estimations of aerosol indirect radiative forcing, especially with respect to emissions from passive de-gassing and minor explosions. Understanding the impact of volcanic emissions on indirect radiative forcing is important assessing present day atmospheric properties and also to define the pre-industrial baseline to assess anthropogenic perturbations. We present observations of the time-averaged indirect aerosol effect within 200 km downwind of isolated island volcanoes in regions of low present-day aerosol burden using MODIS and AATSR data. Retrievals of aerosol and cloud properties at Kilauea (Hawaii), Yasur (Vanuatu) and Piton de la Fournaise (Reunion) are rotated about the volcanic vent according to wind direction, so that retrievals downwind of the volcano can be averaged to improve signal to noise ratio. The emissions from all three volcanoes, including those from passive degassing, strombolian activity and minor explosions lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference in effective radius ranging from 48 microns at the different volcanoes. A comparison of these observations with cloud properties at isolated islands with no significant source of aerosol suggests that these patterns are not purely orographic in origin. This approach sets out a first step for the systematic measurement of the effects of present day low altitude volcanic emissions on cloud properties, and our observations of unpolluted, isolated marine settings may capture processes similar to those in the preindustrial marine atmosphere.

  8. In Situ Aerosol Size Distributions and Clear Column Radiative Closure During ACE-2

    NASA Technical Reports Server (NTRS)

    Collins, D. R.; Johnson, H. H.; Seinfeld, J. H.; Flagan, R. C.; Gasso, S.; Hegg, D. A.; Russell, P. B.; Schmid, B.; Livingston, J. M.; Oestroem, E.; hide

    2000-01-01

    As part of the second Aerosol Characterization Experiment (ACE-2) during June and July of 1997, aerosol size distributions were measured on board the CIRPAS Pelican aircraft through the use of a DMA and two OPCS. During the campaign, the boundary layer aerosol typically possessed characteristics representative of a background marine aerosol or a continentally influenced aerosol, while the free tropospheric aerosol was characterized by the presence or absence of a Saharan dust layer. A range of radiative closure comparisons were made using the data obtained during vertical profiles flown on four missions. Of particular interest here are the comparisons made between the optical properties as determined through the use of measured aerosol size distributions and those measured directly by an airborne 14-wavelength sunphotometer and three nephelometers. Variations in the relative humidity associated with each of the direct measurements required consideration of the hygroscopic properties of the aerosol for size distribution based calculations. Simultaneous comparison with such a wide range of directly measured optical parameters not only offers evidence of the validity of the physicochemical description of the aerosol when closure is achieved, but also provides insight into potential sources of error when some or all of the comparisons result in disagreement. Agreement between the derived and directly measured optical properties varied for different measurements and for different cases. Averaged over the four case studies, the derived extinction coefficient at 525 nm exceeded that measured by the sunphotomoter by 2.5% in the clean boundary later, but underestimated measurements by 13% during pollution events. For measurements within the free troposphere, the mean derived extinction coefficient was 3.3% and 17% less than that measured by the sunphotometer during dusty and nondusty conditions, respectively. Likewise, averaged discrepancies between the derived and measured scattering coefficient were -9.6%, +4.7%, +17%, and -41% for measurements within the clean boundary layer, polluted boundary layer, free troposphere with a dust layer, and free troposphere without a dust layer, respectively. Each of these quantities, as well as the majority of the > 100 individual comparisons from which they were averaged, were within estimated uncertainties.

  9. Morphological effects of porous poly-d,l-lactic acid/hydroxyapatite scaffolds produced by supercritical CO2 foaming on their mechanical performance.

    PubMed

    Rouholamin, Davood; van Grunsven, William; Reilly, Gwendolen C; Smith, Patrick J

    2016-08-01

    A novel supercritical CO2 foaming technique was used to fabricate scaffolds of controllable morphology and mechanical properties, with the potential to tailor the scaffolds to specific tissue engineering applications. Biodegradable scaffolds are widely used as temporary supportive structures for bone regeneration. The scaffolds must provide a sufficient mechanical support while allowing cell attachment and growth as well as metabolic activities. In this study, supercritical CO2 foaming was used to prepare fully interconnected porous scaffolds of poly-d,l-lactic acid and poly-d,l-lactic acid/hydroxyapatite. The morphological, mechanical and cell behaviours of the scaffolds were measured to examine the effect of hydroxyapatite on these properties. These scaffolds showed an average porosity in the range of 86%-95%, an average pore diameter of 229-347 µm and an average pore interconnection of 103-207 µm. The measured porosity, pore diameter, and interconnection size are suitable for cancellous bone regeneration. Compressive strength and modulus of up to 36.03 ± 5.90 and 37.97 ± 6.84 MPa were measured for the produced porous scaffolds of various compositions. The mechanical properties presented an improvement with the addition of hydroxyapatite to the structure. The relationship between morphological and mechanical properties was investigated. The matrices with different compositions were seeded with bone cells, and all the matrices showed a high cell viability and biocompatibility. The number of cells attached on the matrices slightly increased with the addition of hydroxyapatite indicating that hydroxyapatite improves the biocompatibility and proliferation of the scaffolds. The produced poly-d,l-lactic acid/hydroxyapatite scaffolds in this study showed a potential to be used as bone graft substitutes. © IMechE 2016.

  10. 40 CFR 201.26 - Procedures for the measurement on receiving property of retarder and car coupling noise.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ave max=Lave max +C in dB. Values in Table 2 were calculated from [C=10 log n/T] with intervals... max for Retarders and Car Coupling Impacts 1 [n/T=number of measurements/measurement duration (min) C... divided by the duration of the measurement period (n/T), to obtain the adjusted average maximum A-weighted...

  11. 40 CFR 201.26 - Procedures for the measurement on receiving property of retarder and car coupling noise.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ave max=Lave max +C in dB. Values in Table 2 were calculated from [C=10 log n/T] with intervals... max for Retarders and Car Coupling Impacts 1 [n/T=number of measurements/measurement duration (min) C... divided by the duration of the measurement period (n/T), to obtain the adjusted average maximum A-weighted...

  12. Evolution of bioconvective patterns in variable gravity

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1991-01-01

    Measurements are reported of the evolution of bioconvective patterns in shallow, dense cultures of microorganisms subjected to varying gravity. Various statistical properties of this random, quasi-two-dimensional structure have been found: Aboav's law is obeyed, the average vertex angles follow predictions for regular polygons, and the area of a pattern varies linearly with its number of sides. As gravity varies between 1 g and 1.8 g, these statistical properties continue to hold despite a tripling of the number of polygons and a reduced average polygon dimension by a third. This work compares with experiments on soap foams, Langmuir monolayer foams, metal grains, and simulations.

  13. Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique.

    PubMed

    Johnson, Sara L; Dillon, Christopher; Odéen, Henrik; Parker, Dennis; Christensen, Douglas; Payne, Allison

    2016-11-01

    MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment.

  14. Properties of southern pine needles

    Treesearch

    E.T. Howard

    1973-01-01

    To investigate properties that might be related to utilization, needles were sampled on one tree of each of the four major species. Tensile strength was measured on loblolly needles only; it ranged from 4,630 to 6,980 psi. Maximum load averaged 4.1 pounds per needle, with a modulus of elasticity of 220,000 psi. Specific gravity (ovendry weight, green volume of...

  15. Frequency Shift During Mass Properties Testing Using Compound Pendulum Method

    NASA Technical Reports Server (NTRS)

    Wolfe, David; Regan, Chris

    2012-01-01

    During mass properties testing on the X-48B Blended Wing Body aircraft (The Boeing Company, Chicago, Illinois) at the National Aeronautics and Space Administration Dryden Flight Research Center, Edwards, California, large inertia measurement errors were observed in results from compound pendulum swings when compared to analytical models. By comparing periods of oscillations as measured from an average over the test period versus the period of each oscillation, it was noticed that the frequency of oscillation was shifting significantly throughout the test. This phenomenon was only noticed during compound pendulum swings, and not during bifilar pendulum swings. The frequency shift was only visible upon extensive data analysis of the frequency for each oscillation, and did not appear in averaged frequency data over the test period. Multiple test articles, test techniques, and hardware setups were used in attempts to eliminate or identify the cause of the frequency shift. Plotting the frequency of oscillation revealed a region of minimal shift that corresponded to a larger amplitude range. This region of minimal shift provided the most accurate results compared to a known test article; however, the amplitudes that produce accurate inertia measurements are amplitudes larger than those generally accepted in mass properties testing. This paper examines two case studies of the frequency shift, using mass properties testing performed on a dummy test article, and on the X-48B Blended Wing Body aircraft.

  16. Effects of rutin on the physicochemical properties of skin fibroblasts membrane disruption following UV radiation.

    PubMed

    Dobrzyńska, Izabela; Gęgotek, Agnieszka; Gajko, Ewelina; Skrzydlewska, Elżbieta; Figaszewski, Zbigniew A

    2018-02-25

    Human skin provides the body's first line of defense against physical and environmental assaults. This study sought to determine how rutin affects the membrane electrical properties, sialic acid content, and lipid peroxidation levels of fibroblast membranes after disruption by ultraviolet (UV) radiation. Changes in cell function may affect the basal electrical surface properties of cell membranes, and changes can be detected by electrokinetic measurements. The charge density of the fibroblast membrane surface was measured as a function of pH. A four-component equilibrium model was used to describe the interaction between ions in solution and ions on the membrane surface. Agreement was found between experimental and theoretical charge variation curves of fibroblast cells between pH 2.5 and 8. Sialic acid content was determined by Svennerholm's resorcinol method, and lipid peroxidation was estimated by measuring the malondialdehyde level. Compared to untreated cells, ultraviolet A (UVA)- or ultraviolet B (UVB)-treated skin cell membranes exhibited higher concentrations of acidic functional groups and higher average association constants with hydroxyl ions, but lower average association constants with hydrogen ions. Moreover, our results showed that UVA and UVB radiation is associated with increased levels of sialic acid and lipid peroxidation products in fibroblasts. Rutin protected cells from some deleterious UV-associated membrane changes, including changes in electrical properties, oxidative state, and biological functions. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. 40 CFR 201.26 - Procedures for the measurement on receiving property of retarder and car coupling noise.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....467 +6 1 Ladj ave max = Lave max +C in dB. Values in Table 2 were calculated from [C=10 log n/T] with... max for Retarders and Car Coupling Impacts 1 [n/T = number of measurements/measurement duration (min... divided by the duration of the measurement period (n/T), to obtain the adjusted average maximum A-weighted...

  18. Correlation of cervical endplate strength with CT measured subchondral bone density

    PubMed Central

    Ordway, Nathaniel R.; Lu, Yen-Mou; Zhang, Xingkai; Cheng, Chin-Chang; Fang, Huang

    2007-01-01

    Cervical interbody device subsidence can result in screw breakage, plate dislodgement, and/or kyphosis. Preoperative bone density measurement may be helpful in predicting the complications associated with anterior cervical surgery. This is especially important when a motion preserving device is implanted given the detrimental effect of subsidence on the postoperative segmental motion following disc replacement. To evaluate the structural properties of the cervical endplate and examine the correlation with CT measured trabecular bone density. Eight fresh human cadaver cervical spines (C2–T1) were CT scanned and the average trabecular bone densities of the vertebral bodies (C3–C7) were measured. Each endplate surface was biomechanically tested for regional yield load and stiffness using an indentation test method. Overall average density of the cervical vertebral body trabecular bone was 270 ± 74 mg/cm3. There was no significant difference between levels. The yield load and stiffness from the indentation test of the endplate averaged 139 ± 99 N and 156 ± 52 N/mm across all cervical levels, endplate surfaces, and regional locations. The posterior aspect of the endplate had significantly higher yield load and stiffness in comparison to the anterior aspect and the lateral aspect had significantly higher yield load in comparison to the midline aspect. There was a significant correlation between the average yield load and stiffness of the cervical endplate and the trabecular bone density on regression analysis. Although there are significant regional variations in the endplate structural properties, the average of the endplate yield loads and stiffnesses correlated with the trabecular bone density. Given the morbidity associated with subsidence of interbody devices, a reliable and predictive method of measuring endplate strength in the cervical spine is required. Bone density measures may be used preoperatively to assist in the prediction of the strength of the vertebral endplate. A threshold density measure has yet to be established where the probability of endplate fracture outweighs the benefit of anterior cervical procedure. PMID:17712574

  19. Effects of macroscopic inhomogeneities on resistive and Hall measurements on crosses, cloverleafs, and bars

    NASA Astrophysics Data System (ADS)

    Koon, D. W.; Knickerbocker, C. J.

    1996-12-01

    The effect of macroscopic inhomogeneities on resistivity and Hall angle measurements is studied by calculating weighting functions (the relative effect of perturbations in a local transport property on the measured global average for the object) for cross, cloverleaf, and bar-shaped geometries. The ``sweet spot,'' the region in the center of the object that the measurement effectively samples, is smaller for crosses and cloverleafs than for the circles and squares already studied, and smaller for the cloverleaf than for the corresponding cross. Resistivity measurements for crosses and cloverleafs suffer from singularities and negative weighting, which can be eliminated by averaging two independent resistance measurements, as done in the van der Pauw technique. Resistivity and Hall measurements made on sufficiently narrow bars are shown to effectively sample only the region directly between the voltage probes.

  20. Synthesis of SiO2-coated ZnMnFe2O4 nanospheres with improved magnetic properties.

    PubMed

    Wang, Jun; Zhang, Kai; Zhu, Yuejin

    2005-05-01

    A core-shell structured composite, SiO2 coated ZnMnFe2O4 spinel ferrite nanoparticles (average diameter of approximately 80 nm), was prepared by hydrolysis of tetraethyl orthosilicate (TEOS) in the presence of ZnMnFe2O4 nanoparticles (average diameter of approximately 10 nm) synthesized by a hydrothermal method. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FESEM). The magnetic measurements were carried out on a vibrating sample magnetometer (VSM), and the measurement results indicate that the core-shell samples possess better magnetic properties at room temperature, compared with paramagnetic colloids with a magnetic core by a coprecipitation method. These core-shell nanospherical particles with self-assembly under additional magnetic fields could have potential application in biomedical systems.

  1. Statistical properties of edge plasma turbulence in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Dewhurst, J. M.; Hnat, B.; Ohno, N.; Dendy, R. O.; Masuzaki, S.; Morisaki, T.; Komori, A.

    2008-09-01

    Ion saturation current (Isat) measurements made by three tips of a Langmuir probe array in the Large Helical Device are analysed for two plasma discharges. Absolute moment analysis is used to quantify properties on different temporal scales of the measured signals, which are bursty and intermittent. Strong coherent modes in some datasets are found to distort this analysis and are consequently removed from the time series by applying bandstop filters. Absolute moment analysis of the filtered data reveals two regions of power-law scaling, with the temporal scale τ ≈ 40 µs separating the two regimes. A comparison is made with similar results from the Mega-Amp Spherical Tokamak. The probability density function is studied and a monotonic relationship between connection length and skewness is found. Conditional averaging is used to characterize the average temporal shape of the largest intermittent bursts.

  2. Comparison of the effects of measured and computed thermophysical properties of nanofluids on heat transfer performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duangthongsuk, Weerapun; Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory; Wongwises, Somchai

    2010-07-15

    This article reports a comparison of the differences between using measured and computed thermophysical properties to describe the heat transfer performance of TiO{sub 2}-water nanofluids. In this study, TiO{sub 2} nanoparticles with average diameters of 21 nm and a particle volume fraction of 0.2-1 vol.% are used. The thermal conductivity and viscosity of nanofluids were measured by using transient hot-wire apparatus and a Bohlin rotational rheometer, respectively. The well-known correlations for calculating the thermal conductivity and viscosity of nanofluids were used for describing the Nusselt number of nanofluids and compared with the results from the measured data. The results showmore » that use of the models of thermophysical properties for calculating the Nusselt number of nanofluids gave similar results to use of the measured data. Where there is a lack of measured data on thermophysical properties, the most appropriate models for computing the thermal conductivity and viscosity of the nanofluids are the models of Yu and Choi and Wang et al., respectively. (author)« less

  3. In-situ and path-averaged measurements of aerosol optical properties

    NASA Astrophysics Data System (ADS)

    van Binsbergen, Sven A.; Grossmann, Peter; February, Faith J.; Cohen, Leo H.; van Eijk, Alexander M. J.; Stein, Karin U.

    2017-09-01

    This paper compares in-situ and path-averaged measurements of the electro-optical transmission, with emphasis on aerosol effects. The in-situ sensors consisted of optical particle counters (OPC), the path-averaged data was provided by a 7-wavelength transmissometer (MSRT) and scintillometers (BLS). Data were collected at two sites: a homogeneous test site in Northern Germany, and over the inhomogeneous False Bay near Cape Town, South Africa. A retrieval algorithm was developed to infer characteristics of the aerosol size distribution (Junge approximation) from the MSRT data. A comparison of the various sensors suggests that the optical particle counters are over optimistic in their estimate of the transmission. For the homogeneous test site, in-situ and path-averaged sensors yield similar results. For the inhomogeneous test site, sensors may react differently or temporally separated to meteorological events such as a change in wind speed and/or direction.

  4. Seismic properties and mineral crystallographic preferred orientations from EBSD data: Results from a crustal-scale detachment system, Aegean region

    NASA Astrophysics Data System (ADS)

    Cossette, Élise; Schneider, David; Audet, Pascal; Grasemann, Bernhard; Habler, Gerlinde

    2015-05-01

    The crystallographic preferred orientations (CPOs) were measured on a suite of samples representative of different structural depths along the West Cycladic Detachment System, Greece. Electron backscatter diffraction (EBSD) analyses were conducted on calcitic and mica schists, impure quartzites, and a blueschist, and the average seismic properties of the rocks were calculated with the Voigt-Reuss-Hill average of the single minerals' elastic stiffness tensor. The calcitic and quartzitic rocks have P- and S-wave velocity anisotropies (AVp, AVs) averaging 8.1% and 7.1%, respectively. The anisotropy increases with depth represented by the blueschist, with AVp averaging 20.3% and AVs averaging 14.5%, due to the content of aligned glaucophane and mica, which strongly control the seismic properties of the rocks. Localised anisotropies of very high magnitudes are caused by the presence of mica schists as they possess the strongest anisotropies, with values of ~ 25% for AVp and AVs. The direction of the fast and slow P-wave velocities occurs parallel and perpendicular to the foliation, respectively, for most samples. The fast propagation has the same NE-SW orientation as the lithospheric stretching direction experienced in the Cyclades since the Late Oligocene. The maximum shear wave anisotropy is subhorizontal, similarly concordant with mineral alignment that developed during extension in the Aegean. Radial anisotropy in the Aegean mid-crust is strongly favoured to azimuthal anisotropy by our results.

  5. Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter

    NASA Astrophysics Data System (ADS)

    Li, Z.; Gu, X.; Wang, L.; Li, D.; Xie, Y.; Li, K.; Dubovik, O.; Schuster, G.; Goloub, P.; Zhang, Y.; Li, L.; Ma, Y.; Xu, H.

    2013-10-01

    With the increase in economic development over the past thirty years, many large cities in eastern and southwestern China are experiencing increased haze events and atmospheric pollution, causing significant impacts on the regional environment and even climate. However, knowledge on the aerosol physical and chemical properties in heavy haze conditions is still insufficient. In this study, two winter heavy haze events in Beijing that occurred in 2011 and 2012 were selected and investigated by using the ground-based remote sensing measurements. We used a CIMEL CE318 sun-sky radiometer to retrieve haze aerosol optical, physical and chemical properties, including aerosol optical depth (AOD), size distribution, complex refractive indices and aerosol fractions identified as black carbon (BC), brown carbon (BrC), mineral dust (DU), ammonium sulfate-like (AS) components and aerosol water content (AW). The retrieval results from a total of five haze days showed that the aerosol loading and properties during the two winter haze events were comparable. Therefore, average heavy haze property parameters were drawn to present a research case for future studies. The average AOD is about 3.0 at 440 nm, and the Ångström exponent is 1.3 from 440 to 870 nm. The fine-mode AOD is 2.8 corresponding to a fine-mode fraction of 0.93. The coarse particles occupied a considerable volume fraction of the bimodal size distribution in winter haze events, with the mean particle radius of 0.21 and 2.9 μm for the fine and coarse modes respectively. The real part of the refractive indices exhibited a relatively flat spectral behavior with an average value of 1.48 from 440 to 1020 nm. The imaginary part showed spectral variation, with the value at 440 nm (about 0.013) higher than the other three wavelengths (about 0.008 at 675 nm). The aerosol composition retrieval results showed that volume fractions of BC, BrC, DU, AS and AW are 1, 2, 49, 15 and 33%, respectively, on average for the investigated haze events. The preliminary uncertainty estimation and comparison of these remote sensing results with in situ BC and PM2.5 measurements are also presented in the paper.

  6. Modeling englacial radar attenuation at Siple Dome, West Antarctica, using ice chemistry and temperature data

    USGS Publications Warehouse

    MacGregor, J.A.; Winebrenner, D.P.; Conway, H.; Matsuoka, K.; Mayewski, P.A.; Clow, G.D.

    2007-01-01

    The radar reflectivity of an ice-sheet bed is a primary measurement for discriminating between thawed and frozen beds. Uncertainty in englacial radar attenuation and its spatial variation introduces corresponding uncertainty in estimates of basal reflectivity. Radar attenuation is proportional to ice conductivity, which depends on the concentrations of acid and sea-salt chloride and the temperature of the ice. We synthesize published conductivity measurements to specify an ice-conductivity model and find that some of the dielectric properties of ice at radar frequencies are not yet well constrained. Using depth profiles of ice-core chemistry and borehole temperature and an average of the experimental values for the dielectric properties, we calculate an attenuation rate profile for Siple Dome, West Antarctica. The depth-averaged modeled attenuation rate at Siple Dome (20.0 ?? 5.7 dB km-1) is somewhat lower than the value derived from radar profiles (25.3 ?? 1.1 dB km-1). Pending more experimental data on the dielectric properties of ice, we can match the modeled and radar-derived attenuation rates by an adjustment to the value for the pure ice conductivity that is within the range of reported values. Alternatively, using the pure ice dielectric properties derived from the most extensive single data set, the modeled depth-averaged attenuation rate is 24.0 ?? 2.2 dB km-1. This work shows how to calculate englacial radar attenuation using ice chemistry and temperature data and establishes a basis for mapping spatial variations in radar attenuation across an ice sheet. Copyright 2007 by the American Geophysical Union.

  7. Effects of native forest restoration on soil hydraulic properties, Auwahi, Maui, Hawaiian Islands

    USGS Publications Warehouse

    Perkins, Kimberlie S.; Nimmo, John R.; Medeiros, Arthur C.

    2012-01-01

    Over historic time Hawai'i's dryland forests have been largely replaced by grasslands for grazing livestock. On-going efforts have been undertaken to restore dryland forests to bring back native species and reduce erosion. The reestablishment of native ecosystems on land severely degraded by long-term alternative use requires reversal of the impacts of erosion, organic-matter loss, and soil structural damage on soil hydraulic properties. This issue is perhaps especially critical in dryland forests where the soil must facilitate native plants' optimal use of limited water. These reforestation efforts depend on restoring soil ecological function, including soil hydraulic properties. We hypothesized that reforestation can measurably change soil hydraulic properties over restoration timescales. At a site on the island of Maui (Hawai'i, USA), we measured infiltration capacity, hydrophobicity, and abundance of preferential flow channels in a deforested grassland and in an adjacent area where active reforestation has been going on for fourteen years. Compared to the nearby deforested rangeland, mean field-saturated hydraulic conductivity in the newly restored forest measured by 55 infiltrometer tests was greater by a factor of 2.0. Hydrophobicity on an 8-point scale increased from average category 6.0 to 6.9. A 4-point empirical categorization of preferentiality in subsurface wetting patterns increased from an average 1.3 in grasslands to 2.6 in the restored forest. All of these changes act to distribute infiltrated water faster and deeper, as appropriate for native plant needs. This study indicates that vegetation restoration can lead to ecohydrologically important changes in soil hydraulic properties over decadal time scales.

  8. Viscoelastic properties of healthy achilles tendon are independent of isometric plantar flexion strength and cross-sectional area.

    PubMed

    Suydam, Stephen M; Soulas, Elizabeth M; Elliott, Dawn M; Silbernagel, Karin Gravare; Buchanan, Thomas S; Cortes, Daniel H

    2015-06-01

    Changes in tendon viscoelastic properties are observed after injuries and during healing as a product of altered composition and structure. Continuous Shear Wave Elastography is a new technique measuring viscoelastic properties of soft tissues using external shear waves. Tendon has not been studied with this technique, therefore, the aims of this study were to establish the range of shear and viscosity moduli in healthy Achilles tendons, determine bilateral differences of these parameters and explore correlations of viscoelasticity to plantar flexion strength and tendon area. Continuous Shear Wave Elastography was performed over the free portion of both Achilles tendons from 29 subjects. Isometric plantar flexion strength and cross sectional area were measured. The average shear and viscous moduli was 83.2 kPa and 141.0 Pa-s, respectively. No correlations existed between the shear or viscous modulus and area or strength. This indicates that viscoelastic properties can be considered novel, independent biomarkers. The shear and viscosity moduli were bilaterally equivalent (p = 0.013, 0.017) which allows determining pathologies through side-to-side deviations. The average bilateral coefficient of variation was 7.2% and 9.4% for shear and viscosity modulus, respectively. The viscoelastic properties of the Achilles tendon may provide an unbiased, non-subjective rating system of tendon recovery and optimizing treatment strategies. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Viscoelastic Properties of Healthy Achilles Tendon are Independent of Isometric Plantar Flexion Strength and Cross-Sectional Area

    PubMed Central

    Suydam, Stephen M.; Soulas, Elizabeth M.; Elliott, Dawn M.; Silbernagel, Karin Gravare; Buchanan, Thomas S.; Cortes, Daniel H.

    2015-01-01

    Changes in tendon viscoelastic properties are observed after injuries and during healing as a product of altered composition and structure. Continuous Shear Wave Elastography is a new technique measuring viscoelastic properties of soft tissues using external shear waves. Tendon has not been studied with this technique, therefore, the aims of this study were to establish the range of shear and viscosity moduli in healthy Achilles tendons, determine bilateral differences of these parameters and explore correlations of viscoelasticity to plantar flexion strength and tendon area. Continuous Shear Wave Elastography was performed over the free portion of both Achilles tendons from 29 subjects. Isometric plantar flexion strength and cross sectional area were measured. The average shear and viscous moduli was 83.2kPa and 141.0Pa-s, respectively. No correlations existed between the shear or viscous modulus and area or strength. This indicates that viscoelastic properties can be considered novel, independent biomarkers. The shear and viscosity moduli were bilaterally equivalent (p=0.013,0.017) which allows determining pathologies through side-to-side deviations. The average bilateral coefficient of variation was 7.2% and 9.4% for shear and viscosity modulus, respectively. The viscoelastic properties of the Achilles tendon may provide an unbiased, non-subjective rating system of tendon recovery and optimizing treatment strategies. PMID:25882209

  10. Structural and rectifying junction properties of self-assembled ZnO nanoparticles in polystyrene diblock copolymers on (1 0 0)Si substrates

    NASA Astrophysics Data System (ADS)

    Ali, H. A.; Iliadis, A. A.; Martinez-Miranda, L. J.; Lee, U.

    2006-06-01

    The structural and electronic transport properties of self-assembled ZnO nanoparticles in polystyrene-acrylic acid, [PS] m/[PAA] n, diblock copolymer on p-type (1 0 0)Si substrates are reported for the first time. Four different block repeat unit ratios ( m/ n) of 159/63, 139/17,106/17, and 106/4, were examined in order to correlate the physical parameters (size, density) of the nanoparticles with the copolymer block lengths m and n. We established that the self-assembled ZnO nanoparticle average size increased linearly with minority block length n, while the average density decreased exponentially with majority block length m. Average size varied from 20 nm to 250 nm and average density from 3.5 × 10 7 cm -2 to 1 × 10 10 cm -2, depending on copolymer parameters. X-ray diffraction studies showed the particles to have a wurtzite crystal structure with the (1 0 0) being the dominant orientation. Room temperature current-voltage characteristics measured for an Al/ZnO-nanocomposite/Si structure exhibited rectifying junction properties and indicated the formation of Al/ZnO-nanocomposite Schottky type junction with a barrier height of 0.7 V.

  11. Preparation, structure and magnetic properties of synthetic ferrihydrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Stolyar, S. V.; Yaroslavtsev, R. N.; Bayukov, O. A.; Balaev, D. A.; Krasikov, A. A.; Iskhakov, R. S.; Vorotynov, A. M.; Ladygina, V. P.; Purtov, K. V.; Volochaev, M. N.

    2018-03-01

    Superparamagnetic ferrihydrite powders with average nanoparticle sizes of 2.5 nm produced by the chemical deposition method. Static and dynamic magnetic properties are measured. As a result of ultrasonic treatment in the cavitation regime of suspensions of ferrihydrite powders in a solution of the albumin protein, the Fe ions are reduced to the metallic state. A sol of ferrihydrite nanoparticles is prepared in an aqueous solution of arabinogalactan polysaccharide.

  12. Development of a student-centered instrument to assess middle school students' conceptual understanding of sound

    NASA Astrophysics Data System (ADS)

    Eshach, Haim

    2014-06-01

    This article describes the development and field test of the Sound Concept Inventory Instrument (SCII), designed to measure middle school students' concepts of sound. The instrument was designed based on known students' difficulties in understanding sound and the history of science related to sound and focuses on two main aspects of sound: sound has material properties, and sound has process properties. The final SCII consists of 71 statements that respondents rate as either true or false and also indicate their confidence on a five-point scale. Administration to 355 middle school students resulted in a Cronbach alpha of 0.906, suggesting a high reliability. In addition, the average percentage of students' answers to statements that associate sound with material properties is significantly higher than the average percentage of statements associating sound with process properties (p <0.001). The SCII is a valid and reliable tool that can be used to determine students' conceptions of sound.

  13. Study of thioflavin-T immobilized in porous silicon and the effect of different organic vapors on the fluorescence lifetime.

    PubMed

    Hutter, Tanya; Amdursky, Nadav; Gepshtein, Rinat; Elliott, Stephen R; Huppert, Dan

    2011-06-21

    Steady-state and time-resolved emission techniques have been employed to study the fluorescence properties of thioflavin-T (ThT) adsorbed on oxidized porous silicon (PSi) surfaces, with an average pore size of ∼10 nm. We found that the average fluorescence decay time of ThT, when it is adsorbed on the PSi surface, is rather long, τ(av) = 1.3 ns. We attribute this relatively long emission lifetime to the effect of the immobilization of ThT on the PSi surface, which inhibit the rotation of the aniline with respect to the benzothiazole moieties of ThT. We also measured the fluorescence properties of ThT in PSi samples in equilibrium with vapors of several liquids, such as methanol, acetonitrile, and water. We found that the fluorescence intensity drops by a factor of 10, and the average decay time, measured by a time-correlated single-photon counting technique, decreases by a factor of 3. We explain these results in terms of liquid condensation of the vapors in the PSi pores, which leads to partial dissolution of the ThT molecules in the liquid pools. © 2011 American Chemical Society

  14. Determination of the solar transmittance for the translucent shutter with PCM in liquid and solid state

    NASA Astrophysics Data System (ADS)

    Komerska, Anna; Ksionek, Dariusz; Rosiński, Marian

    2017-11-01

    This article presents results of the energy performance of an external translucent shading component integrated with a phase change material. A proposed technology is able to accumulate considerable amounts of energy in the latent heat by absorbing solar energy. Due to selective optical properties, much of the visible light is still transmitted through the facade. Experimental measurements were carried out in a laboratory set-up - testing thermal chamber, located in the Faculty of Building Services, Hydro and Environmental Engineering at Warsaw University of Technology. The main result of the experimental study was the evaluation of the average solar transmittance in the whole measured spectrum, as well as in the infrared and visible light. Since the shift in optical properties was observed when the material was undergoing a phase transition, the average spectral transmittances were measured for different states of matter of the PCM material. The tested shutter showed abilities to reduce and modulate daylight and solar heat gains in the indoor environment, which could contribute to considerable energy savings.

  15. LITHO1.0: An Updated Crust and Lithosphere Model of the Earth

    DTIC Science & Technology

    2010-09-01

    wc arc uncertain what causes the remainder of the discrepancy. The measurement discrepancies are much smaller than the signal in the data, and the...short-period group velocity data measured with a new technique which are sensitive to lid properties as well as crustal thickness and average...most progress was made on surface-wave measurements . We use a cluster analysis technique to measure surface-wave group velocity from lOmHz to 40mHz

  16. Advanced optical measuring systems for measuring the properties of fluids and structures

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1986-01-01

    Four advanced optical models are reviewed for the measurement of visualization of flow and structural properties. Double-exposure, diffuse-illumination, holographic interferometry can be used for three-dimensional flow visualization. When this method is combined with optical heterodyning, precise measurements of structural displacements or fluid density are possible. Time-average holography is well known as a method for displaying vibrational mode shapes, but it also can be used for flow visualization and flow measurements. Deflectometry is used to measure or visualize the deflection of light rays from collimation. Said deflection occurs because of refraction in a fluid or because of reflection from a tilted surface. The moire technique for deflectometry, when combined with optical heterodyning, permits very precise measurements of these quantities. The rainbow schlieren method of deflectometry allows varying deflection angles to be encoded with colors for visualization.

  17. Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows

    NASA Technical Reports Server (NTRS)

    Allen, M. G.; Davis, S. J.; Kessler, W. J.; Sonnenfroh, D. M.

    1992-01-01

    The application of Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows is analyzed. Focussing on fluorescence of the OH molecule in typical H2-air Scramjet flows, the effects of uncharacterized variations in temperature, pressure, and collisional partner composition across the measurement plane are examined. Detailed measurements of the (1,0) band OH lineshape variations in H2-air combustions are used, along with single-pulse and time-averaged measurements of an excimer-pumped dye laser, to predict the performance of a model velocimeter with typical Scramjet flow properties. The analysis demonstrates the need for modification and control of the laser bandshape in order to permit accurate velocity measurements in the presence of multivariant flow properties.

  18. Volatility measurement with directional change in Chinese stock market: Statistical property and investment strategy

    NASA Astrophysics Data System (ADS)

    Ma, Junjun; Xiong, Xiong; He, Feng; Zhang, Wei

    2017-04-01

    The stock price fluctuation is studied in this paper with intrinsic time perspective. The event, directional change (DC) or overshoot, are considered as time scale of price time series. With this directional change law, its corresponding statistical properties and parameter estimation is tested in Chinese stock market. Furthermore, a directional change trading strategy is proposed for invest in the market portfolio in Chinese stock market, and both in-sample and out-of-sample performance are compared among the different method of model parameter estimation. We conclude that DC method can capture important fluctuations in Chinese stock market and gain profit due to the statistical property that average upturn overshoot size is bigger than average downturn directional change size. The optimal parameter of DC method is not fixed and we obtained 1.8% annual excess return with this DC-based trading strategy.

  19. Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Covarrubias, Ernesto E.; Eshraghi, Mohsen

    2018-03-01

    Aerospace, automotive, and medical industries use selective laser melting (SLM) to produce complex parts through solidifying successive layers of powder. This additive manufacturing technique has many advantages, but one of the biggest challenges facing this process is the resulting surface quality of the as-built parts. The purpose of this research was to study the surface properties of Inconel 718 alloys fabricated by SLM. The effect of build angle on the surface properties of as-built parts was investigated. Two sets of sample geometries including cube and rectangular artifacts were considered in the study. It was found that, for angles between 15° and 75°, theoretical calculations based on the "stair-step" effect were consistent with the experimental results. Downskin surfaces showed higher average roughness values compared to the upskin surfaces. No significant difference was found between the average roughness values measured from cube and rectangular test artifacts.

  20. The average magnetic field draping and consistent plasma properties of the Venus magnetotail

    NASA Technical Reports Server (NTRS)

    Mccomas, D. J.; Spence, H. E.; Russell, C. T.; Saunders, M. A.

    1986-01-01

    The detailed average draping pattern of the magnetic field in the deep Venus magnetotail is examined. The variability of the data ordered by spatial location is studied, and the groundwork is laid for developing a coordinate system which measured locations with respect to the tail structures. The reconstruction of the tail in the presence of flapping using a new technique is shown, and the average variations in the field components are examined, including the average field vectors, cross-tail current density distribution, and J x B forces as functions of location across the tail. The average downtail velocity is derived as a function of distance, and a simple model based on the field variations is defined from which the average plasma acceleration is obtained as a function of distance, density, and temperature.

  1. Bridging: Locating Critical Connectors in a Network

    PubMed Central

    Valente, Thomas W.; Fujimoto, Kayo

    2010-01-01

    This paper proposes several measures for bridging in networks derived from Granovetter's (1973) insight that links which reduce distances in a network are important structural bridges. Bridging is calculated by systematically deleting links and calculating the resultant changes in network cohesion (measured as the inverse average path length). The average change for each node's links provides an individual level measure of bridging. We also present a normalized version which controls for network size and a network level bridging index. Bridging properties are demonstrated on hypothetical networks, empirical networks, and a set of 100 randomly generated networks to show how the bridging measure correlates with existing network measures such as degree, personal network density, constraint, closeness centrality, betweenness centrality, and vitality. Bridging and the accompanying methodology provide a family of new network measures useful for studying network structure, network dynamics, and network effects on substantive behavioral phenomenon. PMID:20582157

  2. Towards a standard for the dynamic measurement of pressure based on laser absorption spectroscopy

    PubMed Central

    Douglass, K O; Olson, D A

    2016-01-01

    We describe an approach for creating a standard for the dynamic measurement of pressure based on the measurement of fundamental quantum properties of molecular systems. From the linewidth and intensities of ro-vibrational transitions we plan on making an accurate determination of pressure and temperature. The goal is to achieve an absolute uncertainty for time-varying pressure of 5 % with a measurement rate of 100 kHz, which will in the future serve as a method for the traceable calibration of pressure sensors used in transient processes. To illustrate this concept we have used wavelength modulation spectroscopy (WMS), due to inherent advantages over direct absorption spectroscopy, to perform rapid measurements of carbon dioxide in order to determine the pressure. The system records the full lineshape profile of a single ro-vibrational transition of CO2 at a repetition rate of 4 kHz and with a systematic measurement uncertainty of 12 % for the linewidth measurement. A series of pressures were measured at a rate of 400 Hz (10 averages) and from these measurements the linewidth was determined with a relative uncertainty of about 0.5 % on average. The pressures measured using WMS have an average difference of 0.6 % from the absolute pressure measured with a capacitance diaphragm sensor. PMID:27881884

  3. Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator.

    PubMed

    Yoshida, Hidetsugu; Tsubakimoto, Koji; Fujimoto, Yasushi; Mikami, Katsuhiro; Fujita, Hisanori; Miyanaga, Noriaki; Nozawa, Hoshiteru; Yagi, Hideki; Yanagitani, Takagimi; Nagata, Yutaka; Kinoshita, Hiroo

    2011-08-01

    The optical properties, Faraday effect and Verdet constant of ceramic terbium gallium garnet (TGG) have been measured at 1064 nm, and were found to be similar to those of single crystal TGG at room temperature. Observed optical characteristics, laser induced bulk-damage threshold and optical scattering properties of ceramic TGG were compared with those of single crystal TGG. Ceramic TGG is a promising Faraday material for high-average-power YAG lasers, Yb fiber lasers and high-peak power glass lasers for inertial fusion energy drivers.

  4. Spatial Modeling of Geometallurgical Properties: Techniques and a Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutsch, Jared L., E-mail: jdeutsch@ualberta.ca; Palmer, Kevin; Deutsch, Clayton V.

    High-resolution spatial numerical models of metallurgical properties constrained by geological controls and more extensively by measured grade and geomechanical properties constitute an important part of geometallurgy. Geostatistical and other numerical techniques are adapted and developed to construct these high-resolution models accounting for all available data. Important issues that must be addressed include unequal sampling of the metallurgical properties versus grade assays, measurements at different scale, and complex nonlinear averaging of many metallurgical parameters. This paper establishes techniques to address each of these issues with the required implementation details and also demonstrates geometallurgical mineral deposit characterization for a copper–molybdenum deposit inmore » South America. High-resolution models of grades and comminution indices are constructed, checked, and are rigorously validated. The workflow demonstrated in this case study is applicable to many other deposit types.« less

  5. CARS applications to combustion diagnostics

    NASA Astrophysics Data System (ADS)

    Eckbreth, Alan C.

    1986-01-01

    Attention is given to broadband or multiplex CARS of combustion processes, using pulsed lasers whose intensity is sufficiently great for instantaneous measurement of medium properties. This permits probability density functions to be assembled from a series of single-pulse measurements, on the basis of which the true parameter average and the magnitude of the turbulent fluctuations can be ascertained. CARS measurements have been conducted along these lines in diesel engines, gas turbine combustors, scramjets, and solid rocket propellants.

  6. Development of a remote sensing algorithm to retrieve atmospheric aerosol properties using multiwavelength and multipixel information

    NASA Astrophysics Data System (ADS)

    Hashimoto, Makiko; Nakajima, Teruyuki

    2017-06-01

    We developed a satellite remote sensing algorithm to retrieve the aerosol optical properties using satellite-received radiances for multiple wavelengths and pixels. Our algorithm utilizes spatial inhomogeneity of surface reflectance to retrieve aerosol properties, and the main target is urban aerosols. This algorithm can simultaneously retrieve aerosol optical thicknesses (AOT) for fine- and coarse-mode aerosols, soot volume fraction in fine-mode aerosols (SF), and surface reflectance over heterogeneous surfaces such as urban areas that are difficult to obtain by conventional pixel-by-pixel methods. We applied this algorithm to radiances measured by the Greenhouse Gases Observing Satellite/Thermal and Near Infrared Sensor for Carbon Observations-Cloud and Aerosol Image (GOSAT/TANSO-CAI) at four wavelengths and were able to retrieve the aerosol parameters in several urban regions and other surface types. A comparison of the retrieved AOTs with those from the Aerosol Robotic Network (AERONET) indicated retrieval accuracy within ±0.077 on average. It was also found that the column-averaged SF and the aerosol single scattering albedo (SSA) underwent seasonal changes as consistent with the ground surface measurements of SSA and black carbon at Beijing, China.

  7. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances

    USGS Publications Warehouse

    Chin, Y.-P.; Aiken, G.; O'Loughlin, E.

    1994-01-01

    The number- and weight-averaged molecular weights of a number of aquatic fulvic acids, a commercial humic acid, and unfractionated organic matter from four natural water samples were measured by high-pressure size exclusion chromatography (HPSEC). Molecular weights determined in this manner compared favorably with those values reported in the literature. Both recent literature values and our data indicate that these substances are smaller and less polydisperse than previously believed. Moreover, the molecular weights of the organic matter from three of the four natural water samples compared favorably to the fulvic acid samples extracted from similar environments. Bulk spectroscopic properties of the fulvic substances such as molar absorptivity at 280 nm and the E4/E6 ratio were also measured. A strong correlation was observed between molar absorptivity, total aromaticity, and the weight average molecular weights of all the humic substances. This observation suggests that bulk spectroscopic properties can be used to quickly estimate the size of humic substances and their aromatic contents. Both parameters are important with respect to understanding humic substance mobility and their propensity to react with both organic and inorganic pollutants. ?? 1994 American Chemical Society.

  8. Estimating Energy Conversion Efficiency of Thermoelectric Materials: Constant Property Versus Average Property Models

    NASA Astrophysics Data System (ADS)

    Armstrong, Hannah; Boese, Matthew; Carmichael, Cody; Dimich, Hannah; Seay, Dylan; Sheppard, Nathan; Beekman, Matt

    2017-01-01

    Maximum thermoelectric energy conversion efficiencies are calculated using the conventional "constant property" model and the recently proposed "cumulative/average property" model (Kim et al. in Proc Natl Acad Sci USA 112:8205, 2015) for 18 high-performance thermoelectric materials. We find that the constant property model generally predicts higher energy conversion efficiency for nearly all materials and temperature differences studied. Although significant deviations are observed in some cases, on average the constant property model predicts an efficiency that is a factor of 1.16 larger than that predicted by the average property model, with even lower deviations for temperature differences typical of energy harvesting applications. Based on our analysis, we conclude that the conventional dimensionless figure of merit ZT obtained from the constant property model, while not applicable for some materials with strongly temperature-dependent thermoelectric properties, remains a simple yet useful metric for initial evaluation and/or comparison of thermoelectric materials, provided the ZT at the average temperature of projected operation, not the peak ZT, is used.

  9. Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment

    NASA Astrophysics Data System (ADS)

    Nichman, Leonid; Järvinen, Emma; Dorsey, James; Connolly, Paul; Duplissy, Jonathan; Fuchs, Claudia; Ignatius, Karoliina; Sengupta, Kamalika; Stratmann, Frank; Möhler, Ottmar; Schnaiter, Martin; Gallagher, Martin

    2017-09-01

    Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at European Organisation for Nuclear Research (CERN). The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of -30, -40 and -50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition) were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL) measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI). Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE) and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot separate perfectly spherical ice particles from supercooled droplets. Correlation analysis of bulk averaged path depolarisation measurements and single particle measurements of these clouds showed higher R2 values at high concentrations and small diameters, but these results require further confirmation. We find that none of these instruments were able to determine unambiguously the phase of the small particles. These results have implications for the interpretation of atmospheric measurements and parametrisations for modelling, particularly for low particle number concentration clouds.

  10. Evaluation of a Viscosity-Molecular Weight Relationship.

    ERIC Educational Resources Information Center

    Mathias, Lon J.

    1983-01-01

    Background information, procedures, and results are provided for a series of graduate/undergraduate polymer experiments. These include synthesis of poly(methylmethacrylate), viscosity experiment (indicating large effect even small amounts of a polymer may have on solution properties), and measurement of weight-average molecular weight by light…

  11. Fundamental Studies of the Electrode Regions in Arcjet Thrusters

    DTIC Science & Technology

    1998-03-01

    Hall thruster . This contributed to a comprehensive study of the near exit region of our Hall discharge device. To compliment the LIF diagnostics on our Hall thrusters, we have made extensive measurements of the transient and time average plasma properties using conventional electrostatic

  12. The statistical average of optical properties for alumina particle cluster in aircraft plume

    NASA Astrophysics Data System (ADS)

    Li, Jingying; Bai, Lu; Wu, Zhensen; Guo, Lixin

    2018-04-01

    We establish a model for lognormal distribution of monomer radius and number of alumina particle clusters in plume. According to the Multi-Sphere T Matrix (MSTM) theory, we provide a method for finding the statistical average of optical properties for alumina particle clusters in plume, analyze the effect of different distributions and different detection wavelengths on the statistical average of optical properties for alumina particle cluster, and compare the statistical average optical properties under the alumina particle cluster model established in this study and those under three simplified alumina particle models. The calculation results show that the monomer number of alumina particle cluster and its size distribution have a considerable effect on its statistical average optical properties. The statistical average of optical properties for alumina particle cluster at common detection wavelengths exhibit obvious differences, whose differences have a great effect on modeling IR and UV radiation properties of plume. Compared with the three simplified models, the alumina particle cluster model herein features both higher extinction and scattering efficiencies. Therefore, we may find that an accurate description of the scattering properties of alumina particles in aircraft plume is of great significance in the study of plume radiation properties.

  13. Recovery of intrinsic fluorescence from single-point interstitial measurements for quantification of doxorubicin concentration.

    PubMed

    Baran, Timothy M; Foster, Thomas H

    2013-10-01

    We developed a method for the recovery of intrinsic fluorescence from single-point measurements in highly scattering and absorbing samples without a priori knowledge of the sample optical properties. The goal of the study was to demonstrate accurate recovery of fluorophore concentration in samples with widely varying background optical properties, while simultaneously recovering the optical properties. Tissue-simulating phantoms containing doxorubicin, MnTPPS, and Intralipid-20% were created, and fluorescence measurements were performed using a single isotropic probe. The resulting spectra were analyzed using a forward-adjoint fluorescence model in order to recover the fluorophore concentration and background optical properties. We demonstrated recovery of doxorubicin concentration with a mean error of 11.8%. The concentration of the background absorber was recovered with an average error of 23.2% and the scattering spectrum was recovered with a mean error of 19.8%. This method will allow for the determination of local concentrations of fluorescent drugs, such as doxorubicin, from minimally invasive fluorescence measurements. This is particularly interesting in the context of transarterial chemoembolization (TACE) treatment of liver cancer. © 2013 Wiley Periodicals, Inc.

  14. Deciphering chemical order/disorder and material properties at the single-atom level.

    PubMed

    Yang, Yongsoo; Chen, Chien-Chun; Scott, M C; Ophus, Colin; Xu, Rui; Pryor, Alan; Wu, Li; Sun, Fan; Theis, Wolfgang; Zhou, Jihan; Eisenbach, Markus; Kent, Paul R C; Sabirianov, Renat F; Zeng, Hao; Ercius, Peter; Miao, Jianwei

    2017-02-01

    Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling 'real' materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily on average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. This work combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure-property relationships at the fundamental level.

  15. How Well Can Aerosol Measurements from the Terra Morning Polar Orbiting Satellite Represent the Daily Aerosol Abundance and Properties?

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Holben, B. N.; Tanre, D.; Slutzker, I.; Eck, T. F.; Smirnov, A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Terra mission, launched at the dawn of 1999, and Aqua mission to be launched soon, will possess innovative measurements of the aerosol daily spatial distribution, distinguish between dust, smoke and regional pollution and measure aerosol radiative forcing of climate. Their polar orbit gives daily global coverage, however measurements are acquired at specific time of the day. To what degree can present measurements from Terra taken between 10:00 and 11:30 AM local time, represent the daily average aerosol forcing of climate? Here we answer this question using 7 years of data from the distributed ground based 50-70 instrument Aerosol Robotic Network (AERONET) This (AERONET) half a million measurement data set shows that Terra aerosol measurements represent the daily average values within 5%. The excellent representation is found for large dust particles or small aerosol particles from Fires or regional pollution and for any range of the optical thickness, a measure of the amount of aerosol in the atmosphere.

  16. Topography and Mechanical Property Mapping of International Simple Glass Surfaces with Atomic Force Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M

    2014-01-01

    Quantitative Nanomechanical Peak Force (PF-QNM) TappingModeTM atomic force microscopy measurements are presented for the first time on polished glass surfaces. The PF-QNM technique allows for topography and mechanical property information to be measured simultaneously at each pixel. Results for the international simple glass which represents a simplified version of SON68 glass suggests an average Young s modulus of 78.8 15.1 GPa is within the experimental error of the modulus measured for SON68 glass (83.6 2 GPa) with conventional approaches. Application of the PF-QNM technique will be extended to in situ glass corrosion experiments with the goal of gaining atomic-scale insightsmore » into altered layer development by exploiting the mechanical property differences that exist between silica gel (e.g., altered layer) and pristine glass surface.« less

  17. Modeling and measuring limb fine-motor unsteadiness

    NASA Technical Reports Server (NTRS)

    Magdaleno, R. E.; Jex, H. R.; Allen, R. W.

    1973-01-01

    Fine-motor unsteadiness its properties, conceptual and analytical models, and experimental measurements is examined. Based on a data review, the tentative model derived includes: neuromuscular system, grip interface, and control system dynamic elements. The properties of this model change with muscle tension and match a wide group of extant data. A simple experiment was performed to investigate the amplitude/force relationships of the tremor mode. As the finger-pull force increased from 5 to 20 Newtons, the tremor mode frequency for a given individual stayed within roughly + or - 1 Hz over a range from 9-12 Hz, while the average magnitude of the rms tremor acceleration increased tenfold. A standardized test for making such measurements is given and applications in the fields of psychophysiological stress and strain measurements are mentioned.

  18. A New Paradigm for Supergranulation Derived from Large-Distance Time-Distance Helioseismology: Pancakes

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas L.; Hanasoge, Shravan M.

    2012-01-01

    With large separations (10-24 deg heliocentric), it has proven possible to cleanly separate the horizontal and vertical components of supergranular flow with time-distance helioseismology. These measurements require very broad filters in the k-$\\omega$ power spectrum as apparently supergranulation scatters waves over a large area of the power spectrum. By picking locations of supergranulation as peaks in the horizontal divergence signal derived from f-mode waves, it is possible to simultaneously obtain average properties of supergranules and a high signal/noise ratio by averaging over many cells. By comparing ray-theory forward modeling with HMI measurements, an average supergranule model with a peak upflow of 240 m/s at cell center at a depth of 2.3 Mm and a peak horizontal outflow of 700 m/s at a depth of 1.6 Mm. This upflow is a factor of 20 larger than the measured photospheric upflow. These results may not be consistent with earlier measurements using much shorter separations (<5 deg heliocentric). With a 30 Mm horizontal extent and a few Mm in depth, the cells might be characterized as thick pancakes.

  19. CLAAS: the CM SAF cloud property dataset using SEVIRI

    NASA Astrophysics Data System (ADS)

    Stengel, M.; Kniffka, A.; Meirink, J. F.; Lockhoff, M.; Tan, J.; Hollmann, R.

    2013-10-01

    An 8 yr record of satellite based cloud properties named CLAAS (CLoud property dAtAset using SEVIRI) is presented, which was derived within the EUMETSAT Satellite Application Facility on Climate Monitoring. The dataset is based on SEVIRI measurements of the Meteosat Second Generation satellites, of which the visible and near-infrared channels were intercalibrated with MODIS. Including latest development components of the two applied state-of-the-art retrieval schemes ensure high accuracy in cloud detection, cloud vertical placement and microphysical cloud properties. These properties were further processed to provide daily to monthly averaged quantities, mean diurnal cycles and monthly histograms. In particular the collected histogram information enhance the insight in spatio-temporal variability of clouds and their properties. Due to the underlying intercalibrated measurement record, the stability of the derived cloud properties is ensured, which is exemplarily demonstrated for three selected cloud variables for the entire SEVIRI disk and a European subregion. All data products and processing levels are introduced and validation results indicated. The sampling uncertainty of the averaged products in CLAAS is minimized due to the high temporal resolution of SEVIRI. This is emphasized by studying the impact of reduced temporal sampling rates taken at typical overpass times of polar-orbiting instruments. In particular cloud optical thickness and cloud water path are very sensitive to the sampling rate, which in our study amounted to systematic deviations of over 10% if only sampled once a day. The CLAAS dataset facilitates many cloud related applications at small spatial scales of a few kilometres and short temporal scales of a few hours. Beyond this, the spatiotemporal characteristics of clouds on diurnal to seasonal, but also on multi-annual scales, can be studied.

  20. CLAAS: the CM SAF cloud property data set using SEVIRI

    NASA Astrophysics Data System (ADS)

    Stengel, M. S.; Kniffka, A. K.; Meirink, J. F. M.; Lockhoff, M. L.; Tan, J. T.; Hollmann, R. H.

    2014-04-01

    An 8-year record of satellite-based cloud properties named CLAAS (CLoud property dAtAset using SEVIRI) is presented, which was derived within the EUMETSAT Satellite Application Facility on Climate Monitoring. The data set is based on SEVIRI measurements of the Meteosat Second Generation satellites, of which the visible and near-infrared channels were intercalibrated with MODIS. Applying two state-of-the-art retrieval schemes ensures high accuracy in cloud detection, cloud vertical placement and microphysical cloud properties. These properties were further processed to provide daily to monthly averaged quantities, mean diurnal cycles and monthly histograms. In particular, the per-month histogram information enhances the insight in spatio-temporal variability of clouds and their properties. Due to the underlying intercalibrated measurement record, the stability of the derived cloud properties is ensured, which is exemplarily demonstrated for three selected cloud variables for the entire SEVIRI disc and a European subregion. All data products and processing levels are introduced and validation results indicated. The sampling uncertainty of the averaged products in CLAAS is minimized due to the high temporal resolution of SEVIRI. This is emphasized by studying the impact of reduced temporal sampling rates taken at typical overpass times of polar-orbiting instruments. In particular, cloud optical thickness and cloud water path are very sensitive to the sampling rate, which in our study amounted to systematic deviations of over 10% if only sampled once a day. The CLAAS data set facilitates many cloud related applications at small spatial scales of a few kilometres and short temporal scales of a~few hours. Beyond this, the spatiotemporal characteristics of clouds on diurnal to seasonal, but also on multi-annual scales, can be studied.

  1. Scale-invariant Green-Kubo relation for time-averaged diffusivity

    NASA Astrophysics Data System (ADS)

    Meyer, Philipp; Barkai, Eli; Kantz, Holger

    2017-12-01

    In recent years it was shown both theoretically and experimentally that in certain systems exhibiting anomalous diffusion the time- and ensemble-averaged mean-squared displacement are remarkably different. The ensemble-averaged diffusivity is obtained from a scaling Green-Kubo relation, which connects the scale-invariant nonstationary velocity correlation function with the transport coefficient. Here we obtain the relation between time-averaged diffusivity, usually recorded in single-particle tracking experiments, and the underlying scale-invariant velocity correlation function. The time-averaged mean-squared displacement is given by 〈δ2¯〉 ˜2 DνtβΔν -β , where t is the total measurement time and Δ is the lag time. Here ν is the anomalous diffusion exponent obtained from ensemble-averaged measurements 〈x2〉 ˜tν , while β ≥-1 marks the growth or decline of the kinetic energy 〈v2〉 ˜tβ . Thus, we establish a connection between exponents that can be read off the asymptotic properties of the velocity correlation function and similarly for the transport constant Dν. We demonstrate our results with nonstationary scale-invariant stochastic and deterministic models, thereby highlighting that systems with equivalent behavior in the ensemble average can differ strongly in their time average. If the averaged kinetic energy is finite, β =0 , the time scaling of 〈δ2¯〉 and 〈x2〉 are identical; however, the time-averaged transport coefficient Dν is not identical to the corresponding ensemble-averaged diffusion constant.

  2. Battlefield Environment Obscuration Handbook. Volume I

    DTIC Science & Technology

    1980-12-01

    consider only the radiometric properties of the surface whereas in another section we consider the physical properties of the soil . The general...and more arid, though it does not consist of sandy desert but rather, rocky soil and scrub brush. No part of Syria is much more than 300 miles from a...where p is average soil . density and V is measured crater volume. Around 1960, a project was undertaken by the U.S. Army Waterways Experiment Station

  3. Measuring multiple spike train synchrony.

    PubMed

    Kreuz, Thomas; Chicharro, Daniel; Andrzejak, Ralph G; Haas, Julie S; Abarbanel, Henry D I

    2009-10-15

    Measures of multiple spike train synchrony are essential in order to study issues such as spike timing reliability, network synchronization, and neuronal coding. These measures can broadly be divided in multivariate measures and averages over bivariate measures. One of the most recent bivariate approaches, the ISI-distance, employs the ratio of instantaneous interspike intervals (ISIs). In this study we propose two extensions of the ISI-distance, the straightforward averaged bivariate ISI-distance and the multivariate ISI-diversity based on the coefficient of variation. Like the original measure these extensions combine many properties desirable in applications to real data. In particular, they are parameter-free, time scale independent, and easy to visualize in a time-resolved manner, as we illustrate with in vitro recordings from a cortical neuron. Using a simulated network of Hindemarsh-Rose neurons as a controlled configuration we compare the performance of our methods in distinguishing different levels of multi-neuron spike train synchrony to the performance of six other previously published measures. We show and explain why the averaged bivariate measures perform better than the multivariate ones and why the multivariate ISI-diversity is the best performer among the multivariate methods. Finally, in a comparison against standard methods that rely on moving window estimates, we use single-unit monkey data to demonstrate the advantages of the instantaneous nature of our methods.

  4. Influences of Co doping on the structural and optical properties of ZnO nanostructured

    NASA Astrophysics Data System (ADS)

    Majeed Khan, M. A.; Wasi Khan, M.; Alhoshan, Mansour; Alsalhi, M. S.; Aldwayyan, A. S.

    2010-07-01

    Pure and Co-doped ZnO nanostructured samples have been synthesized by a chemical route. We have studied the structural and optical properties of the samples by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), field-emission transmission electron microscope (FETEM), energy-dispersive X-ray (EDX) analysis and UV-VIS spectroscopy. The XRD patterns show that all the samples are hexagonal wurtzite structures. Changes in crystallite size due to mechanical activation were also determined from X-ray measurements. These results were correlated with changes in particle size followed by SEM and TEM. The average crystallite sizes obtained from XRD were between 20 to 25 nm. The TEM images showed the average particle size of undoped ZnO nanostructure was about 20 nm whereas the smallest average grain size at 3% Co was about 15 nm. Optical parameters such as absorption coefficient ( α), energy band gap ( E g ), the refractive index ( n), and dielectric constants ( σ) have been determined using different methods.

  5. Measurement of the relationship between perceived and computed color differences

    NASA Astrophysics Data System (ADS)

    García, Pedro A.; Huertas, Rafael; Melgosa, Manuel; Cui, Guihua

    2007-07-01

    Using simulated data sets, we have analyzed some mathematical properties of different statistical measurements that have been employed in previous literature to test the performance of different color-difference formulas. Specifically, the properties of the combined index PF/3 (performance factor obtained as average of three terms), widely employed in current literature, have been considered. A new index named standardized residual sum of squares (STRESS), employed in multidimensional scaling techniques, is recommended. The main difference between PF/3 and STRESS is that the latter is simpler and allows inferences on the statistical significance of two color-difference formulas with respect to a given set of visual data.

  6. Magnetic and luminescent properties of multifunctional GdF3:Eu3+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Wong, Hon-Tung; Chan, H. L. W.; Hao, J. H.

    2009-07-01

    Multifunctional GdF3:Eu3+ nanoparticles were synthesized using a hydrothermal method. Photoluminescent excitation and emission spectra, and lifetime were measured. The average lifetime of the nanoparticles is about 11 ms. The nanoparticle exhibits paramagnetism at both 293 and 77 K, ascribing to noninteracting localized nature of the magnetic moment in the compound. The magnetic properties of GdF3:Eu3+ is intrinsic to the Gd3+ ions, which is unaffected by the doping concentration of the Eu3+ luminescent centers. A measured magnetization of approximately 2 emu/g is close to reported values of other nanoparticles for bioseparation.

  7. Influence of convection at outer ceramic surfaces on the characterization of thermoelectric modules by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Beltrán-Pitarch, Braulio; García-Cañadas, Jorge

    2018-02-01

    Impedance spectroscopy is a useful method for the characterization of thermoelectric (TE) modules. It can determine with high accuracy the module's dimensionless figure of merit (zT) as well as the average TE properties of the module's thermoelements. Interpretation of impedance results requires the use of a theoretical model (equivalent circuit), which provides the desired device parameters after a fitting is performed to the experimental results. Here, we extend the currently available equivalent circuit, only valid for adiabatic conditions, to account for the effect of convection at the outer surface of the module ceramic plates, which is the part of the device where convection is more prominent. This is performed by solving the heat equation in the frequency domain including convection heat losses. As a result, a new element (convection resistance) appears in the developed equivalent circuit, which starts to influence at mid-low frequencies, causing a decrease of the typically observed semicircle in the impedance spectrum. If this effect is not taken into account, an underestimation of the zT occurs when measurements are performed under room conditions. The theoretical model is validated by experimental measurements performed in a commercial module with and without vacuum. Interestingly, the use of the new equivalent circuit allows the determination of the convection heat transfer coefficient (h), if the module's Seebeck coefficient is known, and an impedance measurement in vacuum is performed, opening up the possibility to develop TE modules as h sensors. On the other hand, if h is known, all the properties of the module (zT, ohmic (internal) resistance, average Seebeck coefficient and average thermal conductivity of the thermoelements and thermal conductivity of the ceramics) can be obtained from one impedance measurement in vacuum and another measurement under room conditions.

  8. Evaluation of Temperature-Dependent Effective Material Properties and Performance of a Thermoelectric Module

    NASA Astrophysics Data System (ADS)

    Chien, Heng-Chieh; Chu, En-Ting; Hsieh, Huey-Lin; Huang, Jing-Yi; Wu, Sheng-Tsai; Dai, Ming-Ji; Liu, Chun-Kai; Yao, Da-Jeng

    2013-07-01

    We devised a novel method to evaluate the temperature-dependent effective properties of a thermoelectric module (TEM): Seebeck coefficient ( S m), internal electrical resistance ( R m), and thermal conductance ( K m). After calculation, the effective properties of the module are converted to the average material properties of a p- n thermoelectric pillar pair inside the module: Seebeck coefficient ( S TE), electrical resistivity ( ρ TE), and thermal conductivity ( k TE). For a commercial thermoelectric module (Altec 1091) chosen to verify the novel method, the measured S TE has a maximum value at bath temperature of 110°C; ρ TE shows a positive linear trend dependent on the bath temperature, and k TE increases slightly with increasing bath temperature. The results show the method to have satisfactory measurement performance in terms of practicability and reliability; the data for tests near 23°C agree with published values.

  9. Characterization of bone-implant fixation using modal analysis: Application to a press-fit implant model

    PubMed Central

    Swider, P.; Guérin, G.; Baas, Joergen; Søballe, Kjeld; Bechtold, Joan E.

    2013-01-01

    Orthopaedic implant fixation is strongly dependant upon the effective mechanical properties of newly formed tissue. In this study, we evaluated the potential of modal analysis to derive viscoelastic properties of periprosthetic tissue. We hypothesized that Young's modulus and loss factor could be obtained by a combined theoretical, computational and experimental modal analysis approach. This procedure was applied to ex vivo specimens from a cylindrical experimental implant placed in cancellous bone in an unloaded press-fit configuration, obtained after a four week observation period. Four sections each from seven textured titanium implants were investigated. The first resonant frequency and loss factor were measured. Average experimentally determined loss factor was 2% (SD 0.4%) and average first resonant frequency was 2.1 KHz (SD: 50). A 2D axisymmetric finite element (FE) model identified effective Young's modulus of tissue using experimental resonant frequencies as input. Average value was 42 MPa (SD: 2.4) and no significant difference between specimens was observed. In this pilot study, the non-destructive method allowed accurate measure of dynamic loss factor and resonant frequency and derivation of effective Young's modulus. Prior to implementing this dynamic protocol for broader mechanical evaluation of experimental implant fixation, further work is needed to determine if this affects results from subsequent destructive shear push-out tests. PMID:19464687

  10. Rain chemistry and cloud composition and microphysics in a Caribbean tropical montane cloud forest under the influence of African dust

    NASA Astrophysics Data System (ADS)

    Torres-Delgado, Elvis; Valle-Diaz, Carlos J.; Baumgardner, Darrel; McDowell, William H.; González, Grizelle; Mayol-Bracero, Olga L.

    2015-04-01

    It is known that huge amounts of mineral dust travels thousands of kilometers from the Sahara and Sahel regions in Africa over the Atlantic Ocean reaching the Caribbean, northern South America and southern North America; however, not much is understood about how the aging process that takes place during transport changes dust properties, and how the presence of this dust affects cloud's composition and microphysics. This African dust reaches the Caribbean region mostly in the summer time. In order to improve our understanding of the role of long-range transported African dust (LRTAD) in cloud formation processes in a tropical montane cloud forest (TMCF) in the Caribbean region we had field campaigns measuring dust physical and chemical properties in summer 2013, as part of the Puerto Rico African Dust and Cloud Study (PRADACS), and in summer 2014, as a part of the Luquillo Critical Zone Observatory (LCZO) and in collaboration with the Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE). Measurements were performed at the TMCF of Pico del Este (PE, 1051 masl) and at the nature reserve of Cabezas de San Juan (CSJ, 60 masl). In both stations we monitored meteorological parameters (e.g., temperature, wind speed, wind direction). At CSJ, we measured light absorption and scattering at three wavelengths (467, 528 and 652 nm). At PE we collected cloud and rainwater and monitored cloud microphysical properties (e.g., liquid water content, droplet size distribution, droplet number concentration, effective diameter and median volume diameter). Data from aerosol models, satellites, and back-trajectories were used together with CSJ measurements to classify air masses and samples collected at PE in the presence or absence of dust. Soluble ions, insoluble trace metals, pH and conductivity were measured for cloud and rainwater. Preliminary results for summer 2013 showed that in the presence of LRTAD (1) the average conductivity of cloud water was almost twice (81.1 μS/cm) as that in the absence of LRTAD (47.7 μS/cm), (2) the average conductivity in rainwater was slightly higher (15.0 μS/cm vs 12.8 μS/cm), and (3) the average pH was slightly higher for both cloud and rainwater samples (average of 6.41 for cloud water and 6.37 for rainwater). Detailed results on the chemical composition (water-soluble ions, trace metals, total organic carbon and total nitrogen) of cloud and rainwater, cloud microphysics, and on how these properties are affected in the presence of dust events will be presented at the meeting.

  11. Angle-dependent lubricated tribological properties of stainless steel by femtosecond laser surface texturing

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Li, Yang-Bo; Bai, Feng; Wang, Cheng-Wei; Zhao, Quan-Zhong

    2016-07-01

    Lubricated tribological properties of stainless steel were investigated by femtosecond laser surface texturing. Regular-arranged micro-grooved textures with different spacing and micro-groove inclination angles (between micro-groove path and sliding direction) were produced on AISI 304L steel surfaces by an 800 nm femtosecond laser. The spacing of micro-groove was varied from 25 to 300 μm, and the inclination angles of micro-groove were measured as 90° and 45°. The tribological properties of the smooth and textured surfaces with micro-grooves were investigated by reciprocating ball-on-flat tests against Al2O3 ceramic balls under starved oil lubricated conditions. Results showed that the spacing of micro-grooves significantly affected the tribological property. With the increase of micro-groove spacing, the average friction coefficients and wear rates of textured surfaces initially decreased then increased. The tribological performance also depended on the inclination angles of micro-grooves. Among the investigated patterns, the micro-grooves perpendicular to the sliding direction exhibited the lowest average friction coefficient and wear rate to a certain extent. Femtosecond laser-induced surface texturing may remarkably improve friction and wear properties if the micro-grooves were properly distributed.

  12. Optical Parametric Amplification of Single Photon: Statistical Properties and Quantum Interference

    NASA Astrophysics Data System (ADS)

    Xu, Xue-Xiang; Yuan, Hong-Chun

    2014-05-01

    By using phase space method, we theoretically investigate the quantum statistical properties and quantum interference of optical parametric amplification of single photon. The statistical properties, such as the Wigner function (WF), average photon number, photon number distribution and parity, are derived analytically for the fields of the two output ports. The results indicate that the fields in the output ports are multiphoton states rather than single photon state due to the amplification of the optical parametric amplifiers (OPA). In addition, the phase sensitivity is also examined by using the detection scheme of parity measurement.

