Sample records for average micropore diameter

  1. Improved Fibroblast Functionalities by Microporous Pattern Fabricated by Microelectromechanical Systems

    PubMed Central

    Wei, Hongbo; Zhao, Lingzhou; Chen, Bangdao; Bai, Shizhu; Zhao, Yimin

    2014-01-01

    Fibroblasts, which play an important role in biological seal formation and maintenance, determine the long-term success of percutaneous implants. In this study, well-defined microporous structures with micropore diameters of 10–60 µm were fabricated by microelectromechanical systems and their influence on the fibroblast functionalities was observed. The results show that the microporous structures with micropore diameters of 10–60 µm did not influence the initial adherent fibroblast number; however, those with diameters of 40 and 50 µm improved the spread, actin stress fiber organization, proliferation and fibronectin secretion of the fibroblasts. The microporous structures with micropore diameters of 40–50 µm may be promising for application in the percutaneous part of an implant. PMID:25054322

  2. Manganese oxide nanowires, films, and membranes and methods of making

    DOEpatents

    Suib, Steven Lawrence [Storrs, CT; Yuan, Jikang [Storrs, CT

    2008-10-21

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves, and methods of making, are disclosed. A single crystal ultra-long nanowire includes an ordered porous manganese oxide-based octahedral molecular sieve, and has an average length greater than about 10 micrometers and an average diameter of about 5 nanometers to about 100 nanometers. A film comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is stacked on a surface of a substrate, wherein the nanowires of each layer are substantially axially aligned. A free standing membrane comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is aggregately stacked, and wherein the nanowires of each layer are substantially axially aligned.

  3. [Micropore filters for measuring red blood cell deformability and their pore diameters].

    PubMed

    Niu, X; Yan, Z

    2001-09-01

    Micropore filters are the most important components in micropore filtration testes for assessing red blood cell (RBC) deformability. With regard to their appearance and filtration behaviors, comparisons are made for different kinds of filters currently in use. Nickel filters with regular geometric characteristics are found to be more sensitive to the effects of physical, chemical, especially pathological factors on the RBC deformability. We have critically reviewed the following viewpoint that filters with 3 microns pore diameter are more sensitive to cell volume than to internal viscosity while filters with 5 microns pore diameter are just the opposite. After analyzing the experiment results with 3 microns and 5 microns filters, we point out that filters with smaller pore diameters are more suitable for assessing the RBC deformability.

  4. Changes in pore structure of coal caused by coal-to-gas bioconversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra

    Microbial enhanced coalbed methane (ME-CBM) recovery is critically examined as a viable technology for natural gas recovery from coalbed methane (CBM) reservoirs. Since the majority of gas-in-place (GIP) is stored as an adsorbed phase in fine pores of coal matrix, the nano-pore structure directly influences gas storage and transport properties. Only limited studies have quantified the alteration of the nano-pore structure due to ME-CBM treatment. This study examines the evolution of the pore structure using a combination of small angle X-ray scattering (SAXS), low-pressure N 2 and CO 2 adsorption (LPGA) and high-pressure methane adsorption methods. The results show thatmore » the surface fractal dimension decreases for the two bioconverted coals compared to the untreated coal. After bio-treatment, the mesopore surface area and pore volume decrease with the average pore diameter increases, while the micropore surface area increases with pore volume decreases. Both inaccessible meso-/micropore size distributions decrease after bioconversion, while the accessible micropore size distribution increases, making a portion of closed micropore network accessible. In addition, the methane adsorption capacities increase after bio-treatment, which is confirmed by the increase of micropore surface area. A conceptual physical model of methanogenesis is proposed based on the evolution of the pore structure.« less

  5. Changes in pore structure of coal caused by coal-to-gas bioconversion

    DOE PAGES

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; ...

    2017-06-19

    Microbial enhanced coalbed methane (ME-CBM) recovery is critically examined as a viable technology for natural gas recovery from coalbed methane (CBM) reservoirs. Since the majority of gas-in-place (GIP) is stored as an adsorbed phase in fine pores of coal matrix, the nano-pore structure directly influences gas storage and transport properties. Only limited studies have quantified the alteration of the nano-pore structure due to ME-CBM treatment. This study examines the evolution of the pore structure using a combination of small angle X-ray scattering (SAXS), low-pressure N 2 and CO 2 adsorption (LPGA) and high-pressure methane adsorption methods. The results show thatmore » the surface fractal dimension decreases for the two bioconverted coals compared to the untreated coal. After bio-treatment, the mesopore surface area and pore volume decrease with the average pore diameter increases, while the micropore surface area increases with pore volume decreases. Both inaccessible meso-/micropore size distributions decrease after bioconversion, while the accessible micropore size distribution increases, making a portion of closed micropore network accessible. In addition, the methane adsorption capacities increase after bio-treatment, which is confirmed by the increase of micropore surface area. A conceptual physical model of methanogenesis is proposed based on the evolution of the pore structure.« less

  6. Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides

    PubMed Central

    Holmes, Matthew R.; Shang, Tao; Hawkins, Aaron R.; Rudenko, Mikhail; Measor, Philip; Schmidt, Holger

    2011-01-01

    We demonstrate the fabrication of micropore and nanopore features in hollow antiresonant reflecting optical waveguides to create an electrical and optical analysis platform that can size select and detect a single nanoparticle. Micropores (4 μm diameter) are reactive-ion etched through the top SiO2 and SiN layers of the waveguides, leaving a thin SiN membrane above the hollow core. Nanopores are formed in the SiN membranes using a focused ion-beam etch process that provides control over the pore size. Openings as small as 20 nm in diameter are created. Optical loss measurements indicate that micropores did not significantly alter the loss along the waveguide. PMID:21922035

  7. Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides.

    PubMed

    Holmes, Matthew R; Shang, Tao; Hawkins, Aaron R; Rudenko, Mikhail; Measor, Philip; Schmidt, Holger

    2010-01-01

    We demonstrate the fabrication of micropore and nanopore features in hollow antiresonant reflecting optical waveguides to create an electrical and optical analysis platform that can size select and detect a single nanoparticle. Micropores (4 μm diameter) are reactive-ion etched through the top SiO(2) and SiN layers of the waveguides, leaving a thin SiN membrane above the hollow core. Nanopores are formed in the SiN membranes using a focused ion-beam etch process that provides control over the pore size. Openings as small as 20 nm in diameter are created. Optical loss measurements indicate that micropores did not significantly alter the loss along the waveguide.

  8. Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering.

    PubMed

    Hsieh, Wen-Chuan; Chang, Chih-Pong; Lin, Shang-Ming

    2007-06-15

    This research studies the morphology and characterization of three-dimensional (3D) micro-porous structures produced from biodegradable chitosan for use as scaffolds for cells culture. The chitosan 3D micro-porous structures were produced by a simple liquid hardening method, which includes the processes of foaming by mechanical stirring without any chemical foaming agent added, and hardening by NaOH cross linking. The pore size and porosity were controlled with mechanical stirring strength. This study includes the morphology of chitosan scaffolds, the characterization of mechanical properties, water absorption properties and in vitro enzymatic degradation of the 3D micro-porous structures. The results show that chitosan 3D micro-porous structures were successfully produced. Better formation samples were obtained when chitosan concentration is at 1-3%, and concentration of NaOH is at 5%. Faster stirring rate would produce samples of smaller pore diameter, but when rotation speed reaches 4000 rpm and higher the changes in pore size is minimal. Water absorption would reduce along with the decrease of chitosan scaffolds' pore diameter. From stress-strain analysis, chitosan scaffolds' mechanical properties are improved when it has smaller pore diameter. From in vitro enzymatic degradation results, it shows that the disintegration rate of chitosan scaffolds would increase along with the processing time increase, but approaching equilibrium when the disintegration rate reaches about 20%.

  9. Nanorod diameter modulated osteogenic activity of hierarchical micropore/nanorod-patterned coatings via a Wnt/β-catenin pathway.

    PubMed

    Zhou, Jianhong; Zhao, Lingzhou; Li, Bo; Han, Yong

    2018-04-14

    Hierarchical micropore/nanorod-patterned strontium doped hydroxyapatite (Ca 9 Sr 1 (PO 4 ) 6 (OH) 2 , Sr 1 -HA) structures (MNRs) with different nanorod diameters of about 30, 70 and 150 nm were coated on titanium, to investigate the effect of nanorod diameter on osteogenesis and the involved mechanism. Compared to micropore/nanogranule-patterned Sr 1 -HA coating (MNG), MNRs gave rise to dramatically enhanced in vitro mesenchymal stem cell functions including osteogenic differentiation in the absence of osteogenic supplements and in vivo osseointegration related to the nanorod diameter with about 70 nm displaying the best effects. MNRs activated the cellular Wnt/β-catenin pathway by increasing the expression of Wnt3a and LRP6 and decreasing the expression of Wnt/β-catenin pathway antagonists (sFRP1, sFRP2, Dkk1 and Dkk2). The exogenous Wnt3a significantly enhanced the β-catenin signaling activation and cell differentiation on MNG, and the exogenous Dkk1 attenuated the enhancing effect of MNRs on them. The data demonstrate that MNRs favor osseointegration via a Wnt/β-catenin pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Formulation of stable Bacillus subtilis AH18 against temperature fluctuation with highly heat-resistant endospores and micropore inorganic carriers.

    PubMed

    Chung, Soohee; Lim, Hyung Mi; Kim, Sang-Dal

    2007-08-01

    To survive the commercial market and to achieve the desired effect of beneficial organisms, the strains in microbial products must be cost-effectively formulated to remain dormant and hence survive through high and low temperatures of the environment during transportation and storage. Dormancy and stability of Bacillus subtilis AH18 was achieved by producing endospores with enhanced heat resistance and using inorganic carriers. Heat stability assays, at 90 degrees C for 1 h, showed that spores produced under a sublethal temperature of 57 degrees C was 100 times more heat-resistant than the ones produced by food depletion at the growing temperature of 37 degrees C. When these highly heat-resistant endospores were formulated with inorganic carriers of natural and synthetic zeolite or kaolin clay minerals having substantial amount of micropores, the dormancy of the endospores was maintained for 6 months at 15-25 degrees C. Meanwhile, macroporous perlite carriers with average pore diameter larger than 3.7 microm stimulated the germination of the spores and rapid proliferation of the bacteria. These results indicated that a B. subtilis AH18 product that can remain dormant and survive through environmental temperature fluctuation can be formulated by producing heat-stressed endospores and incorporating inorganic carriers with micropores in the formulation step.

  11. Mathematical Model Relating Uniaxial Compressive Behavior of Manufactured Sand Mortar to MIP-Derived Pore Structure Parameters

    PubMed Central

    Tian, Zhenghong; Bu, Jingwu

    2014-01-01

    The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed. PMID:25133257

  12. Mathematical model relating uniaxial compressive behavior of manufactured sand mortar to MIP-derived pore structure parameters.

    PubMed

    Tian, Zhenghong; Bu, Jingwu

    2014-01-01

    The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed.

  13. Chelating agent-free, vapor-assisted crystallization method to synthesize hierarchical microporous/mesoporous MIL-125 (Ti).

    PubMed

    McNamara, Nicholas D; Hicks, Jason C

    2015-03-11

    Titanium-based microporous heterogeneous catalysts are widely studied but are often limited by the accessibility of reactants to active sites. Metal-organic frameworks (MOFs), such as MIL-125 (Ti), exhibit enhanced surface areas due to their high intrinsic microporosity, but the pore diameters of most microporous MOFs are often too small to allow for the diffusion of larger reactants (>7 Å) relevant to petroleum and biomass upgrading. In this work, hierarchical microporous MIL-125 exhibiting significantly enhanced interparticle mesoporosity was synthesized using a chelating-free, vapor-assisted crystallization method. The resulting hierarchical MOF was examined as an active catalyst for the oxidation of dibenzothiophene (DBT) with tert-butyl hydroperoxide and outperformed the solely microporous analogue. This was attributed to greater access of the substrate to surface active sites, as the pores in the microporous analogues were of inadequate size to accommodate DBT. Moreover, thiophene adsorption studies suggested the mesoporous MOF contained larger amounts of unsaturated metal sites that could enhance the observed catalytic activity.

  14. Highly Microporous Nitrogen-doped Carbon Synthesized from Azine-linked Covalent Organic Framework and its Supercapacitor Function.

    PubMed

    Kim, Gayoung; Yang, Jun; Nakashima, Naotoshi; Shiraki, Tomohiro

    2017-12-11

    Porous carbons with nitrogen-doped (N-doped) structures are promising materials for advanced energy conversion and storage applications, including supercapacitors and fuel cell catalysts. In this study, microporous N-doped carbon was successfully fabricated through carbonization of covalent organic frameworks (COFs) with an azine-linked two-dimensional molecular network (ACOF1). In the carbonized ACOF1, micropores with diameters smaller than 1 nm are selectively formed, and a high specific surface area (1596 cm 2  g -1 ) is achieved. In addition, the highly porous structure with N-doped sites results in enhancement of the electrochemical capacitance. Detailed investigation for the micropore-forming process reveals that the formation of nitrogen gas during the thermal degradation of the azine bond contributes to the microporous structure formation. Therefore, the present direct carbonization approach using COFs allows the fabrication of microporous heteroatom-doped carbons, based on molecularly designed COFs, toward future electrochemical and energy applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Highly Monodisperse Microporous Polymeric and Carbonaceous Nanospheres with Multifunctional Properties

    PubMed Central

    Ouyang, Yi; Shi, Huimin; Fu, Ruowen; Wu, Dingcai

    2013-01-01

    Fabrication of monodisperse porous polymeric nanospheres with diameters below 500 nm remains a great challenge, due to serious crosslinking between neighboring nanospheres during pore-making process. Here we show how a versatile hypercrosslinking strategy can be used to prepare monodisperse microporous polystyrene nanospheres (MMPNSs) with diameters as low as ca. 190 nm. In our approach, an unreactive crosslinked PS outer skin as protective layer can be in-situ formed at the very beginning of hypercrosslinking treatment to minimize the undesired inter-sphere crosslinking. The as-prepared MMPNSs with a well-developed microporous network demonstrate unusual multifunctional properties, including remarkable colloidal stability in aqueous solution, good adsorption-release property for drug, and large adsorption capacity toward organic vapors. Surprisingly, MMPNSs can be directly transformed into high-surface-area monodisperse carbon nanospheres with good colloidal stability via a facile hydrothermal-assisted carbonization procedure. These findings provide a new benchmark for fabricating well-defined porous nanospheres with great promise for various applications. PMID:23478487

  16. Porous and Microporous Honeycomb Composites as Potential Boundary-Layer Bleed Materials

    NASA Technical Reports Server (NTRS)

    Davis, D. O.; Willis, B. P.; Schoenenberger, M.

    1997-01-01

    Results of an experimental investigation are presented in which the use of porous and microporous honeycomb composite materials is evaluated as an alternate to perforated solid plates for boundary-layer bleed in supersonic aircraft inlets. The terms "porous" and "microporous," respectively, refer to bleed orifice diameters roughly equal to and much less than the displacement thickness of the approach boundary-layer. A Baseline porous solid plate, two porous honeycomb, and three microporous honeycomb configurations are evaluated. The performance of the plates is characterized by the flow coefficient and relative change in boundary-layer profile parameters across the bleed region. The tests were conducted at Mach numbers of 1.27 and 1.98. The results show the porous honeycomb is not as efficient at removing mass compared to the baseline. The microporous plates were about equal to the baseline with one plate demonstrating a significantly higher efficiency. The microporous plates produced significantly fuller boundary-layer profiles downstream of the bleed region for a given mass flow removal rate than either the baseline or the porous honeycomb plates.

  17. Evaluation of alignment error of micropore X-ray optics caused by hot plastic deformation

    NASA Astrophysics Data System (ADS)

    Numazawa, Masaki; Ishi, Daiki; Ezoe, Yuichiro; Takeuchi, Kazuma; Terada, Masaru; Fujitani, Maiko; Ishikawa, Kumi; Nakajima, Kazuo; Morishita, Kohei; Ohashi, Takaya; Mitsuda, Kazuhisa; Nakamura, Kasumi; Noda, Yusuke

    2018-06-01

    We report on the evaluation and characterization of micro-electromechanical system (MEMS) X-ray optics produced by silicon dry etching and hot plastic deformation. Sidewalls of micropores formed by etching through a silicon wafer are used as X-ray reflecting mirrors. The wafer is deformed into a spherical shape to focus parallel incidence X-rays. We quantitatively evaluated a mirror alignment error using an X-ray pencil beam (Al Kα line at 1.49 keV). The deviation angle caused only by the deformation was estimated from angular shifts of the X-ray focusing point before and after the deformation to be 2.7 ± 0.3 arcmin on average within the optics. This gives an angular resolution of 12.9 ± 1.4 arcmin in half-power diameter (HPD). The surface profile of the deformed optics measured using a NH-3Ns surface profiler (Mitaka Kohki) also indicated that the resolution was 11.4 ± 0.9 arcmin in HPD, suggesting that we can simply evaluate the alignment error caused by the hot plastic deformation.

  18. Fabrication of a Ti porous microneedle array by metal injection molding for transdermal drug delivery.

    PubMed

    Li, Jiyu; Liu, Bin; Zhou, Yingying; Chen, Zhipeng; Jiang, Lelun; Yuan, Wei; Liang, Liang

    2017-01-01

    Microneedle arrays (MA) have been extensively investigated in recent decades for transdermal drug delivery due to their pain-free delivery, minimal skin trauma, and reduced risk of infection. However, porous MA received relatively less attention due to their complex fabrication process and ease of fracturing. Here, we present a titanium porous microneedle array (TPMA) fabricated by modified metal injection molding (MIM) technology. The sintering process is simple and suitable for mass production. TPMA was sintered at a sintering temperature of 1250°C for 2 h. The porosity of TPMA was approximately 30.1% and its average pore diameter was about 1.3 μm. The elements distributed on the surface of TPMA were only Ti and O, which may guarantee the biocompatibility of TPMA. TPMA could easily penetrate the skin of a human forearm without fracture. TPMA could diffuse dry Rhodamine B stored in micropores into rabbit skin. The cumulative permeated flux of calcein across TPMA with punctured skin was 27 times greater than that across intact skin. Thus, TPMA can continually and efficiently deliver a liquid drug through open micropores in skin.

  19. Removal of endotoxin from water by microfiltration through a microporous polyethylene hollow-fiber membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, Y.; Fujii, R.; Igami, I.

    The microporous polyethylene hollow-fiber membrane has a unique microfibrile structure throughout its depth and has been found to possess the functions of filtration and adsorption of endotoxin in water. The membrane has a maximum pore diameter of approximately 0.04 micron, a diameter which is within the range of microfiltration. Approximately 10 and 20% of the endotoxin in tap water and subterranean water, respectively, was smaller than 0.025 micron. Endotoxin in these water sources was efficiently removed by the microporous polyethylene hollow-fiber membrane. Escherichia coli O113 culture broth contained 26.4% of endotoxin smaller than 0.025 micron which was also removed. Endotoxinmore » was leaked into the filtrate only when endotoxin samples were successively passed through the membrane. These results indicate that endotoxin smaller than the pore size of the membrane was adsorbed and then leaked into the filtrate because of a reduction in binding sites. Dissociation of /sup 3/H-labeled endotoxin from the membrane was performed, resulting in the removal of endotoxin associated with the membrane by alcoholic alkali at 78% efficiency.« less

  20. Micropore Geometry Manipulation by Macroscopic Deformation Based on Shape Memory Effect in Porous PLLA Membrane and its Enhanced Separation Performance.

    PubMed

    Zhao, Jingxin; Yang, Qiucheng; Wang, Tao; Wang, Lian; You, Jichun; Li, Yongjin

    2017-12-20

    An effective strategy to tailor the microporous structures has been developed based on the shape memory effect in porous poly(l-lactic acid) membranes in which tiny crystals and amorphous matrix play the roles of shape-fixed phase and reversible-phase, respectively. Our results indicate that not only PLLA membranes but micropores exhibit shape memory properties. The proportional deformations on two scales have been achieved by uniaxial or biaxial tension, providing a facile way to manipulate continuously the size and the orientation degree of pores on microscale. The enhanced separation performance has been validated by taking polystyrene colloids with varying diameters as an example.

  1. Microstructure investigation on micropore formation in microporous silica materials prepared via a catalytic sol-gel process by small angle X-ray scattering.

    PubMed

    Shimizu, Wataru; Hokka, Junsuke; Sato, Takaaki; Usami, Hisanao; Murakami, Yasushi

    2011-08-04

    The so-called sol-gel technique has been shown to be a template-free, efficient way to create functional porous silica materials having uniform micropores. This appears to be closely linked with a postulation that the formation of weakly branched polymer-like aggregates in a precursor solution is a key to the uniform micropore generation. However, how such a polymer-like structure can precisely be controlled, and further, how the generated low-fractal dimension solution structure is imprinted on the solid silica materials still remain elusive. Here we present fabrication of microporous silica from tetramethyl orthosilicate (TMOS) using a recently developed catalytic sol-gel process based on a nonionic hydroxyacetone (HA) catalyst. Small angle X-ray scattering (SAXS), nitrogen adsorption porosimetry, and transmission electron microscope (TEM) allowed us to observe the whole structural evolution, ranging from polymer-like aggregates in the precursor solution to agglomeration with heat treatment and microporous morphology of silica powders after drying and hydrolysis. Using the HA catalyst with short chain monohydric alcohols (methanol or ethanol) in the precursor solution, polymer-like aggregates having microscopic correlation length (or mesh-size) < 2 nm and low fractal dimensions ∼2, which is identical to that of an ideal coil polymer, can selectively be synthesized, yielding the uniform micropores with diameters <2 nm in the solid materials. In contrast, the absence of HA or substitution of 1-propanol led to considerably different scattering behavior reflecting the particle-like aggregate formation in the precursor solution, which resulted in the formation of mesopores (diameter >2 nm) in the solid product due to apertures between the particle-like aggregates. The data demonstrate that the extremely fine porous silica architecture comes essentially from a gaussian polymer-like nature of the silica aggregates in the precursor having the microscopic mesh-size and their successful imprint on the solid product. The result offers a general but significantly efficient route to creating precisely designed fine porous silica materials under mild condition that serve as low refractive index and efficient thermal insulation materials in their practical applications.

  2. A high-capacity carbon prepared from renewable chicken feather biopolymer for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Cao, Qi; Wang, Xianyou; Jing, Bo; Kuang, Hao; Zhou, Ling

    2013-03-01

    Micropopous chicken feather carbon (CFC) severing as electrode materials for the first time is prepared via the activation with KOH agent to different extents. The structure and electrochemical properties of CFC materials are characterized with N2 adsorption/desorption measurements, X-ray diffraction (XRD), transmission electron microscope (TEM), cyclic voltammetry (CV), galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy (EIS). The obtained results show that CFC activated by KOH with KOH/CFC weight ratio of 4/1 (CFCA4) possesses the specific surface area of 1839 m2 g-1, average micropore diameter of 1.863 nm, and exhibits the highest initial specific capacitance of 302 F g-1 at current density of 1 A g-1 in 1 M H2SO4, and that even after 5000 cycles, CFCA4 specific capacitance is still as high as 253 F g-1. Furthermore, CFCA4 also delivers specific capacitance of 181 F g-1 at current density of 5 A g-1 and 168 F g-1 at current density of 10 A g-1. Accordingly, the microporous activated carbon material derived from chicken feather provides favorable prospect in electrode materials application in supercapacitors.

  3. Fabrication of a Ti porous microneedle array by metal injection molding for transdermal drug delivery

    PubMed Central

    Li, Jiyu; Liu, Bin; Zhou, Yingying; Chen, Zhipeng; Jiang, Lelun; Yuan, Wei; Liang, Liang

    2017-01-01

    Microneedle arrays (MA) have been extensively investigated in recent decades for transdermal drug delivery due to their pain-free delivery, minimal skin trauma, and reduced risk of infection. However, porous MA received relatively less attention due to their complex fabrication process and ease of fracturing. Here, we present a titanium porous microneedle array (TPMA) fabricated by modified metal injection molding (MIM) technology. The sintering process is simple and suitable for mass production. TPMA was sintered at a sintering temperature of 1250°C for 2 h. The porosity of TPMA was approximately 30.1% and its average pore diameter was about 1.3 μm. The elements distributed on the surface of TPMA were only Ti and O, which may guarantee the biocompatibility of TPMA. TPMA could easily penetrate the skin of a human forearm without fracture. TPMA could diffuse dry Rhodamine B stored in micropores into rabbit skin. The cumulative permeated flux of calcein across TPMA with punctured skin was 27 times greater than that across intact skin. Thus, TPMA can continually and efficiently deliver a liquid drug through open micropores in skin. PMID:28187179

  4. Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes.

    PubMed

    Lee, Sang Jin; Choi, Jin San; Park, Ki Suk; Khang, Gilson; Lee, Young Moo; Lee, Hai Bang

    2004-08-01

    Response of different types of cells on materials is important for the applications of tissue engineering and regenerative medicine. It is recognized that the behavior of the cell adhesion, proliferation, and differentiation on materials depends largely on surface characteristics such as wettability, chemistry, charge, rigidity, and roughness. In this study, we examined the behavior of MG63 osteoblast-like cells cultured on a polycarbonate (PC) membrane surfaces with different micropore sizes (0.2-8.0 microm in diameter). Cell adhesion and proliferation to the PC membrane surfaces were determined by cell counting and MTT assay. The effect of surface micropore on the MG63 cells was evaluated by cell morphology, protein content, and alkaline phosphatase (ALP) specific activity. It seems that the cell adhesion and proliferation were progressively inhibited as the PC membranes had micropores with increasing size, probably due to surface discontinuities produced by track-etched pores. Increasing micropore size of the PC membrane results in improved protein synthesis and ALP specific activity in isolated cells. There was a statistically significant difference (P<0.05) between different micropore sizes. The MG63 cells also maintained their phenotype under conditions that support a round cell shape. RT-PCR analysis further confirmed the osteogenic phenotype of the MG63 cells onto the PC membranes with different micropore sizes. In results, as micropore size is getting larger, cell number is reduced and cell differentiation and matrix production is increased. This study demonstrated that the surface topography plays an important role for phenotypic expression of the MG63 osteoblast-like cells.