  13. Ultrasonic model and system for measurement of corneal biomechanical properties and validation on phantoms.

    PubMed

    Liu, Jun; He, Xiaoyin; Pan, Xueliang; Roberts, Cynthia J

    2007-01-01

    Non-invasive measurement of biomechanical properties of corneas may provide important information for ocular disease management and therapeutic procedures. An ultrasonic non-destructive evaluation method with a wave propagation model was developed to determine corneal biomechanical properties in vivo. In this study, we tested the feasibility of the approach in differentiating the mechanical properties of soft contact lenses as corneal phantoms. Three material types of soft contact lenses (six samples in each group) were measured using a broadband ultrasound transducer. The ultrasonic reflections from the contact lenses were recorded by a 500MHz/8-bit digitizer, and displayed and processed by a PC. A reference signal was recorded to compute the normalized power spectra using Fast Fourier Transformation. An inverse algorithm based on least-squares minimization was used to reconstruct three parameters of the contact lenses: density, thickness, and elastic constants lambda+2micro. The thickness of each sample was verified using an electronic thickness gauge, and the averaged density for each type of lenses was verified using Archimedes' principle and manufacturer's report. Our results demonstrated that the ultrasonic system was able to differentiate the elastic properties of the three types of the soft contact lenses with statistical significance (P-value<0.001). The reconstructed thicknesses and densities agreed well with the independent measurements. Our studies on corneal phantoms indicated that the ultrasonic system was sensitive and accurate in measuring the material properties of cornea-like structures. It is important to optimize the system for in vivo measurements.

  14. Equations of state and transport properties of mixtures in the warm dense regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Yong; Dai, Jiayu; Kang, Dongdong

    2015-02-15

    We have performed average-atom molecular dynamics to simulate the CH and LiH mixtures in the warm dense regime, and obtained equations of state and the ionic transport properties. The electronic structures are calculated by using the modified average-atom model, which have included the broadening of energy levels, and the ion-ion pair potentials of mixtures are constructed based on the temperature-dependent density functional theory. The ionic transport properties, such as ionic diffusion and shear viscosity, are obtained through the ionic velocity correlation functions. The equations of state and transport properties for carbon, hydrogen and lithium, hydrogen mixtures in a wide regionmore » of density and temperature are calculated. Through our computing the average ionization degree, average ion-sphere diameter and transition properties in the mixture, it is shown that transport properties depend not only on the ionic mass but also on the average ionization degree.« less

  15. The Mean as the Balance Point: Thought Experiments with Measuring Sticks

    ERIC Educational Resources Information Center

    Flores, A.

    2008-01-01

    This article presents activities to help students establish a connection between the mean and the balance point of a lever. The lever and its law are discussed briefly. Thought experiments with a meterstick are presented to emphasize different properties of the mean and weighted averages. (Contains 16 figures.)

  16. Property Values as a Measure of Neighborhoods: An Application of Hedonic Price Theory.

    PubMed

    Leonard, Tammy; Powell-Wiley, Tiffany M; Ayers, Colby; Murdoch, James C; Yin, Wenyuan; Pruitt, Sandi L

    2016-07-01

    Researchers measuring relationships between neighborhoods and health have begun using property appraisal data as a source of information about neighborhoods. Economists have developed a rich tool kit to understand how neighborhood characteristics are quantified in appraisal values. This tool kit principally relies on hedonic (implicit) price models and has much to offer regarding the interpretation and operationalization of property appraisal data-derived neighborhood measures, which goes beyond the use of appraisal data as a measure of neighborhood socioeconomic status. We develop a theoretically informed hedonic-based neighborhood measure using residuals of a hedonic price regression applied to appraisal data in a single metropolitan area. We describe its characteristics, reliability in different types of neighborhoods, and correlation with other neighborhood measures (i.e., raw neighborhood appraisal values, census block group poverty, and observed property characteristics). We examine the association between all neighborhood measures and body mass index. The hedonic-based neighborhood measure was correlated in the expected direction with block group poverty rate and observed property characteristics. The neighborhood measure and average raw neighborhood appraisal value, but not census block group poverty, were associated with individual body mass index. We draw theoretically consistent methodology from the economics literature on hedonic price models to demonstrate how to leverage the implicit valuation of neighborhoods contained in publicly available appraisal data. Consistent measurement and application of the hedonic-based neighborhood measures in epidemiology will improve understanding of the relationships between neighborhoods and health. Researchers should proceed with a careful use of appraisal values utilizing theoretically informed methods such as this one.

  17. An approach for characterising cellular polymeric foam structures using computed tomography

    NASA Astrophysics Data System (ADS)

    Chen, Youming; Das, Raj; Battley, Mark

    2018-02-01

    Global properties of foams depend on foam base materials and microstructures. Characterisation of foam microstructures is important for developing numerical foam models. In this study, the microstructures of four polymeric structural foams were imaged using a micro-CT scanner. Image processing and analysis methods were proposed to quantify the relative density, cell wall thickness and cell size of these foams from the captured CT images. Overall, the cells in these foams are fairly isotropic, and cell walls are rather straight. The measured average relative densities are in good agreement with the actual values. Relative density, cell size and cell wall thickness in these foams are found to vary along the thickness of foam panel direction. Cell walls in two of these foams are found to be filled with secondary pores. In addition, it is found that the average cell wall thickness measured from 2D images is around 1.4 times of that measured from 3D images, and the average cell size measured from 3D images is 1.16 times of that measured from 2D images. The distributions of cell wall thickness and cell size measured from 2D images exhibit lager dispersion in comparison to those measured from 3D images.

  18. Optical radiative properties of ablating polymers exposed to high-power arc plasmas

    NASA Astrophysics Data System (ADS)

    Becerra, Marley; Pettersson, Jonas

    2018-03-01

    The radiative properties of polymers exposed to high-intensity radiation are of importance for the numerical simulation of arc-induced ablation. The paper investigates the optical properties of polymethylmethacrylate PMMA and polyamide PA6 films exposed to high-power arc plasmas, which can cause ablation of the material. A four-flux radiative approximation is first used to estimate absorption and scattering coefficients of the tested materials in the ultraviolet (UV) and in the visible (VIS) ranges from spectrophotometric measurements. The temperature-induced variation of the collimated transmissivity of the polymers is also measured from room temperature to the glass temperature of PMMA and the melting temperature of PA6. Furthermore, band-averaged absorption and scattering coefficients of non-ablating and ablating polymers are estimated from the UV to the short-wavelength infrared (SWIR), covering the range of interest for the simulation of arc-induced ablation. These estimates are obtained from collimated transmissivities measured with an additional in situ photometric system that uses a high-power, transient arc plasma to both illuminate the samples and to induce ablation. It is shown that the increase in the bulk temperature of PA6 leads to a strong reversible increase in collimated transmissivity, significantly reducing the absorption and scattering coefficients of the material. A weaker but opposite effect of temperature on the optical properties is found in PMMA. As a consequence, it is suggested that the absorption coefficient of polymers used for arc-induced ablation estimates should not be taken directly from direct collimated transmissivity measurements at room temperature. The band-averaged radiation measurements also show that the layer of products released by ablation of PMMA produces scattering radiation losses mainly in the VIS-SWIR ranges, which are only a small fraction of the total incident arc radiation. In a similar manner, the ablation layer of PA6 leads to weak absorption radiation losses, although mainly in the UV range.

  19. Experimental Analysis of Steel Beams Subjected to Fire Enhanced by Brillouin Scattering-Based Fiber Optic Sensor Data.

    PubMed

    Bao, Yi; Chen, Yizheng; Hoehler, Matthew S; Smith, Christopher M; Bundy, Matthew; Chen, Genda

    2017-01-01

    This paper presents high temperature measurements using a Brillouin scattering-based fiber optic sensor and the application of the measured temperatures and building code recommended material parameters into enhanced thermomechanical analysis of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed temperature sensor captures detailed, nonuniform temperature distributions that are compared locally with thermocouple measurements with less than 4.7% average difference at 95% confidence level. The simulated strains and deflections are validated using measurements from a second distributed fiber optic (strain) sensor and two linear potentiometers, respectively. The results demonstrate that the temperature-dependent material properties specified in the four investigated building codes lead to strain predictions with less than 13% average error at 95% confidence level and that the Europe building code provided the best predictions. However, the implicit consideration of creep in Europe is insufficient when the beam temperature exceeds 800°C.

  20. Elastic properties of transparent nano-polycrystalline diamond measured by GHz-ultrasonic interferometry and resonant sphere methods

    NASA Astrophysics Data System (ADS)

    Chang, Yun-Yuan; Jacobsen, Steven D.; Kimura, Masaki; Irifune, Tetsuo; Ohno, Ichiro

    2014-03-01

    The sound velocities and elastic moduli of transparent nano-polycrystalline diamond (NPD) have been determined by GHz-ultrasonic interferometry on three different bulk samples, and by resonant spectroscopy on a spherically fabricated NPD sample. We employ a newly-developed optical contact micrometer to measure the thickness of ultrasonic samples to ±0.05 μm with a spatial resolution of ∼50 μm in the same position of the GHz-ultrasonic measurements, resulting in acoustic-wave sound velocity measurements with uncertainties of 0.005-0.02%. The isotropic and adiabatic bulk and shear moduli of NPD measured by GHz-ultrasonic interferometry are KS0 = 442.5 (±0.5) GPa and G0 = 532.4 (±0.5) GPa. By rotating the shear-wave polarization direction, we observe no transverse anisotropy in this NPD. Using resonant sphere spectroscopy, we obtain KS0 = 440.3 (±0.5) GPa and G0 = 532.7 (±0.4) GPa. For comparison, we also measured by GHz-ultrasonic interferometry the elastic constants of a natural single-crystal type-IA diamond with about one-half the experimental uncertainty of previous measurements. The resulting Voigt-Reuss-Hill averaged bulk and shear moduli of natural diamond are KS0 = 441.8 (±0.8) GPa and G0 = 532.6 (±0.5) GPa, demonstrating that the bulk-elastic properties of transparent NPD are equivalent to natural single-crystal diamond as calculated from polycrystalline averaging of its elastic constants.

  1. Predicting the Coupling Properties of Axially-Textured Materials.

    PubMed

    Fuentes-Cobas, Luis E; Muñoz-Romero, Alejandro; Montero-Cabrera, María E; Fuentes-Montero, Luis; Fuentes-Montero, María E

    2013-10-30

    A description of methods and computer programs for the prediction of "coupling properties" in axially-textured polycrystals is presented. Starting data are the single-crystal properties, texture and stereography. The validity and proper protocols for applying the Voigt, Reuss and Hill approximations to estimate coupling properties effective values is analyzed. Working algorithms for predicting mentioned averages are given. Bunge's symmetrized spherical harmonics expansion of orientation distribution functions, inverse pole figures and (single and polycrystals) physical properties is applied in all stages of the proposed methodology. The established mathematical route has been systematized in a working computer program. The discussion of piezoelectricity in a representative textured ferro-piezoelectric ceramic illustrates the application of the proposed methodology. Polycrystal coupling properties, predicted by the suggested route, are fairly close to experimentally measured ones.

  2. Observational Properties of Coronal Mass Ejections

    DTIC Science & Technology

    2006-01-01

    speeds 2.5. Masses and Energies of CMEs exceeded 2000 km s-1; the fastest CME speed measured thus far was 2657 km s-1 on 4 November 2000. When compiled The...accelerated. The average deceleration of the fastest (> 900 km s-1) The CME kinetic energies can also be calculated from the CME group is -16 m s-2...OBSERVATIONAL PROPERTIES OF CORONAL MASS EJECTIONS 15 *"...... .. ’..’... ... ’...... kinetic energy is 2.4 x 1030 ergs (5.0 x 1029 ergs) [Vourlidas, 2004

  3. Stability and Decay Properties of Foam in Seawater.

    DTIC Science & Technology

    1987-04-24

    DECAY PROPERTIES OF FOAM IN SEAWATER FMRODUCTION Foam is formed by the entrainment of air in the form of small bubbles at and just beneath the...181 has examined how the size distributions of foam patches formed by wave action on a sandy beach vary with time. It was found that the mean diameter...typical foam patch was 25 seconds. Zheng et al [25] also measured the average lifetime of a foam layer formed at the surface by wave breaking on a

  4. Characteristic of Nano-Cu Film Prepared by Energy Filtrating Magnetron Sputtering Technique and Its Optical Property

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoyong; Hu, Xing; Yao, Ning

    2015-03-01

    At the optimized deposition parameters, Cu film was deposited by the direct current magnetron sputtering (DMS) technique and the energy filtrating magnetron sputtering (EFMS) technique. The nano-structure was charactered by x-ray diffraction. The surface morphology of the film was observed by atomic force microscopy. The optical properties of the film were measured by spectroscopic ellipsometry. The refractive index, extinction coefficient and the thickness of the film were obtained by the fitted spectroscopic ellipsometry data using the Drude-Lorentz oscillator optical model. Results suggested that a Cu film with different properties was fabricated by the EFMS technique. The film containing smaller particles is denser and the surface is smoother. The average transmission coefficient, the refractive index and the extinction coefficients are higher than those of the Cu film deposited by the DMS technique. The average transmission coefficient (400-800 nm) is more than three times higher. The refractive index and extinction coefficient (at 550 nm) are more than 36% and 14% higher, respectively.

  5. Gold and gold-iron oxide magnetic glyconanoparticles: synthesis, characterization and magnetic properties.

    PubMed

    de la Fuente, Jesús M; Alcántara, David; Eaton, Peter; Crespo, Patricia; Rojas, Teresa C; Fernandez, Asunción; Hernando, Antonio; Penadés, Soledad

    2006-07-06

    The preparation, characterization and the magnetic properties of gold and gold-iron oxide glyconanoparticles (GNPs) are described. Glyconanoparticles were prepared in a single step procedure in the presence of aqueous solution of thiol functionalized neoglycoconjugates and either gold salts or both gold and iron salts. Neoglycoconjugates of lactose and maltose disaccharides with different linkers were used. Iron-free gold or gold-iron oxide GNPs with controlled gold-iron ratios were obtained. The average core-size diameters are in the range of 1.5-2.5 nm. The GNPs are fully characterized by (1)H NMR spectrometry, transmission electron microscopy (TEM), and UV-vis and X-ray absorption (XAS) spectroscopies. Inductive plasma-atomic emission spectrometry (ICP) and elemental analysis gave the average number of neoglycoconjugates per cluster. The magnetic properties were measured in a SQUID magnetometer. The most remarkable results was the observation of a permanent magnetism up to room temperature in the iron-free gold GNPs, that was not present in the corresponding gold-iron oxide GNPs.

  6. Tensile properties of cast titanium alloys: Titanium-6Al-4V ELI and Titanium-5Al-2.5Sn ELI

    NASA Technical Reports Server (NTRS)

    Billinghurst, E. E., Jr.

    1992-01-01

    This work was performed to determine the tensile properties of cast, hot isostatic pressed (HIP'ed), and annealed titanium alloys, Ti-6Al-4V ELI and Ti-5Al-2.5Sn ELI, that are candidate materials for the space transportation main engine (STME) liquid hydrogen turbopump impeller. Samples of the cast alloys were HIP'ed, annealed, and machined into tensile specimens. The specimens were tested in air at ambient temperature (70 F) and also at -423 F in liquid hydrogen. The Ti-6Al-4V alloy had an average ultimate strength of 129.1 ksi at 70 F and 212.2 ksi at -423 F. The Ti-5Al-2.5Sn alloy had an average ultimate strength of 108.4 ksi at 70 degrees F and 185.0 ksi at -423 F. The ductility, as measured by reduction of area, for the Ti-6Al-4V averaged 15.2 percent at 70 F and 8.7 percent at -423 F, whereas for the Ti-5Al-2.5Sn alloy average reduction of area was 24.6 percent at 70 F and 11.7 percent at -423 F.

  7. Influence of test fuel properties and composition on UNECE R101 CO2 and fuel economy valuation

    NASA Astrophysics Data System (ADS)

    Parker, A.

    2015-12-01

    CO2 emission and fuel consumption of passenger cars is now assessed by using a simplistic procedure measuring the emission during a test performed without any control of the fuel properties and computing the fuel consumption through an unsophisticated formula. As pump gasoline and diesel fuels are refinery products mixture of many different hydrocarbons, and in case of gasoline may also contain a significant amount of oxygenates, the fuel properties, including the density, carbon and energy content may strongly vary from one pump fuel to the other. Being the specific test fuels carefully selected by the car manufacturers and everything but randomly chosen pump fuels, the claimed CO2 emission and fuel economy figures may differ largely from the certification values. I show from the analysis of the 2014 UK government data for 2358 diesel and 2103 petrol vehicles how same volumes of only theoretically same pump fuels used during the certification test by the cars manufacturers unfortunately do not produce the same carbon dioxide emission, and very likely do not have the same energy content. The CO2 emission per liter of diesel fuel is shown to oscillate froma maximum of 3049 g to a minimum of 2125 g, with an average of 2625 g, froma +16.13% to a -19.06% of the average. TheCO2 emission per liter of petrol fuel is shown to oscillate even more from a maximum of 3735 g to a minimum of 1767 g with an average of 2327 g, from a +60.48% to a -24.05% of the average. The proposed solution is to center the assessment on the energy demand by measuring with accuracy the mass of fuel consumed and the fuel properties of the test fuel starting from the lower heating. The corrected fuel consumption and the corrected carbon dioxide emission to mention from the test are then computed by using pure hydrocarbon reference fuels for diesel and petrol having a given lower heating value and a given hydrocarbon composition. Alternatively, exactly the same test fuel should be used by all the manufacturers.

  8. Statistical properties of a utility measure of observer performance compared to area under the ROC curve

    NASA Astrophysics Data System (ADS)

    Abbey, Craig K.; Samuelson, Frank W.; Gallas, Brandon D.; Boone, John M.; Niklason, Loren T.

    2013-03-01

    The receiver operating characteristic (ROC) curve has become a common tool for evaluating diagnostic imaging technologies, and the primary endpoint of such evaluations is the area under the curve (AUC), which integrates sensitivity over the entire false positive range. An alternative figure of merit for ROC studies is expected utility (EU), which focuses on the relevant region of the ROC curve as defined by disease prevalence and the relative utility of the task. However if this measure is to be used, it must also have desirable statistical properties keep the burden of observer performance studies as low as possible. Here, we evaluate effect size and variability for EU and AUC. We use two observer performance studies recently submitted to the FDA to compare the EU and AUC endpoints. The studies were conducted using the multi-reader multi-case methodology in which all readers score all cases in all modalities. ROC curves from the study were used to generate both the AUC and EU values for each reader and modality. The EU measure was computed assuming an iso-utility slope of 1.03. We find mean effect sizes, the reader averaged difference between modalities, to be roughly 2.0 times as big for EU as AUC. The standard deviation across readers is roughly 1.4 times as large, suggesting better statistical properties for the EU endpoint. In a simple power analysis of paired comparison across readers, the utility measure required 36% fewer readers on average to achieve 80% statistical power compared to AUC.

  9. International Round-Robin Study on Thermoelectric Transport Properties of n-type Half-Heusler from 300 K to 773 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsin; Bai, Shengqiang; Chen, Lidong

    2015-09-03

    International transport property measurement round-robins have been conducted by the Thermoelectric Annex under the International Energy Agency (IEA) Implementing Agreement on Advanced Materials for Transportation (AMT). The previous round-robins used commercially available bismuth telluride as the testing material, with the goals of understanding measurement issues and developing standard testing procedures. The current round-robin extended the measurement temperature range to 773 K. It was designed to meet the increasing demands for reliable transport data of thermoelectric materials for power generation applications. Eleven laboratories from six IEA-AMT member countries participated in this study. Half-Heusler (n-type) material prepared by GMZ Energy was selectedmore » for the round-robin. The measured transport properties showed narrower distribution on uncertainties compared to previous round-robin efforts. The study intentionally included multiple testing methods and instrument types. Over the full temperature range, the measurement discrepancies on the figure of merit, ZT, in this round-robin were ±1.5 to ±16.4% from the averages.« less

  10. Elasticity of Deep-Earth Materials at High P and T: Implication for Earths Lower Mantle

    NASA Astrophysics Data System (ADS)

    Bass, Jay; Sinogeikin, S. V.; Mattern, Estelle; Jackson, J. M.; Matas, J.; Wang, J.; Ricard, Y.

    2005-03-01

    Brillouin spectroscopy allows measurements of sound velocities and elasticity on phases of geophysical interest at high Pressures and Temperatures. This technique was used to measure the properties of numerous important phases of Earths deep interior. Emphasis is now on measurements at elevated P-T conditions, and measurements on dense polycrystals. Measurements to 60 GPa were made using diamond anvil cells. High temperature is achieved by electrical resistance and laser heating. Excellent results are obtained for polycrystalline samples of dense oxides such as silicate spinels, and (Mg,Al)(Si,Al)O3 --perovskites. A wide range of materials can now be characterized. These and other results were used to infer Earths average lower mantle composition and thermal structure by comparing mineral properties at lower mantle P-T conditions to global Earth models. A formal inversion procedure was used. Inversions of density and bulk sound velocity do not provide robust compositional and thermal models. Including shear properties in the inversions is important to obtain unique solutions. We discuss the range of models consistent with present lab results, and data needed to further refine lower mantle models.

  11. Comparison of Optical versus Ultrasonic Biometry in Keratoconic Eyes

    PubMed Central

    Çınar, Yasin; Cingü, Abdullah Kürşat; Şahin, Muhammed; Yüksel, Harun; Türkcü, Fatih Mehmet; Çınar, Tuba; Çaça, İhsan

    2013-01-01

    Purpose. To compare the measurements of optical versus ultrasonic biometry devices in keratoconic eyes. Materials and Methods. Forty-two eyes of 42 keratoconus (KC) patients enrolled in the study were examined. Clinical and demographic characteristics of the patients were noted, and detailed ophthalmological examination was performed. Following Pentacam measurements, central corneal thickness (CCT), anterior chamber depth (ACD), lens thickness (LT), and axial length (AL) were obtained using the Lenstar and US biometer to determine the reproducibility of the measurements between the two devices in keratoconic eyes. The Bland-Altman method was used to describe the agreement between the two devices. Results. The Lenstar could not measure at least one of the biometric properties in one eye and did not automatically give the corrected ACD in 2/3 of our study population. The Lenstar measured CCT (average difference 5.4 ± 19.6 µm; ICC = 0.90; P < 0.001), LT (average difference 0.13 ± 0.17 mm; ICC = 0.67; P < 0.001), and AL (average difference 0.10 ± 0.76 mm; ICC = 0.75; P < 0.001) thinner than US biometer, whereas it measured ACD (average difference 0.18 ± 0.17 mm; ICC = 0.85; P < 0.001) deeper than US biometer in keratoconic eyes. Conclusion. Although the difference between the measurements obtained using the two devices might be clinically acceptable, US biometry and Lenstar should not be used interchangeably for biometric measurements in KC patients. PMID:23986865

  12. Comparison of Optical versus Ultrasonic Biometry in Keratoconic Eyes.

    PubMed

    Cınar, Yasin; Cingü, Abdullah Kürşat; Sahin, Muhammed; Sahin, Alparslan; Yüksel, Harun; Türkcü, Fatih Mehmet; Cınar, Tuba; Caça, Ihsan

    2013-01-01

    Purpose. To compare the measurements of optical versus ultrasonic biometry devices in keratoconic eyes. Materials and Methods. Forty-two eyes of 42 keratoconus (KC) patients enrolled in the study were examined. Clinical and demographic characteristics of the patients were noted, and detailed ophthalmological examination was performed. Following Pentacam measurements, central corneal thickness (CCT), anterior chamber depth (ACD), lens thickness (LT), and axial length (AL) were obtained using the Lenstar and US biometer to determine the reproducibility of the measurements between the two devices in keratoconic eyes. The Bland-Altman method was used to describe the agreement between the two devices. Results. The Lenstar could not measure at least one of the biometric properties in one eye and did not automatically give the corrected ACD in 2/3 of our study population. The Lenstar measured CCT (average difference 5.4 ± 19.6 µm; ICC = 0.90; P < 0.001), LT (average difference 0.13 ± 0.17 mm; ICC = 0.67; P < 0.001), and AL (average difference 0.10 ± 0.76 mm; ICC = 0.75; P < 0.001) thinner than US biometer, whereas it measured ACD (average difference 0.18 ± 0.17 mm; ICC = 0.85; P < 0.001) deeper than US biometer in keratoconic eyes. Conclusion. Although the difference between the measurements obtained using the two devices might be clinically acceptable, US biometry and Lenstar should not be used interchangeably for biometric measurements in KC patients.

  13. Measurements of the properties of Λ c ( 2595 ) , Λ c ( 2625 ) , Σ c ( 2455 ) , and Σ c ( 2520 ) baryons

    DOE PAGES

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; ...

    2011-07-13

    We report measurements of the resonance properties of Λ c(2595) + and Λ c(2595) + baryons in their decays to Λ c +π +π - as well as Σ c(2455) ++,0 and Σ c(2455) ++,0 baryons in their decays to Λ c +π ± final states. These measurements are performed using data corresponding to 5.2 fb -1 of integrated luminosity from pp̄ collisions at √s = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. In addition, exploiting the largest available charmed baryon sample, we measure masses and decay widths with uncertainties comparable to the world averagesmore » for Σ c states, and significantly smaller uncertainties than the world averages for excited Λ c + states.« less

  14. Averaging of elastic constants for polycrystals

    DOE PAGES

    Blaschke, Daniel N.

    2017-10-13

    Many materials of interest are polycrystals, i.e., aggregates of single crystals. Randomly distributed orientations of single crystals lead to macroscopically isotropic properties. Here in this paper, we briefly review strategies of calculating effective isotropic second and third order elastic constants from the single crystal ones. Our main emphasis is on single crystals of cubic symmetry. Specifically, the averaging of third order elastic constants has not been particularly successful in the past, and discrepancies have often been attributed to texturing of polycrystals as well as to uncertainties in the measurement of elastic constants of both poly and single crystals. While thismore » may well be true, we also point out here shortcomings in the theoretical averaging framework.« less

  15. Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas.

    PubMed

    Bekesi, Nandor; Dorronsoro, Carlos; de la Hoz, Andrés; Marcos, Susana

    2016-01-01

    To validate a new method for reconstructing corneal biomechanical properties from air puff corneal deformation images using hydrogel polymer model corneas and porcine corneas. Air puff deformation imaging was performed on model eyes with artificial corneas made out of three different hydrogel materials with three different thicknesses and on porcine eyes, at constant intraocular pressure of 15 mmHg. The cornea air puff deformation was modeled using finite elements, and hyperelastic material parameters were determined through inverse modeling, minimizing the difference between the simulated and the measured central deformation amplitude and central-peripheral deformation ratio parameters. Uniaxial tensile tests were performed on the model cornea materials as well as on corneal strips, and the results were compared to stress-strain simulations assuming the reconstructed material parameters. The measured and simulated spatial and temporal profiles of the air puff deformation tests were in good agreement (< 7% average discrepancy). The simulated stress-strain curves of the studied hydrogel corneal materials fitted well the experimental stress-strain curves from uniaxial extensiometry, particularly in the 0-0.4 range. Equivalent Young´s moduli of the reconstructed material properties from air-puff were 0.31, 0.58 and 0.48 MPa for the three polymer materials respectively which differed < 1% from those obtained from extensiometry. The simulations of the same material but different thickness resulted in similar reconstructed material properties. The air-puff reconstructed average equivalent Young´s modulus of the porcine corneas was 1.3 MPa, within 18% of that obtained from extensiometry. Air puff corneal deformation imaging with inverse finite element modeling can retrieve material properties of model hydrogel polymer corneas and real corneas, which are in good correspondence with those obtained from uniaxial extensiometry, suggesting that this is a promising technique to retrieve quantitative corneal biomechanical properties.

  16. Deciphering chemical order/disorder and material properties at the single-atom level

    DOE PAGES

    Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.; ...

    2017-02-01

    Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily onmore » average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. The work presented here combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.« less

  17. Correlation between physicochemical properties of modified clinoptilolite and its performance in the removal of ammonia-nitrogen.

    PubMed

    Dong, Yingbo; Lin, Hai; He, Yinhai

    2017-03-01

    The physicochemical properties of the 24 modified clinoptilolite samples and their ammonia-nitrogen removal rates were measured to investigate the correlation between them. The modified clinoptilolites obtained by acid modification, alkali modification, salt modification, and thermal modification were used to adsorb ammonia-nitrogen. The surface area, average pore width, macropore volume, mecropore volume, micropore volume, cation exchange capacity (CEC), zeta potential, silicon-aluminum ratios, and ammonia-nitrogen removal rate of the 24 modified clinoptilolite samples were measured. Subsequently, the linear regression analysis method was used to research the correlation between the physicochemical property of the different modified clinoptilolite samples and the ammonia-nitrogen removal rate. Results showed that the CEC was the major physicochemical property affecting the ammonia-nitrogen removal performance. According to the impacts from strong to weak, the order was CEC > silicon-aluminum ratios > mesopore volume > micropore volume > surface area. On the contrary, the macropore volume, average pore width, and zeta potential had a negligible effect on the ammonia-nitrogen removal rate. The relational model of physicochemical property and ammonia-nitrogen removal rate of the modified clinoptilolite was established, which was ammonia-nitrogen removal rate = 1.415[CEC] + 173.533 [macropore volume] + 0.683 [surface area] + 4.789[Si/Al] - 201.248. The correlation coefficient of this model was 0.982, which passed the validation of regression equation and regression coefficients. The results of the significance test showed a good fit to the correlation model.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.

    Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily onmore » average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. The work presented here combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.« less

  19. Improving the psychometric properties of dot-probe attention measures using response-based computation.

    PubMed

    Evans, Travis C; Britton, Jennifer C

    2018-09-01

    Abnormal threat-related attention in anxiety disorders is most commonly assessed and modified using the dot-probe paradigm; however, poor psychometric properties of reaction-time measures may contribute to inconsistencies across studies. Typically, standard attention measures are derived using average reaction-times obtained in experimentally-defined conditions. However, current approaches based on experimentally-defined conditions are limited. In this study, the psychometric properties of a novel response-based computation approach to analyze dot-probe data are compared to standard measures of attention. 148 adults (19.19 ± 1.42 years, 84 women) completed a standardized dot-probe task including threatening and neutral faces. We generated both standard and response-based measures of attention bias, attentional orientation, and attentional disengagement. We compared overall internal consistency, number of trials necessary to reach internal consistency, test-retest reliability (n = 72), and criterion validity obtained using each approach. Compared to standard attention measures, response-based measures demonstrated uniformly high levels of internal consistency with relatively few trials and varying improvements in test-retest reliability. Additionally, response-based measures demonstrated specific evidence of anxiety-related associations above and beyond both standard attention measures and other confounds. Future studies are necessary to validate this approach in clinical samples. Response-based attention measures demonstrate superior psychometric properties compared to standard attention measures, which may improve the detection of anxiety-related associations and treatment-related changes in clinical samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter

    NASA Astrophysics Data System (ADS)

    Li, Z. Q.; Gu, X.; Wang, L.; Li, D.; Li, K.; Dubovik, O.; Schuster, G.; Goloub, P.; Zhang, Y.; Li, L.; Xie, Y.; Ma, Y.; Xu, H.

    2013-02-01

    With the development of economy in the past thirty years, many large cities in the eastern and southwestern China are experiencing increased haze events and atmospheric pollution, causing significant impacts on the regional environment and even climate. However, knowledge on the aerosol physical and chemical properties in heavy haze conditions is still insufficient. In this study, two winter heavy haze events in Beijing occurred in 2011 and 2012 were selected and investigated by using the ground-based remote sensing measurements. We used CIMEL CE318 sun-sky radiometer to derive haze aerosol optical, physical and chemical properties, including aerosol optical depth (AOD), size distribution, complex refractive indices and fractions of chemical components like black carbon (BC), brown carbon (BrC), mineral dust (DU), ammonium sulfate-like (AS) components and aerosol water content (AW). The retrieval results from a total of five haze days showed that the aerosol loading and properties during the two winter haze events were relatively stable. Therefore, a parameterized heavy haze characterization was drawn to present a research case for future studies. The averaged AOD is 3.2 at 440 nm and Ångström exponent is 1.3 from 440-870 nm. The coarse particles occupied a considerable fraction of the bimodal size distribution in winter haze events, with the mean particle radius of 0.21 and 2.9 μm for the fine and coarse mode respectively. The real part of the refractive indices exhibited a relatively flat spectral behavior with an average value of 1.48 from 440 to 1020 nm. The imaginary part showed obviously spectral variation with the value at 440 nm (about 0.013) higher than other three wavelengths (e.g. about 0.008 at 675 nm). The chemical composition retrieval results showed that BC, BrC, DU, AS and AW occupied 1%, 2%, 49%, 15% and 33% respectively on average for the investigated haze events. The comparison of these remote sensing results with in situ BC and PM2.5 measurements were also presented in the paper.

  1. Recovery of intrinsic fluorescence from single-point interstitial measurements for quantification of doxorubicin concentration

    PubMed Central

    Baran, Timothy M.; Foster, Thomas H.

    2014-01-01

    Background and Objective We developed a method for the recovery of intrinsic fluorescence from single-point measurements in highly scattering and absorbing samples without a priori knowledge of the sample optical properties. The goal of the study was to demonstrate accurate recovery of fluorophore concentration in samples with widely varying background optical properties, while simultaneously recovering the optical properties. Materials and Methods Tissue-simulating phantoms containing doxorubicin, MnTPPS, and Intralipid-20% were created, and fluorescence measurements were performed using a single isotropic probe. The resulting spectra were analyzed using a forward-adjoint fluorescence model in order to recover the fluorophore concentration and background optical properties. Results We demonstrated recovery of doxorubicin concentration with a mean error of 11.8%. The concentration of the background absorber was recovered with an average error of 23.2% and the scattering spectrum was recovered with a mean error of 19.8%. Conclusion This method will allow for the determination of local concentrations of fluorescent drugs, such as doxorubicin, from minimally invasive fluorescence measurements. This is particularly interesting in the context of transarterial chemoembolization (TACE) treatment of liver cancer. PMID:24037853

  2. In vivo degradation of polyethylene liners after gamma sterilization in air.

    PubMed

    Kurtz, Steven M; Rimnac, Clare M; Hozack, William J; Turner, Joseph; Marcolongo, Michele; Goldberg, Victor M; Kraay, Matthew J; Edidin, Avram A

    2005-04-01

    Ultra-high molecular weight polyethylene degrades during storage in air following gamma sterilization, but the extent of in vivo degradation remains unclear. The purpose of this study was to quantify the extent to which the mechanical properties and oxidation of conventional polyethylene acetabular liners treated with gamma sterilization in air change in vivo. Fourteen modular cementless acetabular liners were revised at an average of 10.3 years (range, 5.9 to 13.5 years) after implantation. All liners, which had been machined from GUR 415 resin, had been gamma-sterilized in air; the average shelf life was 0.3 year (range, 0.0 to 0.8 year). After removal, the components were expeditiously frozen to minimize ex vivo changes to the polyethylene prior to characterization. The average duration between freezing and testing was 0.6 year. Mechanical properties and oxidation were measured with use of the small-punch test and Fourier transform infrared spectroscopy, respectively, in the loaded and unloaded regions of the liners. There was substantial regional variation in the mechanical properties and oxidation of the retrieved liners. The ultimate load was observed to vary by >90% near the surface. On the average, the rim and the unloaded bearing showed evidence of severe oxidation near the surface after long-term in vivo aging, but these trends were not typically observed on the loaded bearing surface or near the backside of the liners. The mechanical properties of polyethylene that has been gamma-sterilized in air may decrease substantially in vivo, depending on the location in the liner. The most severe oxidation was observed at the rim, suggesting that the femoral head inhibits access of oxygen-containing body fluids to the bearing surface. This is perhaps why in vivo oxidation has not been associated with clinical performance to date.

  3. MRI-based patient-specific human carotid atherosclerotic vessel material property variations in patients, vessel location and long-term follow up

    PubMed Central

    Wang, Qingyu; Canton, Gador; Guo, Jian; Guo, Xiaoya; Hatsukami, Thomas S.; Billiar, Kristen L.; Yuan, Chun; Wu, Zheyang

    2017-01-01

    Background Image-based computational models are widely used to determine atherosclerotic plaque stress/strain conditions and investigate their association with plaque progression and rupture. However, patient-specific vessel material properties are in general lacking in those models, limiting the accuracy of their stress/strain measurements. A noninvasive approach of combining in vivo 3D multi-contrast and Cine magnetic resonance imaging (MRI) and computational modeling was introduced to quantify patient-specific carotid plaque material properties for potential plaque model improvements. Vessel material property variation in patients, along vessel segment, and between baseline and follow up were investigated. Methods In vivo 3D multi-contrast and Cine MRI carotid plaque data were acquired from 8 patients with follow-up (18 months) with written informed consent obtained. 3D thin-layer models and an established iterative procedure were used to determine parameter values of the Mooney-Rivlin models for the 81slices from 16 plaque samples. Effective Young’s Modulus (YM) values were calculated for comparison and analysis. Results Average Effective Young’s Modulus (YM) and circumferential shrinkage rate (C-Shrink) value of the 81 slices was 411kPa and 5.62%, respectively. Slice YM value varied from 70 kPa (softest) to 1284 kPa (stiffest), a 1734% difference. Average slice YM values by vessel varied from 109 kPa (softest) to 922 kPa (stiffest), a 746% difference. Location-wise, the maximum slice YM variation rate within a vessel was 311% (149 kPa vs. 613 kPa). The average slice YM variation rate for the 16 vessels was 134%. The average variation of YM values for all patients from baseline to follow up was 61.0%. The range of the variation of YM values was [-28.4%, 215%]. For plaque progression study, YM at follow-up showed negative correlation with plaque progression measured by wall thickness increase (WTI) (r = -0.7764, p = 0.0235). Wall thickness at baseline correlated with WTI negatively, with r = -0.5253 (p = 0.1813). Plaque burden at baseline correlated with YM change between baseline and follow-up, with r = 0.5939 (p = 0.1205). Conclusion In vivo carotid vessel material properties have large variations from patient to patient, along the diseased segment within a patient, and with time. The use of patient-specific, location specific and time-specific material properties in plaque models could potentially improve the accuracy of model stress/strain calculations. PMID:28715441

  4. [Mechanical properties of weld area soldered by lasers and structural changes in hot reaction zone].

    PubMed

    Wu, H; Cui, Y; Mu, W

    2001-05-01

    To analyse and measure the welding depths and strengths of three kinds of welding materials under different laser welding conditions as well as the structural changes of the heat affected zone. Under different voltages and pulse duration three kinds of measuring sticks, including Co-Cr alloy, Ni-Cr alloy and pure titanium were welded and their strengths were compared with that of control group. At the same time, the structure of the heat-affected zone was analysed by means of the gold-phase method. The welding depth and strength of Co-Cr alloy were in direct proportion to the setting voltage, with averages of 335MPa (250V) to 573MPa(330V). At the heat-affected zone, the crystal particle was small and the end point of welding by laser bean presented the shape of the mountain peak and the interval of finger shape. The center of measuring sticks had a black zone with the circle shape. The setting voltage was in direct proportion to the welding depth of pure titanium and in inverse proportion to the welding strength with averages of 221MPa(250V) to 154MPa (330V). The crystal particle in the heat affected zone grew large and the solid phase expanded, the interval of the crystal oxidised, and the structure showed honeycomb changes. The laser welding is favourable to the welding properties of Co-Cr and Ni-Cr alloys, but its effect on the welding properties of pure titanium needs further discussion.

  5. Space-based Swath Imaging Laser Altimeter for Cryospheric Topographic and Surface Property Mapping

    NASA Technical Reports Server (NTRS)

    Abshire, James; Harding, David; Shuman, Chris; Sun, Xiaoli; Dabney, Phil; Krainak, Michael; Scambos, Ted

    2005-01-01

    Uncertainties in the response of the Greenland and Antarctic polar ice sheets to global climatic change inspired the development of ICESat/GLAS as part of NASA's Earth Observing System. ICESat's primary purpose is the measurement of ice sheet surface elevation profiles with sufficient accuracy, spatial density, and temporal coverage so that elevation changes can be derived with an accuracy of <1.5 cm/year for averages of measurements over the ice sheets with areas of 100 x 100 km. The primary means to achieve this elevation change detection is spatial averaging of elevation differences at cross-overs between ascending and descending profiles in areas of low ice surface slope. Additional information is included in the original extended abstract.

  6. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration

    2017-10-01

    We present measurements of bulk properties of the matter produced in Au+Au collisions at √{sN N}=7.7 ,11.5 ,19.6 ,27 , and 39 GeV using identified hadrons (π±, K±, p , and p ¯) from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC). Midrapidity (|y |<0.1 ) results for multiplicity densities d N /d y , average transverse momenta 〈pT〉 , and particle ratios are presented. The chemical and kinetic freeze-out dynamics at these energies are discussed and presented as a function of collision centrality and energy. These results constitute the systematic measurements of bulk properties of matter formed in heavy-ion collisions over a broad range of energy (or baryon chemical potential) at RHIC.

  7. Characterization of dynamical systems under noise using recurrence networks: Application to simulated and EEG data

    NASA Astrophysics Data System (ADS)

    Puthanmadam Subramaniyam, Narayan; Hyttinen, Jari

    2014-10-01

    In this letter, we study the influence of observational noise on recurrence network (RN) measures, the global clustering coefficient (C) and average path length (L) using the Rössler system and propose the application of RN measures to analyze the structural properties of electroencephalographic (EEG) data. We find that for an appropriate recurrence rate (RR>0.02) the influence of noise on C can be minimized while L is independent of RR for increasing levels of noise. Indications of structural complexity were found for healthy EEG, but to a lesser extent than epileptic EEG. Furthermore, C performed better than L in case of epileptic EEG. Our results show that RN measures can provide insights into the structural properties of EEG in normal and pathological states.

  8. Measuring Student and School Progress with the California API. CSE Technical Report.

    ERIC Educational Resources Information Center

    Thum, Yeow Meng

    This paper focuses on interpreting the major conceptual features of California's Academic Performance Index (API) as a coherent set of statistical procedures. To facilitate a characterization of its statistical properties, the paper casts the index as a simple weighted average of the subjective worth of students' normative performance and presents…

  9. Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles.

    PubMed

    Kuśnieruk, Sylwia; Wojnarowicz, Jacek; Chodara, Agnieszka; Chudoba, Tadeusz; Gierlotka, Stanislaw; Lojkowski, Witold

    2016-01-01

    Hydroxyapatite (HAp) nanoparticles of tunable diameter were obtained by the precipitation method at room temperature and by microwave hydrothermal synthesis (MHS). The following parameters of the obtained nanostructured HAp were determined: pycnometric density, specific surface area, phase purity, lattice parameters, particle size, particle size distribution, water content, and structure. HAp nanoparticle morphology and structure were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction measurements confirmed crystalline HAp was synthesized, which was pure in terms of phase. It was shown that by changing the synthesis parameters, the diameter of HAp nanoparticles could be controlled. The average diameter of the HAp nanoparticles was determined by Scherrer's equation via the Nanopowder XRD Processor Demo web application, which interprets the results of specific surface area and TEM measurements using the dark-field technique. The obtained nanoparticles with average particle diameter ranging from 8-39 nm were characterized by having homogeneous morphology with a needle shape and a narrow particle size distribution. Strong similarities were found when comparing the properties of some types of nanostructured hydroxyapatite with natural occurring apatite found in animal bones and teeth.

  10. Evaluation of the Mechanism of the Gold Cluster Growth during Heating of the Composite Gold-Polytetrafluoroethylene Thin Film.

    PubMed

    Grytsenko, Konstantin; Lozovski, Valeri; Strilchuk, Galyna; Schrader, Sigurd

    2012-11-07

    Nanocomposite films consisting of gold inclusions in the polytetrafluoroethylene (PTFE) matrix were obtained by thermal vacuum deposition. Annealing of the obtained films with different temperatures was used to measure varying of film morphologies. The dependence of optical properties of the films on their morphology was studied. It was established that absorption and profile of the nanocomposite film obtained by thermal vacuum deposition can be changed with annealing owing to the fact that different annealing temperatures lead to different average particle sizes. A method to calculate the optical properties of nanocomposite thin films with inclusions of different sizes was proposed. Thus, comparison of experimental optical spectra with the spectra obtained during the simulation enables estimating average sizes of inclusions. The calculations give the possibility of understanding morphological changes in the structures.

  11. Effect of Logarithmic and Linear Frequency Scales on Parametric Modelling of Tissue Dielectric Data.

    PubMed

    Salahuddin, Saqib; Porter, Emily; Meaney, Paul M; O'Halloran, Martin

    2017-02-01

    The dielectric properties of biological tissues have been studied widely over the past half-century. These properties are used in a vast array of applications, from determining the safety of wireless telecommunication devices to the design and optimisation of medical devices. The frequency-dependent dielectric properties are represented in closed-form parametric models, such as the Cole-Cole model, for use in numerical simulations which examine the interaction of electromagnetic (EM) fields with the human body. In general, the accuracy of EM simulations depends upon the accuracy of the tissue dielectric models. Typically, dielectric properties are measured using a linear frequency scale; however, use of the logarithmic scale has been suggested historically to be more biologically descriptive. Thus, the aim of this paper is to quantitatively compare the Cole-Cole fitting of broadband tissue dielectric measurements collected with both linear and logarithmic frequency scales. In this way, we can determine if appropriate choice of scale can minimise the fit error and thus reduce the overall error in simulations. Using a well-established fundamental statistical framework, the results of the fitting for both scales are quantified. It is found that commonly used performance metrics, such as the average fractional error, are unable to examine the effect of frequency scale on the fitting results due to the averaging effect that obscures large localised errors. This work demonstrates that the broadband fit for these tissues is quantitatively improved when the given data is measured with a logarithmic frequency scale rather than a linear scale, underscoring the importance of frequency scale selection in accurate wideband dielectric modelling of human tissues.

  12. Effect of Logarithmic and Linear Frequency Scales on Parametric Modelling of Tissue Dielectric Data

    PubMed Central

    Salahuddin, Saqib; Porter, Emily; Meaney, Paul M.; O’Halloran, Martin

    2016-01-01

    The dielectric properties of biological tissues have been studied widely over the past half-century. These properties are used in a vast array of applications, from determining the safety of wireless telecommunication devices to the design and optimisation of medical devices. The frequency-dependent dielectric properties are represented in closed-form parametric models, such as the Cole-Cole model, for use in numerical simulations which examine the interaction of electromagnetic (EM) fields with the human body. In general, the accuracy of EM simulations depends upon the accuracy of the tissue dielectric models. Typically, dielectric properties are measured using a linear frequency scale; however, use of the logarithmic scale has been suggested historically to be more biologically descriptive. Thus, the aim of this paper is to quantitatively compare the Cole-Cole fitting of broadband tissue dielectric measurements collected with both linear and logarithmic frequency scales. In this way, we can determine if appropriate choice of scale can minimise the fit error and thus reduce the overall error in simulations. Using a well-established fundamental statistical framework, the results of the fitting for both scales are quantified. It is found that commonly used performance metrics, such as the average fractional error, are unable to examine the effect of frequency scale on the fitting results due to the averaging effect that obscures large localised errors. This work demonstrates that the broadband fit for these tissues is quantitatively improved when the given data is measured with a logarithmic frequency scale rather than a linear scale, underscoring the importance of frequency scale selection in accurate wideband dielectric modelling of human tissues. PMID:28191324

  13. Estimation of Aerosol Direct Radiative Effects Over the Mid-Latitude North Atlantic from Satellite and In Situ Measurements

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, P. B.

    2000-01-01

    We estimate solar radiative flux changes due to aerosols over the mid-latitude North Atlantic by combining optical depths from AVHRR measurements with aerosol properties from the recent TARFOX program. Results show that, over the ocean the aerosol decreases the net radiative flux at the tropopause and therefore has a cooling effect. Cloud-free, 24-hour average flux changes range from -9 W/sq m near the eastern US coast in summer to -1 W/sq m in the mid-Atlantic during winter. Cloud-free North Atlantic regional averages range from -5.1 W/sq m in summer to -1.7 W/sq m in winter, with an annual average of -3.5 W/sq m. Cloud effects estimated from ISCCP data, reduce the regional annual average to -0.8 W/sq m. All values are for the moderately absorbing TARFOX aerosol (omega(0.55 microns) = 0.9); values for a nonabsorbing aerosol are approx. 30% more negative. We compare our results to a variety of other calculations of aerosol radiative effects.

  14. The Average Hazard Ratio - A Good Effect Measure for Time-to-event Endpoints when the Proportional Hazard Assumption is Violated?

    PubMed

    Rauch, Geraldine; Brannath, Werner; Brückner, Matthias; Kieser, Meinhard

    2018-05-01

    In many clinical trial applications, the endpoint of interest corresponds to a time-to-event endpoint. In this case, group differences are usually expressed by the hazard ratio. Group differences are commonly assessed by the logrank test, which is optimal under the proportional hazard assumption. However, there are many situations in which this assumption is violated. Especially in applications were a full population and several subgroups or a composite time-to-first-event endpoint and several components are considered, the proportional hazard assumption usually does not simultaneously hold true for all test problems under investigation. As an alternative effect measure, Kalbfleisch and Prentice proposed the so-called 'average hazard ratio'. The average hazard ratio is based on a flexible weighting function to modify the influence of time and has a meaningful interpretation even in the case of non-proportional hazards. Despite this favorable property, it is hardly ever used in practice, whereas the standard hazard ratio is commonly reported in clinical trials regardless of whether the proportional hazard assumption holds true or not. There exist two main approaches to construct corresponding estimators and tests for the average hazard ratio where the first relies on weighted Cox regression and the second on a simple plug-in estimator. The aim of this work is to give a systematic comparison of these two approaches and the standard logrank test for different time-toevent settings with proportional and nonproportional hazards and to illustrate the pros and cons in application. We conduct a systematic comparative study based on Monte-Carlo simulations and by a real clinical trial example. Our results suggest that the properties of the average hazard ratio depend on the underlying weighting function. The two approaches to construct estimators and related tests show very similar performance for adequately chosen weights. In general, the average hazard ratio defines a more valid effect measure than the standard hazard ratio under non-proportional hazards and the corresponding tests provide a power advantage over the common logrank test. As non-proportional hazards are often met in clinical practice and the average hazard ratio tests often outperform the common logrank test, this approach should be used more routinely in applications. Schattauer GmbH.

  15. Predicting Secchi disk depth from average beam attenuation in a deep, ultra-clear lake

    USGS Publications Warehouse

    Larson, G.L.; Hoffman, R.L.; Hargreaves, B.R.; Collier, R.W.

    2007-01-01

    We addressed potential sources of error in estimating the water clarity of mountain lakes by investigating the use of beam transmissometer measurements to estimate Secchi disk depth. The optical properties Secchi disk depth (SD) and beam transmissometer attenuation (BA) were measured in Crater Lake (Crater Lake National Park, Oregon, USA) at a designated sampling station near the maximum depth of the lake. A standard 20 cm black and white disk was used to measure SD. The transmissometer light source had a nearly monochromatic wavelength of 660 nm and a path length of 25 cm. We created a SD prediction model by regression of the inverse SD of 13 measurements recorded on days when environmental conditions were acceptable for disk deployment with BA averaged over the same depth range as the measured SD. The relationship between inverse SD and averaged BA was significant and the average 95% confidence interval for predicted SD relative to the measured SD was ??1.6 m (range = -4.6 to 5.5 m) or ??5.0%. Eleven additional sample dates tested the accuracy of the predictive model. The average 95% confidence interval for these sample dates was ??0.7 m (range = -3.5 to 3.8 m) or ??2.2%. The 1996-2000 time-series means for measured and predicted SD varied by 0.1 m, and the medians varied by 0.5 m. The time-series mean annual measured and predicted SD's also varied little, with intra-annual differences between measured and predicted mean annual SD ranging from -2.1 to 0.1 m. The results demonstrated that this prediction model reliably estimated Secchi disk depths and can be used to significantly expand optical observations in an environment where the conditions for standardized SD deployments are limited. ?? 2007 Springer Science+Business Media B.V.

  16. Hyaluronic acid (with fibronectin) as a bioimplant for the vocal fold mucosa.

    PubMed

    Chan, R W; Titze, I R

    1999-07-01

    To measure the viscoelastic shear properties of hyaluronic acid, with and without fibronectin, and to compare them with those of the human vocal fold mucosa and other phonosurgical biomaterials. Viscoelastic shear properties of various implantable biomaterials (Teflon, gelatin, collagen, fat, hyaluronic acid, and hyaluronic acid with fibronectin) were measured with a parallel-plate rotational rheometer. Elastic and viscous shear properties were quantified as a function of oscillation frequency (0.01-15 Hz) at 37 degrees C. The shear properties of hyaluronic acid were relatively close to those of human vocal fold mucosal tissues reported previously. Hyaluronic acid at specific concentrations (0.5%-1%), with or without fibronectin, was found to exhibit viscous shear properties (viscous shear modulus and dynamic viscosity) similar to those of the average male and female vocal fold mucosa. According to a theory that establishes the effects of tissue shear properties on vocal fold oscillation, phonation threshold pressure (a measure of the ease of phonation) is directly related to the viscous shear modulus of the vibrating vocal fold mucosa. Therefore, our findings suggest that hyaluronic acid, either by itself or mixed with fibronectin, may be a potentially optimal bioimplant for the surgical management of vocal fold mucosal defects and lamina propria deficiencies (e.g., scarring) from a biomechanical standpoint.

  17. Unraveling Unprecedented Charge Carrier Mobility through Structure Property Relationship of Four Isomers of Didodecyl[1]benzothieno[3,2-b][1]benzothiophene.

    PubMed

    Tsutsui, Yusuke; Schweicher, Guillaume; Chattopadhyay, Basab; Sakurai, Tsuneaki; Arlin, Jean-Baptiste; Ruzié, Christian; Aliev, Almaz; Ciesielski, Artur; Colella, Silvia; Kennedy, Alan R; Lemaur, Vincent; Olivier, Yoann; Hadji, Rachid; Sanguinet, Lionel; Castet, Frédéric; Osella, Silvio; Dudenko, Dmytro; Beljonne, David; Cornil, Jérôme; Samorì, Paolo; Seki, Shu; Geerts, Yves H

    2016-09-01

    The structural and electronic properties of four isomers of didodecyl[1]-benzothieno[3,2-b][1]benzothiophene (C12-BTBT) have been investigated. Results show the strong impact of the molecular packing on charge carrier transport and electronic polarization properties. Field-induced time-resolved microwave conductivity measurements unravel an unprecedented high average interfacial mobility of 170 cm(2) V(-1) s(-1) for the 2,7-isomer, holding great promise for the field of organic electronics. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Valero, F. P. J.; Flatau, P. J.; Bergin, M.; Holben, B.; Nakajima, T.; Pilewskie, P.; Bergstrom, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    A primary, ACE-Asia objective was to quantify the interactions between aerosols and radiation in the Asia-Pacific region. Toward this end, radiometric and related aerosol measurements were made from ocean, land, air and space platforms. Models that predict aerosol fields guided the measurements and are helping integrate and interpret results. Companion overview's survey these measurement and modeling components. Here we illustrate how these components were combined to determine aerosol radiative. impacts and their relation to aerosol properties. Because clouds can obscure or change aerosol direct radiative effects, aircraft and ship sorties to measure these effects depended on predicting and finding cloud-free areas and times with interesting aerosols present. Pre-experiment satellite cloud climatologies, pre-flight aerosol and cloud forecasts, and in-flight guidance from satellite imagery all helped achieve this. Assessments of aerosol regional radiative impacts benefit from the spatiotemporal coverage of satellites, provided satellite-retrieved aerosol properties are accurate. Therefore, ACE-Asia included satellite retrieval tests, as part of many comparisons to judge the consistency (closure) among, diverse measurements. Early results include: (1) Solar spectrally resolved and broadband irradiances and optical depth measurements from the C-130 aircraft and at Kosan, Korea yielded aerosol radiative forcing efficiencies, permitting comparisons between efficiencies of ACE-Asia and INDOEX aerosols, and between dust and "pollution" aerosols. Detailed results will be presented in separate papers. (2) Based on measurements of wavelength dependent aerosol optical depth (AOD) and single scattering albedo the estimated 24-h a average aerosol radiative forcing efficiency at the surface for photosynthetically active radiation (400 - 700 nm) in Yulin, China is approx. 30 W sq m per AOD(500 nm). (3) The R/V Brown cruise from Honolulu to Sea of Japan sampled an aerosol optical depth gradient, with AOD(500 nm) extremes from 0.1 to 1.1. On the Pacific transit from Honolulu to Hachijo AOD(500 nm) averaged 0.2, including increases to 0.4 after several storms, suggesting the strong impact of wind-generated seasalt. The AOD maximum, found in the Sea of Japan, was influenced by dust and anthropogenic sources. (4) In Beijing, single scattering albedo retrieved from AERONET sun-sky radiometry yielded midvisible SSA=0.88 with strong wavelength dependence, suggesting a significant black carbon component. SSA retrieved during dust episodes was approx. 0.90 and variable but wavelength neutral reflecting the presence of urban haze with the dust. Downwind at Anmyon Island SSA was considerably higher, approx. 0.94, but wavelength neutral for dust episodes and spectrally dependent during non dust periods. (5) Satellite retrievals show major aerosol features moving from Asia over the Pacific; however, determining seasonal-average aerosol effects is hampered by sampling frequency and large-scale cloud systems that obscure key parts of aerosol patterns. Preliminary calculations using, satellite-retrieved AOD fields and initial ACE-Asia aerosol properties (including sulfates, soot, and dust) yield clear-sky aerosol radiative effects in the seasonal-average ACE-Asia plume exceeding those of manmade greenhouse gases. Quantifying all-sky direct aerosol radiative effects is complicated by the need to define the height of absorbing aerosols with respect to cloud decks.

  19. How do the optical properties of Asian aerosols change when they cross the Pacific?

    NASA Astrophysics Data System (ADS)

    Fischer, E. V.; Jaffe, D. A.

    2009-12-01

    Primary and secondary aerosols from Asia may have important climate implications. These aerosols are emitted locally, but can then be lofted into the free troposphere and advected across the Pacific. In this analysis we used observations from the Mount Bachelor Observatory (MBO) in conjunction with satellite data to identify the dominant aerosol types in specific Asian plumes that crossed the Pacific. In situ data from MBO is used to understand the observed changes in radiative properties. A suite of gas phase and aerosol measurements were made during spring 2008 and spring 2009 at MBO (2763 masl), located in central Oregon. Here we focus on observations of dry sub-μm aerosol scattering (σsp) and absorption (σap), made with an integrating nephelometer and a particle soot absorption photometer (PSAP). Using a combination of backward trajectory calculations and satellite observations, we identified 7 well defined plumes of Asian origin. These plumes included the highest σsp (34.8 Mm-1 hourly average) and σap (4.8 Mm-1 hourly average) observed at MBO over the 2008 and 2009 spring campaigns. Of interest in this analysis is 1) whether the intensive optical properties differ between these 7 Asian events, 2) whether these differences can be linked to differences in composition, and 3) whether the intensive optical properties differ from those observed closer to the Asian source region. Preliminary results show that the plumes clustered in terms of their optical properties; plumes hypothesized to contain a large fraction of mineral dust were the most distinct. We also observed larger variability in the average scattering Ångstrom exponent of the plumes and a higher average single scatter albedo than observations closer to the Asian coast. This work will be extended to compare observations at MBO with the most recent observations from Asia as they become available.

  20. Phase Inversion: Inferring Solar Subphotospheric Flow and Other Asphericity from the Distortion of Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Gough, Douglas; Merryfield, William J.; Toomre, Juri

    1998-01-01

    A method is proposed for analyzing an almost monochromatic train of waves propagating in a single direction in an inhomogeneous medium that is not otherwise changing in time. An effective phase is defined in terms of the Hilbert transform of the wave function, which is related, via the JWKB approximation, to the spatial variation of the background state against which the wave is propagating. The contaminating effect of interference between the truly monochromatic components of the train is eliminated using its propagation properties. Measurement errors, provided they are uncorrelated, are manifest as rapidly varying noise; although that noise can dominate the raw phase-processed signal, it can largely be removed by low-pass filtering. The intended purpose of the analysis is to determine the distortion of solar oscillations induced by horizontal structural variation and material flow. It should be possible to apply the method directly to sectoral modes. The horizontal phase distortion provides a measure of longitudinally averaged properties of the Sun in the vicinity of the equator, averaged also in radius down to the depth to which the modes penetrate. By combining such averages from different modes, the two-dimensional variation can be inferred by standard inversion techniques. After taking due account of horizontal refraction, it should be possible to apply the technique also to locally sectoral modes that propagate obliquely to the equator and thereby build a network of lateral averages at each radius, from which the full three-dimensional structure of the Sun can, in principle, be determined as an inverse Radon transform.

  1. 40 CFR 421.253 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pollutant property Maximum for any 1 day Maximum for monthly average mg/troy ounce of gold and silver... Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/troy ounce of silver... Subcategory Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/troy ounce of...

  2. Effects of plantation density on wood density and anatomical properties of red pine (Pinus resinosa Ait.)

    Treesearch

    J. Y. Zhu; C. Tim Scott; Karen L. Scallon; Gary C. Myers

    2007-01-01

    This study demonstrated that average ring width (or average annual radial growth rate) is a reliable parameter to quantify the effects of tree plantation density (growth suppression) on wood density and tracheid anatomical properties. The average ring width successfully correlated wood density and tracheid anatomical properties of red pines (Pinus resinosa Ait.) from a...

  3. Predicting the Coupling Properties of Axially-Textured Materials

    PubMed Central

    Fuentes-Cobas, Luis E.; Muñoz-Romero, Alejandro; Montero-Cabrera, María E.; Fuentes-Montero, Luis; Fuentes-Montero, María E.

    2013-01-01

    A description of methods and computer programs for the prediction of “coupling properties” in axially-textured polycrystals is presented. Starting data are the single-crystal properties, texture and stereography. The validity and proper protocols for applying the Voigt, Reuss and Hill approximations to estimate coupling properties effective values is analyzed. Working algorithms for predicting mentioned averages are given. Bunge’s symmetrized spherical harmonics expansion of orientation distribution functions, inverse pole figures and (single and polycrystals) physical properties is applied in all stages of the proposed methodology. The established mathematical route has been systematized in a working computer program. The discussion of piezoelectricity in a representative textured ferro-piezoelectric ceramic illustrates the application of the proposed methodology. Polycrystal coupling properties, predicted by the suggested route, are fairly close to experimentally measured ones. PMID:28788370

  4. Functional properties of myoglobins from five whale species with different diving capacities.

    PubMed

    Helbo, Signe; Fago, Angela

    2012-10-01

    Whales show an exceptionally wide range of diving capabilities and many express high amounts of the O(2) carrier protein myoglobin (Mb) in their muscle tissues, which increases their aerobic diving capacity. Although previous studies have mainly focused on the muscle Mb concentration and O(2) carrying capacity as markers of diving behavior in whales, it still remains unexplored whether whale Mbs differ in their O(2) affinities and nitrite reductase and peroxidase enzymatic activities, all functions that could contribute to differences in diving capacities. In this study, we have measured the functional properties of purified Mbs from five toothed whales and two baleen whales and have examined their correlation with average dive duration. Results showed that some variation in functional properties exists among whale Mbs, with toothed whale Mbs having higher O(2) affinities and nitrite reductase activities (similar to those of horse Mb) compared with baleen whale Mbs. However, these differences did not correlate with average dive duration. Instead, a significant correlation was found between whale Mb concentration and average duration and depth of dives, and between O(2) affinity and nitrite reductase activity when including horse Mb. Despite the fact that the functional properties showed little species-specific differences in vitro, they may still contribute to enhancing diving capacity as a result of the increased muscle Mb concentration found in extreme divers. In conclusion, Mb concentration rather than specific functional reactivities may support whale diving performance.

  5. Clustering coefficients of protein-protein interaction networks

    NASA Astrophysics Data System (ADS)

    Miller, Gerald A.; Shi, Yi Y.; Qian, Hong; Bomsztyk, Karol

    2007-05-01

    The properties of certain networks are determined by hidden variables that are not explicitly measured. The conditional probability (propagator) that a vertex with a given value of the hidden variable is connected to k other vertices determines all measurable properties. We study hidden variable models and find an averaging approximation that enables us to obtain a general analytical result for the propagator. Analytic results showing the validity of the approximation are obtained. We apply hidden variable models to protein-protein interaction networks (PINs) in which the hidden variable is the association free energy, determined by distributions that depend on biochemistry and evolution. We compute degree distributions as well as clustering coefficients of several PINs of different species; good agreement with measured data is obtained. For the human interactome two different parameter sets give the same degree distributions, but the computed clustering coefficients differ by a factor of about 2. This shows that degree distributions are not sufficient to determine the properties of PINs.

  6. Observation of the quantum paradox of separation of a single photon from one of its properties

    NASA Astrophysics Data System (ADS)

    Ashby, James M.; Schwarz, Peter D.; Schlosshauer, Maximilian

    2016-07-01

    We report an experimental realization of the quantum paradox of the separation of a single photon from one of its properties (the so-called "quantum Cheshire cat"). We use a modified Sagnac interferometer with displaced paths to produce appropriately pre- and postselected states of heralded single photons. Weak measurements of photon presence and circular polarization are performed in each arm of the interferometer by introducing weak absorbers and small polarization rotations and analyzing changes in the postselected signal. The absorber is found to have an appreciable effect only in one arm of the interferometer, while the polarization rotation significantly affects the signal only when performed in the other arm. We carry out both sequential and simultaneous weak measurements and find good agreement between measured and predicted weak values. In the language of Aharonov et al. and in the sense of the ensemble averages described by weak values, the experiment establishes the separation of a particle from one its properties during the passage through the interferometer.

  7. The Albedo of Kepler's Small Worlds

    NASA Astrophysics Data System (ADS)

    Jansen, Tiffany; Kipping, David

    2018-01-01

    The study of exoplanet phase curves has been established as a powerful tool for measuring the atmospheric properties of other worlds. To first order, phase curves have the same amplitude as occultations, yet far greater temporal baselines enabling substantial improvements in sensitivity. Even so, only a relatively small fraction of Kepler planets have detectable phase curves, leading to a population dominated by hot-Jupiters. One way to boost sensitivity further is to stack different planets of similar types together, giving rise to an average phase curve for a specific ensemble. In this work, we measure the average albedo, thermal redistribution efficiency, and greenhouse boosting factor from the average phase curves of 115 Neptunian and 50 Terran (solid) worlds. We construct ensemble phase curve models for both samples accounting for the reflection and thermal components and regress our models assuming a global albedo, redistribution factor and greenhouse factor in a Bayesian framework. We find modest evidence for a detected phase curve in the Neptunian sample, although the albedo and thermal properties are somewhat degenerate meaning we can only place an upper limit on the albedo of Ag < 0.23 and greenhouse factor of f < 1.40 to 95% confidence. As predicted theoretically, this confirms hot-Neptunes are darker than Neptune and Uranus. Additionally, we place a constraint on the albedo of solid, Terran worlds of Ag < 0.42 and f < 1.60 to 95% confidence, compatible with a dark Lunar-like surface.

  8. Global volcanic aerosol properties derived from emissions, 1990-2015, using CESM1(WACCM)

    NASA Astrophysics Data System (ADS)

    Mills, Michael; Schmidt, Anja; Easter, Richard; Solomon, Susan; Kinnison, Douglas; Ghan, Steven; Neely, Ryan; Marsh, Daniel; Conley, Andrew; Bardeen, Charles; Gettelman, Andrew

    2016-04-01

    Accurate representation of global stratospheric aerosols from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-losses that may be linked to volcanic activity. Attribution of climate variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the rate of global average temperature increases. We have compiled a database of volcanic SO2 emissions and plume altitudes for eruptions from 1990 to 2015, and developed a new prognostic capability for simulating stratospheric sulfate aerosols in the Community Earth System Model (CESM). We combined these with other non-volcanic emissions of sulfur sources to reconstruct global aerosol properties from 1990 to 2015. Our calculations show remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of stratospheric aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD calculations represent a clear improvement over available satellite-based analyses, which generally ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD calculations greatly improve on that provided for the Chemistry-Climate Model Initiative, which misses about 60% of the SAD measured in situ on average during both volcanically active and volcanically quiescent periods. The stark differences in SAOD and SAD compared to other data sets will have significant effects on calculations of the radiative forcing of climate and global stratospheric chemistry over the period 2005-2015. In light of these results, the impact of volcanic aerosols in reducing the rate of global average temperature increases since the year 2000 should be revisited. We have made our calculated aerosol properties from January 1990 to November 2015 available for public download.

  9. Characterization of Ambient Black Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Levy, M. E.; Zheng, J.; Molina, L. T.

    2013-12-01

    Because of the strong absorption over a broad range of the electromagnetic spectra, black carbon (BC) is a key short-lived climate forcer, which contributes significantly to climate change by direct radiative forcing and is the second most important component causing global warming after carbon dioxide. The impact of BC on the radiative forcing of the Earth-Atmosphere system is highly dependent of the particle properties. In this presentation, emphasis will be placed on characterizing BC containing aerosols in at the California-Mexico border to obtain a greater understanding of the atmospheric aging and properties of ambient BC aerosols. A comprehensive set of directly measured aerosol properties, including the particle size distribution, effective density, hygroscopicity, volatility, and several optical properties, will be discussed to quantify the mixing state and composition of ambient particles. In Tijuana, Mexico, submicron aerosols are strongly influenced by vehicle emissions; subsequently, the BC concentration in Tijuana is considerably higher than most US cities with an average BC concentration of 2.71 × 2.65 g cm-3. BC accounts for 24.75 % × 9.44 of the total submicron concentration on average, but periodically accounts for over 50%. This high concentration of BC strongly influences many observed aerosol properties such as single scattering albedo, hygroscopicity, effective density, and volatility.

  10. Methods for determining the degree of baking in anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, C.P.

    Anode baking temperature is recognized as a critical factor in determining anode quality and performance. It is difficult and costly to measure directly and an indirect method, the coke L{sub c} technique, is often used. In this technique, baking temperature is estimated from the average crystallite size in the c direction (L{sub c}) of a coke sample placed in the anode stubhole. The paper details the results of a large statistically designed experimental program in which coke L{sub c} results were compared to anode properties routinely measured by smelters. Anode thermal conductivity and air and carboxy reactivity were found tomore » correlate well with baking temperature. A direct anode L{sub c} measurement technique was also strongly associated with temperature, particularly at high baking temperatures. Recommendations are given on the usefulness and simplicity of traditional anode property measurements for assessing baking temperatures as alternatives to the coke L{sub c} method.« less

  11. Interpreting Sky-Averaged 21-cm Measurements

    NASA Astrophysics Data System (ADS)

    Mirocha, Jordan

    2015-01-01

    Within the first ~billion years after the Big Bang, the intergalactic medium (IGM) underwent a remarkable transformation, from a uniform sea of cold neutral hydrogen gas to a fully ionized, metal-enriched plasma. Three milestones during this epoch of reionization -- the emergence of the first stars, black holes (BHs), and full-fledged galaxies -- are expected to manifest themselves as extrema in sky-averaged ("global") measurements of the redshifted 21-cm background. However, interpreting these measurements will be complicated by the presence of strong foregrounds and non-trivialities in the radiative transfer (RT) modeling required to make robust predictions.I have developed numerical models that efficiently solve the frequency-dependent radiative transfer equation, which has led to two advances in studies of the global 21-cm signal. First, frequency-dependent solutions facilitate studies of how the global 21-cm signal may be used to constrain the detailed spectral properties of the first stars, BHs, and galaxies, rather than just the timing of their formation. And second, the speed of these calculations allows one to search vast expanses of a currently unconstrained parameter space, while simultaneously characterizing the degeneracies between parameters of interest. I find principally that (1) physical properties of the IGM, such as its temperature and ionization state, can be constrained robustly from observations of the global 21-cm signal without invoking models for the astrophysical sources themselves, (2) translating IGM properties to galaxy properties is challenging, in large part due to frequency-dependent effects. For instance, evolution in the characteristic spectrum of accreting BHs can modify the 21-cm absorption signal at levels accessible to first generation instruments, but could easily be confused with evolution in the X-ray luminosity star-formation rate relation. Finally, (3) the independent constraints most likely to aide in the interpretation of global 21-cm signal measurements are detections of Lyman Alpha Emitters at high redshifts and constraints on the midpoint of reionization, both of which are among the primary science objectives of ongoing or near-future experiments.

  12. Quantification of online removal of refractory black carbon using laser-induced incandescence in the single particle soot photometer

    DOE PAGES

    Aiken, Allison C.; McMeeking, Gavin R.; Levin, Ezra J. T.; ...

    2016-04-05

    Refractory black carbon (rBC) is an aerosol that has important impacts on climate and human health. rBC is often mixed with other species, making it difficult to isolate and quantify its important effects on physical and optical properties of ambient aerosol. To solve this measurement challenge, a new method to remove rBC was developed using laser-induced incandescence (LII) by Levin et al. in 2014. Application of the method with the Single Particle Soot Photometer (SP2) is used to determine the effects of rBC on ice nucleating particles (INP). Here, we quantify the efficacy of the method in the laboratory usingmore » the rBC surrogate Aquadag. Polydisperse and mobility-selected samples (100–500 nm diameter, 0.44–36.05 fg), are quantified by a second SP2. Removal rates are reported by mass and number. For the mobility-selected samples, the average percentages removed by mass and number of the original size are 88.9 ± 18.6% and 87.3 ± 21.9%, respectively. Removal of Aquadag is efficient for particles >100 nm mass-equivalent diameter (d me), enabling application for microphysical studies. However, the removal of particles ≤100 nm d me is less efficient. Absorption and scattering measurements are reported to assess its use to isolate brown carbon (BrC) absorption. Scattering removal rates for the mobility-selected samples are >90% on average, yet absorption rates are 53% on average across all wavelengths. Therefore, application to isolate effects of microphysical properties determined by larger sizes is promising, but will be challenging for optical properties. Lastly, the results reported also have implications for other instruments employing internal LII, e.g., the Soot Particle Aerosol Mass Spectrometer (SP-AMS).« less

  13. Ultraviolet downconverting phosphor for use with silicon CCD imagers

    NASA Technical Reports Server (NTRS)

    Blouke, M. M.; Cowens, M. W.; Hall, J. E.; Westphal, J. A.; Christensen, A. B.

    1980-01-01

    The properties and application of a UV downconverting phosphor (coronene) to silicon charge coupled devices are discussed. Measurements of the absorption spectrum have been extended to below 1000 A, and preliminary results indicate the existence of useful response to at least 584 A. The average conversion efficiency of coronene was measured to be approximately 20% at 2537 A. Imagery at 3650 A using a backside illuminated 800 x 800 CCD coated with coronene is presented.

  14. Robust analysis method for acoustic properties of biological specimens measured by acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Arakawa, Mototaka; Mori, Shohei; Kanai, Hiroshi; Nagaoka, Ryo; Horie, Miki; Kobayashi, Kazuto; Saijo, Yoshifumi

    2018-07-01

    We proposed a robust analysis method for the acoustic properties of biological specimens measured by acoustic microscopy. Reflected pulse signals from the substrate and specimen were converted into frequency domains to obtain sound speed and thickness. To obtain the average acoustic properties of the specimen, parabolic approximation was performed to determine the frequency at which the amplitude of the normalized spectrum became maximum or minimum, considering the sound speed and thickness of the specimens and the operating frequency of the ultrasonic device used. The proposed method was demonstrated for a specimen of malignant melanoma of the skin by using acoustic microscopy attaching a concave transducer with a center frequency of 80 MHz. The variations in sound speed and thickness analyzed by the proposed method were markedly smaller than those analyzed by the method based on an autoregressive model. The proposed method is useful for the analysis of the acoustic properties of bilogical tissues or cells.

  15. Retrieval of Areal-averaged Spectral Surface Albedo from Transmission Data Alone: Computationally Simple and Fast Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.

    We introduce and evaluate a simple retrieval of areal-averaged surface albedo using ground-based measurements of atmospheric transmission alone at five wavelengths (415, 500, 615, 673 and 870nm), under fully overcast conditions. Our retrieval is based on a one-line semi-analytical equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties, such as cloud optical depth and asymmetry parameter, in the visible and near-infrared spectral range. To illustrate the performance of our retrieval, we use as input measurements of spectral atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR). These MFRSR data are collected at two well-established continental sitesmore » in the United States supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program and National Oceanic and Atmospheric Administration (NOAA). The areal-averaged albedos obtained from the MFRSR are compared with collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) white-sky albedo. In particular, these comparisons are made at four MFRSR wavelengths (500, 615, 673 and 870nm) and for four seasons (winter, spring, summer and fall) at the ARM site using multi-year (2008-2013) MFRSR and MODIS data. Good agreement, on average, for these wavelengths results in small values (≤0.01) of the corresponding root mean square errors (RMSEs) for these two sites. The obtained RMSEs are comparable with those obtained previously for the shortwave albedos (MODIS-derived versus tower-measured) for these sites during growing seasons. We also demonstrate good agreement between tower-based daily-averaged surface albedos measured for “nearby” overcast and non-overcast days. Thus, our retrieval originally developed for overcast conditions likely can be extended for non-overcast days by interpolating between overcast retrievals.« less

  16. Measurement of unsteady airflow velocity at nozzle outlet

    NASA Astrophysics Data System (ADS)

    Pyszko, René; Machů, Mário

    2017-09-01

    The paper deals with a method of measuring and evaluating the cooling air flow velocity at the outlet of the flat nozzle for cooling a rolled steel product. The selected properties of the Prandtl and Pitot sensing tubes were measured and compared. A Pitot tube was used for operational measurements of unsteady dynamic pressure of the air flowing from nozzles to abtain the flow velocity. The article also discusses the effects of air temperature, pressure and relative air humidity on air density, as well as the influence of dynamic pressure filtering on the error of averaged velocity.

  17. Laboratory Measurements of Single-Particle Polarimetric Spectrum

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.; Penttila, A.; Maconi, G.; Kassamakov, I.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2017-12-01

    Measuring scattering properties of different targets is important for material characterization, remote sensing applications, and for verifying theoretical results. Furthermore, there are usually simplifications made when we model targets and compute the scattering properties, e.g., ideal shape or constant optical parameters throughout the target material. Experimental studies help in understanding the link between the observed properties and computed results. Experimentally derived Mueller matrices of studied particles can be used as input for larger-scale scattering simulations, e.g., radiative transfer computations. This method allows to bypass the problem of using an idealized model for single-particle optical properties. While existing approaches offer ensemble- and orientation-averaged particle properties, our aim is to measure individual particles with controlled or known orientation. With the newly developed scatterometer, we aim to offer novel possibility to measure single, small (down to μm-scale) targets and their polarimetric spectra. This work presents an experimental setup that measures light scattered by a fixed small particle with dimensions ranging between micrometer and millimeter sizes. The goal of our setup is nondestructive characterization of such particles by measuring light of multiple wavelengths scattered in 360° in a horizontal plane by an ultrasonically levitating sample, whilst simultaneously controlling its 3D position and orientation. We describe the principles and design of our instrument and its calibration. We also present example measurements of real samples. This study was conducted under the support from the European Research Council, in the frame of the Advanced Grant project No. 320773 `Scattering and Absorption of Electromagnetic Waves in Particulate Media' (SAEMPL).

  18. Physical properties of polyurethane plastic sheets produced from polyols from canola oil.

    PubMed

    Kong, Xiaohua; Narine, Suresh S

    2007-07-01

    Polyurethane (PUR) plastic sheets were prepared by reacting polyols synthesized from canola oil with aromatic diphenylmethane diisocyanate. The properties of the material were measured by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) as well as tensile properties measurements. The effect of stoichiometric balance (i.e., OH/NCO molar ratio) on the final properties was evaluated. The concentration of elastically active network chains (EANCs), nue, of the polymer networks was calculated using rubber elasticity theory. The glass transition temperatures (Tg) for the plastic sheets with OH/NCO molar ratios of 1.0/1.0, 1.0/1.1, and 1.0/1.2 were found to be 23, 41, and 43 degrees C, respectively. The kinetic studies of the degradation process of the PUR plastics showed three well-defined steps of degradation. The PUR plastic sheets with OH/NCO molar ratio 1.0/1.1 had the highest nue, lowest number-average molecule weight between cross-links, MC, and excellent mechanical properties, indicating that this is the optimum ratio in the PUR formulations.

  19. Future property damage from flooding: sensitivities to economy and climate change

    DOE PAGES

    Liu, Jing; Hertel, Thomas; Diffenbaugh, Noah; ...

    2015-08-09

    Using a unique dataset for Indiana counties during the period 1995-2012, we estimate the effects of flood hazard, asset exposure, and social vulnerability on property damage. This relationship then is combined with the expected level of future flood risks to project property damage from flooding in 2030 under various scenarios. We compare these scenario projections to identify which risk management strategy offers the greatest potential to mitigate flooding loss. Results show that by 2030, county level flooding hazard measured by extreme flow volume and frequency will increase by an average of 16.2% and 7.4%, respectively. The total increase in propertymore » damages projected under different model specifications range from 13.3% to 20.8%. Across models future damages consistently exhibit the highest sensitivity to future increases in asset exposure, reinforcing the importance of non-structural measures in managing floodplain development.« less

  20. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.

    We present measurements of bulk properties of the matter produced in Au+Au collisions atmore » $$\\sqrt{s}$$$_ {NN}$$= 7.7, 11.5, 19.6, 27, and 39 GeV using identified hadrons (π ±, K ±, p, and $$\\bar{p}$$) from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC). Midrapidity (| y | < 0.1) results for multiplicity densities dN / dy, average transverse momenta $$\\langle$$pT$$\\rangle$$, and particle ratios are presented. The chemical and kinetic freeze-out dynamics at these energies are discussed and presented as a function of collision centrality and energy. These results constitute the systematic measurements of bulk properties of matter formed in heavy-ion collisions over a broad range of energy (or baryon chemical potential) at RHIC.« less

  1. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program

    DOE PAGES

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...

    2017-10-13

    We present measurements of bulk properties of the matter produced in Au+Au collisions atmore » $$\\sqrt{s}$$$_ {NN}$$= 7.7, 11.5, 19.6, 27, and 39 GeV using identified hadrons (π ±, K ±, p, and $$\\bar{p}$$) from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC). Midrapidity (| y | < 0.1) results for multiplicity densities dN / dy, average transverse momenta $$\\langle$$pT$$\\rangle$$, and particle ratios are presented. The chemical and kinetic freeze-out dynamics at these energies are discussed and presented as a function of collision centrality and energy. These results constitute the systematic measurements of bulk properties of matter formed in heavy-ion collisions over a broad range of energy (or baryon chemical potential) at RHIC.« less

  2. The effect of mechanical drawing on optical and structural properties of nylon 6 fibres

    NASA Astrophysics Data System (ADS)

    El-Bakary, M. A.

    2007-09-01

    The Pluta polarizing double-refracting interference microscope was attached to a mechanical drawing device to study the effect of cold drawing on the optical and structural properties of nylon 6 fibres. The microscope was used in its two positions for determining the refractive indices and birefringence of fibres. Different applied stresses and strain rates were obtained using the mechanical-drawing device. The effect of the applied stresses on the optical and physical parameters was investigated. The resulting optical parameters were utilized to investigate the polarizability per unit volume, the optical orientation factor, the orientation angle and the average work per chain. The refractive index and birefringence profiles were measured. Relationships between the average work per chain and optical parameters at different strains rates were determined. An empirical formula was deduced for these fibres. Micro-interferograms are given for illustration.

  3. Dispersion and thermal properties of lithium aluminum silicate glasses doped with Cr3+ ions

    NASA Astrophysics Data System (ADS)

    El-Diasty, Fouad; Abdel-Baki, Manal; Abdel Wahab, Fathy A.; Darwish, Hussein

    2006-10-01

    A series of new lithium aluminum silicate (LAS) glass systems doped with chromium ion is prepared. The reflectance and transmittance of the glass slabs are recorded. By means of an iteration procedure, the glass refractive index n and the extinction coefficient k and their dispersions are obtained. Across a wide spectral range of 0.2-1.6 μm, the dispersion curves are used to determine the atomic and quantum constants of the prepared glasses. These findings provide the average oscillator wavelength, the average oscillator strength, oscillator energy, dispersion energy, lattice energy, and material dispersion of the glass materials to be calculated. For optical waveguide applications, the wavelength for zero material dispersion is obtained. Dilatometric measurements are performed and the thermal expansion coefficient is calculated to throw some light on the thermo-optical properties of the present glasses correlating them with their structure and the presence of nonbridging oxygen ions.

  4. "Observing" the Circumnuclear Stars and Gas in Disk Galaxy Simulations

    NASA Astrophysics Data System (ADS)

    Cook, Angela; Hicks, Erin K. S.

    2018-06-01

    We present simulations based on theoretical models of common disk processes designed to represent potential inflow observed within the central 500 pc of local Seyfert galaxies. Mock observations of these n-body plus smoothed particle hydrodynamical simulations provide the conceptual framework in which to identify the driving inflow mechanism, for example nuclear bars, and to quantify to the inflow based on observable properties. From these mock observations the azimuthal average of the flux distribution, velocity dispersion, and velocity of both the stars and interstellar medium on scales of 50pc have been measured at a range of inclinations angles. A comparison of the simulated disk galaxies with these observed azimuthal averages in 40 Seyfert galaxies measured as part of the KONA (Keck OSIRIS Nearby AGN) survey will be presented.

  5. Using ring width correlations to study the effects of plantation density on wood density and anatomical properties of red pine (Pinus resinosa Ait.)

    Treesearch

    J. Y. Zhu; C. T. Scott; K. L. Scallon; G. C. Myers

    2006-01-01

    This study demonstrated that average ring width (or average annual radial growth rate) is a reliable parameter to quantify the effects of tree plantation ndensity (growth suppression) on wood density and tracheid anatomical properties. The average ring width successfully correlated wood density and tracheid anatomical properties of red pines (Pinus resinosa Ait.) from...

  6. Physico-mechanical and wear properties of novel sustainable sour-weed fiber reinforced polyester composites

    NASA Astrophysics Data System (ADS)

    Patel, Vinay Kumar; Chauhan, Shivani; Katiyar, Jitendra Kumar

    2018-04-01

    In this study, a novel natural fiber i.e. Sour-weed botanically known as ‘Rumex acetosella’ has been first time introduced as natural reinforcements to polyester matrix. The natural fiber based polyester composites were fabricated by hand lay-up technique using different sizes and different weight percentages. In Sour-weed/Polyester composites, physical (density, water absorption and hardness), mechanical properties (tensile and impact properties) and wear properties (sand abrasion and sliding wear) were investigated for different sizes of sour weed of 0.6 mm, 5 mm, 10 mm, 15 mm and 20 mm at 3, 6 and 9 weight percent loading, respectively in polyester matrix. Furthermore, on average value of results, the multi-criteria optimization technique i.e. TOPSIS was employed to decide the ranking of the composites. From the optimized results, it was observed that Sour-weed composite reinforced with fiber’s size of 15 mm at 6 wt% loading demonstrated the best ranked composite exhibiting best overall properties as average tensile strength of 34.33 MPa, average impact strength of 10 Joule, average hardness of 12 Hv, average specific sand abrasion wear rate of 0.0607 mm3 N‑1m‑1, average specific sliding wear rate of 0.002 90 mm3 N‑1m‑1, average percentage of water absorption of 3.446% and average density of 1.013 among all fabricated composites.

  7. Statistical analysis of mesoscale rainfall: Dependence of a random cascade generator on large-scale forcing

    NASA Technical Reports Server (NTRS)

    Over, Thomas, M.; Gupta, Vijay K.

    1994-01-01

    Under the theory of independent and identically distributed random cascades, the probability distribution of the cascade generator determines the spatial and the ensemble properties of spatial rainfall. Three sets of radar-derived rainfall data in space and time are analyzed to estimate the probability distribution of the generator. A detailed comparison between instantaneous scans of spatial rainfall and simulated cascades using the scaling properties of the marginal moments is carried out. This comparison highlights important similarities and differences between the data and the random cascade theory. Differences are quantified and measured for the three datasets. Evidence is presented to show that the scaling properties of the rainfall can be captured to the first order by a random cascade with a single parameter. The dependence of this parameter on forcing by the large-scale meteorological conditions, as measured by the large-scale spatial average rain rate, is investigated for these three datasets. The data show that this dependence can be captured by a one-to-one function. Since the large-scale average rain rate can be diagnosed from the large-scale dynamics, this relationship demonstrates an important linkage between the large-scale atmospheric dynamics and the statistical cascade theory of mesoscale rainfall. Potential application of this research to parameterization of runoff from the land surface and regional flood frequency analysis is briefly discussed, and open problems for further research are presented.

  8. Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM)

    NASA Astrophysics Data System (ADS)

    Mills, Michael J.; Schmidt, Anja; Easter, Richard; Solomon, Susan; Kinnison, Douglas E.; Ghan, Steven J.; Neely, Ryan R.; Marsh, Daniel R.; Conley, Andrew; Bardeen, Charles G.; Gettelman, Andrew

    2016-03-01

    Accurate representation of global stratospheric aerosols from volcanic and nonvolcanic sulfur emissions is key to understanding the cooling effects and ozone losses that may be linked to volcanic activity. Attribution of climate variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the rate of global average temperature increases. We have compiled a database of volcanic SO2 emissions and plume altitudes for eruptions from 1990 to 2014 and developed a new prognostic capability for simulating stratospheric sulfate aerosols in the Community Earth System Model. We used these combined with other nonvolcanic emissions of sulfur sources to reconstruct global aerosol properties from 1990 to 2014. Our calculations show remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD) and with in situ measurements of stratospheric aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD calculations represent a clear improvement over available satellite-based analyses, which generally ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at middle and high latitudes. Our SAD calculations greatly improve on that provided for the Chemistry-Climate Model Initiative, which misses about 60% of the SAD measured in situ on average during both volcanically active and volcanically quiescent periods.

  9. Fabrication and characterization of carbon nanotube turfs

    NASA Astrophysics Data System (ADS)

    Qiu, Anqi

    Carbon nanotube turfs are vertically aligned, slightly tortuous and entangled functional nanomaterials that exhibit high thermal and electrical properties. CNT turfs exhibit unique combinations of thermal and electrical conductivity, energy absorbing capability, low density and adhesive behavior. The objective of this study is to fabricate, measure, manipulate and characterize CNT turfs and thus determine the relationship between a turf's properties and its morphology, and provide guidance for developing links between turf growth conditions and of the subsequent turf properties. Nanoindentation was utilized to determine the mechanical and in situ electrical properties of CNT turfs. Elastic properties do not vary significantly laterally within a single turf, quantifying for the first time the ability to treat the turf as a mechanical continuum throughout. The use of the average mechanical properties for any given turf should be suitable for design purpose without the necessity of accounting for lateral spatial variation in structure. Properties variation based on time dependency, rate dependency, adhesive behavior and energy absorption and dissipation behavior have been investigated for these CNT turfs. Electrical properties measurements of CNT turfs have been carried out and show that a constant electrical current at a constant penetration depth indicates that a constant number of CNTs in contact with the tip; combining with the results that adhesive load increased with an increasing penetration hold time, thus we conclude that during a hold period of nanoindentation, individual tubes increase their individual attachment to the tip. CNT turfs show decreased adhesion and modulus after exposure to an electron beam due to carbon deposition and subsequent oxidation. To increase the modulus of the turf, axial compression and solvent capillary were used to increase the density of the turf by up to 15 times. Structure-property relationships were determined from the density and tortuosity measurements carried out through in situ electrical measurements and directionality measurements. Increasing density increases the mechanical properties as well as electrical conductivity. The modulus increased with a lower tortuosity, which may be related to the compressive buckling positioning.

  10. Advanced optical blade tip clearance measurement system

    NASA Technical Reports Server (NTRS)

    Ford, M. J.; Honeycutt, R. E.; Nordlund, R. E.; Robinson, W. W.

    1978-01-01

    An advanced electro-optical system was developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in an operating gas turbine engine. This system is applicable to fan, compressor, and turbine blade tip clearance measurement requirements, and the system probe is particularly suitable for operation in the extreme turbine environment. A study of optical properties of blade tips was conducted to establish measurement system application limitations. A series of laboratory tests was conducted to determine the measurement system's operational performance characteristics and to demonstrate system capability under simulated operating gas turbine environmental conditions. Operational and environmental performance test data are presented.

  11. Measuring discharge with ADCPs: Inferences from synthetic velocity profiles

    USGS Publications Warehouse

    Rehmann, C.R.; Mueller, D.S.; Oberg, K.A.

    2009-01-01

    Synthetic velocity profiles are used to determine guidelines for sampling discharge with acoustic Doppler current profilers (ADCPs). The analysis allows the effects of instrument characteristics, sampling parameters, and properties of the flow to be studied systematically. For mid-section measurements, the averaging time required for a single profile measurement always exceeded the 40 s usually recommended for velocity measurements, and it increased with increasing sample interval and increasing time scale of the large eddies. Similarly, simulations of transect measurements show that discharge error decreases as the number of large eddies sampled increases. The simulations allow sampling criteria that account for the physics of the flow to be developed. ?? 2009 ASCE.

  12. Review of particle physics

    DOE PAGES

    Olive, K. A.

    2016-10-01

    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,062 new measurements from 721 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders,more » Probability and Statistics. As a result, among the 117 reviews are many that are new or heavily revised, including those on Pentaquarks and Inflation.« less

  13. Review of particle physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olive, K. A.

    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,062 new measurements from 721 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders,more » Probability and Statistics. As a result, among the 117 reviews are many that are new or heavily revised, including those on Pentaquarks and Inflation.« less

  14. Characterization of emission properties of Er3+ ions in TeO2-CdF2-WO3 glasses.

    PubMed

    Bilir, G; Mustafaoglu, N; Ozen, G; DiBartolo, B

    2011-12-01

    TeO(2)-CdF(2)-WO(3) glasses with various compositions and Er(3+) concentrations were prepared by conventional melting method. Their optical properties were studied by measuring the absorption, luminescence spectra and the decay patterns at room temperature. From the optical absorption spectra the Judd-Ofelt parameters (Ω(t)), transition probabilities, branching ratios of various transitions, and radiative lifetimes were calculated. The absorption and emission cross-section spectra of the (4)I(15/2) to (4)I(13/2) transition of erbium were determined. Emission quantum efficiencies and the average critical distance R(0) which provides a measure for the strength of cross relaxation were determined. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Experimental Analysis of Steel Beams Subjected to Fire Enhanced by Brillouin Scattering-Based Fiber Optic Sensor Data

    PubMed Central

    Bao, Yi; Chen, Yizheng; Hoehler, Matthew S.; Smith, Christopher M.; Bundy, Matthew; Chen, Genda

    2016-01-01

    This paper presents high temperature measurements using a Brillouin scattering-based fiber optic sensor and the application of the measured temperatures and building code recommended material parameters into enhanced thermomechanical analysis of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed temperature sensor captures detailed, nonuniform temperature distributions that are compared locally with thermocouple measurements with less than 4.7% average difference at 95% confidence level. The simulated strains and deflections are validated using measurements from a second distributed fiber optic (strain) sensor and two linear potentiometers, respectively. The results demonstrate that the temperature-dependent material properties specified in the four investigated building codes lead to strain predictions with less than 13% average error at 95% confidence level and that the Europe building code provided the best predictions. However, the implicit consideration of creep in Europe is insufficient when the beam temperature exceeds 800°C. PMID:28239230

  16. Saturated laser fluorescence in turbulent sooting flames at high pressure

    NASA Technical Reports Server (NTRS)

    King, G. B.; Carter, C. D.; Laurendeau, N. M.

    1984-01-01

    The primary objective was to develop a quantitative, single pulse, laser-saturated fluorescence (LSF) technique for measurement of radical species concentrations in practical flames. The species of immediate interest was the hydroxyl radical. Measurements were made in both turbulent premixed diffusion flames at pressures between 1 and 20 atm. Interferences from Mie scattering were assessed by doping with particles or by controlling soot loading through variation of equivalence ratio and fuel type. The efficacy of the LSF method at high pressure was addressed by comparing fluorescence and adsorption measurements in a premixed, laminar flat flame at 1-20 atm. Signal-averaging over many laser shots is sufficient to determine the local concentration of radical species in laminar flames. However, for turbulent flames, single pulse measurements are more appropriate since a statistically significant number of laser pulses is needed to determine the probability function (PDF). PDFs can be analyzed to give true average properties and true local kinetics in turbulent, chemically reactive flows.

  17. Photoacoustic and ultrasound imaging of cancellous bone tissue.

    PubMed

    Yang, Lifeng; Lashkari, Bahman; Tan, Joel W Y; Mandelis, Andreas

    2015-07-01

    We used ultrasound (US) and photoacoustic (PA) imaging modalities to characterize cattle trabecular bones. The PA signals were generated with an 805-nm continuous wave laser used for optimally deep optical penetration depth. The detector for both modalities was a 2.25-MHz US transducer with a lateral resolution of ~1 mm at its focal point. Using a lateral pixel size much larger than the size of the trabeculae, raster scanning generated PA images related to the averaged values of the optical and thermoelastic properties, as well as density measurements in the focal volume. US backscatter yielded images related to mechanical properties and density in the focal volume. The depth of interest was selected by time-gating the signals for both modalities. The raster scanned PA and US images were compared with microcomputed tomography (μCT) images averaged over the same volume to generate similar spatial resolution as US and PA. The comparison revealed correlations between PA and US modalities with the mineral volume fraction of the bone tissue. Various features and properties of these modalities such as detectable depth, resolution, and sensitivity are discussed.

  18. Roughness Measurement of Dental Materials

    NASA Astrophysics Data System (ADS)

    Shulev, Assen; Roussev, Ilia; Karpuzov, Simeon; Stoilov, Georgi; Ignatova, Detelina; See, Constantin von; Mitov, Gergo

    2016-06-01

    This paper presents a roughness measurement of zirconia ceramics, widely used for dental applications. Surface roughness variations caused by the most commonly used dental instruments for intraoral grinding and polishing are estimated. The applied technique is simple and utilizes the speckle properties of the scattered laser light. It could be easily implemented even in dental clinic environment. The main criteria for roughness estimation is the average speckle size, which varies with the roughness of zirconia. The algorithm used for the speckle size estimation is based on the normalized autocorrelation approach.

  19. [Spectrum simulation based on data derived from red tide].

    PubMed

    Liu, Zhen-Yu; Cui, Ting-Wei; Yue, Jie; Jiang, Tao; Cao, Wen-Xi; Ma, Yi

    2011-11-01

    The present paper utilizes the absorption data of red tide water measured during the growing and dying course to retrieve imaginary part of the index of refraction based on Mie theory, carries out the simulation and analysis of average absorption efficiency factors, average backscattering efficiency factors and scattering phase function. The analysis of the simulation shows that Mie theory can be used to reproduce the absorption property of Chaetoceros socialis with an average error of 11%; the average backscattering efficiency factors depend on the value of absorption whose maximum value corresponds to the wavelength range from 400 to 700 nanometer; the average backscattering efficiency factors showed a maximum value on 17th with a low value during the outbreak of red tide and the minimum on 21th; the total scattering, weakly depending on the absorption, is proportional to the size parameters which represent the relative size of cell diameter with respect to the wavelength, while the angle scattering intensity is inversely proportional to wavelength.

  20. 41 CFR 102-34.55 - Are there fleet average fuel economy standards we must meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Are there fleet average fuel economy standards we must meet? 102-34.55 Section 102-34.55 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtainin...

  1. Optical properties of Dy3+ doped YBO3 phosphor

    NASA Astrophysics Data System (ADS)

    Nair, Ramya G.; Nigam, Sandeep; Sudarsan, V.; Vatsa, R. K.

    2018-04-01

    Dysprosium doped YBO3 luminescent particleis synthesized via poly-ol method and by subsequent annealing at 800°C. The synthesized material has been characterized for structure properties using powder X-ray diffraction (XRD) and Fourier transform infrared (FTIR)spectroscopy. Photoluminescence properties of these samples are studiedby means of steady state measurements and decay curve. The phosphor shows characteristic transitions of Dy3+ in the excitation and emission spectra. Colour purity is determined in terms of yellow/blue ratio, which is found to be 1.8. The higher ratio of yellow/blue indicates that Dy3+ preferentially occupies the asymmetric site in host lattice. The average lifetime is found to be 1.1ms. The chromatic properties of the phosphor have been found to have chromaticity coordinates x = 0.245, y = 0.274.

  2. Performance of pallet parts recovered from used wood pallets

    Treesearch

    John W. Clarke; Marshall S. White; Philip A. Araman

    2001-01-01

    The flexural modulus of elasticity (MOE), flexural modulus of rupture (MOR), and density of used pallet parts were measured and compared to the same properties of new parts. Seventy-four percent of used pallet parts sampled were hardwoods, and 26 percent were softwoods. The average mixed hardwood parts were 41 percent stronger and 40 percent stiffer than the mixed...

  3. CoO doping effects on the ZnO films through EBPDV technique

    NASA Astrophysics Data System (ADS)

    Inês Basso Bernardi, Maria; Queiroz Maia, Lauro June; Antonelli, Eduardo; Mesquita, Alexandre; Li, Maximo Siu; Gama, Lucianna

    2014-03-01

    Nanometric Zn1-xCo xO (x = 0.020, 0.025 and 0.030 in mol.%) nanopowders were obtained from low temperature calcination of a resin prepared using the Pechini's method. Firing the Zn1-xCoxO resin at 400 °C/2 h a powder with hexagonal structure was obtained as measured by X-ray diffraction (XRD). The powder presented average particle size of 40 nm observed by field emission scanning electronic microscopy (FE-SEM) micrographs and average crystallite size of 10 nm calculated from the XRD using Scherrer's equation. Nanocrystalline Zn1-xCo xO films with good homogeneity and optical quality were obtained with 280-980 nm thicknesses by electron beam physical vapour deposition (EBPVD) under vacuum onto silica substrate at 25 °C. Scanning electron microscopy with field emission gun showed that the film microstructure is composed by spherical grains and some needles. In these conditions of deposition the films presented only hexagonal phase observed by XRD. The UV-visible-NIR and diffuse reflectance properties of the films were measured and the electric properties were calculated using the reflectance and transmittance spectra.

  4. Inferring Spatial Variations of Microstructural Properties from Macroscopic Mechanical Response

    PubMed Central

    Liu, Tengxiao; Hall, Timothy J.; Barbone, Paul E.; Oberai, Assad A.

    2016-01-01

    Disease alters tissue microstructure, which in turn affects the macroscopic mechanical properties of tissue. In elasticity imaging, the macroscopic response is measured and is used to infer the spatial distribution of the elastic constitutive parameters. When an empirical constitutive model is used these parameters cannot be linked to the microstructure. However, when the constitutive model is derived from a microstructural representation of the material, it allows for the possibility of inferring the local averages of the spatial distribution of the microstructural parameters. This idea forms the basis of this study. In particular, we first derive a constitutive model by homogenizing the mechanical response of a network of elastic, tortuous fibers. Thereafter, we use this model in an inverse problem to determine the spatial distribution of the microstructural parameters. We solve the inverse problem as a constrained minimization problem, and develop efficient methods for solving it. We apply these methods to displacement fields obtained by deforming gelatin-agar co-gels, and determine the spatial distribution of agar concentration and fiber tortuosity, thereby demonstrating that it is possible to image local averages of microstructural parameters from macroscopic measurements of deformation. PMID:27655420

  5. Experimental study of cryogen spray properties for application in dermatologic laser surgery.

    PubMed

    Aguilar, Guillermo; Majaron, Boris; Karapetian, Emil; Lavernia, Enrique J; Nelson, J Stuart

    2003-07-01

    Cryogenic sprays are used for cooling human skin during laser dermatologic surgery. In this paper, six straight-tube nozzles are characterized by photographs of cryogenic spray shapes, as well as measurements of average droplet diameter, velocity, and temperature. A single-droplet evaporation model to predict average spray droplet diameter and temperature is tested using the experimental data presented here. The results show two distinct spray patterns--sprays for 1.4-mm-diameter nozzles (wide nozzles) show significantly larger average droplet diameters and higher temperatures as a function of distance from the nozzle compared with those for 0.5-0.8-mm-diameter nozzles (narrow nozzles). These results complement and support previously reported studies, indicating that wide nozzles induce more efficient heat extraction than the narrow nozzles.

  6. Non-auditory, electrophysiological potentials preceding dolphin biosonar click production.

    PubMed

    Finneran, James J; Mulsow, Jason; Jones, Ryan; Houser, Dorian S; Accomando, Alyssa W; Ridgway, Sam H

    2018-03-01

    The auditory brainstem response to a dolphin's own emitted biosonar click can be measured by averaging epochs of the instantaneous electroencephalogram (EEG) that are time-locked to the emitted click. In this study, averaged EEGs were measured using surface electrodes placed on the head in six different configurations while dolphins performed an echolocation task. Simultaneously, biosonar click emissions were measured using contact hydrophones on the melon and a hydrophone in the farfield. The averaged EEGs revealed an electrophysiological potential (the pre-auditory wave, PAW) that preceded the production of each biosonar click. The largest PAW amplitudes occurred with the non-inverting electrode just right of the midline-the apparent side of biosonar click generation-and posterior of the blowhole. Although the source of the PAW is unknown, the temporal and spatial properties rule out an auditory source. The PAW may be a neural or myogenic potential associated with click production; however, it is not known if muscles within the dolphin nasal system can be actuated at the high rates reported for dolphin click production, or if sufficiently coordinated and fast motor endplates of nasal muscles exist to produce a PAW detectable with surface electrodes.

  7. Partition resampling and extrapolation averaging: approximation methods for quantifying gene expression in large numbers of short oligonucleotide arrays.

    PubMed

    Goldstein, Darlene R

    2006-10-01

    Studies of gene expression using high-density short oligonucleotide arrays have become a standard in a variety of biological contexts. Of the expression measures that have been proposed to quantify expression in these arrays, multi-chip-based measures have been shown to perform well. As gene expression studies increase in size, however, utilizing multi-chip expression measures is more challenging in terms of computing memory requirements and time. A strategic alternative to exact multi-chip quantification on a full large chip set is to approximate expression values based on subsets of chips. This paper introduces an extrapolation method, Extrapolation Averaging (EA), and a resampling method, Partition Resampling (PR), to approximate expression in large studies. An examination of properties indicates that subset-based methods can perform well compared with exact expression quantification. The focus is on short oligonucleotide chips, but the same ideas apply equally well to any array type for which expression is quantified using an entire set of arrays, rather than for only a single array at a time. Software implementing Partition Resampling and Extrapolation Averaging is under development as an R package for the BioConductor project.

  8. Threaded average temperature thermocouple

    NASA Technical Reports Server (NTRS)

    Ward, Stanley W. (Inventor)

    1990-01-01

    A threaded average temperature thermocouple 11 is provided to measure the average temperature of a test situs of a test material 30. A ceramic insulator rod 15 with two parallel holes 17 and 18 through the length thereof is securely fitted in a cylinder 16, which is bored along the longitudinal axis of symmetry of threaded bolt 12. Threaded bolt 12 is composed of material having thermal properties similar to those of test material 30. Leads of a thermocouple wire 20 leading from a remotely situated temperature sensing device 35 are each fed through one of the holes 17 or 18, secured at head end 13 of ceramic insulator rod 15, and exit at tip end 14. Each lead of thermocouple wire 20 is bent into and secured in an opposite radial groove 25 in tip end 14 of threaded bolt 12. Resulting threaded average temperature thermocouple 11 is ready to be inserted into cylindrical receptacle 32. The tip end 14 of the threaded average temperature thermocouple 11 is in intimate contact with receptacle 32. A jam nut 36 secures the threaded average temperature thermocouple 11 to test material 30.

  9. Relationship between neighbor number and vibrational spectra in disordered colloidal clusters with attractive interactions

    NASA Astrophysics Data System (ADS)

    Yunker, Peter J.; Zhang, Zexin; Gratale, Matthew; Chen, Ke; Yodh, A. G.

    2013-03-01

    We study connections between vibrational spectra and average nearest neighbor number in disordered clusters of colloidal particles with attractive interactions. Measurements of displacement covariances between particles in each cluster permit calculation of the stiffness matrix, which contains effective spring constants linking pairs of particles. From the cluster stiffness matrix, we derive vibrational properties of corresponding "shadow" glassy clusters, with the same geometric configuration and interactions as the "source" cluster but without damping. Here, we investigate the stiffness matrix to elucidate the origin of the correlations between the median frequency of cluster vibrational modes and average number of nearest neighbors in the cluster. We find that the mean confining stiffness of particles in a cluster, i.e., the ensemble-averaged sum of nearest neighbor spring constants, correlates strongly with average nearest neighbor number, and even more strongly with median frequency. Further, we find that the average oscillation frequency of an individual particle is set by the total stiffness of its nearest neighbor bonds; this average frequency increases as the square root of the nearest neighbor bond stiffness, in a manner similar to the simple harmonic oscillator.

  10. 41 CFR 102-34.60 - How do we calculate the average fuel economy for Government motor vehicles?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false How do we calculate the average fuel economy for Government motor vehicles? 102-34.60 Section 102-34.60 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE...

  11. Crystal structure, thermal expansivity, and elasticity of OH-chondrodite: Trends among dense hydrous magnesium silicates

    DOE PAGES

    Ye, Yu; Jacobsen, Steven D.; Mao, Zhu; ...

    2015-04-01

    Here, we report the structure and thermoelastic properties of OH-chondrodite. The sample was synthesized at 12 GPa and 1523 K, coexisting with hydroxyl-clinohumite and hydrous olivine. The Fe content Fe/(Fe+Mg) is 1.1 mol%, and the monoclinic unit-cell parameters are: a = 4.7459(2) Å, b = 10.3480(7) Å, c = 7.9002(6) Å, α = 108.702(7)°, and V = 367.50(4) Å3. At ambient conditions the crystal structure was refined in space group P 21/b from 1915 unique reflection intensities measured by single-crystal x-ray diffraction. The volume thermal expansion coefficient was measured between 150 and 800 K, resulting in α V = 2.8(5)×10more » -9(K -2) × T + 40.9(7) × 10 -6(K -1) – 0.81(3)(K)/T 2, with an average value of 38.0(9)×10 -6 K -1. Brillouin spectroscopy was used to measure a set of acoustic velocities from which all thirteen components (C ij) of the elastic tensor were determined. The Voigt-Reuss-Hill average of the moduli yield for the adiabatic bulk modulus, K S0 = 117.9(12) GPa, and for shear modulus, G 0 = 70.1(5) GPa. The Reuss bound on the isothermal bulk modulus (K T0) is 114.2(14) GPa. From the measured thermodynamic properties, the Grüneisen parameter (γ) is calculated to be 1.66(4). Fitting previous static compression data using our independently measured bulk modulus (isothermal Reuss bound) as a fixed parameter, we refined the first pressure derivative of the bulk modulus, K T’ = 5.5(1). Systematic trends between H 2O content and physical properties are evaluated among dense hydrous magnesium silicate (DHMS) phases along the forsterite-brucite join.« less

  12. Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas

    PubMed Central

    Dorronsoro, Carlos; de la Hoz, Andrés; Marcos, Susana

    2016-01-01

    Objective To validate a new method for reconstructing corneal biomechanical properties from air puff corneal deformation images using hydrogel polymer model corneas and porcine corneas. Methods Air puff deformation imaging was performed on model eyes with artificial corneas made out of three different hydrogel materials with three different thicknesses and on porcine eyes, at constant intraocular pressure of 15 mmHg. The cornea air puff deformation was modeled using finite elements, and hyperelastic material parameters were determined through inverse modeling, minimizing the difference between the simulated and the measured central deformation amplitude and central-peripheral deformation ratio parameters. Uniaxial tensile tests were performed on the model cornea materials as well as on corneal strips, and the results were compared to stress-strain simulations assuming the reconstructed material parameters. Results The measured and simulated spatial and temporal profiles of the air puff deformation tests were in good agreement (< 7% average discrepancy). The simulated stress-strain curves of the studied hydrogel corneal materials fitted well the experimental stress-strain curves from uniaxial extensiometry, particularly in the 0–0.4 range. Equivalent Young´s moduli of the reconstructed material properties from air-puff were 0.31, 0.58 and 0.48 MPa for the three polymer materials respectively which differed < 1% from those obtained from extensiometry. The simulations of the same material but different thickness resulted in similar reconstructed material properties. The air-puff reconstructed average equivalent Young´s modulus of the porcine corneas was 1.3 MPa, within 18% of that obtained from extensiometry. Conclusions Air puff corneal deformation imaging with inverse finite element modeling can retrieve material properties of model hydrogel polymer corneas and real corneas, which are in good correspondence with those obtained from uniaxial extensiometry, suggesting that this is a promising technique to retrieve quantitative corneal biomechanical properties. PMID:27792759

  13. Decorrelation distance of snow in the Colorado River Basin

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Chiu, L. S.

    1989-01-01

    The problem of estimating areal averages from point measurement has been extensively studied by mining engineers and hydrologists. Its application to satellite measurements has recently been introduced. The semivariaogram has been used in many geostatistical applications to estimate spatial structures of observed properties, such as mineral distributions. An examination is made of snow variations in Colorado from daily snow data collected in 11 SNOTEL stations. The associated semivariogram is estimated. The objective is to estimate the spatial structure of the snow field so that the point data can be used for comparison with, and validation for, satellite measurements.

  14. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Domingo, N.; Farokhipoor, S.; Santiso, J.; Noheda, B.; Catalan, G.

    2017-08-01

    We measure the magnetotransport properties of individual 71° domain walls in multiferroic BiFeO3 by means of conductive—atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of the magnetoresistance depending on the relative orientation between the magnetic field and the domain wall plane. A consequence of this finding is that macroscopically averaged magnetoresistance measurements for domain wall bunches are likely to underestimate the magnetoresistance of each individual domain wall.

  15. A technique for the measurement of organic aerosol hygroscopicity, oxidation level, and volatility distributions

    NASA Astrophysics Data System (ADS)

    Cain, Kerrigan P.; Pandis, Spyros N.

    2017-12-01

    Hygroscopicity, oxidation level, and volatility are three crucial properties of organic pollutants. This study assesses the feasibility of a novel measurement and analysis technique to determine these properties and establish their relationship. The proposed experimental setup utilizes a cloud condensation nuclei (CCN) counter to quantify hygroscopic activity, an aerosol mass spectrometer to measure the oxidation level, and a thermodenuder to evaluate the volatility. The setup was first tested with secondary organic aerosol (SOA) formed from the ozonolysis of α-pinene. The results of the first experiments indicated that, for this system, the less volatile SOA contained species that had on average lower O : C ratios and hygroscopicities. In this SOA system, both low- and high-volatility components can have comparable oxidation levels and hygroscopicities. The method developed here can be used to provide valuable insights about the relationships among organic aerosol hygroscopicity, oxidation level, and volatility.

  16. Physical Characteristics of AR 11024 Plasma Based on SPHINX and XRT Data

    NASA Astrophysics Data System (ADS)

    Sylwester, B.; Sylwester, J.; Siarkowski, M.; Engell, A. J.; Kuzin, S. V.

    We have studied the evolution of basic physical properties of plasma within the coronal part of the isolated, new cycle region (AR 11024) during its crossing over the solar disc in July 2009. Our analysis is based on the high temporal and spectral resolution measurements performed by the Polish X-ray spectrometer SphinX onboard the CORONAS-Photon satellite. Hinode XRT images provide information on spatial extension of the emission within this active region. It is found that the average temperature of the plasma within the analysed region is the highest (˜6 MK) when the region is young and gradually declines to ˜2 MK when the emission measure is the highest. An average density during this first part of the evolution is estimated to be ˜2 x 10^9 cm^{-3}.

  17. Investigation of the tip clearance flow inside and at the exit of a compressor rotor passage

    NASA Technical Reports Server (NTRS)

    Pandya, A.; Lakshminarayana, B.

    1982-01-01

    The nature of the tip clearance flow in a moderately loaded compressor rotor is studied. The measurements were taken inside the clearance between the annulus-wall casing and the rotor blade tip. These measurements were obtained using a stationary two-sensor hot-wire probe in combination with an ensemble averaging technique. The flowfield was surveyed at various radial locations and at ten axial locations, four of which were inside the blade passage in the clearance region and the remaining six outside the passage. Variations of the mean flow properties in the tangential and the radial directions at various axial locations were derived from the data. Variation of the leakage velocity at different axial stations and the annulus-wall boundary layer profiles from passage-averaged mean velocities were also estimated.

  18. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    NASA Astrophysics Data System (ADS)

    Pour-Ali, Sadegh; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-07-01

    An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  19. FP-LAPW based investigation of structural, electronic and mechanical properties of CePb{sub 3} intermetallic compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in; Jain, Ekta, E-mail: jainekta05@gmail.com; Abraham, Jisha Annie, E-mail: disisjisha@yahoo.com

    A theoretical study of structural, electronic, elastic and mechanical properties of CePb{sub 3} intermetallic compound has been investigated systematically using first principles density functional theory. The calculations are carried out within the three different forms of generalized gradient approximation (GGA) and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a{sub 0}), bulk modulus (B) and its pressure derivative (B′) are calculated and obtained lattice parameter of this compound shows well agreement with the experimental results. We have calculated three independent second order elastic constants (C{sub 11}, C{sub 12} and C{sub 44}), which has notmore » been calculated and measured yet. From energy dispersion curves, it is found that the studied compound is metallic in nature. Ductility of this compound is analyzed using Pugh’s criteria and Cauchy's pressure (C{sub 11}-C{sub 12}). The mechanical properties such as Young's modulus, shear modulus, anisotropic ratio, Poison's ratio have been calculated for the first time using the Voigt–Reuss–Hill (VRH) averaging scheme. The average sound velocities (v{sub m}), density (ρ) and Debye temperature (θ{sub D}) of this compound are also estimated from the elastic constants.« less

  20. Diurnal, Seasonal, and Interannual Variations of Cloud Properties Derived for CERES From Imager Data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Young, David F.; Sun-Mack, Sunny; Trepte, Qing Z.; Chen, Yan; Brown, Richard R.; Gibson, Sharon; Heck, Patrick W.

    2004-01-01

    Simultaneous measurement of the radiation and cloud fields on a global basis is a key component in the effort to understand and model the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. The NASA Clouds and Earth s Radiant Energy System (CERES) Project, begun in 1998, is meeting this need. Broadband shortwave (SW) and longwave radiance measurements taken by the CERES scanners at resolutions between 10 and 20 km on the Tropical Rainfall Measuring Mission (TRMM), Terra, and Aqua satellites are matched to simultaneous retrievals of cloud height, phase, particle size, water path, and optical depth OD from the TRMM Visible Infrared Scanner (VIRS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Besides aiding the interpretation of the broadband radiances, the CERES cloud properties are valuable for understanding cloud variations at a variety of scales. In this paper, the resulting CERES cloud data taken to date are averaged at several temporal scales to examine the temporal and spatial variability of the cloud properties on a global scale at a 1 resolution.

  1. Flow Property Measurement Using Laser-Induced Fluorescence in the NASA Ames Interaction Heating Facility

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay Henderson; Porter, Barry J.; Carballo, Julio Enrique

    2011-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species has been applied to single-point measurements of velocity and static temperature in the NASA Ames Interaction Heating Facility (IHF) arc jet. Excitation spectra of atomic oxygen and nitrogen were recorded while scanning a tunable dye laser over the absorption feature. Thirty excitation spectra were acquired during 8 arc jet runs at two facility operating conditions; the number of scans per run varied between 2 and 6. Curve fits to the spectra were analyzed to recover their Doppler shifts and widths, from which the flow velocities and static temperatures, respectively, were determined. An increase in the number of independent flow property pairs from each as-measured scan was obtained by extracting multiple lower-resolution scans. The larger population sample size enabled the mean property values and their uncertainties for each run to be characterized with greater confidence. The average plus or minus 2 sigma uncertainties in the mean velocities and temperatures for all 8 runs were plus or minus 1.4% and plus or minus 11%, respectively.

  2. Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, J. D.; Berg, L. K.; Burleyson, C.

    Cumulus convection is an important component in the atmospheric radiation budget and hydrologic cycle over the southern Great Plains and over many regions of the world, particularly during the summertime growing season when intense turbulence induced by surface radiation couples the land surface to clouds. Current convective cloud parameterizations contain uncertainties resulting in part from insufficient coincident data that couples cloud macrophysical and microphysical properties to inhomogeneities in land surface, boundary layer, and aerosol properties. The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) campaign was designed to provide a detailed set of measurements that are needed to obtainmore » a more complete understanding of the lifecycle of shallow clouds by coupling cloud macrophysical and microphysical properties to land surface properties, ecosystems, and aerosols. Some of the land-atmosphere-cloud interactions that can be studied using HI-SCALE data are shown in Figure 1. HI-SCALE consisted of two 4-week intensive operation periods (IOPs), one in the spring (April 24-May 21) and the other in the late summer (August 28-September 24) of 2016, to take advantage of different stages of the plant lifecycle, the distribution of “greenness” for various types of vegetation in the vicinity of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site, and aerosol properties that vary during the growing season. As expected, satellite measurements indicated that the Normalized Difference Vegetation Index (NDVI) was much “greener” in the vicinity of the SGP site during the spring IOP than the late summer IOP as a result of winter wheat maturing in the spring and being harvested in the early summer. As shown in Figure 2, temperatures were cooler than average and soil moisture was high during the spring IOP, while temperatures were warmer than average and soil moisture was low during the late summer IOP. These factors likely influence the occurrence and lifecycle of shallow clouds. Most of the instrumentation was deployed on the ARM Aerial Facility (AAF) Gulfstream 1 (G-1) aircraft, including those that measure atmospheric turbulence, cloud water content and drop size distributions, aerosol precursor gases, aerosol chemical composition and size distributions, and cloud condensation nuclei (CCN) concentrations. The specific instrumentation is listed in Table 1. The team of scientists participating in the G-1 flights were from Pacific Northwest National Laboratory (PNNL), Brookhaven National Laboratory (BNL), and the University of Washington. Routine ARM aerosol measurements made at the surface were supplemented with aerosol microphysical properties measurements, with support from the DOE Environmental Molecular Sciences Laboratory (EMSL) User Facility and the Atmospheric System Radiation (ASR) program. This included deploying a scanning mobility particle sizer (SMPS) to measure aerosol size distribution, a proton transfer reaction-mass spectrometer (PTR-MS) to measure volatile organic compounds, an aerosol mass spectrometer (AMS) to measure bulk aerosol composition, and the single-particle laser ablation time-of-flight mass spectrometer (SPLAT II) to measure single-particle aerosol composition at the SGP site Guest Instrumentation Facility. In this way, characterization of aerosol properties at the surface and on the G-1 were consistent. In addition, the HI-SCALE: Nanoparticle Composition and Precursors add-on campaign was conducted during the second IOP in which several state-of-the-science chemical ionization mass spectrometers were deployed to measure nanoparticle composition and precursors. Scientists participating in the surface measurements were from PNNL, BNL, University California–Irvine, Augsberg College, Colorado University, Aerodyne Inc., and Aerosol Dynamics Inc.« less

  3. Measurement of fluid properties using rapid-double-exposure and time-average holographic interferometry

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1984-01-01

    The holographic recording of the time history of a flow feature in three dimensions is discussed. The use of diffuse illumination holographic interferometry or the three dimensional visualization of flow features such as shock waves and turbulent eddies is described. The double-exposure and time-average methods are compared using the characteristic function and the results from a flow simulator. A time history requires a large hologram recording rate. Results of holographic cinematography of the shock waves in a flutter cascade are presented as an example. Future directions of this effort, including the availability and development of suitable lasers, are discussed.

  4. Choosing the best index for the average score intraclass correlation coefficient.

    PubMed

    Shieh, Gwowen

    2016-09-01

    The intraclass correlation coefficient (ICC)(2) index from a one-way random effects model is widely used to describe the reliability of mean ratings in behavioral, educational, and psychological research. Despite its apparent utility, the essential property of ICC(2) as a point estimator of the average score intraclass correlation coefficient is seldom mentioned. This article considers several potential measures and compares their performance with ICC(2). Analytical derivations and numerical examinations are presented to assess the bias and mean square error of the alternative estimators. The results suggest that more advantageous indices can be recommended over ICC(2) for their theoretical implication and computational ease.

  5. Some physico-chemical properties of Prunus armeniaca L. gum exudates.

    PubMed

    Fathi, Morteza; Mohebbi, Mohebbat; Koocheki, Arash

    2016-01-01

    The objectives of this paper were to investigate some physicochemical properties of Prunus armeniaca L. gum exudates (PAGE). PAGE had, on average, 66.89% carbohydrate, 10.47% uronic acids, 6.9% moisture (w.b.), 2.91% protein, 4% ash and 1.59% fat. PAGE was composed of monosaccharides including l-arabinose, d-galactose, xylose, mannose and rhamnose in molar percentages of 41.52%, 23.72%, 17.82%, 14.40% and 2.54%, respectively. Elemental analysis showed that PAGE had high values of nutrients. FTIR analysis demonstrated the presence of carboxyl, hydroxyl and methyl groups and glycoside bonds. The weight average molecular weight, number average molecular weight and polydispersity index were found to be approximately 5.69 × 10(5)g/mol, 4.33 g/mol and 1.31, respectively. Rheological measurement of PAGE solutions as a function of concentration (8, 10 and 12% (w/w)) and temperature (10, 20, 30 and 40°C) demonstrated that the gum solutions had a non Newtonian shear thinning behaviour. Intrinsic viscosity for PAGE in deionized water was 3.438 dl/g based on Kramer equation. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Modeling electrochemical resistance with coal surface properties in a direct carbon fuel cell based on molten carbonate

    NASA Astrophysics Data System (ADS)

    Eom, Seongyong; Ahn, Seongyool; Kang, Kijoong; Choi, Gyungmin

    2017-12-01

    In this study, a numerical model of activation and ohmic polarization is modified, taking into account the correlation function between surface properties and inner resistance. To investigate the correlation function, the surface properties of coal are changed by acid treatment, and the correlations between the inner resistance measured by half-cell tests and the surface characteristics are analyzed. A comparison between the model and experimental results demonstrates that the absolute average deviations for each fuel are less than 10%. The numerical results show that the sensitivities of the coal surface properties affecting polarization losses change depending on the operating temperature. The surface oxygen concentrations affect the activation polarization and the sensitivity decreased with increasing temperature. The surface ash of coal is an additional index to be considered along with ohmic polarization and it has the greatest effect on the surface properties at 973 K.

  7. Aerosol optical properties measurements by a CAPS single scattering albedo monitor: Comparisons between summer and winter in Beijing, China

    NASA Astrophysics Data System (ADS)

    Han, Tingting; Xu, Weiqi; Li, Jie; Freedman, Andrew; Zhao, Jian; Wang, Qingqing; Chen, Chen; Zhang, Yingjie; Wang, Zifa; Fu, Pingqing; Liu, Xingang; Sun, Yele

    2017-02-01

    Aerosol optical properties were measured in Beijing in summer and winter using a state-of-the-art cavity attenuated phase shift single scattering albedo monitor (CAPS PMssa) along with aerosol composition measurements by aerosol mass spectrometers and aethalometers. The SSA directly measured by the CAPS PMssa showed overall agreements with those derived from colocated measurements. However, substantial differences were observed during periods with low SSA values in both summer and winter, suggesting that interpretation of low SSA values needs to be cautious. The average (±σ) extinction coefficient (bext) and absorption coefficient (bap) were 336 (±343) Mm-1 and 44 (±41) Mm-1, respectively, during wintertime, which were approximately twice those observed in summer, while the average SSA was relatively similar, 0.86 (±0.06) and 0.85 (±0.04) in summer and winter, respectively. Further analysis showed that the variations in SSA can be approximately parameterized as a function of mass fraction of secondary particulate matter (fSPM), which is SSA = 0.74 + 0.19 × fSPM (fSPM > 0.3, r2 = 0.85). The contributions of aerosol species to extinction coefficients during the two seasons were also estimated. Our results showed that the light extinction was dominantly contributed by ammonium sulfate (30%) and secondary organic aerosol (22%) in summer, while organic aerosol was the largest contributor (51%) in winter. Consistently, SPM played the major role in visibility degradation in both seasons by contributing 70% of the total extinction.

  8. Load-bearing capacity and biological allowable limit of biodegradable metal based on degradation rate in vivo.

    PubMed

    Cho, Sung Youn; Chae, Soo-Won; Choi, Kui Won; Seok, Hyun Kwang; Han, Hyung Seop; Yang, Seok Jo; Kim, Young Yul; Kim, Jong Tac; Jung, Jae Young; Assad, Michel

    2012-08-01

    In this study, a newly developed Mg-Ca-Zn alloy for low degradation rate and surface erosion properties was evaluated. The compressive, tensile, and fatigue strength were measured before implantation. The degradation behavior was evaluated by analyzing the microstructure and local hardness of the explanted specimen. Mean and maximum degradation rates were measured using micro CT equipment from 4-, 8-, and 16- week explants, and the alloy was shown to display surface erosion properties. Based on these characteristics, the average and minimum load bearing capacities in tension, compression, and bending modes were calculated. According to the degradation rate and references of recommended dietary intakes (RDI), the Mg-Ca-Zn alloy appears to be safe for human use. Copyright © 2012 Wiley Periodicals, Inc.

  9. Design rules for biomolecular adhesion: lessons from force measurements.

    PubMed

    Leckband, Deborah

    2010-01-01

    Cell adhesion to matrix, other cells, or pathogens plays a pivotal role in many processes in biomolecular engineering. Early macroscopic methods of quantifying adhesion led to the development of quantitative models of cell adhesion and migration. The more recent use of sensitive probes to quantify the forces that alter or manipulate adhesion proteins has revealed much greater functional diversity than was apparent from population average measurements of cell adhesion. This review highlights theoretical and experimental methods that identified force-dependent molecular properties that are central to the biological activity of adhesion proteins. Experimental and theoretical methods emphasized in this review include the surface force apparatus, atomic force microscopy, and vesicle-based probes. Specific examples given illustrate how these tools have revealed unique properties of adhesion proteins and their structural origins.

  10. Direct Aerosol Radiative Forcing: Calculations and Measurements from the Tropospheric

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hignett, P.; Stowe, L. L.; Livingston, J. M.; Kinne, S.; Wong, J.; Chan, K. Roland (Technical Monitor)

    1997-01-01

    Radiative forcing is defined as the change in the net (downwelling minus upwelling) radiative flux at a given level in the atmosphere. This net flux is the radiative power density available to drive climatic processes in the earth-atmosphere system below that level. Recent research shows that radiative forcing by aerosol particles is a major source of uncertainty in climate predictions. To reduce those uncertainties, TARFOX was designed to determine direct (cloud-free) radiative forcing by the aerosols in one of the world's major industrial pollution plumes--that flowing from the east coast of the US over the Atlantic Ocean. TARFOX measured a variety of aerosol radiative effects (including direct forcing) while simultaneously measuring the chemical, physical, and optical properties of the aerosol particles causing those effects. The resulting data sets permit a wide variety of tests of the consistency, or closure, among the measurements and the models that link them. Because climate predictions use the same or similar model components, closure tests help to assess and reduce prediction uncertainties. In this work we use the TARFOX-determined aerosol, gas, and surface properties to compute radiative forcing for a variety of aerosol episodes, with inadvisable optical depths ranging from 0.07 to 0.6. We calculate forcing by several techniques with varying degrees of sophistication, in part to test the range of applicability of simplified techniques--which are often the only ones feasible in climate predictions by general circulation models (GCMs). We then compare computed forcing to that determined from: (1) Upwelling and downwelling fluxes (0.3-0.7 mm and 0.7-3.0 mm) measured by radiometers on the UK MRF C-130. and (2) Daily average cloud-free absorbed solar and emitted thermal radiative flux at the top of the atmosphere derived from the AVHRR radiometer on the NOAA- 14 satellite. The calculations and measurements all yield aerosol direct radiative forcing in the range -50 to -190 W sq m per unit inadvisable optical depth. The magnitudes are about 15 to 100 times larger than the global-average direct forcing expected for the global-average sulfate aerosol optical depth of 0.04. The reasons for the larger forcing in TARFOX include the relatively large optical depths and the focus on cloud-free, daytime conditions over the dark ocean surface. These are the conditions that produce the actual major radiative forcing events that contribute to any global-average climate effect. Detailed comparisons of calculated and measured forcings for specific events are used for more refined tests of closure.

  11. Characterizing the Vertical Distribution of Aerosols using Ground-based Multiwavelength Lidar Data

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Thorsen, T. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Burton, S. P.; Goldsmith, J.; Holz, R.; Kuehn, R.; Eloranta, E. W.; Marais, W.; Newsom, R. K.; Liu, X.; Sawamura, P.; Holben, B. N.; Hostetler, C. A.

    2016-12-01

    Observations of aerosol optical and microphysical properties are critical for developing and evaluating aerosol transport model parameterizations and assessing global aerosol-radiation impacts on climate. During the Combined HSRL And Raman lidar Measurement Study (CHARMS), we investigated the synergistic use of ground-based Raman lidar and High Spectral Resolution Lidar (HSRL) measurements to retrieve aerosol properties aloft. Continuous (24/7) operation of these co-located lidars during the ten-week CHARMS mission (mid-July through September 2015) allowed the acquisition of a unique, multiwavelength ground-based lidar dataset for studying aerosol properties above the Southern Great Plains (SGP) site. The ARM Raman lidar measured profiles of aerosol backscatter, extinction and depolarization at 355 nm as well as profiles of water vapor mixing ratio and temperature. The University of Wisconsin HSRL simultaneously measured profiles of aerosol backscatter, extinction and depolarization at 532 nm and aerosol backscatter at 1064 nm. Recent advances in both lidar retrieval theory and algorithm development demonstrate that vertically-resolved retrievals using such multiwavelength lidar measurements of aerosol backscatter and extinction can help constrain both the aerosol optical (e.g. complex refractive index, scattering, etc.) and microphysical properties (e.g. effective radius, concentrations) as well as provide qualitative aerosol classification. Based on this work, the NASA Langley Research Center (LaRC) HSRL group developed automated algorithms for classifying and retrieving aerosol optical and microphysical properties, demonstrated these retrievals using data from the unique NASA/LaRC airborne multiwavelength HSRL-2 system, and validated the results using coincident airborne in situ data. We apply these algorithms to the CHARMS multiwavelength (Raman+HSRL) lidar dataset to retrieve aerosol properties above the SGP site. We present some profiles of aerosol effective radius and concentration retrieved from the CHARMS data and compare column-average aerosol properties derived from the multiwavelength lidar aerosol retrievals to corresponding values retrieved from AERONET measurements.

  12. PHIPS-HALO: the airborne Particle Habit Imaging and Polar Scattering probe - Part 1: Design and operation

    NASA Astrophysics Data System (ADS)

    Abdelmonem, Ahmed; Järvinen, Emma; Duft, Denis; Hirst, Edwin; Vogt, Steffen; Leisner, Thomas; Schnaiter, Martin

    2016-07-01

    The number and shape of ice crystals present in mixed-phase and ice clouds influence the radiation properties, precipitation occurrence and lifetime of these clouds. Since clouds play a major role in the climate system, influencing the energy budget by scattering sunlight and absorbing heat radiation from the earth, it is necessary to investigate the optical and microphysical properties of cloud particles particularly in situ. The relationship between the microphysics and the single scattering properties of cloud particles is usually obtained by modelling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. There is a demand to obtain both information correspondently and simultaneously for individual cloud particles in their natural environment. For evaluating the average scattering phase function as a function of ice particle habit and crystal complexity, in situ measurements are required. To this end we have developed a novel airborne optical sensor (PHIPS-HALO) to measure the optical properties and the corresponding microphysical parameters of individual cloud particles simultaneously. PHIPS-HALO has been tested in the AIDA cloud simulation chamber and deployed in mountain stations as well as research aircraft (HALO and Polar 6). It is a successive version of the laboratory prototype instrument PHIPS-AIDA. In this paper we present the detailed design of PHIPS-HALO, including the detection mechanism, optical design, mechanical construction and aerodynamic characterization.

  13. Crustal seismic anisotropy and structure from textural and seismic investigations in the Cycladic region, Greece

    NASA Astrophysics Data System (ADS)

    Cossette, Élise; Schneider, David; Audet, Pascal; Grasemann, Bernhard

    2016-04-01

    Seismic anisotropy data are often used to resolve rock structures and deformation styles in the crust based on compilations of rock properties that may not be representative of the exposed geology. We use teleseismic receiver functions jointly with in situ rock property data to constrain the seismic structure and anisotropy of the crust in the Cyclades, Greece, located in the back arc region of the Hellenic subduction zone. Crystallographic preferred orientations (CPOs) via electron backscatter diffraction (EBSD) analyses were measured on a suite of samples representative of different structural depths along the West Cycladic Detachment System; average seismic properties of the rocks were calculated with the Voigt-Reuss-Hill average of the single minerals' elastic stiffness tensor. The calcitic and quartzitic rocks have P- and S-wave velocity anisotropies (AVp, AVs) averaging 8.1% and 7.1%, respectively. The anisotropy increases with depth represented by blueschist assemblages, with AVp averaging 20.3% and AVs averaging 14.5% due to the content of aligned glaucophane and mica, which strongly control the seismic properties of the rocks. Localized anisotropies of very high magnitude are caused by the presence of mica schists as they possess the strongest anisotropies, with values of ~25% for AVp and AVs. The direction of the fast and slow P-wave velocities occur parallel and perpendicular to the foliation, respectively, for most samples. The fast propagation has the same NE-SW orientation as the lithospheric stretching direction present in the Cyclades since the Late Oligocene. The maximum shear wave anisotropy is subhorizontal, similarly concordant with mineral alignment that developed during back-arc extension. Our results strongly favor radial anisotropy in the Aegean mid-crust over azimuthal anisotropy. The receiver function data indicate that the Moho is relatively flat at 25 km depth in the south and deepens to 33 km in the north, consistent with previous studies, and reveal an intra-crustal discontinuity at depth varying from 3 to 11 km, mostly observed in the south-central Aegean. Harmonic decomposition of the receiver functions further indicates layering of both shallow and deep crustal anisotropy related to crustal structures. We model synthetic receiver functions based on constraints from the in situ rock properties that we measured using the EBSD technique. Our results indicate that the shallow upper crustal layer is characterized by metapelites with ~5% anisotropy, underlain by a 20 km thick and anisotropic layer of possible high-pressure rocks comprising blueschist and eclogite and/or restitic crust as a consequence of Miocene magmatism. Seismic anisotropy models require a sub-vertical axis of hexagonal symmetry in the upper crust (i.e. radial anisotropy), consistent with in situ rock data. Finally, a thinned crust is likely caused by back-arc extension associated with elevated sub-crustal temperatures, in agreement with thermal isostasy models of back arcs. This study demonstrates the importance of integrating rock textural data with seismic velocity profiles in the interpretation of crustal architecture.

  14. Aerosol optical properties in the Marine Environment during the TCAP-I campaign

    NASA Astrophysics Data System (ADS)

    Chand, D.; Berg, L. K.; Barnard, J.; Berkowitz, C. M.; Burton, S. P.; Chapman, E. G.; Comstock, J. M.; Fast, J. D.; Ferrare, R. A.; Connor, F. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Kluzek, C.; Mei, F.; Pekour, M. S.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk-Imre, A.

    2013-12-01

    The role of direct radiative forcing by atmospheric aerosol is one of the largest sources of uncertainty in predicting climate change. Much of this uncertainty comes from the limited knowledge of observed aerosol optical properties. In this presentation we discuss derived aerosol optical properties based on measurements made during the summer 2012 Two-Column Aerosol Project-I (TCAP) campaign and relate these properties to the corresponding chemical and physical properties of the aerosol. TCAP was designed to provide simultaneous, in-situ observations of the size distribution, chemical properties, and optical properties of aerosol within and between two atmospheric columns over the Atlantic Ocean near the eastern seaboard of the United States. These columns are separated by 200-300 km and were sampled in July 2012 during a summer intensive operation period (IOP) using the U.S. Department of Energy's Gulfstream-1 (G-1) and NASA's B200 aircraft, winter IOP using G-1 aircraft in February 2013, and the surface-based DOE Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) located on Cape Cod. In this presentation we examine the spectral dependence of the aerosol optical properties measured from the aircraft over the TCAP-I domain, with an emphasis on in-situ derived intensive properties measured by a 3-λ Nephelometer, a Particle Soot Absorption Photometer (PSAP), a humidograph (f(RH)), and a Single Particle Soot Photometer (SP2). Preliminary results indicate that the aerosol are more light-absorbing as well as more hygroscopic at higher altitudes (2-4 km) compared to the corresponding values made within residual layers near the surface (0-2 km altitude). The average column (0-4 km) single scattering albedo (ω) and hygroscopic scattering factor (F) are found to be ~0.96 and 1.25, respectively. Additional results on key aerosol intensive properties such as the angstrom exponent (å), asymmetry parameter (g), backscattering fraction (b), and gamma parameter (γ) will be presented and discussed.