  5. Selective photocatalytic transformations on microporous titanosilicate ETS-10 driven by size and polarity of molecules.

    PubMed

    Shiraishi, Yasuhiro; Tsukamoto, Daijiro; Hirai, Takayuki

    2008-11-04

    Photocatalytic activity of microporous titanosilicate ETS-10 has been studied in water. The photoactivated ETS-10 shows catalytic activity driven by size and polarity of substrates. ETS-10 efficiently catalyzes a conversion of substrates with a size larger than the pore diameter of ETS-10. In contrast, the reactivity of small substrates depends strongly on substrate polarity; less polar substrates show higher reactivity on ETS-10. Electron spin resonance analysis reveals that large substrates or less polar substrates scarcely diffuse inside the highly polarized micropores of ETS-10 and, hence, react efficiently with hydroxyl radicals (*OH) formed on titanol (Ti-OH) groups exposed on the external surface of ETS-10. In contrast, small polar substrates diffuse easily inside the micropores of ETS-10 and scarcely react with *OH, resulting in low reactivity. The photocatalytic activity of ETS-10 is successfully applicable to selective transformations of large reactants or less polar reactants to small polar products, enabling highly selective dehalogenation and hydroxylation of aromatics.

  6. A versatile cooperative template-directed coating method to construct uniform microporous carbon shells for multifunctional core-shell nanocomposites.

    PubMed

    Guan, Buyuan; Wang, Xue; Xiao, Yu; Liu, Yunling; Huo, Qisheng

    2013-03-21

    A very simple cooperative template-directed coating method is developed for the preparation of core-shell, hollow, and yolk-shell microporous carbon nanocomposites. Particularly, the cationic surfactant C16TMA(+)·Br(-) used in the coating procedure improves the core dispersion in the reaction media and serves as the soft template for mesostructured resorcinol-formaldehyde resin formation, which results in the uniform polymer and microporous carbon shell coating on most functional cores with different surface properties. The core diameter and the shell thickness of the nanocomposites can be precisely tailored. This approach is highly reproducible and scalable. Several grams of polymer and carbon nanocomposites can be easily prepared by a facile one-pot reaction. The Au@hydrophobic microporous carbon yolk-shell catalyst favors the reduction of more hydrophobic nitrobenzene than hydrophilic 4-nitrophenol by sodium borohydride, which makes this type of catalyst@carbon yolk-shell composites promising nanomaterials as selective catalysts for hydrophobic reactants.

  7. Inorganic dual-layer microporous supported membranes

    DOEpatents

    Brinker, C. Jeffrey; Tsai, Chung-Yi; Lu, Yungfeng

    2003-03-25

    The present invention provides for a dual-layer inorganic microporous membrane capable of molecular sieving, and methods for production of the membranes. The inorganic microporous supported membrane includes a porous substrate which supports a first inorganic porous membrane having an average pore size of less than about 25 .ANG. and a second inorganic porous membrane coating the first inorganic membrane having an average pore size of less than about 6 .ANG.. The dual-layered membrane is produced by contacting the porous substrate with a surfactant-template polymeric sol, resulting in a surfactant sol coated membrane support. The surfactant sol coated membrane support is dried, producing a surfactant-templated polymer-coated substrate which is calcined to produce an intermediate layer surfactant-templated membrane. The intermediate layer surfactant-templated membrane is then contacted with a second polymeric sol producing a polymeric sol coated substrate which is dried producing an inorganic polymeric coated substrate. The inorganic polymeric coated substrate is then calcined producing an inorganic dual-layered microporous supported membrane in accordance with the present invention.

  8. Method for making a microporous membrane

    NASA Technical Reports Server (NTRS)

    Gavalas, Lillian Susan (Inventor)

    2013-01-01

    A method for making a microporous membrane comprises the steps of: providing a plurality of carbon nanotubes having a hollow interior diameter of 20 Angstroms or less; sonicating the plurality of carbon nanotubes utilizing a solution comprising deionized, distilled water and a surfactant that coats at least one of the plurality of carbon nanotubes; collecting the coated carbon nanotubes; forming a matrix that supports the plurality of carbon nanotubes; embedding the coated carbon nanotubes into the matrix; rinsing the coated nanotubes to remove at least a portion of the surfactant; curing the nanotube-matrix assembly; and cutting the nanotube-matrix assembly to a particular thickness so as to open the ends of the embedded nanotubes. The hollow interiors of the plurality of embedded carbon nanotubes comprise the pores of the microporous membrane.

  9. Ion distribution and selectivity of ionic liquids in microporous electrodes.

    PubMed

    Neal, Justin N; Wesolowski, David J; Henderson, Douglas; Wu, Jianzhong

    2017-05-07

    The energy density of an electric double layer capacitor, also known as supercapacitor, depends on ion distributions in the micropores of its electrodes. Herein we study ion selectivity and partitioning of symmetric, asymmetric, and mixed ionic liquids among different pores using the classical density functional theory. We find that a charged micropore in contact with mixed ions of the same valence is always selective to the smaller ions, and the ion selectivity, which is strongest when the pore size is comparable to the ion diameters, drastically falls as the pore size increases. The partitioning behavior in ionic liquids is fundamentally different from those corresponding to ion distributions in aqueous systems whereby the ion selectivity is dominated by the surface energy and entropic effects insensitive to the degree of confinement.

  10. Solar radiation absorbing material

    DOEpatents

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  11. Impact of polymer electrolyte membrane fuel cell microporous layer nano-scale features on thermal conductance

    NASA Astrophysics Data System (ADS)

    Botelho, S. J.; Bazylak, A.

    2015-04-01

    In this study, the microporous layer (MPL) of the polymer electrolyte membrane (PEM) fuel cell was analysed at the nano-scale. Atomic force microscopy (AFM) was utilized to image the top layer of MPL particles, and a curve fitting algorithm was used to determine the particle size and filling radius distributions for SGL-10BB and SGL-10BC. The particles in SGL-10BC (approximately 60 nm in diameter) have been found to be larger than those in SGL-10BB (approximately 40 nm in diameter), highlighting structural variability between the two materials. The impact of the MPL particle interactions on the effective thermal conductivity of the bulk MPL was analysed using a discretization of the Fourier equation with the Gauss-Seidel iterative method. It was found that the particle spacing and filling radius dominates the effective thermal conductivity, a result which provides valuable insight for future MPL design.

  12. Molecular dynamics computer simulation of permeation in solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pohl, P.I.; Heffelfinger, G.S.; Fisler, D.K.

    1997-12-31

    In this work the authors simulate permeation of gases and cations in solid models using molecular mechanics and a dual control volume grand canonical molecular dynamics technique. The molecular sieving nature of microporous zeolites are discussed and compared with that for amorphous silica made by sol-gel methods. One mesoporous and one microporous membrane model are tested with Lennard-Jones gases corresponding to He, H{sub 2}, Ar and CH{sub 4}. The mesoporous membrane model clearly follows a Knudsen diffusion mechanism, while the microporous model having a hard-sphere cutoff pore diameter of {approximately}3.4 {angstrom} demonstrates molecular sieving of the methane ({sigma} = 3.8more » {angstrom}) but anomalous behavior for Ar ({sigma} = 3.4 {angstrom}). Preliminary results of Ca{sup +} diffusion in calcite and He/H{sub 2} diffusion in polyisobutylene are also presented.« less

  13. Isolating the effect of pore size distribution on electrochemical double-layer capacitance using activated fluid coke

    NASA Astrophysics Data System (ADS)

    Zuliani, Jocelyn E.; Tong, Shitang; Kirk, Donald W.; Jia, Charles Q.

    2015-12-01

    Electrochemical double-layer capacitors (EDLCs) use physical ion adsorption in the capacitive electrical double layer of high specific surface area (SSA) materials to store electrical energy. Previous work shows that the SSA-normalized capacitance increases when pore diameters are less than 1 nm. However, there still remains uncertainty about the charge storage mechanism since the enhanced SSA-normalized capacitance is not observed in all microporous materials. In previous studies, the total specific surface area and the chemical composition of the electrode materials were not controlled. The current work is the first reported study that systematically compares the performance of activated carbon prepared from the same raw material, with similar chemical composition and specific surface area, but different pore size distributions. Preparing samples with similar SSAs, but different pores sizes is not straightforward since increasing pore diameters results in decreasing the SSA. This study observes that the microporous activated carbon has a higher SSA-normalized capacitance, 14.1 μF cm-2, compared to the mesoporous material, 12.4 μF cm-2. However, this enhanced SSA-normalized capacitance is only observed above a threshold operating voltage. Therefore, it can be concluded that a minimum applied voltage is required to induce ion adsorption in these sub-nanometer micropores, which increases the capacitance.

  14. Catalyst for coal liquefaction process

    DOEpatents

    Huibers, Derk T. A.; Kang, Chia-Chen C.

    1984-01-01

    An improved catalyst for a coal liquefaction process; e.g., the H-Coal Process, for converting coal into liquid fuels, and where the conversion is carried out in an ebullated-catalyst-bed reactor wherein the coal contacts catalyst particles and is converted, in addition to liquid fuels, to gas and residual oil which includes preasphaltenes and asphaltenes. The improvement comprises a catalyst selected from the group consisting of the oxides of nickel molybdenum, cobalt molybdenum, cobalt tungsten, and nickel tungsten on a carrier of alumina, silica, or a combination of alumina and silica. The catalyst has a total pore volume of about 0.500 to about 0.900 cc/g and the pore volume comprises micropores, intermediate pores and macropores, the surface of the intermediate pores being sufficiently large to convert the preasphaltenes to asphaltenes and lighter molecules. The conversion of the asphaltenes takes place on the surface of micropores. The macropores are for metal deposition and to prevent catalyst agglomeration. The micropores have diameters between about 50 and about 200 angstroms (.ANG.) and comprise from about 50 to about 80% of the pore volume, whereas the intermediate pores have diameters between about 200 and 2000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume, and the macropores have diameters between about 2000 and about 10,000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume. The catalysts are further improved where they contain promoters. Such promoters include the oxides of vanadium, tungsten, copper, iron and barium, tin chloride, tin fluoride and rare earth metals.

  15. Influence of surface treatments on micropore structure and hydrogen adsorption behavior of nanoporous carbons.

    PubMed

    Kim, Byung-Joo; Park, Soo-Jin

    2007-07-15

    The scope of this work was to control the pore sizes of porous carbons by various surface treatments and to investigate the relation between pore structures and hydrogen adsorption capacity. The effects of various surface treatments (i.e., gas-phase ozone, anodic oxidation, fluorination, and oxygen plasma) on the micropore structures of porous carbons were investigated by N(2)/77 K isothermal adsorption. The hydrogen adsorption capacity was measured by H(2) isothermal adsorption at 77 K. In the result, the specific surface area and micropore volume of all of the treated samples were slightly decreased due to the micropore filling or pore collapsing behaviors. It was also found that in F(2)-treated carbons the center of the pore size distribution was shifted to left side, meaning that the average size of the micropores decreased. The F(2)- and plasma-treated samples showed higher hydrogen storage capacities than did the other samples, the F(2)-treated one being the best, indicating that the micropore size of the porous carbons played a key role in the hydrogen adsorption at 77 K.

  16. Structure, MC3T3-E1 cell response, and osseointegration of macroporous titanium implants covered by a bioactive microarc oxidation coating with microporous structure.

    PubMed

    Zhou, Rui; Wei, Daqing; Cheng, Su; Feng, Wei; Du, Qing; Yang, Haoyue; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2014-04-09

    Macroporous Ti with macropores of 50-400 μm size is prepared by sintering Ti microbeads with different diameters of 100, 200, 400, and 600 μm. Bioactive microarc oxidation (MAO) coatings with micropores of 2-5 μm size are prepared on the macroporous Ti. The MAO coatings are composed of a few TiO2 nanocrystals and lots of amorphous phases with Si, Ca, Ti, Na, and O elements. Compared to compact Ti, the MC3T3-E1 cell attachment is prolonged on macroporous Ti without and with MAO coatings; however, the cell proliferation number increases. These results are contributed to the effects of the space structure of macroporous Ti and the surface chemical feature and element dissolution of the MAO coatings during the cell culture. Macroporous Ti both without and with MAO coatings does not cause any adverse effects in vivo. The new bone grows well into the macropores and micropores of macroporous Ti with MAO coatings, showing good mechanical properties in vivo compared to Ti, MAO-treated Ti, and macroporous Ti because of its excellent osseointegration. Moreover, the MAO coatings not only show a high interface bonding strength with new bones but also connect well with macroporous Ti. Furthermore, the pushing out force for macroporous Ti with MAO coatings increases significantly with increasing microbead diameter.

  17. Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials

    NASA Astrophysics Data System (ADS)

    Xu, Jiandong; Gao, Qiuming; Zhang, Yunlu; Tan, Yanli; Tian, Weiqian; Zhu, Lihua; Jiang, Lei

    2014-07-01

    Two-dimensional (2D) porous carbon AC-SPN-3 possessing of amazing high micropore volume ratio of 83% and large surface area of about 1069 m2 g-1 is high-yield obtained by pyrolysis of natural waste Pistachio nutshells with KOH activation. The AC-SPN-3 has a curved 2D lamellar morphology with the thickness of each slice about 200 nm. The porous carbon is consists of highly interconnected uniform pores with the median pore diameter of about 0.76 nm, which could potentially improve the performance by maximizing the electrode surface area accessible to the typical electrolyte ions (such as TEA+, diameter = ~0.68 nm). Electrochemical analyses show that AC-SPN-3 has significantly large areal capacitance of 29.3/20.1 μF cm-2 and high energy density of 10/39 Wh kg-1 at power of 52/286 kW kg-1 in 6 M KOH aqueous electrolyte and 1 M TEABF4 in EC-DEC (1:1) organic electrolyte system, respectively.

  18. Controlled long-term release of small peptide hormones using a new microporous polypropylene polymer: its application for vasopressin in the Brattleboro rat and potential perinatal use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruisbrink, J.; Boer, G.J.

    1984-12-01

    Based on drug release by microporous hollow fibers and the recent introduction of microporous polymers, a new technique was developed for controlled delivery of peptides. Small-diameter microporous polypropylene tubing, lumen-loaded with microgram quantities of vasopressin, and coated with collodion, releases vasopressin after in vitro immersion slowly (1-100 ng/d) and constantly for months. The mechanism of pseudo-zero-order delivery is based on high adsorption of vasopressin, keeping the void volume concentration of dissolved vasopressin constant, which is consequently a constant driving force of outward diffusion. The collodion coating prevents the entry of proteinaceous compounds which would result in rapid desorption of vasopressin.more » The present delivery module provides a lasting release for other peptides as well (lysine-vasopressin, oxytocin, alpha-melanocyte-stimulating hormone and, to a lesser extent, Met-enkephalin). The microporous polymer-collodion device is biocompatible and, loaded with vasopressin, successfully alleviates the diabetes insipidus of Brattleboro rats deficient for vasopressin. Subcutaneous implantation normalized diuresis for a period of 60 d and constant urine vasopressin excretion is observed. When the commercially available osmotic minipump is too large for implantation, the small size of the present controlled-delivery system allows peptide treatment of young and immature laboratory rats, even if located in utero.« less

  19. Induction of bone ingrowth with a micropore bioabsorbable suture anchor in rotator cuff tear: an experimental study in a rabbit model.

    PubMed

    Kang, Yun Gyeong; Kim, Jung-Han; Shin, Jung-Woog; Baik, Jong-Min; Choo, Hye-Jung

    2013-11-01

    The bioabsorbable suture anchor is probably one of the most commonly used tools in arthroscopic shoulder operations. However, there is controversy about whether the bioabsorbable anchor is replaced by bone. The object of this study is to evaluate bone ingrowth into the micropore bioabsorbable suture anchor and the differences in the biomechanical properties of a micropore anchor and a nonpore anchor. A total of 16 microsized holes (diameter, 250 ± 50 μm; depth, 0.2 mm) were made on the bioabsorbable anchors with a microdrill. Twelve adult New Zealand White rabbits were randomly divided into two groups: group A (n = 6), the nonpore bioabsorbable suture anchor group, and group pA (n = 6), the micropore bioabsorbable suture anchor group. Microcomputed tomography was used at 4 and 8 weeks postoperatively to evaluate ingrowth by bone volume fraction (BVF), which was measured by calculating the ratio of the total volume of bone ingrowth to that of the region of interest. For pullout strength testing, 3 additional rabbits (6 limbs) were used for mechanical testing. The mean BVF was higher in group pA (0.288 ± 0.054) than in group A (0.097 ± 0.006). The micropore anchor had a higher pullout strength (0.520 ± 0.294 N) than the nonpore anchor (0.275 ± 0.064 N). Micropore bioabsorbable suture anchors induced bone ingrowth and showed higher pullout strength, despite processing. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  20. Porous membrane utilization in plant nutrient delivery

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Hinkle, C. R.; Prince, R. P.; Knott, W. M., III

    1987-01-01

    A spacecraft hydroponic plant growth unit of tubular configuration, employing a microporous membrane as a capilary interface between plant roots and a nutrient solution, is presented. All three of the experimental trials undertaken successfully grew wheat from seed to harvest. Attention is given to the mass/seed, number of seeds/head, ratio of seed dry mass to total plant dry mass, production of tillers, and mass of seed/plant. Dry matter production is found to be reduced with increasing suction pressure; this is true for both average seed and average total dry matter/plant. This may be due to a reduction in water and nutrient availability through the microporous membrane.

  1. Microporous pure beta-tricalcium phosphate implants for press-fit fixation of anterior cruciate ligament grafts: strength and healing in a sheep model.

    PubMed

    Mayr, Hermann O; Dietrich, Markwart; Fraedrich, Franz; Hube, Robert; Nerlich, Andreas; von Eisenhart-Rothe, Rüdiger; Hein, Werner; Bernstein, Anke

    2009-09-01

    A sheep study was conducted to test a press-fit technique using microporous pure beta-tricalcium phosphate (beta-TCP) dowels for fixation of the anterior cruciate ligament (ACL) graft. Microporous (5 mum) cylindrical plugs of beta-TCP (diameter, 7 mm; length, 25 mm) with interconnecting pores were used. The material featured a novel configuration of structure and surface geometry. Implants were tested by use of press-fit fixation of ACL grafts with and without bone blocks in 42 sheep over a period of 24 weeks. Biomechanical, radiologic, histologic, and immunohistochemical evaluations were performed. In load-to-failure tests at 6, 12, and 24 weeks after surgery, the intra-articular graft always failed, not the fixation. Grafts showed bony fixation in the tunnel at 6 weeks and primary healing at the junction of the tunnel and joint after 24 weeks. Tricalcium phosphate was resorbed and simultaneously replaced by bone. Remodeling was still incomplete at 24 weeks. In the sheep model microporous beta-TCP implants used with press-fit fixation of ACL grafts permit early functional rehabilitation. After 6 weeks, the graft is fixed by woven bone or bony integration. Implanted microporous tricalcium phosphate is resorbed and replaced by bone. In a sheep model we showed that primary healing of ACL grafts with resorption and bony replacement of the fixating implant can be achieved by means of press-fit fixation with pure beta-TCP.

  2. The influence of micropore size on the mechanical properties of bulk hydroxyapatite and hydroxyapatite scaffolds.

    PubMed

    Cordell, Jacqueline M; Vogl, Michelle L; Wagoner Johnson, Amy J

    2009-10-01

    While recognized as a promising bone substitute material, hydroxyapatite (HA) has had limited use in clinical settings because of its inherent brittle behavior. It is well established that macropores ( approximately 100 microm) in a HA implant, or scaffold, are required for bone ingrowth, but recent research has shown that ingrowth is enhanced when scaffolds also contain microporosity. HA is sensitive to synthesis and processing parameters and therefore characterization for specific applications is necessary for transition to the clinic. To that end, the mechanical behavior of bulk microporous HA and HA scaffolds with multi-scale porosity (macropores between rods in the range of 250-350 microm and micropores within the rods with average size of either 5.96 microm or 16.2 microm) was investigated in order to determine how strength and reliability were affected by micropore size (5.96 microm versus 16.2 microm). For the bulk microporous HA, strength increased with decreasing micropore size in both bending (19 MPa to 22 MPa) and compression (71 MPa to 110 MPa). To determine strength reliability, the Weibull moduli for the bulk microporous HA were determined. The Weibull moduli for bending increased (became more reliable) with decreasing pore size (7 to 10) while the Weibull moduli for compression decreased (became less reliable) with decreasing pore size (9 to 6). Furthermore, the elastic properties of the bulk microporous HA (elastic modulus of 30 GPa) and the compressive strengths of the HA scaffolds with multi-scale porosity (8 MPa) did not vary with pore size. The mechanisms responsible for the trends observed were discussed.

  3. Micropore-induced Capillarity Enhances Bone Distribution in vivo in Biphasic Calcium Phosphate Scaffolds

    PubMed Central

    Rustom, Laurence E.; Boudou, Thomas; Lou, Siyu; Pignot-Paintrand, Isabelle; Nemke, Brett W.; Lu, Yan; Markel, Mark D.; Picart, Catherine; Wagoner Johnson, Amy J.

    2016-01-01

    The increasing demand for bone repair solutions calls for the development of efficacious bone scaffolds. Biphasic calcium phosphate (BCP) scaffolds with both macropores and micropores (MP) have improved healing compared to those with macropores and no micropores (NMP), but the role of micropores is unclear. Here, we evaluate capillarity induced by micropores as a mechanism that can affect bone growth in vivo. Three groups of cylindrical scaffolds were implanted in pig mandibles for three weeks: MP were implanted either dry (MP-Dry), or after submersion in phosphate buffered saline, which fills pores with fluid and therefore suppresses micropore-induced capillarity (MP-Wet); NMP were implanted dry. The amount and distribution of bone in the scaffolds were quantified using micro-computed tomography. MP-Dry had a more homogeneous bone distribution than MP-Wet, although the average bone volume fraction, BVF¯, was not significantly different for these two groups (0.45±0.03 and 0.37±0.03, respectively). There was no significant difference in the radial bone distribution of NMP and MP-Wet, but the BVF¯ of NMP was significantly lower among the three groups (0.25±0.02). These results suggest that micropore-induced capillarity enhances bone regeneration by improving the homogeneity of bone distribution in BCP scaffolds. The explicit design and use of capillarity in bone scaffolds may lead to more effective treatments of large and complex bone defects. PMID:27544807

  4. 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Bao, Weizhai; Mondal, Anjon Kumar; Xu, Jing; Wang, Chengyin; Su, Dawei; Wang, Guoxiu

    2016-09-01

    We report a rational design and synthesis of 3D hybrid-porous carbon with a hierarchical pore architecture for high performance supercapacitors. It contains micropores (<2 nm diameter) and mesopores (2-4 nm), derived from carbonization of unique porous metal organic frameworks (MOFs). Owning to the synergistic effect of micropores and mesopores, the hybrid-porous carbon has exceptionally high ion-accessible surface area and low ion diffusion resistance, which is desired for supercapacitor applications. When applied as electrode materials in supercapacitors, 3D hybrid-porous carbon demonstrates a specific capacitance of 332 F g-1 at a constant charge/discharge current of 500 mA g-1. The supercapacitors can endure more than 10,000 cycles without degradation of capacitance.

  5. Water sample filtration unit

    USGS Publications Warehouse

    Skougstad, M.W.; Scarbro, G.F.

    1968-01-01

    A readily portable, all plastic, pressure filtration unit is described which greatly facilitates rapid micropore membrane field filtration of up to several liters of water with a minimum risk of inorganic chemical alteration or contamination of the sample. The unit accommodates standard 10.2-cm. (4-inch) diameter filters. The storage and carrying case serves as a convenient filter stand for both field and laboratory use.

  6. Polarization-induced local pore-wall functionalization for biosensing: from micropore to nanopore.

    PubMed

    Liu, Jie; Pham, Pascale; Haguet, Vincent; Sauter-Starace, Fabien; Leroy, Loïc; Roget, André; Descamps, Emeline; Bouchet, Aurélie; Buhot, Arnaud; Mailley, Pascal; Livache, Thierry

    2012-04-03

    The use of biological-probe-modified solid-state pores in biosensing is currently hindered by difficulties in pore-wall functionalization. The surface to be functionalized is small and difficult to target and is usually chemically similar to the bulk membrane. Herein, we demonstrate the contactless electrofunctionalization (CLEF) approach and its mechanism. This technique enables the one-step local functionalization of the single pore wall fabricated in a silica-covered silicon membrane. CLEF is induced by polarization of the pore membrane in an electric field and requires a sandwich-like composition and a conducting or semiconducting core for the pore membrane. The defects in the silica layer of the micropore wall enable the creation of an electric pathway through the silica layer, which allows electrochemical reactions to take place locally on the pore wall. The pore diameter is not a limiting factor for local wall modification using CLEF. Nanopores with a diameter of 200 nm fabricated in a silicon membrane and covered with native silica layer have been successfully functionalized with this method, and localized pore-wall modification was obtained. Furthermore, through proof-of-concept experiments using ODN-modified nanopores, we show that functionalized nanopores are suitable for translocation-based biosensing.