  15. Bio-Optical Properties and Ocean Color Algorithms for Coastal Waters Influenced by the Mississippi River During a Cold Front Passage

    NASA Technical Reports Server (NTRS)

    D'Sa Eurico J.; Miller, Richard L.; DelCastillo, Carlos

    2006-01-01

    During the passage of a cold front in March 2002, bio-optical properties examined in coastal waters impacted by the Mississippi River indicated westward advective flows and increasing river discharge containing a larger nonalgal particle content contributed significantly to surface optical variability. A comparison of seasonal data from three cruises indicated spectral models of absorption and scattering to be generally consistent with other coastal environments, while their parameterization in terms of chlorophyll a concentration (Chl) showed seasonal variability. The exponential slope of the colored dissolved organic matter (CDOM) averaged 0.0161 plus or minus 0.00054 per nanometer, and for nonalgal absorption it averaged 0.011 per nanometer with deviations from general trends observed due to anomalous water properties. Although the phytoplankton specific absorption coefficients varied over a wide range (0.02 to 0.1 square meters (mg Chl) sup -1)) being higher in offshore surface waters, values of phytoplankton absorption spectra at the SeaWiFS wavebands were highly correlated to modeled values. The normalized scattering spectral shapes and the mean spectrum were in agreement to observations in other coastal waters, while the backscattering ratios were on average lower in phytoplankton dominated surface waters (0.0101 plus or minus 0.002) and higher in near-bottom waters (0.0191 plus or minus 0.0045) with low Chl. Average percent differences in remote sensing reflectance R (sub rs) derived form modeled and in-eater radiometric measurements were highest in the blue wavebands (52%) and at sampling stations with a ore stratified water column. Estimates of Chl and CDOM absorption derived from SeaWiFS images generated using regional empirical algorithms were highly correlated to in situ data.

  16. The Social Anxiety Scale for Adolescents: Measurement Invariance and Psychometric Properties Among a School Sample of Portuguese Youths.

    PubMed

    Pechorro, Pedro; Ayala-Nunes, Lara; Nunes, Cristina; Marôco, João; Gonçalves, Rui Abrunhosa

    2016-12-01

    Over the last decades there has been an increased interest in assessing social anxiety in adolescents. This study aims to validate the Social Anxiety Scale for Adolescents (SAS-A) to Portuguese youth, and to examine its invariance across gender as well as its psychometric properties. The participants were 782 Portuguese youths (371 males, 411 females), with an average age of 15.87 years (SD = 1.72). The results support the original three-factor structure of the SAS-A, with measurement invariance being found across gender, with females scoring higher than males on two subscales. High levels of internal consistency were found. Positive associations with empathy demonstrated that high socially anxious adolescents have elevated empathy tendencies. Mostly null or low negative associations were found with measures of psychopathic traits, callous-unemotional traits and aggression. Study findings provide evidence that the SAS-A is a psychometrically sound instrument that shows measurement invariance between genders, good reliability and positive correlations with empathy.

  17. Use of a GCM to Explore Sampling Issues in Connection with Satellite Remote Sensing of the Earth Radiation Budget

    NASA Technical Reports Server (NTRS)

    Fowler, Laura D.; Wielicki, Bruce A.; Randall, David A.; Branson, Mark D.; Gibson, Gary G.; Denn, Fredrick M.

    2000-01-01

    Collocated in time and space, top-of-the-atmosphere measurements of the Earth radiation budget (ERB) and cloudiness from passive scanning radiometers, and lidar- and radar-in-space measurements of multilayered cloud systems, are the required combination to improve our understanding of the role of clouds and radiation in climate. Experiments to fly multiple satellites "in formation" to measure simultaneously the radiative and optical properties of overlapping cloud systems are being designed. Because satellites carrying ERB experiments and satellites carrying lidars- or radars-in space have different orbital characteristics, the number of simultaneous measurements of radiation and clouds is reduced relative to the number of measurements made by each satellite independently. Monthly averaged coincident observations of radiation and cloudiness are biased when compared against more frequently sampled observations due, in particular, to the undersampling of their diurnal cycle, Using the Colorado State University General Circulation Model (CSU GCM), the goal of this study is to measure the impact of using simultaneous observations from the Earth Observing System (EOS) platform and companion satellites flying lidars or radars on monthly averaged diagnostics of longwave radiation, cloudiness, and its cloud optical properties. To do so, the hourly varying geographical distributions of coincident locations between the afternoon EOS (EOS-PM) orbit and the orbit of the ICESAT satellite set to fly at the altitude of 600 km, and between the EOS PM orbit and the orbits of the PICASSO satellite proposed to fly at the altitudes of 485 km (PICA485) or 705 km (PICA705), are simulated in the CSU GCM for a 60-month time period starting at the idealistic July 1, 2001, launch date. Monthly averaged diagnostics of the top-of-the-atmosphere, atmospheric, and surface longwave radiation budgets and clouds accumulated over grid boxes corresponding to satellite overpasses are compared against monthly averaged diagnostics obtained from hourly samplings over the entire globe. Results show that differences between irregularly (satellite) and regularly (true) sampled diagnostics of the longwave net radiative budgets are the greatest at the surface and the smallest in the atmosphere and at the top-of-the-atmosphere, under both cloud-free and cloudy conditions. In contrast, differences between the satellite and the true diagnostics of the longwave cloud radiative forcings are the largest in the atmosphere and at the top-of-the-atmosphere, and the smallest at the surface. A poorer diurnal sampling of the surface temperature in the satellite simulations relative to the true simulation contributes a major part to sampling biases in the longwave net radiative budgets, while a poorer diurnal sampling of cloudiness and its optical properties directly affects diagnostics of the longwave cloud radiative forcings. A factor of 8 difference in the number of satellite overpasses between PICA705 and PICA485 and ICESAT leads to a systematic factor of 3 difference in the spatial standard deviations of all radiative and cloudiness diagnostics.

  18. Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Nichols, Brandon S.; Rajaram, Narasimhan; Tunnell, James W.

    2012-05-01

    Diffuse optical spectroscopy (DOS) provides a powerful tool for fast and noninvasive disease diagnosis. The ability to leverage DOS to accurately quantify tissue optical parameters hinges on the model used to estimate light-tissue interaction. We describe the accuracy of a lookup table (LUT)-based inverse model for measuring optical properties under different conditions relevant to biological tissue. The LUT is a matrix of reflectance values acquired experimentally from calibration standards of varying scattering and absorption properties. Because it is based on experimental values, the LUT inherently accounts for system response and probe geometry. We tested our approach in tissue phantoms containing multiple absorbers, different sizes of scatterers, and varying oxygen saturation of hemoglobin. The LUT-based model was able to extract scattering and absorption properties under most conditions with errors of less than 5 percent. We demonstrate the validity of the lookup table over a range of source-detector separations from 0.25 to 1.48 mm. Finally, we describe the rapid fabrication of a lookup table using only six calibration standards. This optimized LUT was able to extract scattering and absorption properties with average RMS errors of 2.5 and 4 percent, respectively.

  19. Correlation between structure and physical properties of chalcogenide glasses in the AsxSe1-x system

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Bureau, Bruno; Rouxel, Tanguy; Gueguen, Yann; Gulbiten, Ozgur; Roiland, Claire; Soignard, Emmanuel; Yarger, Jeffery L.; Troles, Johann; Sangleboeuf, Jean-Christophe; Lucas, Pierre

    2010-11-01

    Physical properties of chalcogenide glasses in the AsxSe1-x system have been measured as a function of composition including the Young’s modulus E , shear modulus G , bulk modulus K , Poisson’s ratio ν , the density ρ , and the glass transition Tg . All these properties exhibit a relatively sharp extremum at the average coordination number ⟨r⟩=2.4 . The structural origin of this trend is investigated by Raman spectroscopy and nuclear magnetic resonance. It is shown that the reticulation of the glass structure increases continuously until x=0.4 following the “chain crossing model” and then undergoes a transition toward a lower dimension pyramidal network containing an increasing number of molecular inclusions at x>0.4 . Simple theoretical estimates of the network bonding energy confirm a mismatch between the values of mechanical properties measured experimentally and the values predicted from a continuously reticulated structure, therefore corroborating the formation of a lower dimension network at high As content. The evolution of a wide range of physical properties is consistent with this sharp structural transition and suggests that there is no intermediate phase in these glasses at room temperature.

  20. Effects of Porosity on Ultrasonic Characteristic Parameters and Mechanical Properties of Glass Fiber Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Ma, Wen; Liu, Fushun

    Voids are inevitable in the fabrication of fiber reinforced composites and have a detrimental impact on mechanical properties of composites. Different void contents were acquired by applying different vacuum bag pressures. Ultrasonic inspection and ablation density method were adopted to measure the ultrasonic characteristic parameters and average porosity, the characterization of voids' distribution, shape and size were carried out through metallographic analysis. Effects of void content on the tensile, flexural and interlaminar shear properties and the ultrasonic characteristic parameters were discussed. The results showed that, as vacuum bag pressure went from -50kPa to -98kPa, the voids content decreased from 4.36 to 0.34, the ultrasonic attenuation coefficient decreased, but the mechanical strengths all increased.

  1. Mn valence, magnetic, and electrical properties of LaMnO3+δ nanofibers by electrospinning.

    PubMed

    Zhou, Xianfeng; Xue, Jiang; Zhou, Defeng; Wang, Zhongli; Bai, Yijia; Wu, Xiaojie; Liu, Xiaojuan; Meng, Jian

    2010-10-01

    LaMnO3+δ nanofibers have been prepared by electrospinning. The nearly 70% of Mn atoms is Mn4+, which is much higher than that in the nanoparticles. The average grain size of our fibers is approximately 20 nm, which is the critical size producing the nanoscale effect. The nanofibers exhibit a very broad magnetic transition with Tc≈255 K, and the Tc onset is around 310 K. The blocking temperature TB is 180 K. The sample shows weak ferromagnetic property above the TB and below Tc and superparamagnetic property near the Tc onset. The resistivity measurements show a metal-insulator transition near 210 K and an upturn at about 45 K.

  2. Effect of Fused Filament Fabrication Process Parameters on the Mechanical Properties of Carbon Fiber Reinforced Polymers

    DTIC Science & Technology

    2017-09-14

    averaging the gage measurements many specimens were not meeting the ASTM D3039 standard tolerance limitations when compared to the designed 3mm and 15 mm...MarkOne) 3D printer. A design of experiment (DOE) we preformed to develop a mathematical model describing the functional relationship between the...6 Design of Experiment (DOE) .................................................................................................. 6 Carbon Fiber

  3. Charge structure of the hadronic final state in deep-inelastic muon-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Bedełek, J.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Ftáčnik, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jachołkowska, A.; Janata, F.; Jancsó, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettinghale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Schneider, A.; Scholz, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1988-09-01

    The general charge properties of the hadronic final state produced in μ + p and μ + d interactions at 280 GeV are investigated. Quark charge retention and local charge compensation is observed. The ratio F {2/ n }/ F {2/ p } of the neutron to proton structure function is derived from the measurement of the average hadronic charge in μ d interactions.

  4. THE MAGNETIC FIELD OF L1544. I. NEAR-INFRARED POLARIMETRY AND THE NON-UNIFORM ENVELOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemens, Dan P.; Tassis, K.; Goldsmith, Paul F., E-mail: clemens@bu.edu, E-mail: tassis@physics.uoc.gr, E-mail: paul.f.goldsmith@jpl.nasa.gov

    2016-12-20

    The magnetic field ( B -field) of the starless dark cloud L1544 has been studied using near-infrared (NIR) background starlight polarimetry (BSP) and archival data in order to characterize the properties of the plane-of-sky B -field. NIR linear polarization measurements of over 1700 stars were obtained in the H band and 201 of these were also measured in the K band. The NIR BSP properties are correlated with reddening, as traced using the Rayleigh–Jeans color excess ( H – M ) method, and with thermal dust emission from the L1544 cloud and envelope seen in Herschel maps. The NIR polarizationmore » position angles change at the location of the cloud and exhibit their lowest dispersion there, offering strong evidence that NIR polarization traces the plane-of-sky B -field of L1544. In this paper, the uniformity of the plane-of-sky B -field in the envelope region of L1544 is quantitatively assessed. This allows evaluation of the approach of assuming uniform field geometry when measuring relative mass-to-flux ratios in the cloud envelope and core based on averaging of the radio Zeeman observations in the envelope, as done by Crutcher et al. In L1544, the NIR BSP shows the envelope B -field to be significantly non-uniform and likely not suitable for averaging Zeeman properties without treating intrinsic variations. Deeper analyses of the NIR BSP and related data sets, including estimates of the B -field strength and testing how it varies with position and gas density, are the subjects of later papers in this series.« less

  5. Averaging, passage through resonances, and capture into resonance in two-frequency systems

    NASA Astrophysics Data System (ADS)

    Neishtadt, A. I.

    2014-10-01

    Applying small perturbations to an integrable system leads to its slow evolution. For an approximate description of this evolution the classical averaging method prescribes averaging the rate of evolution over all the phases of the unperturbed motion. This simple recipe does not always produce correct results, because of resonances arising in the process of evolution. The phenomenon of capture into resonance consists in the system starting to evolve in such a way as to preserve the resonance property once it has arisen. This paper is concerned with application of the averaging method to a description of evolution in two-frequency systems. It is assumed that the trajectories of the averaged system intersect transversally the level surfaces of the frequency ratio and that certain other conditions of general position are satisfied. The rate of evolution is characterized by a small parameter \\varepsilon. The main content of the paper is a proof of the following result: outside a set of initial data with measure of order \\sqrt \\varepsilon the averaging method describes the evolution to within O(\\sqrt \\varepsilon \\vert\\ln\\varepsilon\\vert) for periods of time of order 1/\\varepsilon. This estimate is sharp. The exceptional set of measure \\sqrt \\varepsilon contains the initial data for phase points captured into resonance. A description of the motion of such phase points is given, along with a survey of related results on averaging. Examples of capture into resonance are presented for some problems in the dynamics of charged particles. Several open problems are stated. Bibliography: 65 titles.

  6. Characteristics of dissolved organic matter in the Upper Klamath River, Lost River, and Klamath Straits Drain, Oregon and California

    USGS Publications Warehouse

    Goldman, Jami H.; Sullivan, Annett B.

    2017-12-11

    Concentrations of particulate organic carbon (POC) and dissolved organic carbon (DOC), which together comprise total organic carbon, were measured in this reconnaissance study at sampling sites in the Upper Klamath River, Lost River, and Klamath Straits Drain in 2013–16. Optical absorbance and fluorescence properties of dissolved organic matter (DOM), which contains DOC, also were analyzed. Parallel factor analysis was used to decompose the optical fluorescence data into five key components for all samples. Principal component analysis (PCA) was used to investigate differences in DOM source and processing among sites.At all sites in this study, average DOC concentrations were higher than average POC concentrations. The highest DOC concentrations were at sites in the Klamath Straits Drain and at Pump Plant D. Evaluation of optical properties indicated that Klamath Straits Drain DOM had a refractory, terrestrial source, likely extracted from the interaction of this water with wetland peats and irrigated soils. Pump Plant D DOM exhibited more labile characteristics, which could, for instance, indicate contributions from algal or microbial exudates. The samples from Klamath River also had more microbial or algal derived material, as indicated by PCA analysis of the optical properties. Most sites, except Pump Plant D, showed a linear relation between fluorescent dissolved organic matter (fDOM) and DOC concentration, indicating these measurements are highly correlated (R2=0.84), and thus a continuous fDOM probe could be used to estimate DOC loads from these sites.

  7. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    NASA Astrophysics Data System (ADS)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR retrievals was compared with pyranometer measurement. The results showed good agreements: the columnar values of the SKYLIDAR retrievals agreed with reliable SKYRAD.PACK retrievals, and the SKYLIDAR retrievals were sufficiently accurate to evaluate the surface solar irradiance.

  8. Optical mapping of prefrontal brain connectivity and activation during emotion anticipation.

    PubMed

    Wang, Meng-Yun; Lu, Feng-Mei; Hu, Zhishan; Zhang, Juan; Yuan, Zhen

    2018-09-17

    Accumulated neuroimaging evidence shows that the dorsal lateral prefrontal cortex (dlPFC) is activated during emotion anticipation. The aim of this work is to examine the brain connectivity and activation differences in dlPFC between the positive, neutral and negative emotion anticipation by using functional near-infrared spectroscopy (fNIRS). The hemodynamic responses were first assessed for all subjects during the performance of various emotion anticipation tasks. And then small-world analysis was performed, in which the small-world network indicators including the clustering coefficient, average path length, average node degree, and measure of small-world index were calculated for the functional brain networks associated with the positive, neutral and negative emotion anticipation, respectively. We discovered that compared to negative and neutral emotion anticipation, the positive one exhibited enhanced brain activation in the left dlPFC. Although the functional brain networks for the three emotion anticipation cases manifested the small-world properties regarding the clustering coefficient, average path length, average node degree, and measure of small-world index, the positive one showed significantly higher clustering coefficient and shorter average path length than those from the neutral and negative cases. Consequently, the small-world network indicators and brain activation in dlPPC were able to distinguish well between the positive, neutral and negative emotion anticipation. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Financial networks based on Granger causality: A case study

    NASA Astrophysics Data System (ADS)

    Papana, Angeliki; Kyrtsou, Catherine; Kugiumtzis, Dimitris; Diks, Cees

    2017-09-01

    Connectivity analysis is performed on a long financial record of 21 international stock indices employing a linear and a nonlinear causality measure, the conditional Granger causality index (CGCI) and the partial mutual information on mixed embedding (PMIME), respectively. Both measures aim to specify the direction of the interrelationships among the international stock indexes and portray the links of the resulting networks, by the presence of direct couplings between variables exploiting all available information. However, their differences are assessed due to the presence of nonlinearity. The weighted networks formed with respect to the causality measures are transformed to binary ones using a significance test. The financial networks are formed on sliding windows in order to examine the network characteristics and trace changes in the connectivity structure. Subsequently, two statistical network quantities are calculated; the average degree and the average shortest path length. The empirical findings reveal interesting time-varying properties of the constructed network, which are clearly dependent on the nature of the financial cycle.

  10. Hydraulic properties of Mt. Simon aquifer, Prairie Island Indian community, southeastern Minnesota, 2001

    USGS Publications Warehouse

    Winterstein, Thomas A.

    2002-01-01

    Hantush and Theis methods type curves were fitted to the measured drawdown and recovery curves in the observation well. The results of matching the type curves to the measured data indicate that leakage is negligible from the overlying Eau Claire confining unit into the Mt. Simon aquifer. The transmissivity and storage coeffi-cients for the Mt. Simon aquifer, determined by both methods, are 3, 000 ft2/d and 3 x 10-4, respectively. The average hydraulic conductivity, assuming an aquifer thickness of 233 ft, is 10 ft/d.

  11. Power hand tool kinetics associated with upper limb injuries in an automobile assembly plant.

    PubMed

    Ku, Chia-Hua; Radwin, Robert G; Karsh, Ben-Tzion

    2007-06-01

    This study investigated the relationship between pneumatic nutrunner handle reactions, workstation characteristics, and prevalence of upper limb injuries in an automobile assembly plant. Tool properties (geometry, inertial properties, and motor characteristics), fastener properties, orientation relative to the fastener, and the position of the tool operator (horizontal and vertical distances) were measured for 69 workstations using 15 different pneumatic nutrunners. Handle reaction response was predicted using a deterministic mechanical model of the human operator and tool that was previously developed in our laboratory, specific to the measured tool, workstation, and job factors. Handle force was a function of target torque, tool geometry and inertial properties, motor speed, work orientation, and joint hardness. The study found that tool target torque was not well correlated with predicted handle reaction force (r=0.495) or displacement (r=0.285). The individual tool, tool shape, and threaded fastener joint hardness all affected predicted forces and displacements (p<0.05). The average peak handle force and displacement for right-angle tools were twice as great as pistol grip tools. Soft-threaded fastener joints had the greatest average handle forces and displacements. Upper limb injury cases were identified using plant OSHA 200 log and personnel records. Predicted handle forces for jobs where injuries were reported were significantly greater than those jobs free of injuries (p<0.05), whereas target torque and predicted handle displacement did not show statistically significant differences. The study concluded that quantification of handle reaction force, rather than target torque alone, is necessary for identifying stressful power hand tool operations and for controlling exposure to forces in manufacturing jobs involving power nutrunners. Therefore, a combination of tool, work station, and task requirements should be considered.

  12. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  13. On entanglement of light and Stokes parameters

    NASA Astrophysics Data System (ADS)

    Żukowski, Marek; Laskowski, Wiesław; Wieśniak, Marcin

    2016-08-01

    We present a new approach to Stokes parameters, which enables one to see better non-classical properties of bright quantum light, and of undefined overall photon numbers. The crucial difference is as follows. The standard quantum optical Stokes parameters are averages of differences of intensities of light registered at the two exits of polarization analyzers, and one gets their normalized version by dividing them by the average total intensity. The new ones are averages of the registered normalized Stokes parameters, for the duration of the experiment. That is, we redefine each Stokes observable as the difference of photon number operators at the two exits of a polarizing beam splitter multiplied by the inverse of their sum. The vacuum eigenvalue of the operator is defined a zero. We show that with such an approach one can obtain more sensitive entanglement indicators based on polarization measurements.

  14. Evaluation of ship-based sediment flux measurements by ADCPs in tidal flows

    NASA Astrophysics Data System (ADS)

    Becker, Marius; Maushake, Christian; Grünler, Steffen; Winter, Christian

    2017-04-01

    In the past decades acoustic backscatter calibration developed into a frequently applied technique to measure fluxes of suspended sediments in rivers and estuaries. Data is mainly acquired using single-frequency profiling devices, such as ADCPs. In this case, variations of acoustic particle properties may have a significant impact on the calibration with respect to suspended sediment concentration, but associated effects are rarely considered. Further challenges regarding flux determination arise from incomplete vertical and lateral coverage of the cross-section, and the small ratio of the residual transport to the tidal transport, depending on the tidal prism. We analyzed four sets of 13h cross-sectional ADCP data, collected at different locations in the range of the turbidity zone of the Weser estuary, North Sea, Germany. Vertical LISST, OBS and CTD measurements were taken very hour. During the calibration sediment absorption was taken into account. First, acoustic properties were estimated using LISST particle size distributions. Due to the tidal excursion and displacement of the turbidity zone, acoustic properties of particles changed during the tidal cycle, at all locations. Applying empirical functions, the lowest backscattering cross-section and highest sediment absorption coefficient were found in the center of the turbidity zone. Outside the tidally averaged location of the turbidity zone, changes of acoustic parameters were caused mainly by advection. In the turbidity zone, these properties were also affected by settling and entrainment, inducing vertical differences and systematic errors in concentration. In general, due to the iterative correction of sediment absorption along the acoustic path, local errors in concentration propagate and amplify exponentially. Based on reference concentration obtained from water samples and OBS data, we quantified these errors and their effect on cross-sectional averaged concentration and sediment flux. We found that errors are effectively decreased by applying calibration parameters interpolated in time, and by an optimization of the sediment absorption coefficient. We further discuss practical aspects of residual flux determination in tidal environments and of measuring strategies in relation to site-specific tidal dynamics.

  15. Development of a mechatronic platform and validation of methods for estimating ankle stiffness during the stance phase of walking.

    PubMed

    Rouse, Elliott J; Hargrove, Levi J; Perreault, Eric J; Peshkin, Michael A; Kuiken, Todd A

    2013-08-01

    The mechanical properties of human joints (i.e., impedance) are constantly modulated to precisely govern human interaction with the environment. The estimation of these properties requires the displacement of the joint from its intended motion and a subsequent analysis to determine the relationship between the imposed perturbation and the resultant joint torque. There has been much investigation into the estimation of upper-extremity joint impedance during dynamic activities, yet the estimation of ankle impedance during walking has remained a challenge. This estimation is important for understanding how the mechanical properties of the human ankle are modulated during locomotion, and how those properties can be replicated in artificial prostheses designed to restore natural movement control. Here, we introduce a mechatronic platform designed to address the challenge of estimating the stiffness component of ankle impedance during walking, where stiffness denotes the static component of impedance. The system consists of a single degree of freedom mechatronic platform that is capable of perturbing the ankle during the stance phase of walking and measuring the response torque. Additionally, we estimate the platform's intrinsic inertial impedance using parallel linear filters and present a set of methods for estimating the impedance of the ankle from walking data. The methods were validated by comparing the experimentally determined estimates for the stiffness of a prosthetic foot to those measured from an independent testing machine. The parallel filters accurately estimated the mechatronic platform's inertial impedance, accounting for 96% of the variance, when averaged across channels and trials. Furthermore, our measurement system was found to yield reliable estimates of stiffness, which had an average error of only 5.4% (standard deviation: 0.7%) when measured at three time points within the stance phase of locomotion, and compared to the independently determined stiffness values of the prosthetic foot. The mechatronic system and methods proposed in this study are capable of accurately estimating ankle stiffness during the foot-flat region of stance phase. Future work will focus on the implementation of this validated system in estimating human ankle impedance during the stance phase of walking.

  16. Magnetic properties and heavy metal contents of automobile emission particulates*

    PubMed Central

    Lu, Sheng-gao; Bai, Shi-qiang; Cai, Jing-bo; Xu, Chang

    2005-01-01

    Measurements of the magnetic properties and total contents of Cu, Cd, Pb and Fe in 30 automobile emission particulate samples indicated the presence of magnetic particles in them. The values of frequency dependent susceptibility (χ fd) showed the absence of superparamagnetic (SP) grains in the samples. The IRM20 mT (isothermal remanent magnetization at 20 mT) being linearly proportional to SIRM (saturation isothermal remanent magnetization) (R 2=0.901), suggested that ferrimagnetic minerals were responsible for the magnetic properties of automobile emission particulates. The average contents of Cu, Cd, Pb and Fe in automobile emission particulates were 95.83, 22.14, 30.58 and 34727.31 mg/kg, respectively. Significant positive correlations exist between the magnetic parameters and the contents of Pb, Cu and Fe. The magnetic parameters of automobile emission particulates reflecting concentration of magnetic particles increased linearly with increase of Pb and Cu content, showed that the magnetic measurement could be used as a preliminary index for detection of Pb and Cu pollution. PMID:16052705

  17. Temperature-Dependent Magnetic Response of Antiferromagnetic Doping in Cobalt Ferrite Nanostructures.

    PubMed

    Nairan, Adeela; Khan, Maaz; Khan, Usman; Iqbal, Munawar; Riaz, Saira; Naseem, Shahzad

    2016-04-18

    In this work Mn x Co 1- x Fe₂O₄ nanoparticles (NPs) were synthesized using a chemical co-precipitation method. Phase purity and structural analyses of synthesized NPs were performed by X-ray diffractometer (XRD). Transmission electron microscopy (TEM) reveals the presence of highly crystalline and narrowly-dispersed NPs with average diameter of 14 nm. The Fourier transform infrared (FTIR) spectrum was measured in the range of 400-4000 cm -1 which confirmed the formation of vibrational frequency bands associated with the entire spinel structure. Temperature-dependent magnetic properties in anti-ferromagnet (AFM) and ferromagnet (FM) structure were investigated with the aid of a physical property measurement system (PPMS). It was observed that magnetic interactions between the AFM (Mn) and FM (CoFe₂O₄) material arise below the Neel temperature of the dopant. Furthermore, hysteresis response was clearly pronounced for the enhancement in magnetic parameters by varying temperature towards absolute zero. It is shown that magnetic properties have been tuned as a function of temperature and an externally-applied field.

  18. Determining Individual Phase Properties in a Multi-phase Q&P Steel using Multi-scale Indentation Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Guang; Choi, Kyoo Sil; Hu, Xiaohua

    2016-01-15

    A new inverse method was developed to predict the stress-strain behaviors of constituent phases in a multi-phase steel using the load-depth curves measured in nanoindentation tests combined with microhardness measurements. A power law hardening response was assumed for each phase, and an empirical relationship between hardness and yield strength was assumed. Adjustment was made to eliminate the indentation size effect and indenter bluntness effect. With the newly developed inverse method and statistical analysis of the hardness histogram for each phase, the average stress-strain curves of individual phases in a quench and partitioning (Q&P) steel, including austenite, tempered martensite and untemperedmore » martensite, were calculated and the results were compared with the phase properties obtained by in-situ high energy X-ray diffraction (HEXRD) test. It is demonstrated that multi-scale instrumented indentation tests together with the new inverse method are capable of determining the individual phase flow properties in multi-phase alloys.« less

  19. Physicochemical properties and membrane biofouling of extra-cellular polysaccharide produced by a Micrococcus luteus strain.

    PubMed

    Feng, Lei; Li, Xiufen; Song, Ping; Du, Guocheng; Chen, Jian

    2014-07-01

    The physicochemical properties of the extra-cellular polysaccharide (EPS) produced by a Micrococcus luteus strain, a dominating strain isolated from membrane biofouling layer, were determined in this study. The EPS isolated from this strain was measured to have an average molecular weight of 63,540 Da and some typical polysaccharide absorption peaks in Fourier transform infrared spectrum. Monosaccharide components of the EPS contained rhamnose, fucose, arabinose, xylose, mannose, galactose and glucose in a molar ratio of 0.2074:0.0454:0.0262:0.0446:1.7942:1.2086:0.4578. Pseudo plastic properties were also observed for the EPS through the rheological measurement. The EPS was further characterized for its behavior to cause membrane flux decline. The results showed that both flux declines for polyvinylidenefluoride (PVDF) and polypropylene membranes became more severe as EPS feed concentration increased. A higher irreversible fouling for the PVDF membrane suggested that the EPS had the larger fouling potential to this microfiltration membrane.

  20. Simulation of tree shade impacts on residential energy use for space conditioning in Sacramento

    NASA Astrophysics Data System (ADS)

    Simpson, J. R.; McPherson, E. G.

    Tree shade reduces summer air conditioning demand and increases winter heating load by intercepting solar energy that would otherwise heat the shaded structure. We evaluate the magnitude of these effects here for 254 residential properties participating in a utility sponsored tree planting program in Sacramento, California. Tree and building characteristics and typical weather data are used to model hourly shading and energy used for space conditioning for each building for a period of one year. There were an average of 3.1 program trees per property which reduced annual and peak (8 h average from 1 to 9 p.m. Pacific Daylight Time) cooling energy use 153 kWh (7.1%) and 0.08 kW (2.3%) per tree, respectively. Annual heating load increased 0.85 GJ (0.80 MBtu, 1.9%) per tree. Changes in cooling load were smaller, but percentage changes larger, for newer buildings. Averaged over all homes, annual cooling savings of 15.25 per tree were reduced by a heating penalty of 5.25 per tree, for net savings of 10.00 per tree from shade. We estimate an annual cooling penalty of 2.80 per tree and heating savings of 6.80 per tree from reduced wind speed, for a net savings of 4.00 per tree, and total annual savings of 14.00 per tree (43.00 per property). Results are found to be consistent with previous simulations and the limited measurements available.

  1. Effect of developer temperature changes on the sensitometric properties of direct exposure and screen-film imaging systems.

    PubMed

    Kircos, L T; Staninec, M; Chou, L S

    1989-02-01

    A heat exchanger was developed and incorporated into the recirculation system of a dental processor to maintain strict temperature control. Without the heat exchanger, developer temperature rose steadily over 8 h to a maximum of 35.7 degrees C: with the heat exchanger it was maintained, regardless of ambient conditions, at the desired temperature with virtually no fluctuation. Sensitometric properties of base and fog, speed, and average gradient were measured for D and E speed films and Lanex Regular/T-Mat G and Lanex Fast/T-Mat Hscreen-film systems at developer temperatures of 21.1, 23.8, 26.7, 29.4 and 32.2 degrees C. Small changes in these properties were found for D and E speed films: on the other hand, Lanex Regular/T-Mat G showed a 65% increase in base and fog and Lanex Fast/T-Mat H a 43% increase in average gradient over the temperature range studied. Although these changes may not be clinically significant for intra-oral and dental radiography, the variations in image quality may compromise controlled imaging experiments and clinically compromise radiographic quality when using screen-film systems.

  2. SkinChip, a new tool for investigating the skin surface in vivo.

    PubMed

    Lévêque, Jean Luc; Querleux, Bernard

    2003-11-01

    Non-invasive methods used for characterizing skin micro-relief and skin surface hydration were developed in the 1980s. Although they allowed some progress in the knowledge of skin properties, they are not completely satisfactory in many aspects. Today, new technologies are emerging that may address such issues. We adapted the technology produced by the ST Microelectronics Company for sensing fingerprint for the measurement of skin surface properties. Accordingly, we developed acquisition software for obtaining routinely the distribution of skin surface capacitance along different body sites. Image analysis softwares were also processed for collecting both the main orientations of the micro-relief lines and their density. The average value of skin capacitance is also obtained. The images allow a highly precise observation of the skin topography that can be easily quantified in terms of line density and line orientation. The mean gray levels of the images appear much closely correlated to the Corneometer values. This new device appears to be a very convenient way for characterizing the properties of the skin surface. With regard to hydration, it usefully provides both the average value and the hydration chart of the investigated skin zones.

  3. Averaging principle for second-order approximation of heterogeneous models with homogeneous models.

    PubMed

    Fibich, Gadi; Gavious, Arieh; Solan, Eilon

    2012-11-27

    Typically, models with a heterogeneous property are considerably harder to analyze than the corresponding homogeneous models, in which the heterogeneous property is replaced by its average value. In this study we show that any outcome of a heterogeneous model that satisfies the two properties of differentiability and symmetry is O(ε(2)) equivalent to the outcome of the corresponding homogeneous model, where ε is the level of heterogeneity. We then use this averaging principle to obtain new results in queuing theory, game theory (auctions), and social networks (marketing).

  4. Averaging principle for second-order approximation of heterogeneous models with homogeneous models

    PubMed Central

    Fibich, Gadi; Gavious, Arieh; Solan, Eilon

    2012-01-01

    Typically, models with a heterogeneous property are considerably harder to analyze than the corresponding homogeneous models, in which the heterogeneous property is replaced by its average value. In this study we show that any outcome of a heterogeneous model that satisfies the two properties of differentiability and symmetry is O(ɛ2) equivalent to the outcome of the corresponding homogeneous model, where ɛ is the level of heterogeneity. We then use this averaging principle to obtain new results in queuing theory, game theory (auctions), and social networks (marketing). PMID:23150569

  5. Tooth and bone deformation: structure and material properties by ESPI

    NASA Astrophysics Data System (ADS)

    Zaslansky, Paul; Shahar, Ron; Barak, Meir M.; Friesem, Asher A.; Weiner, Steve

    2006-08-01

    In order to understand complex-hierarchical biomaterials such as bones and teeth, it is necessary to relate their structure and mechanical-properties. We have adapted electronic speckle pattern-correlation interferometry (ESPI) to make measurements of deformation of small water-immersed specimens of teeth and bones. By combining full-field ESPI with precision mechanical loading we mapped sub-micron displacements and determined material-properties of the samples. By gradually and elastically compressing the samples, we compensate for poor S/N-ratios and displacement differences of about 100nm were reliably determined along samples just 2~3mm long. We produced stress-strain curves well within the elastic performance range of these materials under biologically relevant conditions. For human tooth-dentin, Young's modulus in inter-dental areas of the root is 40% higher than on the outer sides. For cubic equine bone samples the compression modulus of axial orientations is about double the modulus of radial and tangential orientations (20 GPa versus 10 GPa respectively). Furthermore, we measured and reproduced a surprisingly low Poisson's ratio, which averaged about 0.1. Thus the non-contact and non-destructive measurements by ESPI produce high sensitivity analyses of mechanical properties of mineralized tissues. This paves the way for mapping deformation-differences of various regions of bones, teeth and other biomaterials.

  6. Modelling the complete operation of a free-piston shock tunnel for a low enthalpy condition

    NASA Astrophysics Data System (ADS)

    McGilvray, M.; Dann, A. G.; Jacobs, P. A.

    2013-07-01

    Only a limited number of free-stream flow properties can be measured in hypersonic impulse facilities at the nozzle exit. This poses challenges for experimenters when subsequently analysing experimental data obtained from these facilities. Typically in a reflected shock tunnel, a simple analysis that requires small amounts of computational resources is used to calculate quasi-steady gas properties. This simple analysis requires initial fill conditions and experimental measurements in analytical calculations of each major flow process, using forward coupling with minor corrections to include processes that are not directly modeled. However, this simplistic approach leads to an unknown level of discrepancy to the true flow properties. To explore the simple modelling techniques accuracy, this paper details the use of transient one and two-dimensional numerical simulations of a complete facility to obtain more refined free-stream flow properties from a free-piston reflected shock tunnel operating at low-enthalpy conditions. These calculations were verified by comparison to experimental data obtained from the facility. For the condition and facility investigated, the test conditions at nozzle exit produced with the simple modelling technique agree with the time and space averaged results from the complete facility calculations to within the accuracy of the experimental measurements.

  7. A Genome-Scale Investigation of How Sequence, Function, and Tree-Based Gene Properties Influence Phylogenetic Inference.

    PubMed

    Shen, Xing-Xing; Salichos, Leonidas; Rokas, Antonis

    2016-09-02

    Molecular phylogenetic inference is inherently dependent on choices in both methodology and data. Many insightful studies have shown how choices in methodology, such as the model of sequence evolution or optimality criterion used, can strongly influence inference. In contrast, much less is known about the impact of choices in the properties of the data, typically genes, on phylogenetic inference. We investigated the relationships between 52 gene properties (24 sequence-based, 19 function-based, and 9 tree-based) with each other and with three measures of phylogenetic signal in two assembled data sets of 2,832 yeast and 2,002 mammalian genes. We found that most gene properties, such as evolutionary rate (measured through the percent average of pairwise identity across taxa) and total tree length, were highly correlated with each other. Similarly, several gene properties, such as gene alignment length, Guanine-Cytosine content, and the proportion of tree distance on internal branches divided by relative composition variability (treeness/RCV), were strongly correlated with phylogenetic signal. Analysis of partial correlations between gene properties and phylogenetic signal in which gene evolutionary rate and alignment length were simultaneously controlled, showed similar patterns of correlations, albeit weaker in strength. Examination of the relative importance of each gene property on phylogenetic signal identified gene alignment length, alongside with number of parsimony-informative sites and variable sites, as the most important predictors. Interestingly, the subsets of gene properties that optimally predicted phylogenetic signal differed considerably across our three phylogenetic measures and two data sets; however, gene alignment length and RCV were consistently included as predictors of all three phylogenetic measures in both yeasts and mammals. These results suggest that a handful of sequence-based gene properties are reliable predictors of phylogenetic signal and could be useful in guiding the choice of phylogenetic markers. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Linking preferred orientations to elastic anisotropy in Muderong Shale, Australia

    DOE PAGES

    Kanitpanyacharoen, Waruntorn; Vasin, Roman; Wenk, Hans -Rudolf; ...

    2015-01-01

    The significance of shales as unconventional hydrocarbon reservoirs, nuclear waste repositories, and geological carbon storage has opened new research frontiers in geophysics. Among many of its unique physical properties, elastic anisotropy has long been investigated by both experimental and computational approaches. Here we calculate elastic properties of Cretaceous Muderong Shale from Australia with a self-consistent averaging method based on microstructural information. The volume fraction and crystallographic preferred orientation distributions of constituent minerals are based on synchrotron X-ray diffraction experiments. Aspect ratios of minerals and pores, determined from scanning electron microscopy (SEM), are introduced in the self-consistent averaging. Our analysis suggestsmore » that phyllosilicates (i.e., illite-mica, illite-smectite, kaolinite, and chlorite) are dominant with ~70 vol.%. The shape of clay platelets displays an average aspect ratio of 0.05. These platelets are aligned parallel to the bedding plane with a rather high degree of preferred orientation. The estimated porosity at ambient pressure is ~17 vol.% and is divided into equiaxial pores and flat pores with an average aspect ratio of 0.01. Our model shows results (e.g. at pressure of ~50 MPa with C 11 = 26.3; C 13 =12.5; C 33 = 18.2; C 44 = 2.8; C 66 = 6.8 [GPa]) that compare satisfactorily with values derived from ultrasonic velocity measurements (C 11 = 26.6; C 13 = 16.2; C 33 = 18.3; C 44 = 4.5; C 66 = 8.8 [GPa]), confirming the validity and reliability of our approximations and averaging approach.« less

  9. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Molecular Gas Reservoirs in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Elbaz, David; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Bacon, Roland; Bauer, Franz; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Gónzalez-López, Jorge; Inami, Hanae; Ivison, Rob; Hodge, Jacqueline; Karim, Alex; Magnelli, Benjamin; Ota, Kazuaki; Popping, Gergö; Rix, Hans-Walter; Sargent, Mark; van der Wel, Arjen; van der Werf, Paul

    2016-12-01

    We study the molecular gas properties of high-z galaxies observed in the ALMA Spectroscopic Survey (ASPECS) that targets an ˜1 arcmin2 region in the Hubble Ultra Deep Field (UDF), a blind survey of CO emission (tracing molecular gas) in the 3 and 1 mm bands. Of a total of 1302 galaxies in the field, 56 have spectroscopic redshifts and correspondingly well-defined physical properties. Among these, 11 have infrared luminosities {L}{IR}\\gt {10}11 {L}⊙ , I.e., a detection in CO emission was expected. Out of these, 7 are detected at various significance in CO, and 4 are undetected in CO emission. In the CO-detected sources, we find CO excitation conditions that are lower than those typically found in starburst/sub-mm galaxy/QSO environments. We use the CO luminosities (including limits for non-detections) to derive molecular gas masses. We discuss our findings in the context of previous molecular gas observations at high redshift (star formation law, gas depletion times, gas fractions): the CO-detected galaxies in the UDF tend to reside on the low-{L}{IR} envelope of the scatter in the {L}{IR}{--}{L}{CO}\\prime relation, but exceptions exist. For the CO-detected sources, we find an average depletion time of ˜1 Gyr, with significant scatter. The average molecular-to-stellar mass ratio ({M}{{H}2}/M *) is consistent with earlier measurements of main-sequence galaxies at these redshifts, and again shows large variations among sources. In some cases, we also measure dust continuum emission. On average, the dust-based estimates of the molecular gas are a factor ˜2-5× smaller than those based on CO. When we account for detections as well as non-detections, we find large diversity in the molecular gas properties of the high-redshift galaxies covered by ASPECS.

  10. Optical properties of ion beam textured metals. [using copper, silicon, aluminum, titanium and stainless steels

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Weigand, A. J.; Mirtich, M. J.

    1977-01-01

    Copper, silicon, aluminum, titanium and 316 stainless steel were textured by 1000 eV xenon ions from an 8 cm diameter electron bombardment ion source. Simultaneously sputter-deposited tantalum was used to facilitate the development of the surface microstructure. Scanning electron microscopy of the ion textured surfaces revealed two types of microstructure. Copper, silicon, and aluminum developed a cone structure with an average peak-to-peak distance ranging from 1 micron for silicon to 6 microns for aluminum. Titanium and 316 stainless steel developed a serpentine ridge structure. The average peak-to-peak distance for both of these materials was 0.5 micron. Spectral reflectance was measured using an integrating sphere and a holraum reflectometer. Total reflectance for air mass 0 and 2, solar absorptance and total emittance normalized for a 425 K black body were calculated from the reflectance measurements.

  11. Room temperature thermal conductivity measurements of neat MOF-5 compacts with high pressure hydrogen and helium

    DOE PAGES

    Semelsberger, Troy Allen; Veenstra, Mike; Dixon, Craig

    2016-02-09

    Metal-organic frameworks (MOFs) are a highly porous crystalline material with potential in various applications including on-board vehicle hydrogen storage for fuel cell vehicles. The thermal conductivity of MOFs is an important parameter in the design and ultimate performance of an on-board hydrogen storage system. However, in-situ thermal conductivity measurements have not been previously reported. The present study reports room temperature thermal conductivity and thermal diffusivity measurements performed on neat MOF-5 cylindrical compacts (ρ = 0.4 g/mL) as a function of pressure (0.27–90 bar) and gas type (hydrogen and helium). The transient plane source technique was used to measure both themore » non-directional thermal properties (isotropic method) and the directional thermal properties (anisotropic method). High pressure measurements were made using our in-house built low-temperature, high pressure thermal conductivity sample cell. The intrinsic thermal properties of neat MOF-5 measured under vacuum were—Isotropic: k isotropic = 0.1319 W/m K, α isotropic = 0.4165 mm 2/s; Anisotropic: k axial = 0.1477 W/m K, k radial = 0.1218 W/m K, α axial = 0.5096 mm 2/s, and α radial = 0.4232 mm 2/s. The apparent thermal properties of neat MOF-5 increased with increasing hydrogen and helium pressure, with the largest increase occurring in the narrow pressure range of 0–10 bar and then monotonically asymptoting with increasing pressures up to around 90 bar. On average, a greater than two-fold enhancement in the apparent thermal properties was observed with neat MOF-5 in the presence of helium and hydrogen compared to the intrinsic values of neat MOF-5 measured under vacuum. The apparent thermal properties of neat MOF-5 measured with hydrogen were higher than those measured with helium, which were directly related to the gas-specific thermal properties of helium and hydrogen. Neat MOF-5 exhibited a small degree of anisotropy under all conditions measured with thermal conductivities and diffusivities in the axial direction being higher than those in the radial direction. As a result, the low temperature specific heat capacities of neat MOF-5 were also measured and reported for the temperature range of 93–313 K (–180–40 °C).« less

  12. Room temperature thermal conductivity measurements of neat MOF-5 compacts with high pressure hydrogen and helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semelsberger, Troy Allen; Veenstra, Mike; Dixon, Craig

    Metal-organic frameworks (MOFs) are a highly porous crystalline material with potential in various applications including on-board vehicle hydrogen storage for fuel cell vehicles. The thermal conductivity of MOFs is an important parameter in the design and ultimate performance of an on-board hydrogen storage system. However, in-situ thermal conductivity measurements have not been previously reported. The present study reports room temperature thermal conductivity and thermal diffusivity measurements performed on neat MOF-5 cylindrical compacts (ρ = 0.4 g/mL) as a function of pressure (0.27–90 bar) and gas type (hydrogen and helium). The transient plane source technique was used to measure both themore » non-directional thermal properties (isotropic method) and the directional thermal properties (anisotropic method). High pressure measurements were made using our in-house built low-temperature, high pressure thermal conductivity sample cell. The intrinsic thermal properties of neat MOF-5 measured under vacuum were—Isotropic: k isotropic = 0.1319 W/m K, α isotropic = 0.4165 mm 2/s; Anisotropic: k axial = 0.1477 W/m K, k radial = 0.1218 W/m K, α axial = 0.5096 mm 2/s, and α radial = 0.4232 mm 2/s. The apparent thermal properties of neat MOF-5 increased with increasing hydrogen and helium pressure, with the largest increase occurring in the narrow pressure range of 0–10 bar and then monotonically asymptoting with increasing pressures up to around 90 bar. On average, a greater than two-fold enhancement in the apparent thermal properties was observed with neat MOF-5 in the presence of helium and hydrogen compared to the intrinsic values of neat MOF-5 measured under vacuum. The apparent thermal properties of neat MOF-5 measured with hydrogen were higher than those measured with helium, which were directly related to the gas-specific thermal properties of helium and hydrogen. Neat MOF-5 exhibited a small degree of anisotropy under all conditions measured with thermal conductivities and diffusivities in the axial direction being higher than those in the radial direction. As a result, the low temperature specific heat capacities of neat MOF-5 were also measured and reported for the temperature range of 93–313 K (–180–40 °C).« less

  13. Near-infrared optical properties of ex-vivo human skin and subcutaneous tissues using reflectance and transmittance measurements

    NASA Astrophysics Data System (ADS)

    Simpson, Rebecca; Laufer, Jan G.; Kohl-Bareis, Matthias; Essenpreis, Matthias; Cope, Mark

    1997-08-01

    The vast majority of 'non-invasive' measurements of human tissues using near infrared spectroscopy rely on passing light through the dermis and subdermis of the skin. Accurate knowledge of the optical properties of these tissues is essential to put into models of light transport and predict the effects of skin perfusion on measurements of deep tissue. Additionally, the skin could be a useful accessible organ for non-invasively determining the constituents of blood flowing through it. Samples of abdominal human skin (including subdermal tissue) were obtained from either post mortem examinations or plastic surgery. The samples were separated into a dermal layer (epidermis and dermis, 1.5 to 2 mm tick), and a sub-cutaneous layer comprised largely of fat. They were enclosed between two glass coverslips and placed in an integrating sphere to measure their reflectance and transmittance over a range of wavelengths from 600 to 1000 nm. The reflectance and transmittance values were converted into average absorption and reduced scattering coefficients by comparison with a Monte Carlo model of light transport. Improvements to the Monte Carlo model and measurement technique removed some previous uncertainties. The results show excellent separation of reduced scattering and absorption coefficient, with clear absorption peaks of hemoglobin, water and lipid. The effect of tissue storage upon measured optical properties was investigated.

  14. Development and reliability testing of a food store observation form.

    PubMed

    Rimkus, Leah; Powell, Lisa M; Zenk, Shannon N; Han, Euna; Ohri-Vachaspati, Punam; Pugach, Oksana; Barker, Dianne C; Resnick, Elissa A; Quinn, Christopher M; Myllyluoma, Jaana; Chaloupka, Frank J

    2013-01-01

    To develop a reliable food store observational data collection instrument to be used for measuring product availability, pricing, and promotion. Observational data collection. A total of 120 food stores (26 supermarkets, 34 grocery stores, 54 gas/convenience stores, and 6 mass merchandise stores) in the Chicago metropolitan statistical area. Inter-rater reliability for product availability, pricing, and promotion measures on a food store observational data collection instrument. Cohen's kappa coefficient and proportion of overall agreement for dichotomous variables and intra-class correlation coefficient for continuous variables. Inter-rater reliability, as measured by average kappa coefficient, was 0.84 for food and beverage product availability measures, 0.80 for interior store characteristics, and 0.70 for exterior store characteristics. For continuous measures, average intra-class correlation coefficient was 0.82 for product pricing measures; 0.90 for counts of fresh, frozen, and canned fruit and vegetable options; and 0.85 for counts of advertisements on the store exterior and property. The vast majority of measures demonstrated substantial or almost perfect agreement. Although some items may require revision, results suggest that the instrument may be used to reliably measure the food store environment. Copyright © 2013 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  15. NEUTRON DIFFRACTION INVESTIGATIONS OF FERROMAGNETIC PALLADIUM AND IRON GROUP ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cable, J.W.; Wollan, E.O.; Koehler, W.C.

    1962-03-01

    In order to account for the magnetic properties of alloys It becomes important to determine the individual magnetic moments of the constituent atoms. This determination can be accomplished by means of neutron diffraction and magnetic induction measurements. Such measurements are made on the ferromagnetic alloys Pd/sub 3/Fe, PdFe, Pd/sub 3/Co, PdCo, Ni/sub 3/Co, and NiCo. The average moment values are obtained from magnetic induction measurements while the differences in the atomic moments are determined from either the ferromagnetic diffuse scattering by the disordered alloys or the superlattice reflections by the ordered alloys. (auth)

  16. Electrical and magnetic properties of nano-sized magnesium ferrite

    NASA Astrophysics Data System (ADS)

    T, Smitha; X, Sheena; J, Binu P.; Mohammed, E. M.

    2015-02-01

    Nano-sized magnesium ferrite was synthesized using sol-gel techniques. Structural characterization was done using X-ray diffractometer and Fourier Transform Infrared Spectrometer. Vibration Sample Magnetometer was used to record the magnetic measurements. XRD analysis reveals the prepared sample is single phasic without any impurity. Particle size calculation shows the average crystallite size of the sample is 19nm. FTIR analysis confirmed spinel structure of the prepared samples. Magnetic measurement study shows that the sample is ferromagnetic with high degree of isotropy. Hysterisis loop was traced at temperatures 100K and 300K. DC electrical resistivity measurements show semiconducting nature of the sample.

  17. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Micro-pulse lidar systems (MPL) were used to measure aerosol properties during the Indian Ocean Experiment (INDOEX) 1999 field phase. Measurements were made from two platforms: the NOAA ship RN Ronald H. Brown, and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sunphotometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical properties (at 523 nm) of aerosols observed during the campaign. The height of the highest aerosols (top height) was calculated and found to be below 4 km for most of the cruise. The marine boundary layer (MBL) top was calculated and found to be less than 1 km. MPL results were combined with air mass trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical measurements. Humidity varied from approximately 80% near the surface to 50% near the top height during the entire cruise. The average value and standard deviation of aerosol optical parameters were determined for characteristic air mass regimes. Marine aerosols in the absence of any continental influence were found to have an AOD of 0.05 +/- 0.03, an extinction-to-backscatter ratio (S-ratio) of 33 +/- 6 sr, and peak extinction values around 0.05/km (near the MBL top). The marine results are shown to be in agreement with previously measured and expected values. Polluted marine areas over the Indian Ocean, influenced by continental aerosols, had AOD values in excess of 0.2, S-ratios well above 40 sr, and peak extinction values approximately 0.20/km (near the MBL top). The polluted marine results are shown to be similar to previously published values for continental aerosols. Comparisons between MPL derived extinction near the ship (75 m) and extinction calculated at ship-level using scattering measured by a nephelometer and absorption using a PSAP were conducted. The comparisons indicated that the MPL algorithm (using a constant S-ratio throughout the lower troposphere) calculates extinction near the surface in agreement with the ship-level measurements only when the MBL aerosols are well mixed with aerosols above. Finally, a review of the MPL extinction profiles showed that the model of aerosol vertical extinction developed during an earlier INDOEX field campaign (at the Maldives) did not correctly describe the true vertical distribution over the greater Indian Ocean region. Using the average extinction profile and AOD obtained during marine conditions, a new model of aerosol vertical extinction was determined for marine atmospheres over the Indian Ocean. A new model of aerosol vertical extinction for polluted marine atmospheres was also developed using the average extinction profile and AOD obtained during marine conditions influenced by continental aerosols.

  18. Determination of the interfacial rheological properties of a PLA encapsulated contrast agent using in vitro attenuation and scattering

    PubMed Central

    Paul, Shirshendu; Russakow, Daniel; Rodgers, Tyler; Sarkar, Kausik; Cochran, Michael; Wheatley, Margaret

    2013-01-01

    The stabilizing encapsulation of a microbubble based ultrasound contrast agent (UCA) critically affects its acoustic properties. Polymers, which behave differently from commonly used materials—e.g. lipids or proteins—for the monolayer encapsulation, hold potential for better stability and control over encapsulation properties. Air-filled microbubbles coated with Poly (D, L-lactide) (PLA) are characterized here using in vitro acoustic experiments and several models of encapsulation. The interfacial rheological properties of the encapsulation are determined according to each of these models using attenuation of ultrasound through a suspension of these microbubbles. Then the model predictions are compared with scattered nonlinear—sub- and second harmonic—responses. For this microbubble population (average diameter 1.9 μm), the peak in attenuation measurement indicates a weighted average resonance frequency of 2.5–3 MHz, which, in contrast to other encapsulated microbubbles, is lower than the resonance frequency of a free bubble of similar size (diameter 1.9 μm). This apparently contradictory result stems from the extremely low surface dilatational elasticity (around 0.01–0.07 N/m) and the reduced surface tension of the PLA encapsulation as well as the polydispersity of the bubble population. All models considered here are shown to behave similarly even in the nonlinear regime because of the low value of the surface dilatational elasticity. Pressure dependent scattering measurements at two different excitation frequencies (2.25 and 3 MHz) show strongly non-linear behavior with 25–30 dB and 5–20 dB enhancements in fundamental and second-harmonic responses respectively for a concentration of 1.33 μg/mL of suspension. Subharmonic responses are registered above a relatively low generation threshold of 100–150 kPa with up to 20 dB enhancement beyond that pressure. Numerical predictions from all models show good agreement with the experimentally measured fundamental response, but not with the second harmonic response. The characteristic features of subharmonic response and the steady response beyond the threshold are matched well by model predictions. However, prediction of the threshold value depends on property values and the size distribution. The variation in size distribution from sample to sample leads to variation in estimated encapsulation property values—the lowest estimated value of surface dilatational viscosity better predicts the subharmonic threshold. PMID:23643050

  19. Motivation Measures in Sport: A Critical Review and Bibliometric Analysis.

    PubMed

    Clancy, Rachel B; Herring, Matthew P; Campbell, Mark J

    2017-01-01

    Motivation is widely-researched, in both sport psychology and other fields. As rigorous measurement is essential to understanding this latent construct, a critical appraisal of measurement instruments is needed. Thus, the purpose of this review was to evaluate the six most highly cited motivation measures in sport. Peer-reviewed articles published prior to August 2016 were searched to identify the six most highly cited motivation questionnaires in sport: Sport Motivation Scale (SMS), Intrinsic Motivation Inventory (IMI), Situational Motivational Scale (SIMS), Perceptions of Success Questionnaire (POSQ), Behavioural Regulation in Sport Questionnaire (BRSQ), and Task and Ego Orientation in Sport Questionnaire (TEOSQ). The questionnaires were then evaluated and discussed in four sections: Development, Reliability, Correlates, and Summary. Bibliometric data were also calculated (average weighted impact factor) and assessed (e.g., citations per year) to evaluate the impact of the use of each questionnaire. Despite some variance in their psychometric properties, conceptualization, structure, and utility, the six questionnaires are psychometrically strong instruments for quantifying motivation that are widely supported in the literature. Bibliometric analyses suggested that the IMI ranks first and the SMS ranks sixth according to the average weighted impact factors of their original publications. Consideration of each questionnaire's psychometric strengths/limitations, and conceptualization of motivation in the context of specific research questions should guide researchers in selecting the most appropriate instrument to measure motivation in sport. The average weighted impact factor of each questionnaire is a useful value to consider as well. With these points in mind, recommendations are provided.

  20. Motivation Measures in Sport: A Critical Review and Bibliometric Analysis

    PubMed Central

    Clancy, Rachel B.; Herring, Matthew P.; Campbell, Mark J.

    2017-01-01

    Motivation is widely-researched, in both sport psychology and other fields. As rigorous measurement is essential to understanding this latent construct, a critical appraisal of measurement instruments is needed. Thus, the purpose of this review was to evaluate the six most highly cited motivation measures in sport. Peer-reviewed articles published prior to August 2016 were searched to identify the six most highly cited motivation questionnaires in sport: Sport Motivation Scale (SMS), Intrinsic Motivation Inventory (IMI), Situational Motivational Scale (SIMS), Perceptions of Success Questionnaire (POSQ), Behavioural Regulation in Sport Questionnaire (BRSQ), and Task and Ego Orientation in Sport Questionnaire (TEOSQ). The questionnaires were then evaluated and discussed in four sections: Development, Reliability, Correlates, and Summary. Bibliometric data were also calculated (average weighted impact factor) and assessed (e.g., citations per year) to evaluate the impact of the use of each questionnaire. Despite some variance in their psychometric properties, conceptualization, structure, and utility, the six questionnaires are psychometrically strong instruments for quantifying motivation that are widely supported in the literature. Bibliometric analyses suggested that the IMI ranks first and the SMS ranks sixth according to the average weighted impact factors of their original publications. Consideration of each questionnaire's psychometric strengths/limitations, and conceptualization of motivation in the context of specific research questions should guide researchers in selecting the most appropriate instrument to measure motivation in sport. The average weighted impact factor of each questionnaire is a useful value to consider as well. With these points in mind, recommendations are provided. PMID:28337165

  1. Averaging interval selection for the calculation of Reynolds shear stress for studies of boundary layer turbulence.

    NASA Astrophysics Data System (ADS)

    Lee, Zoe; Baas, Andreas

    2013-04-01

    It is widely recognised that boundary layer turbulence plays an important role in sediment transport dynamics in aeolian environments. Improvements in the design and affordability of ultrasonic anemometers have provided significant contributions to studies of aeolian turbulence, by facilitating high frequency monitoring of three dimensional wind velocities. Consequently, research has moved beyond studies of mean airflow properties, to investigations into quasi-instantaneous turbulent fluctuations at high spatio-temporal scales. To fully understand, how temporal fluctuations in shear stress drive wind erosivity and sediment transport, research into the best practice for calculating shear stress is necessary. This paper builds upon work published by Lee and Baas (2012) on the influence of streamline correction techniques on Reynolds shear stress, by investigating the time-averaging interval used in the calculation. Concerns relating to the selection of appropriate averaging intervals for turbulence research, where the data are typically non-stationary at all timescales, are well documented in the literature (e.g. Treviño and Andreas, 2000). For example, Finnigan et al. (2003) found that underestimating the required averaging interval can lead to a reduction in the calculated momentum flux, as contributions from turbulent eddies longer than the averaging interval are lost. To avoid the risk of underestimating fluxes, researchers have typically used the total measurement duration as a single averaging period. For non-stationary data, however, using the whole measurement run as a single block average is inadequate for defining turbulent fluctuations. The data presented in this paper were collected in a field study of boundary layer turbulence conducted at Tramore beach near Rosapenna, County Donegal, Ireland. High-frequency (50 Hz) 3D wind velocity measurements were collected using ultrasonic anemometry at thirteen different heights between 0.11 and 1.62 metres above the bed. A technique for determining time-averaging intervals for a series of anemometers stacked in a close vertical array is presented. A minimum timescale is identified using spectral analysis to determine the inertial sub-range, where energy is neither produced nor dissipated but passed down to increasingly smaller scales. An autocorrelation function is then used to derive a scaling pattern between anemometer heights, which defines a series of averaging intervals of increasing length with height above the surface. Results demonstrate the effect of different averaging intervals on the calculation of Reynolds shear stress and highlight the inadequacy of using the total measurement duration as a single block average. Lee, Z. S. & Baas, A. C. W. (2012). Streamline correction for the analysis of boundary layer turbulence. Geomorphology, 171-172, 69-82. Treviño, G. and Andreas, E.L., 2000. Averaging Intervals For Spectral Analysis Of Nonstationary Turbulence. Boundary-Layer Meteorology, 95(2): 231-247. Finnigan, J.J., Clement, R., Malhi, Y., Leuning, R. and Cleugh, H.A., 2003. Re-evaluation of long-term flux measurement techniques. Part I: Averaging and coordinate rotation. Boundary-Layer Meteorology, 107(1): 1-48.

  2. Determining tensile properties of sweetgum veneer flakes

    Treesearch

    E.W. Price

    1976-01-01

    Rotary-cut 8weetgum veneer flakes measuring 3 inchee along the grain, 3/8 inch wide, and 0.015 inch thick, were stressed in tension parallel to the grain at gage lengths from 0.00 to 1.25 inchee for unpressed control and at 0.75 inch gage length for flakes pressed in a flakeboard mat. The control flakes had an average tensile strength of 9,400 psi for the smaller age...

  3. Determining tensile properties of sweetgum veneer flakes

    Treesearch

    Eddie W. Price

    1976-01-01

    Rotary-cut sweetgum veneer flakes measuring 3 inches along the grain, 3/8 inch wide, and 0.015 inch thick, were stressed in tension parallel to the grain at gage lengths from 0.50 to 1.25 inches for unpressed control and at 0.75 inch gage length for flakes pressed in a flakeboard mat. The control fkaes had an average tensile strength of 9,400 psi for the smaller gage...

  4. Modification of structural and magnetic properties of soft magnetic multi-component metallic glass by 80 MeV 16O6+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Kane, S. N.; Shah, M.; Satalkar, M.; Gehlot, K.; Kulriya, P. K.; Avasthi, D. K.; Sinha, A. K.; Modak, S. S.; Ghodke, N. L.; Reddy, V. R.; Varga, L. K.

    2016-07-01

    Effect of 80 MeV 16O6+ ion irradiation in amorphous Fe77P8Si3C5Al2Ga1B4 alloy is reported. Electronic energy loss induced modifications in the structural and, magnetic properties were monitored by synchrotron X-ray diffraction (SXRD), Mössbauer and, magnetic measurements. Broad amorphous hump seen in SXRD patterns reveals the amorphous nature of the studied specimens. Mössbauer measurements suggest that: (a) alignment of atomic spins within ribbon plane, (b) changes in average hyperfine field suggests radiation-induced decrease in the inter atomic distance around Mössbauer (Fe) atom, (c) hyperfine field distribution confirms the presence of non-magnetic elements (e.g. - B, P, C) in the first near-neighbor shell of the Fe atom, thus reducing its magnetic moment, and (d) changes in isomer shift suggests variation in average number of the metalloid near neighbors and their distances. Minor changes in soft magnetic behavior - watt loss and, coercivity after an irradiation dose of 2 × 1013 ions/cm2 suggests prospective application of Fe77P8Si3C5Al2Ga1B4 alloy as core material in accelerators (radio frequency cavities).

  5. Single-molecule spectroscopy reveals photosynthetic LH2 complexes switch between emissive states

    PubMed Central

    Schlau-Cohen, Gabriela S.; Wang, Quan; Southall, June; Cogdell, Richard J.; Moerner, W. E.

    2013-01-01

    Photosynthetic organisms flourish under low light intensities by converting photoenergy to chemical energy with near unity quantum efficiency and under high light intensities by safely dissipating excess photoenergy and deleterious photoproducts. The molecular mechanisms balancing these two functions remain incompletely described. One critical barrier to characterizing the mechanisms responsible for these processes is that they occur within proteins whose excited-state properties vary drastically among individual proteins and even within a single protein over time. In ensemble measurements, these excited-state properties appear only as the average value. To overcome this averaging, we investigate the purple bacterial antenna protein light harvesting complex 2 (LH2) from Rhodopseudomonas acidophila at the single-protein level. We use a room-temperature, single-molecule technique, the anti-Brownian electrokinetic trap, to study LH2 in a solution-phase (nonperturbative) environment. By performing simultaneous measurements of fluorescence intensity, lifetime, and spectra of single LH2 complexes, we identify three distinct states and observe transitions occurring among them on a timescale of seconds. Our results reveal that LH2 complexes undergo photoactivated switching to a quenched state, likely by a conformational change, and thermally revert to the ground state. This is a previously unobserved, reversible quenching pathway, and is one mechanism through which photosynthetic organisms can adapt to changes in light intensities. PMID:23776245

  6. Single-molecule spectroscopy reveals photosynthetic LH2 complexes switch between emissive states.

    PubMed

    Schlau-Cohen, Gabriela S; Wang, Quan; Southall, June; Cogdell, Richard J; Moerner, W E

    2013-07-02

    Photosynthetic organisms flourish under low light intensities by converting photoenergy to chemical energy with near unity quantum efficiency and under high light intensities by safely dissipating excess photoenergy and deleterious photoproducts. The molecular mechanisms balancing these two functions remain incompletely described. One critical barrier to characterizing the mechanisms responsible for these processes is that they occur within proteins whose excited-state properties vary drastically among individual proteins and even within a single protein over time. In ensemble measurements, these excited-state properties appear only as the average value. To overcome this averaging, we investigate the purple bacterial antenna protein light harvesting complex 2 (LH2) from Rhodopseudomonas acidophila at the single-protein level. We use a room-temperature, single-molecule technique, the anti-Brownian electrokinetic trap, to study LH2 in a solution-phase (nonperturbative) environment. By performing simultaneous measurements of fluorescence intensity, lifetime, and spectra of single LH2 complexes, we identify three distinct states and observe transitions occurring among them on a timescale of seconds. Our results reveal that LH2 complexes undergo photoactivated switching to a quenched state, likely by a conformational change, and thermally revert to the ground state. This is a previously unobserved, reversible quenching pathway, and is one mechanism through which photosynthetic organisms can adapt to changes in light intensities.

  7. A comparison of gray and non-gray modeling approaches to radiative transfer in pool fire simulations.

    PubMed

    Krishnamoorthy, Gautham

    2010-10-15

    Decoupled radiative heat transfer calculations of 30 cm-diameter toluene and heptane pool fires are performed employing the discrete ordinates method. The composition and temperature fields within the fires are created from detailed experimental measurements of soot volume fractions based on absorption and emission, temperature statistics and correlations found in the literature. The measured temperature variance data is utilized to compute the temperature self-correlation term for modeling turbulence-radiation interactions. In the toluene pool fire, the presence of cold soot near the fuel surface is found to suppress the average radiation feedback to the pool surface by 27%. The performances of four gray and three non-gray radiative property models for the gases are also compared. The average variations in radiative transfer predictions due to differences in the spectroscopic and experimental databases employed in the property model formulations are found to be between 10% and 20%. Clear differences between the gray and non-gray modeling strategies are seen when the mean beam length is computed based on traditionally employed geometric relations. Therefore, a correction to the mean beam length is proposed to improve the agreement between gray and non-gray modeling in simulations of open pool fires. 2010 Elsevier B.V. All rights reserved.

  8. Determination of elastic properties of polycrystalline U 3Si 2 using resonant ultrasound spectroscopy

    DOE PAGES

    Carvajal-Nunez, Ursula; Saleh, Tarik A.; White, Joshua Taylor; ...

    2017-11-10

    For this research, the elastic properties of U 3Si 2 at room temperature have been measured via resonant ultrasound spectroscopy. Results show that the average value of Young's and the bulk modulus for U 3Si 2 are 130.4±0.5 and 68.3±0.5 GPa, respectively. Further, a numerical model to assess thermal stress in an operating fuel is evaluated. Lastly, the thermal stress evolved in U 3Si 2 is compared to UO 2 to facilitate an estimation of the probability of crack formation in U 3Si 2 under representative light water reactor operating conditions.

  9. Determination of elastic properties of polycrystalline U 3Si 2 using resonant ultrasound spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvajal-Nunez, Ursula; Saleh, Tarik A.; White, Joshua Taylor

    For this research, the elastic properties of U 3Si 2 at room temperature have been measured via resonant ultrasound spectroscopy. Results show that the average value of Young's and the bulk modulus for U 3Si 2 are 130.4±0.5 and 68.3±0.5 GPa, respectively. Further, a numerical model to assess thermal stress in an operating fuel is evaluated. Lastly, the thermal stress evolved in U 3Si 2 is compared to UO 2 to facilitate an estimation of the probability of crack formation in U 3Si 2 under representative light water reactor operating conditions.

  10. Effect of AZO deposition on antireflective property of Si subwavelength grating structures

    NASA Astrophysics Data System (ADS)

    Leem, J. W.; Song, Y. M.; Lee, Y. T.; Yu, J. S.

    2011-12-01

    We investigate the effect of the aluminum-doped zinc oxide (AZO) deposition on the fabricated Si SWG structure on its antireflection characteristics for solar cell applications. The Si SWGs with the two-dimensional periodic nanostructure are fabricated by using holographic lithography and subsequent ICP etching process in SiCl4 plasma. For the antireflection analysis of AZO thin-film on the Si SWG structure, the optical reflectivity is measured experimentally. The maxima reflectance and its oscillation of the structure are significantly decreased on average than those of AZO thin-film on Si substrate over a wide wavelength range of 300-1100 nm, indicating average reflectance less than 4.5% with the maxima of <10%.

  11. Measurement of fluid properties using rapid-double-exposure and time-average holographic interferometry

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1984-01-01

    The holographic recording of the time history of a flow feature in three dimensions is discussed. The use of diffuse illumination holographic interferometry or the three-dimensional visualization of flow features such as shock waves and turbulent eddies is described. The double-exposure and time-average methods are compared using the characteristic function and the results from a flow simulator. A time history requires a large hologram recording rate. Results of holographic cinematography of the shock waves in a flutter cascade are presented as an example. Future directions of this effort, including the availability and development of suitable lasers, are discussed. Previously announced in STAR as N84-21849

  12. 40 CFR 421.252 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/troy ounce of gold and... monthly average mg/troy ounce of silver reduced in solution Lead 0.168 0.080 Mercury 0.100 0.040 Silver 0... property Maximum for any 1 day Maximum for monthly average mg/troy ounce of gold refined electrolytically...

  13. The Second Swift BAT Gamma-Ray Burst Catalog

    NASA Technical Reports Server (NTRS)

    Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Krimm, H. A.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; Sato, G.; hide

    2010-01-01

    We present the second Swift Burst Alert Telescope (BAT) catalog of gamma-ray bursts (GRBs), which contains 476 bursts detected by the BAT between 2004 December 19 and 2009 December 21. This catalog (hereafter the BAT2 catalog) presents burst trigger time, location, 90% error radius, duration, fluence, peak flux, time-averaged spectral parameters and time-resolved spectral parametert:; measured by the BAT. In the correlation study of various observed parameters extracted from the BAT prompt emission data, we distinguish among long-duration GRBs (L-GRBs), short-duration GRBs (S-GRBs), and short-duration GRBs with extended emission (S-GRBs with E.E.) to investigate differences in the prompt emission properties. The fraction of L-GRBs, S-GRBs and S-GRBs with E.E. in the catalog are 89%, 8% and 2% respectively. We compare the BAT prompt emission properties with the BATSE, BeppoSAX and HETE-2 GRB samples. We also correlate the observed prompt emission properties with the redshifts for the GRBs with known redshift. The BAT T90 and T50 durations peak at 70 s and 30 s, respectively. We confirm that the spectra of the BAT S-GRBs are generally harder than those of the L-GRBs. The time-averaged spectra of the BAT S GRBs with E.E. are similar to those of the L-GRBs. Whereas, the spectra of the initial short spikes of the S-GRBs with E.E. are similar to those of the S-GRBs. We show that the BAT GRB samples are significantly softer than the BATSE bright GRBs, and that the time-averaged E obs/peak of the BAT GRBs peaks at 80 keV which is significantly lower energy than those of the BATSE sample which peak at 320 keV. The time-averaged spectral properties of the BAT GRB sample are similar to those of the HETE-2 GRB samples. By time-resolved spectral analysis, we find that 10% of the BAT observed photon indices are outside the allowed region of the synchrotron shock model. The observed durations of the BAT high redshift GRBs are not systematically longer than those of the moderate red shift GRBs. Furthermore, the observed spectra of the BAT high red shift GRBs are similar to or harder than the moderate red shift GRBs. The T90 and T50 distributions measured at the 140-220 keY band in the GRB rest frame form the BAT known redshift GRBs peak at 19 sand 8 s, respectively. We also provide an update on the status of the on-orbit BAT calibrations.

  14. Photonic ring resonance is a versatile platform for performing multiplex immunoassays in real time.

    PubMed

    Mudumba, Sasi; de Alba, Sophia; Romero, Randy; Cherwien, Carli; Wu, Alice; Wang, Jue; Gleeson, Martin A; Iqbal, Muzammil; Burlingame, Rufus W

    2017-09-01

    Photonic ring resonance is a property of light where in certain circumstances specific wavelengths are trapped in a ring resonator. Sensors based on silicon photonic ring resonators function by detecting the interaction between light circulating inside the sensor and matter deposited on the sensor surface. Binding of biological material results in a localized change in refractive index on the sensor surface, which affects the circulating optical field extending beyond the sensor boundary. That is, the resonant wavelength will change when the refractive index of the medium around the ring resonator changes. Ring resonators can be fabricated onto small silicon chips, allowing development of a miniature multiplex array of ring based biosensors. This paper describes the properties of such a system when responding to the refractive index changed in a simple and precise way by changing the ionic strength of the surrounding media, and in a more useful way by the binding of macromolecules to the surface above the resonators. Specifically, a capture immunoassay is described that measures the change of resonant wavelength as a patient serum sample with anti-SS-A autoantibodies is flowed over a chip spotted with SS-A antigen and amplified with anti-IgG. The technology has been miniaturized and etched into a 4×6mm silicon chip that can measure 32 different reactions in quadruplicate simultaneously. The variability between 128 rings on a chip as measured by 2M salt assays averaged 0.6% CV. The output of the assays is the average shift per cluster of 4 rings, and the assays averaged 0.5% CV between clusters. The variability between chips averaged 1.8%. Running the same array on multiple instruments showed that after some improvements to the wavelength referencing system, the upper boundary of variation was 3% between 13 different instruments. The immunoassay displayed about 2% higher variability than the salt assays. There are several outstanding features of this system. The amount of antigen used on the chip for each test is around 200 picograms, only a few microliters of sample is necessary, and the assays take <10min. Copyright © 2017 Genalyte Inc. Published by Elsevier B.V. All rights reserved.

  15. Property Grids for the Kansas High Plains Aquifer from Water Well Drillers' Logs

    NASA Astrophysics Data System (ADS)

    Bohling, G.; Adkins-Heljeson, D.; Wilson, B. B.

    2017-12-01

    Like a number of state and provincial geological agencies, the Kansas Geological Survey hosts a database of water well drillers' logs, containing the records of sediments and lithologies characterized during drilling. At the moment, the KGS database contains records associated with over 90,000 wells statewide. Over 60,000 of these wells are within the High Plains aquifer (HPA) in Kansas, with the corresponding logs containing descriptions of over 500,000 individual depth intervals. We will present grids of hydrogeological properties for the Kansas HPA developed from this extensive, but highly qualitative, data resource. The process of converting the logs into quantitative form consists of first translating the vast number of unique (and often idiosyncratic) sediment descriptions into a fairly comprehensive set of standardized lithology codes and then mapping the standardized lithologies into a smaller number of property categories. A grid is superimposed on the region and the proportion of each property category is computed within each grid cell, with category proportions in empty grid cells computed by interpolation. Grids of properties such as hydraulic conductivity and specific yield are then computed based on the category proportion grids and category-specific property values. A two-dimensional grid is employed for this large-scale, regional application, with category proportions averaged between two surfaces, such as bedrock and the water table at a particular time (to estimate transmissivity at that time) or water tables at two different times (to estimate specific yield over the intervening time period). We have employed a sequence of water tables for different years, based on annual measurements from an extensive network of wells, providing an assessment of temporal variations in the vertically averaged aquifer properties resulting from water level variations (primarily declines) over time.

  16. Quantitative Evaluation of Atherosclerotic Plaque Using Ultrasound Tissue Characterization.

    NASA Astrophysics Data System (ADS)

    Yigiter, Ersin

    Evaluation of therapeutic methods directed toward interrupting and/or delaying atherogenesis is impeded by the lack of a reliable, non-invasive means for monitoring progression or regression of disease. The ability to characterize the predominant component of plaque may be very valuable in the study of this disease's natural history. The earlier the lesion, the more likely is lipid to be the predominant component. Progression of plaque is usually by way of overgrowth of fibrous tissues around the fatty pool. Calcification is usually a feature of the older or complicated lesion. To explore the feasibility of using ultrasound to characterize plaque we have conducted measurements of the acoustical properties of various atherosclerotic lesions found in freshly excised samples of human abdominal aorta. Our objective has been to determine whether or not the acoustical properties of plaque correlate with the type and/or chemical composition of plaque and, if so, to define a measurement scheme which could be done in-vivo and non-invasively. Our current data base consists of individual tissue samples from some 200 different aortas. Since each aorta yields between 10 to 30 tissue samples for study, we have data on some 4,468 different lesions or samples. Measurements of the acoustical properties of plaque were found to correlate well with the chemical composition of plaque. In short, measurements of impedance and attenuation seem sufficient to classify plaque as to type and to composition. Based on the in-vitro studies, the parameter of attenuation was selected as a means of classifying the plaque. For these measurements, an intravascular ultrasound scanner was modified according to our specifications. Signal processing algorithms were developed which would analyze the complex ultrasound waveforms and estimate tissue properties such as attenuation. Various methods were tried to estimate the attenuation from the pulse-echo backscattered signal. Best results were obtained by comparing averaged power spectra in small time windows at different depths for a series of A-lines. Comparisons between consequent averaged spectra at different depths provided the magnitude and frequency dependence of attenuation. Non-invasive characterization of the physical state of the tissue with quantitative ultrasound holds great promise for the extension of the diagnostic power of conventional B-mode imaging.

  17. Mapping of elasticity and damping in an α + β titanium alloy through atomic force acoustic microscopy

    PubMed Central

    Phani, M Kalyan; Kumar, Anish; Jayakumar, T; Samwer, Konrad

    2015-01-01

    Summary The distribution of elastic stiffness and damping of individual phases in an α + β titanium alloy (Ti-6Al-4V) measured by using atomic force acoustic microscopy (AFAM) is reported in the present study. The real and imaginary parts of the contact stiffness k * are obtained from the contact-resonance spectra and by using these two quantities, the maps of local elastic stiffness and the damping factor are derived. The evaluation of the data is based on the mass distribution of the cantilever with damped flexural modes. The cantilever dynamics model considering damping, which was proposed recently, has been used for mapping of indentation modulus and damping of different phases in a metallic structural material. The study indicated that in a Ti-6Al-4V alloy the metastable β phase has the minimum modulus and the maximum damping followed by α′- and α-phases. Volume fractions of the individual phases were determined by using a commercial material property evaluation software and were validated by using X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) studies on one of the heat-treated samples. The volume fractions of the phases and the modulus measured through AFAM are used to derive average modulus of the bulk sample which is correlated with the bulk elastic properties obtained by ultrasonic velocity measurements. The average modulus of the specimens estimated by AFAM technique is found to be within 5% of that obtained by ultrasonic velocity measurements. The effect of heat treatments on the ultrasonic attenuation in the bulk sample could also be understood based on the damping measurements on individual phases using AFAM. PMID:25977847

  18. Mapping of elasticity and damping in an α + β titanium alloy through atomic force acoustic microscopy.

    PubMed

    Phani, M Kalyan; Kumar, Anish; Jayakumar, T; Arnold, Walter; Samwer, Konrad

    2015-01-01

    The distribution of elastic stiffness and damping of individual phases in an α + β titanium alloy (Ti-6Al-4V) measured by using atomic force acoustic microscopy (AFAM) is reported in the present study. The real and imaginary parts of the contact stiffness k (*) are obtained from the contact-resonance spectra and by using these two quantities, the maps of local elastic stiffness and the damping factor are derived. The evaluation of the data is based on the mass distribution of the cantilever with damped flexural modes. The cantilever dynamics model considering damping, which was proposed recently, has been used for mapping of indentation modulus and damping of different phases in a metallic structural material. The study indicated that in a Ti-6Al-4V alloy the metastable β phase has the minimum modulus and the maximum damping followed by α'- and α-phases. Volume fractions of the individual phases were determined by using a commercial material property evaluation software and were validated by using X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) studies on one of the heat-treated samples. The volume fractions of the phases and the modulus measured through AFAM are used to derive average modulus of the bulk sample which is correlated with the bulk elastic properties obtained by ultrasonic velocity measurements. The average modulus of the specimens estimated by AFAM technique is found to be within 5% of that obtained by ultrasonic velocity measurements. The effect of heat treatments on the ultrasonic attenuation in the bulk sample could also be understood based on the damping measurements on individual phases using AFAM.

  19. The effect of gamma irradiation on chemical, morphology and optical properties of polystyrene nanosphere at various exposure time

    NASA Astrophysics Data System (ADS)

    Alhaji Yabagi, Jibrin; Isah Kimpa, Mohammed; Nmayaya Muhammad, Muhammad; Rashid, Saiful Bin; Zaidi, Embong; Arif Agam, Mohd

    2018-01-01

    Irradiation of polymers causes structural, chemical and the optical properties changes. Polystyrene nanosphere was drop coated to substrates and the gamma irradiation was carried out in a Cesium-137 (Cs-137) source chamber at different time (1-5 hours) with constant dose of 30 kGy. Fourier transformation infrared spectroscopy (FTIR) and Raman spectroscopy were employed to characterize the chemical properties of irradiated polystyrene while Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were used to study the surface morphological changes of the samples. The optical energy band gaps of the thin films were investigated and studied using transmittance and absorbance measurements. The results obtained revealed that as irradiation time increases the optical properties changes and polystyrene gradually undergoes crystal to carbonaceous from its amorphous state. The average particles diameter and roughness of the samples decreases with increasing irradiation time.

  20. Influences of film thickness on the structural, electrical and optical properties of CuAlO2 thin films

    NASA Astrophysics Data System (ADS)

    Dong, Guobo; Zhang, Ming; Wang, Mei; Li, Yingzi; Gao, Fangyuan; Yan, Hui; Diao, Xungang

    2014-07-01

    CuAlO2 films with different thickness were prepared by the radio frequency magnetron sputtering technique. The structural, electrical and optical properties of CuAlO2 were studied by X-ray diffraction, atomic force microscope, UV-Vis double-beam spectrophotometer and Hall measurements. The results indicate that the single phase hexagonal CuAlO2 is formed and the average grain size of CuAlO2 films increases with increasing film thickness. The results also exhibit that the lowering of bandgap and the increase of electrical conductivity of CuAlO2 films with the increase of their thickness, which are attributed to the improvement of the grain size and the anisotropic electrical property. According to the electrical and optical properties, the biggest figure of merit is achieved for the CuAlO2 film with the appropriate thickness of 165 nm.

  1. Thermoelectric Properties of the Chemically Doped Ca3Co4O9 System: A Structural Perspective

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Tyson, Trevor; Wang, Hsin; Li, Qiang

    2010-03-01

    Cu doped and Y doped [Ca2CoO3][CoO2]1.61 (referred to as Ca3Co4O9) were prepared by solid state reaction. Temperature dependent thermoelectric properties, resistivity (ρ), Seeback coefficient (S) and thermal conductivity (κ), were measured. As seen before, it is found that doping by Cu and Y significantly enhances the thermoelectric properties. In order to understand the origin of these changes in properties in terms of the atomic structure, synchrotron x-ray diffraction and x-ray absorption spectroscopy were applied to probe the change in the average structure and the location of the dopants. The details of the location and coordination of Co and Y in the host lattice and the effect on the figure of merit are discussed. This work is supported by DOE Grant DE-FG02-07ER46402.

  2. Ferromagnetic ordering in superatomic solids.

    PubMed

    Lee, Chul-Ho; Liu, Lian; Bejger, Christopher; Turkiewicz, Ari; Goko, Tatsuo; Arguello, Carlos J; Frandsen, Benjamin A; Cheung, Sky C; Medina, Teresa; Munsie, Timothy J S; D'Ortenzio, Robert; Luke, Graeme M; Besara, Tiglet; Lalancette, Roger A; Siegrist, Theo; Stephens, Peter W; Crowther, Andrew C; Brus, Louis E; Matsuo, Yutaka; Nakamura, Eiichi; Uemura, Yasutomo J; Kim, Philip; Nuckolls, Colin; Steigerwald, Michael L; Roy, Xavier

    2014-12-03

    In order to realize significant benefits from the assembly of solid-state materials from molecular cluster superatomic building blocks, several criteria must be met. Reproducible syntheses must reliably produce macroscopic amounts of pure material; the cluster-assembled solids must show properties that are more than simply averages of those of the constituent subunits; and rational changes to the chemical structures of the subunits must result in predictable changes in the collective properties of the solid. In this report we show that we can meet these requirements. Using a combination of magnetometry and muon spin relaxation measurements, we demonstrate that crystallographically defined superatomic solids assembled from molecular nickel telluride clusters and fullerenes undergo a ferromagnetic phase transition at low temperatures. Moreover, we show that when we modify the constituent superatoms, the cooperative magnetic properties change in predictable ways.

  3. Areal-averaged and Spectrally-resolved Surface Albedo from Ground-based Transmission Data Alone: Toward an Operational Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.

    We present here a simple retrieval of the areal-averaged and spectrally resolved surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties in the visible and near-infrared spectral range. The feasibility of our approach for the routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements:(1) spectrally resolved atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR) at wavelength 415, 500, 615, 673, and 870 nm, (2) tower-basedmore » measurements of local surface albedo at the same wavelengths, and (3) areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm) from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) observations. These integrated datasets cover both long (2008-2013) and short (April-May, 2010) periods at the ARM Southern Great Plains (SGP) site and the NOAA Table Mountain site, respectively. The calculated root mean square error (RMSE), which is defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved area-averaged albedo, is quite small (RMSE≤0.01) and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between the tower-based daily averages of surface albedo for the completely overcast and non-overcast conditions is also demonstrated. This agreement suggests that our retrieval originally developed for the overcast conditions likely will work for non-overcast conditions as well.« less

  4. Intrinsic random functions for mitigation of atmospheric effects in terrestrial radar interferometry

    NASA Astrophysics Data System (ADS)

    Butt, Jemil; Wieser, Andreas; Conzett, Stefan

    2017-06-01

    The benefits of terrestrial radar interferometry (TRI) for deformation monitoring are restricted by the influence of changing meteorological conditions contaminating the potentially highly precise measurements with spurious deformations. This is especially the case when the measurement setup includes long distances between instrument and objects of interest and the topography affecting atmospheric refraction is complex. These situations are typically encountered with geo-monitoring in mountainous regions, e.g. with glaciers, landslides or volcanoes. We propose and explain an approach for the mitigation of atmospheric influences based on the theory of intrinsic random functions of order k (IRF-k) generalizing existing approaches based on ordinary least squares estimation of trend functions. This class of random functions retains convenient computational properties allowing for rigorous statistical inference while still permitting to model stochastic spatial phenomena which are non-stationary in mean and variance. We explore the correspondence between the properties of the IRF-k and the properties of the measurement process. In an exemplary case study, we find that our method reduces the time needed to obtain reliable estimates of glacial movements from 12 h down to 0.5 h compared to simple temporal averaging procedures.

  5. Intraluminal mapping of tissue viscoelastic properties using laser speckle rheology catheter (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Hosoda, Masaki; Tshikudi, Diane M.; Nadkarni, Seemantini K.

    2016-03-01

    A number of disease conditions including coronary atherosclerosis, peripheral artery disease and gastro-intestinal malignancies are associated with alterations in tissue mechanical properties. Laser speckle rheology (LSR) has been demonstrated to provide important information on tissue mechanical properties by analyzing the time scale of temporal speckle intensity fluctuations, which serves as an index of tissue viscoelasticity. In order to measure the mechanical properties of luminal organs in vivo, LSR must be conducted via a miniature endoscope or catheter. Here we demonstrate the capability of an omni-directional LSR catheter to quantify tissue mechanical properties over the entire luminal circumference without the need for rotational motion. Retracting the catheter using a motor-drive assembly enables the reconstruction of cylindrical maps of tissue mechanical properties. The performance of the LSR catheter is tested using a luminal phantom with mechanical moduli that vary in both circumferential and longitudinal directions. 2D cylindrical maps of phantom viscoelastic properties are reconstructed over four quadrants of the coronary circumference simultaneously during catheter pullback. The reconstructed cylindrical maps of the decorrelation time constants easily distinguish the different gel components of the phantom with different viscoelastic moduli. The average values of decorrelation times calculated for each gel component of the phantom show a strong correspondence with the viscoelastic moduli measured via standard mechanical rheometry. These results highlight the capability for cylindrical mapping of tissue viscoelastic properties using LSR in luminal organs using a miniature catheter, thus opening the opportunity for improved diagnosis of several disease conditions.

  6. Dielectric method of high-resolution gas hydrate estimation

    NASA Astrophysics Data System (ADS)

    Sun, Y. F.; Goldberg, D.

    2005-02-01

    In-situ dielectric properties of natural gas hydrate are measured for the first time in the Mallik 5L-38 Well in the Mackenzie Delta, Canada. The average dielectric constant of the hydrate zones is 9, ranging from 5 to 20. The average resistivity is >5 ohm.m in the hydrate zones, ranging from 2 to 10 ohm.m at a 1.1 GHz dielectric tool frequency. The dielectric logs show similar trends with sonic and induction resistivity logs, but exhibits inherently higher vertical resolution (<5 cm). The average in-situ hydrate saturation in the well is about 70%, ranging from 20% to 95%. The dielectric estimates are overall in agreement with induction estimates but the induction log tends to overestimate hydrate content up to 15%. Dielectric estimates could be used as a better proxy of in-situ hydrate saturation in modeling hydrate dynamics. The fine-scale structure in hydrate zones could help reveal hydrate formation history.

  7. Measurements of Intensive Aerosol Optical Properties During TexAQS II

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.; Radney, J. G.; Wright, M. E.

    2007-12-01

    Time-resolved measurements of the bulk extensive aerosol optical properties - particle extinction coefficient (bext) and particle scattering coefficient (bscat) - and particle number concentrations were made as part of the six-week TRAMP experiment during the TexAQS II (2006) study. These measurements were done at a nominal surface site (the roof of an 18 story building) on the University of Houston campus near downtown Houston, Texas. Our ground-based tandem cavity ring-down transmissometer/nephelometer instrument (CRDT/N) provided the aerosol optical property measurements. A commercial Condensation Particle Counter (TSI 3007) was used to measure the number concentrations during part of the study period. The optical data was used to construct the intensive aerosol optical properties single scattering albedo ω0 at 532 nm and the Angstrom exponent for extinction between 532 nm and 1064 nm. Recent validation studies of size- selected laboratory generated aerosols are presented to illustrate the soundness of this approach using our instrument. The Angstrom exponent is compared to values from other instruments operating in the area and is found to be a characteristic of the regional air mass under some conditions. Size distributions measured during the study were used to create a new empirical adjustment to scattering measured by the Radiance Research nephelometer, resulting in improved results for particle absorption coefficient and single scattering albedo. The study average value of ω0(532 nm) = 0.78 is lower than expected from comparable field studies and even lower values are experienced during the study. Possible causes of this discrepancy are examined and the utility of using the current version of the CRDT/N instrument to measure the key radiative property ω0 is assessed. Observed episodes of rapid increases in particle number concentration with little corresponding growth in the optical properties can presumably be used to signal the occurrence of particle nucleation or growth via gas-phase condensation. These results may be confirmed by other data taken during the TRAMP experiment. These results will be discussed in the context of aerosol effects on regional and larger scale climate.

  8. Structural, optical, opto-thermal and thermal properties of ZnS-PVA nanofluids synthesized through a radiolytic approach.

    PubMed

    Kharazmi, Alireza; Faraji, Nastaran; Mat Hussin, Roslina; Saion, Elias; Yunus, W Mahmood Mat; Behzad, Kasra

    2015-01-01

    This work describes a fast, clean and low-cost approach to synthesize ZnS-PVA nanofluids consisting of ZnS nanoparticles homogeneously distributed in a PVA solution. The ZnS nanoparticles were formed by the electrostatic force between zinc and sulfur ions induced by gamma irradiation at a dose range from 10 to 50 kGy. Several experimental characterizations were conducted to investigate the physical and chemical properties of the samples. Fourier transform infrared spectroscopy (FTIR) was used to determine the chemical structure and bonding conditions of the final products, transmission electron microscopy (TEM) for determining the shape morphology and average particle size, powder X-ray diffraction (XRD) for confirming the formation and crystalline structure of ZnS nanoparticles, UV-visible spectroscopy for measuring the electronic absorption characteristics, transient hot wire (THW) and photoacoustic measurements for measuring the thermal conductivity and thermal effusivity of the samples, from which, for the first time, the values of specific heat and thermal diffusivity of the samples were then calculated.

  9. Effect of surface roughness on liquid property measurements using mechanically oscillating sensors

    NASA Technical Reports Server (NTRS)

    Jain, Mahaveer K.; Grimes, Craig A.

    2002-01-01

    The resonant frequency and quality factor Q of a liquid immersed magnetoelastic sensor are shown to shift linearly with the liquid viscosity and density product. Measurements using different grade oils, organic chemicals, and glycerol-water mixtures show that the surface roughness of the sensor in combination with the molecular size of the liquid play important roles in determining measurement sensitivity, which can be controlled through adjusting the surface roughness of the sensor surface. A theoretical model describing the sensor resonant frequency and quality factor Q as a function of liquid properties is developed using a novel equivalent circuit approach. Experimental results are in agreement with theory when the liquid molecule size is larger than the average surface roughness. However, when the molecular size of the liquid is small relative to the surface roughness features molecules are trapped, and the trapped molecules act both as a mass load and viscous load; the result is higher viscous damping of the sensor than expected. c2002 Elsevier Science B.V. All rights reserved.

  10. Analysis of cell mechanics in single vinculin-deficient cells using a magnetic tweezer

    NASA Technical Reports Server (NTRS)

    Alenghat, F. J.; Fabry, B.; Tsai, K. Y.; Goldmann, W. H.; Ingber, D. E.

    2000-01-01

    A magnetic tweezer was constructed to apply controlled tensional forces (10 pN to greater than 1 nN) to transmembrane receptors via bound ligand-coated microbeadswhile optically measuring lateral bead displacements within individual cells. Use of this system with wild-type F9 embryonic carcinoma cells and cells from a vinculin knockout mouse F9 Vin (-/-) revealed much larger differences in the stiffness of the transmembrane integrin linkages to the cytoskeleton than previously reported using related techniques that measured average mechanical properties of large cell populations. The mechanical properties measured varied widely among cells, exhibiting an approximately log-normal distribution. The median lateral bead displacement was 2-fold larger in F9 Vin (-/-) cells compared to wild-type cells whereas the arithmetic mean displacement only increased by 37%. We conclude that vinculin serves a greater mechanical role in cells than previously reported and that this magnetic tweezer device may be useful for probing the molecular basis of cell mechanics within single cells. Copyright 2000 Academic Press.

  11. Can Seismic Observations of Bed Conditions on Ice Streams Help Constrain Parameters in Ice Flow Models?

    NASA Astrophysics Data System (ADS)

    Kyrke-Smith, Teresa M.; Gudmundsson, G. Hilmar; Farrell, Patrick E.

    2017-11-01

    We investigate correlations between seismically derived estimates of basal acoustic impedance and basal slipperiness values obtained from a surface-to-bed inversion using a Stokes ice flow model. Using high-resolution measurements along several seismic profiles on Pine Island Glacier (PIG), we find no significant correlation at kilometer scale between acoustic impedance and either retrieved basal slipperiness or basal drag. However, there is a stronger correlation when comparing average values along the individual profiles. We hypothesize that the correlation appears at the length scales over which basal variations are important to large-scale ice sheet flow. Although the seismic technique is sensitive to the material properties of the bed, at present there is no clear way of incorporating high-resolution seismic measurements of bed properties on ice streams into ice flow models. We conclude that more theoretical work needs to be done before constraints on mechanical conditions at the ice-bed interface from acoustic impedance measurements can be of direct use to ice sheet models.

  12. Mechanical Properties of ZnSe for the FEANICS Module

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2006-01-01

    Mechanical and physical properties of ZnSe windows to be used with the FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) experiments were measured in order to determine design allowables. In addition, the literature on crack growth properties was summarized. The average Young's modulus, Poisson's ratio, equibiaxial fracture strength, flaw size, grain size, Knoop hardness, Vicker's hardness, and branching constant were 74.3 +/- 0.1 GPa, 0.31, 57.8 +/- 6.5 MPa, 21 4 mm, 43 +/- 9 micron, 0.97 +/- 0.02 GPa, 0.97 +/- 0.02 GPa, and 1.0 +/- 0.1 MPam(exp 0.5), respectively. The properties of current ZnSe made by chemical vapor deposition are in good agreement with those measured in the 1970's. The hardness of CVD ZnSe windows is about one twentieth of the sapphire window being replaced, and about one-sixth of that of window glass. Thus the ZnSe window must be handled with great care. The large grain size relative to the inherent crack size implies the need to use single crystal crack growth properties in the design process. In order to determine the local failure stresses in one of the test specimens, a solution for the stresses between the support ring and the edge of a circular plate load between concentric rings was derived.

  13. In situ measurements of plasma properties during gas-condensation of Cu nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koten, M. A., E-mail: mark.koten@gmail.com; Shield, J. E.; Voeller, S. A.

    2016-03-21

    Since the mean, standard deviation, and modality of nanoparticle size distributions can vary greatly between similar input conditions (e.g., power and gas flow rate), plasma diagnostics were carried out in situ using a double-sided, planar Langmuir probe to determine the effect the plasma has on the heating of clusters and their final size distributions. The formation of Cu nanoparticles was analyzed using cluster-plasma physics, which relates the processes of condensation and evaporation to internal plasma properties (e.g., electron temperature and density). Monitoring these plasma properties while depositing Cu nanoparticles with different size distributions revealed a negative correlation between average particlemore » size and electron temperature. Furthermore, the modality of the size distributions also correlated with the modality of the electron energy distributions. It was found that the maximum cluster temperature reached during plasma heating and the material's evaporation point regulates the growth process inside the plasma. In the case of Cu, size distributions with average sizes of 8.2, 17.3, and 24.9 nm in diameter were monitored with the Langmuir probe, and from the measurements made, the cluster temperatures for each deposition were calculated to be 1028, 1009, and 863 K. These values are then compared with the onset evaporation temperature of particles of this size, which was estimated to be 1059, 1068, and 1071 K. Thus, when the cluster temperature is too close to the evaporation temperature, less particle growth occurs, resulting in the formation of smaller particles.« less

  14. Documentation of normal stratum corneum scaling in an average population: features of differences among age, ethnicity and body site.

    PubMed

    Chu, M; Kollias, N

    2011-03-01

    Scaling skin involves an imbalance between cell proliferation and desquamation, resulting in partially detached corneocytes at the stratum corneum (SC) surface that become visible as they scatter light. The purpose of this study was to document scaling skin with no associated pathology, to estimate the range of normal corneocyte detachment in the average population, and to determine if age, pigmentation and/or body sites of different exposures contribute to differences observed in the SC. Healthy African-American and Caucasian female subjects (n = 151) from a typical central New Jersey population, aged between 14 and 75 years, were evaluated on the dorsal forearm and upper inner arm. Dermatoscopy and adhesive tape were used to evaluate the appearance and adhesion of surface corneocytes. Transepidermal water loss and conductivity were measured to assess water-handling properties of the SC. Measurements were conducted during the winter. Corneocyte detachment observed with dermatoscopy became more prevalent with age and was more severe on the dorsal forearm and in Caucasian subjects. The distribution of the amount of corneocyte removal with adhesive tape increased with age. The range of values was larger in the dorsal forearm than the upper inner arm and was greater in Caucasian subjects than African-American subjects. Minimal changes were observed for water-handling properties. The architecture of the outer SC appears different between ages, body sites of different exposures, and individuals of different pigmentation groups, but minimal differences in water-handling properties are observed. © 2011 The Authors. BJD © 2011 British Association of Dermatologists.

  15. Oxygen Sensing with Perfluorocarbon-Loaded Ultraporous Mesostructured Silica Nanoparticles.

    PubMed

    Lee, Amani L; Gee, Clifford T; Weegman, Bradley P; Einstein, Samuel A; Juelfs, Adam R; Ring, Hattie L; Hurley, Katie R; Egger, Sam M; Swindlehurst, Garrett; Garwood, Michael; Pomerantz, William C K; Haynes, Christy L

    2017-06-27

    Oxygen homeostasis is important in the regulation of biological function. Disease progression can be monitored by measuring oxygen levels, thus producing information for the design of therapeutic treatments. Noninvasive measurements of tissue oxygenation require the development of tools with minimal adverse effects and facile detection of features of interest. Fluorine magnetic resonance imaging ( 19 F MRI) exploits the intrinsic properties of perfluorocarbon (PFC) liquids for anatomical imaging, cell tracking, and oxygen sensing. However, the highly hydrophobic and lipophobic properties of perfluorocarbons require the formation of emulsions for biological studies, though stabilizing these emulsions has been challenging. To enhance the stability and biological loading of perfluorocarbons, one option is to incorporate perfluorocarbon liquids into the internal space of biocompatible mesoporous silica nanoparticles. Here, we developed perfluorocarbon-loaded ultraporous mesostructured silica nanoparticles (PERFUMNs) as 19 F MRI detectable oxygen-sensing probes. Ultraporous mesostructured silica nanoparticles (UMNs) have large internal cavities (average = 1.8 cm 3 g -1 ), facilitating an average 17% loading efficiency of PFCs, meeting the threshold fluorine concentrations needed for imaging studies. Perfluoro-15-crown-5-ether PERFUMNs have the highest equivalent nuclei per PFC molecule and a spin-lattice (T 1 ) relaxation-based oxygen sensitivity of 0.0032 mmHg -1 s -1 at 16.4 T. The option of loading PFCs after synthesizing UMNs, rather than traditional in situ core-shell syntheses, allows for use of a broad range of PFC liquids from a single material. The biocompatible and tunable chemistry of UMNs combined with the intrinsic properties of PFCs makes PERFUMNs a MRI sensor with potential for anatomical imaging, cell tracking, and metabolic spectroscopy with improved stability.

  16. Psychometric Properties of the Arabic Version of the Summary of Diabetes Self-Care Activities Instrument.

    PubMed

    Sukkarieh-Haraty, Ola; Howard, Elizabeth

    2016-01-01

    Translation of instruments needs to ensure equivalence between the source and the target language to establish the psychometric properties of the translated version. The purpose of this study was to examine the psychometric properties of the Arabic version of the Summary of Diabetes Self-Care Activities (SDSCA) instrument. The 12-item English version of the SDSCA was translated into Arabic using back translation on a sample of 140 Lebanese participants with Type 2 diabetes. Construct validity was measured using exploratory factor analysis with varimax rotation. Multitrait scaling analysis was used to test for item convergent and discriminant validity based on item-scale correlations. Conceptual and content validity were examined by an expert panel in diabetes. Internal consistency reliability R was assessed using interitem correlations. The average interitem correlation for the four subscales ranged between--.05 for Diet and .66 for Glucose Testing. Factor analysis identified four factors which accounted for 60% of the variance. The preliminary results of Summary of Diabetes Self-Care Activities-Arabic Version (SDSCA-Ar) are comparable to the psychometric properties the original SDSCA. SDSCA-Ar is a valid measure of diabetes self-care in Lebanese patients with diabetes.

  17. Low-loss Ca{sub 5-x}Sr{sub x}A{sub 2}TiO{sub 12} [A=Nb,Ta] ceramics: Microwave dielectric properties and vibrational spectroscopic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bijumon, Pazhoor Varghese; Sebastian, Mailadil Thomas; Dias, Anderson

    2005-05-15

    Complex perovskite-type Ca{sub 5-x}Sr{sub x}A{sub 2}TiO{sub 12} [A=Nb,Ta] (0{<=}x{<=}5) ceramics were prepared by conventional solid-state ceramic route. The crystal structure, microwave dielectric properties, and vibrational spectroscopic characteristics of these materials are reported. The structure and microstructure were investigated by x-ray diffraction and scanning electron microscopy techniques. The microwave dielectric properties were measured in the 3-5-GHz frequency range by the resonance method. Structural evolutions from orthorhombic to an averaged pseudocubic phase, with associated changes in dielectric properties, were observed as a function of composition. The structure-property relationships in these ceramics were established using Raman and Fourier transform infrared spectroscopic techniques. Ramanmore » analysis showed characteristic bands of ordered perovskite materials, with variation in both intensity and frequency as a function of composition.« less

  18. Online prediction of organileptic data for snack food using color images

    NASA Astrophysics Data System (ADS)

    Yu, Honglu; MacGregor, John F.

    2004-11-01

    In this paper, a study for the prediction of organileptic properties of snack food in real-time using RGB color images is presented. The so-called organileptic properties, which are properties based on texture, taste and sight, are generally measured either by human sensory response or by mechanical devices. Neither of these two methods can be used for on-line feedback control in high-speed production. In this situation, a vision-based soft sensor is very attractive. By taking images of the products, the samples remain untouched and the product properties can be predicted in real time from image data. Four types of organileptic properties are considered in this study: blister level, toast points, taste and peak break force. Wavelet transform are applied on the color images and the averaged absolute value for each filtered image is used as texture feature variable. In order to handle the high correlation among the feature variables, Partial Least Squares (PLS) is used to regress the extracted feature variables against the four response variables.

  19. Role of insulin receptor and insulin signaling on αPS2CβPS integrins' lateral diffusion.

    PubMed

    Mainali, Dipak; Syed, Aleem; Arora, Neha; Smith, Emily A

    2014-12-01

    Integrins are ubiquitous transmembrane receptors with adhesion and signaling properties. The influence of insulin receptor and insulin signaling on αPS2CβPS integrins' lateral diffusion was studied using single particle tracking in S2 cells before and after reducing the insulin receptor expression or insulin stimulation. Insulin signaling was monitored by Western blotting for phospho-Akt expression. The expression of the insulin receptor was reduced using RNA interference (RNAi). After insulin receptor RNAi, four significant changes were measured in integrin diffusion properties: (1) there was a 24% increase in the mobile integrin population, (2) 14% of the increase was represented by integrins with Brownian diffusion, (3) for integrins that reside in confined zones of diffusion, there was a 45% increase in the diameter of the confined zone, and (4) there was a 29% increase in the duration integrins spend in confined zones of diffusion. In contrast to reduced expression of the insulin receptor, which alters integrin diffusion properties, insulin stimulation alone or insulin stimulation under conditions of reduced insulin receptor expression have minimal effects on altering the measured integrin diffusion properties. The differences in integrin diffusion measured after insulin receptor RNAi in the presence or absence of insulin stimulation may be the result of other insulin signaling pathways that are activated at reduced insulin receptor conditions. No change in the average integrin diffusion coefficient was measured for any conditions included in this study.

  20. Influence of Spatial Resolution in Three-dimensional Cine Phase Contrast Magnetic Resonance Imaging on the Accuracy of Hemodynamic Analysis

    PubMed Central

    Fukuyama, Atsushi; Isoda, Haruo; Morita, Kento; Mori, Marika; Watanabe, Tomoya; Ishiguro, Kenta; Komori, Yoshiaki; Kosugi, Takafumi

    2017-01-01

    Introduction: We aim to elucidate the effect of spatial resolution of three-dimensional cine phase contrast magnetic resonance (3D cine PC MR) imaging on the accuracy of the blood flow analysis, and examine the optimal setting for spatial resolution using flow phantoms. Materials and Methods: The flow phantom has five types of acrylic pipes that represent human blood vessels (inner diameters: 15, 12, 9, 6, and 3 mm). The pipes were fixed with 1% agarose containing 0.025 mol/L gadolinium contrast agent. A blood-mimicking fluid with human blood property values was circulated through the pipes at a steady flow. Magnetic resonance (MR) images (three-directional phase images with speed information and magnitude images for information of shape) were acquired using the 3-Tesla MR system and receiving coil. Temporal changes in spatially-averaged velocity and maximum velocity were calculated using hemodynamic analysis software. We calculated the error rates of the flow velocities based on the volume flow rates measured with a flowmeter and examined measurement accuracy. Results: When the acrylic pipe was the size of the thoracicoabdominal or cervical artery and the ratio of pixel size for the pipe was set at 30% or lower, spatially-averaged velocity measurements were highly accurate. When the pixel size ratio was set at 10% or lower, maximum velocity could be measured with high accuracy. It was difficult to accurately measure maximum velocity of the 3-mm pipe, which was the size of an intracranial major artery, but the error for spatially-averaged velocity was 20% or less. Conclusions: Flow velocity measurement accuracy of 3D cine PC MR imaging for pipes with inner sizes equivalent to vessels in the cervical and thoracicoabdominal arteries is good. The flow velocity accuracy for the pipe with a 3-mm-diameter that is equivalent to major intracranial arteries is poor for maximum velocity, but it is relatively good for spatially-averaged velocity. PMID:28132996

  1. Parameter Search Algorithms for Microwave Radar-Based Breast Imaging: Focal Quality Metrics as Fitness Functions.

    PubMed

    O'Loughlin, Declan; Oliveira, Bárbara L; Elahi, Muhammad Adnan; Glavin, Martin; Jones, Edward; Popović, Milica; O'Halloran, Martin

    2017-12-06

    Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.

  2. Will Commodity Properties Affect Seller's Creditworthy: Evidence in C2C E-commerce Market in China

    NASA Astrophysics Data System (ADS)

    Peng, Hui; Ling, Min

    This paper finds out that the credit rating level shows significant difference among different sub-commodity markets in E-commerce, which provides room for sellers to get higher credit rating by entering businesses with higher average credit level before fraud. In order to study the influence of commodity properties on credit rating, this paper analyzes how commodity properties affect average crediting rating through the degree of information asymmetry, returns and costs of fraud, credibility perception and fraud tolerance. Empirical study shows that Delivery, average trading volume, average price and complaint possibility have decisive impacts on credit performance; brand market share, the degree of standardization and the degree of imitation also have a relatively less significant effect on credit rating. Finally, this paper suggests that important commodity properties should be introduced to modify reputation system, for preventing credit rating arbitrage behavior where sellers move into low-rating commodity after being assigned high credit rating.

  3. Microstructural, optical and electrical transport properties of Cd-doped SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmad, Naseem; Khan, Shakeel; Mohsin Nizam Ansari, Mohd

    2018-03-01

    We have successfully investigated the structural, optical and dielectric properties of Cd assimilated SnO2 nanoparticles synthesized via very convenient precipitation route. The structural properties were studied by x-ray diffraction method (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy. As-synthesized samples in the form of powder were examined for its morphology and average particle size by Transmission electron microscopy (TEM). The optical properties were studied by diffuse reflectance spectroscopy. Dielectric properties such that complex dielectric constant and ac conductivity were investigated by LCR meter. Average crystallite size calculated by XRD and average particle size obtained from TEM were found to be consistent and below 50 nm for all samples. The optical band gap of as-synthesized powder samples from absorption study was found in the range of 3.76 to 3.97 eV. The grain boundary parameters such that Rgb, Cgb and τ were evaluated using impedance spectroscopy.

  4. New polyarylene ethers

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Havens, S. J.; Jensen, B. J.

    1986-01-01

    A series of new polyarylene ethers (PAEs) were prepared from the reaction of activated dihalo compounds with various bisphenols. Measured number average molecular weights for the PAEs ranged from 13,500 to 39,400 g/mole, and glass transition temperatures varied from 152 to 280 C. Ethynyl-terminated polyarylene ethers (ETPAEs) were also prepared by endcapping hydroxy-terminated polyarylene ethers with 4-ethynylbenzoyl chloride. Structure/property relationships for the PAEs, and the advantages offered by the ETPAEs, are discussed.

  5. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  6. Structural, optical, magnetic and electrical properties of hematite (α-Fe2O3) nanoparticles synthesized by two methods: polyol and precipitation

    NASA Astrophysics Data System (ADS)

    Mansour, Houda; Letifi, Hanen; Bargougui, Radhouane; De Almeida-Didry, Sonia; Negulescu, Beatrice; Autret-Lambert, Cécile; Gadri, Abdellatif; Ammar, Salah

    2017-12-01

    Hematite (α-Fe2O3) nanoparticles have been successfully synthesized via two methods: (1) polyol and (2) precipitation in water. The influence of synthesis methods on the crystalline structure, morphological, optical, magnetic and electrical properties were investigated using X-ray diffraction, RAMAN spectroscopy, scanning electron microscopy, transmission electron microscopy, UV-visible diffuse reflectance spectroscopy (UV-vis DRS), superconducting quantum interference device and impedance spectroscopy. The structural properties showed that the obtained hematite α-Fe2O3 nanoparticles with two preparation methods exhibit hexagonal phase with high crystallinity and high-phase stability at room temperature. It was found that the average hematite nanoparticle size is estimated to be 36.86 nm for the sample synthesized by precipitation and 54.14 nm for the sample synthesized by polyol. Moreover, the optical properties showed that the band gap energy value of α-Fe2O3 synthesized by precipitation (2.07 eV) was higher than that of α-Fe2O3 synthesized by polyol (1.97 eV) and they showed a red shift to the visible region. Furthermore, the measurements of magnetic properties indicated a magnetization loop typical of ferromagnetic systems at room temperature. Measurements of electrical properties show higher dielectric permittivity (5.64 × 103) and relaxation phenomenon for α-Fe2O3 issued from the precipitation method than the other sample.

  7. Ensembles of physical states and random quantum circuits on graphs

    NASA Astrophysics Data System (ADS)

    Hamma, Alioscia; Santra, Siddhartha; Zanardi, Paolo

    2012-11-01

    In this paper we continue and extend the investigations of the ensembles of random physical states introduced in Hamma [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.040502 109, 040502 (2012)]. These ensembles are constructed by finite-length random quantum circuits (RQC) acting on the (hyper)edges of an underlying (hyper)graph structure. The latter encodes for the locality structure associated with finite-time quantum evolutions generated by physical, i.e., local, Hamiltonians. Our goal is to analyze physical properties of typical states in these ensembles; in particular here we focus on proxies of quantum entanglement as purity and α-Renyi entropies. The problem is formulated in terms of matrix elements of superoperators which depend on the graph structure, choice of probability measure over the local unitaries, and circuit length. In the α=2 case these superoperators act on a restricted multiqubit space generated by permutation operators associated to the subsets of vertices of the graph. For permutationally invariant interactions the dynamics can be further restricted to an exponentially smaller subspace. We consider different families of RQCs and study their typical entanglement properties for finite time as well as their asymptotic behavior. We find that area law holds in average and that the volume law is a typical property (that is, it holds in average and the fluctuations around the average are vanishing for the large system) of physical states. The area law arises when the evolution time is O(1) with respect to the size L of the system, while the volume law arises as is typical when the evolution time scales like O(L).

  8. Effect of spatial averaging on multifractal properties of meteorological time series

    NASA Astrophysics Data System (ADS)

    Hoffmann, Holger; Baranowski, Piotr; Krzyszczak, Jaromir; Zubik, Monika

    2016-04-01

    Introduction The process-based models for large-scale simulations require input of agro-meteorological quantities that are often in the form of time series of coarse spatial resolution. Therefore, the knowledge about their scaling properties is fundamental for transferring locally measured fluctuations to larger scales and vice-versa. However, the scaling analysis of these quantities is complicated due to the presence of localized trends and non-stationarities. Here we assess how spatially aggregating meteorological data to coarser resolutions affects the data's temporal scaling properties. While it is known that spatial aggregation may affect spatial data properties (Hoffmann et al., 2015), it is unknown how it affects temporal data properties. Therefore, the objective of this study was to characterize the aggregation effect (AE) with regard to both temporal and spatial input data properties considering scaling properties (i.e. statistical self-similarity) of the chosen agro-meteorological time series through multifractal detrended fluctuation analysis (MFDFA). Materials and Methods Time series coming from years 1982-2011 were spatially averaged from 1 to 10, 25, 50 and 100 km resolution to assess the impact of spatial aggregation. Daily minimum, mean and maximum air temperature (2 m), precipitation, global radiation, wind speed and relative humidity (Zhao et al., 2015) were used. To reveal the multifractal structure of the time series, we used the procedure described in Baranowski et al. (2015). The diversity of the studied multifractals was evaluated by the parameters of time series spectra. In order to analyse differences in multifractal properties to 1 km resolution grids, data of coarser resolutions was disaggregated to 1 km. Results and Conclusions Analysing the spatial averaging on multifractal properties we observed that spatial patterns of the multifractal spectrum (MS) of all meteorological variables differed from 1 km grids and MS-parameters were biased by -29.1 % (precipitation; width of MS) up to >4 % (min. Temperature, Radiation; asymmetry of MS). Also, the spatial variability of MS parameters was strongly affected at the highest aggregation (100 km). Obtained results confirm that spatial data aggregation may strongly affect temporal scaling properties. This should be taken into account when upscaling for large-scale studies. Acknowledgements The study was conducted within FACCE MACSUR. Please see Baranowski et al. (2015) for details on funding. References Baranowski, P., Krzyszczak, J., Sławiński, C. et al. (2015). Climate Research 65, 39-52. Hoffman, H., G. Zhao, L.G.J. Van Bussel et al. (2015). Climate Research 65, 53-69. Zhao, G., Siebert, S., Rezaei E. et al. (2015). Agricultural and Forest Meteorology 200, 156-171.

  9. Variability of the soil-to-plant radiocaesium transfer factor for Japanese soils predicted with soil and plant properties.

    PubMed

    Uematsu, Shinichiro; Vandenhove, Hildegarde; Sweeck, Lieve; Van Hees, May; Wannijn, Jean; Smolders, Erik

    2016-03-01

    Food chain contamination with radiocaesium (RCs) in the aftermath of the Fukushima accident calls for an analysis of the specific factors that control the RCs transfer. Here, soil-to-plant transfer factors (TF) of RCs for grass were predicted from the potassium concentration in soil solution (mK) and the Radiocaesium Interception Potential (RIP) of the soil using existing mechanistic models. The mK and RIP were (a) either measured for 37 topsoils collected from the Fukushima accident affected area or (b) predicted from the soil clay content and the soil exchangeable potassium content using the models that had been calibrated for European soils. An average ammonium concentration was used throughout in the prediction. The measured RIP ranged 14-fold and measured mK varied 37-fold among the soils. The measured RIP was lower than the RIP predicted from the soil clay content likely due to the lower content of weathered micas in the clay fraction of Japanese soils. Also the measured mK was lower than that predicted. As a result, the predicted TFs relying on the measured RIP and mK were, on average, about 22-fold larger than the TFs predicted using the European calibrated models. The geometric mean of the measured TFs for grass in the affected area (N = 82) was in the middle of both. The TFs were poorly related to soil classification classes, likely because soil fertility (mK) was obscuring the effects of the soil classification related to the soil mineralogy (RIP). This study suggests that, on average, Japanese soils are more vulnerable than European soils at equal soil clay and exchangeable K content. The affected regions will be targeted for refined model validation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Dynamic Contour Tonometry (DCT) over a thin daily disposable hydrogel contact lens.

    PubMed

    Nosch, Daniela Sonja; Duddek, Armin P; Herrmann, Didier; Stuhrmann, Oliver M

    2010-10-01

    Dynamic Contour Tonometry (DCT) has been shown to measure the intraocular pressure (IOP) independent of corneal physical properties such as thickness, curvature and rigidity. The aim of this study was to find out if DCT remains accurate when it is applied on regularly shaped corneas while a thin, daily hydrogel contact lens (CL) is worn. This was a prospective, randomised study and included 46 patients (46 right eyes): 26 females and 20 males. The age varied from 22 to 66 years (mean: 43.0+/-12.70 years). IOP and ocular pulse amplitude (OPA) measurements were taken with and without a daily disposable hydrogel CL (-0.50 D), Filcon IV) in situ (using the DCT), with a randomised order of measurements. The average value for the IOP measurements without CL was 16.51+/-3.20 mmHg, and with CL in situ it was 16.10+/-3.10 mmHg. The mean difference was 0.41 mmHg and not found to be statistically significant (p=0.074). The average value for the OPA measurement without CL was 2.20+/-0.79 mmHg. With CL in situ it was 2.08+/-0.81 mmHg. This gave a mean difference of 0.11 mmHg and was statistically significant (p=0.025). The Bland-Altman plot showed a maximum difference in IOP of +2.44 and -2.00 mmHg (CI 0.95). Regarding OPA, the maximum difference was +0.81 and -0.60 mmHg (CI 0.95). The presence of a thin hydrogel CL did not affect the accuracy of IOP measurements using the DCT. The ocular pulse amplitude was measured on average 5.45% lower with a CL in situ. Copyright (c) 2010 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  11. Comparison of Physical Properties of Marine and Arctic Gas-Hydrate-Bearing Deposits

    NASA Astrophysics Data System (ADS)

    Winters, W. J.; Walker, M.; Collett, T. S.; Bryant, S. L.; Novosel, I.; Wilcox-Cline, R.; Bing, J.; Gomes, M. L.

    2009-12-01

    Gas hydrate (GH) occurs in both marine settings and in arctic environments within a wide variety of sediment types. Grain-size analyses from both environments indicate that intrinsic host-sediment properties have a strong influence on gas-hydrate distribution and morphologic characteristics. Depending on the amount formed or dissociated, gas hydrate can significantly change in situ sediment acoustic, mechanical, and hydraulic properties. The U.S. Geological Survey, in cooperation with the U.S. Dept. of Energy, BP Expl.-Alaska, Nat. GH Prog. of India, Canadian Geological Survey, Int. Ocean Drilling Program, Japan Oil Gas and Metals Nat. Corp., Japan Pet. Expl. Co., Int. Marine Past Global Changes Study (IMAGES) program, and Paleoceanography of the Atlantic and Geochemistry (PAGE) program, determined physical properties from marine and arctic sediments and their relation to the presence of GH. At two arctic sites, the Mount Elbert well on the Alaskan North Slope and the Mallik wells on the Mackenzie Delta, NWT, >10-m thick gas-hydrate-bearing (GHB) sandy deposits are capped by finer-grained sediments that may reduce gas migration. In the Mount Elbert well, average median grain sizes (MGS) for the two thickest GHB deposits are 65 and 60 µm. Finer-grained (average MGS of 9 and 28 µm) sediments have plug permeabilities that are 300 and 14 times smaller than underlying GHB sediment. Average MGS of GHB sediment from the Mallik 2L well is ~ 111 µm, compared to overlying sediment with an average MGS of ~ 32 µm. Gas hydrate morphology in the Gulf of Mexico (GOM) and offshore India is substantially more complex than in the arctic, and is related to pervasive, although not exclusive, finer-grained deposits. Massive, several-cm thick, GH layers were recovered in piston cores in the northern GOM, in sediment with little visible lithologic variability (average MGS ~ 0.8 µm). In wells off the east coast of India, GH was present in sand-rich, fractured clay, and reservoirs with both characteristics. Maximum MGS measured on more than 1200 samples was 46 µm, but the average MGS for 14 wells varied from 5 to 10 µm. At Site 10, in the Krishna-Godavari Basin, GH was observed in several morphologic configurations, including complex high-angle planar and rotational veins, solid nodules, and disseminated, in sediment with average MGS of 5 µm, liquid limits between 70 and 98, and plastic limits between 33 and 49. Sediment in a 692-m deep well drilled off the Andaman Islands sporadically hosted disseminated GH in thin coarser-grained ash beds and ash-rich zones. Average and maximum MGS in this well is 6 and 17 µm, respectively. To date, sandy GH reservoirs (with some exceptions, e.g., Nankai Trough) are typically associated with the arctic. However, the presence of thick offshore sand-rich GHB reservoirs is the subject of current investigations, such as by the Gulf of Mexico Joint Industry Project (JIP).

  12. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles.

    PubMed

    Araujo, J F D F; Bruno, A C; Louro, S R W

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10(-8) Am(2) was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  13. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles

    NASA Astrophysics Data System (ADS)

    Araujo, J. F. D. F.; Bruno, A. C.; Louro, S. R. W.

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10-8 Am2 was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  14. Numerical simulation of microstructural damage and tensile strength of snow

    NASA Astrophysics Data System (ADS)

    Hagenmuller, Pascal; Theile, Thiemo C.; Schneebeli, Martin

    2014-01-01

    This contribution uses finite-element analysis to simulate microstructural failure processes and the tensile strength of snow. The 3-D structure of snow was imaged by microtomography. Modeling procedures used the elastic properties of ice with bond fracture assumptions as inputs. The microstructure experiences combined tensile and compressive stresses in response to macroscopic tensile stress. The simulated nonlocalized failure of ice lattice bonds before or after reaching peak stress creates a pseudo-plastic yield curve. This explains the occurrence of acoustic events observed in advance of global failure. The measured and simulated average tensile strengths differed by 35%, a typical range for strength measurements in snow given its low Weibull modulus. The simulation successfully explains damage, fracture nucleation, and strength according to the geometry of the microstructure of snow and the mechanical properties of ice. This novel method can be applied to more complex snow structures including the weak layers that cause avalanches.

  15. Psychometric Properties of the Children's Automatic Thoughts Scale (CATS) in Chinese Adolescents.

    PubMed

    Sun, Ling; Rapee, Ronald M; Tao, Xuan; Yan, Yulei; Wang, Shanshan; Xu, Wei; Wang, Jianping

    2015-08-01

    The Children's Automatic Thoughts Scale (CATS) is a 40-item self-report questionnaire designed to measure children's negative thoughts. This study examined the psychometric properties of the Chinese translation of the CATS. Participants included 1,993 students (average age = 14.73) from three schools in Mainland China. A subsample of the participants was retested after 4 weeks. Confirmatory factor analysis replicated the original structure with four first-order factors loading on a single higher-order factor. The convergent and divergent validity of the CATS were good. The CATS demonstrated high internal consistency and test-retest reliability. Boys scored higher on the CATS-hostility subscale, but there were no other gender differences. Older adolescents (15-18 years) reported higher scores than younger adolescents (12-14 years) on the total score and on the physical threat, social threat, and hostility subscales. The CATS proved to be a reliable and valid measure of automatic thoughts in Chinese adolescents.

  16. Synthesis of Aluminum-Aluminum Nitride Nanocomposites by a Gas-Liquid Reaction II. Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Borgonovo, Cecilia; Makhlouf, Makhlouf M.

    2016-04-01

    In situ fabrication of the reinforcing particles in the metal matrix is an answer to many of the challenges encountered in manufacturing aluminum matrix nanocomposites. In this method, the nanoparticles are formed directly within the melt by means of a chemical reaction between a specially designed aluminum alloy and a gas. In this publication, we describe a process for synthesizing aluminum-aluminum nitride nanocomposites by reacting a nitrogen-containing gas with a molten aluminum-lithium alloy. We quantify the effect of the process parameters on the average particle size and particle distribution, as well as on the tendency of the particles to cluster in the alloy matrix, is quantified. Also in this publication, we present the measured room temperature and elevated temperature tensile properties of the nanocomposite material as well as its measured room temperature impact toughness.

  17. Spin wave filtering and guiding in Permalloy/iron nanowires

    NASA Astrophysics Data System (ADS)

    Silvani, R.; Kostylev, M.; Adeyeye, A. O.; Gubbiotti, G.

    2018-03-01

    We have investigated the spin wave filtering and guiding properties of periodic array of single (Permalloy and Fe) and bi-layer (Py/Fe) nanowires (NWs) by means of Brillouin light scattering measurements and micromagnetic simulations. For all the nanowire arrays, the thickness of the layers is 10 nm while all NWs have the same width of 340 nm and edge-to-edge separation of 100 nm. Spin wave dispersion has been measured in the Damon-Eshbach configuration for wave vector either parallel or perpendicular to the nanowire length. This study reveals the filtering property of the spin waves when the wave vector is perpendicular to the NW length, with frequency ranges where the spin wave propagation is permitted separated by frequency band gaps, and the guiding property of NW when the wave vector is oriented parallel to the NW, with spin wave modes propagating in parallel channels in the central and edge regions of the NW. The measured dispersions were well reproduced by micromagnetic simulations, which also deliver the spatial profiles for the modes at zero wave vector. To reproduce the dispersion of the modes localized close to the NW edges, uniaxial anisotropy has been introduced. In the case of Permalloy/iron NWs, the obtained results have been compared with those for a 20 nm thick effective NW having average magnetic properties of the two materials.

  18. Measuring Constraint-Set Utility for Partitional Clustering Algorithms

    NASA Technical Reports Server (NTRS)

    Davidson, Ian; Wagstaff, Kiri L.; Basu, Sugato

    2006-01-01

    Clustering with constraints is an active area of machine learning and data mining research. Previous empirical work has convincingly shown that adding constraints to clustering improves the performance of a variety of algorithms. However, in most of these experiments, results are averaged over different randomly chosen constraint sets from a given set of labels, thereby masking interesting properties of individual sets. We demonstrate that constraint sets vary significantly in how useful they are for constrained clustering; some constraint sets can actually decrease algorithm performance. We create two quantitative measures, informativeness and coherence, that can be used to identify useful constraint sets. We show that these measures can also help explain differences in performance for four particular constrained clustering algorithms.

  19. Ground-based observation of aerosol optical properties in Lanzhou, China.

    PubMed

    Yu, Xingna; Zhu, Bin; Fan, Shuxian; Yin, Yan; Bu, Xiaoli

    2009-01-01

    Aerosol optical properties from August 2006 to July 2007 were obtained from ground-based and sky radiance measurements in Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL), China. High aerosol optical thickness (AOT) associated with low Angström exponent (alpha) was mainly observed in spring, which was consistent with the seasonal dust production from Hexi Corridor. The maximum monthly average value of AOT 0.56 occurred in March of 2007, which was two times larger than the minimum value of 0.28 in October of 2006. Approximately 60% of the AOT ranged between 0.3 and 0.5, and nearly 93% of alpha value varied from 0.1 to 0.8, which occurred in spring. The significant correlation between aerosol properties and water vapor content was not observed. The aerosol volume size distribution can be characterized by the bimodal logarithm normal structure: fine mode (r < 0.6 microm) and coarse mode (r > 0.6 microm). Aerosols in spring of SACOL were dominated by large particles with the volume concentration ratio of coarse to fine modes being 7.85. The average values of asymmetry factor (g) in the wavelength range 440-1020 nm were found to be 0.71, 0.67, 0.67 and 0.69 in spring, summer, autumn and winter, respectively.

  20. Detailed Analysis of Indian Summer Monsoon Rainfall Processes with Modern/High-Quality Satellite Observations

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Kuo, Kwo-Sen; Mehta, Amita V.; Yang, Song

    2007-01-01

    We examine, in detail, Indian Summer Monsoon rainfall processes using modernhigh quality satellite precipitation measurements. The focus here is on measurements derived from three NASA cloud and precipitation satellite missionslinstruments (TRMM/PR&TMI, AQUNAMSRE, and CLOUDSATICPR), and a fourth TRMM Project-generated multi-satellite precipitation measurement dataset (viz., TRMM standard algorithm 3b42) -- all from a period beginning in 1998 up to the present. It is emphasized that the 3b42 algorithm blends passive microwave (PMW) radiometer-based precipitation estimates from LEO satellites with infi-ared (IR) precipitation estimates from a world network of CEO satellites (representing -15% of the complete space-time coverage) All of these observations are first cross-calibrated to precipitation estimates taken from standard TRMM combined PR-TMI algorithm 2b31, and second adjusted at the large scale based on monthly-averaged rain-gage measurements. The blended approach takes advantage of direct estimates of precipitation from the PMW radiometerequipped LEO satellites -- but which suffer fi-om sampling limitations -- in combination with less accurate IR estimates from the optical-infrared imaging cameras on GEO satellites -- but which provide continuous diurnal sampling. The advantages of the current technologies are evident in the continuity and coverage properties inherent to the resultant precipitation datasets that have been an outgrowth of these stable measuring and retrieval technologies. There is a wealth of information contained in the current satellite measurements of precipitation regarding the salient precipitation properties of the Indian Summer Monsoon. Using different datasets obtained from the measuring systems noted above, we have analyzed the observations cast in the form of: (1) spatially distributed means and variances over the hierarchy of relevant time scales (hourly I diurnally, daily, monthly, seasonally I intra-seasonally, and inter-annually), (2) time series at these different time scales taken as area-averages over the hierarchy of relevant space scales (Indian sub-Division, Indian sub-continent, and Circumambient Indian Ocean), (3) principal autocorrelation and cross-correlation structures over various monsoon space-time domains, (4) diurnally modulated amplitude-phase properties of rain rates over different monsoon space-time domains, (5) foremost rain rate probability distributions intrinsic to monsoon precipitation, and (6) behavior of extreme events including occurrences of flood and drought episodes throughout the course of inter-annual monsoon processes.

  1. Cyclic injection, storage, and withdrawal of heated water in a sandstone aquifer at St. Paul, Minnesota: Analysis of thermal data and nonisothermal modeling of short-term test cycles

    USGS Publications Warehouse

    Miller, Robert T.; Delin, G.N.

    1994-01-01

    A three-dimensional, anisotropic, nonisothermal, ground-water-flow, and thermal-energy-transport model was constructed to simulate the four short-term test cycles. The model was used to simulate the entire short-term testing period of approximately 400 days. The only model properties varied during model calibration were longitudinal and transverse thermal dispersivities, which, for final calibration, were simulated as 3.3 and 0.33 meters, respectively. The model was calibrated by comparing model-computed results to (1) measured temperatures at selected altitudes in four observation wells, (2) measured temperatures at the production well, and (3) calculated thermal efficiencies of the aquifer. Model-computed withdrawal-water temperatures were within an average of about 3 percent of measured values and model-computed aquifer-thermal efficiencies were within an average of about 5 percent of calculated values for the short-term test cycles. These data indicate that the model accurately simulated thermal-energy storage within the Franconia-Ironton-Galesville aquifer.

  2. Measuring kinetic energy changes in the mesoscale with low acquisition rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roldán, É.; GISC–Grupo Interdisciplinar de Sistemas Complejos, Madrid; Martínez, I. A.

    2014-06-09

    We report on the measurement of the average kinetic energy changes in isothermal and non-isothermal quasistatic processes in the mesoscale, realized with a Brownian particle trapped with optical tweezers. Our estimation of the kinetic energy change allows to access to the full energetic description of the Brownian particle. Kinetic energy estimates are obtained from measurements of the mean square velocity of the trapped bead sampled at frequencies several orders of magnitude smaller than the momentum relaxation frequency. The velocity is tuned applying a noisy electric field that modulates the amplitude of the fluctuations of the position and velocity of themore » Brownian particle, whose motion is equivalent to that of a particle in a higher temperature reservoir. Additionally, we show that the dependence of the variance of the time-averaged velocity on the sampling frequency can be used to quantify properties of the electrophoretic mobility of a charged colloid. Our method could be applied to detect temperature gradients in inhomogeneous media and to characterize the complete thermodynamics of biological motors and of artificial micro and nanoscopic heat engines.« less

  3. Studies on structural, electrical, thermal and magnetic properties of YFeO3 ceramic

    NASA Astrophysics Data System (ADS)

    Suthar, Lokesh; Jha, V. K.; Bhadala, Falguni; Roy, M.; Sahu, S.; Barbar, S. K.

    2017-10-01

    The polycrystalline ceramic sample of YFeO3 has been synthesized by high-temperature solid-state reaction method using high-purity oxides. The formation of the compound has been confirmed by the room temperature (RT) X-ray diffraction analysis. The refined lattice parameters obtained by Rietveld analysis are: a = 5.5907 Å, b = 7.6082 Å and c = 5.2849 Å with orthorhombic symmetry in space group Pnma. The average grain size obtained from the SEM micrograph is around 2 µm. The three-dimensional surface morphology has been investigated using atomic force microscopy (AFM), and the average roughness measured in the sampling area of 100.07 µm2 is around 142 nm. The frequency- and temperature-dependent dielectric constant has been measured. The material shows high dielectric constant value (750) at RT. The activation energy obtained from dc conductivity using Arrhenius relation σ = σ oexp(-Ea/kT) is 2.12 eV. Thermal analysis shows phase change around 625 K with minimum weight loss (i.e. 1.27% of initial weight) from RT to 1273 K. The magnetization measurement indicates soft magnetic behaviour.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravikumar, Patta; Kisan, Bhagaban; Perumal, A., E-mail: perumal@iitg.ernet.in

    We report systematic investigations of structural, vibrational, resonance and magnetic properties of nanoscale NiO powders prepared by ball milling process under different milling speeds for 30 hours of milling. Structural properties revealed that both pure NiO and as-milled NiO powders exhibit face centered cubic structure, but average crystallite size decreases to around 11 nm along with significant increase in strain with increasing milling speed. Vibrational properties show the enhancement in the intensity of one-phonon longitudinal optical (LO) band and disappearance of two-magnon band due to size reduction. In addition, two-phonon LO band exhibits red shift due to size-induced phonon confinementmore » effect and surface relaxation. Pure NiO powder exhibit antiferromagnetic nature, which transforms into induced ferromagnetic after size reduction. The average magnetization at room temperature increases with decreasing the crystallite size and a maximum moment of 0.016 μ{sub B}/f.u. at 12 kOe applied field and coercivity of 170 Oe were obtained for 30 hours milled NiO powders at 600 rotation per minute milling speed. The change in the magnetic properties is also supported by the vibrational properties. Thermomagnetization measurements at high temperature reveal a well-defined magnetic phase transition at high temperature (T{sub C}) around 780 K due to induced ferromagnetic phase. Electron paramagnetic resonance (EPR) studies reveal a good agreement between the EPR results and magnetic properties. The observed results are described on the basis of crystallite size variation, defect density, large strain, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. The obtained results suggest that nanoscale NiO powders with high T{sub C} and moderate magnetic moment at room temperature with cubic structure would be useful to expedite for spintronic devices.« less

  5. Coherent x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Pitney, John Allen

    Conventional x-ray diffraction has historically been done under conditions such that the measured signal consists of an incoherent addition of scattering which is coherent only on a length scale determined by the properties of the beam. The result of the incoherent summation is a statistical averaging over the whole illuminated volume of the sample, which yields certain kinds of information with a high degree of precision and has been key to the success of x-ray diffraction in a variety of applications. Coherent x-ray scattering techniques, such as coherent x-ray diffraction (CXD) and x-ray intensity fluctuation spectroscopy (XIFS), attempt to reduce or eliminate any incoherent averaging so that specific, local structures couple to the measurement without being averaged out. In the case of XIFS, the result is analogous to dynamical light scattering, but with sensitivity to length scales less than 200 nm and time scales from 10-3 s to 103 s. When combined with phase retrieval, CXD represents an imaging technique with the penetration, in situ capabilities, and contrast mechanisms associated with x-rays and with a spatial resolution ultimately limited by the x-ray wavelength. In practice, however, the spatial resolution of CXD imaging is limited by exposure to about 100 A. This thesis describes CXD measurements of the binary alloy Cu3Au and the adaptation of phase retrieval methods for the reconstruction of real-space images of Cu3Au antiphase domains. The theoretical foundations of CXD are described in Chapter 1 as derived from the kinematical formulation for x-ray diffraction and from the temporal and spatial coherence of radiation. The antiphase domain structure of Cu 3Au is described, along with the associated reciprocal-space structure which is measured by CXD. CXD measurements place relatively stringent requirements on the coherence properties of the beam and on the detection mechanism of the experiment; these requirements and the means by which they have been met are delineated in Chapter 2. The results and interpretation of a set of Cu 3Au measurements are presented in Chapter 3. Chapter 4 describes the Gerchberg-Saxton and the hybrid input-output (HIO) algorithms for phase retrieval and shows the results of image reconstruction tests with simulated Cu 3Au CXD, including the effect of oversampling in reciprocal space.