  7. Antimicrobial Activity of New Materials Based on Lavender and Basil Essential Oils and Hydroxyapatite.

    PubMed

    Predoi, Daniela; Iconaru, Simona Liliana; Buton, Nicolas; Badea, Monica Luminita; Marutescu, Luminita

    2018-04-30

    This study presents, for the first-time, the results of a study on the hydrodynamic diameter of essential oils (EOs) of basil and lavender in water, and solutions of EOs of basil (B) and lavender (L) and hydroxyapatite (HAp). The possible influence of basil and lavender EOs on the size of hydroxyapatite nanoparticles was analyzed by Scanning Electron Microscopy (SEM). We also investigated the in vitro antimicrobial activity of plant EOs and plant EOs hydroxyapatite respectively, against Gram-positive bacteria (methicillin-resistant Staphylococcus aureus 1144 (MRSA 1144) and S. aureus 1426) and Gram-negative bacteria ( Escherichia coli ATCC 25922 and Escherichia coli ESBL 4493). From the autocorrelation function, obtained by Dynamic Light Scattering (DLS) measurements it was observed that basil yielded one peak at an average hydrodynamic diameter of 354.16 nm, while lavender yielded one peak at an average hydrodynamic diameter of 259.76 nm. In the case of HAp nanoparticles coated with basil (HApB) and lavender (HApL) essential oil, the aggregation was minimal. We found that the lavender EO exhibited a very good inhibitory growth activity (MIC values ranging from <0.1% for E. coli reference strain to 0.78% for S. aureus strains). The biological studies indicated that HapL material displayed an enhanced antimicrobial activity, indicating the potential use of HAp as vehicle for low concentrations of lavender EO with antibacterial properties. Flow cytometry analysis (FCM) allowed us to determine some of the potential mechanisms of the antimicrobial activities of EOs, suggesting that lavender EO was active against E. coli by interfering with membrane potential, the membrane depolarization effect being increased by incorporation of the EOs into the microporous structure of HAp. These findings could contribute to the development of new antimicrobial agents that are urgently needed for combating the antibiotic resistance phenomena.

  8. Micropore analysis of polymer networks by gas sorption and 129Xe NMR spectroscopy: toward a better understanding of intrinsic microporosity.

    PubMed

    Weber, Jens; Schmidt, Johannes; Thomas, Arne; Böhlmann, Winfried

    2010-10-05

    The microporosity of two microporous polymer networks is investigated in detail. Both networks are based on a central spirobifluorene motif but have different linker groups, namely, imide and thiophene units. The microporosity of the networks is based on the "polymers of intrinsic microporosity (PIM)" design strategy. Nitrogen, argon, and carbon dioxide were used as sorbates in order to analyze the microporosity in greater detail. The gas sorption data was analyzed with respect to important parameters such as specific surface area, pore volume, and pore size (distribution). It is shown that the results can be strongly model dependent and swelling effects have to be regarded. (129)Xe NMR was used as an independent technique for the estimation of the average pore size of the polymer networks. The results indicate that both networks are mainly ultramicroporous (pore sizes < 0.8 nm) in the dry state, which was not expected based on the molecular design. Phase separation and network defects might influence the overall network morphology strongly. Finally, the observed swelling indicates that this "soft" microporous matter might have a different micropore size in the solvent swollen/filled state that in the dry state.

  9. Dry-growth of silver single-crystal nanowires from porous Ag structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chuantong, E-mail: chenchuantong@sanken.osaka-u.ac.jp; Nagao, Shijo; Jiu, Jinting

    A fabrication method of single crystal Ag nanowires in large scale is introduced without any chemical synthesis in wet processes, which usually generates fivefold twinned nanowires of fcc metals. Dense single-crystal nanowires grow on a mechanically polished surface of micro-porous Ag structure, which is created from Ag micro-particles. The diameter and the length of the nanowires can be controlled simply by changing the temperature and the time of the heating during the nanowire growth in air. Unique growth mechanism is described in detail, based on stress-induced migration accelerated by the micro-porous structure where the origin of Ag nanowires growth ismore » incubated. Transmission electron microscopy analysis on the single crystal nanowires is also presented. This simple method offered an alternative preparation for metallic nanowires, especially with the single crystal structure in numerous applications.« less

  10. Micropore-induced capillarity enhances bone distribution in vivo in biphasic calcium phosphate scaffolds.

    PubMed

    Rustom, Laurence E; Boudou, Thomas; Lou, Siyu; Pignot-Paintrand, Isabelle; Nemke, Brett W; Lu, Yan; Markel, Mark D; Picart, Catherine; Wagoner Johnson, Amy J

    2016-10-15

    The increasing demand for bone repair solutions calls for the development of efficacious bone scaffolds. Biphasic calcium phosphate (BCP) scaffolds with both macropores and micropores (MP) have improved healing compared to those with macropores and no micropores (NMP), but the role of micropores is unclear. Here, we evaluate capillarity induced by micropores as a mechanism that can affect bone growth in vivo. Three groups of cylindrical scaffolds were implanted in pig mandibles for three weeks: MP were implanted either dry (MP-Dry), or after submersion in phosphate buffered saline, which fills pores with fluid and therefore suppresses micropore-induced capillarity (MP-Wet); NMP were implanted dry. The amount and distribution of bone in the scaffolds were quantified using micro-computed tomography. MP-Dry had a more homogeneous bone distribution than MP-Wet, although the average bone volume fraction, BVF‾, was not significantly different for these two groups (0.45±0.03 and 0.37±0.03, respectively). There was no significant difference in the radial bone distribution of NMP and MP-Wet, but the BVF‾, of NMP was significantly lower among the three groups (0.25±0.02). These results suggest that micropore-induced capillarity enhances bone regeneration by improving the homogeneity of bone distribution in BCP scaffolds. The explicit design and use of capillarity in bone scaffolds may lead to more effective treatments of large and complex bone defects. The increasing demand for bone repair calls for more efficacious bone scaffolds and calcium phosphate-based materials are considered suitable for this application. Macropores (>100μm) are necessary for bone ingrowth and vascularization. However, studies have shown that microporosity (<20μm) also enhances growth, but there is no consensus on the controlling mechanisms. In previous in vitro work, we suggested that micropore-induced capillarity had the potential to enhance bone growth in vivo. This work illustrates the positive effects of capillarity on bone regeneration in vivo; it demonstrates that micropore-induced capillarity significantly enhances the bone distribution in the scaffold. The results will impact the design of scaffolds to better exploit capillarity and improve treatments for large and load-bearing bone defects. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Characterization of Structure and Function of ZS-9, a K+ Selective Ion Trap

    PubMed Central

    Stavros, Fiona; Yang, Alex; Leon, Alejandro; Nuttall, Mark; Rasmussen, Henrik S.

    2014-01-01

    Hyperkalemia, a condition in which serum potassium ions (K+) exceed 5.0 mmol/L, is a common electrolyte disorder associated with substantial morbidity. Current methods of managing hyperkalemia, including organic polymer resins such as sodium polystyrene sulfonate (SPS), are poorly tolerated and/or not effective. Sodium zirconium cyclosilicate (ZS-9) is under clinical development as an orally administered, non-absorbed, novel, inorganic microporous zirconium silicate compound that selectively removes excess K+ in vivo. The development, structure and ion exchange properties of ZS-9 and its hypothesized mechanism of action are described. Based on calculation of the interatomic distances between the atoms forming the ZS-9 micropores, the size of the pore opening was determined to be ∼3 Å (∼diameter of unhydrated K+). Unlike nonspecific organic polymer resins like SPS, the ZS-9 K+ exchange capacity (KEC) was unaffected by the presence of calcium (Ca2+) or magnesium ions (Mg2+) and showed>25-fold selectivity for K+ over either Ca2+ or Mg2+. Conversely, the selectivity of SPS for K+ was only 0.2–0.3 times its selectivity for Ca2+ or Mg2+in mixed ionic media. It is hypothesized that the high K+ specificity of ZS-9 is attributable to the chemical composition and diameter of the micropores, which possibly act in an analogous manner to the selectivity filter utilized by physiologic K+ channels. This hypothesized mechanism of action is supported by the multi-ion exchange studies. The effect of pH on the KEC of ZS-9 was tested in different media buffered to mimic different portions of the human gastrointestinal tract. Rapid K+ uptake was observed within 5 minutes - mainly in the simulated small intestinal and large intestinal fluids, an effect that was sustained for up to 1 hour. If approved, ZS-9 will represent a novel, first-in-class therapy for hyperkalemia with improved capacity, selectivity, and speed for entrapping K+ when compared to currently available options. PMID:25531770

  12. Characterization of structure and function of ZS-9, a K+ selective ion trap.

    PubMed

    Stavros, Fiona; Yang, Alex; Leon, Alejandro; Nuttall, Mark; Rasmussen, Henrik S

    2014-01-01

    Hyperkalemia, a condition in which serum potassium ions (K+) exceed 5.0 mmol/L, is a common electrolyte disorder associated with substantial morbidity. Current methods of managing hyperkalemia, including organic polymer resins such as sodium polystyrene sulfonate (SPS), are poorly tolerated and/or not effective. Sodium zirconium cyclosilicate (ZS-9) is under clinical development as an orally administered, non-absorbed, novel, inorganic microporous zirconium silicate compound that selectively removes excess K+ in vivo. The development, structure and ion exchange properties of ZS-9 and its hypothesized mechanism of action are described. Based on calculation of the interatomic distances between the atoms forming the ZS-9 micropores, the size of the pore opening was determined to be ∼ 3 Å (∼ diameter of unhydrated K+). Unlike nonspecific organic polymer resins like SPS, the ZS-9 K+ exchange capacity (KEC) was unaffected by the presence of calcium (Ca2+) or magnesium ions (Mg2+) and showed>25-fold selectivity for K+ over either Ca2+ or Mg2+. Conversely, the selectivity of SPS for K+ was only 0.2-0.3 times its selectivity for Ca2+ or Mg2+in mixed ionic media. It is hypothesized that the high K+ specificity of ZS-9 is attributable to the chemical composition and diameter of the micropores, which possibly act in an analogous manner to the selectivity filter utilized by physiologic K+ channels. This hypothesized mechanism of action is supported by the multi-ion exchange studies. The effect of pH on the KEC of ZS-9 was tested in different media buffered to mimic different portions of the human gastrointestinal tract. Rapid K+ uptake was observed within 5 minutes - mainly in the simulated small intestinal and large intestinal fluids, an effect that was sustained for up to 1 hour. If approved, ZS-9 will represent a novel, first-in-class therapy for hyperkalemia with improved capacity, selectivity, and speed for entrapping K+ when compared to currently available options.

  13. [Active carbon from Thalia dealbata residues: its preparation and adsorption performance to crystal violet].

    PubMed

    Chu, Shu-Yi; Yang, Min; Xiao, Ji-Bo; Zhang, Jun; Zhu, Yan-Ping; Yan, Xiang-Jun; Tian, Guang-Ming

    2013-06-01

    By using phosphoric acid as activation agent, active carbon was prepared from Thalia dealbata residues. The BET specific surface area of the active carbon was 1174.13 m2 x g(-1), micropore area was 426.99 m2 x g(-1), and average pore diameter was 3.23 nm. An investigation was made on the adsorption performances of the active carbon for crystal violet from aqueous solution under various conditions of pH, initial concentration of crystal violet, contact time, and contact temperature. It was shown that the adsorbed amount of crystal violet was less affected by solution pH, and the adsorption process could be divided into two stages, i. e., fast adsorption and slow adsorption, which followed the pseudo-second-order kinetics model. At the temperature 293, 303, and 313 K, the adsorption process was more accordance with Langmuir isotherm model, and the maximum adsorption capacity was 409.83, 425.53, and 438.59 mg x g(-1), respectively. In addition, the adsorption process was spontaneous and endothermic, and the randomness of crystal violet molecules increased.

  14. Adsorbent materials from paper industry waste materials and their use in Cu(II) removal from water.

    PubMed

    Méndez, A; Barriga, S; Fidalgo, J M; Gascó, G

    2009-06-15

    This paper deals with the removal of Cu(2+) from water using adsorbent materials prepared from paper industry waste materials (one de-inking paper sludge and other sludge from virgin pulp mill). Experimental results showed that de-inking paper sludge leads to mesoporous materials (V(mic)/V(T)=0.13 and 0.14), whereas the sludge from virgin pulp mill produces high microporous adsorbents (V(mic)/V(T)=0.39 and 0.41). Adsorbent materials were then used for Cu(2+) removal from water at acid pH. During water treatment, heavy metals lixiviation from adsorbent materials was not produced. However, important Ca and Mg leaching was observed. Final pH significantly increases after treatment of water with adsorbent materials probably due to their elevated CaCO(3) content. In general, highest Cu(2+) removal was obtained using adsorbent materials from de-inking paper sludge. This result could be due to their higher content in oxygenated surface groups, high average pore diameter, elevated superficial charge density, high CaCO(3) amount and high Ca and Mg exchange content.

  15. Validity of the t-plot method to assess microporosity in hierarchical micro/mesoporous materials.

    PubMed

    Galarneau, Anne; Villemot, François; Rodriguez, Jeremy; Fajula, François; Coasne, Benoit

    2014-11-11

    The t-plot method is a well-known technique which allows determining the micro- and/or mesoporous volumes and the specific surface area of a sample by comparison with a reference adsorption isotherm of a nonporous material having the same surface chemistry. In this paper, the validity of the t-plot method is discussed in the case of hierarchical porous materials exhibiting both micro- and mesoporosities. Different hierarchical zeolites with MCM-41 type ordered mesoporosity are prepared using pseudomorphic transformation. For comparison, we also consider simple mechanical mixtures of microporous and mesoporous materials. We first show an intrinsic failure of the t-plot method; this method does not describe the fact that, for a given surface chemistry and pressure, the thickness of the film adsorbed in micropores or small mesopores (< 10σ, σ being the diameter of the adsorbate) increases with decreasing the pore size (curvature effect). We further show that such an effect, which arises from the fact that the surface area and, hence, the free energy of the curved gas/liquid interface decreases with increasing the film thickness, is captured using the simple thermodynamical model by Derjaguin. The effect of such a drawback on the ability of the t-plot method to estimate the micro- and mesoporous volumes of hierarchical samples is then discussed, and an abacus is given to correct the underestimated microporous volume by the t-plot method.

  16. Liquid Sulfur Impregnation of Microporous Carbon Accelerated by Nanoscale Interfacial Effects

    DOE PAGES

    Pascal, Tod A.; Villaluenga, Irune; Wujcik, Kevin H.; ...

    2017-03-14

    Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ~30° below the expectedmore » freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.« less

  17. Numerical analysis of a red blood cell flowing through a thin micropore.

    PubMed

    Omori, Toshihiro; Hosaka, Haruki; Imai, Yohsuke; Yamaguchi, Takami; Ishikawa, Takuji

    2014-01-01

    Red blood cell (RBC) deformability plays a key role in microcirculation, especially in vessels that have diameters even smaller than the nominal cell size. In this study, we numerically investigate the dynamics of an RBC in a thin micropore. The RBC is modeled as a capsule with a thin hyperelastic membrane. In a numerical simulation, we employ a boundary element method for fluid mechanics and a finite element method for membrane mechanics. The resulting RBC deformation towards the flow direction is suppressed considerably by increased cytoplasm viscosity, whereas the gap between the cell membrane and solid wall becomes smaller with higher cytoplasm viscosity. We also measure the transit time of the RBC and find that nondimensional transit time increases nonlinearly with respect to the viscosity ratio, whereas it is invariant to the capillary number. In conclusion, cytoplasmic viscosity plays a key role in the dynamics of an RBC in a thin pore. The results of this study will be useful for designing a microfluidic device to measure cytoplasmic viscosity.

  18. Liquid Sulfur Impregnation of Microporous Carbon Accelerated by Nanoscale Interfacial Effects.

    PubMed

    Pascal, Tod A; Villaluenga, Irune; Wujcik, Kevin H; Devaux, Didier; Jiang, Xi; Wang, Dunyang Rita; Balsara, Nitash; Prendergast, David

    2017-04-12

    Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ∼30° below the expected freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.

  19. [Method for concentration determination of mineral-oil fog in the air of workplace].

    PubMed

    Xu, Min; Zhang, Yu-Zeng; Liu, Shi-Feng

    2008-05-01

    To study the method of concentration determination of mineral-oil fog in the air of workplace. Four filter films such as synthetic fabric filter film, beta glass fiber filter film, chronic filter paper and microporous film were used in this study. Two kinds of dust samplers were used to collect the sample, one sampling at fast flow rate in a short time and the other sampling at slow flow rate with long duration. Subsequently, the filter membrane was weighed with electronic analytical balance. According to sampling efficiency and incremental size, the adsorbent ability of four different filter membranes was compared. When the flow rate was between 10 approximately 20 L/min and the sampling time was between 10 approximately 15 min, the average sampling efficiency of synthetic fabric filter film was 95.61% and the increased weight ranged from 0.87 to 2.60 mg. When the flow rate was between 10 approximately 20 L/min and sampling time was between 10 approximately 15 min, the average sampling efficiency of beta glass fiber filter film was 97.57% and the increased weight was 0.75 approximately 2.47 mg. When the flow rate was between 5 approximately 10 L/min and the sampling time between 10 approximately 20 min, the average sampling efficiency of chronic filter paper and microporous film was 48.94% and 63.15%, respectively and the increased weight was 0.75 approximately 2.15 mg and 0.23 approximately 0.85 mg, respectively. When the flow rate was 3.5 L/min and the sampling time was between 100 approximately 166 min, the average sampling efficiency of filter film were 94.44% and 93.45%, respectively and the average increased weight was 1.28 mg for beta glass fiber filter film and 0.78 mg for beta glass fiber filter film and synthetic fabric synthetic fabric filter film. The average sampling efficiency of chronic filter paper and microporous film were 37.65% and 88.21%, respectively. The average increased weight was 4.30 mg and 1.23 mg, respectively. Sampling with synthetic fabric filter film and beta glass fiber filter film is credible, accurate, simple and feasible for determination of the concentration of mineral-oil fog in workplaces.

  20. Multi-scale osteointegration and neovascularization of biphasic calcium phosphate bone scaffolds

    NASA Astrophysics Data System (ADS)

    Lan, Sheeny K.

    Bone grafts are utilized clinically to guide tissue regeneration. Autologous bone and allogeneic bone are the current clinical standards. However, there are significant limitations to their use. To address the need for alternatives to autograft and allograft, researchers have worked to develop synthetic grafts, also referred to as scaffolds. Despite extensive efforts in this area, a gap persists between basic research and clinical application. In particular, solutions for repairing critical size and/or load-bearing defects are lacking. The aim of this thesis work was to address two critical barriers preventing design of successful tissue engineering constructs for bone regeneration within critical size and/or load-bearing defects. Those barriers are insufficient osteointegration and slow neovascularization. In this work, the effects of scaffold microporosity, recombinant human bone morphogenetic protein-2 delivery and endothelial colony forming cell vasculogenesis were evaluated in the context of bone formation in vivo. This was accomplished to better understand the role of these factors in bone regeneration, which may translate to improvements in tissue engineering construct design. Biphasic calcium phosphate (BCP) scaffolds with controlled macro- and microporosity were implanted in porcine mandibular defects. Evaluation of the BCP scaffolds after in vivo implantation showed, for the first time, osteocytes embedded in bone within scaffold micropores (< 10 microm) as well as the most extensive bone growth into micropores to date with bone penetration throughout rods 394 microm in diameter. The result is the first truly osteointegrated bone scaffolds with integration occurring at both the macro and micro length scales, leaving no "dead space" or discontinuities of bone in the defect site. The scaffold forms a living composite upon integration with regenerating bone and this has significant implications with regard to improved scaffold mechanical properties. The presence of osteocytes within scaffold micropores is an indication of scaffold osteoinductivity because a chemotactic factor must be present to induce cell migration into pores on the order of the cell diameter. It is likely that the scaffold undergoes in vivo modifications involving formation of a biological apatite layer within scaffold micropores and possibly co-precipitation of endogenous osteoinductive proteins. To further investigate the effects of scaffold osteoinductivity, BCP scaffolds were implanted in porcine mandibular defects with rhBMP-2, which was partially sequestered in the micropores. Cell migration into osteoinductive scaffold micropores can be enhanced through the delivery of exogenous rhBMP-2 further promoting multi-scale osteointegration. Finally, endothelial colony forming cells (ECFCs) isolated from human umbilical cord blood (UCB) were evaluated in terms of their in vivo vasculogenic potential in the context of bone formation. This work was completed to determine if ECFCs could be utilized in a bone tissue engineering construct to promote neovascularization. ECFCs were combined with a BCP scaffold and rhBMP-2 and implanted subcutaneously on the abdominal wall of NOD/SCID mice. The result was formation of perfused human vessels within BCP scaffold macropores that were present at 4 weeks. The high density and persistence of human vessels at four weeks indicates that human UCB ECFCs exceed their reported in vivo vasculogenic potential when combined with rhBMP-2 and a BCP scaffold. This shows a dual role for BMP-2 in the context of bone regeneration. Collectively, the thesis demonstrates that (1) the design of synthetic bone scaffolds should include controlled multi-scale porosity to promote multi-scale osteointegration, which may significantly improve scaffold mechanical properties and (2) human umbilical cord blood-derived endothelial colony forming cells have potential for promoting neovascularization in a bone defect when combined with rhBMP-2.

  1. Application of water-soluble polyvinyl alcohol-based film patches on laser microporated skin facilitates intradermal macromolecule and nanoparticle delivery.

    PubMed

    Engelke, Laura; Winter, Gerhard; Engert, Julia

    2018-07-01

    The intradermal delivery of biologics has long been recognized as attractive approach for cutaneous immunotherapy, particularly vaccination. Although intradermal (i.d.) or subcutaneous (s.c.) injection provide reproducible dosing and good cost- and delivery efficiency, the major objective to avoid sharps and the need for enhanced storage stability have renewed the interest in alternative needle-free delivery strategies. This study presents a new concept for the delivery of macromolecules and nanoparticles to viable skin layers with a high density of professional antigen-presenting cells (APCs). Stable polyvinyl alcohol (PVA) polymer films as well as PVA blends with carboxymethyl cellulose (CMC) or cross-linked carbomer were prepared using an easily-scalable film casting technique. Fluorescein isothiocyanate (FITC) and rhodamine B-labeled dextrane 70 kDa (RD70), used as small and macromolecular model substances, or polystyrene (PS)-nano- and microparticles with diameters of 0.5 µm and 5 µm were directly incorporated into the polymer formulations at varying concentrations. The assembly of the polymer films with an occlusive backing tape created a film patch that provided a fast drug release upon dissolution of the water-soluble film and facilitated an intradermal drug delivery on laser microporated skin. The minimally-invasive P.L.E.A.S.E.® laser poration system (Pantec Biosolutions, Ruggell, Liechtenstein) provided access to viable skin layers by thermally ablating the superficial tissue with a pulsed Er:YAG laser (λ = 2.94 µm). In our in vitro study using excised pig skin, laser microporation induced a 4- to 5-fold increase of water transport (TEWL) through excised skin in a Franz diffusion cell compared to intact skin. The TEWL values detected were comparable to in vivo human skin. The increased water transport facilitated the dissolution of all topically applied dry PVA-based film formulations within 6 h. No dissolution of the films was seen on intact skin. The incubation of the film patches on laser microporated skin for 24 h led to a considerable intradermal delivery of RD70 or PS-nanoparticles, which was superior for pure PVA films compared to PVA-CMC or PVA-carbomer blend formulations. No intradermal delivery was observed on intact skin or when larger PS-microparticles with a diameter of 5 µm were investigated. The presented concept provides a unique opportunity to exploit the improved storage stability of sensitive drug molecules in dry film formulations while providing protection and functionality. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Effects of highly ordered TiO2 nanotube substrates on the nucleation of Cu electrodeposits.

    PubMed

    Ryu, Won Hee; Park, Chan Jin; Kwon, Hyuk Sang

    2010-05-01

    We investigated the effects of TiO2 nanotube substrates on the nucleation density of Cu during electrodeposition in a solution of CuSO4 and H2SO4 at 50 degrees C compared with those of pure Ti and micro-porous TiO2 substrates. During electrodeposition, the density of Cu nuclei on the TiO2 nanotube substrate increased and the average size of Cu nuclei decreased with increasing anodizing voltage and time for the synthesis of the substrate. In addition, the nucleation density of Cu electrodeposits on the highly ordered TiO2 nanotube substrate was much higher than that on pure Ti and micro-porous TiO2 substrates.

  3. Electromagnetic micropores: fabrication and operation.

    PubMed

    Basore, Joseph R; Lavrik, Nickolay V; Baker, Lane A

    2010-12-21

    We describe the fabrication and characterization of electromagnetic micropores. These devices consist of a micropore encompassed by a microelectromagnetic trap. Fabrication of the device involves multiple photolithographic steps, combined with deep reactive ion etching and subsequent insulation steps. When immersed in an electrolyte solution, application of a constant potential across the micropore results in an ionic current. Energizing the electromagnetic trap surrounding the micropore produces regions of high magnetic field gradients in the vicinity of the micropore that can direct motion of a ferrofluid onto or off of the micropore. This results in dynamic gating of the ion current through the micropore structure. In this report, we detail fabrication and characterize the electrical and ionic properties of the prepared electromagnetic micropores.

  4. Laser-treated electrospun fibers loaded with nano-hydroxyapatite for bone tissue engineering.

    PubMed

    Aragon, Javier; Navascues, Nuria; Mendoza, Gracia; Irusta, Silvia

    2017-06-15

    Core-shell polycaprolactone/polycaprolactone (PCL/PCL) and polycaprolactone/polyvinyl acetate (PCL/PVAc) electrospun fibers loaded with synthesized nanohydroxyapatite (HAn) were lased treated to create microporosity. The prepared materials were characterized by XRD, FTIR, TEM and SEM. Uniform and randomly oriented beadless fibrous structures were obtained in all cases. Fibers diameters were in the 150-300nm range. Needle-like HAn nanoparticles with mean diameters of 20nm and length of approximately 150nm were mostly encase inside the fibers. Laser treated materials present micropores with diameters in the range 70-120μm for PCL-HAn/PCL fibers and in the 50-90μm range for PCL-HAn/PVAC material. Only samples containing HAn presented bioactivity after incubation during 30days in simulated body fluid. All scaffolds presented high viability, very low mortality, and human osteoblast proliferation. Biocompatibility was increased by laser treatment due to the surface and porosity modification. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Impact of styrenic polymer one-step hyper-cross-linking on volatile organic compound adsorption and desorption performance.

    PubMed

    Ghafari, Mohsen; Atkinson, John D

    2018-06-05

    A novel one-step hyper-cross-linking method, using 1,2-dichloroethane (DCE) and 1,6-dichlorohexane (DCH) cross-linkers, expands the micropore volume of commercial styrenic polymers. Performance of virgin and modified polymers was evaluated by measuring hexane, toluene, and methyl-ethyl-ketone (MEK) adsorption capacity, adsorption/desorption kinetics, and desorption efficiency. Hyper-cross-linked polymers have up to 128% higher adsorption capacity than virgin polymers at P/P 0  = 0.05 due to micropore volume increases up to 330%. Improvements are most pronounced with the DCE cross-linker. Hyper-cross-linking has minimal impact on hexane adsorption kinetics, but adsorption rates for toluene and MEK decrease by 6-41%. Desorption rates decreased (3-36%) for all materials after hyper-cross-linking, with larger decreases for DCE hyper-cross-linked polymers due to smaller average pore widths. For room temperature desorption, 20-220% more adsorbate remains in hyper-cross-linked polymers after regeneration compared to virgin materials. DCE hyper-cross-linked polymers have 13-92% more residual adsorbate than DCH counterparts. Higher temperatures were required for DCE hyper-cross-linked polymers to completely desorb VOCs compared to the DCH hyper-cross-linked and virgin counterparts. Results show that the one-step hyper-cross-linking method for modifying styrenic polymers improves adsorption capacity because of added micropores, but decreases adsorption/desorption kinetics and desorption efficiency for large VOCs due to a decrease in average pore width. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Transverse thermal conductivity of porous materials made from aligned nano- and microcylindrical pores

    NASA Astrophysics Data System (ADS)

    Prasher, Ravi

    2006-09-01

    Nanoporous and microporous materials made from aligned cylindrical pores play important roles in present technologies and will play even bigger roles in future technologies. The insight into the phonon thermal conductivity of these materials is important and relevant in many technologies and applications. Since the mean free path of phonons can be comparable to the pore size and interpore distance, diffusion-approximation based effective medium models cannot be used to predict the thermal conductivity of these materials. Strictly speaking, the Boltzmann transport equation (BTE) must be solved to capture the ballistic nature of thermal transport; however, solving BTE in such a complex network of pores is impractical. As an alternative, we propose an approximate ballistic-diffusive microscopic effective medium model for predicting the thermal conductivity of phonons in two-dimensional nanoporous and microporous materials made from aligned cylindrical pores. The model captures the size effects due to the pore diameter and the interpore distance and reduces to diffusion-approximation based models for macroporous materials. The results are in good agreement with experimental data.

  7. Tuning the Pore Geometry of Ordered Mesoporous Carbons for Enhanced Adsorption of Bisphenol-A

    PubMed Central

    Libbrecht, Wannes; Vandaele, Koen; De Buysser, Klaartje; Verberckmoes, An; Thybaut, Joris W.; Poelman, Hilde; De Clercq, Jeriffa; Van Der Voort, Pascal

    2015-01-01

    Mesoporous carbons were synthesized via both soft and hard template methods and compared to a commercial powder activated carbon (PAC) for the adsorption ability of bisphenol-A (BPA) from an aqueous solution. The commercial PAC had a BET-surface of 1027 m2/g with fine pores of 3 nm and less. The hard templated carbon (CMK-3) material had an even higher BET-surface of 1420 m2/g with an average pore size of 4 nm. The soft templated carbon (SMC) reached a BET-surface of 476 m2/g and a pore size of 7 nm. The maximum observed adsorption capacity (qmax) of CMK-3 was the highest with 474 mg/g, compared to 290 mg/g for PAC and 154 mg/g for SMC. The difference in adsorption capacities was attributed to the specific surface area and hydrophobicity of the adsorbent. The microporous PAC showed the slowest adsorption, while the ordered mesopores of SMC and CMK-3 enhanced the BPA diffusion into the adsorbent. This difference in adsorption kinetics is caused by the increase in pore diameter. However, CMK-3 with an open geometry consisting of interlinked nanorods allows for even faster intraparticle diffusion. PMID:28788023

  8. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Filters, microporous polymeric. 177.2250 Section... Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in... liquid food. (a) Microporous polymeric filters consist of a suitably permeable, continuous, polymeric...

  9. New general pore size distribution model by classical thermodynamics application: Activated carbon

    USGS Publications Warehouse

    Lordgooei, M.; Rood, M.J.; Rostam-Abadi, M.

    2001-01-01

    A model is developed using classical thermodynamics to characterize pore size distributions (PSDs) of materials containing micropores and mesopores. The thermal equation of equilibrium adsorption (TEEA) is used to provide thermodynamic properties and relate the relative pore filling pressure of vapors to the characteristic pore energies of the adsorbent/adsorbate system for micropore sizes. Pore characteristic energies are calculated by averaging of interaction energies between adsorbate molecules and adsorbent pore walls as well as considering adsorbate-adsorbate interactions. A modified Kelvin equation is used to characterize mesopore sizes by considering variation of the adsorbate surface tension and by excluding the adsorbed film layer for the pore size. The modified-Kelvin equation provides similar pore filling pressures as predicted by density functional theory. Combination of these models provides a complete PSD of the adsorbent for the micropores and mesopores. The resulting PSD is compared with the PSDs from Jaroniec and Choma and Horvath and Kawazoe models as well as a first-order approximation model using Polanyi theory. The major importance of this model is its basis on classical thermodynamic properties, less simplifying assumptions in its derivation compared to other methods, and ease of use.

  10. Correlations and adsorption mechanisms of aromatic compounds on biochars produced from various biomass at 700 °C.

    PubMed

    Yang, Kun; Jiang, Yuan; Yang, Jingjing; Lin, Daohui

    2018-02-01

    Knowledge of adsorption behavior of organic contaminants on high heat temperature treated biochars is essential for application of biochars as adsorbents in wastewater treatment and soil remediation. In this study, isotherms of 25 aromatic compounds adsorption on biochars pyrolyzed at 700 °C from biomass including wood chips, rice straw, bamboo chips, cellulose, lignin and chitin were investigated to establish correlations between adsorption behavior and physicochemical properties of biochars. Isotherms were well fitted by Polanyi theory-based Dubinin-Ashtakhov (DA) model with three parameters, i.e., adsorption capacity (Q 0 ) and adsorption affinity (E and b). Besides the negative correlation of Q 0 with molecular maximum cross-sectional areas (σ) of organic compounds, positive correlations of Q 0 with total pore volume (V total ) and average diameter of micropore (D) of biochars were observed, indicating that adsorption by biochars is captured by the pore-filling mechanism with molecular sieving effect in biochar pores. Linear solvation energy relationships (LSERs) of adsorption affinity (E) with solvatochromic parameters of organic compounds (i. e., α m and π ∗ ) were established, suggesting that hydrophobic effect, π-π interaction and hydrogen-bonding interaction are the main forces responsible for adsorption. The regression coefficient (π 1 ) and intercept (C) of obtained LSERs are correlated with biochar H/C and R micro , respectively, implying that biochars with higher aromaticity and more micropores have stronger π-π bonding potential and hydrophobic effect potential with aromatic molecule, respectively. However, hydrogen-bonding potential of biochars for organic molecules is not changed significantly with properties of biochars. A negative correlation of b with biochar H/C is also obtained. These correlations could be used to predict the adsorption behavior of organic compounds on high heat temperature treated biochars from various biomass for the application of biochars as sorbents and for the estimating of environmental risks of organic compounds in the present of biochars. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Performance of High Layer Thickness in Selective Laser Melting of Ti6Al4V

    PubMed Central

    Shi, Xuezhi; Ma, Shuyuan; Liu, Changmeng; Chen, Cheng; Wu, Qianru; Chen, Xianping; Lu, Jiping

    2016-01-01

    To increase building rate and save cost, the selective laser melting (SLM) of Ti6Al4V with a high layer thickness (200 μm) and low cost coarse powders (53 μm–106 μm) at a laser power of 400 W is investigated in this preliminary study. A relatively large laser beam with a diameter of 200 μm is utilized to produce a stable melt pool at high layer thickness, and the appropriate scanning track, which has a smooth surface with a shallow contact angle, can be obtained at the scanning speeds from 40 mm/s to 80 mm/s. By adjusting the hatch spacings, the density of multi-layer samples can be up to 99.99%, which is much higher than that achieved in previous studies about high layer thickness selective laser melting. Meanwhile, the building rate can be up to 7.2 mm3/s, which is about 2 times–9 times that of the commercial equipment. Besides, two kinds of defects are observed: the large un-melted defects and the small spherical micropores. The formation of the un-melted defects is mainly attributed to the inappropriate overlap rates and the unstable scanning tracks, which can be eliminated by adjusting the processing parameters. Nevertheless, the micropores cannot be completely eliminated. It is worth noting that the high layer thickness plays a key role on surface roughness rather than tensile properties during the SLM process. Although a sample with a relatively coarse surface is generated, the average values of yield strength, ultimate tensile strength, and elongation are 1050 MPa, 1140 MPa, and 7.03%, respectively, which are not obviously different than those with the thin layer thickness used in previous research; this is due to the similar metallurgical bonding and microstructure. PMID:28774097

  12. Peripheral nerve regeneration using a microporous polylactic acid asymmetric conduit in a rabbit long-gap sciatic nerve transection model.

    PubMed

    Hsu, Shan-Hui; Chan, Shan-Ho; Chiang, Chih-Ming; Chen, Clayton Chi-Chang; Jiang, Ching-Fen

    2011-05-01

    The performance of an asymmetric conduit made of microporous polylactic acid (PLA) in promoting the long-term peripheral nerve regeneration across a 20-mm-long sciatic nerve gap was evaluated by a rabbit sciatic nerve transection model. Magnetic resonance imaging (MRI) was employed to monitor the nerve regeneration process. The extents of nerve regeneration and conduit degradation were quantified by image analysis. Functional and histological analyses were followed to assess nerve reinnervation. MR images showed that the transected nerve was connected at about 4 months. The diameter of the regenerated nerve continued to increase while the conduit was gradually degraded. The conduit was completely degraded in 18 months. The degradation kinetics in vivo was estimated based on MR images. The functional recovery after 18 months was ∼82% based on electrophysiology. The extension range of the operated limb was slowly recuperated to ∼81% at 18 months. Histology showed that nerve bundles were self-assembled after 16-18 months, but the morphologies were still different from those of normal sciatic nerve. This was the first work on the long-term evaluation of peripheral nerve regeneration in a rabbit model, and the first to report the use of MRI to obtain the real-time images of regenerated nerve in a biomaterial conduit as well as to define the degradation rate of the conduit in vivo. The platform established in this study serves to evaluate the regeneration of larger-diameter (>3-mm) nerve across a long-gap bridged by a conduit. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Filtration performance of microporous ceramic supports.

    PubMed

    Belouatek, Aissa; Ouagued, Abdellah; Belhakem, Mustapha; Addou, Ahmed

    2008-04-24

    The use of inorganic membranes in pollution treatment is actually limited by the cost of such membranes. Advantages of inorganic membranes are their chemical, thermal and pH properties. The purpose of this work was the development of microporous ceramic materials based on clay for liquid waste processing. The supports or ceramic filters having various compositions were prepared and thermally treated at 1100 degrees C. The results show that, at the temperature studied, porosity varied according to the support composition from 12% for the double-layered (ceramic) support to 47% for the activated carbon- filled support with a mean pore diameter between 0.8 and 1.3 microm, respectively. Volumes of 5 l of distilled water were filtered tangentially for 3 h under an applied pressure of 3.5 and 5.5 bar. The retention of tubular supports prepared was tested with molecules of varying size (Evans blue, NaCl and Sacharose). The study of the liquid filtration and flow through these supports showed that the retention rate depends on support composition and pore diameter, and solute molecular weight. The S1 support (mixture of barbotine and 1% (w/w) activated carbon) gave a flux for distilled water of 68 L/m2 h while the double-layered support resulted in a flux of 8 L/m2 h for the same solution at the pressure of 3.5 bar. At a pressure of 5.5 bar an increase in the distilled water flux through the various supports was observed. It was significant for the S1 support (230 L/m h).

  14. Effect of seawater salinity on pore-size distribution on a poly(styrene)-based HP20 resin and its adsorption of diarrhetic shellfish toxins.

    PubMed

    Fan, Lin; Sun, Geng; Qiu, Jiangbing; Ma, Qimin; Hess, Philipp; Li, Aifeng

    2014-12-19

    In the present study, okadaic acid (OA) and dinophysistoxin-1 (DTX1) were spiked into artificial seawater at low, medium and high estuarine salinities (9‰, 13.5‰ and 27‰). Passive samplers (HP20 resin) used for solid phase adsorption toxin tracking (SPATT) technology were exposed in these seawaters for 12-h periods. Adsorption curves well fitted a pseudo-secondary kinetics model. The highest initial sorption rates of both toxins occurred in the seawater of medium salinity, followed by seawater of low and high estuarine salinity. Pore volumes of micropores (<2 nm) and small mesopores (2 nm

  15. Neutron Scattering Studies of Liquid on or Confined in Nano- and Mesoporous Carbons, Including Carbide-Derived Carbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wesolowski, David J

    2014-07-01

    This project involved the synthesis of microporous graphitic-carbon powders with subnanometer average pore size, and very narrow pore size distributions, and the use of these materials in experimental studies of pore-fluid structure and dynamics. Samples of carbide-derived carbon powder, synthesized by extraction of the metal cations from TiC by a high temperature chlorination process, followed by high temperature vacuum annealing, were prepared by Ranjan Dash and his associates at CRADA partner Y-Carbon, Inc. The resulting material had average pore sizes ranging from 5 to 8 . These powders were used in two experiments conducted by researchers involved in the Energymore » Frontier Research Center Directed by David J. Wesolowski at ORNL, the Fluid Interface Reactions, Structures and Transport (FIRST) Center. FIRST-funded researchers at Drexel University collaborated with scientists at the Paul Scherrer Institute, Switzerland, to measure the expansion and contraction of the microporous carbon particles during charging and discharging of supercapactor electrodes composed of these particles (Hantell et al., 2011, Electrochemistry Communications, v. 13, pp. 1221-1224.) in an electrolyte composed of tetraethylammonium tetrafluoroborate dissolved in acetonitrile. In the second experiment, researchers at Oak Ridge National Laboratory and Drexel University conducted quasielastic neutron scattering studies of the diffusional dynamics of water imbibed into the micropores of the same material (Chathoth et al., 2011, EuroPhysics Journal, v. 95, pp. 56001/1-6). These studies helped to establish the role of pores approaching the size of the solvent and dissolved ions in altering diffusional dynamics, ion transport and physical response of conducting substrates to ion desolvation and entry into subnamometer pores.« less

  16. Development of an alternating magnetic-field-assisted finishing process for microelectromechanical systems micropore x-ray optics.

    PubMed

    Riveros, Raul E; Yamaguchi, Hitomi; Mitsuishi, Ikuyuki; Takagi, Utako; Ezoe, Yuichiro; Kato, Fumiki; Sugiyama, Susumu; Yamasaki, Noriko; Mitsuda, Kazuhisa

    2010-06-20

    X-ray astronomy research is often limited by the size, weight, complexity, and cost of functioning x-ray optics. Micropore optics promises an economical alternative to traditional (e.g., glass or foil) x-ray optics; however, many manufacturing difficulties prevent micropore optics from being a viable solution. Ezoe et al. introduced microelectromechanical systems (MEMS) micropore optics having curvilinear micropores in 2008. Made by either deep reactive ion etching or x-ray lithography, electroforming, and molding (LIGA), MEMS micropore optics suffer from high micropore sidewall roughness (10-30nmrms) which, by current standards, cannot be improved. In this research, a new alternating magnetic-field-assisted finishing process was developed using a mixture of ferrofluid and microscale abrasive slurry. A machine was built, and a set of working process parameters including alternating frequency, abrasive size, and polishing time was selected. A polishing experiment on a LIGA-fabricated MEMS micropore optic was performed, and a change in micropore sidewall roughness of 9.3+/-2.5nmrms to 5.7+/-0.7nmrms was measured. An improvement in x-ray reflectance was also seen. This research shows the feasibility and confirms the effects of this new polishing process on MEMS micropore optics.

  17. The preparation, cytocompatibility and antimicrobial property of micro/nano structural titanium loading alginate and antimicrobial peptide

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyuan; Zhong, Mou; Sun, Yuhua; Chen, Junhong; Feng, Bo

    2018-03-01

    Titanium with hybrid microporous/nanotubes (TMNT) structure on its surface was fabricated by acid etching and subsequently anodization at different voltages. Bovine lactoferricin, a kind of antimicrobial peptide, and sodium alginate (NaAlg) were loaded onto titanium surface through layer by layer assembly. The drug release, cytocompatibility and antimicrobial property against S.aureus and E.coil were studied by release experiment, osteoblast and bacterial cultures. Results indicated that samples with nanotubes of bigger diameter carried more drugs and had better biocompatibility, and drug-loaded samples acquired better biocompatibility compared with drug-free samples. Furthermore, the drug-loaded samples exhibited good initial antimicrobial property, but weak long-term antimicrobial property. Therefore, drug-loaded titanium with micro/nano structure, especially, of big diameter nanotubes, could be a promise material for medical implants, such as internal/external fixation devices.

  18. Measuring hydrophobic micropore volumes in geosorbents from trichloroethylene desorption data.

    PubMed

    Cheng, Hefa; Reinhard, Martin

    2006-06-01

    Hydrophobic micropores can play a significant role in controlling the long-term release of organic contaminants from geosorbents. We describe a technique for quantifying the total and the hydrophobic mineral micropore volumes based on the mass of trichloroethylene (TCE) sorbed in the slow-releasing pores under dry and wet conditions, respectively. Micropore desorption models were used to differentiate the fast- and slow-desorbing fractions in desorption profiles. The micropore environment in which organic molecules were sorbed in the presence of water was probed by studying the transformation of a water-reactive compound (2,2-dichloropropane or 2,2-DCP). For sediment from an alluvial aquifer, the total and hydrophobic micropore volumes estimated using this technique were 4.65 microL/g and 0.027 microL/g (0.58% of total), respectively. In microporous silica gel A, a hydrophobic micropore volume of 0.038 microL/g (0.035% of reported total) was measured. The dehydrohalogenation rate of 2,2-DCP sorbed in hydrophobic micropores of the sediment was slower than that reported in bulk water, indicating an environment of low water activity. The results suggest that hydrolyzable organic contaminants sorbed in hydrophobic micropores react slower than in bulk water, consistent with the reported persistence of reactive contaminants in natural soils.

  19. Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue

    NASA Astrophysics Data System (ADS)

    Liu, Qing-Song; Zheng, Tong; Li, Nan; Wang, Peng; Abulikemu, Gulizhaer

    2010-03-01

    Modification of bamboo-based activated carbon was carried out in a microwave oven under N 2 atmosphere. The virgin and modified activated carbons were characterized by means of low temperature N 2 adsorption, acid-base titration, point of zero charge (pH pzc) measurement, FTIR and XPS spectra. A gradual decrease in the surface acidic groups was observed during the modification, while the surface basicity was enhanced to some extent, which gave rise to an increase in the pH pzc value. The species of the functional groups and relative content of various elements and groups were given further analysis using FTIR and XPS spectra. An increase in the micropores was found at the start, and the micropores were then extended into larger ones, resulting in an increase in the pore volume and average pore size. Adsorption studies showed enhanced adsorption of methylene blue on the modified activated carbons, caused mainly by the enlargement of the micropores. Adsorption isotherm fittings revealed that Langmuir and Freundlich models were applicable for the virgin and modified activated carbons, respectively. Kinetic studies exhibited faster adsorption rate of methylene blue on the modified activated carbons, and the pseudo-second-order model fitted well for all of the activated carbons.

  20. Pore-size dependence and characteristics of water diffusion in slitlike micropores

    DOE PAGES

    Diallo, S. O.

    2015-07-16

    The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasielastic neutron-scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (similar to 12 and 18 angstrom, denoted, respectively, ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. Suppression, we found, is accompanied by a systematic dependence of the average translational diffusion coefficient D-r and relaxation timemore » [tau(0)] of the restricted water on pore size and temperature. We observed D-r values and tested against a proposed scaling law, in which the translational diffusion coefficient D-r of water within a porous matrix was found to depend solely on two single parameters, a temperature-independent translational diffusion coefficient D-c associated with the water bound to the pore walls and the ratio theta of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.« less

  1. Nanocasting hierarchical carbide-derived carbons in nanostructured opal assemblies for high-performance cathodes in lithium-sulfur batteries.

    PubMed

    Hoffmann, Claudia; Thieme, Sören; Brückner, Jan; Oschatz, Martin; Biemelt, Tim; Mondin, Giovanni; Althues, Holger; Kaskel, Stefan

    2014-12-23

    Silica nanospheres are used as templates for the generation of carbide-derived carbons with monodisperse spherical mesopores (d=20-40 nm) and microporous walls. The nanocasting approach with a polycarbosilane precursor and subsequent pyrolysis, followed by silica template removal and chlorine treatment, results in carbide-derived carbons DUT-86 (DUT=Dresden University of Technology) with remarkable textural characteristics, monodisperse, spherical mesopores tunable in diameter, and very high pore volumes up to 5.0 cm3 g(-1). Morphology replication allows these nanopores to be arranged in a nanostructured inverse opal-like structure. Specific surface areas are very high (2450 m2 g(-1)) due to the simultaneous presence of micropores. Testing DUT-86 samples as cathode materials in Li-S batteries reveals excellent performance, and tailoring of the pore size allows optimization of cell performance, especially the active center accessibility and sulfur utilization. The outstanding pore volumes allow sulfur loadings of 80 wt %, a value seldom achieved in composite cathodes, and initial capacities of 1165 mAh gsulfur(-1) are reached. After 100 cycle capacities of 860 mAh gsulfur(-1) are retained, rendering DUT-86 a high-performance sulfur host material.

  2. Superior supercapacitors based on nitrogen and sulfur co-doped hierarchical porous carbon: Excellent rate capability and cycle stability

    NASA Astrophysics Data System (ADS)

    Zhang, Deyi; Han, Mei; Wang, Bing; Li, Yubing; Lei, Longyan; Wang, Kunjie; Wang, Yi; Zhang, Liang; Feng, Huixia

    2017-08-01

    Vastly improving the charge storage capability of supercapacitors without sacrificing their high power density and cycle performance would bring bright application prospect. Herein, we report a nitrogen and sulfur co-doped hierarchical porous carbon (NSHPC) with very superior capacitance performance fabricated by KOH activation of nitrogen and sulfur co-doped ordered mesoporous carbon (NSOMC). A high electrochemical double-layer (EDL) capacitance of 351 F g-1 was observed for the reported NSHPC electrodes, and the capacitance remains at 288 F g-1 even under a large current density of 20 A g-1. Besides the high specific capacitance and outstanding rate capability, symmetrical supercapacitor cell based on the NSHPC electrodes also exhibits an excellent cycling performance with 95.61% capacitance retention after 5000 times charge/discharge cycles. The large surface area caused by KOH activation (2056 m2 g-1) and high utilized surface area owing to the ideal micro/mesopores ratio (2.88), large micropores diameter (1.38 nm) and short opened micropores structure as well as the enhanced surface wettability induced by N and S heteroatoms doping and improved conductivity induced by KOH activation was found to be responsible for the very superior capacitance performance.

  3. Optimization of Microporous Carbon Structures for Lithium-Sulfur Battery Applications in Carbonate-Based Electrolyte.

    PubMed

    Hu, Lei; Lu, Yue; Li, Xiaona; Liang, Jianwen; Huang, Tao; Zhu, Yongchun; Qian, Yitai

    2017-03-01

    Developing appropriate sulfur cathode materials in carbonate-based electrolyte is an important research subject for lithium-sulfur batteries. Although several microporous carbon materials as host for sulfur reveal the effect, methods for producing microporous carbon are neither easy nor well controllable. Moreover, due to the complexity and limitation of microporous carbon in their fabrication process, there has been rare investigation of influence on electrochemical behavior in the carbonate-based electrolyte for lithium-sulfur batteries by tuning different micropore size(0-2 nm) of carbon host. Here, we demonstrate an immediate carbonization process, self-activation strategy, which can produce microporous carbon for a sulfur host from alkali-complexes. Besides, by changing different alkali-ion in the previous complex, the obtained microporous carbon exhibits a major portion of ultramicropore (<0.7 nm, from 54.9% to 25.8%) and it is demonstrated that the micropore structure of the host material plays a vital role in confining sulfur molecule. When evaluated as cathode materials in a carbonate-based electrolyte for Li-S batteries, such microporous carbon/sulfur composite can provide high reversible capacity, cycling stability and good rate capability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to the...

  5. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to the...

  6. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to the...

  7. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to the...

  8. Facile synthesis of microporous SiO2/triangular Ag composite nanostructures for photocatalysis

    NASA Astrophysics Data System (ADS)

    Sirohi, Sidhharth; Singh, Anandpreet; Dagar, Chakit; Saini, Gajender; Pani, Balaram; Nain, Ratyakshi

    2017-11-01

    In this article, we present a novel fabrication of microporous SiO2/triangular Ag nanoparticles for dye (methylene blue) adsorption and plasmon-mediated degradation. Microporous SiO2 nanoparticles with pore size <2 nm were synthesized using cetyltrimethylammonium bromide as a structure-directing agent and functionalized with APTMS ((3-aminopropyl) trimethoxysilane) to introduce amine groups. Amine-functionalized microporous silica was used for adsorption of triangular silver (Ag) nanoparticles. The synthesized microporous SiO2 nanostructures were investigated for adsorption of different dyes including methylene blue, congo red, direct green 26 and curcumin crystalline. Amine-functionalized microporous SiO2/triangular Ag nanostructures were used for plasmon-mediated photocatalysis of methylene blue. The experimental results revealed that the large surface area of microporous silica facilitated adsorption of dye. Triangular Ag nanoparticles, due to their better charge carrier generation and enhanced surface plasmon resonance, further enhanced the photocatalysis performance.