  6. Finite Element Modeling of the NASA Langley Aluminum Testbed Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Pritchard, Joselyn I.; Buehrle, Ralph D.; Pappa, Richard S.

    2002-01-01

    The NASA Langley Aluminum Testbed Cylinder (ATC) was designed to serve as a universal structure for evaluating structural acoustic codes, modeling techniques and optimization methods used in the prediction of aircraft interior noise. Finite element models were developed for the components of the ATC based on the geometric, structural and material properties of the physical test structure. Numerically predicted modal frequencies for the longitudinal stringer, ring frame and dome component models, and six assembled ATC configurations were compared with experimental modal survey data. The finite element models were updated and refined, using physical parameters, to increase correlation with the measured modal data. Excellent agreement, within an average 1.5% to 2.9%, was obtained between the predicted and measured modal frequencies of the stringer, frame and dome components. The predictions for the modal frequencies of the assembled component Configurations I through V were within an average 2.9% and 9.1%. Finite element modal analyses were performed for comparison with 3 psi and 6 psi internal pressurization conditions in Configuration VI. The modal frequencies were predicted by applying differential stiffness to the elements with pressure loading and creating reduced matrices for beam elements with offsets inside external superelements. The average disagreement between the measured and predicted differences for the 0 psi and 6 psi internal pressure conditions was less than 0.5%. Comparably good agreement was obtained for the differences between the 0 psi and 3 psi measured and predicted internal pressure conditions.

  7. Effect of Permeability of Tipping Paper on Cigarette Burning Temperature and the Property of Mainstream Smoke

    NASA Astrophysics Data System (ADS)

    Yao, Zhen-Yu; Shen, Yan; Huang, Hai-Qun; Xu, Ji-Cang

    2016-05-01

    Cigarette smoke analysis of tipping paper with different permeability was carried out. The infrared thermal imager was used to measure burning temperature of cigarette with different permeability tipping paper. The results indicated that with the increase of tipping paper permeability, Tar, CO and nicotine in cigarette mainstream were significantly linear decreased, puff count was increased. Tipping paper permeability had a great influence on cigarette burning temperature. With the increase of tipping paper permeability, the third puff burning temperature and the average peak temperature values were dropped obviously, but the changes of smoldering temperature were not obvious. In addition, smoldering average temperature was significantly lower than the third puff burning temperature and peak temperature.

  8. Novel method for the determination of average molecular weight of natural polymers based on 2D DOSY NMR and chemometrics: Example of heparin.

    PubMed

    Monakhova, Yulia B; Diehl, Bernd W K; Do, Tung X; Schulze, Margit; Witzleben, Steffen

    2018-02-05

    Apart from the characterization of impurities, the full characterization of heparin and low molecular weight heparin (LMWH) also requires the determination of average molecular weight, which is closely related to the pharmaceutical properties of anticoagulant drugs. To determine average molecular weight of these animal-derived polymer products, partial least squares regression (PLS) was utilized for modelling of diffused-ordered spectroscopy NMR data (DOSY) of a representative set of heparin (n=32) and LMWH (n=30) samples. The same sets of samples were measured by gel permeation chromatography (GPC) to obtain reference data. The application of PLS to the data led to calibration models with root mean square error of prediction of 498Da and 179Da for heparin and LMWH, respectively. The average coefficients of variation (CVs) did not exceed 2.1% excluding sample preparation (by successive measuring one solution, n=5) and 2.5% including sample preparation (by preparing and analyzing separate samples, n=5). An advantage of the method is that the sample after standard 1D NMR characterization can be used for the molecular weight determination without further manipulation. The accuracy of multivariate models is better than the previous results for other matrices employing internal standards. Therefore, DOSY experiment is recommended to be employed for the calculation of molecular weight of heparin products as a complementary measurement to standard 1D NMR quality control. The method can be easily transferred to other matrices as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Structural, optical, and electrical properties of Ni-doped ZnO nanorod arrays prepared via sonicated sol-gel immersion method

    NASA Astrophysics Data System (ADS)

    Ismail, A. S.; Mamat, M. H.; Malek, M. F.; Saidi, S. A.; Yusoff, M. M.; Mohamed, R.; Sin, N. D. Md; Suriani, A. B.; Rusop, M.

    2018-05-01

    Nickel (Ni)-doped zinc oxide (ZnO) nanorod array films were synthesised using sonicated sol-gel immersion method. The FESEM images showed that the Ni-doped ZnO nanorod arrays possess hexagonal shape with average diameter about 120 nm and thickness about 1.10 µm. The Ni-doped ZnO nanorod arrays possess better transmittance properties with 3.27 eV of optical band gap energy and 40 meV of urbach energy. The current-voltage (I-V) measurement indicated that the conductivity of ZnO film slightly improved with Ni-doping. The doped film displayed good humidity sensing performance with sensitivity of 1.21.

  10. A research to reduce interior noise in general aviation airplanes. General aviation interior noise study

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Muirhead, V. U.; Smith, H. W.; Peschier, T. D.

    1977-01-01

    The construction, calibration, and properties of a facility for measuring sound transmission through aircraft type panels are described along with the theoretical and empirical methods used. Topics discussed include typical noise source, sound transmission path, and acoustic cabin properties and their effect on interior noise. Experimental results show an average sound transmission loss in the mass controlled frequency region comparable to theoretical predictions. The results also verify that transmission losses in the stiffness controlled region directly depend on the fundamental frequency of the panel. Experimental and theoretical results indicate that increases in this frequency, and consequently in transmission loss, can be achieved by applying pressure differentials across the specimen.

  11. Bio fabrication of silver nanoparticles as an effective wound healing agent in the wound care after anorectal surgery.

    PubMed

    Chai, Shi-Hong; Wang, Yating; Qiao, Yinghong; Wang, Pei; Li, Qiang; Xia, Chaofeng; Ju, Man

    2018-01-01

    Nowadays biological mediated syntheses of metal nanoparticles were utilized for various life caring applications. Our research group utilized Delonix elata leaf aqueous extract for the synthesis of silver nanoparticles. Further the synthesized silver nanoparticles were subjected for various characterization techniques which resulted in spherically agglomerated with biological components entrapped in it and also with average particle size of 36nm were studied and reported. Later the synthesized silver nanoparticles were subjected for wound healing property by size of measured lessions and body weight which results in better wound healing property were studied and discussed. Copyright © 2017. Published by Elsevier B.V.

  12. Effect of Shielding Gas on the Properties of AW 5083 Aluminum Alloy Laser Weld Joints

    NASA Astrophysics Data System (ADS)

    Vyskoč, Maroš; Sahul, Miroslav; Sahul, Martin

    2018-04-01

    The paper deals with the evaluation of the shielding gas influence on the properties of AW 5083 aluminum alloy weld joints produced with disk laser. Butt weld joints were produced under different shielding gas types, namely Ar, He, Ar + 5 vol.% He, Ar + 30 vol.% He and without shielding weld pool. Light and electron microscopy, computed tomography, microhardness measurements and tensile testing were used for evaluation of weld joint properties. He-shielded weld joints were the narrowest ones. On the other hand, Ar-shielded weld joints exhibited largest weld width. The choice of shielding gas had significant influence on the porosity level of welds. The lowest porosity was observed in weld joint produced in Ar with the addition of 5 vol.% He shielding atmosphere (only 0.03%), while the highest level of porosity was detected in weld joint produced in pure He (0.24%). Except unshielded aluminum alloy weld joint, the lowest tensile strength was recorded in He-shielded weld joints. On the contrary, the highest average microhardness was measured in He-shielded weld joints.

  13. The morphological characterization of the forewing of the Manduca sexta species for the application of biomimetic flapping wing micro air vehicles.

    PubMed

    O'Hara, R P; Palazotto, A N

    2012-12-01

    To properly model the structural dynamics of the forewing of the Manduca sexta species, it is critical that the material and structural properties of the biological specimen be understood. This paper presents the results of a morphological study that has been conducted to identify the material and structural properties of a sample of male and female Manduca sexta specimens. The average mass, area, shape, size and camber of the wing were evaluated using novel measurement techniques. Further emphasis is placed on studying the critical substructures of the wing: venation and membrane. The venation cross section is measured using detailed pathological techniques over the entire venation of the wing. The elastic modulus of the leading edge veins is experimentally determined using advanced non-contact structural dynamic techniques. The membrane elastic modulus is randomly sampled over the entire wing to determine global material properties for the membrane using nanoindentation. The data gathered from this morphological study form the basis for the replication of future finite element structural models and engineered biomimetic wings for use with flapping wing micro air vehicles.

  14. Understanding planning ability measured by the Tower of London: an evaluation of its internal structure by latent variable modeling.

    PubMed

    Koppenol-Gonzalez, Gabriela V; Bouwmeester, Samantha; Boonstra, A Marije

    2010-12-01

    The Tower of London (TOL) is a widely used instrument for assessing planning ability. Inhibition and (spatial) working memory are assumed to contribute to performance on the TOL, but findings about the relationship between these cognitive processes are often inconsistent. Moreover, the influence of specific properties of TOL problems on cognitive processes and difficulty level is often not taken into account. Furthermore, it may be expected that several planning strategies can be distinguished that cannot be extracted from the total score. In this study, a factor analysis and a latent class regression analysis were performed to address these issues. The results showed that 4 strategy groups that differed with respect to preplanning time could be distinguished. The effect of problem properties also differed for the 4 groups. Additional analyses showed that the groups differed on average planning performance but that there were no significant differences between inhibition and spatial working memory performance. Finally, it seemed that multiple factors influence performance on the TOL, the most important ones being the score measurements, the problem properties, and strategy use.

  15. Developing an item bank to measure the coping strategies of people with hereditary retinal diseases.

    PubMed

    Prem Senthil, Mallika; Khadka, Jyoti; De Roach, John; Lamey, Tina; McLaren, Terri; Campbell, Isabella; Fenwick, Eva K; Lamoureux, Ecosse L; Pesudovs, Konrad

    2018-05-05

    Our understanding of the coping strategies used by people with visual impairment to manage stress related to visual loss is limited. This study aims to develop a sophisticated coping instrument in the form of an item bank implemented via Computerised adaptive testing (CAT) for hereditary retinal diseases. Items on coping were extracted from qualitative interviews with patients which were supplemented by items from a literature review. A systematic multi-stage process of item refinement was carried out followed by expert panel discussion and cognitive interviews. The final coping item bank had 30 items. Rasch analysis was used to assess the psychometric properties. A CAT simulation was carried out to estimate an average number of items required to gain precise measurement of hereditary retinal disease-related coping. One hundred eighty-nine participants answered the coping item bank (median age = 58 years). The coping scale demonstrated good precision and targeting. The standardised residual loadings for items revealed six items grouped together. Removal of the six items reduced the precision of the main coping scale and worsened the variance explained by the measure. Therefore, the six items were retained within the main scale. Our CAT simulation indicated that, on average, less than 10 items are required to gain a precise measurement of coping. This is the first study to develop a psychometrically robust coping instrument for hereditary retinal diseases. CAT simulation indicated that on an average, only four and nine items were required to gain measurement at moderate and high precision, respectively.

  16. Quantitative methods for estimating the anisotropy of the strength properties and the phase composition of Mg-Al alloys

    NASA Astrophysics Data System (ADS)

    Betsofen, S. Ya.; Kolobov, Yu. R.; Volkova, E. F.; Bozhko, S. A.; Voskresenskaya, I. I.

    2015-04-01

    Quantitative methods have been developed to estimate the anisotropy of the strength properties and to determine the phase composition of Mg-Al alloys. The efficiency of the methods is confirmed for MA5 alloy subjected to severe plastic deformation. It is shown that the Taylor factors calculated for basal slip averaged over all orientations of a polycrystalline aggregate with allowance for texture can be used for a quantitative estimation of the contribution of the texture of semifinished magnesium alloy products to the anisotropy of their strength properties. A technique of determining the composition of a solid solution and the intermetallic phase Al12Mg17 content is developed using the measurement of the lattice parameters of the solid solution and the known dependence of these lattice parameters on the composition.

  17. Evaluation of black carbon estimations in global aerosol models

    NASA Astrophysics Data System (ADS)

    Koch, D.; Schulz, M.; Kinne, S.; McNaughton, C.; Spackman, J. R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, T. C.; Boucher, O.; Chin, M.; Clarke, A.; de Luca, N.; Dentener, F.; Diehl, T.; Dubovik, O.; Easter, R.; Fahey, D. W.; Feichter, J.; Fillmore, D.; Freitag, S.; Ghan, S.; Ginoux, P.; Gong, S.; Horowitz, L.; Iversen, T.; Kirkevåg, A.; Klimont, Z.; Kondo, Y.; Krol, M.; Liu, X.; Miller, R.; Montanaro, V.; Moteki, N.; Myhre, G.; Penner, J. E.; Perlwitz, J.; Pitari, G.; Reddy, S.; Sahu, L.; Sakamoto, H.; Schuster, G.; Schwarz, J. P.; Seland, Ø.; Stier, P.; Takegawa, N.; Takemura, T.; Textor, C.; van Aardenne, J. A.; Zhao, Y.

    2009-11-01

    We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) retrievals from AERONET and Ozone Monitoring Instrument (OMI) and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.7 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 8 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC ratio is 0.4 and models underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the range represented by the full set of AeroCom models. Upper tropospheric concentrations of BC mass from the aircraft measurements are suggested to provide a unique new benchmark to test scavenging and vertical dispersion of BC in global models.

  18. Retrievals of ice cloud microphysical properties of deep convective systems using radar measurements: Convective Cloud Microphysical Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Jingjing; Dong, Xiquan; Xi, Baike

    This study presents new algorithms for retrieving ice cloud microphysical properties (ice water content (IWC) and median mass diameter (Dm)) for the stratiform and thick anvil regions of Deep Convective Systems (DCSs) using Next-Generation Radar (NEXRAD) reflectivity and recently developed empirical relationships from aircraft in situ measurements during the Midlatitude Continental Convective Clouds Experiment (MC3E). A classic DCS case on 20 May 2011 is used to compare the retrieved IWC profiles with other retrieval and cloud-resolving model simulations. The mean values of each retrieved and simulated IWC fall within one standard derivation of the other two. The statistical results frommore » six selected cases during MC3E show that the aircraft in situ derived IWC and Dm are 0.47 ± 0.29 g m-3 and 2.02 ± 1.3 mm, while the mean values of retrievals have a positive bias of 0.16 g m-3 (34%) and a negative bias of 0.39 mm (19%). To validate the newly developed retrieval algorithms from this study, IWC and Dm are performed with other DCS cases during Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX) field campaign using composite gridded NEXRAD reflectivity and compared with in situ IWC and Dm from aircraft. A total of 64 1-min collocated aircraft and radar samples are available for comparisons, and the averages of radar retrieved and aircraft in situ measured IWCs are 1.22 g m-3 and 1.26 g m-3 with a correlation of 0.5, and their averaged Dm values are 2.15 and 1.80 mm. These comparisons have shown that the retrieval algorithms 45 developed during MC3E can retrieve similar ice cloud microphysical properties of DCS to aircraft in situ measurements during BAMEX with median errors of ~40% and ~25% for IWC and Dm retrievals, respectively. This is indicating our retrieval algorithms are suitable for other midlatitude continental DCS ice clouds, especially at stratiform rain and thick anvil regions. In addition, based on the averaged IWC and Dm values during MC3E and BAMEX, the DCS IWC values over midlatitude are significantly different, while their Dm values are close to each other. On the other hand, these DCS IWC and Dm values are 1-2 orders of magnitude larger than those of single-layered cirrus clouds over midlatitudes.« less

  19. Spatio-temporal patterns of soil water storage under dryland agriculture at the watershed scale

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham M.; Huggins, David R.

    2011-07-01

    SummarySpatio-temporal patterns of soil water are major determinants of crop yield potential in dryland agriculture and can serve as the basis for delineating precision management zones. Soil water patterns can vary significantly due to differences in seasonal precipitation, soil properties and topographic features. In this study we used empirical orthogonal function (EOF) analysis to characterize the spatial variability of soil water at the Washington State University Cook Agronomy Farm (CAF) near Pullman, WA. During the period 1999-2006, the CAF was divided into three roughly equal blocks (A, B, and C), and soil water at 0.3 m intervals to a depth of 1.5 m measured gravimetrically at approximately one third of the 369 geo-referenced points on the 37-ha watershed. These data were combined with terrain attributes, soil bulk density and apparent soil conductivity (EC a). The first EOF generated from the three blocks explained 73-76% of the soil water variability. Field patterns of soil water based on EOF interpolation varied between wet and dry conditions during spring and fall seasons. Under wet conditions, elevation and wetness index were the dominant factors regulating the spatial patterns of soil water. As soil dries out during summer and fall, soil properties (EC a and bulk density) become more important in explaining the spatial patterns of soil water. The EOFs generated from block B, which represents average topographic and soil properties, provided better estimates of soil water over the entire watershed with larger Nash-Sutcliffe Coefficient of Efficiency (NSCE) values, especially when the first two EOFs were retained. Including more than the first two EOFs did not significantly increase the NSCE of soil water estimate. The EOF interpolation method to estimate soil water variability worked slightly better during spring than during fall, with average NSCE values of 0.23 and 0.20, respectively. The predictable patterns of stored soil water in the spring could serve as the basis for delineating precision management zones as yield potential is largely driven by water availability. The EOF-based method has the advantage of estimating the soil water variability based on soil water data from several measurement times, whereas in regression methods only soil water measurement at a single time are used. The EOF-based method can also be used to estimate soil water at any time other than measurement times, assuming the average soil water of the watershed is known at that time.

  20. Suicide Note Sentiment Classification: A Supervised Approach Augmented by Web Data

    PubMed Central

    Xu, Yan; Wang, Yue; Liu, Jiahua; Tu, Zhuowen; Sun, Jian-Tao; Tsujii, Junichi; Chang, Eric

    2012-01-01

    Objective: To create a sentiment classification system for the Fifth i2b2/VA Challenge Track 2, which can identify thirteen subjective categories and two objective categories. Design: We developed a hybrid system using Support Vector Machine (SVM) classifiers with augmented training data from the Internet. Our system consists of three types of classification-based systems: the first system uses spanning n-gram features for subjective categories, the second one uses bag-of-n-gram features for objective categories, and the third one uses pattern matching for infrequent or subtle emotion categories. The spanning n-gram features are selected by a feature selection algorithm that leverages emotional corpus from weblogs. Special normalization of objective sentences is generalized with shallow parsing and external web knowledge. We utilize three sources of web data: the weblog of LiveJournal which helps to improve the feature selection, the eBay List which assists in special normalization of information and instructions categories, and the suicide project web which provides unlabeled data with similar properties as suicide notes. Measurements: The performance is evaluated by the overall micro-averaged precision, recall and F-measure. Result: Our system achieved an overall micro-averaged F-measure of 0.59. Happiness_peacefulness had the highest F-measure of 0.81. We were ranked as the second best out of 26 competing teams. Conclusion: Our results indicated that classifying fine-grained sentiments at sentence level is a non-trivial task. It is effective to divide categories into different groups according to their semantic properties. In addition, our system performance benefits from external knowledge extracted from publically available web data of other purposes; performance can be further enhanced when more training data is available. PMID:22879758

  1. Retrievals of ice cloud microphysical properties of deep convective systems using radar measurements

    NASA Astrophysics Data System (ADS)

    Tian, Jingjing; Dong, Xiquan; Xi, Baike; Wang, Jingyu; Homeyer, Cameron R.; McFarquhar, Greg M.; Fan, Jiwen

    2016-09-01

    This study presents newly developed algorithms for retrieving ice cloud microphysical properties (ice water content (IWC) and median mass diameter (Dm)) for the stratiform rain and thick anvil regions of deep convective systems (DCSs) using Next Generation Radar (NEXRAD) reflectivity and empirical relationships from aircraft in situ measurements. A typical DCS case (20 May 2011) during the Midlatitude Continental Convective Clouds Experiment (MC3E) is selected as an example to demonstrate the 4-D retrievals. The vertical distributions of retrieved IWC are compared with previous studies and cloud-resolving model simulations. The statistics from six selected cases during MC3E show that the aircraft in situ derived IWC and Dm are 0.47 ± 0.29 g m-3 and 2.02 ± 1.3 mm, while the mean values of retrievals have a positive bias of 0.19 g m-3 (40%) and negative bias of 0.41 mm (20%), respectively. To evaluate the new retrieval algorithms, IWC and Dm are retrieved for other DCSs observed during the Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX) using NEXRAD reflectivity and compared with aircraft in situ measurements. During BAMEX, a total of 63, 1 min collocated aircraft and radar samples are available for comparisons, and the averages of radar retrieved and aircraft in situ measured IWC values are 1.52 g m-3 and 1.25 g m-3 with a correlation of 0.55, and their averaged Dm values are 2.08 and 1.77 mm. In general, the new retrieval algorithms are suitable for continental DCSs during BAMEX, especially within stratiform rain and thick anvil regions.

  2. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: BIASES IN z  > 1.46 REDSHIFTS DUE TO QUASAR DIVERSITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denney, K. D.; Peterson, B. M.; Horne, Keith

    We use the coadded spectra of 32 epochs of Sloan Digital Sky Survey (SDSS) Reverberation Mapping Project observations of 482 quasars with z  > 1.46 to highlight systematic biases in the SDSS- and Baryon Oscillation Spectroscopic Survey (BOSS)-pipeline redshifts due to the natural diversity of quasar properties. We investigate the characteristics of this bias by comparing the BOSS-pipeline redshifts to an estimate from the centroid of He ii λ 1640. He ii has a low equivalent width but is often well-defined in high-S/N spectra, does not suffer from self-absorption, and has a narrow component which, when present (the case for aboutmore » half of our sources), produces a redshift estimate that, on average, is consistent with that determined from [O ii] to within the He ii and [O ii] centroid measurement uncertainties. The large redshift differences of ∼1000 km s{sup −1}, on average, between the BOSS-pipeline and He ii-centroid redshifts, suggest there are significant biases in a portion of BOSS quasar redshift measurements. Adopting the He ii-based redshifts shows that C iv does not exhibit a ubiquitous blueshift for all quasars, given the precision probed by our measurements. Instead, we find a distribution of C iv-centroid blueshifts across our sample, with a dynamic range that (i) is wider than that previously reported for this line, and (ii) spans C iv centroids from those consistent with the systemic redshift to those with significant blueshifts of thousands of kilometers per second. These results have significant implications for measurement and use of high-redshift quasar properties and redshifts, and studies based thereon.« less

  3. Evaluation and comparison of the marginal adaptation of two different substructure materials.

    PubMed

    Karaman, Tahir; Ulku, Sabiha Zelal; Zengingul, Ali Ihsan; Guven, Sedat; Eratilla, Veysel; Sumer, Ebru

    2015-06-01

    In this study, we aimed to evaluate the amount of marginal gap with two different substructure materials using identical margin preparations. Twenty stainless steel models with a chamfer were prepared with a CNC device. Marginal gap measurements of the galvano copings on these stainless steel models and Co-Cr copings obtained by a laser-sintering method were made with a stereomicroscope device before and after the cementation process and surface properties were evaluated by scanning electron microscopy (SEM). A dependent t-test was used to compare the mean of the two groups for normally distributed data, and two-way variance analysis was used for more than two data sets. Pearson's correlation analysis was also performed to assess relationships between variables. According to the results obtained, the marginal gap in the galvano copings before cementation was measured as, on average, 24.47 ± 5.82 µm before and 35.11 ± 6.52 µm after cementation; in the laser-sintered Co-Cr structure, it was, on average, 60.45 ± 8.87 µm before and 69.33 ± 9.03 µm after cementation. A highly significant difference (P<.001) was found in marginal gap measurements of galvano copings and a significant difference (P<.05) was found in marginal gap measurements of the laser-sintered Co-Cr copings. According to the SEM examination, surface properties of laser sintered Co-Cr copings showed rougher structure than galvano copings. The galvano copings showed a very smooth surface. Marginal gaps values of both groups before and after cementation were within the clinically acceptable level. The smallest marginal gaps occurred with the use of galvano copings.

  4. Evaluation and comparison of the marginal adaptation of two different substructure materials

    PubMed Central

    Karaman, Tahir; Ulku, Sabiha Zelal; Zengingul, Ali Ihsan; Eratilla, Veysel; Sumer, Ebru

    2015-01-01

    PURPOSE In this study, we aimed to evaluate the amount of marginal gap with two different substructure materials using identical margin preparations. MATERIALS AND METHODS Twenty stainless steel models with a chamfer were prepared with a CNC device. Marginal gap measurements of the galvano copings on these stainless steel models and Co-Cr copings obtained by a laser-sintering method were made with a stereomicroscope device before and after the cementation process and surface properties were evaluated by scanning electron microscopy (SEM). A dependent t-test was used to compare the mean of the two groups for normally distributed data, and two-way variance analysis was used for more than two data sets. Pearson's correlation analysis was also performed to assess relationships between variables. RESULTS According to the results obtained, the marginal gap in the galvano copings before cementation was measured as, on average, 24.47 ± 5.82 µm before and 35.11 ± 6.52 µm after cementation; in the laser-sintered Co-Cr structure, it was, on average, 60.45 ± 8.87 µm before and 69.33 ± 9.03 µm after cementation. A highly significant difference (P<.001) was found in marginal gap measurements of galvano copings and a significant difference (P<.05) was found in marginal gap measurements of the laser-sintered Co-Cr copings. According to the SEM examination, surface properties of laser sintered Co-Cr copings showed rougher structure than galvano copings. The galvano copings showed a very smooth surface. CONCLUSION Marginal gaps values of both groups before and after cementation were within the clinically acceptable level. The smallest marginal gaps occurred with the use of galvano copings. PMID:26140178

  5. Insights into the structural and physicochemical properties of small granular starches from two hydrophyte duckweeds, Spirodela oligorrhiza and Lemna minor.

    PubMed

    Chen, Lei; Yu, Changjiang; Ma, Yubin; Xu, Hua; Wang, Shumin; Wang, Yu; Liu, Xingxun; Zhou, Gongke

    2016-11-29

    The structure and physicochemical properties of starches from two hydrophyte duckweeds, Spirodela oligorrhiza and Lemna minor, were investigated and compared in this study. The amylose content and average size of starches were determined to be 20.85%, 4.70 μm and 27.77%, 6.17 μm for Spirodela oligorrhiza and Lemna minor, respectively. The average chain length of two duckweed starches was measured to be around DP 28. The chain length distribution was observed to be greatly different from other reported starches for the high proportion of long chains (DP ≥ 37) over 50%. Wide-angle X-ray diffraction profiles of the two starch samples displayed typical B-type diffraction pattern. The gelatinization enthalpy-changes (ΔH gel ) of two starch samples was about 10.40 J/g for two duckweed starches. The present results suggested the potential utilization of small granular starches from duckweed in functional foods and dietary supplement products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Ordering, nanostructure and high-field magnetization of quenched and annealed metastable ilmenite-hematite solid solutions

    NASA Astrophysics Data System (ADS)

    Fabian, Karl; Thomas, Christopher I.; McEnroe, Suzanne A.; Robinson, Peter; Mukai, Hiroki

    2013-04-01

    The ilmenite-hematite solid solution series xFeTiO3-(1 - x)Fe2O3 can generate extremely unusual magnetic properties in natural rocks and has been investigated for more than fifty years. Both, ilmenite (FeTiO3) and hematite (Fe2O3) are antiferromagnetic, but intermediate compositions are either antiferromagnetic or ferrimagnetic, depending on their chemical order. Within a single sample, nano-scale variations in local composition x and ordering state Q depend on minute details of the cooling and annealing history, and have large effects on the magnetic properties, which include self-reversal of thermoremanent magnetization and large exchange bias. We present a systematic study of magnetic properties of samples in the composition range of 0.6 ˜ x ˜ 0.7 with differing nanostructure and consequently differing magnetic properties. Using high-field measurements up to 7 T, together with TEM images and theoretical models we classify nanostructure formation in terms of x, Q, and characteristic size d. These characteristics are then linked to the magnetic properties. The sample characterization relies on average mean-field models of Ms(T). To implement the varying Fe and Ti densities, and the distribution of Fe ions in the variably ordered solid solutions, the models either use statistical interactions between sites, whereby they effectively average over all possible configurations, or they describe specific random configurations. Statistical mean field models are successful in predicting the Curie temperatures TC and Ms(T) curves of the Ilmx solid solutions. The results depend on the interaction coefficients, which either had been determined by neutron diffraction measurements (Samuelson and Shirane, 1979), by Monte-Carlo model fits (Harrison, 2006), or by density-functional theoretic calculations (Nabi et al. 2010). Hysteresis branches have been measured for a wide variety of samples at different temperatures 40 K, 100 K and 300 K. None of them saturate at 7 T, the strongest field available to us so far. Some of the samples show the beginnings of a pseudo-metamagnetic transition at the upper limits of the measurements. In previous models this is explained by anti-phase boundaries and exchange coupling between ordered and disordered regions with differing sizes and hence differing responses to an external field. These effects will be studied further up to 60 T using a European high-field laboratory within the EuroMagNET II/EMFL scheme.

  7. Dependence of O2 and Ar2 flow rates on the physical properties of ATO thin films deposited by atmospheric pressure chemical vapor deposition (APCVD)

    NASA Astrophysics Data System (ADS)

    Fadavieslam, M. R.; Sadra, S.

    2017-11-01

    Antimony-doped tin oxide SnO2:Sb thin films were fabricated through atmospheric pressure chemical vapor deposition at T = 350 °C on soda lime glass substrates. After preparing the thin films, the effects of oxygen and argon flow rates on the structural, optical, and electrical properties were investigated. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy, atomic force microscopy, optical absorption (UV-Vis), and electrical resistance measurements using the two-point probe technique and the Hall effect. The results showed that the films contained uniform polycrystalline structures. Accordingly, the structural, morphological, optical, and electrical properties of the samples indicated the following effects: (a) Increasing the oxygen flow rate from 60 to 160 cc/min decreased the intensity of XRD peaks, the average roughness from 48.5 to 47.9 nm, the average transmission from 44 to 40 (in the visible region), the optical band gap from 3.74 to 3.66 eV, and the carrier mobility from 239.52 to 21.08 cm2/V.S; moreover, it increased the average grain size from 74 to 79 nm, the thickness from 320 to 560 nm, the specific resistance from 3.38 × 10-2 to 14.9 × 10-2 Ω cm, the carrier concentration from 7.72 × 1017 to 1.99 × 1018 cm-3, and the Seebeck coefficient from 47.2 to 57.85 μVk-1 (at 400 K). (b) Increasing the argon flow rate of 40 cc/min to 120 cc/min decreased the intensity of XRD peaks, the average size of grains from 88 nm to 61 nm, the optical band gap from 3.66 to 2.73 eV, the carrier concentration from 1.99 × 1018 to 1.73 × 1017 cm-3, and the Seebeck coefficient from 57.85 to 36.59 μVk-1 (at 400 k); moreover, this increased the average roughness from 47.9 to 50.8 nm, the average transmission from 40 to 64 (in the visible region), thickness from 560 to 620 nm, specific resistance from 14.9 × 10-2 to 39.87 × 10-2 Ω cm, and carrier mobility from 21.08 to 90.61 μv/vs. (c) All thin films had degenerate n-type conductivity.

  8. Aerosol Composition and Variability in Baltimore Measured during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Thornhill, K. L.; Winstead, E. L.; Diskin, G. S.; Chatfield, R. B.; Natraj, V.; Anderson, B. E.

    2012-12-01

    In order to relate satellite-based measurements of aerosols to ground-level air quality, the correlation between aerosol optical properties (wavelength-dependent scattering and absorption measured by satellites) and mass measurements of aerosol loading (i.e. PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type (such as composition, size, hygroscopicity, and mass scattering and absorption efficiencies) and to the surrounding atmosphere (such as temperature, relative humidity and altitude). The DISCOVER-AQ (Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality) project was designed to provide a unique dataset for determining variability in and correlations between aerosol loading, composition, optical properties and meteorological conditions. Extensive in-situ profiling of the lower atmosphere in the Baltimore-Washington D.C. region was performed during fourteen flights during July 2011. Identical flight plans and profile locations throughout the campaign provide meaningful statistics for analysis. Measured aerosol mass was composed primarily of ammonium sulfate (campaign average of 36%) and water-soluble organics (58%). A distinct difference in composition was related to aerosol loading with high-loading days having a proportionally larger percentage of ammonium sulfate (up to 60%). This composition shift causes a change in the water-uptake potential (hygroscopicity) of the aerosols with higher relative organic composition decreasing water-uptake. On average, sulfate mass increased during the day due to increased photochemistry, while organics decreased. Analysis of the linkage between aerosol loading and optical properties was also performed. The absorption by black carbon was dependent on the amount of organic coating with an increase in mass absorption efficiency from 7.5 m2/g for bare soot to 16 m2/g at an organic mass fraction of 70%. The organic fraction was also found to correlate with the absorption Angstrom exponent which is a solely optical measurement. This relationship allows for a possible understanding of aerosol composition based on solely-optical methods (such as satellite-based sensors). Comparison of aerosol composition to scattering indicated significant scattering from non-hydrophilic particles. The origin seemed to be hydrophobic organic material, and the scattering effects were roughly the same magnitude as the water-soluble organics. Such aerosols are not simulated in many air pollution models, and require more field study. 246 profiles were performed at six locations throughout the region. Variability in aerosol scattering (as a proxy for aerosol optical depth) amongst the six sites is dependent on variability in aerosol loading, composition, and relative humidity (the amount of water available for water uptake onto the aerosols). Aerosol loading was found to be the predominant source accounting for 68% on average of the measured variability in scattering with minor contributions from relative humidity (24%) and aerosol composition (8%).

  9. Infiltration and runoff generation processes in fire-affected soils

    USGS Publications Warehouse

    Moody, John A.; Ebel, Brian A.

    2014-01-01

    Post-wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire-affected soils to predict time-to-start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil-water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one-dimensional post-wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high-resolution (1 mm) estimates of the soil-water profile and water fluxes within the unsaturated zone.Field and model estimates of the wetting-front depth indicated that post-wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h−1. Because of the relatively small values of Ks, the time-to-start of runoff (measured from the start of rainfall),  tp, was found to depend only on the initial soil-water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of  tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that  tp in fire-affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil-water saturation deficit than by soil hydraulic properties.

  10. Advances in Raman Lidar Measurements of Water Vapor, Cirrus Clouds and Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Potter, John R.; Tola, Rebecca; Rush, Kurt; Veselovskii, Igor; Cadirola, Martin; Comer, Joseph

    2006-01-01

    Narrow-band interference filters with improved transmission in the ultraviolet have been developed under NASA-funded research and used in the Raman Airborne Spectroscopic Lidar (RASL) in ground- based, upward-looking tests. RASL is an airborne Raman Lidar system designed to measure water vapor mixing ratio, and aerosol backscatter/extinction/depolarization. It also possesses the capability to make experimental measurements of cloud liquid water and carbon dioxide. It is being prepared for first flight tests during the summer of 2006. With the newly developed filters installed in RASL, measurements were made of atmospheric water vapor, cirrus cloud optical properties and carbon dioxide that improve upon any previously demonstrated using Raman lidar. Daytime boundary layer profiling of water vapor mixing ratio is performed with less than 5% random error using temporal and spatial resolution of 2-minutes and 60 - 210, respectively. Daytime cirrus cloud optical depth and extinction- to-backscatter ratio measurements are made using 1-minute average. Sufficient signal strength is demonstrated to permit the simultaneous profiling of carbon dioxide and water vapor mixing ratio into the free troposphere during the nighttime. Downward-looking from an airborne RASL should possess the same measurement statistics with approximately a factor of 5 - 10 decrease in averaging time. A description of the technology improvements are provided followed by examples of the improved Raman lidar measurements.

  11. Aerosol profiling with lidar in the Amazon Basin during the wet and dry season

    NASA Astrophysics Data System (ADS)

    Baars, H.; Ansmann, A.; Althausen, D.; Engelmann, R.; Heese, B.; Müller, D.; Artaxo, P.; Paixao, M.; Pauliquevis, T.; Souza, R.

    2012-11-01

    For the first time, multiwavelength polarization Raman lidar observations of optical and microphysical particle properties over the Amazon Basin are presented. The fully automated advanced Raman lidar was deployed 60 km north of Manaus, Brazil (2.5°S, 60°W) in the Amazon rain forest from January to November 2008. The measurements thus cover both the wet season (Dec-June) and the dry or burning season (July-Nov). Two cases studies of young and aged smoke plumes are discussed in terms of spectrally resolved optical properties (355, 532, and 1064 nm) and further lidar products such as particle effective radius and single-scattering albedo. These measurement examples confirm that biomass burning aerosols show a broad spectrum of optical, microphysical, and chemical properties. The statistical analysis of the entire measurement period revealed strong differences between the pristine wet and the polluted dry season. African smoke and dust advection frequently interrupt the pristine phases during the wet season. Compared to pristine wet season conditions, the particle scattering coefficients in the lowermost 2 km of the atmosphere were found to be enhanced, on average, by a factor of 4 during periods of African aerosol intrusion and by a factor of 6 during the dry (burning) season. Under pristine conditions, the particle extinction coefficients and optical depth for 532 nm wavelength were frequently as low as 10-30 Mm-1 and <0.05, respectively. During the dry season, biomass burning smoke plumes reached to 3-5 km height and caused a mean optical depth at 532 nm of 0.26. On average during that season, particle extinction coefficients (532 nm) were of the order of 100 Mm-1 in the main pollution layer (up to 2 km height). Ångström exponents were mainly between 1.0 and 1.5, and the majority of the observed lidar ratios were between 50-80 sr.

  12. Clouds and aerosols in Puerto Rico - a new evaluation

    NASA Astrophysics Data System (ADS)

    Allan, J. D.; Baumgardner, D.; Raga, G. B.; Mayol-Bracero, O. L.; Morales-García, F.; García-García, F.; Montero-Martínez, G.; Borrmann, S.; Schneider, J.; Mertes, S.; Walter, S.; Gysel, M.; Dusek, U.; Frank, G. P.; Krämer, M.

    2007-08-01

    The influence of aerosols, both natural and anthropogenic, remains a major area of uncertainty when predicting the properties and behaviour of clouds and their influence on climate. In an attempt to better understand warm cloud formation in a tropical marine environment, a period of intensive measurements using some of the latest developments in online instrumentation took place in December 2004 in Puerto Rico. Simultaneous online measurements of aerosol size distributions, composition, hygroscopicity and optical properties were made near the lighthouse of Cape San Juan in the north-eastern corner of the island and at the top of East Peak mountain (1040 m a.s.l.), the two sites separated by 17 km. Additional measurements of the cloud droplet residual and interstitial aerosol properties were made at the mountain site, accompanied by measurements of cloud droplet size distributions, liquid water content and the chemical composition of cloud and rain water samples. Both aerosol composition and cloud properties were found to be sensitive to wind sector. Air from the east-northeast (ENE) was mostly free of anthropogenic influences, the submircron fraction being mainly composed of non-sea salt sulphate, while that from the east-southeast (ESE) was found to be moderately influenced by populated islands upwind, adding smaller (<100 nm), externally mixed, carbonaceous particles to the aerosol that increased the number concentrations by over a factor of 3. This change in composition was also accompanied with a reduction in the measured hygroscopicity and fractional cloud activation potential of the aerosol. At the mountain site, the average cloud droplet concentrations increased from 193 to 519 cm-3, median volume diameter decreased from 20 to 14 μm and the liquid water content increased from 0.24 to 0.31 g m-3 when the winds shifted from the ENE to ESE. Larger numbers of interstitial particles were recorded, most notably at sizes greater than 100 nm, which were absent during clean conditions. The average size of the residual particles and concentrations of cloudwater nitrate, sulphate and insoluble material increased during polluted conditions. Previous studies in Puerto Rico had reported the presence of a significant non-anthropogenic organic fraction in the aerosols measured and concluded that this was a factor controlling the in situ cloud properties. However, this was not observed in our case. In contrast to the 1.00±0.14 μg m-3 of organic carbon measured in 1992 and 1995, the organic matter measured in the current study of 0.17±0.35 μg m-3 is many times lower, most of which can be attributed to anthropogenic sources. During clean conditions, the submicron aerosol was observed to be almost entirely inorganic, an observation supported by the hygroscopicity measurements. This suggests that organic aerosols from marine sources may not be completely ubiquitous (either spatially or temporally) in this environment and requires further investigation to quantify their true extent and implications, with more extensive, longer-term sampling in conjunction with back trajectory analyses.

  13. Clouds and aerosols in Puerto Rico - a new evaluation

    NASA Astrophysics Data System (ADS)

    Allan, J. D.; Baumgardner, D.; Raga, G. B.; Mayol-Bracero, O. L.; Morales-García, F.; García-García, F.; Montero-Martínez, G.; Borrmann, S.; Schneider, J.; Mertes, S.; Walter, S.; Gysel, M.; Dusek, U.; Frank, G. P.; Krämer, M.

    2008-03-01

    The influence of aerosols, both natural and anthropogenic, remains a major area of uncertainty when predicting the properties and behaviour of clouds and their influence on climate. In an attempt to better understand warm cloud formation in a tropical marine environment, a period of intensive measurements took place in December 2004 in Puerto Rico, using some of the latest developments in online instrumentation such as aerosol mass spectrometers, cloud condensation nuclei counters and a hygroscopicity tandem differential mobility analyser. Simultaneous online measurements of aerosol size distributions, composition, hygroscopicity and optical properties were made near the lighthouse of Cape San Juan in the north-eastern corner of the island and at the top of East Peak mountain (1040 m a.s.l.), the two sites separated by 17 km. Additional measurements of the cloud droplet residual and interstitial aerosol properties were made at the mountain site, accompanied by measurements of cloud droplet size distributions, liquid water content and the chemical composition of cloud and rain water samples. Both aerosol composition and cloud properties were found to be sensitive to wind sector. Air from the east-northeast (ENE) was mostly free of anthropogenic influences, the submicron fraction being mainly composed of non-sea salt sulphate, while that from the east-southeast (ESE) was found to be moderately influenced by populated islands upwind, adding smaller (<100 nm), externally mixed, carbonaceous particles to the aerosol that increased the number concentrations by over a factor of 3. This change in composition was also accompanied with a reduction in the measured hygroscopicity and fractional cloud activation potential of the aerosol. At the mountain site, the average cloud droplet concentrations increased from 193 to 519 cm-3, median volume diameter decreased from 20 to 14 μm and the liquid water content increased from 0.24 to 0.31 g m-3 when the winds shifted from the ENE to ESE. Larger numbers of interstitial particles were recorded, most notably at sizes greater than 100 nm, which were absent during clean conditions. The average size of the residual particles and concentrations of cloudwater nitrate, sulphate and insoluble material increased during polluted conditions. Previous studies in Puerto Rico had reported the presence of a significant non-anthropogenic organic fraction in the aerosols measured and concluded that this was a factor controlling the in situ cloud properties. However, this was not observed in our case. In contrast to the 1.00±0.14 μg m-3 of organic carbon measured in 1992 and 1995, the organic matter measured in the current study of 0.17±0.35 μg m-3 is many times lower, most of which can be attributed to anthropogenic sources. During clean conditions, the submicron aerosol was observed to be almost entirely inorganic, an observation supported by the hygroscopicity measurements. This suggests that organic aerosols from marine sources may not be completely ubiquitous (either spatially or temporally) in this environment and requires further investigation to quantify their true extent and implications, with more extensive, longer-term sampling in conjunction with wind field analyses.

  14. Risk analysis and detection of thrombosis by measurement of electrical resistivity of blood.

    PubMed

    Sapkota, Achyut; Asakura, Yuta; Maruyama, Osamu; Kosaka, Ryo; Yamane, Takashi; Takei, Masahiro

    2013-01-01

    Monitoring of thrombogenic process is very important in ventricular assistance devices (VADs) used as temporary or permanent measures in patients with advanced heart failure. Currently, there is a lack of a system which can perform a real-time monitoring of thrombogenic activity. Electrical signals vary according to the change in concentration of coagulation factors as well as the distribution of blood cells, and thus have potential to detect the thrombogenic process in an early stage. In the present work, we have made an assessment of an instrumentation system exploiting the electrical properties of blood. The experiments were conducted using bovine blood. Electrical resistance tomography with eight-electrode sensor was used to monitor the spatio-temporal change in electrical resistivity of blood in thrombogenic and non-thrombogenic condition. Under non-thrombogenic condition, the resistivity was uniform across the cross-section and average resistivity monotonically decreased with time before remaining almost flat. In contrary, under thrombogenic condition, there was non-uniform distribution across the cross-section, and average resistivity fluctuated with time.

  15. Technique for Evaluating the Erosive Properties of Ablative Internal Insulation Materials

    NASA Technical Reports Server (NTRS)

    McComb, J. C.; Hitner, J. M.

    1989-01-01

    A technique for determining the average erosion rate versus Mach number of candidate internal insulation materials was developed for flight motor applications in 12 inch I.D. test firing hardware. The method involved the precision mounting of a mechanical measuring tool within a conical test cartridge fabricated from either a single insulation material or two non-identical materials each of which constituted one half of the test cartridge cone. Comparison of the internal radii measured at nine longitudinal locations and between eight to thirty two azimuths, depending on the regularity of the erosion pattern before and after test firing, permitted calculation of the average erosion rate and Mach number. Systematic criteria were established for identifying erosion anomalies such as the formation of localized ridges and for excluding such anomalies from the calculations. The method is discussed and results presented for several asbestos-free materials developed in-house for the internal motor case insulation in solid propellant rocket motors.

  16. Magnetic properties of Co/Rh (001) multilayers studied by x-ray magnetic-circular dichroism

    NASA Astrophysics Data System (ADS)

    Tomaz, M. A.; Mayo, E.; Lederman, D.; Hallin, E.; Sham, T. K.; O'brien, W. L.; Harp, G. R.

    1998-11-01

    The layer-averaged magnetic moments of Co and Rh have been measured in sputter deposited Co/Rh (001) multilayer thin films using the x-ray magnetic circular dichroism. The Rh moments were measured at both the L and M absorption edges, where we find that the Rh moment decreases as a function of increasing Rh layer thickness (tRh). The decline of the layer-averaged Rh moment is well described in terms of a simple dilution, implying that the Rh moment is confined to the interfacial region. We find that the Co moment remains largely unaffected, maintaining a bulklike value of 1.7μB in the region preceding the first antiferromagnetic coupling peak where tRh ranges from 0 to 4 Å. We also find, via application of the dichroism sum rules, that the ratio / for Co increases ~10% for this same region. Finally, we contrast the magnetic behavior of the Co/Rh (001) and Fe/Rh (001) multilayer systems.

  17. Measuring the Scalar Curvature with Clocks and Photons: Voronoi-Delaunay Lattices in Regge Calculus

    NASA Astrophysics Data System (ADS)

    Miller, Warner; McDonald, Jonathan

    2008-04-01

    The Riemann scalar curvature plays a central role in Einstein's geometric theory of gravity. We describe a new geometric construction of this scalar curvature invariant at an event (vertex) in a discrete spacetime geometry. This allows one to constructively measure the scalar curvature using only clocks and photons. Given recent interest in discrete pre-geometric models of quantum gravity, we believe it is ever so important to reconstruct the curvature scalar with respect to a finite number of communicating observers. This derivation makes use of a fundamental lattice cell built from elements inherited from both the original simplicial (Delaunay) spacetime and its circumcentric dual (Voronoi) lattice. The orthogonality properties between these two lattices yield an expression for the vertex-based scalar curvature which is strikingly similar to the corresponding hinge-based expression in Regge Calculus (deficit angle per unit Voronoi dual area). In particular, we show that the scalar curvature is simply a vertex-based weighted average of deficits per weighted average of dual areas.

  18. A long-term study of aerosol–cloud interactions and their radiative effect at the Southern Great Plains using ground-based measurements

    DOE PAGES

    Sena, Elisa T.; McComiskey, Allison; Feingold, Graham

    2016-09-13

    Empirical estimates of the microphysical response of cloud droplet size distribution to aerosol perturbations are commonly used to constrain aerosol–cloud interactions in climate models. Instead of empirical microphysical estimates, here macroscopic variables are analyzed to address the influence of aerosol particles and meteorological descriptors on instantaneous cloud albedo and the radiative effect of shallow liquid water clouds. Long-term ground-based measurements from the Atmospheric Radiation Measurement (ARM) program over the Southern Great Plains are used. A broad statistical analysis was performed on 14 years of coincident measurements of low clouds, aerosol, and meteorological properties. Here two cases representing conflicting results regardingmore » the relationship between the aerosol and the cloud radiative effect were selected and studied in greater detail. Microphysical estimates are shown to be very uncertain and to depend strongly on the methodology, retrieval technique and averaging scale. For this continental site, the results indicate that the influence of the aerosol on the shallow cloud radiative effect and albedo is weak and that macroscopic cloud properties and dynamics play a much larger role in determining the instantaneous cloud radiative effect compared to microphysical effects. On a daily basis, aerosol shows no correlation with cloud radiative properties (correlation = -0.01 ± 0.03), whereas the liquid water path shows a clear signal (correlation = 0.56 ± 0.02).« less

  19. Using the Coronal Evolution to Successfully Forward Model CMEs' In Situ Magnetic Profiles

    NASA Astrophysics Data System (ADS)

    Kay, C.; Gopalswamy, N.

    2017-12-01

    Predicting the effects of a coronal mass ejection (CME) impact requires knowing if impact will occur, which part of the CME impacts, and its magnetic properties. We explore the relation between CME deflections and rotations, which change the position and orientation of a CME, and the resulting magnetic profiles at 1 AU. For 45 STEREO-era, Earth-impacting CMEs, we determine the solar source of each CME, reconstruct its coronal position and orientation, and perform a ForeCAT (Forecasting a CME's Altered Trajectory) simulation of the coronal deflection and rotation. From the reconstructed and modeled CME deflections and rotations, we determine the solar cycle variation and correlations with CME properties. We assume no evolution between the outer corona and 1 AU and use the ForeCAT results to drive the ForeCAT In situ Data Observer (FIDO) in situ magnetic field model, allowing for comparisons with ACE and Wind observations. We do not attempt to reproduce the arrival time. On average FIDO reproduces the in situ magnetic field for each vector component with an error equivalent to 35% of the average total magnetic field strength when the total modeled magnetic field is scaled to match the average observed value. Random walk best fits distinguish between ForeCAT's ability to determine FIDO's input parameters and the limitations of the simple flux rope model. These best fits reduce the average error to 30%. The FIDO results are sensitive to changes of order a degree in the CME latitude, longitude, and tilt, suggesting that accurate space weather predictions require accurate measurements of a CME's position and orientation.

  20. Average intensity and spreading of an astigmatic sinh-Gaussian beam with small beam width propagating in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Zhu, Kaicheng; Tang, Huiqin; Xia, Hui

    2017-10-01

    Propagation properties of astigmatic sinh-Gaussian beams (ShGBs) with small beam width in turbulent atmosphere are investigated. Based on the extended Huygens-Fresnel integral, analytical formulae for the average intensity and the effective beam size of an astigmatic ShGB are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of an astigmatic ShGB propagating in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters and the structure constant of atmospheric turbulence on the propagation properties of astigmatic ShGBs are also discussed in detail. In particular, for sufficiently small beam width and sinh-part parameter as well as suitable astigmatism, we show that the average intensity pattern converts into a perfect dark-hollow profile from initial two-petal pattern when ShGBs with astigmatic aberration propagate through atmospheric turbulence.

  1. Measurement-based climatology of aerosol direct radiative effect, its sensitivities, and uncertainties from a background southeast US site

    NASA Astrophysics Data System (ADS)

    Sherman, James P.; McComiskey, Allison

    2018-03-01

    Aerosol optical properties measured at Appalachian State University's co-located NASA AERONET and NOAA ESRL aerosol network monitoring sites over a nearly four-year period (June 2012-Feb 2016) are used, along with satellite-based surface reflectance measurements, to study the seasonal variability of diurnally averaged clear sky aerosol direct radiative effect (DRE) and radiative efficiency (RE) at the top-of-atmosphere (TOA) and at the surface. Aerosol chemistry and loading at the Appalachian State site are likely representative of the background southeast US (SE US), home to high summertime aerosol loading and one of only a few regions not to have warmed during the 20th century. This study is the first multi-year ground truth DRE study in the SE US, using aerosol network data products that are often used to validate satellite-based aerosol retrievals. The study is also the first in the SE US to quantify DRE uncertainties and sensitivities to aerosol optical properties and surface reflectance, including their seasonal dependence.Median DRE for the study period is -2.9 W m-2 at the TOA and -6.1 W m-2 at the surface. Monthly median and monthly mean DRE at the TOA (surface) are -1 to -2 W m-2 (-2 to -3 W m-2) during winter months and -5 to -6 W m-2 (-10 W m-2) during summer months. The DRE cycles follow the annual cycle of aerosol optical depth (AOD), which is 9 to 10 times larger in summer than in winter. Aerosol RE is anti-correlated with DRE, with winter values 1.5 to 2 times more negative than summer values. Due to the large seasonal dependence of aerosol DRE and RE, we quantify the sensitivity of DRE to aerosol optical properties and surface reflectance, using a calendar day representative of each season (21 December for winter; 21 March for spring, 21 June for summer, and 21 September for fall). We use these sensitivities along with measurement uncertainties of aerosol optical properties and surface reflectance to calculate DRE uncertainties. We also estimate uncertainty in calculated diurnally-averaged DRE due to diurnal aerosol variability. Aerosol DRE at both the TOA and surface is most sensitive to changes in AOD, followed by single-scattering albedo (ω0). One exception is under the high summertime aerosol loading conditions (AOD ≥ 0.15 at 550 nm), when sensitivity of TOA DRE to ω0 is comparable to that of AOD. Aerosol DRE is less sensitive to changes in scattering asymmetry parameter (g) and surface reflectance (R). While DRE sensitivity to AOD varies by only ˜ 25 to 30 % with season, DRE sensitivity to ω0, g, and R largely follow the annual AOD cycle at APP, varying by factors of 8 to 15 with season. Since the measurement uncertainties of AOD, ω0, g, and R are comparable at Appalachian State, their relative contributions to DRE uncertainty are largely influenced by their (seasonally dependent) DRE sensitivity values, which suggests that the seasonal dependence of DRE uncertainty must be accounted for. Clear sky aerosol DRE uncertainty at the TOA (surface) due to measurement uncertainties ranges from 0.45 (0.75 W m-2) for December to 1.1 (1.6 W m-2) for June. Expressed as a fraction of DRE computed using monthly median aerosol optical properties and surface reflectance, the DRE uncertainties at TOA (surface) are 20 to 24 % (15 to 22 %) for March, June, and September and 49 (50 %) for DEC. The relatively low DRE uncertainties are largely due to the low uncertainty in AOD measured by AERONET. Use of satellite-based AOD measurements by MODIS in the DRE calculations increases DRE uncertainties by a factor of 2 to 5 and DRE uncertainties are dominated by AOD uncertainty for all seasons. Diurnal variability in AOD (and to a lesser extent g) contributes to uncertainties in DRE calculated using daily-averaged aerosol optical properties that are slightly larger (by ˜ 20 to 30 %) than DRE uncertainties due to measurement uncertainties during summer and fall, with comparable uncertainties during winter and spring.

  2. Intra-tumoral heterogeneity of gemcitabine delivery and mass transport in human pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Koay, Eugene J.; Baio, Flavio E.; Ondari, Alexander; Truty, Mark J.; Cristini, Vittorio; Thomas, Ryan M.; Chen, Rong; Chatterjee, Deyali; Kang, Ya'an; Zhang, Joy; Court, Laurence; Bhosale, Priya R.; Tamm, Eric P.; Qayyum, Aliya; Crane, Christopher H.; Javle, Milind; Katz, Matthew H.; Gottumukkala, Vijaya N.; Rozner, Marc A.; Shen, Haifa; Lee, Jeffrey E.; Wang, Huamin; Chen, Yuling; Plunkett, William; Abbruzzese, James L.; Wolff, Robert A.; Maitra, Anirban; Ferrari, Mauro; Varadhachary, Gauri R.; Fleming, Jason B.

    2014-12-01

    There is substantial heterogeneity in the clinical behavior of pancreatic cancer and in its response to therapy. Some of this variation may be due to differences in delivery of cytotoxic therapies between patients and within individual tumors. Indeed, in 12 patients with resectable pancreatic cancer, we previously demonstrated wide inter-patient variability in the delivery of gemcitabine as well as in the mass transport properties of tumors as measured by computed tomography (CT) scans. However, the variability of drug delivery and transport properties within pancreatic tumors is currently unknown. Here, we analyzed regional measurements of gemcitabine DNA incorporation in the tumors of the same 12 patients to understand the degree of intra-tumoral heterogeneity of drug delivery. We also developed a volumetric segmentation approach to measure mass transport properties from the CT scans of these patients and tested inter-observer agreement with this new methodology. Our results demonstrate significant heterogeneity of gemcitabine delivery within individual pancreatic tumors and across the patient cohort, with gemcitabine DNA incorporation in the inner portion of the tumors ranging from 38 to 74% of the total. Similarly, the CT-derived mass transport properties of the tumors had a high degree of heterogeneity, ranging from minimal difference to almost 200% difference between inner and outer portions of the tumor. Our quantitative method to derive transport properties from CT scans demonstrated less than 5% difference in gemcitabine prediction at the average CT-derived transport value across observers. These data illustrate significant inter-patient and intra-tumoral heterogeneity in the delivery of gemcitabine, and highlight how this variability can be reproducibly accounted for using principles of mass transport. With further validation as a biophysical marker, transport properties of tumors may be useful in patient selection for therapy and prediction of therapeutic outcome.

  3. Turbulent fluid motion IV-averages, Reynolds decomposition, and the closure problem

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1992-01-01

    Ensemble, time, and space averages as applied to turbulent quantities are discussed, and pertinent properties of the averages are obtained. Those properties, together with Reynolds decomposition, are used to derive the averaged equations of motion and the one- and two-point moment or correlation equations. The terms in the various equations are interpreted. The closure problem of the averaged equations is discussed, and possible closure schemes are considered. Those schemes usually require an input of supplemental information unless the averaged equations are closed by calculating their terms by a numerical solution of the original unaveraged equations. The law of the wall for velocities and temperatures, the velocity- and temperature-defect laws, and the logarithmic laws for velocities and temperatures are derived. Various notions of randomness and their relation to turbulence are considered in light of ergodic theory.

  4. Thermal Properties of West Siberian Sediments in Application to Basin and Petroleum Systems Modeling

    NASA Astrophysics Data System (ADS)

    Romushkevich, Raisa; Popov, Evgeny; Popov, Yury; Chekhonin, Evgeny; Myasnikov, Artem; Kazak, Andrey; Belenkaya, Irina; Zagranovskaya, Dzhuliya

    2016-04-01

    Quality of heat flow and rock thermal property data is the crucial question in basin and petroleum system modeling. A number of significant deviations in thermal conductivity values were observed during our integral geothermal study of West Siberian platform reporting that the corrections should be carried out in basin models. The experimental data including thermal anisotropy and heterogeneity measurements were obtained along of more than 15 000 core samples and about 4 500 core plugs. The measurements were performed in 1993-2015 with the optical scanning technique within the Continental Super-Deep Drilling Program (Russia) for scientific super-deep well Tyumenskaya SG-6, parametric super-deep well Yen-Yakhinskaya, and deep well Yarudeyskaya-38 as well as for 13 oil and gas fields in the West Siberia. Variations of the thermal conductivity tensor components in parallel and perpendicular direction to the layer stratification (assessed for 2D anisotropy model of the rock studied), volumetric heat capacity and thermal anisotropy coefficient values and average values of the thermal properties were the subject of statistical analysis for the uppermost deposits aged by: T3-J2 (200-165 Ma); J2-J3 (165-150 Ma); J3 (150-145 Ma); K1 (145-136 Ma); K1 (136-125 Ma); K1-K2 (125-94 Ma); K2-Pg+Ng+Q (94-0 Ma). Uncertainties caused by deviations of thermal conductivity data from its average values were found to be as high as 45 % leading to unexpected errors in the basin heat flow determinations. Also, the essential spatial-temporal variations in the thermal rock properties in the study area is proposed to be taken into account in thermo-hydrodynamic modeling of hydrocarbon recovery with thermal methods. The research work was done with financial support of the Russian Ministry of Education and Science (unique identification number RFMEFI58114X0008).

  5. Role of oxygen on the optical properties of borate glass doped with ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Baki, Manal; El-Diasty, Fouad, E-mail: fdiasty@yahoo.com

    2011-10-15

    Lithium tungsten borate glass (0.56-x)B{sub 2}O{sub 3}-0.4Li{sub 2}O-xZnO-0.04WO{sub 3} (0{<=}x{<=}0.1 mol%) is prepared by the melt quenching technique for photonic applications. Small relative values of ZnO are used to improve the glass optical dispersion and to probe as well the role of oxygen electronic polarizability on its optical characteristics. The spectroscopic properties of the glass are determined in a wide spectrum range (200-2500 nm) using a Fresnel-based spectrophotometric technique. Based on the Lorentz-Lorenz theory, as ZnO content increases on the expense of B{sub 2}O{sub 3} the glass molar polarizability increased due to an enhanced unshared oxide ion 2p electron density,more » which increases ionicity of the chemical bonds of glass. The role of oxide ion polarizability is explained in accordance with advanced measures and theories such as optical basicity, O 1s binding energy, the outer most cation binding energy in Yamashita-Kurosawa's interionic interaction parameter and Sun's average single bond strength. FT-IR measurements confirm an increase in bridging oxygen bonds, as a result of replacement of ZnO by B{sub 2}O{sub 3}, which increase the UV glass transmission window and transmittance. - Graphical abstract: O1s, Yamashita-Kurosawa's parameter and average single bond strength of charge overlapping between electronic shells are used to explain enhanced oxide ion 2p electron density, which increases refractive index of glasses. Highlights: > New borate glass for photonic application is prepared. > The dispersion property of the glass is effectively controlled using small amounts of ZnO. > ZnO is used to probe the glass structure and investigate the role of oxygen on the obtained optical properties of the glasses. > Modern theories are used to explain enhanced unshared oxide ion 2p electron density, which increases ionicity of chemical bonds of the glass.« less

  6. Spatially resolved vertical vorticity in solar supergranulation using helioseismology and local correlation tracking

    NASA Astrophysics Data System (ADS)

    Langfellner, J.; Gizon, L.; Birch, A. C.

    2015-09-01

    Flow vorticity is a fundamental property of turbulent convection in rotating systems. Solar supergranules exhibit a preferred sense of rotation, which depends on the hemisphere. This is due to the Coriolis force acting on the diverging horizontal flows. We aim to spatially resolve the vertical flow vorticity of the average supergranule at different latitudes, both for outflow and inflow regions. To measure the vertical vorticity, we use two independent techniques: time-distance helioseismology (TD) and local correlation tracking of granules in intensity images (LCT) using data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Both maps are corrected for center-to-limb systematic errors. We find that 8 h TD and LCT maps of vertical vorticity are highly correlated at large spatial scales. Associated with the average supergranule outflow, we find tangential (vortical) flows that reach about 10 m s-1 in the clockwise direction at 40° latitude. In average inflow regions, the tangential flow reaches the same magnitude, but in the anticlockwise direction. These tangential velocities are much smaller than the radial (diverging) flow component (300 m s-1 for the average outflow and 200 m s-1 for the average inflow). The results for TD and LCT as measured from HMI are in excellent agreement for latitudes between -60° and 60°. From HMI LCT, we measure the vorticity peak of the average supergranule to have a full width at half maximum of about 13 Mm for outflows and 8 Mm for inflows. This is larger than the spatial resolution of the LCT measurements (about 3 Mm). On the other hand, the vorticity peak in outflows is about half the value measured at inflows (e.g., 4 × 10-6 s-1 clockwise compared to 8 × 10-6 s-1 anticlockwise at 40° latitude). Results from the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) obtained in 2010 are biased compared to the HMI/SDO results for the same period. Appendices are available in electronic form at http://www.aanda.orgThe azimuthally averaged velocity components vr and vt for supergranular outflows and inflows at various latitudes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A67

  7. Effect of Sb content on the physical properties of Ge-Se-Te chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Vashist, Priyanka; Anjali, Patial, Balbir Singh; Thakur, Nagesh

    2018-05-01

    In the present study, the bulk as-(Se80Te20)94-xGe6Sbx (x = 0, 1, 2, 4, 6, 8) glasses were synthesized using melt quenching technique. The physical properties viz coordination number, lone pair of electrons, number of constraints, glass transition temperature, mean bond energy, cohesive energy, electro-negativity and average heat of atomization of the investigated composition are reported and discussed. It is inferred that on increasing Sb content; average coordination number, average number of constraints, mean bond energy, cohesive energy and glass transition temperature increases but lone pair of electrons, average heat of atomization and deviation of stoichiometry decreases.

  8. Validation of satellite-retrieved MBL cloud properties using DOE ARM AMF measurements at the Azores

    NASA Astrophysics Data System (ADS)

    Xi, B.; Dong, X.; Minnis, P.; Sun-Mack, S.

    2013-05-01

    Marine Boundary Layer (MBL) cloud properties derived for the Clouds and the Earth's Radiant Energy System (CERES) Project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Atmospheric Radiation Measurement (ARM) AMF AZORES site from June 2009 through December 2010. Retrievals from ARM surface-based data were averaged over a 1-hour interval centered at the time of each satellite overpass, and the CERES-MODIS Ed4 cloud properties were averaged within a 30-km x 30-km box centered on the ARM AZORES site. Two datasets were analyzed: all of the single-layered unbroken decks (SL) and those cases without temperature inversions. The CERES-MODIS cloud top/base heights were determined from cloud top/base temperature by using a lapse rate method normalized to the 24-h mean surface air temperature. The preliminary results show: for all SL MBL at daytime, they are, on average, 0.148 km (cloud top) and 0.087 km (cloud base) higher than the ARM radar-lidar observed cloud top and base, respectively. At nighttime, they are 0.446 km (cloud top) and 0.334 km (cloud base). For those cases without temperature inversions, the comparisons are close to their SL counterparts. For cloud temperatures, the MODIS-derived cloud-top and -base temperatures are 1.6 K lower and 0.4 K higher than the surface values with correlations of 0.92 during daytime. At nighttime, the differences are slightly larger and correlations are lower than daytime comparisons. Variations in the height difference are mainly caused by uncertainties in the surface air temperatures and lapse rates. Based on a total of 61 daytime and 87 nighttime samples (ALL SL cases), the temperature inversion layers occur about 72% during daytime and 83% during nighttime. The difference of surface-observed lapse rate and the satellite derived lapse rate can be 1.6 K/km for daytime and 3.3K/km for nighttime. From these lapse rates, we can further analyze the surface air temperature difference that used to calculate these lapse rate, which are ~3K difference between surface-observed and the satellite derived during the daytime and 5.1 K during nighttime. Further studies of the cause of the temperature inversions that may help the cloud heights retrievals by satellite. The preliminary comparisons in MBL microphysical properties have shown that the averaged CERES-MODIS derived MBL cloud-droplet effective radius is only 1.5 μm larger than ARM retrieval (13.2 μm), and LWP values are also very close to each other (112 vs. 124 gm-2) with a relative large difference in optical depth (10.6 vs. 14.4).

  9. Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of 5 years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anticorrelation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice!free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7% and 10%, respectively, as year average sea ice extent has decreased by 5% 7%. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Because longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sena, Elisa T.; McComiskey, Allison; Feingold, Graham

    Empirical estimates of the microphysical response of cloud droplet size distribution to aerosol perturbations are commonly used to constrain aerosol–cloud interactions in climate models. Instead of empirical microphysical estimates, here macroscopic variables are analyzed to address the influence of aerosol particles and meteorological descriptors on instantaneous cloud albedo and the radiative effect of shallow liquid water clouds. Long-term ground-based measurements from the Atmospheric Radiation Measurement (ARM) program over the Southern Great Plains are used. A broad statistical analysis was performed on 14 years of coincident measurements of low clouds, aerosol, and meteorological properties. Here two cases representing conflicting results regardingmore » the relationship between the aerosol and the cloud radiative effect were selected and studied in greater detail. Microphysical estimates are shown to be very uncertain and to depend strongly on the methodology, retrieval technique and averaging scale. For this continental site, the results indicate that the influence of the aerosol on the shallow cloud radiative effect and albedo is weak and that macroscopic cloud properties and dynamics play a much larger role in determining the instantaneous cloud radiative effect compared to microphysical effects. On a daily basis, aerosol shows no correlation with cloud radiative properties (correlation = -0.01 ± 0.03), whereas the liquid water path shows a clear signal (correlation = 0.56 ± 0.02).« less

  11. Location - Dependent Coronary Artery Diffusive and Convective Mass Transport Properties of a Lipophilic Drug Surrogate Measured Using Nonlinear Microscopy

    PubMed Central

    Keyes, Joseph T.; Simon, Bruce R.; Vande Geest, Jonathan P.

    2013-01-01

    Purpose Arterial wall mass transport properties dictate local distribution of biomolecules or locally delivered dugs. Knowing how these properties vary between coronary artery locations could provide insight into how therapy efficacy is altered between arterial locations. Methods We introduced an indocarbocyanine drug surrogate to the lumens of left anterior descending and right coronary (LADC; RC) arteries from pigs with or without a pressure gradient. Interstitial fluorescent intensity was measured on live samples with multiphoton microscopy. We also measured binding to porcine coronary SMCs in monoculture. Results Diffusive transport constants peaked in the middle sections of the LADC and RC arteries by 2.09 and 2.04 times, respectively, compared to the proximal and distal segments. There was no statistical difference between the average diffusivity value between LADC and RC arteries. The convection coefficients had an upward trend down each artery, with the RC being higher than the LADC by 3.89 times. Conclusions This study demonstrates that the convective and diffusive transport of lipophilic molecules changes between the LADC and the RC arteries as well as along their length. These results may have important implications in optimizing drug delivery for the treatment of coronary artery disease. PMID:23224981

  12. Reconciling Satellite-Derived Atmospheric Properties with Fine-Resolution Land Imagery: Insights for Atmospheric Correction

    NASA Technical Reports Server (NTRS)

    Zelazowski, Przemyslaw; Sayer, Andrew M.; Thomas, Gareth E; Grainger, Roy G.