  9. Development of PVA based micro-porous polymer electrolyte by a novel preferential polymer dissolution process

    NASA Astrophysics Data System (ADS)

    Subramania, A.; Kalyana Sundaram, N. T.; Sukumar, N.

    A micro-porous polymer electrolyte based on PVA was obtained from PVA-PVC based polymer blend film by a novel preferential polymer dissolution technique. The ionic conductivity of micro-porous polymer electrolyte increases with increase in the removal of PVC content. Finally, the effect of variation of lithium salt concentration is studied for micro-porous polymer electrolyte of high ionic conductivity composition. The ionic conductivity of the micro-porous polymer electrolyte is measured in the temperature range of 301-351 K. It is observed that a 2 M LiClO 4 solution of micro-porous polymer electrolyte has high ionic conductivity of 1.5055 × 10 -3 S cm -1 at ambient temperature. Complexation and surface morphology of the micro-porous polymer electrolytes are studied by X-ray diffraction and SEM analysis. TG/DTA analysis informs that the micro-porous polymer electrolyte is thermally stable upto 277.9 °C. Chronoamperommetry and linear sweep voltammetry studies were made to find out lithium transference number and stability of micro-porous polymer electrolyte membrane, respectively. Cyclic voltammetry study was performed for carbon/micro-porous polymer electrolyte/LiMn 2O 4 cell to reveal the compatibility and electrochemical stability between electrode materials.

  10. High-resolution imaging spectroscopy of two micro-pores and an arch filament system in a small emerging-flux region

    NASA Astrophysics Data System (ADS)

    González Manrique, S. J.; Bello González, N.; Denker, C.

    2017-04-01

    Context. Emerging flux regions mark the first stage in the accumulation of magnetic flux eventually leading to pores, sunspots, and (complex) active regions. These flux regions are highly dynamic, show a variety of fine structure, and in many cases live only for a short time (less than a day) before dissolving quickly into the ubiquitous quiet-Sun magnetic field. Aims: The purpose of this investigation is to characterize the temporal evolution of a minute emerging flux region, the associated photospheric and chromospheric flow fields, and the properties of the accompanying arch filament system. We aim to explore flux emergence and decay processes and investigate if they scale with structure size and magnetic flux contents. Methods: This study is based on imaging spectroscopy with the Göttingen Fabry-Pérot Interferometer at the Vacuum Tower Telescope, Observatorio del Teide, Tenerife, Spain on 2008 August 7. Photospheric horizontal proper motions were measured with Local correlation tracking using broadband images restored with multi-object multi-frame blind deconvolution. Cloud model (CM) inversions of line scans in the strong chromospheric absorption Hαλ656.28 nm line yielded CM parameters (Doppler velocity, Doppler width, optical thickness, and source function), which describe the cool plasma contained in the arch filament system. Results: The high-resolution observations cover the decay and convergence of two micro-pores with diameters of less than one arcsecond and provide decay rates for intensity and area. The photospheric horizontal flow speed is suppressed near the two micro-pores indicating that the magnetic field is already sufficiently strong to affect the convective energy transport. The micro-pores are accompanied by a small arch filament system as seen in Hα, where small-scale loops connect two regions with Hα line-core brightenings containing an emerging flux region with opposite polarities. The Doppler width, optical thickness, and source function reach the largest values near the Hα line-core brightenings. The chromospheric velocity of the cloud material is predominantly directed downwards near the footpoints of the loops with velocities of up to 12 km s-1, whereas loop tops show upward motions of about 3 km s-1. Some of the loops exhibit signs of twisting motions along the loop axis. Conclusions: Micro-pores are the smallest magnetic field concentrations leaving a photometric signature in the photosphere. In the observed case, they are accompanied by a miniature arch filament system indicative of newly emerging flux in the form of Ω-loops. Flux emergence and decay take place on a time-scale of about two days, whereas the photometric decay of the micro-pores is much more rapid (a few hours), which is consistent with the incipient submergence of Ω-loops. Considering lifetime and evolution timescales, impact on the surrounding photospheric proper motions, and flow speed of the chromospheric plasma at the loop tops and footpoints, the results are representative for the smallest emerging flux regions still recognizable as such.

  11. Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors.

    PubMed

    Hao, Long; Ning, Jing; Luo, Bin; Wang, Bin; Zhang, Yunbo; Tang, Zhihong; Yang, Junhe; Thomas, Arne; Zhi, Linjie

    2015-01-14

    A series of nitrogen-containing micropore-donimated materials, porous triazine-based frameworks (PTFs), are constructed through the structural evolution of a 2D microporous covalent triazine-based framework. The PTFs feature predictable and controllable nitrogen doping and pore structures, which serve as a model-like system to more deeply understand the heteroatom effect and micropore effect in ionic liquid-based supercapacitors. The experimental results reveal that the nitrogen doping can enhance the supercapacitor performance mainly through affecting the relative permittivity of the electrode materials. Although microspores' contribution is not as obvious as the doped nitrogen, the great performances of the micropore-dominated PTF suggest that micropore-dominated materials still have great potential in ionic liquid-based supercapacitors.

  12. In-line gas chromatographic apparatus for measuring the hydrophobic micropore volume (HMV) and contaminant transformation in mineral micropores.

    PubMed

    Cheng, Hefa; Reinhard, Martin

    2010-07-15

    Desorption of hydrophobic organic compounds from micropores is characteristically slow compared to surface adsorption and partitioning. The slow-desorbing mass of a hydrophobic probe molecule can be used to calculate the hydrophobic micropore volume (HMV) of microporous solids. A gas chromatographic apparatus is described that allows characterization of the sorbed mass with respect to the desorption rate. The method is demonstrated using a dealuminated zeolite and an aquifer sand as the model and reference sorbents, respectively, and trichloroethylene (TCE) as the probe molecule. A glass column packed with the microporous sorbent is coupled directly to a gas chromatograph that is equipped with flame ionization and electron capture detectors. Sorption and desorption of TCE on the sorbent was measured by sampling the influent and effluent of the column using a combination of switching and injection valves. For geosorbents, the HMV is quantified based on Gurvitsch's rule from the mass of TCE desorbed at a rate that is characteristic for micropores. Instrumental requirements, design considerations, hardware details, detector calibration, performance, and data analysis are discussed along with applications. The method is novel and complements traditional vacuum gravimetric and piezometric techniques, which quantify the total pore volume under vacuum conditions. The HMV is more relevant than the total micropore volume for predicting the fate and transport of organic contaminants in the subsurface. Sorption in hydrophobic micropores strongly impacts the mobility of organic contaminants, and their chemical and biological transformations. The apparatus can serve as a tool for characterizing microporous solids and investigating contaminant-solid interactions. 2010 Elsevier B.V. All rights reserved.

  13. Concentration of poliovirus from tap water using positively charged microporous filters.

    PubMed Central

    Sobsey, M D; Jones, B L

    1979-01-01

    Microporous filters that are more electropositive than the negatively charged filters currently used for virus concentrations from water by filter adsorption-elution methods were evaluated for poliovirus recovery from tap water. Zeta Plus filters composed of diatomaceous earth-cellulose-"charge-modified" resin mixtures and having a net positive charge of up to pH 5 to 6 efficiently adsorbed poliovirus from tap water at ambient pH levels 7.0 to 7.5 without added multivalent cation salts. The adsorbed virus were eluted with glycine-NaOH, pH 9.5 to 11.5. Electropositive asbestos-cellulose filters efficiently adsorbed poliovirus from tap water without added multivalent cation salts between pH 3.5 and 9.0, and the absorbed viruses could be eluted with 3% beef extract, pH 9, but not with pH 9.5 to 11.5 glycine-NaOH. Under water quality conditions in which poliovirus recoveries from large volumes of water were less than 5% with conventional negatively charged filters and standard methods, recoveries with Zeta Plus filters averaged 64 and 22.5% for one- and two-stage concentration procedures, respectively. Electropositive filters appear to offer distinct advantages over conventional negatively charged filters for concentrating enteric viruses from water, and their behavior tends to confirm the importance of electrostatic forces in virus recovery from water by microporous filter adsorption-elution methods. PMID:36844

  14. Ultrasonic characterization of microstructure in powder metal alloy

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Ahlberg, L. A.; Fertig, K.

    1986-01-01

    The ultrasonic wave propagation characteristics were measured for IN-100, a powder metallurgy alloy used for aircraft engine components. This material was as a model system for testing the feasibility of characterizing the microstructure of a variety of inhomogeneous media including powder metals, ceramics, castings and components. The data were obtained for a frequency range from about 2 to 20 MHz and were statistically averaged over numerous volume elements of the samples. Micrographical examination provided size and number distributions for grain and pore structure. The results showed that the predominant source for the ultrasonic attenuation and backscatter was a dense (approx. 100/cubic mm) distribution of small micropores (approx. 10 micron radius). Two samples with different micropore densities were studied in detail to test the feasibility of calculating from observed microstructural parameters the frequency dependence of the microstructural backscatter in the regime for which the wavelength is much larger than the size of the individual scattering centers. Excellent agreement was found between predicted and observed values so as to demonstrate the feasibility of solving the forward problem. The results suggest a way towards the nondestructive detection and characterization of anomalous distributions of micropores when conventional ultrasonic imaging is difficult. The findings are potentially significant toward the application of the early detection of porosity during the materials fabrication process and after manufacturing of potential sites for stress induced void coalescence leading to crack initiation and subsequent failure.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, R.H.; Rand, B.

    The physical adsorption of nonpolar and polar vapors by active carbons is discussed in relation to pore structure and pore wall chemistry. For nonpolar vapors the Dubinin-Radushkevich equation is used to derive micropore volumes (W[sub 0]), average adsorption energies (E[sub 0]), and micropore widths (L) for a number of systems. These parameters are used to interpret the adsorption behavior of nitrogen which, because it is a relatively small molecule, is frequently used at 77 K to probe porosity and surface area. Results are presented for three carbons from differing precursors, namely, coal, coconut shells, and polyvinylidene chloride (PVDC) to illustratemore » the applicability of the technique. For the latter carbon increases in micropore size, induced by activation in carbon dioxide, and reductions in accessible pore volume caused by heat treatment in argon are also characterized and related to structural changes. The approach is then extended to the adsorption of larger hydrogen vapors, where the resulting W[sub 0] values may require correction for molecular packing effects which occur in the lower relative pressure regions of the isotherms, i.e., during the filling of ultramicropores. These packing effects are shown to limit the use of the Polanyi characteristic curve for correlating isotherm data for several vapors, of differing molecular size, by one adsorbent. Data for the adsorption of water, which is a strongly polar liquid, have been interpreted using the Dubinin-Serpinsky equation.« less

  16. Water-Hydrogel Binding Affinity Modulates Freeze-Drying-Induced Micropore Architecture and Skeletal Myotube Formation.

    PubMed

    Rich, Max H; Lee, Min Kyung; Marshall, Nicholas; Clay, Nicholas; Chen, Jinrong; Mahmassani, Ziad; Boppart, Marni; Kong, Hyunjoon

    2015-08-10

    Freeze-dried hydrogels are increasingly used to create 3D interconnected micropores that facilitate biomolecular and cellular transports. However, freeze-drying is often plagued by variance in micropore architecture based on polymer choice. We hypothesized that water-polymer binding affinity plays a significant role in sizes and numbers of micropores formed through freeze-drying, influencing cell-derived tissue quality. Poly(ethylene glycol)diacrylate (PEGDA) hydrogels with alginate methacrylate (AM) were used due to AM's higher binding affinity for water than PEGDA. PEGDA-AM hydrogels with larger AM concentrations resulted in larger sizes and numbers of micropores than pure PEGDA hydrogels, attributed to the increased mass of water binding to the PEGDA-AM gel. Skeletal myoblasts loaded in microporous PEGDA-AM hydrogels were active to produce 3D muscle-like tissue, while those loaded in pure PEGDA gels were localized on the gel surface. We propose that this study will be broadly useful in designing and improving the performance of various microporous gels.

  17. Micropores and methods of making and using thereof

    DOEpatents

    Perroud, Thomas D.; Patel, Kamlesh D.; Meagher, Robert J.

    2016-08-02

    Disclosed herein are methods of making micropores of a desired height and/or width between two isotropic wet etched features in a substrate which comprises single-level isotropic wet etching the two features using an etchant and a mask distance that is less than 2.times. a set etch depth. Also disclosed herein are methods using the micropores and microfluidic devices comprising the micropores.

  18. Sorption of chlorophenols on microporous minerals: mechanism and influence of metal cations, solution pH, and humic acid.

    PubMed

    Yang, Hui; Hu, Yuanan; Cheng, Hefa

    2016-10-01

    Sorption of 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) on a range of dealuminated zeolites were investigated to understand the mechanism of their sorption on microporous minerals, while the influence of common metal cations, solution pH, and humic acid was also studied. Sorption of chlorophenols was found to increase with the hydrophobicity of the sorbates and that of the microporous minerals, indicating the important role of hydrophobic interactions, while sorption was also stronger in the micropores of narrower sizes because of greater enhancement of the dispersion interactions. The presence of metal cations could enhance chlorophenol sorption due to the additional electrostatic attraction between metal cations exchanged into the mineral micropores and the chlorophenolates, and this effect was apparent on the mineral sorbent with a high density of surface cations (2.62 sites/nm(2)) in its micropores. Under circum-neutral or acidic conditions, neutral chlorophenol molecules adsorbed into the hydrophobic micropores through displacing the "loosely bound" water molecules, while their sorption was negligible under moderately alkaline conditions due to electrostatic repulsion between the negatively charged zeolite framework and anionic chlorophenolates. The influence of humic acid on sorption of chlorophenols on dealuminated Y zeolites suggests that its molecules did not block the micropores but created a secondary sorption sites by forming a "coating layer" on the external surface of the zeolites. These mechanistic insights could help better understand the interactions of ionizable chlorophenols and metal cations in mineral micropores and guide the selection and design of reusable microporous mineral sorbents for sorptive removal of chlorophenols from aqueous stream.

  19. The synergistic effects of carbon coating and micropore structure on the microwave absorption properties of Co/CoO nanoparticles.

    PubMed

    Xie, Xiubo; Pang, Yu; Kikuchi, Hiroaki; Liu, Tong

    2016-11-09

    25 nm carbon-coated microporous Co/CoO nanoparticles (NPs) were synthesized by integrating chemical de-alloying and chemical vapor deposition (CVD) methods. The NPs possess micropores of 0.8-1.5 nm and display a homogeneous carbon shell of about 4 nm in thickness with a low graphitization degree. The saturation magnetization (M S ) and coercivity (H C ) of the NPs were 70.3 emu g -1 and 398.4 Oe, respectively. The microporous Co/CoO/C NPs exhibited enhanced microwave absorption performance with a minimum reflection coefficient (RC) of -78.4 dB and a wide absorption bandwidth of 8.1 GHz (RC ≤ -10 dB), larger than those of the nonporous counterparts of -68.3 dB and 5.8 GHz. The minimum RC values of the microporous Co/CoO/C NPs at different thicknesses were much smaller than the nonporous counterparts. The high microwave absorption mechanism of the microporous Co/CoO/C nanocomposite can be interpreted in terms of the interfacial polarization relaxation of the core/shell and micropore structures, the effective permittivity modification of the air in the micropores and the polarization relaxation of the defects in the low-graphitization carbon shell and the porous Co NPs. Our study demonstrates that the microporous Co/CoO/C nanocomposite is an efficient microwave absorber with high absorption intensity and wide absorption bandwidth.

  20. Selective Individual Primary Cell Capture Using Locally Bio-Functionalized Micropores

    PubMed Central

    Liu, Jie; Bombera, Radoslaw; Leroy, Loïc; Roupioz, Yoann; Baganizi, Dieudonné R.; Marche, Patrice N.; Haguet, Vincent; Mailley, Pascal; Livache, Thierry

    2013-01-01

    Background Solid-state micropores have been widely employed for 6 decades to recognize and size flowing unlabeled cells. However, the resistive-pulse technique presents limitations when the cells to be differentiated have overlapping dimension ranges such as B and T lymphocytes. An alternative approach would be to specifically capture cells by solid-state micropores. Here, the inner wall of 15-µm pores made in 10 µm-thick silicon membranes was covered with antibodies specific to cell surface proteins of B or T lymphocytes. The selective trapping of individual unlabeled cells in a bio-functionalized micropore makes them recognizable just using optical microscopy. Methodology/Principal Findings We locally deposited oligodeoxynucleotide (ODN) and ODN-conjugated antibody probes on the inner wall of the micropores by forming thin films of polypyrrole-ODN copolymers using contactless electro-functionalization. The trapping capabilities of the bio-functionalized micropores were validated using optical microscopy and the resistive-pulse technique by selectively capturing polystyrene microbeads coated with complementary ODN. B or T lymphocytes from a mouse splenocyte suspension were specifically immobilized on micropore walls functionalized with complementary ODN-conjugated antibodies targeting cell surface proteins. Conclusions/Significance The results showed that locally bio-functionalized micropores can isolate target cells from a suspension during their translocation throughout the pore, including among cells of similar dimensions in complex mixtures. PMID:23469221

  1. Gas diffusion layers coated with a microporous layer containing hydrophilic carbon nanotubes for performance enhancement of polymer electrolyte fuel cells under both low and high humidity conditions

    NASA Astrophysics Data System (ADS)

    Kitahara, Tatsumi; Nakajima, Hironori; Okamura, Kosuke

    2015-06-01

    Gas diffusion layers (GDLs) coated with a hydrophobic microporous layer (MPL) composed of carbon black and polytetrafluoroethylene (PTFE) have been commonly used to improve the water management characteristics of polymer electrolyte fuel cells (PEFCs). However, the hydrophobic MPL coated GDL designed to prevent dehydration of the membrane under low humidity conditions is generally inferior at reducing flooding under high humidity conditions. It is therefore important to develop a robust MPL coated GDL that can enhance the PEFC performance regardless of the humidity conditions. In the present study, a GDL coated with an MPL containing hydrophilic carbon nanotubes (CNTs) was developed. The less hydrophobic pores incorporating CNTs are effective at conserving the membrane humidity under low humidity conditions. The MPL with CNTs is also effective at expelling excess water from the catalyst layer while maintaining oxygen flow pathways from the GDL substrate, allowing the mean flow pore diameter to be decreased to 2 μm without reducing the ability of the MPL to prevent flooding under high humidity conditions. An MPL coated GDL with a CNT content of 4 mass% exhibits significantly higher performance under both low and high humidity conditions than a hydrophobic MPL coated GDL.

  2. A comparative biomechanical study of bone ingrowth in two porous hydroxyapatite bioceramics

    NASA Astrophysics Data System (ADS)

    Ren, Li-Mei; Todo, Mitsugu; Arahira, Takaaki; Yoshikawa, Hideki; Myoui, Akira

    2012-12-01

    Calcium phosphate-based bioceramics have been widely used as artificial bone substitute materials because of their superior biocompatibility and osteoconductivity. In the present study, mechanical properties changes of two hydroxyapatite (HA) ceramics induced by bone ingrowth were tested and evaluated in a rabbit model. Both materials (NEOBONE®, Apaceram-AX®) have highly interconnected pores with a porosity of 75-85%. The major structural difference between them lies in that Apaceram-AX® has micropores smaller than 10 micrometers in diameter, whereas NEOBONE® does not contain such micropores. Both materials were implanted into the femoral condyles of rabbits for the specified observation period (1, 5, 12, 24, and 48 weeks) and then evaluated by experimental approach in combination with finite element method (FEM). Results indicate that two porous bioceramics exhibit different degradability in vivo, and remarkably different variation of total stiffness, elastic modulus distribution, as well as strain energy density distribution calculated by FE simulation. These results demonstrate how the internal microstructures affect the progress of bone regeneration and mechanical properties with the duration of implantation, emphasizing the importance of biomaterial design tailored to various clinic applications. Additionally, this study showed a potential for applying the computational method to monitor the time-dependent biomechanical changes of implanted porous bioceramics.

  3. Hybrid Ultra-Microporous Materials for Selective Xenon Adsorption and Separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Mona H.; Elsaidi, Sameh K.; Pham, Tony

    2016-05-30

    The demand for Xe/Kr separation continues to grow due to the industrial significance of high-purity Xe gas. Current separation processes rely on energy intensive cryogenic distillation. Therefore, there is a need to develop less energy intensive alternatives such as physisorptive separation using porous materials. Here we show that an underexplored class of porous materials called hybrid ultramicroporous materials (HUMs) based upon inorganic and organic building blocks affords new benchmark selectivity for Xe separation from Xe/Kr mixtures. The isostructural materials, CROFOUR-1-Ni and CROFOUR-2-Ni, are coordination networks that exhibit coordinatively saturated metal centres and two distinct types of micropores, one of whichmore » is lined by CrO42- (CROFOUR) anions and the other is decorated by the functionalized organic linker. These nets offer unprecedented selectivity towards Xe, and also address processing and stability limitations of existing porous materials. Modelling experiments indicate that the extraordinary selectivity of these nets is tailored by synergy between the pore size, which is just above the kinetic diameter of Xe, and the strong electrostatics afforded by the CrO42- anions. Column breakthrough experiments demonstrate the potential of the practical use of these materials in Xe/Kr separation at low concentrations at the levels relevant to Xe capture from air and in nuclear fuel reprocessing.« less

  4. Nanoporous carbon supercapacitors in an ionic liquid: a computer simulation study.

    PubMed

    Shim, Youngseon; Kim, Hyung J

    2010-04-27

    Supercapacitors composed of carbon nanotube (CNT) micropores in the room-temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI+BF4(-)) are studied via molecular dynamics (MD)computer simulations. It is found that the distribution of RTIL ions inside the micropore varies significantly with the pore size. Internal solvation of small (6,6) and (7,7) CNTs with an electrified interior wall is effected almost exclusively via counterions. Surprisingly, these counterions, even though they all have the same charge, lead to a charge density characterized by multiple layers with alternating signs. This intriguing feature is attributed to the extended nature of RTIL ion charge distributions, which result in charge separation through preferential orientation inside the electrified nanotubes. In the case of larger (10,10) and (15,15) CNTs, counterions and coions develop multilayer solvation structures. The specific capacitance normalized to the pore surface area is found to increase as the CNT diameter decreases from (15,15) to (7,7). As the pore size further reduces from (6,6) to(5,5), however, the specific capacitance diminishes rapidly. These findings are in excellent agreement with recent experiments with carbon-based materials. A theoretical model based on multiple charge layers is proposed to understand both the MD and experimental results.

  5. SANS Investigations of CO 2 Adsorption in Microporous Carbon

    DOE PAGES

    Bahadur, Jitendra; Melnichenko, Yuri B.; He, Lilin; ...

    2015-08-07

    The high pressure adsorption behavior of CO 2 at T = 296 K in microporous carbon was investigated by small-angle neutron scattering (SANS) technique. A strong densification of CO 2 in micropores accompanied by non-monotonic adsorption-induced pore deformation was observed. The density of confined CO 2 increases rapidly with pressure and reaches the liquid –like density at 20 bar, which corresponds to the relative pressure of P/Psat ~0.3. At P > 20 bar density of confined CO 2 increases slowly approaching a plateau at higher pressure. The size of micropores first increases with pressure, reaches amore » maximum at 20 bar, and then decreases with pressure. A complementary SANS experiment conducted on the same microporous carbon saturated with neutron-transparent and non-adsorbing inert gas argon shows no deformation of micropores at pressures up to ~200 bars. This result demonstrates that the observed deformation of micropores in CO 2 is an adsorption-induced phenomenon, caused by the solvation pressure - induced strain and strong densification of confined CO 2 .« less

  6. SANS Investigations of CO 2 Adsorption in Microporous Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahadur, Jitendra; Melnichenko, Yuri B.; He, Lilin

    The high pressure adsorption behavior of CO 2 at T = 296 K in microporous carbon was investigated by small-angle neutron scattering (SANS) technique. A strong densification of CO 2 in micropores accompanied by non-monotonic adsorption-induced pore deformation was observed. The density of confined CO 2 increases rapidly with pressure and reaches the liquid –like density at 20 bar, which corresponds to the relative pressure of P/Psat ~0.3. At P > 20 bar density of confined CO 2 increases slowly approaching a plateau at higher pressure. The size of micropores first increases with pressure, reaches amore » maximum at 20 bar, and then decreases with pressure. A complementary SANS experiment conducted on the same microporous carbon saturated with neutron-transparent and non-adsorbing inert gas argon shows no deformation of micropores at pressures up to ~200 bars. This result demonstrates that the observed deformation of micropores in CO 2 is an adsorption-induced phenomenon, caused by the solvation pressure - induced strain and strong densification of confined CO 2 .« less

  7. High permeable microporous structured carbon counter electrode assisted by polystyrene sphere for fully printable perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Tao, Haijun; Li, Yongtao; Zhang, Chuanxiang; Wang, Kang; Wang, Jiayue; Tan, Bin; Han, Linxuan; Tao, Jie

    2018-03-01

    The permeability of the carbon counter electrode (CCE) is critical to the HTM-free fully printable perovskite solar cells. In this work, we report a CCE assisted by polystyrene spheres (PS-spheres) as pore-forming agent to gain microporous structure for a better permeability. Due to its decomposition temperature at 400 °C, the porous structure is obtained in the carbon layer easily. By optimization towards the contents of PS-spheres in CCE, the filling rate of perovskite solution and the photovoltaic performance of the device have been significantly improved. Using this method, an average efficiency enhancement of 22% has been obtained for HTM-free fully printable perovskite solar cells, resulting in a better fill rate of CH3NH3PbI3 and an efficiency of 4.49%. This kind of CCE with the advantages of simple, easy preparation process and well performance, show excellent potential application in perovskite solar cells.

  8. Reactive Melt Infiltration of Silicon-Niobium Alloys in Microporous Carbons

    NASA Technical Reports Server (NTRS)

    Singh, M.; Behrendt, D. R.

    1994-01-01

    Studies of the reactive melt infiltration of silicon-niobium alloys in microporous carbon preforms prepared by the pyrolysis of a polymer precursor have been carried out using modeling, Differential Thermal Analysis (DTA), and melt infiltration. Mercury porosimetry results indicate a very narrow pore size distribution with virtually all the porosity within the carbon preforms open to infiltrants. The morphology and amount of the residual phases (niobium disilicide and silicon) in the infiltrated material can be tailored according to requirements by careful control of the properties (pore size and pore volume) of the porous carbon preforms and alloy composition. The average room temperature four-point flexural strength of a reaction-formed silicon carbide material (made by the infiltration of medium pore size carbon preform with Si - 5 at. % Nb alloy) is 290 +/- 40 MPa (42 +/- 6 ksi) and the fracture toughness is 3.7 +/- 0.3 MPa square root of m. The flexural strength decreases at high temperatures due to relaxation of residual thermal stresses and the presence of free silicon in the material.

  9. Thermal conductivity of microporous layers: Analytical modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Andisheh-Tadbir, Mehdi; Kjeang, Erik; Bahrami, Majid

    2015-11-01

    A new compact relationship is developed for the thermal conductivity of the microporous layer (MPL) used in polymer electrolyte fuel cells as a function of pore size distribution, porosity, and compression pressure. The proposed model is successfully validated against experimental data obtained from a transient plane source thermal constants analyzer. The thermal conductivities of carbon paper samples with and without MPL were measured as a function of load (1-6 bars) and the MPL thermal conductivity was found between 0.13 and 0.17 W m-1 K-1. The proposed analytical model predicts the experimental thermal conductivities within 5%. A correlation generated from the analytical model was used in a multi objective genetic algorithm to predict the pore size distribution and porosity for an MPL with optimized thermal conductivity and mass diffusivity. The results suggest that an optimized MPL, in terms of heat and mass transfer coefficients, has an average pore size of 122 nm and 63% porosity.

  10. Synthesis and characterization of microporous inorganic membranes for propylene/propane separation

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoli

    Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H 8 separation has not been well investigated. This dissertation presents fundamental studies on membrane synthesis, characterization and C3H 6/C3H8 separation properties of MFI zeolite membrane and CMS membrane. MFI zeolite membranes were synthesized on α-alumina supports by secondary growth method. Novel positron annihilation spectroscopy (PAS) techniques were used to non-destructively characterize the pore structure of these membranes. PAS reveals a bimodal pore structure consisting of intracrystalline zeolitic micropores of ~0.6 nm in diameter and irregular intercrystalline micropores of 1.4 to 1.8 nm in size for the membranes. The template-free synthesized membrane exhibited a high permeance but a low selectivity in C3H 6/C3H8 mixture separation. CMS membranes were synthesized by coating/pyrolysis method on mesoporous gamma-alumina support. Such supports allow coating of thin, high-quality polymer films and subsequent CMS membranes with no infiltration into support pores. The CMS membranes show strong molecular sieving effect, offering a high C3H 6/C3H8 mixture selectivity of ~30. Reduction in membrane thickness from 500 nm to 300 nm causes an increase in C3H8 permeance and He/N2 selectivity, but a decrease in the permeance of He, N 2 and C3H6 and C3H6/C 3H8 selectivity. This can be explained by the thickness dependent chain mobility of the polymer film resulting in final carbon membrane of reduced pore size with different effects on transport of gas of different sizes, including possible closure of C3H6-accessible micropores. CMS membranes demonstrate excellent C3H6/C 3H8 separation performance over a wide range of feed pressure, composition and operation temperature. No plasticization was observed at a feed pressure up to 100 psi. The permeation and separation is mainly controlled by diffusion instead of adsorption. CMS membrane experienced a decline in permeance, and an increase in selectivity over time under on-stream C 3H6/C3H8 separation. This aging behavior is due to the reduction in effective pore size and porosity caused by oxygen chemisorption and physical aging of the membrane structure.

  11. Characterizing particle-scale equilibrium adsorption and kinetics of uranium(VI) desorption from U-contaminated sediments

    USGS Publications Warehouse

    Stoliker, Deborah L.; Liu, Chongxuan; Kent, Douglas B.; Zachara, John M.

    2013-01-01

    Rates of U(VI) release from individual dry-sieved size fractions of a field-aggregated, field-contaminated composite sediment from the seasonally saturated lower vadose zone of the Hanford 300-Area were examined in flow-through reactors to maintain quasi-constant chemical conditions. The principal source of variability in equilibrium U(VI) adsorption properties of the various size fractions was the impact of variable chemistry on adsorption. This source of variability was represented using surface complexation models (SCMs) with different stoichiometric coefficients with respect to hydrogen ion and carbonate concentrations for the different size fractions. A reactive transport model incorporating equilibrium expressions for cation exchange and calcite dissolution, along with rate expressions for aerobic respiration and silica dissolution, described the temporal evolution of solute concentrations observed during the flow-through reactor experiments. Kinetic U(VI) desorption was well described using a multirate SCM with an assumed lognormal distribution for the mass-transfer rate coefficients. The estimated mean and standard deviation of the rate coefficients were the same for all <2 mm size fractions but differed for the 2–8 mm size fraction. Micropore volumes, assessed using t-plots to analyze N2 desorption data, were also the same for all dry-sieved <2 mm size fractions, indicating a link between micropore volumes and mass-transfer rate properties. Pore volumes for dry-sieved size fractions exceeded values for the corresponding wet-sieved fractions. We hypothesize that repeated field wetting and drying cycles lead to the formation of aggregates and/or coatings containing (micro)pore networks which provided an additional mass-transfer resistance over that associated with individual particles. The 2–8 mm fraction exhibited a larger average and standard deviation in the distribution of mass-transfer rate coefficients, possibly caused by the abundance of microporous basaltic rock fragments.

  12. An Investigation of Armenite, BaCa2Al6Si9O302H2O.H2O Molecules and H Bonding in Microporous Silicates

    NASA Astrophysics Data System (ADS)

    Geiger, C. A.; Gatta, G.; Xue, X.; McIntyre, G.

    2012-12-01

    The crystal chemistry of armenite, ideally BaCa2Al6Si9O30.2H2O, a double-ring structure belonging to the milarite group, was studied to better understand the nature of extra-framework "Ca-oxygen-anion-H2O-molecule quasi-clusters" and H bonding behavior in microporous silicates. Neutron and X-ray single-crystal diffraction and IR powder and 1H NMR spectroscopic measurements were made. Four crystallographically independent Ca and H2O molecule sites were refined from the diffraction data, whereby both sites appear to have partial occupancies such that locally a Ca atom can have only a single H2O molecule bonded to it through an ion-dipole interaction. The Ca cation is further bonded to six O atoms of the framework forming a quasi cluster around it. The neutron results give the first static description of the protons in armenite, allowing bond distances and angles relating to the H2O molecules and H bonds to be determined. The IR spectrum of armenite is characterized in the OH-stretching region at RT by two broad bands at roughly 3470 and 3410 cm-1 and by a single H2O bending mode at 1654 cm-1. At 10 K four intense OH bands are located at 3479, 3454, 3401 and 3384 cm-1 and two H2O bending modes at 1650 and 1606 cm-1. The 1H MAS NMR spectrum shows a single strong resonance near 5.3 ppm and a smaller one near 2.7 ppm. The former can be assigned to H2O molecules bonded to Ca and the latter to weakly bonded H2O located at a site at the center of the structural double ring and it is partially occupied. The nature of H bonding in the microporous Ca-bearing zeolites scolecite, wairakite and epistilbite are also analyzed. The average OH stretching wavenumber shown by the IR spectra of armenite (~3435 cm-1) and scolecite (~3430 cm-1) are similar, while the average OH wavenumbers for wairakite (~3475 cm-1) and epistilbite (~3500 cm-1) are greater. In all cases the average OH stretching wavenumber is more similar to that of liquid water (~3400 cm-1) than of ice (~3220 cm-1). The strength of hydrogen bonding of the H2O molecules in microporous silicates does not appear to change greatly with decreasing temperatures from 300 K down to 10 K. The reason for this and also understanding better the ion-dipole interaction and its effect on H-bonding strength in Ca-quasi clusters need further study. The crystal structure of armenite viewed down [001] and [010].

  13. Interaction between antimony atoms and micropores in silicon

    NASA Astrophysics Data System (ADS)

    Odzhaev, V. B.; Petlitskii, A. N.; Plebanovich, V. I.; Sadovskii, P. K.; Tarasik, M. I.; Chelyadinskii, A. R.

    2018-01-01

    The interaction between Sb atoms and micropores of a getter layer in silicon is studied. The getter layer was obtained via implantation of Sb+ ions into silicon and subsequent heat treatment processes. The antimony atoms located in the vicinity of micropores are captured by micropores during gettering annealing and lose its electrical activity. The activation energy of capture process to the pores for antimony is lower than that of antimony diffusion in silicon deformation fields around microvoids on the diffusion process.

  14. Isotropically etched radial micropore for cell concentration, immobilization, and picodroplet generation.

    PubMed

    Perroud, Thomas D; Meagher, Robert J; Kanouff, Michael P; Renzi, Ronald F; Wu, Meiye; Singh, Anup K; Patel, Kamlesh D

    2009-02-21

    To enable several on-chip cell handling operations in a fused-silica substrate, small shallow micropores are radially embedded in larger deeper microchannels using an adaptation of single-level isotropic wet etching. By varying the distance between features on the photolithographic mask (mask distance), we can precisely control the overlap between two etch fronts and create a zero-thickness semi-elliptical micropore (e.g. 20 microm wide, 6 microm deep). Geometrical models derived from a hemispherical etch front show that micropore width and depth can be expressed as a function of mask distance and etch depth. These models are experimentally validated at different etch depths (25.03 and 29.78 microm) and for different configurations (point-to-point and point-to-edge). Good reproducibility confirms the validity of this approach to fabricate micropores with a desired size. To illustrate the wide range of cell handling operations enabled by micropores, we present three on-chip functionalities: continuous-flow particle concentration, immobilization of single cells, and picoliter droplet generation. (1) Using pressure differentials, particles are concentrated by removing the carrier fluid successively through a series of 44 shunts terminated by 31 microm wide, 5 microm deep micropores. Theoretical values for the concentration factor determined by a flow circuit model in conjunction with finite volume modeling are experimentally validated. (2) Flowing macrophages are individually trapped in 20 microm wide, 6 microm deep micropores by hydrodynamic confinement. The translocation of transcription factor NF-kappaB into the nucleus upon lipopolysaccharide stimulation is imaged by fluorescence microscopy. (3) Picoliter-sized droplets are generated at a 20 microm wide, 7 microm deep micropore T-junction in an oil stream for the encapsulation of individual E. coli bacteria cells.

  15. Corrigendum to “Comparing activated alumina with indigenous laterite and bauxite as potential sorbents for removing fluoride from drinking water in Ghana” [Appl. Geochem. 56 (2015) 50–66

    USGS Publications Warehouse

    Craig, Laura; Stillings, Lisa; Decker, David L.; Thomas, James M.

    2015-01-01

    The authors regret that the application of the t-plot to determine the presence of micropores in the three sorbents needs the following corrections: (1) Fig. 1a, c, e are N2(g) adsorption and desorption isotherms” (remove “BET”). This correction applies to descriptions in the text as well. (2) Table 2, the column titled “Micropores” is mislabelled, and should be labelled “Film thickness”, which may not equal the pore width. The column titled “Micropore volume” is a correct description for laterite volume 0.0022 cm3 g−1 (t = 0.3–0.5 nm), but the other pore volumes listed cannot be identified as corresponding to micropores. They likely comprise both micropores and mesopores in laterite, while the presence of micropores in activated alumina is not clear. The positive y-intercept for the lowest linear portion of the laterite t-plot curve indicates micropores (Fig. 1f), and the shape of the t-plot curve suggests the presence of both micropores and mesopores. The shape of the activated alumina t-plot curve suggests the presence of micropores and mesopores, but the zero intercept for the lowest linear portion of the curve (Fig. 1b) creates uncertainty regarding the presence of micropores. Also see Storck et al., 1998; Hay et al. 2011 and references therein. (Additional note: analytical instrument Micromeritics® was misspelled as “Micrometrics”).The authors would like to apologise for any inconvenience caused.

  16. Surfactant-free synthesis of silica aerogel microspheres with hierarchically porous structure.

    PubMed

    Zhang, Yulu; Wang, Jin; Zhang, Xuetong

    2018-04-01

    In this work, we developed a new method to synthesize silica aerogel microspheres via ambient pressure drying (APD) process without applying any surfactants and mechanical stirring. An ethanol solution of partially hydrolyzed, partially condensed silica (CS) was used as precursor in the synthesis, the water-repellent n-Heptane as solvent, while the water-soluble ammonia gas (NH 3 ) as catalyst. After a fast sol-gel process and APD process, aerogel microspheres were obtained in the form of white powder with packing density ranged from 62 mg/cm 3 to 230 mg/cm 3 for different samples. The SEM images exhibited fine spherical morphology for these aerogel microparticles, and their statistical average particle diameter ranged from 0.8 μm to 1.5 μm. Besides, according to the analysis of N 2 adsorption-desorption isotherms, the BET surface area of these aerogel microspheres was in the range of 800-960 m 2 /g, and a considerable volume of micropores was detected along with the abundant mesospores in these microspheres, which was further confirmed by the TEM image and SAXS curve. Based on the very limited solubility of NH 3 in the reaction system, a non-emulsion formation mechanism was proposed to illustrate the formation of these aerogel microspheres. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Pressure induced swelling in microporous materials

    DOEpatents

    Vogt, Thomas; Hriljac, Joseph A.; Lee, Yongjae

    2006-07-11

    A method for capturing specified materials which includes contacting a microporous material with a hydrostatic fluid having at least one specified material carried therein, under pressure which structurally distorts the lattice sufficiently to permit entry of the at least one specified material. The microporous material is capable of undergoing a temporary structural distortion which alters resting lattice dimensions under increased ambient pressure and at least partially returning to rest lattice dimensions when returned to ambient pressure. The pressure of the fluid is then reduced to permit return to at least partial resting lattice dimension while the at least one specified material is therein. By this method, at least one specified material is captured in the microporous material to form a modified microporous material.

  18. Toward Increasing Micropore Volume between Hybrid Layered Perovskites with Silsesquioxane Interlayers.

    PubMed

    Kataoka, Sho; Kamimura, Yoshihiro; Endo, Akira

    2018-04-10

    Hybrid organic-inorganic layered perovskites are typically nonporous solids. However, the incorporation of silsesquioxanes with a cubic cage structure as interlayer materials creates micropores between the perovskite layers. In this study, we increase in the micropore volume in layered perovskites by replacing a portion of the silsesquioxane interlayers with organic amines. In the proposed method, approximately 20% of the silsesquioxane interlayers can be replaced without changing the layer distance owing to the size of the silsesquioxane. When small amines (e.g., ethylamine) are used in this manner, the micropore volume of the obtained hybrid layered perovskites increases by as much as 44%; when large amines (e.g., phenethylamine) are used, their micropore volume decreases by as much as 43%. Through the variation of amine fraction, the micropore volume can be adjusted in the range. Finally, the magnetic moment measurements reveal that the layered perovskites with mixed interlayers exhibit ferromagnetic ordering at temperature below 20 K, thus indicating that the obtained perovskites maintain their functions as layered perovskites.

  19. Using the developed cross-flow filtration chip for collecting blood plasma under high flow rate condition and applying the immunoglobulin E detection

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Hsien; Hung, Chia-Wei; Wu, Chun-Han; Lin, Yu-Cheng

    2014-09-01

    This paper presents a cross-flow filtration chip for separating blood cells (white blood cells, red blood cells, and platelets) and obtaining blood plasma from human blood. Our strategy is to flow the sample solution in parallel to the membrane, which can generate a parallel shear stress to remove the clogging microparticles on the membrane, so the pure sample solution is obtained in the reservoir. The cross-flow filtration chip includes a cross-flow layer, a Ni-Pd alloy micro-porous membrane, and a reservoir layer. The three layers are packaged in a polymethylmethacrylate (PMMA) frame to create the cross-flow filtration chip. Various dilutions of the blood sample (original, 2 × , 3 × , 5 × , and 10×), pore sizes with different diameters (1 µm, 2 µm, 4 µm, 7 µm, and 10 µm), and different flow rates (1 mL/min, 3 mL/min, 5 mL/min, 7 mL/min, and 10 mL/min) are tested to determine their effects on filtration percentage. The best filtration percentage is 96.2% when the dilution of the blood sample is 10 × , the diameter of pore size of a Ni-Pd alloy micro-porous membrane is 2 µm, and the flow rate is 10 mL/min. Finally, for the clinical tests of the immunoglobulin E (IgE) concentration, the cross-flow filtration chip is used to filter the blood of the allergy patients to obtain the blood plasma. This filtered blood plasma is compared with that obtained using the conventional centrifugation based on the enzyme-linked immunosorbent assay. The results reveal that these two blood separation methods have similar detection trends. The proposed filtration chip has the advantages of low cost, short filtration time, and easy operation and thus can be applied to the separation of microparticles, cells, bacteria, and blood.

  20. Modeling the impact of soil aggregate size on selenium immobilization

    NASA Astrophysics Data System (ADS)

    Kausch, M. F.; Pallud, C. E.

    2013-03-01

    Soil aggregates are mm- to cm-sized microporous structures separated by macropores. Whereas fast advective transport prevails in macropores, advection is inhibited by the low permeability of intra-aggregate micropores. This can lead to mass transfer limitations and the formation of aggregate scale concentration gradients affecting the distribution and transport of redox sensitive elements. Selenium (Se) mobilized through irrigation of seleniferous soils has emerged as a major aquatic contaminant. In the absence of oxygen, the bioavailable oxyanions selenate, Se(VI), and selenite, Se(IV), can be microbially reduced to solid, elemental Se, Se(0), and anoxic microzones within soil aggregates are thought to promote this process in otherwise well-aerated soils. To evaluate the impact of soil aggregate size on selenium retention, we developed a dynamic 2-D reactive transport model of selenium cycling in a single idealized aggregate surrounded by a macropore. The model was developed based on flow-through-reactor experiments involving artificial soil aggregates (diameter: 2.5 cm) made of sand and containing Enterobacter cloacae SLD1a-1 that reduces Se(VI) via Se(IV) to Se(0). Aggregates were surrounded by a constant flow providing Se(VI) and pyruvate under oxic or anoxic conditions. In the model, reactions were implemented with double-Monod rate equations coupled to the transport of pyruvate, O2, and Se species. The spatial and temporal dynamics of the model were validated with data from experiments, and predictive simulations were performed covering aggregate sizes 1-2.5 cm in diameter. Simulations predict that selenium retention scales with aggregate size. Depending on O2, Se(VI), and pyruvate concentrations, selenium retention was 4-23 times higher in 2.5 cm aggregates compared to 1 cm aggregates. Under oxic conditions, aggregate size and pyruvate concentrations were found to have a positive synergistic effect on selenium retention. Promoting soil aggregation on seleniferous agricultural soils, through organic matter amendments and conservation tillage, may thus help decrease the impacts of selenium contaminated drainage water on downstream aquatic ecosystems.

  1. Modeling the impact of soil aggregate size on selenium immobilization

    NASA Astrophysics Data System (ADS)

    Kausch, M. F.; Pallud, C. E.

    2012-09-01

    Soil aggregates are mm- to cm-sized microporous structures separated by macropores. Whereas fast advective transport prevails in macropores, advection is inhibited by the low permeability of intra-aggregate micropores. This can lead to mass transfer limitations and the formation of aggregate-scale concentration gradients affecting the distribution and transport of redox sensitive elements. Selenium (Se) mobilized through irrigation of seleniferous soils has emerged as a major aquatic contaminant. In the absence of oxygen, the bioavailable oxyanions selenate, Se(VI), and selenite, Se(IV), can be microbially reduced to solid, elemental Se, Se(0), and anoxic microzones within soil aggregates are thought to promote this process in otherwise well aerated soils. To evaluate the impact of soil aggregate size on selenium retention, we developed a dynamic 2-D reactive transport model of selenium cycling in a single idealized aggregate surrounded by a macropore. The model was developed based on flow-through-reactor experiments involving artificial soil aggregates (diameter: 2.5 cm) made of sand and containing Enterobacter cloacae SLD1a-1 that reduces Se(VI) via Se(IV) to Se(0). Aggregates were surrounded by a constant flow providing Se(VI) and pyruvate under oxic or anoxic conditions. In the model, reactions were implemented with double-Monod rate equations coupled to the transport of pyruvate, O2, and Se-species. The spatial and temporal dynamics of the model were validated with data from experiments and predictive simulations were performed covering aggregate sizes between 1 and 2.5 cm diameter. Simulations predict that selenium retention scales with aggregate size. Depending on O2, Se(VI), and pyruvate concentrations, selenium retention was 4-23 times higher in 2.5-cm-aggregates compared to 1-cm-aggregates. Under oxic conditions, aggregate size and pyruvate-concentrations were found to have a positive synergistic effect on selenium retention. Promoting soil aggregation on seleniferous agricultural soils, through organic matter amendments and conservation tillage, may thus help decrease the impacts of selenium contaminated drainage water on downstream aquatic ecosystems.

  2. SMALL-ANGLE NEUTRON SCATTERING CHARACTERIZATION OF THE STRUCTURE OF NANOPOROUS CARBONS FOR ENERGY-RELATED APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Lilin; Mavila Chathoth, Suresh; Melnichenko, Yuri B

    2011-01-01

    We used small-angle neutron scattering (SANS) and neutron contrast variation to study the structure of four nanoporouscarbons prepared by thermo-chemical etching of titanium carbide TiC in chlorine at 300, 400, 600, and 800 C with pore diameters ranging between -4 and -11 {angstrom}. SANS patterns were obtained from dry samples and samples saturated with deuterium oxide (D{sub 2}O) in order to delineate origin of the power law scattering in the low Q domain as well as to evaluate pore accessibility for D{sub 2}O molecules. SANS cross section of all samples was fitted to Debye-Anderson-Brumberger (DAB), DAB-Kirste-Porod models as well asmore » to the Guinier and modified Guinier formulae for cylindrical objects, which allowed for evaluating the radii of gyration as well as the radii and lengths of the pores under cylindrical shape approximation. SANS data from D{sub 2}O-saturated samples indicate that strong upturn in the low Q limit usually observed in the scattering patterns from microporous carbon powders is due to the scattering from outer surface of the powder particles. Micropores are only partially filled with D{sub 2}O molecules due to geometrical constraints and or partial hydrophobicity of the carbon matrix. Structural parameters of the dry carbons obtained using SANS are compared with the results of the gas sorption measurements and the values agree for carbide-derived carbons (CDCs) obtained at high chlorination temperatures (>600 C). For lower chlorination temperatures, pore radii obtained from gas sorption overestimate the actual pore size as calculated from SANS for two reasons: inaccessible small pores are present and the model-dependent fitting based on density functional theory models assumes non-spherical pores, whereas SANS clearly indicates that the pore shape in microporous CDC obtained at low chlorination temperatures is nearly spherical.« less

  3. Peptide-Mediated Platelet Capture at Gold Micropore Arrays.

    PubMed

    Adamson, Kellie; Spain, Elaine; Prendergast, Una; Moran, Niamh; Forster, Robert J; Keyes, Tia E

    2016-11-30

    Ordered spherical cap gold cavity arrays with 5.4, 1.6, and 0.98 μm diameter apertures were explored as capture surfaces for human blood platelets to investigate the impact of surface geometry and chemical modification on platelet capture efficiency and their potential as platforms for surface enhanced Raman spectroscopy of single platelets. The substrates were chemically modified with single-constituent self-assembled monolayers (SAM) or mixed SAMs comprised of thiol-functionalized arginine-glycine-aspartic acid (RGD, a platelet integrin target) with or without 1-octanethiol (adhesion inhibitor). As expected, platelet adhesion was promoted and inhibited at RGD and alkanethiol modified surfaces, respectively. Platelet adhesion was reversible, and binding efficiency at the peptide modified substrates correlated inversely with pore diameter. Captured platelets underwent morphological change on capture, the extent of which depended on the topology of the underlying substrate. Regioselective capture of the platelets enabled study for the first time of the surface enhanced Raman spectroscopy of single blood platelets, yielding high quality Raman spectroscopy of individual platelets at 1.6 μm diameter pore arrays. Given the medical importance of blood platelets across a range of diseases from cancer to psychiatric illness, such approaches to platelet capture may provide a useful route to Raman spectroscopy for platelet related diagnostics.

  4. Diclofenac delays micropore closure following microneedle treatment in human subjects.

    PubMed

    Brogden, Nicole K; Milewski, Mikolaj; Ghosh, Priyanka; Hardi, Lucia; Crofford, Leslie J; Stinchcomb, Audra L

    2012-10-28

    Drugs absorbed poorly through the skin are commonly delivered via injection with a hypodermic needle, which is painful and increases the risk of transmitting infectious diseases. Microneedles (MNs) selectively and painlessly permeabilize the outermost skin layer, allowing otherwise skin-impermeable drugs to cross the skin through micron-sized pores and reach therapeutic concentrations. However, rapid healing of the micropores prevents further drug delivery, blunting the clinical utility of this unique transdermal technique. We present the first human study demonstrating that micropore lifetime can be extended following MN treatment. Subjects received one-time MN treatment and daily topical application of diclofenac sodium. Micropore closure was measured with impedance spectroscopy, and area under the admittance-time curve (AUC) was calculated. AUC was significantly higher at MN+diclofenac sodium sites vs. placebo, suggesting slower rates of micropore healing. Colorimetry measurements confirmed the absence of local erythema and irritation. This mechanistic human proof-of-concept study demonstrates that micropore lifetime can be prolonged with simple topical administration of a non-specific cyclooxygenase inhibitor, suggesting the involvement of subclinical inflammation in micropore healing. These results will allow for longer patch wear time with MN-enhanced delivery, thus increasing patient compliance and expanding the transdermal field to a wider variety of clinical conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Diclofenac delays micropore closure following microneedle treatment in human subjects

    PubMed Central

    Brogden, Nicole K.; Milewski, Mikolaj; Ghosh, Priyanka; Hardi, Lucia; Crofford, Leslie J.; Stinchcomb, Audra L.