    2011-01-01

    This paper investigates to what extent satellite measurements of atmospheric properties can be reconciled with fine-resolution land imagery, in order to improve the estimates of surface reflectance through physically based atmospheric correction. The analysis deals with mountainous area (Landsat scene of Peruvian Amazon/Andes, 72 E and 13 S), where the atmosphere is highly variable. Data from satellite sensors were used for characterization of the key atmospheric constituents: total water vapor (TWV), aerosol optical depth (AOD), and total ozone. Constituent time series revealed the season-dependent mean state of the atmosphere and its variability. Discrepancies between AOD from the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS) highlighted substantial uncertainty of atmospheric aerosol properties. The distribution of TWV and AOD over a Landsat scene was found to be exponentially related to ground elevation (mean R(sup 2) of 0.82 and 0.29, respectively). In consequence, the atmosphere-induced and seasonally varying bias of the top-of-atmosphere signal was also elevation dependent (e.g., mean Normalized Difference Vegetation Index bias at 500 m was 0.06 and at 4000 m was 0.01). We demonstrate that satellite measurements of key atmospheric constituents can be downscaled and gap filled with the proposed "background + anomalies" approach, to allow for a better compatibility with fine-resolution land surface imagery. Older images (i.e., predating the MODIS/ATSR era), without coincident atmospheric data, can be corrected using climatologies derived from time series of satellite retrievals. Averaging such climatologies over space compromises the quality of correction result to a much greater degree than averaging them over time. We conclude that the quality of both recent and older fine-resolution land surface imagery can be improved with satellite-based atmospheric data acquired to date.

  13. Size-resolved aerosol and cloud condensation nuclei (CCN) properties in the remote marine South China Sea - Part 1: Observations and source classification

    NASA Astrophysics Data System (ADS)

    Atwood, Samuel A.; Reid, Jeffrey S.; Kreidenweis, Sonia M.; Blake, Donald R.; Jonsson, Haflidi H.; Lagrosas, Nofel D.; Xian, Peng; Reid, Elizabeth A.; Sessions, Walter R.; Simpas, James B.

    2017-01-01

    Ship-based measurements of aerosol and cloud condensation nuclei (CCN) properties are presented for 2 weeks of observations in remote marine regions of the South China Sea/East Sea during the southwestern monsoon (SWM) season. Smoke from extensive biomass burning throughout the Maritime Continent advected into this region during the SWM, where it was mixed with anthropogenic continental pollution and emissions from heavy shipping activities. Eight aerosol types were identified using a k-means cluster analysis with data from a size-resolved CCN characterization system. Interpretation of the clusters was supplemented by additional onboard aerosol and meteorological measurements, satellite, and model products for the region. A typical bimodal marine boundary layer background aerosol population was identified and observed mixing with accumulation mode aerosol from other sources, primarily smoke from fires in Borneo and Sumatra. Hygroscopicity was assessed using the κ parameter and was found to average 0.40 for samples dominated by aged accumulation mode smoke; 0.65 for accumulation mode marine aerosol; 0.60 in an anthropogenic aerosol plume; and 0.22 during a short period that was characterized by elevated levels of volatile organic compounds not associated with biomass burning impacts. As a special subset of the background marine aerosol, clean air masses substantially scrubbed of particles were observed following heavy precipitation or the passage of squall lines, with changes in observed aerosol properties occurring on the order of minutes. Average CN number concentrations, size distributions, and κ values are reported for each population type, along with CCN number concentrations for particles that activated at supersaturations between 0.14 and 0.85 %.

  14. Determination of hydrologic properties needed to calculate average linear velocity and travel time of ground water in the principal aquifer underlying the southeastern part of Salt Lake Valley, Utah

    USGS Publications Warehouse

    Freethey, G.W.; Spangler, L.E.; Monheiser, W.J.

    1994-01-01

    A 48-square-mile area in the southeastern part of the Salt Lake Valley, Utah, was studied to determine if generalized information obtained from geologic maps, water-level maps, and drillers' logs could be used to estimate hydraulic conduc- tivity, porosity, and slope of the potentiometric surface: the three properties needed to calculate average linear velocity of ground water. Estimated values of these properties could be used by water- management and regulatory agencies to compute values of average linear velocity, which could be further used to estimate travel time of ground water along selected flow lines, and thus to determine wellhead protection areas around public- supply wells. The methods used to estimate the three properties are based on assumptions about the drillers' descriptions, the depositional history of the sediments, and the boundary con- ditions of the hydrologic system. These assump- tions were based on geologic and hydrologic infor- mation determined from previous investigations. The reliability of the estimated values for hydro- logic properties and average linear velocity depends on the accuracy of these assumptions. Hydraulic conductivity of the principal aquifer was estimated by calculating the thickness- weighted average of values assigned to different drillers' descriptions of material penetrated during the construction of 98 wells. Using these 98 control points, the study area was divided into zones representing approximate hydraulic- conductivity values of 20, 60, 100, 140, 180, 220, and 250 feet per day. This range of values is about the same range of values used in developing a ground-water flow model of the principal aquifer in the early 1980s. Porosity of the principal aquifer was estimated by compiling the range of porosity values determined or estimated during previous investigations of basin-fill sediments, and then using five different values ranging from 15 to 35 percent to delineate zones in the study area that were assumed to be underlain by similar deposits. Delineation of the zones was based on depositional history of the area and the distri- bution of sediments shown on a surficial geologic map. Water levels in wells were measured twice in 1990: during late winter when ground-water with- drawals were the least and water levels the highest, and again in late summer, when ground- water withdrawals were the greatest and water levels the lowest. These water levels were used to construct potentiometric-contour maps and subsequently to determine the variability of the slope in the potentiometric surface in the area. Values for the three properties, derived from the described sources of information, were used to produce a map showing the general distribution of average linear velocity of ground water moving through the principal aquifer of the study area. Velocity derived ranged from 0.06 to 144 feet per day with a median of about 3 feet per day. Values were slightly faster for late summer 1990 than for late winter 1990, mainly because increased with- drawal of water during the summer created slightly steeper hydraulic-head gradients between the recharge area near the mountain front and the well fields farther to the west. The fastest average linear-velocity values were located at the mouth of Little Cottonwood Canyon and south of Dry Creek near the mountain front, where the hydraulic con- ductivity was estimated to be the largest because the drillers described the sediments to be pre- dominantly clean and coarse grained. Both of these areas also had steep slopes in the potentiometric surface. Other areas where average linear velocity was fast included small areas near pumping wells where the slope in the potentiometric surface was locally steepened. No apparent relation between average linear velocity and porosity could be seen in the mapped distributions of these two properties. Calculation of travel time along a flow line to a well in the southwestern part of the study area during the sum

  15. Preparation of a Carbon Doped Tissue-Mimicking Material with High Dielectric Properties for Microwave Imaging Application

    PubMed Central

    Lan, Siang-Wen; Weng, Min-Hang; Yang, Ru-Yuan; Chang, Shoou-Jinn; Chung, Yaoh-Sien; Yu, Tsung-Chih; Wu, Chun-Sen

    2016-01-01

    In this paper, the oil-in-gelatin based tissue-mimicking materials (TMMs) doped with carbon based materials including carbon nanotube, graphene ink or lignin were prepared. The volume percent for gelatin based mixtures and oil based mixtures were both around 50%, and the doping amounts were 2 wt %, 4 wt %, and 6 wt %. The effect of doping material and amount on the microwave dielectric properties including dielectric constant and conductivity were investigated over an ultra-wide frequency range from 2 GHz to 20 GHz. The coaxial open-ended reflection technology was used to evaluate the microwave dielectric properties. Six measured values in different locations of each sample were averaged and the standard deviations of all the measured dielectric properties, including dielectric constant and conductivity, were less than one, indicating a good uniformity of the prepared samples. Without doping, the dielectric constant was equal to 23 ± 2 approximately. Results showed with doping of carbon based materials that the dielectric constant and conductivity both increased about 5% to 20%, and the increment was dependent on the doping amount. By proper selection of doping amount of the carbon based materials, the prepared material could map the required dielectric properties of special tissues. The proposed materials were suitable for the phantom used in the microwave medical imaging system. PMID:28773678

  16. Engineering studies related to geodetic and oceanographic remote sensing using short pulse techniques

    NASA Technical Reports Server (NTRS)

    Miller, L. S.; Brown, G. S.; Hayne, G. S.

    1973-01-01

    For the Skylab S-193 radar altimeter, data processing flow charts and identification of calibration requirements and problem areas for defined S-193 altimeter experiments are presented. An analysis and simulation of the relationship between one particular S-193 measurement and the parameter of interest for determining the sea surface scattering cross-section are considered. For the GEOS-C radar altimeter, results are presented for system analyses pertaining to signal-to-noise ratio, pulse compression threshold behavior, altimeter measurement variance characteristics, desirability of onboard averaging, tracker bandwidth considerations, and statistical character of the altimeter data in relation to harmonic analysis properties of the geodetic signal.

  17. Morphology of meteoroid and space debris craters on LDEF metal targets

    NASA Technical Reports Server (NTRS)

    Love, S. G.; Brownlee, D. E.; King, N. L.; Hoerz, F.

    1994-01-01

    We measured the depths, average diameters, and circularity indices of over 600 micrometeoroid and space debris craters on various metal surfaces exposed to space on the Long Duration Exposure Facility (LDEF) satellite, as a test of some of the formalisms used to convert the diameters of craters on space-exposed surfaces into penetration depths for the purpose of calculating impactor sizes or masses. The topics covered include the following: targe materials orientation; crater measurements and sample populations; effects of oblique impacts; effects of projectile velocity; effects of crater size; effects of target hardness; effects of target density; and effects of projectile properties.

  18. Some optical properties of KTP, LiIO3, and LiNbO3

    NASA Technical Reports Server (NTRS)

    Gettemy, Donald J.; Harker, William C.; Lindholm, Glenn; Barnes, Norman P.

    1988-01-01

    Measurements of the absorption coefficient for KTP, LiIO3, and LiNbO3 are discussed. The variation of the refractive index with temperature has been measured for KTP and LiIO3. It is necessary to know both the absorption coefficient beta and the variation in the indexes of refraction with temperature change dn/dT to determine the average power limit of a nonlinear interaction. With the dn/dT information, it is also possible to estimate the temperature half width of any nonlinear interaction by calculating the variation of the phase-matching condition with temperature.

  19. Magnetocapacitance effect in core/shell NiO nanoparticles

    NASA Astrophysics Data System (ADS)

    Roy, Subir; Kambhala, Nagaiah; Angappane, S.

    2018-04-01

    The exchange bias and magnetocapacitance properties of nickel oxide nanoparticles of average particle size 50 nm have been studied. NiO nanoparticles of uniform size distribution were synthesized by a sol-gel method using nickel acetate and polyvinyl acetate. The magnetic measurements show the ferromagnetic like behavior exhibiting exchange bias effect indicative of the formation of core/shell structure of NiO with a antiferromagnetic core and ferromagnetic shell. An electrical double layer capacitance behavior was observed for NiO nanoparticles in the cyclic voltammetry measurement, and it was found that the value of capacitance decreased by about 26 % under the application of magnetic field of 0.1 T.

  20. Optical characterization of multi-scale morphologically complex heterogeneous media - Application to snow with soot impurities

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoyu; Haussener, Sophia

    2018-02-01

    A multi-scale methodology for the radiative transfer analysis of heterogeneous media composed of morphologically-complex components on two distinct scales is presented. The methodology incorporates the exact morphology at the various scales and utilizes volume-averaging approaches with the corresponding effective properties to couple the scales. At the continuum level, the volume-averaged coupled radiative transfer equations are solved utilizing (i) effective radiative transport properties obtained by direct Monte Carlo simulations at the pore level, and (ii) averaged bulk material properties obtained at particle level by Lorenz-Mie theory or discrete dipole approximation calculations. This model is applied to a soot-contaminated snow layer, and is experimentally validated with reflectance measurements of such layers. A quantitative and decoupled understanding of the morphological effect on the radiative transport is achieved, and a significant influence of the dual-scale morphology on the macroscopic optical behavior is observed. Our results show that with a small amount of soot particles, of the order of 1ppb in volume fraction, the reduction in reflectance of a snow layer with large ice grains can reach up to 77% (at a wavelength of 0.3 μm). Soot impurities modeled as compact agglomerates yield 2-3% lower reduction of the reflectance in a thick show layer compared to snow with soot impurities modeled as chain-like agglomerates. Soot impurities modeled as equivalent spherical particles underestimate the reflectance reduction by 2-8%. This study implies that the morphology of the heterogeneities in a media significantly affects the macroscopic optical behavior and, specifically for the soot-contaminated snow, indicates the non-negligible role of soot on the absorption behavior of snow layers. It can be equally used in technical applications for the assessment and optimization of optical performance in multi-scale media.

  1. Assessment of the physical, mechanical, and moisture-retention properties of pullulan-based ternary co-blended films.

    PubMed

    Pan, Hongyang; Jiang, Bo; Chen, Jie; Jin, Zhengyu

    2014-11-04

    Multi-component substances made through direct blending or blending with co-drying can form films on the surfaces of intermediate moisture foods (IMFs), which help retain moisture and protect food texture and flavor. An IMF film system based on pullulan, with glycerol serving as the plasticizer, was studied using alginate and four different types of polysaccharides (propyleneglycol alginate, pectin, carrageenan, and aloe polysaccharide) as the blend-modified substances. The physical, mechanical, color, transparency, and moisture-retention properties of the co-blended films with the polysaccharides were assessed. A new formula was established for the average moisture retention property, water barrier, tensile strength, elongation at break, and oxygen barrier property of the ternary co-blended films using the Design Expert software. The new model established for moisture content measurement used an indirect method of film formation on food surfaces by humectants, which should expedite model validation and allow a better comprehension of moisture transfer through edible films. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Operational level for unconditional release of contaminated property from affected areas around Fukushima Daiichi nuclear power plant

    PubMed Central

    Ogino, Haruyuki; Hattori, Takatoshi

    2013-01-01

    This paper focuses on the surface contamination control of slightly contaminated property after the Fukushima nuclear accident. The operational level for the unconditional release of contaminated properties is calculated in counts per minute (cpm) to enable the use of a typical Geiger-Muller (GM) survey meter with a 50-mm bore, on the basis of the surficial clearance level of 10 Bq cm−2 for 134Cs and 137Cs derived in the previous studies of the authors. By applying a factor for the conversion of the unit surface contamination to the count rate of a survey meter widely used after the Fukushima accident, the operational level for the unconditional release of contaminated properties was calculated to be 2300 cpm on average and 23 000 cpm at the highest-contamination part. The calculated numerical values of the operational levels are effective as long as the typical GM survey meter is used in the radiation measurement. PMID:23778575

  3. Molecular Rayleigh Scattering Techniques Developed for Measuring Gas Flow Velocity, Density, Temperature, and Turbulence

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta

    2005-01-01

    Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements.

  4. Bridging, brokerage and betweenness

    PubMed Central

    Everett, Martin G.; Valente, Thomas W.

    2017-01-01

    Valente and Fujimoto (2010) proposed a measure of brokerage in networks based on Granovetter’s classic work on the strength of weak ties. Their paper identified the need for finding node-based measures of brokerage that consider the entire network structure, not just a node’s local environment. The measures they propose, aggregating the average change in cohesion for a node’s links, has several limitations. In this paper we review their method and show how the idea can be modified by using betweenness centrality as an underpinning concept. We explore the properties of the new method and provide point, normalized, and network level variations. This new approach has two advantages, first it provides a more robust means to normalize the measure to control for network size, and second, the modified measure is computationally less demanding making it applicable to larger networks. PMID:28239229

  5. Composite materials for space applications

    NASA Technical Reports Server (NTRS)

    Rawal, Suraj P.; Misra, Mohan S.; Wendt, Robert G.

    1990-01-01

    The objectives of the program were to: generate mechanical, thermal, and physical property test data for as-fabricated advanced materials; design and fabricate an accelerated thermal cycling chamber; and determine the effect of thermal cycling on thermomechanical properties and dimensional stability of composites. In the current program, extensive mechanical and thermophysical property tests of various organic matrix, metal matrix, glass matrix, and carbon-carbon composites were conducted, and a reliable database was constructed for spacecraft material selection. Material property results for the majority of the as-fabricated composites were consistent with the predicted values, providing a measure of consolidation integrity attained during fabrication. To determine the effect of thermal cycling on mechanical properties, microcracking, and thermal expansion behavior, approximately 500 composite specimens were exposed to 10,000 cycles between -150 and +150 F. These specimens were placed in a large (18 cu ft work space) thermal cycling chamber that was specially designed and fabricated to simulate one year low earth orbital (LEO) thermal cycling in 20 days. With this rate of thermal cycling, this is the largest thermal cycling unit in the country. Material property measurements of the thermal cycled organic matrix composite laminate specimens exhibited less than 24 percent decrease in strength, whereas, the remaining materials exhibited less than 8 percent decrease in strength. The thermal expansion response of each of the thermal cycled specimens revealed significant reduction in hysteresis and residual strain, and the average CTE values were close to the predicted values.

  6. Generalized self-adjustment method for statistical mechanics of composite materials

    NASA Astrophysics Data System (ADS)

    Pan'kov, A. A.

    1997-03-01

    A new method is developed for the statistical mechanics of composite materials — the generalized selfadjustment method — which makes it possible to reduce the problem of predicting effective elastic properties of composites with random structures to the solution of two simpler "averaged" problems of an inclusion with transitional layers in a medium with the desired effective elastic properties. The inhomogeneous elastic properties and dimensions of the transitional layers take into account both the "approximate" order of mutual positioning, and also the variation in the dimensions and elastics properties of inclusions through appropriate special averaged indicator functions of the random structure of the composite. A numerical calculation of averaged indicator functions and effective elastic characteristics is performed by the generalized self-adjustment method for a unidirectional fiberglass on the basis of various models of actual random structures in the plane of isotropy.

  7. Generalized self-consistent method for predicting the effective elastic properties of composites with random hybrid structures

    NASA Astrophysics Data System (ADS)

    Pan'kov, A. A.

    1997-05-01

    The feasibility of using a generalized self-consistent method for predicting the effective elastic properties of composites with random hybrid structures has been examined. Using this method, the problem is reduced to solution of simpler special averaged problems for composites with single inclusions and corresponding transition layers in the medium examined. The dimensions of the transition layers are defined by correlation radii of the composite random structure of the composite, while the heterogeneous elastic properties of the transition layers take account of the probabilities for variation of the size and configuration of the inclusions using averaged special indicator functions. Results are given for a numerical calculation of the averaged indicator functions and analysis of the effect of the micropores in the matrix-fiber interface region on the effective elastic properties of unidirectional fiberglass—epoxy using the generalized self-consistent method and compared with experimental data and reported solutions.

  8. Ecological optimality in water-limited natural soil-vegetation systems. II - Tests and applications

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.; Tellers, T. E.

    1982-01-01

    The long-term optimal climatic climax soil-vegetation system is defined for several climates according to previous hypotheses in terms of two free parameters, effective porosity and plant water use coefficient. The free parameters are chosen by matching the predicted and observed average annual water yield. The resulting climax soil and vegetation properties are tested by comparison with independent observations of canopy density and average annual surface runoff. The climax properties are shown also to satisfy a previous hypothesis for short-term optimization of canopy density and water use coefficient. Using these hypotheses, a relationship between average evapotranspiration and optimum vegetation canopy density is derived and is compared with additional field observations. An algorithm is suggested by which the climax soil and vegetation properties can be calculated given only the climate parameters and the soil effective porosity. Sensitivity of the climax properties to the effective porosity is explored.

  9. Correlation of the protein structure and gelling properties in dried egg white products.

    PubMed

    Handa, A; Hayashi, K; Shidara, H; Kuroda, N

    2001-08-01

    The relationship between protein structure and aggregation, as well as heat-induced gelling properties, of seven dried egg white (DEW) products was investigated. Strong correlations were found between average molecular weight and hydrophobicity plus surface SH groups of DEW-soluble protein aggregate (SPA). This suggests that hydrophobic interactions and disulfide bond formation between protein molecules were involved in the aggregation. The average molecular weight of DEW products with alkaline pHs was relatively higher than those with neutral pHs and the same degree of protein unfolding, probably because of more disulfide bond formation between protein molecules. In addition, strong correlations were found between hydrophobicity, surface SH groups plus average molecular weight of DEW-SPA, and physical properties of the gels from DEW products. These data indicated that controlling the aggregation of DEW proteins in the dry state is crucial to controlling the gelling properties of DEW.

  10. Nonintrusive, multipoint velocity measurements in high-pressure combustion flows

    NASA Technical Reports Server (NTRS)

    Allen, M.; Davis, S.; Kessler, W.; Legner, H.; Mcmanus, K.; Mulhall, P.; Parker, T.; Sonnenfroh, D.

    1993-01-01

    A combined experimental and analytical effort was conducted to demonstrate the applicability of OH Doppler-shifted fluorescence imaging of velocity distributions in supersonic combustion gases. The experiments were conducted in the underexpanded exhaust flow from a 6.8 atm, 2400 K, H2-O2-N2 burner exhausting into the atmosphere. In order to quantify the effects of in-plane variations of the gas thermodynamic properties on the measurement accuracy, a set of detailed measurements of the OH (1,0) band collisional broadening and shifting in H2-air gases was produced. The effect of pulse-to-pulse variations in the dye laser bandshape was also examined in detail and a modification was developed which increased in the single pulse bandwidth, thereby increasing the intraimage velocity dynamic range as well as reducing the sensitivity of the velocity measurement to the gas property variations. Single point and imaging measurements of the velocity field in the exhaust flowfield were compared with 2D, finite-rate kinetics simulations of the flowfield. Relative velocity accuracies of +/- 50 m/s out of 1600 m/s were achieved in time-averaged imaging measurements of the flow over an order of magnitude variation in pressure and a factor of two variation in temperature.

  11. In situ airborne measurements of aerosol optical properties during photochemical pollution events

    NASA Astrophysics Data System (ADS)

    Mallet, M.; van Dingenen, R.; Roger, J. C.; Despiau, S.; Cachier, H.

    2005-02-01

    Dry aerosol optical properties (scattering, absorbing coefficients, and single scattering albedo) were derived from in situ airborne measurements during two photochemical pollution events (25 and 26 June) observed during the Experience sur Site pour Contraindre les Modeles de Pollution atmospherique et de Transport d'Emissions (ESCOMPTE) experiment. Two flights were carried out during daytime (one during the morning and one at noon) over a domain, allowing the investigation of how an air pollution event affects the particle optical properties. Both horizontal distribution and vertical profiles are presented. Results from the horizontal mapping show that plumes of enhanced scattering and absorption are formed in the planetary boundary layer (PBL) during the day in the sea breeze-driven outflow of the coastal urban-industrial area of Marseille-Fos de Berre. The domain-averaged scattering coefficient (at 550 nm) over land σs changes from 35 (28) Mm-1 during land breeze to 63 (43) Mm-1 during sea breeze on 25 June (26 June), with local maxima reaching > 100 Mm-1. The increase in the scattering coefficient is associated with new particle formation, indicative of secondary aerosol formation. Simultaneously, the domain-averaged absorption coefficient increases from 5.6 (3.4) Mm-1 to 9.3 (8.0) Mm-1. The pollution plume leads to strong gradients in the single scattering albedo ωo over the domain studied, with local values as low as 0.73 observed inside the pollution plume. The role of photochemistry and secondary aerosol formation during the 25 June case is shown to increase ωo and to make the aerosol more `reflecting' while the plume moves away from the sources. The lower photochemical activity, observed in the 26 June case, induces a relatively higher contribution of black carbon, making the aerosol more absorbing. Results from vertical profiles at a single near-urban location in the domain indicate that the changes in optical properties happen almost entirely within the PBL. No significant variation of σs, σa, and ωo is observed in the upper layer (1-3 km), where the aerosol optical properties are considered to be well mixed.

  12. PEDOT:PSS/GO nanocomposites: Determination of the aspect ratio by indirect measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giuri, Antonella; Colella, Silvia; Listorti, Andrea

    2016-05-18

    Polymer nanocomposites properties significantly depend on the average size of the fillers dispersed into the matrix and on the grade of the dispersion, the latter influenced by the process techniques. In this work, we determined the aspect ratio of graphene oxide (GO) dispersed into Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), starting from the indirect measurement of the rheological behavior of polymer/filler mixtures, as a function of the shear rate and the volumetric composition. PEDOT:PSS+GO nanocomposite films were also realized by spin coating on different substrates and characterized by Scanning electron microscopy (SEM) and X-ray diffraction (XRD), in order to analyze the quality of themore » dispersion, even by direct measurements.« less

  13. Final Technical Report for Interagency Agreement No. DE-SC0005453 “Characterizing Aerosol Distributions, Types, and Optical and Microphysical Properties using the NASA Airborne High Spectral Resolution Lidar (HSRL) and the Research Scanning Polarimeter (RSP)”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hostetler, Chris; Ferrare, Richard

    Measurements of the vertical profile of atmospheric aerosols and aerosol optical and microphysical characteristics are required to: 1) determine aerosol direct and indirect radiative forcing, 2) compute radiative flux and heating rate profiles, 3) assess model simulations of aerosol distributions and types, and 4) establish the ability of surface and space-based remote sensors to measure the indirect effect. Consequently the ASR program calls for a combination of remote sensing and in situ measurements to determine aerosol properties and aerosol influences on clouds and radiation. As part of our previous DOE ASP project, we deployed the NASA Langley airborne High Spectralmore » Resolution Lidar (HSRL) on the NASA B200 King Air aircraft during major field experiments in 2006 (MILAGRO and MaxTEX), 2007 (CHAPS), 2009 (RACORO), and 2010 (CalNex and CARES). The HSRL provided measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm). These measurements were typically made in close temporal and spatial coincidence with measurements made from DOE-funded and other participating aircraft and ground sites. On the RACORO, CARES, and CalNEX missions, we also deployed the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). RSP provided intensity and degree of linear polarization over a broad spectral and angular range enabling column-average retrievals of aerosol optical and microphysical properties. Under this project, we analyzed observations and model results from RACORO, CARES, and CalNex and accomplished the following objectives. 1. Identified aerosol types, characterize the vertical distribution of the aerosol types, and partition aerosol optical depth by type, for CARES and CalNex using HSRL data as we have done for previous missions. 2. Investigated aerosol microphysical and macrophysical properties using the RSP. 3. Used the aerosol backscatter and extinction profiles measured by the HSRL to characterize the planetary boundary layer height (PBL) and the transition zone thickness, for the RACORO and CARES and CalNex campaigns as we have done for previous campaigns. 4. Investigated how optical properties measured by HSRL vary near clouds. 5. Assessed model simulations of aerosol spatial distributions and optical and microphysical properties.« less

  14. Issues related to aircraft take-off plumes in a mesoscale photochemical model.

    PubMed

    Bossioli, Elissavet; Tombrou, Maria; Helmis, Costas; Kurtenbach, Ralf; Wiesen, Peter; Schäfer, Klaus; Dandou, Aggeliki; Varotsos, Kostas V

    2013-07-01

    The physical and chemical characteristics of aircraft plumes at the take-off phase are simulated with the mesoscale CAMx model using the individual plume segment approach, in a highly resolved domain, covering the Athens International Airport. Emission indices during take-off measured at the Athens International Airport are incorporated. Model predictions are compared with in situ point and path-averaged observations (NO, NO₂) downwind of the runway at the ground. The influence of modeling process, dispersion properties and background air composition on the chemical evolution of the aircraft plumes is examined. It is proven that the mixing properties mainly determine the plume dispersion. The initial plume properties become significant for the selection of the appropriate vertical resolution. Besides these factors, the background NOx and O₃ concentration levels control NOx distribution and their conversion to nitrogen reservoir species. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Optical and electrical properties of mechanochemically synthesized nanocrystalline delafossite CuAlO2.

    PubMed

    Prakash, T; Prasad, K Padma; Ramasamy, S; Murty, B S

    2008-08-01

    Nanocrystalline p-type semiconductor copper aluminum oxide (CuAlO2) has been synthesized by mechanical alloying using freshly prepared Cu2O and alpha-AlO2O3 nanocrystals in toluene medium. A study on structural property performed with different alloying and post annealing durations, by X-ray diffraction (XRD) reveals the formation of single phase with average crystallite size approximately 45 nm. Optical absorbance onset at 364.5 nm confirms its wide band gap nature (E(g) = 3.4 eV) and the fluorescence emission behaviour (390 nm) confirms its direct band type transition. The activation energy for electrical conduction has been calculated by Arrhenius plots using impedance measurement. Both grain and grain boundary conductivity takes place with almost equal activation energies of approximately 0.45 eV. The paper discusses synthesis, structural, optical and electrical properties of delafossite CuAlO2 in detail.

  16. Tube Visualization and Properties from Isoconfigurational Averaging

    NASA Astrophysics Data System (ADS)

    Qin, Jian; Bisbee, Windsor; Milner, Scott

    2012-02-01

    We introduce a simulation method to visualize the confining tube in polymer melts and measure its properties. We studied bead-spring ring polymers, which conveniently suppresses constraint release and contour length fluctuations. We allow molecules to cross and reach topologically equilibrated states by invoking various molecular rebridging moves in Monte Carlo simulations. To reveal the confining tube, we start with a well equilibrated configuration, turn off rebridging moves, and run molecular dynamics simulation multiple times, each with different initial velocities. The resulting set of ``movies'' of molecular trajectories defines an isoconfigurational ensemble, with the bead positions at different times and in different ``movies'' giving rise to a cloud. The cloud shows the shape, range and strength of the tube confinement, which enables us to study the statistical properties of tube. Using this approach, we studied the effects of free surface, and found that the tube diameter near the surface is greater than the bulk value by about 25%.

  17. Palaeo-adaptive properties of the xylem of Metasequoia: mechanical/hydraulic compromises.

    PubMed

    Jagels, Richard; Visscher, George E; Lucas, John; Goodell, Barry

    2003-07-01

    The xylem of Metasequoia glyptostroboides Hu et Cheng is characterized by very low density (average specific gravity = 0.27) and tracheids with relatively large dimensions (length and diameter). The microfibril angle in the S2 layer of tracheid walls is large, even in outer rings, suggesting a cambial response to compressive rather than tensile stresses. In some cases, this compressive stress is converted to irreversible strain (plastic deformation), as evidenced by cell wall corrugations. The heartwood is moderately decay resistant, helping to prevent Brazier buckling. These xylem properties are referenced to the measured bending properties of modulus of rupture and modulus of elasticity, and compared with other low-to-moderate density conifers. The design strategy for Metasequoia is to produce a mechanically weak but hydraulically efficient xylem that permits rapid height growth and crown development to capture and dominate a wet site environment. The adaptability of these features to a high-latitude Eocene palaeoenvironment is discussed.

  18. Comparison of Marine Boundary Layer Cloud Properties From CERES-MODIS Edition 4 and DOE ARM AMF Measurements at the Azores

    NASA Astrophysics Data System (ADS)

    Dong, X.; Xi, B.; Minnis, P.; Sun-Mack, S.

    2014-12-01

    Marine Boundary Layer (MBL) cloud properties derived for the NASA CERES Project using Terra and Aqua MODIS data are compared with observations taken at DOE ARM Mobile Facility at the Azores site from Jun. 2009 to Dec. 2010. Cloud properties derived from ARM ground-based observations were averaged over a 1-hour interval centered at the satellite overpass time, while the CERES-MODIS (CM) results were averaged within a 30×30 km2 grid box centered over the Azores site. A total of 63 daytime and 92 nighttime single-layered overcast MBL cloud cases were selected from 19 months of ARM radar-lidar and satellite observations. The CM cloud-top/base heights (Htop/Hbase) were determined from cloud-top/base temperatures (Ttop/Tbase) using a regional boundary-layer lapse rate method. For daytime comparisons, the CM-derived Htop (Hbase), on average, is 0.063 km (0.068 km) higher (lower) than its ARM radar-lidar observed counterpart, and the CM-derived Ttop and Tbase are 0.9 K less and 2.5 K greater than the surface values with high correlations (R2=0.82 and 0.84, respectively). In general, the cloud-top comparisons agree better than cloud-base comparisons because the CM Tbase and Hbase are secondary product determined from Ttop and Htop. No significant day-night difference was found in the analyses. The comparisons of microphysical properties reveal that, when averaged over a 30x30 km2 area, the CM-retrieved cloud-droplet effective radius (re) is 1.3 µm larger than that from the ARM retrievals (12.8 µm). While the CM-retrieved cloud liquid water path (LWP) is 13.5 gm-2 less than its ARM counterpart (114.2 gm-2) due to its small optical depth (τ, 9.6 vs. 13.7). The differences are reduced by 50% when the CM averages are computed only using the MODIS pixel nearest the AMF site. Using effective radius retrieved at 2.1-µm channel to calculate LWP can reduce the difference between the CM and ARM from -13.7 to 2.1 gm-2. The 10% differences between the ARM and CM LWP and re retrievals are within the uncertainties of the ARM LWP (~ 20 gm-2) and re (~ 10%) retrievals, however, the 30% difference in τ is significant. Possible reasons contributed to this discrepancy increased sensitivities in τ from both surface retrievals when τ ~ 10 and topography. The τ differences vary with wind direction and are consistent with the island orography.

  19. Experimental Investigation of Electrical Conductivity and Permittivity of SC-TiO 2 -EG Nanofluids.

    PubMed

    Fal, Jacek; Barylyak, Adriana; Besaha, Khrystyna; Bobitski, Yaroslav V; Cholewa, Marian; Zawlik, Izabela; Szmuc, Kamil; Cebulski, Józef; Żyła, Gaweł

    2016-12-01

    The paper presents experimental studies of dielectric properties of nanofluids based on ethylene glycol and SC-TiO2 nanoparticles with average size of 15-40 nm with various mass concentrations. The dielectric permittivity both real part and imaginary part as a function of temperature and frequency were measured. Also, dependence ac conductivity on frequency, temperature, and mass concentration were investigated. Based on the curves of ac conductivity, dc conductivity was calculated, and 400 % enhancement in dc conductivity was exposed.

  20. Experimental Investigation of Electrical Conductivity and Permittivity of SC-TiO 2 -EG Nanofluids

    NASA Astrophysics Data System (ADS)

    Fal, Jacek; Barylyak, Adriana; Besaha, Khrystyna; Bobitski, Yaroslav V.; Cholewa, Marian; Zawlik, Izabela; Szmuc, Kamil; Cebulski, Józef; żyła, Gaweł

    2016-08-01

    The paper presents experimental studies of dielectric properties of nanofluids based on ethylene glycol and SC-TiO2 nanoparticles with average size of 15-40 nm with various mass concentrations. The dielectric permittivity both real part and imaginary part as a function of temperature and frequency were measured. Also, dependence ac conductivity on frequency, temperature, and mass concentration were investigated. Based on the curves of ac conductivity, dc conductivity was calculated, and 400 % enhancement in dc conductivity was exposed.

  1. Time dependence of 50 Hz magnetic fields in apartment buildings with indoor transformer stations.

    PubMed

    Yitzhak, Nir-Mordechay; Hareuveny, Ronen; Kandel, Shaiela; Ruppin, Raphael

    2012-04-01

    Twenty-four hour measurements of 50 Hz magnetic fields (MFs) in apartment buildings containing transformer stations have been performed. The apartments were classified into four types, according to their location relative to the transformer room. Temporal correlation coefficients between the MF in various apartments, as well as between MF and transformer load curves, were calculated. It was found that, in addition to their high average MF, the apartments located right above the transformer room also exhibit unique temporal correlation properties.

  2. Quantification of Changes in Mulberry Silk Fabrics due to Different Laundering: Using WAXS Technique

    NASA Astrophysics Data System (ADS)

    Parameswara, P.; Nivedita, S.; Somashekar, R.

    2011-07-01

    Loom finished mulberry silk fabrics (Taffeta) were machine laundered and hand laundered several times. X-ray diffractograms of pure and laundered fabrics were used to calculate microstructural parameters like average crystallite size (D) and lattice strain (Vegr) employing Williamson-Hall plot. Microstructural parameters were compared with measured mechanical properties like breaking load, tenacity, and elongation of warp yarns unraveled from fabrics. Surface morphology and texture of silk fabrics changed upon washing is evident from SEM images.

  3. Properties of the Average Distribution of Equatorial Kelvin Waves Investigated with the GROGRAT Ray Tracer

    DTIC Science & Technology

    2009-01-01

    spheric quasi-biennial oscillation ( QBO ). In this paper we combine several measured data sets with the Gravity wave Regional Or Global RAy Tracer (GROGRAT...equatorial wave modes and a broad spectrum of gravity waves (GWs) Kelvin waves are one of the main drivers of the quasi-biennial oscil- lation ( QBO ) of the...and dy- namics in the stratosphere and mesosphere (even at high lati- tudes) are modulated or influenced by the QBO , showing the importance of the

  4. Arc-driven rail accelerator research

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1987-01-01

    Arc-driven rail accelerator research is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time and rate of ablation. Locations of two simultaneously accelerating arcs were determined by optical and magnetic probes and fron streak camera photographs. All three measurements provide consistent results.

  5. Diffuse Scattering from Lead-Containing Ferroelectric Perovskite Oxides

    DOE PAGES

    Goossens, D. J.

    2013-01-01

    Ferroelectric materials rely on some type of non-centrosymmetric displacement correlations to give rise to a macroscopic polarisation. These displacements can show short-range order (SRO) that is reflective of the local chemistry, and so studying it reveals important information about how the structure gives rise to the technologically useful properties. A key means of exploring this SRO is diffuse scattering. Conventional structural studies use Bragg peak intensitiesto determine the average structure. In a single crystal diffuse scattering (SCDS) experiment, the coherent scattered intensity is measured at non-integer Miller indices, and can be used to examine the population of local configurations. Thismore » is because the diffuse scattering is sensitive to two-body averages, whereas the Bragg intensity gives single-body averages. This review outlines key results of SCDS studies on several materials and explores the similarities and differences in their diffuse scattering. Random strains are considered, as are models based on a phonon-like picture or a more local-chemistry oriented picture. Limitations of the technique are discussed.« less

  6. Modeling and characterization of through-the-thickness properties of 3D woven composites

    NASA Technical Reports Server (NTRS)

    Hartranft, Dru; Pravizi-Majidi, Azar; Chou, Tsu-Wei

    1995-01-01

    The through-the-thickness properties of three-dimensionally (3D) woven carbon/epoxy composites have been studied. The investigation aimed at the evaluation and development of test methodologies for the property characterization in the thickness direction, and the establishment of fiber architectures were studied: layer-to-layer Angle Interlock, through-the-thickness Orthogonal woven preform with surface pile was also designed and manufactured for the fabrication of tensile test coupons with integrated grips. All the preforms were infiltrated by the resin transfer molding technique. The microstructures of the composites were characterized along the warp and fill (weft) directions to determine the degree of yarn undulations, yarn cross-sectional shapes, and microstructural dimensions. These parameters were correlated to the fiber architecture. Specimens were designed and tested for the direct measurement of the through-the-thickness tensile, compressive and shear properties of the composites. Design optimization was conducted through the analysis of the stress fields within the specimen coupled with experimental verification. The experimentally-derived elastic properties in the thickness direction compared well with analytical predictions obtained from a volume averaging model.

  7. The Age of the Directly Imaged Planet Host Star κ Andromedae Determined from Interferometric Observations

    NASA Astrophysics Data System (ADS)

    Jones, Jeremy; White, R. J.; Quinn, S.; Ireland, M.; Boyajian, T.; Schaefer, G.; Baines, E. K.

    2016-05-01

    κ Andromedae, an early-type star that hosts a directly imaged low-mass companion, is expected to be oblate due to its rapid rotational velocity (v sin I = ˜162 km s-1). We observed the star with the CHARA Array’s optical beam combiner, PAVO, measuring its size at multiple orientations and determining its oblateness. The interferometric measurements, combined with photometry and this v sin I value are used to constrain an oblate star model that yields the fundamental properties of the star and finds a rotation speed that is ˜85% of the critical rate and a low inclination of ˜30°. Three modeled properties (the average radius, bolometric luminosity, and equatorial velocity) are compared to MESA evolution models to determine an age and mass for the star. In doing so, we determine an age for the system of {47}-40+27 Myr. Based on this age and previous measurements of the companion’s temperature, the BHAC15 evolution models imply a mass for the companion of {22}-9+8 M J.

  8. Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach

    PubMed Central

    Faraji, Nastaran; Mat Hussin, Roslina; Saion, Elias; Yunus, W Mahmood Mat; Behzad, Kasra

    2015-01-01

    Summary This work describes a fast, clean and low-cost approach to synthesize ZnS–PVA nanofluids consisting of ZnS nanoparticles homogeneously distributed in a PVA solution. The ZnS nanoparticles were formed by the electrostatic force between zinc and sulfur ions induced by gamma irradiation at a dose range from 10 to 50 kGy. Several experimental characterizations were conducted to investigate the physical and chemical properties of the samples. Fourier transform infrared spectroscopy (FTIR) was used to determine the chemical structure and bonding conditions of the final products, transmission electron microscopy (TEM) for determining the shape morphology and average particle size, powder X-ray diffraction (XRD) for confirming the formation and crystalline structure of ZnS nanoparticles, UV–visible spectroscopy for measuring the electronic absorption characteristics, transient hot wire (THW) and photoacoustic measurements for measuring the thermal conductivity and thermal effusivity of the samples, from which, for the first time, the values of specific heat and thermal diffusivity of the samples were then calculated. PMID:25821695

  9. Validating the 11-Item Revised University of California Los Angeles Scale to Assess Loneliness Among Older Adults: An Evaluation of Factor Structure and Other Measurement Properties.

    PubMed

    Lee, Joonyup; Cagle, John G

    2017-11-01

    To examine the measurement properties and factor structure of the short version of the Revised University of California Los Angeles (R-UCLA) loneliness scale from the Health and Retirement Study (HRS). Based on data from 3,706 HRS participants aged 65 + who completed the 2012 wave of the HRS and its Psychosocial Supplement, the measurement properties and factorability of the R-UCLA were examined by conducting an exploratory factor analysis (EFA) and the confirmatory factor analysis (CFA) on randomly split halves. The average score for the 11-item loneliness scale was 16.4 (standard deviation: 4.5). An evaluation of the internal consistency produced a Cronbach's α of 0.87. Results from the EFA showed that two- and three-factor models were appropriate. However, based on the results of the CFA, only a two-factor model was determined to be suitable because there was a very high correlation between two factors identified in the three-factor model, available social connections and sense of belonging. This study provides important data on the properties of the 11-item R-UCLA scale by identifying a two-factor model of loneliness: feeling isolated and available social connections. Our findings suggest the 11-item R-UCLA has good factorability and internal reliability. Copyright © 2017 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Understanding the optical properties of ambient sub- and supermicron particulate matter: results from the CARES 2010 field study in northern California

    DOE PAGES

    Cappa, Christopher D.; Kolesar, Katheryn R.; Zhang, Xiaolu; ...

    2016-05-27

    Here, measurements of the optical properties (absorption, scattering and extinction) of PM 1, PM 2.5 and PM 10 made at two sites around Sacramento, CA, during the June 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are reported. These observations are used to establish relationships between various intensive optical properties and to derive information about the dependence of the optical properties on photochemical aging and sources. Supermicron particles contributed substantially to the total light scattering at both sites, about 50 % on average. A strong, linear relationship is observed between the scattering Ångström exponent for PM 10 and the fraction of themore » scattering that is contributed by submicron particles ( f sca, PM 1 ) at both sites and with similar slopes and intercepts (for a given pair of wavelengths), suggesting that the derived relationship may be generally applicable for understanding variations in particle size distributions from remote sensing measurements. At the more urban T0 site, the f sca, PM 1 increased with photochemical age, whereas at the downwind, more rural T1 site the f sca, PM 1 decreased slightly with photochemical age. This difference in behavior reflects differences in transport, local production and local emission of supermicron particles between the sites. Light absorption is dominated by submicron particles, but there is some absorption by supermicron particles (~15 % of the total). The supermicron absorption derives from a combination of black carbon that has penetrated into the supermicron mode and from dust, and there is a clear increase in the mass absorption coefficient of just the supermicron particles with increasing average particle size. The mass scattering coefficient (MSC) for the supermicron particles was directly observed to vary inversely with the average particle size, demonstrating that MSC cannot always be treated as a constant in estimating mass concentrations from scattering measurements, or vice versa. The total particle backscatter fraction exhibited some dependence upon the relative abundance of sub- versus supermicron particles; however this was modulated by variations in the median size of particles within a given size range; variations in the submicron size distribution had a particularly large influence on the observed backscatter efficiency and an approximate method to account for this variability is introduced. The relationship between the absorption and scattering Ångström exponents is examined and used to update a previously suggested particle classification scheme. Differences in composition led to differences in the sensitivity of PM 2.5 to heating in a thermodenuder to the average particle size, with more extensive evaporation (observed as a larger decrease in the PM 2.5 extinction coefficient) corresponding to smaller particles; i.e., submicron particles were generally more susceptible to heating than the supermicron particles. The influence of heating on the particle hygroscopicity varied with the effective particle size, with larger changes observed when the PM 2.5 distribution was dominated by smaller particles.« less

  11. Understanding the optical properties of ambient sub- and supermicron particulate matter: results from the CARES 2010 field study in northern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappa, Christopher D.; Kolesar, Katheryn R.; Zhang, Xiaolu

    2016-01-01

    Measurements of the optical properties (absorption, scattering and extinction) of PM 1, PM 2.5 and PM 10 made at two sites around Sacramento, CA, during the June 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are reported. These observations are used to establish relationships between various intensive optical properties and to derive information about the dependence of the optical properties on photochemical aging and sources. Supermicron particles contributed substantially to the total light scattering at both sites, about 50 % on average. A strong, linear relationship is observed between the scattering Ångström exponent for PM 10 and the fraction of the scatteringmore » that is contributed by submicron particles ( f sca, PM 1 ) at both sites and with similar slopes and intercepts (for a given pair of wavelengths), suggesting that the derived relationship may be generally applicable for understanding variations in particle size distributions from remote sensing measurements. At the more urban T0 site, the f sca, PM 1 increased with photochemical age, whereas at the downwind, more rural T1 site the f sca, PM 1 decreased slightly with photochemical age. This difference in behavior reflects differences in transport, local production and local emission of supermicron particles between the sites. Light absorption is dominated by submicron particles, but there is some absorption by supermicron particles (~15 % of the total). The supermicron absorption derives from a combination of black carbon that has penetrated into the supermicron mode and from dust, and there is a clear increase in the mass absorption coefficient of just the supermicron particles with increasing average particle size. The mass scattering coefficient (MSC) for the supermicron particles was directly observed to vary inversely with the average particle size, demonstrating that MSC cannot always be treated as a constant in estimating mass concentrations from scattering measurements, or vice versa. The total particle backscatter fraction exhibited some dependence upon the relative abundance of sub- versus supermicron particles; however this was modulated by variations in the median size of particles within a given size range; variations in the submicron size distribution had a particularly large influence on the observed backscatter efficiency and an approximate method to account for this variability is introduced. The relationship between the absorption and scattering Ångström exponents is examined and used to update a previously suggested particle classification scheme. Differences in composition led to differences in the sensitivity of PM 2.5 to heating in a thermodenuder to the average particle size, with more extensive evaporation (observed as a larger decrease in the PM 2.5 extinction coefficient) corresponding to smaller particles; i.e., submicron particles were generally more susceptible to heating than the supermicron particles. The influence of heating on the particle hygroscopicity varied with the effective particle size, with larger changes observed when the PM 2.5 distribution was dominated by smaller particles.« less

  12. Understanding the optical properties of ambient sub- and supermicron particulate matter: results from the CARES 2010 field study in northern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappa, Christopher D.; Kolesar, Katheryn R.; Zhang, Xiaolu

    Here, measurements of the optical properties (absorption, scattering and extinction) of PM 1, PM 2.5 and PM 10 made at two sites around Sacramento, CA, during the June 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are reported. These observations are used to establish relationships between various intensive optical properties and to derive information about the dependence of the optical properties on photochemical aging and sources. Supermicron particles contributed substantially to the total light scattering at both sites, about 50 % on average. A strong, linear relationship is observed between the scattering Ångström exponent for PM 10 and the fraction of themore » scattering that is contributed by submicron particles ( f sca, PM 1 ) at both sites and with similar slopes and intercepts (for a given pair of wavelengths), suggesting that the derived relationship may be generally applicable for understanding variations in particle size distributions from remote sensing measurements. At the more urban T0 site, the f sca, PM 1 increased with photochemical age, whereas at the downwind, more rural T1 site the f sca, PM 1 decreased slightly with photochemical age. This difference in behavior reflects differences in transport, local production and local emission of supermicron particles between the sites. Light absorption is dominated by submicron particles, but there is some absorption by supermicron particles (~15 % of the total). The supermicron absorption derives from a combination of black carbon that has penetrated into the supermicron mode and from dust, and there is a clear increase in the mass absorption coefficient of just the supermicron particles with increasing average particle size. The mass scattering coefficient (MSC) for the supermicron particles was directly observed to vary inversely with the average particle size, demonstrating that MSC cannot always be treated as a constant in estimating mass concentrations from scattering measurements, or vice versa. The total particle backscatter fraction exhibited some dependence upon the relative abundance of sub- versus supermicron particles; however this was modulated by variations in the median size of particles within a given size range; variations in the submicron size distribution had a particularly large influence on the observed backscatter efficiency and an approximate method to account for this variability is introduced. The relationship between the absorption and scattering Ångström exponents is examined and used to update a previously suggested particle classification scheme. Differences in composition led to differences in the sensitivity of PM 2.5 to heating in a thermodenuder to the average particle size, with more extensive evaporation (observed as a larger decrease in the PM 2.5 extinction coefficient) corresponding to smaller particles; i.e., submicron particles were generally more susceptible to heating than the supermicron particles. The influence of heating on the particle hygroscopicity varied with the effective particle size, with larger changes observed when the PM 2.5 distribution was dominated by smaller particles.« less

  13. Understanding the optical properties of ambient sub- and supermicron particulate matter: results from the CARES 2010 field study in northern California

    NASA Astrophysics Data System (ADS)

    Cappa, Christopher D.; Kolesar, Katheryn R.; Zhang, Xiaolu; Atkinson, Dean B.; Pekour, Mikhail S.; Zaveri, Rahul A.; Zelenyuk, Alla; Zhang, Qi

    2016-05-01

    Measurements of the optical properties (absorption, scattering and extinction) of PM1, PM2.5 and PM10 made at two sites around Sacramento, CA, during the June 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are reported. These observations are used to establish relationships between various intensive optical properties and to derive information about the dependence of the optical properties on photochemical aging and sources. Supermicron particles contributed substantially to the total light scattering at both sites, about 50 % on average. A strong, linear relationship is observed between the scattering Ångström exponent for PM10 and the fraction of the scattering that is contributed by submicron particles (fsca, PM1) at both sites and with similar slopes and intercepts (for a given pair of wavelengths), suggesting that the derived relationship may be generally applicable for understanding variations in particle size distributions from remote sensing measurements. At the more urban T0 site, the fsca, PM1 increased with photochemical age, whereas at the downwind, more rural T1 site the fsca, PM1 decreased slightly with photochemical age. This difference in behavior reflects differences in transport, local production and local emission of supermicron particles between the sites. Light absorption is dominated by submicron particles, but there is some absorption by supermicron particles ( ˜ 15 % of the total). The supermicron absorption derives from a combination of black carbon that has penetrated into the supermicron mode and from dust, and there is a clear increase in the mass absorption coefficient of just the supermicron particles with increasing average particle size. The mass scattering coefficient (MSC) for the supermicron particles was directly observed to vary inversely with the average particle size, demonstrating that MSC cannot always be treated as a constant in estimating mass concentrations from scattering measurements, or vice versa. The total particle backscatter fraction exhibited some dependence upon the relative abundance of sub- versus supermicron particles; however this was modulated by variations in the median size of particles within a given size range; variations in the submicron size distribution had a particularly large influence on the observed backscatter efficiency and an approximate method to account for this variability is introduced. The relationship between the absorption and scattering Ångström exponents is examined and used to update a previously suggested particle classification scheme. Differences in composition led to differences in the sensitivity of PM2.5 to heating in a thermodenuder to the average particle size, with more extensive evaporation (observed as a larger decrease in the PM2.5 extinction coefficient) corresponding to smaller particles; i.e., submicron particles were generally more susceptible to heating than the supermicron particles. The influence of heating on the particle hygroscopicity varied with the effective particle size, with larger changes observed when the PM2.5 distribution was dominated by smaller particles.

  14. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    NASA Astrophysics Data System (ADS)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  15. Magnetic Properties of Copper Doped Nickel Ferrite Nanoparticles Synthesized by Co Precipitation Method

    NASA Astrophysics Data System (ADS)

    Anjana, V.; John, Sara; Prakash, Pooja; Nair, Amritha M.; Nair, Aravind R.; Sambhudevan, Sreedha; Shankar, Balakrishnan

    2018-02-01

    Nickel ferrite nanoparticles with copper atoms as dopant have been prepared using co-precipitation method with general formula Ni1-xCuxFe2O4 (x=0.2, 0.4, 0.6, 0.8 and 1) and are sintered at quite ambient temperature. Structural and magnetic properties were examined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction method (XRD) and Vibrating Sample Magnetometer (VSM) to study the influence of copper doping in nickel ferrite magnetic nanoparticles. X-ray studies proves that the particles are possessing single phase spinel structure with an average particle size calculated using Debye Scherer formula. Magnetic measurements reveal that saturation magnetization value (Ms) decreases while magnetic coercivity (Hc) increases upon doping.

  16. Synthesis of wrinkled mesoporous silica and its reinforcing effect for dental resin composites.

    PubMed

    Wang, Ruili; Habib, Eric; Zhu, X X

    2017-10-01

    The aim of this work is to explore the reinforcing effect of wrinkled mesoporous silica (WMS), which should allow micromechanical resin matrix/filler interlocking in dental resin composites, and to investigate the effect of silica morphology, loading, and compositions on their mechanical properties. WMS (average diameter of 496nm) was prepared through the self-assembly method and characterized by the use of the electron microscopy, dynamic light scattering, and the N 2 adsorption-desorption measurements. The mechanical properties of resin composites containing silanized WMS and nonporous smaller silica were evaluated with a universal mechanical testing machine. Field-emission scanning electron microscopy was used to study the fracture morphology of dental composites. Resin composites including silanized silica particles (average diameter of 507nm) served as the control group. Higher filler loading of silanized WMS substantially improved the mechanical properties of the neat resin matrix, over the composites loaded with regular silanized silica particles similar in size. The impregnation of smaller secondary silica particles with diameters of 90 and 190nm, denoted respectively as Si90 and Si190, increased the filler loading of the bimodal WMS filler (WMS-Si90 or WMS-Si190) to 60wt%, and the corresponding composites exhibited better mechanical properties than the control fillers made with regular silica particles. Among all composites, the optimal WMS-Si190- filled composite (mass ratio WMS:Si190=10:90, total filler loading 60wt%) exhibited the best mechanical performance including flexural strength, flexural modulus, compressive strength and Vickers microhardness. The incorporation of WMS and its mixed bimodal fillers with smaller silica particles led to the design and formulation of dental resin composites with superior mechanical properties. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Fast or slow-foods? Describing natural variations in oral processing characteristics across a wide range of Asian foods.

    PubMed

    Forde, C G; Leong, C; Chia-Ming, E; McCrickerd, K

    2017-02-22

    The structural properties of foods have a functional role to play in oral processing behaviours and sensory perception, and also impact on meal size and the experience of fullness. This study adopted a new approach by using behavioural coding analysis of eating behaviours to explore how a range of food textures manifest as the microstructural properties of eating and expectations of fullness. A selection of 47 Asian foods were served in fixed quantities to a panel of participants (N = 12) and their eating behaviours were captured via web-camera recordings. Behavioural coding analysis was completed on the recordings to extract total bites, chews and swallows and cumulative time of the food spent in the mouth. From these measurements a series of microstructural properties including average bite size (g), chews per bite, oro-sensory exposure time (seconds) and average eating rate (g min -1 ) were derived per food. The sensory and macronutrient properties of each food were correlated with the microstructure of eating to compare the differences in eating behaviour on a gram for gram basis. There were strong relationships between the perceived food textural properties and its eating behaviours and a food's total water content was the best predictor of its eating rate. Foods that were eaten at a slower eating rate, with smaller bites and more chews per bite were rated as higher in the expected fullness. These relationships are important as oral processing behaviours and beliefs about the potential satiating value of food influence portion decisions and moderate meal size. These data support the idea that naturally occurring differences in the food structure and texture could be used to design meals that slow the rate of eating and maximise fullness.

  18. The influence of neap-spring tidal variation and wave energy on sediment flux in salt marsh tidal creeks

    USGS Publications Warehouse

    Lacy, Jessica; Ferner, Matthew C.; Callaway, John C.

    2018-01-01

    Sediment flux in marsh tidal creeks is commonly used to gage sediment supply to marshes. We conducted a field investigation of temporal variability in sediment flux in tidal creeks in the accreting tidal marsh at China Camp State Park adjacent to northern San Francisco Bay. Suspended-sediment concentration (SSC), velocity, and depth were measured near the mouths of two tidal creeks during three six-to-ten-week deployments: two in winter and one in summer. Currents, wave properties and SSC were measured in the adjacent shallows. All deployments spanned the largest spring tides of the season. Results show that tidally-averaged suspended-sediment flux (SSF) in the tidal creeks decreased with increasing tidal energy, and SSF was negative (bayward) for tidal cycles with maximum water surface elevation above the marsh plain. Export during the largest spring tides dominated the cumulative SSF measured during the deployments. During ebb tides following the highest tides, velocities exceeded 1 m/s in the narrow tidal creeks, resulting in negative tidally-averaged water flux, and mobilizing sediment from the creek banks or bed. Storm surge also produced negative SSF. Tidally-averaged SSF was positive in wavey conditions with moderate tides. Spring-tide sediment export was about 50% less at a station 130 m further up the tidal creek than at the creek mouth. The negative tidally-averaged water flux near the creek mouth during spring tides indicates that in the lower marsh, some of the water flooding directly across the bay--marsh interface drains through the tidal creeks, and suggests that this interface may be a pathway for sediment supply to the lower marsh as well.

  19. Friction in Total Hip Joint Prosthesis Measured In Vivo during Walking

    PubMed Central

    Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg

    2013-01-01

    Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load. PMID:24260114

  20. Friction in total hip joint prosthesis measured in vivo during walking.

    PubMed

    Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg

    2013-01-01

    Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load.

  1. ASSOCIATION BETWEEN NON-ENZYMATIC GLYCATION, RESORPTION, AND MICRODAMAGE IN HUMAN TIBIAL CORTICES

    PubMed Central

    Karim, Lamya; Diab, Tamim; Vashishth, Deepak

    2015-01-01

    Purpose/Introduction Changes in the quality of bone material contribute significantly to bone fragility. In order to establish a better understanding of the interaction of the different components of bone quality and their influence on bone fragility we investigated the relationship between non-enzymatic glycation, resorption, and microdamage generated in vivo in cortical bone using bone specimens from the same donors. Methods Total fluorescent advanced glycation end-products (AGEs) were measured in 96 human cortical bone samples from 83 donors. Resorption pit density, average resorption pit area, and percent resorption area were quantified in samples from 48 common donors with AGE measurements. Linear microcrack density and diffuse damage were measured in 21 common donors with AGE and resorption measurements. Correlation analyses were performed between all measured variables to establish the relationships among them and their variation with age. Results We found that average resorption pit area and percent resorption area decreased with increasing AGEs independently of age. Resorption pit density and percent resorption area demonstrated negative age-adjusted correlation with diffuse damage. Furthermore, average resorption pit area, resorption pit density, and percent resorption area were found to decrease significantly with age. Conclusions The current study demonstrated the in vivo interrelationship between the organic constituents, remodeling, and damage formation in cortical bone. In addition to the age-related reduction in resorption, there is a negative correlation between AGEs and resorption independent of age. This inverse relationship indicates that AGEs alter the resorption process and/or accumulate in the tissue as a result of reduced resorption and may lead to bone fragility by adversely affecting fracture resistance through altered bone matrix properties. PMID:25326375

  2. A principal components model of soundscape perception.

    PubMed

    Axelsson, Östen; Nilsson, Mats E; Berglund, Birgitta

    2010-11-01

    There is a need for a model that identifies underlying dimensions of soundscape perception, and which may guide measurement and improvement of soundscape quality. With the purpose to develop such a model, a listening experiment was conducted. One hundred listeners measured 50 excerpts of binaural recordings of urban outdoor soundscapes on 116 attribute scales. The average attribute scale values were subjected to principal components analysis, resulting in three components: Pleasantness, eventfulness, and familiarity, explaining 50, 18 and 6% of the total variance, respectively. The principal-component scores were correlated with physical soundscape properties, including categories of dominant sounds and acoustic variables. Soundscape excerpts dominated by technological sounds were found to be unpleasant, whereas soundscape excerpts dominated by natural sounds were pleasant, and soundscape excerpts dominated by human sounds were eventful. These relationships remained after controlling for the overall soundscape loudness (Zwicker's N(10)), which shows that 'informational' properties are substantial contributors to the perception of soundscape. The proposed principal components model provides a framework for future soundscape research and practice. In particular, it suggests which basic dimensions are necessary to measure, how to measure them by a defined set of attribute scales, and how to promote high-quality soundscapes.

  3. Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin

    2015-03-01

    Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells.

  4. Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties.

    PubMed

    Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin

    2015-01-01

    Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells.

  5. Kinematic properties of solar coronal mass ejections: Correction for projection effects in spacecraft coronagraph measurements

    NASA Astrophysics Data System (ADS)

    Howard, T. A.; Nandy, D.; Koepke, A. C.

    2008-01-01

    One of the main sources of uncertainty in quantifying the kinematic properties of coronal mass ejections (CMEs) using coronagraphs is the fact that coronagraph images are projected into the sky plane, resulting in measurements which can differ significantly from their actual values. By identifying solar surface source regions of CMEs using X-ray and Hα flare and disappearing filament data, and through considerations of CME trajectories in three-dimensional (3-D) geometry, we have devised a methodology to correct for the projection effect. We outline this method here. The methodology was automated and applied to over 10,000 CMEs in the Coordinated Data Analysis Workshop (CDAW) (SOHO Large Angle Spectroscopic Coronagraph) catalog spanning 1996-2005, in which we could associate 1961 CMEs with an appropriate surface event. In the latter subset, deprojected speeds, accelerations, and launch angles were determined to study CME kinematics. Our analysis of this subset of events reconfirms some important trends, notably that previously uncovered solar cycle variation of CME properties are preserved, CMEs with greater width have higher speeds, and slower CMEs tend to accelerate while faster CMEs tend to decelerate. This points out that statistical trends in CME properties, recovered from plane-of-sky measurements, may be preserved even in the face of more sophisticated 3-D measurements from spacecrafts such as STEREO, if CME trajectories are predominantly radial. However, our results also show that the magnitude of corrected measurements can differ significantly from the projected plane-of-sky measurements on a case-by-case basis and that acceleration is more sensitive to the deprojection process than speed. Average corrected speed and acceleration tend to be a factor of 1.7 and 4.4 higher than their projected values, with mean corrected speed and acceleration magnitudes being on the order of 1000 km/s and 50 m/s2, respectively. We conclude that while using the plane-of-sky measurements may be suitable for studies of general trends in a large sample of events, correcting for projection effects is mandatory for those investigations which rely on a numerically precise determination of the properties of individual CMEs.

  6. A Stochastic Model of Space-Time Variability of Mesoscale Rainfall: Statistics of Spatial Averages

    NASA Technical Reports Server (NTRS)

    Kundu, Prasun K.; Bell, Thomas L.

    2003-01-01

    A characteristic feature of rainfall statistics is that they depend on the space and time scales over which rain data are averaged. A previously developed spectral model of rain statistics that is designed to capture this property, predicts power law scaling behavior for the second moment statistics of area-averaged rain rate on the averaging length scale L as L right arrow 0. In the present work a more efficient method of estimating the model parameters is presented, and used to fit the model to the statistics of area-averaged rain rate derived from gridded radar precipitation data from TOGA COARE. Statistical properties of the data and the model predictions are compared over a wide range of averaging scales. An extension of the spectral model scaling relations to describe the dependence of the average fraction of grid boxes within an area containing nonzero rain (the "rainy area fraction") on the grid scale L is also explored.

  7. How well can regional fluxes be derived from smaller-scale estimates?

    NASA Technical Reports Server (NTRS)

    Moore, Kathleen E.; Fitzjarrald, David R.; Ritter, John A.

    1992-01-01

    Regional surface fluxes are essential lower boundary conditions for large scale numerical weather and climate models and are the elements of global budgets of important trace gases. Surface properties affecting the exchange of heat, moisture, momentum and trace gases vary with length scales from one meter to hundreds of km. A classical difficulty is that fluxes have been measured directly only at points or along lines. The process of scaling up observations limited in space and/or time to represent larger areas was done by assigning properties to surface classes and combining estimated or calculated fluxes using an area weighted average. It is not clear that a simple area weighted average is sufficient to produce the large scale from the small scale, chiefly due to the effect of internal boundary layers, nor is it known how important the uncertainty is to large scale model outcomes. Simultaneous aircraft and tower data obtained in the relatively simple terrain of the western Alaska tundra were used to determine the extent to which surface type variation can be related to fluxes of heat, moisture, and other properties. Surface type was classified as lake or land with aircraft borne infrared thermometer, and flight level heat and moisture fluxes were related to surface type. The magnitude and variety of sampling errors inherent in eddy correlation flux estimation place limits on how well any flux can be known even in simple geometries.

  8. Atomic force microscopy stiffness tomography on living Arabidopsis thaliana cells reveals the mechanical properties of surface and deep cell-wall layers during growth.

    PubMed

    Radotić, Ksenija; Roduit, Charles; Simonović, Jasna; Hornitschek, Patricia; Fankhauser, Christian; Mutavdžić, Dragosav; Steinbach, Gabor; Dietler, Giovanni; Kasas, Sandor

    2012-08-08

    Cell-wall mechanical properties play a key role in the growth and the protection of plants. However, little is known about genuine wall mechanical properties and their growth-related dynamics at subcellular resolution and in living cells. Here, we used atomic force microscopy (AFM) stiffness tomography to explore stiffness distribution in the cell wall of suspension-cultured Arabidopsis thaliana as a model of primary, growing cell wall. For the first time that we know of, this new imaging technique was performed on living single cells of a higher plant, permitting monitoring of the stiffness distribution in cell-wall layers as a function of the depth and its evolution during the different growth phases. The mechanical measurements were correlated with changes in the composition of the cell wall, which were revealed by Fourier-transform infrared (FTIR) spectroscopy. In the beginning and end of cell growth, the average stiffness of the cell wall was low and the wall was mechanically homogenous, whereas in the exponential growth phase, the average wall stiffness increased, with increasing heterogeneity. In this phase, the difference between the superficial and deep wall stiffness was highest. FTIR spectra revealed a relative increase in the polysaccharide/lignin content. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Axisymmetric Flow Properties for Magnetic Elements of Differing Strength

    NASA Technical Reports Server (NTRS)

    Rightmire-Upton, Lisa; Hathaway, David H.

    2012-01-01

    Aspects of the structure and dynamics of the flows in the Sun's surface shear layer remain uncertain and yet are critically important for understanding the observed magnetic behavior. In our previous studies of the axisymmetric transport of magnetic elements we found systematic changes in both the differential rotation and the meridional flow over the course of Solar Cycle 23. Here we examine how those flows depend upon the strength (and presumably anchoring depth) of the magnetic elements. Line of sight magnetograms obtained by the HMI instrument aboard SDO over the course of Carrington Rotation 2097 were mapped to heliographic coordinates and averaged over 12 minutes to remove the 5-min oscillations. Data masks were constructed based on the field strength of each mapped pixel to isolate magnetic elements of differing field strength. We used Local Correlation Tracking of the unmasked data (separated in time by 1- to 8-hours) to determine the longitudinal and latitudinal motions of the magnetic elements. We then calculated average flow velocities as functions of latitude and longitude from the central meridian for approx 600 image pairs over the 27-day rotation. Variations with longitude indicate and characterize systematic errors in the flow measurements associated with changes in the signal from disk center to limb. Removing these systematic errors reveals changes in the axisymmetric flow properties that reflect changes in flow properties with depth in the surface shear layer.

  10. Optimization and characterization of high pressure homogenization produced chemically modified starch nanoparticles.

    PubMed

    Ding, Yongbo; Kan, Jianquan

    2017-12-01

    Chemically modified starch (RS4) nanoparticles were synthesized through homogenization and water-in-oil mini-emulsion cross-linking. Homogenization was optimized with regard to z-average diameter by using a three-factor-three-level Box-Behnken design. Homogenization pressure (X 1 ), oil/water ratio (X 2 ), and surfactant (X 3 ) were selected as independent variables, whereas z-average diameter was considered as a dependent variable. The following optimum preparation conditions were obtained to achieve the minimum average size of these nanoparticles: 50 MPa homogenization pressure, 10:1 oil/water ratio, and 2 g surfactant amount, when the predicted z-average diameter was 303.6 nm. The physicochemical properties of these nanoparticles were also determined. Dynamic light scattering experiments revealed that RS4 nanoparticles measuring a PdI of 0.380 and an average size of approximately 300 nm, which was very close to the predicted z-average diameter (303.6 nm). The absolute value of zeta potential of RS4 nanoparticles (39.7 mV) was higher than RS4 (32.4 mV), with strengthened swelling power. X-ray diffraction results revealed that homogenization induced a disruption in crystalline structure of RS4 nanoparticles led to amorphous or low-crystallinity. Results of stability analysis showed that RS4 nanosuspensions (particle size) had good stability at 30 °C over 24 h.