    2013-01-01

    Drugs absorbed poorly through the skin are commonly delivered via injection with a hypodermic needle, which is painful and increases the risk of transmitting infectious diseases. Microneedles (MNs) selectively and painlessly permeabilize the outermost skin layer, allowing otherwise skin-impermeable drugs to cross the skin through micron-sized pores and reach therapeutic concentrations. However, rapid healing of the micropores prevents further drug delivery, blunting the clinical utility of this unique transdermal technique. We present the first human study demonstrating that micropore lifetime can be extended following MN treatment. Subjects received one-time MN treatment and daily topical application of diclofenac sodium. Micropore closure was measured with impedance spectroscopy, and area under the admittance–time curve (AUC) was calculated. AUC was significantly higher at MN + diclofenac sodium sites vs. placebo, suggesting slower rates of micropore healing. Colorimetry measurements confirmed the absence of local erythema and irritation. This mechanistic human proof-of-concept study demonstrates that micropore lifetime can be prolonged with simple topical administration of a non-specific cyclooxygenase inhibitor, suggesting the involvement of subclinical inflammation in micropore healing. These results will allow for longer patch wear time with MN-enhanced delivery, thus increasing patient compliance and expanding the transdermal field to a wider variety of clinical conditions. PMID:22929967

  6. Activated microporous materials through polymerization of microemulsion precursors

    NASA Astrophysics Data System (ADS)

    Venkatesan, Arunkumar

    Microemulsions have been well studied for their unique characteristics. They are isotropic, thermodynamically stable and microstructured mixtures of oil and water stabilized by one or more surfactant species. They are formed spontaneously and are thermodynamically stable. Microemulsion precursors can be polymerized to make microporous solids with controlled pore structure and sizes. These polymeric solids have been studied extensively in the past. Although the fundamental properties of the microporous solids have been studied in depth, the development of specific applications that will utilize the unique properties of these solids has not been exhaustively researched. The current work establishes the feasibility of making activated microporous solids from microemulsion precursors, by the use of a ligand that chelates metals and also attaches itself to the polymer monolith. It also uses a novel 'in-situ' incorporation by combining the formulation and incorporation steps into one. The research objectives are, to formulate a microemulsion system that can yield useful microporous solids upon polymerization and activation, to characterize these solids using existing techniques available for analysis of similar microporous solids, to identify and understand the effect of the variables in the system and to study the influence of these variables on the performance characteristics of this material. Characterization techniques like Differential Scanning Calorimetry, Thermogravimetric Analysis and Scanning Electron Microscopy were used. A hydroxyethylmethylmethacrylate/methylmethacrylate/aqueous phase containing 10% SDS' system was chosen as the precursor microemulsion and the corresponding microporous solids were made. A metal chelating ligand, Congo Red, was incorporated onto the microporous polymer using NaOH as a binding agent. The ability of the resultant 'activated' microporous solid to remove metal ions from solution, was evaluated. The metal ion chosen was chromium and the influence of variables such as NaOH loading, Congo Red loading, Cross linker content etc. were studied. It was found that the microporous solids were effective in removing chromium from solution. They outperformed similar polymeric solids with ligands (reported in literature) in chromium removal. A removal of about 1500 micro moles of chromium ions per gram of dry polymer from a solution of 5 mMol/L initial concentration of chromium was observed. This is much more than the removal of 340 micro moles/gram of dry polymer reported in literature for comparable non-microporous systems.

  7. Controlling diameter distribution of catalyst nanoparticles in arc discharge.

    PubMed

    Li, Jian; Volotskova, Olga; Shashurin, Alexey; Keidar, Michael

    2011-11-01

    It is demonstrated that the diameter distribution of catalyst nanoparticles in arc discharge can be controlled by a magnetic field. The magnetic field affects the arc shape, shortens the diffusing time of the catalyst nanoparticles through the nucleation zone, and consequentially reduces the average diameters of nanoparticles. The average diameter is reduced from about 7.5 nm without magnetic field to about 5 nm is the case of a magnetic field. Decrease of the catalyst nanoparticle diameter with magnetic field correlates well with decrease in the single-wall carbon nanotube and their bundles diameters.

  8. [Study on preparation of laser micropore porcine acellular dermal matrix combined with split-thickness autograft and its application in wound transplantation].

    PubMed

    Liang, Li-Ming; Chai, Ji-Ke; Yang, Hong-Ming; Feng, Rui; Yin, Hui-Nan; Li, Feng-Yu; Sun, Qiang

    2007-04-01

    To prepare a porcine acellular dermal matrix (PADM), and to optimize the interpore distance between PADM and co-grafted split-thickness autologous skin. Porcine skin was treated with trypsin/Triton X-100 to prepare an acellular dermal matrix. Micropores were produced on the PADM with a laser punch. The distance between micropores varied as 0.8 mm, 1.0 mm, 1.2 mm and 1.5 mm. Full-thickness defect wounds were created on the back of 144 SD rats. The rats were randomly divided into 6 groups as follows, with 24 rats in each group. Micropore groups I -IV: the wounds were grafted with PADM with micropores in four different intervals respectively, and covered with split-thickness autologous skin graft. Mesh group: the wounds were grafted with meshed PADM and split-thickness autograft. with simple split-thickness autografting. The gross observation of wound healing and histological observation were performed at 2, 4, 6 weeks after surgery. The wound healing rate and contraction rate were calculated. Two and four weeks after surgery, the wound healing rate in micropore groups I and II was lower than that in control group (P < 0.05), but no obvious difference was between micropore groups I , II and mesh group (P > 0.05) until 6 weeks after grafting( P <0.05). The wound contraction rate in micropore groups I and II ([(16.0 +/- 2.6)%, (15.1 +/- 2.4)%] was remarkably lower than that in control group 4 and 6 weeks after grafting (P < 0.05), and it was significantly lower than that in mesh group [(19.3 +/- 2.4)%] 6 weeks after surgery (P <0.05). Histological examination showed good epithelization, regularly arranged collagenous fibers, and integral structure of basement membrane. Laser micropore PADM (0.8 mm or 1.0 mm in distance) grafting in combination with split-thickness autografting can improve the quality of wound healing. PADM with laser micropores in 1.0 mm distance is the best choice among them.

  9. Preparation of laser micropore porcine acellular dermal matrix for skin graft: an experimental study.

    PubMed

    Chai, Jia-Ke; Liang, Li-Ming; Yang, Hong-Ming; Feng, Rui; Yin, Hui-Nan; Li, Feng-Yu; Sheng, Zhi-Yong

    2007-09-01

    In our previous study, we used composite grafts consisting of meshed porcine acellular dermal matrix (PADM) and thin split-thickness autologous epidermis to cover full thickness burn wounds in clinical practice. However, a certain degree of contraction might occur because the distribution of dermal matrix was not uniform in burn wound. In this study, we prepare a composite skin graft consisting of PADM with the aid of laser to improve the quality of healing of burn wound. PADM was prepared by the trypsin/Triton X-100 method. Micropores were produced on the PADM with a laser punch. The distance between micropores varied from 0.8, 1.0, 1.2 to 1.5mm. Full thickness defect wounds were created on the back of 144 SD rats. The rats were randomly divided into six groups: micropore groups I-IV in which the wound were grafted with PADM with micropores, in four different distances, respectively and split-thickness autograft; mesh group rats received meshed PADM graft and split-thickness autograft; control group received simple split-thickness autografting. The status of wound healing was histologically observed at regular time points after surgery. The wound healing rate and contraction rate were calculated. The wound healing rate in micropore groups I and II was not statistically different from that in control group, but was significantly higher than that in mesh group 6 weeks after grafting. The wound healing rate in micropore groups III and IV was lower than that in mesh and control groups 4 and 6 weeks after grafting. The wound contraction rate in micropore groups I and II was remarkably lower than that in control group 4 and 6 weeks after surgery and it was significantly much lower than that in mesh group 6 weeks after surgery. Histological examination revealed good epithelization, regularly arranged collagenous fibers and integral structure of basement membrane. Laser micropore PADM (0.8 or 1.0mm in distance) grafting in combination with split-thickness autografting can improve wound healing. The PADM with laser micropores in 1.0mm distance is the better choice.

  10. Development of model hydroxyapatite bone scaffolds with multiscale porosity for potential load bearing applications

    NASA Astrophysics Data System (ADS)

    Dellinger, Jennifer Gwynne

    2005-11-01

    Model hydroxyapatite (HA) bone scaffolds consisting of a latticed pattern of rods were fabricated by a solid freeform fabrication (SFF) technique based on the robotic deposition of colloidal pastes. An optimal HA paste formulation for this method was developed. Local porosity, i.e. microporosity (1--30 mum) and sintering porosity (less than 1 mum), were produced by including polymer microsphere porogens in the HA pastes and by controlling the sintering of the scaffolds. Scaffolds with and without local porosity were evaluated with and without in vitro accelerated degradation. Percent weight loss of the scaffolds and calcium and phosphorus concentrations in solution increased with degradation time. After degradation, compressive strength and modulus decreased significantly for scaffolds with local porosity, but did not change significantly for scaffolds without local porosity. The compressive strength and modulus of scaffolds without local porosity were comparable to human cortical bone and were significantly greater than the scaffolds with local porosity. Micropores in HA disks caused surface pits that increased the surface roughness as compared to non-microporous HA disks. Mouse mesenchymal stem cells extended their cell processes into these microporous pits on HA disks in vitro. ALP expression was prolonged, cell attachment strength increased, and ECM production appeared greater on microporous HA disks compared to non-microporous HA disks and tissue culture treated polystyrene controls. Scaffolds with and without microporosity were implanted in goats bones. Microporous scaffolds with rhBMP-2 increased the percent of the scaffold filled with bone tissue compared to microporous scaffolds without rhBMP-2. Lamellar bone inside scaffolds was aligned near the rods junctions whereas lamellar bone was aligned in a more random configuration away from the rod junctions. Microporous scaffolds stained darkly with toluidine blue beneath areas of contact with new bone. This staining might indicate either extracellular matrix (ECM) in the rods or dye bound to the degrading scaffold. Although the presence of microporous topography alone did not influence bone healing in vivo, micropores were shown to provide tailorability of scaffold mechanical properties, provide a location for the storage and controlled release of a growth factor, and provide a location for bone integration inside the scaffold rods.

  11. Growth of lodgepole pine stands and its relation to mountain pine beetle susceptibility

    Treesearch

    S.A. Mata; J.M. Schmid; W.K. Olsen

    2003-01-01

    Periodic diameter and basal area growth were determined for partially cut stands of lodgepole pine at five locations over approximately 10 year periods. After cutting, average diameters in the partially cut plots generally increased by 0.8 inches or more, while average diameter in the uncut controls increased by 0.6 inches or less. Diameter growth in the partially cut...

  12. Hypercrosslinked polymeric restricted access materials for analysis of biological fluids.

    PubMed

    Popov, Alekxander; Blinnikova, Zinaida K; Tsyurupa, Maria P; Davankov, Vadim A

    2018-06-21

    New restricted access materials based on microporous hypercrosslinked polystyrene have been developed. The materials are aimed at the use as packings for solid-phase extraction cartridges to isolate low-molecular-weight analytes from biological fluids (for instance, blood plasma or serum). Two features distinguish these polymers from all known restricted access materials. The first one consists in that the microporous hypercrosslinked polystyrene not only exclude proteins from the sorbent phase but also do not adsorb them on the bead outer surface and so they do not cause coagulation of blood protein components. Therefore, these materials do not require any chemical modification. The second distinguishing feature is the ability of hypercrosslinked sorbents to take up a wide variety of polar and non-polar organic compounds. The sorbents were obtained in the form of beads of 60-70 μm in diameter by crosslinking styrene copolymers with 1, 2 and 3% divinylbenzene with monochlorodimethyl ether to 100, 150 and 200%. The sorbents exhibit all typical properties of hypercrosslinked networks. They do not take up albumin, the major blood protein, and Cytochrome C, representative of smaller protein molecules, but are capable of adsorbing drugs, vitamins and phenyl carboxylic acids (markers of sepsis) from model aqueous solutions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Effects of exchanged cation on the microporosity of montmorillonite

    USGS Publications Warehouse

    Rutherford, David W.; Chiou, Cary T.; Eberl, Dennis D.

    1997-01-01

    The micropore volumes of 2 montmorillonites (SAz-1 and SWy-1), each exchanged with Ca, Na, K, Cs and tetramethylammonium (TMA) ions, were calculated from the measured vapor adsorption data of N2 and neo-hexane by use of t- and αs-plots. The corresponding surface areas of the exchanged clays were determined from Brunauer-Emmett-Teller (BET) plots of N2 adsorption data. Micropore volumes and surface areas of the samples increased with the size of exchanged cation: TMA > Cs > K > Ca > Na. The SAz-1 exchanged clays showed generally greater micropore volumes and surface areas than the corresponding SWy-1 clays. The vapor adsorption data and d(001) measurements for dry clay samples were used together to evaluate the likely locations and accessibility of clay micropores, especially the relative accessibility of their interlayer spacing. For both source clays exchanged with Na, Ca and K ions, the interlayer spacing appeared to be too small to admit nonpolar gases and the accessible micropores appeared to have dimensions greater than 5.0 Å, the limiting molecular dimension of neo-hexane. In these systems, there was a good consistency of micropore volumes detected by N2 and neo-hexane. When the clays were intercalated with relatively large cations (TMA and possibly Cs), the large layer expansion created additional microporosity, which was more readily accessible to small N2 than to relatively large neo-hexane. Hence, the micropore volume as detected by N2 was greater than that detected by neo-hexane. The micropore volumes with pore dimensions greater than 5 Å determined for clays exchanged with Na, Ca and K likely resulted from the pores on particle edges and void created by overlap regions of layers. The increase in micropore volumes with pore dimensions less than 5 Å determined for clays exchanged with TMA and possibly Cs could be caused by opening of the interlayer region by the intercalation of these large cations.

  14. Channeled Scaffolds for Engineering Myocardium with Mechanical Stimulation

    PubMed Central

    Zhang, Ting; Wan, Leo Q.; Xiong, Zhuo; Marsano, Anna; Maidhof, Robert; Park, Miri; Yan, Yongnian; Vunjak-Novakovic, Gordana

    2011-01-01

    The characteristics of the matrix (composition, structure, mechanical properties) and external culture environment (pulsatile perfusion, physical stimulation) are critically important for engineering functional myocardial tissue. We report the development of chitosan-collagen scaffolds with micro-pores and an array of parallel channels (~200 μm in diameter) that were specifically designed for cardiac tissue engineering with mechanical stimulation. The scaffolds were designed to have the structural and mechanical properties similar to those of the native human heart matrix. Scaffolds were seeded with neonatal rat heart cells and subjected to dynamic tensile stretch using a custom-designed bioreactor. The channels enhanced oxygen transport and facilitated the establishment of cell connections within the construct. The myocardial patches (14 mm in diameter, 1–2 mm thick) consisted of metabolically active cells and started to contract synchronously after 3 days of culture. Mechanical stimulation with high tensile stresses promoted cell alignment, elongation, and the expression of connexin-43 (Cx-43). This study confirms the importance of scaffold design and mechanical stimulation for the formation of contractile cardiac constructs. PMID:22081518

  15. Channelled scaffolds for engineering myocardium with mechanical stimulation.

    PubMed

    Zhang, Ting; Wan, Leo Q; Xiong, Zhuo; Marsano, Anna; Maidhof, Robert; Park, Miri; Yan, Yongnian; Vunjak-Novakovic, Gordana

    2012-10-01

    The characteristics of the matrix (composition, structure, mechanical properties) and external culture environment (pulsatile perfusion, physical stimulation) of the heart are important characteristics in the engineering of functional myocardial tissue. This study reports on the development of chitosan-collagen scaffolds with micropores and an array of parallel channels (~ 200 µm in diameter) that were specifically designed for cardiac tissue engineering using mechanical stimulation. The scaffolds were designed to have similar structural and mechanical properties of those of native heart matrix. Scaffolds were seeded with neonatal rat heart cells and subjected to dynamic tensile stretch using a custom designed bioreactor. The channels enhanced oxygen transport and facilitated the establishment of cell connections within the construct. The myocardial patches (14 mm in diameter, 1-2 mm thick) consisted of metabolically active cells that began to contract synchronously after 3 days of culture. Mechanical stimulation with high tensile stress promoted cell alignment, elongation, and expression of connexin-43 (Cx-43). This study confirms the importance of scaffold design and mechanical stimulation for the formation of contractile cardiac constructs. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Tadalafil inclusion in microporous silica as effective dissolution enhancer: optimization of loading procedure and molecular state characterization.

    PubMed

    Mehanna, Mohammed M; Motawaa, Adel M; Samaha, Magda W

    2011-05-01

    Tadalafil is an efficient drug used to treat erectile dysfunction characterized by poor water solubility, which has a negative influence on its bioavailability. Utilization of microporous silica represents an effective and facile technology to increase the dissolution rate of poorly soluble drugs. Our strategy involved directly introducing tadalafil as guest molecule into microporous silica as host material by incipient wetness impregnation method. To optimize tadalafil inclusion, response surface methodology (RSM) using 3(3) factorial design was utilized. Furthermore, to investigate the molecular state of tadalafil, Fourier-transform infrared spectroscopy, differential scanning calorimetery, thermal gravimetrical analysis, nitrogen adsorption, and powder X-ray diffraction (PXRD) were carried out. The results obtained pointed out that the quantity of microporous silica was the predominant factor that increased the loading efficiency. For the optimized formula, the loading efficiency was 42.50 wt %. Adsorption-desorption experiments indicated that tadalafil has been introduced into the micropores. Powder XRD and differential scanning calorimetry analyses revealed that tadalafil is arranged in amorphous form. In addition, the dissolution rate of tadalafil from the microporous silica was faster than that of free drug. Amorphous tadalafil occluded in microporous silica did not crystallize over 3 months. These findings contributed in opening a new strategy concerning the utilization of porous silica for the dissolution rate enhancement. Copyright © 2010 Wiley-Liss, Inc.

  17. An analysis of burn-off impact on the structure microporous of activated carbons formation

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Mirosław; Kopac, Türkan

    2017-12-01

    The paper presents the results on the application of the LBET numerical method as a tool for analysis of the microporous structure of activated carbons obtained from a bituminous coal. The LBET method was employed particularly to evaluate the impact of the burn-off on the obtained microporous structure parameters of activated carbons.

  18. Particle-filled microporous materials

    DOEpatents

    McAllister, Jerome W.; Kinzer, Kevin E.; Mrozinski, James S.; Johnson, Eric J.; Dyrud, James F.

    1990-01-01

    A microporous particulate-filled thermoplastic polymeric article is provided. The article can be in the form of a film, a fiber, or a tube. The article has a thermoplastic polymeric structure having a plurality of interconnected passageways to provide a network of communicating pores. The microporous structure contains discrete submicron or low micron-sized particulate filler, the particulate filler being substantially non-agglomerated.

  19. Particle-filled microporous materials

    DOEpatents

    McAllister, Jerome W.; Kinzer, Kevin E.; Mrozinski, James S.; Johnson, Eric J.

    1992-07-14

    A microporous particulate-filled thermoplastic polymeric article is provided. The article can be in the form of a film, a fiber, or a tube. The article has a thermoplastic polymeric structure having a plurality of interconnected passageways to provide a network of communicating pores. The microporous structure contains discrete submicron or low micron-sized particulate filler, the particulate filler being substantially non-agglomerated.

  20. [Measurement and analysis of micropore aeration system's oxygenating ability under operation condition in waste water treatment plant].

    PubMed

    Wu, Yuan-Yuan; Zhou, Xiao-Hong; Shi, Han-Chang; Qiu, Yong

    2013-01-01

    Using the aeration pool in the fourth-stage at Wuxi Lucun Waste Water Treatment Plant (WWTP) as experimental setup, off-gas method was selected to measure the oxygenating ability parameters of micropore aerators in a real WWTP operating condition and these values were compared with those in fresh water to evaluate the performance of the micropore aerators. Results showed that the micropore aerators which were distributed in different galleries of the aeration pool had significantly different oxygenating abilities under operation condition. The oxygenating ability of the micropore aerators distributed in the same gallery changed slightly during one day. Comparing with the oxygenating ability in fresh water, it decreased a lot in the real aeration pool, in more details, under the real WWTP operating condition, the values of oxygen transfer coefficient K(La) oxygenation capacity OC and oxygen utilization E(a) decreased by 43%, 57% and 76%, respectively.

  1. 129Xe nuclear magnetic resonance study of pitch-based activated carbon modified by air oxidation/pyrolysis cycles: a new approach to probe the micropore size.

    PubMed

    Romanenko, Konstantin V; Py, Xavier; d'Espinose de Lacaillerie, Jean-Baptiste; Lapina, Olga B; Fraissard, Jacques

    2006-02-23

    (129)Xe NMR has been used to study a series of homologous activated carbons obtained from a KOH-activated pitch-based carbon molecular sieve modified by air oxidation/pyrolysis cycles. A clear correlation between the pore size of microporous carbons and the (129)Xe NMR of adsorbed xenon is proposed for the first time. The virial coefficient delta(Xe)(-)(Xe) arising from binary xenon collisions varied linearly with the micropore size and appeared to be a better probe of the microporosity than the chemical shift extrapolated to zero pressure. This correlation was explained by the fact that the xenon collision frequency increases with increasing micropore size. The chemical shift has been shown to vary very little with temperature (less than 9 ppm) for xenon trapped inside narrow and wide micropores. This is indicative of a smooth xenon-surface interaction potential.

  2. Room temperature synthesis of heptazine-based microporous polymer networks as photocatalysts for hydrogen evolution.

    PubMed

    Kailasam, Kamalakannan; Schmidt, Johannes; Bildirir, Hakan; Zhang, Guigang; Blechert, Siegfried; Wang, Xinchen; Thomas, Arne

    2013-06-25

    Two emerging material classes are combined in this work, namely polymeric carbon nitrides and microporous polymer networks. The former, polymeric carbon nitrides, are composed of amine-bridged heptazine moieties and showed interesting performance as a metal-free photocatalyst. These materials have, however, to be prepared at high temperatures, making control of their chemical structure difficult. The latter, microporous polymer networks have received increasing interest due to their high surface area, giving rise to interesting applications in gas storage or catalysis. Here, the central building block of carbon nitrides, a functionalized heptazine as monomer, and tecton are used to create microporous polymer networks. The resulting heptazine-based microporous polymers show high porosity, while their chemical structure resembles the ones of carbon nitrides. The polymers show activity for the photocatalytic production of hydrogen from water, even under visible light illumination. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Particle-filled microporous materials

    DOEpatents

    McAllister, J.W.; Kinzer, K.E.; Mrozinski, J.S.; Johnson, E.J.; Dyrud, J.F.

    1990-09-18

    A microporous particulate-filled thermoplastic polymeric article is provided. The article can be in the form of a film, a fiber, or a tube. The article has a thermoplastic polymeric structure having a plurality of interconnected passageways to provide a network of communicating pores. The microporous structure contains discrete submicron or low micron-sized particulate filler, the particulate filler being substantially non-agglomerated. 3 figs.

  4. Experimental study of cryogen spray properties for application in dermatologic laser surgery.

    PubMed

    Aguilar, Guillermo; Majaron, Boris; Karapetian, Emil; Lavernia, Enrique J; Nelson, J Stuart

    2003-07-01

    Cryogenic sprays are used for cooling human skin during laser dermatologic surgery. In this paper, six straight-tube nozzles are characterized by photographs of cryogenic spray shapes, as well as measurements of average droplet diameter, velocity, and temperature. A single-droplet evaporation model to predict average spray droplet diameter and temperature is tested using the experimental data presented here. The results show two distinct spray patterns--sprays for 1.4-mm-diameter nozzles (wide nozzles) show significantly larger average droplet diameters and higher temperatures as a function of distance from the nozzle compared with those for 0.5-0.8-mm-diameter nozzles (narrow nozzles). These results complement and support previously reported studies, indicating that wide nozzles induce more efficient heat extraction than the narrow nozzles.

  5. [Ultrastructure and cytochemistry of the pellicle and apical complexes of the kinete of Babesia bigemina and Babesia ovis in the hemolymph and oavry of the tick].