  11. AIP1OGREN: Aerosol Observing Station Intensive Properties Value-Added Product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koontz, Annette; Flynn, Connor

    The aip1ogren value-added product (VAP) computes several aerosol intensive properties. It requires as input calibrated, corrected, aerosol extensive properties (scattering and absorption coefficients, primarily) from the Aerosol Observing Station (AOS). Aerosol extensive properties depend on both the nature of the aerosol and the amount of the aerosol. We compute several properties as relationships between the various extensive properties. These intensive properties are independent of aerosol amount and instead relate to intrinsic properties of the aerosol itself. Along with the original extensive properties we report aerosol single-scattering albedo, hemispheric backscatter fraction, asymmetry parameter, and Ångström exponent for scattering and absorption withmore » one-minute averaging. An hourly averaged file is produced from the 1-minute files that includes all extensive and intensive properties as well as submicron scattering and submicron absorption fractions. Finally, in both the minutely and hourly files the aerosol radiative forcing efficiency is provided.« less

  12. Comparison of Marine Boundary Layer Cloud Properties from CERES-MODIS Edition 4 and DOE ARM AMF Measurements at the Azores

    NASA Technical Reports Server (NTRS)

    Xi, Baike; Dong, Xiquan; Minnis, Patrick; Sun-Mack, Sunny

    2014-01-01

    Marine boundary layer (MBL) cloud properties derived from the NASA Clouds and the Earth's Radiant Energy System (CERES) project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Department of Energy Atmospheric Radiation Measurement (ARM) Mobile Facility at the Azores (AMF-Azores) site from June 2009 through December 2010. Cloud properties derived from ARM ground-based observations were averaged over a 1 h interval centered at the satellite overpass time, while the CERES-MODIS (CM) results were averaged within a 30 km×30 km grid box centered over the Azores site. A total of 63 daytime and 92 nighttime single-layered overcast MBL cloud cases were selected from 19 months of ARM radar-lidar and satellite observations. The CM cloud top/base heights (Htop/Hbase) were determined from cloud top/base temperatures (Ttop/Tbase) using a regional boundary layer lapse rate method. For daytime comparisons, the CM-derived Htop (Hbase), on average, is 0.063 km (0.068 km) higher (lower) than its ARM radar-lidar-observed counterpart, and the CM-derived Ttop and Tbase are 0.9 K less and 2.5 K greater than the surface values with high correlations (R(sup 2) = 0.82 and 0.84, respectively). In general, the cloud top comparisons agree better than the cloud base comparisons, because the CM cloud base temperatures and heights are secondary products determined from cloud top temperatures and heights. No significant day-night difference was found in the analyses. The comparisons of MBL cloud microphysical properties reveal that when averaged over a 30 km× 30 km area, the CM-retrieved cloud droplet effective radius (re) at 3.7 micrometers is 1.3 micrometers larger than that from the ARM retrievals (12.8 micrometers), while the CM-retrieved cloud liquid water path (LWP) is 13.5 gm( exp -2) less than its ARM counterpart (114.2 gm( exp-2) due to its small optical depth (9.6 versus 13.7). The differences are reduced by 50% when the CM averages are computed only using the MODIS pixel nearest the AMF site. Using the effective radius retrieved using 2.1 micrometers channel to calculate LWP can reduce the difference between the CM and ARM microwave radiometer retrievals from 13.7 to 2.1 gm2. The 10% differences between the ARM and CERES-MODIS LWP and r(sub e) retrievals are within the uncertainties of the ARM LWP (approximately 20gm( exp -2)) and r(sub e) (approximately 10%) retrievals; however, the 30% difference in optical depth is significant. Possible reasons contributing to this discrepancy are increased sensitivities in optical depth from both surface retrievals when t is approximately 10 and topography. The t differences vary with wind direction and are consistent with the island orography.Much better agreement in t is obtained when using only those data taken when the wind is from the northeast, where topographical effects on the sampled clouds are minimal.

  13. Comparison of marine boundary layer cloud properties from CERES-MODIS Edition 4 and DOE ARM AMF measurements at the Azores

    NASA Astrophysics Data System (ADS)

    Xi, Baike; Dong, Xiquan; Minnis, Patrick; Sun-Mack, Sunny

    2014-08-01

    Marine boundary layer (MBL) cloud properties derived from the NASA Clouds and the Earth's Radiant Energy System (CERES) project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Department of Energy Atmospheric Radiation Measurement (ARM) Mobile Facility at the Azores (AMF-Azores) site from June 2009 through December 2010. Cloud properties derived from ARM ground-based observations were averaged over a 1 h interval centered at the satellite overpass time, while the CERES-MODIS (CM) results were averaged within a 30 km × 30 km grid box centered over the Azores site. A total of 63 daytime and 92 nighttime single-layered overcast MBL cloud cases were selected from 19 months of ARM radar-lidar and satellite observations. The CM cloud top/base heights (Htop/Hbase) were determined from cloud top/base temperatures (Ttop/Tbase) using a regional boundary layer lapse rate method. For daytime comparisons, the CM-derived Htop (Hbase), on average, is 0.063 km (0.068 km) higher (lower) than its ARM radar-lidar-observed counterpart, and the CM-derived Ttop and Tbase are 0.9 K less and 2.5 K greater than the surface values with high correlations (R2 = 0.82 and 0.84, respectively). In general, the cloud top comparisons agree better than the cloud base comparisons, because the CM cloud base temperatures and heights are secondary products determined from cloud top temperatures and heights. No significant day-night difference was found in the analyses. The comparisons of MBL cloud microphysical properties reveal that when averaged over a 30 km × 30 km area, the CM-retrieved cloud droplet effective radius (re) at 3.7 µm is 1.3 µm larger than that from the ARM retrievals (12.8 µm), while the CM-retrieved cloud liquid water path (LWP) is 13.5 gm-2 less than its ARM counterpart (114.2 gm-2) due to its small optical depth (9.6 versus 13.7). The differences are reduced by 50% when the CM averages are computed only using the MODIS pixel nearest the AMF site. Using the effective radius retrieved using 2.1 µm channel to calculate LWP can reduce the difference between the CM and ARM microwave radiometer retrievals from -13.7 to 2.1 gm-2. The 10% differences between the ARM and CERES-MODIS LWP and re retrievals are within the uncertainties of the ARM LWP ( 20 gm-2) and re ( 10%) retrievals; however, the 30% difference in optical depth is significant. Possible reasons contributing to this discrepancy are increased sensitivities in optical depth from both surface retrievals when τ 10 and topography. The τ differences vary with wind direction and are consistent with the island orography. Much better agreement in τ is obtained when using only those data taken when the wind is from the northeast, where topographical effects on the sampled clouds are minimal.

  14. Properties of bright solitons in averaged and unaveraged models for SDG fibres

    NASA Astrophysics Data System (ADS)

    Kumar, Ajit; Kumar, Atul

    1996-04-01

    Using the slowly varying envelope approximation and averaging over the fibre cross-section the evolution equation for optical pulses in semiconductor-doped glass (SDG) fibres is derived from the nonlinear wave equation. Bright soliton solutions of this equation are obtained numerically and their properties are studied and compared with those of the bright solitons in the unaveraged model.

  15. Recent trends in aviation turbine fuel properties

    NASA Technical Reports Server (NTRS)

    Friedman, R.

    1982-01-01

    Plots and tables, compiled from Department of Energy (and predecessor agency) inspection reports from 1969 to 1980, present ranges, averages, extremes, and trends for most of the 22 properties of Jet A aviation turbine fuel. In recent years, average values of aromatics content, mercaptan sulfur content, distillation temperature of 10 percent recovered, smoke point, and freezing point show small but recognizable trends toward their specification limits. About 80 percent of the fuel samples had at least one property near specification, defined as within a standard band about the specification limit. By far the most common near-specification properties were aromatics content, smoke point, and freezing point.

  16. Total Kinetic Energy and Fragment Mass Distribution of Neutron-Induced Fission of U-233

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, Daniel James; Schmitt, Kyle Thomas; Mosby, Shea Morgan

    Properties of fission in U-233 were studied at the Los Alamos Neutron Science Center (LANSCE) at incident neutron energies from thermal to 40 MeV at both the Lujan Neutron Scattering Center flight path 12 and at WNR flight path 90-Left from Dec 2016 to Jan 2017. Fission fragments are observed in coincidence using a twin ionization chamber with Frisch grids. The average total kinetic energy (TKE) released from fission and fragment mass distributions are calculated from observations of energy deposited in the detector and conservation of mass and momentum. Accurate experimental measurements of these parameters are necessary to better understandmore » the fission process and obtain data necessary for calculating criticality. The average TKE released from fission has been well characterized for several isotopes at thermal neutron energy, however, few measurements have been made at fast neutron energies. This experiment expands on previous successful experiments using an ionization chamber to measure TKE and fragment mass distributions of U-235, U-238, and Pu-239. This experiment requires the full spectrum of neutron energies and can therefore only be performed at a small number of facilities in the world. The required full neutron energy spectrum is obtained by combining measurements from WNR 90L and Lujan FP12 at LANSCE.« less

  17. New tools for nanotechnology and measurement of the mechanical properties of individual carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yu, Min-Feng

    A new tool capable of three-dimensional manipulation and measurement of the mechanics of nanometer-sized materials inside a scanning electron microscopy is developed and demonstrated. The design and function of this home-built SEM nanomanipulator is explained. The first free-space manipulation of carbon nanotubes is presented. The tensile strength and the breaking mechanism of individual multi-walled carbon nanotubes (MWCNT) and single wall carbon nanotube (SWCNT) ropes are measured using the nanomanipulator, and from the data set the stress-strain relationship is determined. The results indicate that carbon nanotubes have remarkably high tensile strength values, about 50 GPa. The shear strength measurement of sliding nested shells in individual MWCNTs is also achieved for the first time. The experiment provides a new way to directly study the nano-scale interaction involved in the motion of a nanobearing. In a separate work, atomic force microscopy is used to study the lateral deformability of individual MWCNTs. The average force provided by the tapping tip in tapping mode AFM is investigated by both simulation and experiment. An imaging procedure for controlling the average tapping force is developed and is used to study the deformability of carbon nanotubes. The stability of different structures of carbon nanotube is also experimentally studied.

  18. Does Timing Matter? Temporal Stability of Soil-Magnetic Climate Proxies

    NASA Astrophysics Data System (ADS)

    Geiss, C. E.

    2013-12-01

    Numerous studies have shown that the rock-magnetic properties of soils can serve as valuable proxies of continental climates. Many studies average the magnetic properties of several closely spaced sites to reconstruct regional climate signals, but little is known about the temporal variability of soil-magnetic properties. We analyzed the magnetic properties of five, closely spaced (within 20 m from each other) soil profiles that were sampled over a period of five years between 2002 and 2006. The soil profiles are well-developed and display strong magnetic enhancement. According to land records, agricultural influence was minimal as the site had never been plowed and solely been used as pasture. Detailed soil descriptions and measurements of magnetic susceptibility (χ), anhysteretic and isothermal remanent magnetization (ARM, IRM), as well as coercivity parameters show that all studied profiles have very similar horizination and magnetic properties are virtually unchanged from year to year. The only differences between the soil profiles are the position and strength of redoximorphic features. These nanocrystalline iron-oxide deposits have little influence on the magnetic properties of the soils and the timing of soil sampling for magnetic analyses is not a critical factor when sampling for climatic reconstructions.

  19. Regional Variation in the Structural Response and Geometrical Properties of Human Ribs

    PubMed Central

    Cormier, Joseph M.; Stitzel, Joel D.; Duma, Stefan M.; Matsuoka, Fumio

    2005-01-01

    By incorporating material and geometrical properties into a model of the human thorax one can develop an injury criterion that is a function of stress and strain of the material and not a function of the global response of the thorax. Previous research on the mechanical properties of ribs has focused on a limited set of specific ribs. For this study a total of 52 rib specimens were removed from four cadaver subjects. Variation in peak moment by thoracic region was significant (p < 0.01) with average values of 2, 2.9 and 3.9 N-m for the anterior, lateral and posterior regions respectively. Two geometrical properties, radius of gyration and distance from the neutral axis, showed significant variation by region (p < 0.0001) as well as by rib level (p = < 0.01, 0.05). The results of this study can be used to update current models of the human thorax to account for the variation in strength and geometrical properties throughout the rib cage. Accounting for the variation in rib properties by region will improve injury predictive measures and, therefore, the ability to design systems to prevent thoracic injury. PMID:16179146

  20. Indirect and direct methods for measuring a dynamic throat diameter in a solid rocket motor

    NASA Astrophysics Data System (ADS)

    Colbaugh, Lauren

    In a solid rocket motor, nozzle throat erosion is dictated by propellant composition, throat material properties, and operating conditions. Throat erosion has a significant effect on motor performance, so it must be accurately characterized to produce a good motor design. In order to correlate throat erosion rate to other parameters, it is first necessary to know what the throat diameter is throughout a motor burn. Thus, an indirect method and a direct method for determining throat diameter in a solid rocket motor are investigated in this thesis. The indirect method looks at the use of pressure and thrust data to solve for throat diameter as a function of time. The indirect method's proof of concept was shown by the good agreement between the ballistics model and the test data from a static motor firing. The ballistics model was within 10% of all measured and calculated performance parameters (e.g. average pressure, specific impulse, maximum thrust, etc.) for tests with throat erosion and within 6% of all measured and calculated performance parameters for tests without throat erosion. The direct method involves the use of x-rays to directly observe a simulated nozzle throat erode in a dynamic environment; this is achieved with a dynamic calibration standard. An image processing algorithm is developed for extracting the diameter dimensions from the x-ray intensity digital images. Static and dynamic tests were conducted. The measured diameter was compared to the known diameter in the calibration standard. All dynamic test results were within +6% / -7% of the actual diameter. Part of the edge detection method consists of dividing the entire x-ray image by an average pixel value, calculated from a set of pixels in the x-ray image. It was found that the accuracy of the edge detection method depends upon the selection of the average pixel value area and subsequently the average pixel value. An average pixel value sensitivity analysis is presented. Both the indirect method and the direct method prove to be viable approaches to determining throat diameter during solid rocket motor operation.

  1. Modeling of Multiphase Flow through Thin Porous Layers: Application to a Polymer Electrolyte Fuel Cell (PEFC)

    NASA Astrophysics Data System (ADS)

    Qin, C.; Hassanizadeh, S.

    2013-12-01

    Multiphase flow and species transport though thin porous layers are encountered in a number of industrial applications, such as fuel cells, filters, and hygiene products. Based on some macroscale models like the Darcy's law, to date, the modeling of flow and transport through such thin layers has been mostly performed in 3D discretized domains with many computational cells. But, there are a number of problems with this approach. First, a proper representative elementary volume (REV) is not defined. Second, one needs to discretize a thin porous medium into computational cells whose size may be comparable to the pore sizes. This suggests that the traditional models are not applicable to such thin domains. Third, the interfacial conditions between neighboring layers are usually not well defined. Last, 3D modeling of a number of interacting thin porous layers often requires heavy computational efforts. So, to eliminate the drawbacks mentioned above, we propose a new approach to modeling multilayers of thin porous media as 2D interacting continua (see Fig. 1). Macroscale 2D governing equations are formulated in terms of thickness-averaged material properties. Also, the exchange of thermodynamic properties between neighboring layers is described by thickness-averaged quantities. In Comparison to previous macroscale models, our model has the distinctive advantages of: (1) it is rigorous thermodynamics-based model; (2) it is formulated in terms of thickness-averaged material properties which are easily measureable; and (3) it reduces 3D modeling to 2D leading to a very significant reduction of computation efforts. As an application, we employ the new approach in the study of liquid water flooding in the cathode of a polymer electrolyte fuel cell (PEFC). To highlight the advantages of the present model, we compare the results of water distribution with those obtained from the traditional 3D Darcy-based modeling. Finally, it is worth noting that, for specific case studies, a number of material properties in the model need to be determined experimentally, such as mass and heat exchange coefficients between neighboring layers. Fig. 1: Schematic representation of three thin porous layers, which may exchange mass, momentum, and energy. Also, a typical averaging domain (REV) is shown. Note that the layer thickness and thus the REV height can be spatially variable. Also, in reality, the layers are tightly stacked and there is no gap between them.

  2. Estimation of the spatial validity of local aerosol measurements in Europe using MODIS data

    NASA Astrophysics Data System (ADS)

    Marcos, Carlos; Gómez-Amo, J. Luis; Pedrós, Roberto; Utrillas, M. Pilar; Martínez-Lozano, J. Antonio

    2013-04-01

    The actual impact of atmospheric aerosols in the Earth's radiative budget is still associated to large uncertainties [IPCC, 2007]. Global monitoring of the aerosol properties and distribution in the atmosphere is needed to improve our knowledge of climate change. The instrumentation used for this purpose can be divided into two main groups: ground-based and satellite-based. Ground-based instruments, like lidars or Sun-photometers, are usually designed to measure accurate local properties of atmospheric aerosols throughout the day. However, the spatial validity of these measurements is conditioned by the aerosol variability within the atmosphere. Satellite-based sensors offer spatially resolved information about aerosols at a global scale, but generally with a worse temporal resolution and in a less detailed way. In this work, the aerosol optical depth (AOD) at 550nm from MODIS Aqua, product MYD04 [Remer, 2005], is used to estimate the area of validity of local measurements at different reference points, corresponding to the AERONET [Holben, 1998] stations during the 2011-2012 period in Europe. For each case, the local AOD (AODloc) at each reference point is calculated as the averaged MODIS data within a radius of 15 km. Then, the AODloc is compared to the AOD obtained when a larger averaging radius is used (AOD(r)), up to 500 km. Only those cases where more than 50% of the pixels in each averaging area contain valid data are used. Four factors that could affect the spatial variability of aerosols are studied: proximity to the sea, human activity, aerosol load and geographical location (latitude and longitude). For the 76 reference points studied, which are sited in different regions of Europe, we have determined that the root mean squared difference (RMSD) between AODloc and AOD(r) , averaged for all cases, increases in a logarithmic way with the averaging radius (RMSD ? log(r)), while the linear correlation coefficient (R) decreases following a logarithmic trend (R ? -log(r)). Among all the factors studied, the aerosol load is the most influential one in the aerosol spatial variability: for averaging radii smaller than 40 km, the RMSD increases with AODloc. Another important factor is the latitude and longitude: the variation of the RMSD in the AOD with regard to the averaging radius can differ up to a 60%, depending on the location. On the contray, the proximity to the sea and the amount of population surrounding each reference point do not have a noticeable influence compared to the above mentioned factors. Holben, B. N., Eck, T. F., Slutsker, I., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y., Nakajima, T., Lavenu, F., and Smirnov, A.: AERONET - A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1-16, 1998. IPCC (2007). S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK & New York, USA. Remer, L. A., y co-authors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947-973. doi: http://dx.doi.org/10.1175/JAS3385.1

  3. A remote sensing data assimilation system for cold land processes hydrologic estimation

    NASA Astrophysics Data System (ADS)

    Andreadis, Konstantinos M.

    2009-12-01

    Accurate forecasting of snow properties is important for effective water resources management, especially in mountainous areas. Model-based approaches are limited by biases and uncertainties. Remote sensing offers an opportunity for observation of snow properties over larger areas. Traditional approaches to direct estimation of snow properties from passive microwave remote sensing have been plagued by limitations such as the tendency of estimates to saturate for moderately deep snowpacks and the effects of mixed land cover. To address these complications, a data assimilation system is developed and evaluated in a three-part research. The data assimilation system requires the embedding of a microwave emissions model which uses modeled snowpack properties. In the first part of this study, such a model is evaluated using multi-scale TB measurements from the Cold Land Processes Experiment. The model's ability to reproduce snowpack microphysical properties is evaluated through comparison with snowpit measurements, while TB predictions are evaluated through comparison with in-situ, aircraft and satellite measurements. Point comparisons showed limitations in the model, while the spatial averaging and the effects of forest cover suppressed errors in comparisons with aircraft measurements. The layered character of snowpacks increases the complexity of algorithms intended to retrieve snow properties from the snowpack microwave return signal. Implementation of a retrieval strategy requires knowledge of stratigraphy, which practically can only be produced by models. In the second part of this study, we describe a multi-layer model designed for such applications. The model coupled with a radiative transfer scheme improved the estimation of TB, while potential impacts when assimilating radiances are explored. A system that merges SWE model predictions and observations of SCE and TB, is evaluated in the third part of this study over one winter season in the Upper Snake River basin. Two data assimilation techniques, the Ensemble Kalman filter and the Ensemble Multiscale Kalman filter are tested with the multilayer snow model forced by downscaled re-analysis meteorological observations. Both the EnKF and EnMKF showed modest improvements when compared with the open-loop simulation, relative to a baseline simulation which used in-situ meteorological data, while comparisons with in-situ SWE measurements showed an overall improvement.

  4. Self-administered physical activity questionnaires for the elderly: a systematic review of measurement properties.

    PubMed

    Forsén, Lisa; Loland, Nina Waaler; Vuillemin, Anne; Chinapaw, Mai J M; van Poppel, Mireille N M; Mokkink, Lidwine B; van Mechelen, Willem; Terwee, Caroline B

    2010-07-01

    To systematically review and appraise studies examining self-administered physical activity questionnaires (PAQ) for the elderly. This article is one of a group of four articles in Sports Medicine on the content and measurement properties of PAQs. LITERATURE SEARCH METHODOLOGY: Searches in PubMed, EMBASE and SportDiscu (until May 2009) on self-administered PAQ. Inclusion criteria were as follows: (i) the study examined (at least one of) the measurement properties of a self-administered PAQ; (ii) the questionnaire aimed to measure physical activity (PA) in older people; (iii) the average age of the study population was >55 years; (iv) the article was written in English. We excluded PA interviews, diaries and studies that evaluated the measurement properties of a self-administered PAQ in a specific population, such as patients. We used a standard checklist (qualitative attributes and measurement properties of PA questionnaires [QAPAQ]) for appraising the measurement properties of PAQs. Eighteen articles on 13 PAQs were reviewed, including 16 reliability analyses and 25 validity analyses (of which 15 were on construct validity, seven on health/functioning associations, two on known-groups validity and one on responsiveness). Many studies suffered from methodological flaws, e.g. too small sample size or inadequate time interval between test and retest. Three PAQs received a positive rating on reliability: IPAQ-C (International Physical Activity Questionnaire-Chinese), intraclass correlation coefficient (ICC) > or = 0.81; WHI-PAQ (Women's Health Initiative-PAQ), ICC = 0.76; and PASE (Physical Activity Scale for the Elderly), Pearson correlation coefficient (r) = 0.84. However, PASE was negatively rated on reliability in another study (ICC = 0.65). One PAQ received a positive rating on construct validity: PASE against Mini-Logger (r > 0.52), but PASE was negatively rated in another study against accelerometer and another PAQ, Spearman correlation coefficient = 0.17 and 0.48, respectively. Three of the 13 PAQs were tested for health/functioning associations and all three were positively rated in some categories of PA in many studies (r > 0.30). Even though several studies showed an association between the tested PAQ and health/functioning variables, the knowledge about reliability and construct validity of self-administrated PAQs for older adults is still scarce and more high-quality validation studies are needed.

  5. Initial report of the physical property measurement, ChikyuOman core description Phase I: sheeted dike and gabbro boundary from ICDP Holes GT1A, GT2A and GT3A

    NASA Astrophysics Data System (ADS)

    Abe, N.; Okazaki, K.; Hatakeyama, K.; Ildefonse, B.; Leong, J. A. M.; Tateishi, Y.; Teagle, D. A. H.; Takazawa, E.; Kelemen, P. B.; Michibayashi, K.; Coggon, J. A.; Harris, M.; de Obeso, J. C.

    2017-12-01

    We report results on the physical property measurements of the core samples from ICDP Holes GT1A, GT2A and GT3A drilled at Samail Ophiolite, Sultanate of Oman. Cores from Holes GT1A and GT2A in the lower crust section are mainly composed of gabbros (gabbro and olivine gabbro), and small amounts of ultramafic rocks (wehrlite and dunite), while cores from Hole GT3A at the boundary between sheeted dikes and gabbro are mainly composed of basalt and diabase, followed by gabbros (gabbro, olivine gabbro and oxide gabbro), and less common felsic dikes, trondhjemite and tonalite, intrude the mafic rocks. Measurements of physical properties were undertaken to characterize recovered core material. Onboard the Drilling Vessel Chikyu, whole-round measurements included X-ray CT image, natural gamma radiation, and magnetic susceptibility for Leg 1, and additional P-wave velocity, gamma ray attenuation density, and electrical resistivity during Leg 2. Split-core point magnetic susceptibility and color spectroscopy were measured for all core sections. P-wave velocity, bulk/grain density and porosity of more than 500 discrete cube samples, and thermal conductivity on more than 240 pieces from the working half of the split core sections were also measured. Physical Properties of gabbroic rocks from Holes GT1A and GT2A are similar to typical oceanic gabbros from ODP and IODP expeditions at Atlantis Bank, Southwestern Indian Ridge (ODP Legs 118, 176 and 179; IODP Exp 360) and at Hess Deep, Eastern Pacific (ODP Leg 147 and IODP Exp. 345). Average P-wave velocity, bulk density, grain density, porosity and thermal conductivity are 6.7 km/s, 2.92 g/cm^3, 2.93 g/cm^3, 0.98% and 2.46 W/m/K, respectively. P-wave velocity of samples from all three holes is inversely correlated with porosity. No clear correlation between the original lithology and physical properties is observed. GT3A cores show a wider range (e.g., Vp from 2.2 to 7.1 km/s) of values for the measured physical properties, compared to gabbros from Holes GT1A and GT2A.

  6. Simulation of streamflow and water quality in the Leon Creek watershed, Bexar County, Texas, 1997-2004

    USGS Publications Warehouse

    Ockerman, Darwin J.; Roussel, Meghan C.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers and the San Antonio River Authority, configured, calibrated, and tested a Hydrological Simulation Program ? FORTRAN watershed model for the approximately 238-square-mile Leon Creek watershed in Bexar County, Texas, and used the model to simulate streamflow and water quality (focusing on loads and yields of selected constituents). Streamflow in the model was calibrated and tested with available data from five U.S. Geological Survey streamflow-gaging stations for 1997-2004. Simulated streamflow volumes closely matched measured streamflow volumes at all streamflow-gaging stations. Total simulated streamflow volumes were within 10 percent of measured values. Streamflow volumes are greatly influenced by large storms. Two months that included major floods accounted for about 50 percent of all the streamflow measured at the most downstream gaging station during 1997-2004. Water-quality properties and constituents (water temperature, dissolved oxygen, suspended sediment, dissolved ammonia nitrogen, dissolved nitrate nitrogen, and dissolved and total lead and zinc) in the model were calibrated using available data from 13 sites in and near the Leon Creek watershed for varying periods of record during 1992-2005. Average simulated daily mean water temperature and dissolved oxygen at the most downstream gaging station during 1997-2000 were within 1 percent of average measured daily mean water temperature and dissolved oxygen. Simulated suspended-sediment load at the most downstream gaging station during 2001-04 (excluding July 2002 because of major storms) was 77,700 tons compared with 74,600 tons estimated from a streamflow-load regression relation (coefficient of determination = .869). Simulated concentrations of dissolved ammonia nitrogen and dissolved nitrate nitrogen closely matched measured concentrations after calibration. At the most downstream gaging station, average simulated monthly mean concentrations of dissolved ammonia and nitrate concentrations during 1997-2004 were 0.03 and 0.37 milligram per liter, respectively. For the most downstream station, the measured and simulated concentrations of dissolved and total lead and zinc for stormflows during 1993-97 after calibration do not match particularly closely. For base-flow conditions during 1997-2004 at the most downstream station, the simulated/measured match is better. For example, median simulated concentration of total lead (for 2,041 days) was 0.96 microgram per liter, and median measured concentration (for nine samples) of total lead was 1.0 microgram per liter. To demonstrate an application of the Leon Creek watershed model, streamflow constituent loads and yields for suspended sediment, dissolved nitrate nitrogen, and total lead were simulated at the mouth of Leon Creek (outlet of the watershed) for 1997-2004. The average suspended-sediment load was 51,800 tons per year. The average suspended-sediment yield was 0.34 ton per acre per year. The average load of dissolved nitrate at the outlet of the watershed was 802 tons per year. The corresponding yield was 10.5 pounds per acre per year. The average load of lead at the outlet was 3,900 pounds per year. The average lead yield was 0.026 pound per acre per year. The degree to which available rainfall data represent actual rainfall is potentially the most serious source of measurement error associated with the Leon Creek model. Major storms contribute most of the streamflow loads for certain constituents. For example, the three largest stormflows contributed about 64 percent of the entire suspended-sediment load at the most downstream station during 1997-2004.

  7. An ultrasonic measurement for in vitro depth-dependent equilibrium strains of articular cartilage in compression

    NASA Astrophysics Data System (ADS)

    Zheng, Y. P.; Mak, A. F. T.; Lau, K. P.; Qin, L.

    2002-09-01

    The equilibrium depth-dependent biomechanical properties of articular cartilage were measured using an ultrasound-compression method. Ten cylindrical bovine patella cartilage-bone specimens were tested in compression followed by a period of force-relaxation. A 50 MHz focused ultrasound beam was transmitted into the cartilage specimen through a remaining bone layer and a small hole at the centre of a specimen platform. The ultrasound echoes reflected or scattered within the articular cartilage were collected using the same transducer. The displacements of the tissues at different depths of the articular cartilage were derived from the ultrasound echo signals recorded during the compression and the subsequent force-relaxation. For two steps of 0.1 mm compression, the average strain at the superficial 0.2 mm thick layer (0.35 +/- 0.09) was significantly (p < 0.05) larger than that at the subsequent 0.2 mm thick layer (0.05 +/- 0.07) and that at deeper layers (0.01 +/- 0.02). It was demonstrated that the compressive biomechanical properties of cartilage were highly depth-dependent. The results suggested that the ultrasound-compression method could be a useful tool for the study of the depth-dependent biomechanical properties of articular cartilage.

  8. Magnetic properties of Cu80Co20 and Cu80Co15Fe5 melt-spun ribbons

    NASA Astrophysics Data System (ADS)

    Rubinstein, Mark; Harris, V. G.; Das, B. N.; Koon, N. C.

    1994-11-01

    The magnetic properties of granular, annealed, melt-spun ribbons of the ``giant'' magnetoresistors, Cu80Co20 and Cu80Co15Fe5, have been studied by a variety of techniques. These include x-ray dfiffraction, electron microscopy, ferromagnetic resonance, SQUID magnetometry, Mössbauer-effect spectroscopy, and magnetoresistance. We utilize each of these measurements to reveal different aspects of the particle size distribution as a function of annealing temperatures. These melt-spun alloys require large magnetic fields for magnetic saturation, impairing their utility as magnetic sensors. However, the properties of melt-spun ribbons provide an understanding of why all granular magnetic materials are difficult to saturate. The magnetoresistance ratio of these alloys is maximized by a 500 °C anneal with Δρ/ρ~=14% at 4.2 K. The paramagnetic fraction determined by SQUID magnetometry at 4.2 K is 33% for this annealing temperature. The paramagnetic fraction determined by Mössbauer spectroscopy is 14% for samples annealed by 500 °C, and vanishes when the sample is annealed at 900 °C. The discrepancy between the two measurements of the paramagnetic fraction is due to the vastly different averaging times of the two techniques.

  9. Statistical considerations in creating water vapor data records from combinations of satellite and other observation types, including in situ and ground-based remote sensing

    NASA Astrophysics Data System (ADS)

    Dykema, J. A.; Anderson, J. G.

    2014-12-01

    Measuring water vapor at the highest spatial and temporal at all vertical levels and at arbitrary times requires strategic utilization of disparate observations from satellites, ground-based remote sensing, and in situ measurements. These different measurement types have different response times and very different spatial averaging properties, both horizontally and vertically. Accounting for these different measurement properties and explicit propagation of associated uncertainties is necessary to test particular scientific hypotheses, especially in cases of detection of weak signals in the presence of natural fluctuations, and for process studies with small ensembles. This is also true where ancillary data from meteorological analyses are required, which have their own sampling limitations and uncertainties. This study will review two investigations pertaining to measurements of water vapor in the mid-troposphere and lower stratosphere that mix satellite observations with observations from other sources. The focus of the mid-troposphere analysis is to obtain improved estimates of water vapor at the instant of a sounding satellite overpass. The lower stratosphere work examines the uncertainty inherent in a small ensemble of anomalously elevated lower stratospheric water vapor observations when meteorological analysis products and aircraft in situ observations are required for interpretation.

  10. Future constraints on halo thermodynamics from combined Sunyaev-Zel'dovich measurements

    NASA Astrophysics Data System (ADS)

    Battaglia, Nicholas; Ferraro, Simone; Schaan, Emmanuel; Spergel, David N.

    2017-11-01

    The improving sensitivity of measurements of the kinetic Sunyaev-Zel'dovich (SZ) effect opens a new window into the thermodynamic properties of the baryons in halos. We propose a methodology to constrain these thermodynamic properties by combining the kinetic SZ, which is an unbiased probe of the free electron density, and the thermal SZ, which probes their thermal pressure. We forecast that our method constrains the average thermodynamic processes that govern the energetics of galaxy evolution like energetic feedback across all redshift ranges where viable halos sample are available. Current Stage-3 cosmic microwave background (CMB) experiments like AdvACT and SPT-3G can measure the kSZ and tSZ to greater than 100σ if combined with a DESI-like spectroscopic survey. Such measurements translate into percent-level constraints on the baryonic density and pressure profiles and on the feedback and non-thermal pressure support parameters for a given ICM model. This in turn will provide critical thermodynamic tests for sub-grid models of feedback in cosmological simulations of galaxy formation. The high fidelity measurements promised by the next generation CMB experiment, CMB-S4, allow one to further sub-divide these constraints beyond redshift into other classifications, like stellar mass or galaxy type.

  11. Assessment of natural radioactivity and radiation hazard indices in soil samples of East Khasi Hills District, Meghalaya, India

    NASA Astrophysics Data System (ADS)

    Lyngkhoi, B.; Nongkynrih, P.

    2018-04-01

    The Activity Concentrations of naturally occurring radionuclides such as 40K, 238U and 232Th were determined from 20 (twenty) villages of East Khasi Hills District of Meghalaya, India using gamma-ray spectroscopy. This District is adjacent to the South-West Khasi Hills District located in the same state where heavy deposit of uranium has been identified [1]. The measured activities of 40K, 238U and 232Th were found ranging from 93.4 to 606.3, 23.2 to 140.9 and 25.1 to 158.9 Bq kg-1 with their average values of 207.9, 45.6 and 63.8 Bq kg-1, respectively. The obtained value of activity concentration for 40K is lower than the world average value 400.0 Bq kg-1 while for 238U and 232Th, the average concentrations are above the world average values 35.0 and 30.0 Bq kg-1, respectively. The calculated Absorbed Dose Rate gamma-radiation of the natural radionuclides ranged from 37.4 to 186.5 nGy h-1 with an average of 71.3 nGy h-1. The outdoor Annual Effective Dose Rate received by an individual ranged from 50.0-230.0 µSv y-1 with an average value of 87.5 µSv y-1. The physical and chemical properties of the soil have no effects on the naturally occurring radionuclides concentrations. This has been revealed by the results obtained as there is no positive correlation between physical/chemical parameters and the radionuclides concentrations in the soil samples [2]. It is observed that good positive correlations among the radionuclides concentrations and with the measured dose rate prevail. The findings show that the values of external and internal hazard indices resulting from the measured activity concentrations of natural radionuclides in soil from the collected sampling areas are less than the International Recommended safety limits of 1 (unity) with the exception of Mylliem (1.12) where the External hazard index is slightly higher.

  12. Temperature-dependent microindentation data of an epoxy composition in the glassy region

    NASA Astrophysics Data System (ADS)

    Minster, Jiří; Králík, Vlastimil

    2015-02-01

    The short-term instrumented microindentation technique was applied for assessing the influence of temperature in the glassy region on the time-dependent mechanical properties of an average epoxy resin mix near to its native state. Linear viscoelasticity theory with the assumption of time-independent Poisson ratio value forms the basis for processing the experimental results. The sharp standard Berkovich indenter was used to measure the local mechanical properties at temperatures 20, 24, 28, and 35 °C. The short-term viscoelastic compliance histories were defined by the Kohlrausch-Williams-Watts double exponential function. The findings suggest that depth-sensing indentation data of thermorheologically simple materials influenced by different temperatures in the glassy region can also be used, through the time-temperature superposition, to extract viscoelastic response functions accurately. This statement is supported by the comparison of the viscoelastic compliance master curve of the tested material with data derived from standard macro creep measurements under pressure on the material in a conformable state.

  13. Ferromagnetic phases of lunar fines and breccias - Electron magnetic resonance spectra of Apollo 16 samples

    NASA Technical Reports Server (NTRS)

    Weeks, R. A.

    1973-01-01

    Electron magnetic resonance measurements have been made at 9 GHz and at temperatures from 1.2 to 400 K and 35 GHz (300 K) on samples of fines and breccias from Apollo 11-16. Unsorted Apollo 16 fines (less than 1 mm) have Delta H (average) = 580 G and specific intensities that have the same range as fines from the other Apollo collections. The magnetic properties of the 'characteristic' resonance are not in accord with those of iron particles. On the bases of the properties of the 'characteristic' resonance as a function of temperature and Apollo site, laboratory heat treatments on synthetic materials and lunar crystalline rocks and a comparison with the 'characteristic' resonance of the resonance spectra of breccia specimens for which iron particle sizes have been determined from other measurements, it is suggested that some fraction (about 20%) of the 'characteristic' resonance is due to sub-micron particles of ferric oxide phases.

  14. Properties of Spectral Shapes of Whistler-Mode Emissions

    NASA Astrophysics Data System (ADS)

    Macusova, E.; Santolik, O.; Pickett, J. S.; Gurnett, D. A.; Cornilleau-Wehrlin, N.

    2014-12-01

    Whistler-mode emissions play an important role in wave-particle interactions occurring in the radiation belt region. Whistler mode chorus emissions consist of discrete wave packets which exhibit different spectral shapes. Rising tones (events with positive value of the frequency sweep rate) are frequently observed. Other categories of chorus spectral shapes, such as falling tones, hooks, broadband patterns, are also known. Whistler-mode emissions can additionally occur as hiss or combinations of hiss with discrete patterns. In this study, we have analyzed more than 11 years of high-time resolution measurements provided by the Wideband Data (WBD) instrument onboard four Cluster spacecraft to identify different spectral shapes of whistler mode emissions. We determine the distribution of individual groups of chorus spectral shapes in the Earth's magnetosphere and the effect of the different geomagnetic conditions on their occurrence. We focus on average polarization and propagation properties of the different types of spectral shapes, obtained during visually identified time intervals from multicomponent measurements of the STAFF-SA instrument recorded with a time resolution of 4 seconds.

  15. Observing Inflationary Reheating

    NASA Astrophysics Data System (ADS)

    Martin, Jérôme; Ringeval, Christophe; Vennin, Vincent

    2015-02-01

    Reheating is the epoch which connects inflation to the subsequent hot big-bang phase. Conceptually very important, this era is, however, observationally poorly known. We show that the current Planck satellite measurements of the cosmic microwave background (CMB) anisotropies constrain the kinematic properties of the reheating era for most of the inflationary models. This result is obtained by deriving the marginalized posterior distributions of the reheating parameter for about 200 models of slow-roll inflation. Weighted by the statistical evidence of each model to explain the data, we show that the Planck 2013 measurements induce an average reduction of the posterior-to-prior volume by 40%. Making some additional assumptions on reheating, such as specifying a mean equation of state parameter, or focusing the analysis on peculiar scenarios, can enhance or reduce this constraint. Our study also indicates that the Bayesian evidence of a model can substantially be affected by the reheating properties. The precision of the current CMB data is therefore such that estimating the observational performance of a model now requires incorporating information about its reheating history.

  16. Identification of phases, symmetries and defects through local crystallography

    DOE PAGES

    Belianinov, Alex; He, Qian; Kravchenko, Mikhail; ...

    2015-07-20

    Here we report that advances in electron and probe microscopies allow 10 pm or higher precision in measurements of atomic positions. This level of fidelity is sufficient to correlate the length (and hence energy) of bonds, as well as bond angles to functional properties of materials. Traditionally, this relied on mapping locally measured parameters to macroscopic variables, for example, average unit cell. This description effectively ignores the information contained in the microscopic degrees of freedom available in a high-resolution image. Here we introduce an approach for local analysis of material structure based on statistical analysis of individual atomic neighbourhoods. Clusteringmore » and multivariate algorithms such as principal component analysis explore the connectivity of lattice and bond structure, as well as identify minute structural distortions, thus allowing for chemical description and identification of phases. This analysis lays the framework for building image genomes and structure–property libraries, based on conjoining structural and spectral realms through local atomic behaviour.« less

  17. Experimental investigation of the mechanical properties of brain simulants used for cranial gunshot simulation.

    PubMed

    Lazarjan, Milad Soltanipour; Geoghegan, Patrick Henry; Jermy, Mark Christopher; Taylor, Michael

    2014-06-01

    The mechanical properties of the human brain at high strain rate were investigated to analyse the mechanisms that cause backspatter when a cranial gunshot wound occurs. Different concentrations of gelatine and a new material (M1) developed in this work were tested and compared to bovine brain samples. Kinetic energy absorption and expansion rate of the samples caused by the impact of a bullet from .22 air rifle (AR) (average velocity (uav) of 290m/s) and .22 long rifle (LR) (average velocity (uav) of 330m/s) were analysed using a high speed camera (24,000fps). The AR projectile had, in the region of interest, an average kinetic energy (Ek) of 42±1.3J. On average, the bovine brain absorbed 50±5% of Ek, and the simulants 46-58±5%. The Ek of the .22 LR was 141±3.7J. The bovine brain absorbed 27% of the .22LR Ek and the simulants 15-29%. The expansion of the sample, after penetration, was measured. The bovine brain experienced significant plastic deformation whereas the gelatine solution exhibited a principally elastic response. The permanent damage patterns in the M1 material were much closer to those in brain tissue, than were the damage patterns in the gelatine. The results provide a first step to developing a realistic experimental simulant for the human brain which can produce the same blood backspatter patterns as a human brain during a cranial gunshot. These results can also be used to improve the 3D models of human heads used in car crash and blast trauma injury research. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. In situ measurements and radar observations of a severe storm - Electricity, kinematics, and precipitation

    NASA Technical Reports Server (NTRS)

    Byrne, G. J.; Few, A. A.; Stewart, M. F.; Conrad, A. C.; Torczon, R. L.

    1987-01-01

    Electric field measurements made inside a multicell severe storm in Oklahoma in 1983 with a balloon-borne instrument are presented. The properties of the electric charge regions, such as altitude, thickness, and charge concentrations, are studied. These measurements are analzyed with meteorological measurements of temperature and humidity, and balloon tracking and radar observations. The relation between the electric charge structure and the precipitation and kinematic features of the storm is examined. The data reveal that the cell exhibits a bipolar charge structure with negative charge below positive charge. The average charge concentrations of the two regions are estimated as -1.2 and 0.15 nC/cu m, respectively; the upper positive charge is about 6 km in vertical extent, and the lower negative charge is less than 1 km in vertical extent.

  19. Characteristics of interplanetary type II radio emission and the relationship to shock and plasma properties

    NASA Technical Reports Server (NTRS)

    Lengyel-Frey, D.; Stone, R. G.

    1989-01-01

    A large sample of type II events is the basis of the present study of the properties of interplanetary type II bursts' radio-emission properties. Type II spectra seem to be composed of fundamental and harmonic components of plasma emission, where the intensity of the fundamental component increases relative to the harmonic as the burst evolves with heliocentric distance; burst average flux density increases as a power of the associated shock's average velocity. Solar wind density structures may have a significant influence on type II bandwidths.

  20. Assessment and Calibration of Ultrasonic Measurement Errors in Estimating Weathering Index of Stone Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Keehm, Y.

    2011-12-01

    Estimating the degree of weathering in stone cultural heritage, such as pagodas and statues is very important to plan conservation and restoration. The ultrasonic measurement is one of commonly-used techniques to evaluate weathering index of stone cultual properties, since it is easy to use and non-destructive. Typically we use a portable ultrasonic device, PUNDIT with exponential sensors. However, there are many factors to cause errors in measurements such as operators, sensor layouts or measurement directions. In this study, we carried out variety of measurements with different operators (male and female), different sensor layouts (direct and indirect), and sensor directions (anisotropy). For operators bias, we found that there were not significant differences by the operator's sex, while the pressure an operator exerts can create larger error in measurements. Calibrating with a standard sample for each operator is very essential in this case. For the sensor layout, we found that the indirect measurement (commonly used for cultural properties, since the direct measurement is difficult in most cases) gives lower velocity than the real one. We found that the correction coefficient is slightly different for different types of rocks: 1.50 for granite and sandstone and 1.46 for marble. From the sensor directions, we found that many rocks have slight anisotropy in their ultrasonic velocity measurement, though they are considered isotropic in macroscopic scale. Thus averaging four different directional measurement (0°, 45°, 90°, 135°) gives much less errors in measurements (the variance is 2-3 times smaller). In conclusion, we reported the error in ultrasonic meaurement of stone cultural properties by various sources quantitatively and suggested the amount of correction and procedures to calibrate the measurements. Acknowledgement: This study, which forms a part of the project, has been achieved with the support of national R&D project, which has been hosted by National Research Institute of Cultural Heritage of Cultural Heritage Administration(No. NRICH-1107-B01F).

  1. Patient-specific coronary artery blood flow simulation using myocardial volume partitioning

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Hwan; Kang, Dongwoo; Kang, Nahyup; Kim, Ji-Yeon; Lee, Hyong-Euk; Kim, James D. K.

    2013-03-01

    Using computational simulation, we can analyze cardiovascular disease in non-invasive and quantitative manners. More specifically, computational modeling and simulation technology has enabled us to analyze functional aspect such as blood flow, as well as anatomical aspect such as stenosis, from medical images without invasive measurements. Note that the simplest ways to perform blood flow simulation is to apply patient-specific coronary anatomy with other average-valued properties; in this case, however, such conditions cannot fully reflect accurate physiological properties of patients. To resolve this limitation, we present a new patient-specific coronary blood flow simulation method by myocardial volume partitioning considering artery/myocardium structural correspondence. We focus on that blood supply is closely related to the mass of each myocardial segment corresponding to the artery. Therefore, we applied this concept for setting-up simulation conditions in the way to consider many patient-specific features as possible from medical image: First, we segmented coronary arteries and myocardium separately from cardiac CT; then the myocardium is partitioned into multiple regions based on coronary vasculature. The myocardial mass and required blood mass for each artery are estimated by converting myocardial volume fraction. Finally, the required blood mass is used as boundary conditions for each artery outlet, with given average aortic blood flow rate and pressure. To show effectiveness of the proposed method, fractional flow reserve (FFR) by simulation using CT image has been compared with invasive FFR measurement of real patient data, and as a result, 77% of accuracy has been obtained.

  2. Retrieving cirrus microphysical properties from stellar aureoles

    NASA Astrophysics Data System (ADS)

    DeVore, J. G.; Kristl, J. A.; Rappaport, S. A.

    2013-06-01

    The aureoles around stars caused by thin cirrus limit nighttime measurement opportunities for ground-based astronomy, but can provide information on high-altitude ice crystals for climate research. In this paper we attempt to demonstrate quantitatively how this works. Aureole profiles can be followed out to ~0.2° from stars and ~0.5° from Jupiter. Interpretation of diffracted starlight is similar to that for sunlight, but emphasizes larger particles. Stellar diffraction profiles are very distinctive, typically being approximately flat out to a critical angle followed by gradually steepening power-law falloff with slope less steep than -3. Using the relationship between the phase function for diffraction and the average Fourier transform of the projected area of complex ice crystals, we show that defining particle size in terms of average projected area normal to the propagation direction of the starlight leads to a simple, analytic approximation representing large-particle diffraction that is nearly independent of crystal habit. A similar analytic approximation for the diffraction aureole allows it to be separated from the point spread function and the sky background. Multiple scattering is deconvolved using the Hankel transform leading to the diffraction phase function. Application of constrained numerical inversion to the phase function then yields a solution for the particle size distribution in the range between ~50 μm and ~400 μm. Stellar aureole measurements can provide one of the very few, as well as least expensive, methods for retrieving cirrus microphysical properties from ground-based observations.

  3. Fabrication and characterization of fine ceramic based on alumina, bentonite, and glass bead

    NASA Astrophysics Data System (ADS)

    Sebayang, P.; Nurdina; Simbolon, S.; Kurniawan, C.; Yunus, M.; Setiadi, E. A.; Sitorus, Z.

    2018-03-01

    Fabrication of fine ceramics based on alumina, bentonite and glass bead has been carried out by powder metallurgy. The preparation of powder has been performed using High Energy Milling (HEM) with wet milling process and using toluene as medium for 2 hours. The powder milling result was dried in oven at 100 °C for 24 hours. After that, the powder was compacted into pellet by using hydraulic press with 80 kgf/cm2 pressure at room temperature. Then, the pellet was sintered at 900 °C for 4 hours. Materials characterization such as physical properties (true density, bulk density, porosity, and water absorption), average particle diameter, hardness, microstructure and phase were measured by Archimedes method, Particle Size Analyzer (PSA), Hardness Vickers (HV), Scanning Electron Microscope (SEM-EDX) and X-Ray Diffraction (XRD). From the result, the optimum condition is sample D (with addition of 30 wt.% γ-Al2O3) with sintering temperature of 900 °C for 4 hours. At this condition, these properties were measured: average particle diameter of 4.27 μm, true density of 2.32 g/cm3, porosity of 5.57%, water absorption of 2.46%, bulk density of 2.39 g/cm3, and hardness of 632 HV. The fine ceramic has four phases with albite (Al2NaO8Si3) and quartz (SiO2) as dominant phases and corundum (Al2O3) and nepheline (AlNaO4Si) as minor phases.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Nacre, also known as mother-of-pearl, is a biocomposite material that exhibits higher strength and fracture toughness than its component materials. It derives its strength from the brick-and-mortar layering of aragonite (CaCO{sub 3}) platelets and organic binder. It is believed that the protein binder helps redistribute the stress throughout all tablets for optimal mechanical performance. In this study, we attempt to measure the mechanical properties of aragonite within nacre and compare them to bulk aragonite and bulk nacre and understand the redistribution of stresses. Here we show that x-ray diffraction techniques are useful for isolating and measuring strain of crystallites withinmore » a composite material. Our results show that the apparent stiffness of aragonite varies with crystallographic directions and is higher than the stiffness of bulk nacre in all cases, meaning that aragonite tablets are exposed to less than the average bulk stress. The average force applied to the bulk sample is partitioned between the aragonite and the binder, so that the protein layer bears as much as 27.2% of the total applied force. Different crystallographic directions exhibit behaviors different than bulk aragonite or bulk nacre. These are related to texture of aragonite platelets (i.e. preferred orientations within nacre). By examining nacre, we can obtain a better understanding of the mechanical relationship between the ceramic and polymer in composite materials. We expect that x-ray diffraction will become the standard method for probing the mechanical properties of composite materials.« less

  5. A self-sustaining atomic magnetometer with τ(-1) averaging property.

    PubMed

    Xu, C; Wang, S G; Feng, Y Y; Zhao, L; Wang, L J

    2016-06-30

    Quantum measurement using coherent superposition of intrinsic atomic states has the advantage of being absolute measurement and can form metrological standards. One example is the absolute measurement of magnetic field by monitoring the Larmor precession of atomic spins whilst another being the Ramsey type atomic clock. Yet, in almost all coherent quantum measurement, the precision is limited by the coherence time beyond which, the uncertainty decreases only as τ(-1/2). Here we show that by non-destructively measuring the phase of the Larmor precession and regenerating the coherence via optical pumping, the self-sustaining Larmor precession signal can persist indefinitely. Consequently, the precision of the magnetometer increases with time following a much faster τ(-1) rule. A mean sensitivity of 240  from 1 Hz to 10 Hz is realized, being close to the shot noise level. This method of coherence regeneration may also find important applications in improving the performance of atomic clocks.

  6. Effects of epidemic threshold definition on disease spread statistics

    NASA Astrophysics Data System (ADS)

    Lagorio, C.; Migueles, M. V.; Braunstein, L. A.; López, E.; Macri, P. A.

    2009-03-01

    We study the statistical properties of SIR epidemics in random networks, when an epidemic is defined as only those SIR propagations that reach or exceed a minimum size sc. Using percolation theory to calculate the average fractional size of an epidemic, we find that the strength of the spanning link percolation cluster P∞ is an upper bound to . For small values of sc, P∞ is no longer a good approximation, and the average fractional size has to be computed directly. We find that the choice of sc is generally (but not always) guided by the network structure and the value of T of the disease in question. If the goal is to always obtain P∞ as the average epidemic size, one should choose sc to be the typical size of the largest percolation cluster at the critical percolation threshold for the transmissibility. We also study Q, the probability that an SIR propagation reaches the epidemic mass sc, and find that it is well characterized by percolation theory. We apply our results to real networks (DIMES and Tracerouter) to measure the consequences of the choice sc on predictions of average outcome sizes of computer failure epidemics.

  7. Characterization of DTI Indices in the Cervical, Thoracic, and Lumbar Spinal Cord in Healthy Humans

    PubMed Central

    Bosma, Rachael L.; Stroman, Patrick W.

    2012-01-01

    The aim of this study was to characterize in vivo measurements of diffusion along the length of the entire healthy spinal cord and to compare DTI indices, including fractional anisotropy (FA) and mean diffusivity (MD), between cord regions. The objective is to determine whether or not there are significant differences in DTI indices along the cord that must be considered for future applications of characterizing the effects of injury or disease. A cardiac gated, single-shot EPI sequence was used to acquire diffusion-weighted images of the cervical, thoracic, and lumbar regions of the spinal cord in nine neurologically intact subjects (19 to 22 years). For each cord section, FA versus MD values were plotted, and a k-means clustering method was applied to partition the data according to tissue properties. FA and MD values from both white matter (average FA = 0.69, average MD = 0.93 × 10−3 mm2/s) and grey matter (average FA = 0.44, average MD = 1.8 × 10−3 mm2/s) were relatively consistent along the length of the cord. PMID:22295179

  8. A Correlation Between the Intrinsic Brightness and Average Decay Rate of Gamma-Ray Burst X-Ray Afterglow Light Curves

    NASA Technical Reports Server (NTRS)

    Racusin, J. L.; Oates, S. R.; De Pasquale, M.; Kocevski, D.

    2016-01-01

    We present a correlation between the average temporal decay (alpha X,avg, greater than 200 s) and early-time luminosity (LX,200 s) of X-ray afterglows of gamma-ray bursts as observed by the Swift X-ray Telescope. Both quantities are measured relative to a rest-frame time of 200 s after the gamma-ray trigger. The luminosity â€" average decay correlation does not depend on specific temporal behavior and contains one scale-independent quantity minimizing the role of selection effects. This is a complementary correlation to that discovered by Oates et al. in the optical light curves observed by the Swift Ultraviolet Optical Telescope. The correlation indicates that, on average, more luminous X-ray afterglows decay faster than less luminous ones, indicating some relative mechanism for energy dissipation. The X-ray and optical correlations are entirely consistent once corrections are applied and contamination is removed. We explore the possible biases introduced by different light-curve morphologies and observational selection effects, and how either geometrical effects or intrinsic properties of the central engine and jet could explain the observed correlation.

  9. Glaucoma-related Changes in the Mechanical Properties and Collagen Micro-architecture of the Human Sclera

    PubMed Central

    Coudrillier, Baptiste; Pijanka, Jacek K.; Jefferys, Joan L.; Goel, Adhiraj; Quigley, Harry A.; Boote, Craig; Nguyen, Thao D.

    2015-01-01

    Objective The biomechanical behavior of the sclera determines the level of mechanical insult from intraocular pressure to the axons and tissues of the optic nerve head, as is of interest in glaucoma. In this study, we measure the collagen fiber structure and the strain response, and estimate the material properties of glaucomatous and normal human donor scleras. Methods Twenty-two posterior scleras from normal and diagnosed glaucoma donors were obtained from an eyebank. Optic nerve cross-sections were graded to determine the presence of axon loss. The specimens were subjected to pressure-controlled inflation testing. Full-field displacement maps were measured by digital image correlation (DIC) and spatially differentiated to compute surface strains. Maps of the collagen fiber structure across the posterior sclera of each inflated specimen were obtained using synchrotron wide-angle X-ray scattering (WAXS). Finite element (FE) models of the posterior scleras, incorporating a specimen-specific representation of the collagen structure, were constructed from the DIC-measured geometry. An inverse finite element analysis was developed to estimate the stiffness of the collagen fiber and inter-fiber matrix. Results The differences between glaucoma and non-glaucoma eyes were small in magnitude. Sectorial variations of degree of fiber alignment and peripapillary scleral strain significantly differed between normal and diagnosed glaucoma specimens. Meridional strains were on average larger in diagnosed glaucoma eyes compared with normal specimens. Non-glaucoma specimens had on average the lowest matrix and fiber stiffness, followed by undamaged glaucoma eyes, and damaged glaucoma eyes but the differences in stiffness were not significant. Conclusion The observed biomechanical and microstructural changes could be the result of tissue remodeling occuring in glaucoma and are likely to alter the mechanical environment of the optic nerve head and contribute to axonal damage. PMID:26161963

  10. Variability of aerosol optical depth and aerosol radiative forcing over Northwest Himalayan region

    NASA Astrophysics Data System (ADS)

    Saheb, Shaik Darga; Kant, Yogesh; Mitra, D.

    2016-05-01

    In recent years, the aerosol loading in India is increasing that has significant impact on the weather/climatic conditions. The present study discusses the analysis of temporal (monthly and seasonal) variation of aerosol optical depth(AOD) by the ground based observations from sun photometer and estimate the aerosol radiative forcing and heating rate over selected station Dehradun in North western Himalayas, India during 2015. The in-situ measurements data illustrate that the maximum seasonal average AOD observed during summer season AOD at 500nm ≍ 0.59+/-0.27 with an average angstrom exponent, α ≍0.86 while minimum during winter season AOD at 500nm ≍ 0.33+/-0.10 with angstrom exponent, α ≍1.18. The MODIS and MISR derived AOD was also compared with the ground measured values and are good to be in good agreement. Analysis of air mass back trajectories using HYSPLIT model reveal that the transportation of desert dust during summer months. The Optical Properties of Aerosols and clouds (OPAC) model was used to compute the aerosol optical properties like single scattering albedo (SSA), Angstrom coefficient (α) and Asymmetry(g) parameter for each day of measurement and they are incorporated in a Discrete Ordinate Radiative Transfer model, i.e Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) to estimate the direct short-wave (0.25 to 4 μm) Aerosol Radiative forcing at the Surface (SUR), the top-of-atmosphere (TOA) and Atmosphere (ATM). The maximum Aerosol Radiative Forcing (ARF) was observed during summer months at SUR ≍ -56.42 w/m2, at TOA ≍-21.62 w/m2 whereas in ATM ≍+34.79 w/m2 with corresponding to heating rate 1.24°C/day with in lower atmosphere.

  11. Postoperative changes in in vivo measured friction in total hip joint prosthesis during walking.

    PubMed

    Damm, Philipp; Bender, Alwina; Bergmann, Georg

    2015-01-01

    Loosening of the artificial cup and inlay is the most common reasons for total hip replacement failures. Polyethylene wear and aseptic loosening are frequent reasons. Furthermore, over the past few decades, the population of patients receiving total hip replacements has become younger and more active. Hence, a higher level of activity may include an increased risk of implant loosening as a result of friction-induced wear. In this study, an instrumented hip implant was used to measure the contact forces and friction moments in vivo during walking. Subsequently, the three-dimensional coefficient of friction in vivo was calculated over the whole gait cycle. Measurements were collected from ten subjects at several time points between three and twelve months postoperative. No significant change in the average resultant contact force was observed between three and twelve months postoperative. In contrast, a significant decrease of up to 47% was observed in the friction moment. The coefficient of friction also decreased over postoperative time on average. These changes may be caused by 'running-in' effects of the gliding components or by the improved lubricating properties of the synovia. Because the walking velocity and contact forces were found to be nearly constant during the observed period, the decrease in friction moment suggests an increase in fluid viscosity. The peak values of the contact force individually varied by 32%-44%. The friction moment individually differed much more, by 110%-129% at three and up to 451% at twelve months postoperative. The maximum coefficient of friction showed the highest individual variability, about 100% at three and up to 914% at twelve months after surgery. These individual variations in the friction parameters were most likely due to different 'running-in' effects that were influenced by the individual activity levels and synovia properties.

  12. Healthcare costs of burn patients from homes without fire sprinklers

    PubMed Central

    Banfield, Joanne; Rehou, Sarah; Gomez, Manuel; Redelmeier, Donald A.; Jeschke, Marc G.

    2014-01-01

    The treatment of burn injuries requires high-cost services for healthcare and society. Automatic fire sprinklers are a preventive measure that can decrease fire injuries, deaths, property damage and environmental toxins. This study’s aim was to conduct a cost-analysis of patients with burn or inhalation injuries due to residential fires, and to compare this to the cost of implementing residential automatic fire sprinklers. We conducted a cohort analysis of adult burn patients admitted to our provincial burn center (1995–2012). Patient demographics and injury characteristics were collected from medical records, and clinical and coroner databases. Resource costs included average cost per day at our intensive care and rehabilitation program, transportation, and property loss. During the study period there were 1,557 residential fire-related deaths province-wide and 1,139 patients were admitted to our provincial burn center due to a flame injury occurring at home. At our burn center, the average cost was CAN$84,678 per patient with a total cost of CAN$96,448,194. All resources totaled CAN$3,605,775,200. This study shows the considerable healthcare costs of burn patients from homes without fire sprinklers. PMID:25412056

  13. Characterization and optimization of a new high-average power laser glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayramian, A.

    A new High-Average Power laser glass with favorable thermal-mechanical properties was recently developed by Schott Glass Technologies. We refer to this glass as APG-2, although it does not have an official designation. Fracture studies were conducted which verified the thermomechanical utility of the glass. Consequently, the glass was a promising candidate for a variety of applications such as a Kerr-lens mode-locked short-pulse laser. As a result, cavity designs and optical parameters were calculated to test this hypothesis, and characterization of the lasing properties began. The glass was lased for the first time, and laser slope efficiencies were measured at variousmore » output couplings. Laser efficiencies were observed to drop radically when the pump light duty cycle was increased from 10% to unity. When the new laser glass was compared to commercially available laser glasses LG-750 and APG-1, something appeared to be inhibiting smooth laser action. Further investigations indicated that the thermal lens in the new glass was much larger than in the other glasses making the laser resonator unstable. This thermal lens was then modeled and quantified in a separate experiment.« less

  14. Non-contact, ultrasound-based indentation method for measuring elastic properties of biological tissues using harmonic motion imaging (HMI).

    PubMed

    Vappou, Jonathan; Hou, Gary Y; Marquet, Fabrice; Shahmirzadi, Danial; Grondin, Julien; Konofagou, Elisa E

    2015-04-07

    Noninvasive measurement of mechanical properties of biological tissues in vivo could play a significant role in improving the current understanding of tissue biomechanics. In this study, we propose a method for measuring elastic properties non-invasively by using internal indentation as generated by harmonic motion imaging (HMI). In HMI, an oscillating acoustic radiation force is produced by a focused ultrasound transducer at the focal region, and the resulting displacements are estimated by tracking radiofrequency signals acquired by an imaging transducer. In this study, the focal spot region was modeled as a rigid cylindrical piston that exerts an oscillatory, uniform internal force to the underlying tissue. The HMI elastic modulus EHMI was defined as the ratio of the applied force to the axial strain measured by 1D ultrasound imaging. The accuracy and the precision of the EHMI estimate were assessed both numerically and experimentally in polyacrylamide tissue-mimicking phantoms. Initial feasibility of this method in soft tissues was also shown in canine liver specimens in vitro. Very good correlation and agreement was found between the measured Young's modulus and the HMI modulus in the numerical study (r(2) > 0.99, relative error <10%) and on polyacrylamide gels (r(2) = 0.95, relative error <24%). The average HMI modulus on five liver samples was found to EHMI = 2.62  ±  0.41 kPa, compared to EMechTesting = 4.2  ±  2.58 kPa measured by rheometry. This study has demonstrated for the first time the initial feasibility of a non-invasive, model-independent method to estimate local elastic properties of biological tissues at a submillimeter scale using an internal indentation-like approach. Ongoing studies include in vitro experiments in a larger number of samples and feasibility testing in in vivo models as well as pathological human specimens.

  15. Dust layer effects on the atmospheric radiative budget and heating rate profiles

    NASA Astrophysics Data System (ADS)

    Perrone, Maria Rita; Tafuro, A. M.; Kinne, S.

    2012-11-01

    The effect of mineral aerosol optical properties and vertical distribution on clear-sky, instantaneous and daily-average aerosol direct radiative effects (DREs) and heating rates (HRs) is analyzed in the solar (S, 0.3-4 μm) and terrestrial (T, 4-80 μm) spectral domain, respectively. The used radiative transfer model is based on lidar, sun-sky photometer, and radiosonde measurements. The study focuses on the Sahara dust outbreak of July 16, 2009 which advected dust particles from north-western Africa over south-eastern Italy. Clear-sky, instantaneous aerosol DREs and HRs undergo large changes within few hours, for the variability of the dust aerosol properties and vertical distribution. The daily-average, clear-sky aerosol S-DRE is near -5 Wm-2 and -12 Wm-2 at the top of the atmosphere (ToA) and surface (sfc), respectively. The daily-average aerosol T-DRE offsets the S-DRE by about one third at the ToA and by about one half at the surface. The daily average aerosol HR integrated over the whole aerosol column is 0.5 and -0.3 K day-1 in the S and T domain, respectively. Thus, the all-wave integrated HR is 0.2 K day-1. These results highlight the importance of accounting for the interaction of dust particles with T and S radiation. Sensitivity tests indicate that the uncertainties of the aerosol refractive index, size distribution, and vertical distribution have on average a large impact on aerosol HRs in the S and T domain, respectively. Refractive index and aerosol size distribution uncertainties also have a large impact on S- and T-DREs. The aerosol vertical distribution that has a negligible impact on aerosol S-DREs, is important for aerosol T-DREs. It is also shown that aerosol HRs and DREs in the terrestrial domain are affected by the water vapour vertical distribution.

  16. 40 CFR 421.123 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .../troy ounce of silver from film stripping Copper 64.450 30.720 Zinc 51.360 21.150 Ammonia (as N) 6,712... pollutant property Maximum for any 1 day Maximum for monthly average mg/troy ounce of silver from... Limitations Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/troy ounce of...

  17. Evolution of multispectral aerosol optical properties in a biogenically-influenced urban environment during the CARES campaign

    NASA Astrophysics Data System (ADS)

    Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Pekour, M.; Flowers, B.; Dubey, M. K.; Setyan, A.; Zhang, Q.; Harworth, J. W.; Radney, J. G.; Atkinson, D. B.; China, S.; Mazzoleni, C.; Gorkowski, K.; Subramanian, R.; Jobson, B. T.; Moosmüller, H.

    2013-03-01

    Ground-based aerosol measurements made in June 2010 within Sacramento urban area (site T0) and at a 40-km downwind location (site T1) in the forested Sierra Nevada foothills area are used to investigate the evolution of multispectral optical properties as the urban aerosols aged and interacted with biogenic emissions. Along with black carbon and non-refractory aerosol mass and composition observations, spectral absorptio (βabs), scattering (βsca), and extinction (βext) coefficients for wavelengths ranging from 355 to 1064 nm were measured at both sites using photoacoustic (PA) instruments with integrating nephelometers and using cavity ring-down (CRD) instruments. The daytime average Ångström exponent of absorption (AEA) was ~1.6 for the wavelength pair 405 and 870 nm at T0, while it was ~1.8 for the wavelength pair 355 and 870 nm at T1, indicating a modest wavelength-dependent enhancement of absorption at both sites throughout the study. The measured and Mie theory calculations of multispectral βsca showed good correlation (R2=0.85-0.94). The average contribution of supermicron aerosol (mainly composed of sea salt particles advected in from the Pacific Ocean) to the total scattering coefficient ranged from less than 20% at 405 nm to greater than 80% at 1064 nm. From 22 to 28 June, secondary organic aerosol mass increased significantly at both sites due to increased biogenic emissions coupled with intense photochemical activity and air mass recirculation in the area. During this period, the short wavelength scattering coefficients at both sites gradually increased due to increase in the size of submicron aerosols. At the same time, BC mass-normalized absorption cross-section (MAC) values for ultraviolet wavelengths at T1 increased by ~60% compared to the relatively less aged urban emissions at the T0 site. In contrast, the average MAC values for 870 nm wavelength were identical at both sites. These results suggest formation of moderately brown secondary organic aerosols formed in biogenically-influenced urban air.

  18. Evaluation of the electromechanical properties of the cardiovascular system

    NASA Technical Reports Server (NTRS)

    Bergman, S. A., Jr.; Hoffler, G. W.; Johnson, R. L.

    1974-01-01

    Cardiovascular electromechanical measurements were collected on returning Skylab crewmembers at rest and during both lower body negative pressure and exercise stress testing. These data were compared with averaged responses from multiple preflight tests. Systolic time intervals and first heart sound amplitude changes were measured. Clinical cardiovascular examinations and clinical phonocardiograms were evaluated. All changes noted returned to normal within 30 days postflight so that the processes appear to be transient and self limited. The cardiovascular system seems to adapt quite readily to zero-g, and more importantly it is capable of readaptation to one-g after long duration space flight. Repeated exposures to zero-g also appear to have no detrimental effects on the cardiovascular system.

  19. Laser extensometer

    NASA Technical Reports Server (NTRS)

    Stocker, P. J.; Marcus, H. L. (Inventor)

    1977-01-01

    A drift compensated and intensity averaged extensometer for measuring the diameter or other properties of a substantially cylindrical sample based upon the shadow of the sample is described. A beam of laser light is shaped to provide a beam with a uniform intensity along an axis normal to the sample. After passing the sample, the portion of the beam not striking said sample is divided by a beam splitter into a reference signal and a measurement signal. Both of these beams are then chopped by a light chopper to fall upon two photodiode detectors. The resulting ac currents are rectified and then divided into one another, with the final output being proportional to the size of the sample shadow.

  20. Evaluation of the non-Gaussianity of two-mode entangled states over a bosonic memory channel via cumulant theory and quadrature detection

    NASA Astrophysics Data System (ADS)

    Xiang, Shao-Hua; Wen, Wei; Zhao, Yu-Jing; Song, Ke-Hui

    2018-04-01

    We study the properties of the cumulants of multimode boson operators and introduce the phase-averaged quadrature cumulants as the measure of the non-Gaussianity of multimode quantum states. Using this measure, we investigate the non-Gaussianity of two classes of two-mode non-Gaussian states: photon-number entangled states and entangled coherent states traveling in a bosonic memory quantum channel. We show that such a channel can skew the distribution of two-mode quadrature variables, giving rise to a strongly non-Gaussian correlation. In addition, we provide a criterion to determine whether the distributions of these states are super- or sub-Gaussian.

Top