    PubMed

    Weber, G

    1980-02-01

    The term kinete is used in this paper for the cigar-shaped, motile development stages (VERMICULE") OF Babesia occurring intra- and extracellularly in hemolymph and overy (including oocytes) of vectors, hard ticks (Ixodoidea). The structure of, and cytochemical activities of hydrolases (acid phosphatase, nonspecific esterase) in the pellicle and the apical complex was studied at the fine-structural level in kinetes of Babesia bigemina Smith & Kilborne, in hemolympho of female Boophilus microplus Canestrini. The cytochemistry of acid hydrolases was studied also in kinetes of Babesia ovis (Babès) Starcovici, in hemolymph and ovary of Rhipicephalus bursa Canestrini & Fanzago. The pellicle of the B. bigemina kinetes is composted of 3 membranes (pellicular complex): an outer membrane, approximately 8 nm thick (the plasmalemma) and 2 innder ones, each approximately nm thick, lying closely together. The outer membrane appears to be covered by a structureless coat, 3 nm thick. The space between the inner double membrane and the plasmalemma is 7.5 nm. The whole pellicular complex is 30 nm in diameter. The 2 inner pellicular membranes appear to be derived from the endoplasmic reticulum (ER) for the following reasons: (a) a layer of hydrolase-active material is enclosed by these membranes; (b) in the spheroid parasite stages which transform from kinetes inside hemocytes, the inner double membrane is apparently replaced by an ER cisterna; (c) the thickness of each of the inner pellicular membranes is approximately the same as that of the ER membrane. There are circular openings in the pellicular double membrane with average diameters of 100 nm; despite some similarity to micropores, they have a specific structure. The term Intrapellikularfenster (IPF) (intrapellicular windows) or pseudomicropores is proposed for these pellicular differentiations. The margin of an IPF is formed by the 2 inner membranes folding into each other; cytoplasmic, electron-dense material is accumulated alongside this edge. Unlike that of micropores, the plasmalemma of the IPF is not invaginated. The IPF appears as a single, dark ring in tangential sections. At times, rhoptry-like bodies are associated with the openings. The function of the IPF is not known. An intrapellicular opening similar to the IPF, although wider, is present at the apex of the parasite. Its margin coincides with the inners edge of the apical ring. Typical subpellicular microtubuli were not observed in the Babesia kinetes. The apical complex of the B. bigemina kinetes consists of an Apikalschirm (apical umbrella), a crown of microtubuli beneath it, and rhoptries: micronemes are also present in large numbers. The Apikalschirm is located beneath the pellicle of the apical pole of the parasite. It is a wheel-like structure composed of spokes radiating from a wide, hub=like central ring (apical ring). It should be stressed that the apical ring is not identical with the polar ring described as an integral part of the pellicular complex in other Apicomplexa...

  6. New Observations of Subarcsecond Photospheric Bright Points

    NASA Technical Reports Server (NTRS)

    Berger, T. E.; Schrijver, C. J.; Shine, R. A.; Tarbell, T. D.; Title, A. M.; Scharmer, G.

    1995-01-01

    We have used an interference filter centered at 4305 A within the bandhead of the CH radical (the 'G band') and real-time image selection at the Swedish Vacuum Solar Telescope on La Palma to produce very high contrast images of subarcsecond photospheric bright points at all locations on the solar disk. During the 6 day period of 15-20 Sept. 1993 we observed active region NOAA 7581 from its appearance on the East limb to a near-disk-center position on 20 Sept. A total of 1804 bright points were selected for analysis from the disk center image using feature extraction image processing techniques. The measured FWHM distribution of the bright points in the image is lognormal with a modal value of 220 km (0.30 sec) and an average value of 250 km (0.35 sec). The smallest measured bright point diameter is 120 km (0.17 sec) and the largest is 600 km (O.69 sec). Approximately 60% of the measured bright points are circular (eccentricity approx. 1.0), the average eccentricity is 1.5, and the maximum eccentricity corresponding to filigree in the image is 6.5. The peak contrast of the measured bright points is normally distributed. The contrast distribution variance is much greater than the measurement accuracy, indicating a large spread in intrinsic bright-point contrast. When referenced to an averaged 'quiet-Sun' area in the image, the modal contrast is 29% and the maximum value is 75%; when referenced to an average intergranular lane brightness in the image, the distribution has a modal value of 61% and a maximum of 119%. The bin-averaged contrast of G-band bright points is constant across the entire measured size range. The measured area of the bright points, corrected for pixelation and selection effects, covers about 1.8% of the total image area. Large pores and micropores occupy an additional 2% of the image area, implying a total area fraction of magnetic proxy features in the image of 3.8%. We discuss the implications of this area fraction measurement in the context of previously published measurements which show that typical active region plage has a magnetic filling factor on the order of 10% or greater. The results suggest that in the active region analyzed here, less than 50% of the small-scale magnetic flux tubes are demarcated by visible proxies such as bright points or pores.

  7. Survival and growth of black walnut families after 7 years in West Virginia

    Treesearch

    G. W. Wendel; Donald E. Dorn; Donald E. Dorn

    1985-01-01

    Average survival, 7-year stem diameter, and stem diameter growth differed significantly among 34 black walnut families planted in West Virginia. Average total height, height growth, and diameter at breast height were not significantly different among families. Families were from seed collected in West Virginia, Pennsylvania, North Carolina, and Tennessee. The 7-year...

  8. Diameter Growth of Southern Bottomland Hardwoods

    Treesearch

    Henry Bull

    1945-01-01

    There is very little published information on average rates of diameter growth of southern bottomland hardwoods. Probably the best information of this kind is given by Winters, Putnam, and Eldredge,2 who summarize forest survey data on average rates of diameter growth for 4 size classes and 20 species or species groups (including pine and cyress), and for all species...

  9. Height diameter relations of maple street trees

    Treesearch

    David J. Nowak

    1990-01-01

    Height and diameter measurements were taken for silver, sugar and Norway maple street trees in Rochester and Syracuse, New York. Mature silver maples proved to be the tallest of the three species. Average sugar maple height was consistently taller than Norway maple height until diameters reached 28 inches. Average mature tree height for all three species level off in...

  10. Effects of CO{sub 2} activation on electrochemical performance of microporous carbons derived from poly(vinylidene fluoride)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seul-Yi; Park, Soo-Jin, E-mail: sjpark@inha.ac.kr

    In this work, we have prepared microporous carbons (MPCs) derived from poly(vinylidene fluoride) (PVDF), and the physical activation of MPCs using CO{sub 2} gas is subsequently carried out with various activation temperatures to investigate the electrochemical performance. PVDF is successfully converted into MPCs with a high specific surface area and well-developed micropores. After CO{sub 2} activation, the specific surface areas of MPCs (CA-MPCs) are enhanced by 12% compared with non-activated MPCs. With increasing activation temperature, the micropore size distributions of A-MPCs also become narrower and shift to larger pore size. It is also confirmed that the CO{sub 2} activation hadmore » developed the micropores and introduced the oxygen-containing groups to MPCs′ surfaces. From the results, the specific capacitances of the electrodes in electric double layer capacitors (EDLCs) based on CA-MPCs are distinctly improved through CO{sub 2} activation. The highest specific capacitance of the A-MPCs activated at 700 °C is about 125 F/g, an enhancement of 74% in comparison with NA-MPCs, at a discharge current of 2 A/g in a 6 M KOH electrolyte solution. We also found that micropore size of 0.67 nm has a specific impact on the capacitance behaviors, besides the specific surface area of the electrode samples. - Graphical abstract: The A-MPC samples with high specific surface area (ranging from 1030 to 1082 m{sup 2}/g), corresponding to micropore sizes of 0.67 and 0.72 nm, and with the amount of oxygen-containing groups ranging from 3.2% to 4.4% have been evaluated as electrodes for EDLC applications. . Display Omitted - Highlights: • Microporous carbons (MPCs) were synthesized without activation process. • Next, we carried out the CO{sub 2} activation of MPCs with activation temperatures. • It had developed the micropores and introduced the O-functional groups to MPCs. • The highest specific capacitance: 125 F/g, an increase of 74% compared to MPCs.« less

  11. A diameter distribution approach to estimating average stand dominant height in Appalachian hardwoods

    Treesearch

    John R. Brooks

    2007-01-01

    A technique for estimating stand average dominant height based solely on field inventory data is investigated. Using only 45.0919 percent of the largest trees per acre in the diameter distribution resulted in estimates of average dominant height that were within 4.3 feet of the actual value, when averaged over stands of very different structure and history. Cubic foot...

  12. Lignin-based microporous materials as selective adsorbents for carbon dioxide separation.

    PubMed

    Meng, Qing Bo; Weber, Jens

    2014-12-01

    Suitable solid adsorbents are demanded for carbon capture and storage (CCS) processes. In this work, a novel microporous polymer is developed by hypercrosslinking of organosolv lignin, which is a renewable resource. Reaction with formaldehyde dimethyl acetal (FDA) via Friedel-Crafts reaction gives microporous networks, with moderate capacity of carbon dioxide but excellent selectivity towards CO2 /N2 mixture as predicted on the basis of ideal adsorption-solution theory (IAST). Pyrolysis of pure organosolv lignin results in microporous carbon powders, while pyrolysis of hypercrosslinked organosolv lignin yields shape-persistent materials with increased CO2 capacity while maintaining very good selectivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Clustering of water molecules in ultramicroporous carbon: In-situ small-angle neutron scattering

    DOE PAGES

    Bahadur, Jitendra; Contescu, Cristian I.; Rai, Durgesh K.; ...

    2016-10-19

    The adsorption of water is central to most of the applications of microporous carbon as adsorbent material. We report early kinetics of water adsorption in the microporous carbon using in-situ small-angle neutron scattering. It is observed that adsorption of water occurs via cluster formation of molecules. Interestingly, the cluster size remains constant throughout the adsorption process whereas number density of clusters increases with time. The role of surface chemistry of microporous carbon on the early kinetics of adsorption process was also investigated. Lastly, the present study provides direct experimental evidence for cluster assisted adsorption of water molecules in microporous carbonmore » (Do-Do model).« less

  14. Responsive Guest Encapsulation of Dynamic Conjugated Microporous Polymers.

    PubMed

    Xu, Lai; Li, Youyong

    2016-06-30

    The host-guest complexes of conjugated microporous polymers encapsulating C60 and dye molecules have been investigated systematically. The orientation of guest molecules inside the cavities, have different terms: inside the open cavities of the polymer, or inside the cavities formed by packing different polymers. The host backbone shows responsive dynamic behavior in order to accommodate the size and shape of incoming guest molecule or guest aggregates. Simulations show that the host-guest binding of conjugated polymers is stronger than that of non-conjugated polymers. This detailed study could provide a clear picture for the host-guest interaction for dynamic conjugated microporous polymers. The mechanism obtained could guide designing new conjugated microporous polymers.

  15. Generalized self-consistent method for predicting the effective elastic properties of composites with random hybrid structures

    NASA Astrophysics Data System (ADS)

    Pan'kov, A. A.

    1997-05-01

    The feasibility of using a generalized self-consistent method for predicting the effective elastic properties of composites with random hybrid structures has been examined. Using this method, the problem is reduced to solution of simpler special averaged problems for composites with single inclusions and corresponding transition layers in the medium examined. The dimensions of the transition layers are defined by correlation radii of the composite random structure of the composite, while the heterogeneous elastic properties of the transition layers take account of the probabilities for variation of the size and configuration of the inclusions using averaged special indicator functions. Results are given for a numerical calculation of the averaged indicator functions and analysis of the effect of the micropores in the matrix-fiber interface region on the effective elastic properties of unidirectional fiberglass—epoxy using the generalized self-consistent method and compared with experimental data and reported solutions.

  16. Growth of ponderosa pine stands in relation to mountain pine beetle susceptibility

    Treesearch

    R. A. Obedzinski; J. M. Schmid; S. A. Mata; W. K. Olsen; R. R. Kessler

    1999-01-01

    Ten-year diameter and basal area growth were determined for partially cut stands at 4 locations. Average diameters in the partially cut plots generally increased by 1 inch or more, while average diameter in the uncut controls increased by 0.9 inches or less. Individual tree growth is discussed in relation to potential susceptibility to mountain pine beetle infestation...

  17. Cellulosic nanowhiskers. Theory and application of light scattering from polydisperse spheroids in the Rayleigh-Gans-Debye regime.

    PubMed

    Braun, Birgit; Dorgan, John R; Chandler, John P

    2008-04-01

    Mathematical treatment of light scattering within the Rayleigh-Gans-Debye limit for spheroids with polydispersity in both length and diameter is developed and experimentally tested using cellulosic nanowhiskers (CNW). Polydispersity indices are obtained by fitting the theoretical formfactor to experimental data. Good agreement is achieved using a polydispersity of 2.3 for the length, independent of the type of acid used. Diameter polydispersities are 2.1 and 3.0 for sulfuric and hydrochloric acids, respectively. These polydispersities allow the determination of average dimensions from the z-average mean-square radius (z) and the weight-average molecular weight (M w) easily obtained from Berry plots. For cotton linter hydrolyzed by hydrochloric acid, the average length and diameter are 244 and 22 nm. This compares to average length and diameter of 272 and 13 nm for sulfuric acid. This study establishes a new light-scattering methodology as a quick and robust tool for size characterization of polydisperse spheroidal nanoparticles.

  18. Electrochemically induced maskless metal deposition on micropore wall.

    PubMed

    Liu, Jie; Hébert, Clément; Pham, Pascale; Sauter-Starace, Fabien; Haguet, Vincent; Livache, Thierry; Mailley, Pascal

    2012-05-07

    By applying an external electric field across a micropore via an electrolyte, metal ions in the electrolyte can be reduced locally onto the inner wall of the micropore, which was fabricated in a silica-covered silicon membrane. This maskless metal deposition on the silica surface is a result of the pore membrane polarization in the electric field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Microporous polymer films and methods of their production

    DOEpatents

    Aubert, James H.

    1995-01-01

    A process for producing thin microporous polymeric films for a variety of uses. The process utilizes a dense gas (liquified gas or supercritical fluid) selected to combine with a solvent-containing polymeric film so that the solvent is dissolved in the dense gas, the polymer is substantially insoluble in the dense gas, and two phases are formed. A microporous film is obtained by removal of a dense gas-solvent phase.

  20. Development of in vivo impedance spectroscopy techniques for measurement of micropore formation following microneedle insertion

    PubMed Central

    Brogden, Nicole K.; Ghosh, Priyanka; Hardi, Lucia; Crofford, Leslie J.; Stinchcomb, Audra L.

    2013-01-01

    Microneedles provide a minimally invasive means to enhance skin permeability by creating micron-scale channels (micropores) that provide a drug delivery pathway. Adequate formation of the micropores is critical to the success of this unique drug delivery technique. The objective of these studies was to develop sensitive and reproducible impedance spectroscopy techniques to monitor micropore formation in animal models and human subjects. Hairless guinea pigs, a Yucatan miniature pig, and human volunteers were treated with 100 microneedle insertions per site following an overnight pre-hydration period. Repeated measurements were made pre- and post-microneedle treatment using dry and gel Ag/AgCl electrodes applied with light vs. direct pressure to hold the electrode to the skin surface. Impedance measurements dropped significantly post-microneedle application at all sites (p < 0.05, irrespective of electrode type or gel application), confirming micropore formation. In the Yucatan pig and human subjects, gel electrodes with direct pressure yielded the lowest variability (demonstrated by lower %RSD), whereas dry electrodes with direct pressure were superior in the guinea pigs. These studies confirm that impedance measurements are suitable for use in both clinical and animal research environments to monitor formation of new micropores that will allow for drug delivery through the impermeable skin layers. PMID:23589356

  1. Development of in vivo impedance spectroscopy techniques for measurement of micropore formation following microneedle insertion.

    PubMed

    Brogden, Nicole K; Ghosh, Priyanka; Hardi, Lucia; Crofford, Leslie J; Stinchcomb, Audra L

    2013-06-01

    Microneedles (MNs) provide a minimally invasive means to enhance skin permeability by creating micron-scale channels (micropores) that provide a drug delivery pathway. Adequate formation of the micropores is critical to the success of this unique drug delivery technique. The objective of the current work was to develop sensitive and reproducible impedance spectroscopy techniques to monitor micropore formation in animal models and human subjects. Hairless guinea pigs, a Yucatan miniature pig, and human volunteers were treated with 100 MN insertions per site following an overnight prehydration period. Repeated measurements were made pre- and post-MN treatment using dry and gel Ag/AgCl electrodes applied with light verses direct pressure to hold the electrode to the skin surface. Impedance measurements dropped significantly post-MN application at all sites (p < 0.05, irrespective of electrode type or gel application), confirming micropore formation. In the Yucatan pig and human subjects, gel electrodes with direct pressure yielded the lowest variability (demonstrated by lower %relative standard deviation), whereas dry electrodes with direct pressure were superior in the guinea pigs. These studies confirm that impedance measurements are suitable for use in both clinical and animal research environments to monitor the formation of new micropores that will allow for drug delivery through the impermeable skin layers. Copyright © 2013 Wiley Periodicals, Inc.

  2. Highly efficient indoor air purification using adsorption-enhanced-photocatalysis-based microporous TiO2 at short residence time.

    PubMed

    Lv, Jinze; Zhu, Lizhong

    2013-01-01

    A short residence time is a key design parameter for the removal of organic pollutants in catalyst-based indoor air purification systems. In this study, we synthesized a series of TiO2 with different micropore volumes and studied their removal efficiency of indoor carbonyl pollutants at a short residence time. Our results indicated that the superior adsorption capability of TiO2 with micropores improved its performance in the photocatalytic degradation of cyclohexanone, while the photocatalytic removal of the pollutant successfully kept porous TiO2 from becoming saturated. When treated with 1 mg m(-3) cyclohexanone at a relatively humidity of 18%, the adsorption amount on microporous TiO2 was 5.4-7.9 times higher than that on P25. Removal efficiency via photocatalysis followed'the same order as the adsorption amount: TiO2-5 > TiO2-20 > TiO2-60 > TiO2-180 > P25. The advantage of microporous TiO2 over P25 became more pronounced when the residence time declined from 0.072 to 0.036 s. Moreover, as the concentration of cyclohexanone deceased from 1000 ppb to 500 ppb, removal efficiency by microporous TiO2 increased more rapidly than P25.

  3. Superporous thermo-responsive hydrogels by combination of cellulose fibers and aligned micropores.

    PubMed

    Halake, Kantappa S; Lee, Jonghwi

    2014-05-25

    In the area of artificial hydrogels, simultaneous engineering of the volume transition characteristics and mechanical properties of stimuli-responsive hydrogels is an important subject. By unrestricted architecting of hierarchical structures, natural hydrogels are able to provide a wide range of swelling and mechanical properties, beyond the limits of artificial hydrogels. Herein, a combination of nanostructures and microstructures was developed to construct superporous hydrogels. Fibers of microfibrillated cellulose (MFC), an eco-friendly reinforcing material, were used as nanostructures, aligned micropores were used as microstructures, and in situ photopolymerization was used to immobilize the two structures together within the gel networks of poly(N-isopropyl acrylamide) (PNIPAm). The introduction of MFC distinctly enhanced volume transition, mainly by decreasing the swelling ratios above the transition. The introduction of directional micropores increased the swelling ratio below the transition and decreased the swelling ratio above the transition, thereby also enhancing the volume transition. Additionally, the formation of aligned micropores achieved fast water infiltration, which is beneficial for superabsorbent applications. The introduction of aligned micropores reduced the elastic modulus, but this could partially be compensated for by reinforcement with MFC. This combination of crystalline nanofibers and aligned micropores has great potential for the development of stimuli-responsive superporous hydrogels outperforming current artificial hydrogels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Microporous ceramic coated separators with superior wettability for enhancing the electrochemical performance of sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Suharto, Yustian; Lee, Yongho; Yu, Ji-Sang; Choi, Wonchang; Kim, Ki Jae

    2018-02-01

    Finding an alternative to glass fiber (GF) separators is a crucial factor for the fast commercialization of sodium-ion batteries (SIBs), because GF separators are too thick for use in SIBs, thereby decreasing the volumetric and gravimetric energy density. Here we propose a microporous composite separator prepared by introducing a polymeric coating layer of polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP co-polymer) with ZrO2 nanoparticles to a polyethylene (PE) separator. The coated separator efficiently enhances the cell performance of SIBs. The ZrO2 nanoparticles, finely dispersed on the polymeric coating layer, induce the formation of many micropores on the polymeric coating layer, suggesting that micropore formation on the coating layer renders the composite separator more open in structure. An ethylene carbonate/propylene carbonate liquid electrolyte for SIBs is not absorbed by PE separators even after 1 h of electrolyte droplet testing, while the proposed separator with many micropores is completely wetted by the electrolyte. Sodium ion migration across the composite separator is therefore effectively enhanced by the formation of ion transfer pathways, which improve ionic conductivity. As a result, the microporous composite separator affords stable cycle performances and excellent specific capacity retention (95.8%) after 50 cycles, comparable to those offered by a SIB with a GF separator.

  5. [Substantiation of medical-engineering specifications for polymethyl siloxane removal by life support systems].

    PubMed

    Pakhomova, A A; Aksel'-Rubinshteĭn, V Z; Mikos, K N; Nikitin, E I

    2009-01-01

    Analysis of experimental data about the quantitative and qualitative chemical make-up of air in the orbital station Mir and International space station (ISS) showed a permanent presence of silicon. The main source of silicon contaminants seems to be a variety of polymethyl siloxane liquids and siloxane coating of electronics. The article describes the volatile silicon contaminants detected in space stations air. To control concentrations of silicon, the existing air purification system needs to be augmented with carbons having the micropore entrance larger than diameters of silicon-containing molecules. It is also important to elaborate the technology of polymethyl siloxane liquids synthesis so as to reduce the amount of volatile admixtures emission and to observe rigorously the pre-flight off-gassing requirements with special concern about silicon coatings.

  6. Variations in pore characteristics in high volatile bituminous coals: Implications for coal bed gas content

    USGS Publications Warehouse

    Mastalerz, Maria; Drobniak, A.; Strapoc, D.; Solano-Acosta, W.; Rupp, J.

    2008-01-01

    The Seelyville Coal Member of the Linton Formation (Pennsylvanian) in Indiana was studied to: 1) understand variations in pore characteristics within a coal seam at a single location and compare these variations with changes occurring between the same coal at different locations, 2) elaborate on the influence of mineral-matter and maceral composition on mesopore and micropore characteristics, and 3) discuss implications of these variations for coal bed gas content. The coal is high volatile bituminous rank with R0 ranging from 0.57% to 0.60%. BET specific surface areas (determined by nitrogen adsorption) of the coals samples studied range from 1.8 to 22.9??m2/g, BJH adsorption mesopore volumes from 0.0041 to 0.0339??cm3/g, and micropore volumes (determined by carbon dioxide adsorption) from 0.0315 to 0.0540??cm3/g. The coals that had the largest specific surface areas and largest mesopore volumes occur at the shallowest depths, whereas the smallest values for these two parameters occur in the deepest coals. Micropore volumes, in contrast, are not depth-dependent. In the coal samples examined for this study, mineral-matter content influenced both specific surface area as well as mesopore and micropore volumes. It is especially clear in the case of micropores, where an increase in mineral-matter content parallels the decrease of micropore volume of the coal. No obvious relationships were observed between the total vitrinite content and pore characteristics but, after splitting vitrinite into individual macerals, we see that collotelinite influences both meso- and micropore volume positively, whereas collodetrinite contributes to the reduction of mesopore and micropore volumes. There are large variations in gas content within a single coal at a single location. Because of this variability, the entire thickness of the coal must be desorbed in order to determine gas content reliably and to accurately calculate the level of gas saturation. ?? 2008 Elsevier B.V. All rights reserved.

  7. Detection of early stage prostate cancer by using a simple carbon nanotube@paper biosensor.

    PubMed

    Ji, Sungkyung; Lee, Myeongsoon; Kim, Don

    2018-04-15

    This study is an investigation for an inexpensive, simple and sensitive biosensor to detect prostate cancer using bioactivated-multi wall carbon nanotubes (MWCNTs, diameter of 20nm, length of 5µm) and a micro-pore filter paper (pore size of 0.45µm). For the immunoassay of prostate specific antigen (PSA), which is a biomarker of prostate cancer, MWCNTs were activated with PSA antibody (monoclonal antibody of the prostate specific antigen) by using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide sodium salt (NHSS). The activated MWCNTs were deposited on the micro-pore filter paper to use as a biosensor. The prepared biosensor can assay from 0 to 500ng/mL of PSA level within 2h with the detection limit of 1.18ng/mL by the measurement of resistance change. The resistance change was caused by site selective interaction between PSA and PSA-antigen with an inexpensive bench top digital multimeter (5 1/2 digits). The detection range and sensitivity of the prepared sensor are good enough to diagnose the early stage of prostate cancer (> 4ng/mL of PSA). This paper-based biosensor is about 20 times cheaper (fabricated biosensor price: 2.4 $) and over 10 times faster than enzyme-linked immunosorbent assay (ELISA), which is a general method for the detection of a specific protein in the modernized hospitals. Furthermore, the maximum detection limit is about 50 times higher than ELISA. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, Douglas F., E-mail: souzadf@outlook.com; Nunes, Eduardo H.M., E-mail: eduardohmn@gmail.com; Pimenta, Daiana S.

    In this work we fabricated alumina samples by the freeze-casting technique using tert-butanol as the solvent. The prepared materials were examined by scanning electron microscopy and X-ray microtomography. Next, they were coated with sol–gel silica films by dip-coating. Permeability tests were carried out in order to assess the permeation behavior of the materials processed in this study. We observed that the sintering time and alumina loading showed a remarkable effect on both the structural properties and flexural strength of the freeze-cast samples. Nitrogen adsorption tests revealed that the silica prepared in this study exhibited a microporous structure. It was observedmore » that the presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance by about one order of magnitude. Because of the similar kinetic diameters of nitrogen and carbon dioxide, the CO{sub 2}/N{sub 2} system showed a separation efficiency that was lower than that observed for the He/CO{sub 2} and He/N{sub 2} systems. We noticed that increasing the feed pressure improved the separation capacity of the obtained materials. - Highlights: • Porous alumina samples obtained by the freeze-casting technique • Microporous silica coating prepared by a simple sol–gel dip-coating methodology • Samples examined by SEM, μ-CT, and nitrogen sorption tests • Mechanical tests were carried out in the freeze-cast samples. • The presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance.« less

  9. An electrochemical and high-speed imaging study of micropore decontamination by acoustic bubble entrapment.

    PubMed

    Offin, Douglas G; Birkin, Peter R; Leighton, Timothy G

    2014-03-14

    Electrochemical and high-speed imaging techniques are used to study the abilities of ultrasonically-activated bubbles to clean out micropores. Cylindrical pores with dimensions (diameter × depth) of 500 μm × 400 μm (aspect ratio 0.8), 125 μm × 350 μm (aspect ratio 2.8) and 50 μm × 200 μm (aspect ratio 4.0) are fabricated in glass substrates. Each pore is contaminated by filling it with an electrochemically inactive blocking organic material (thickened methyl salicylate) before the substrate is placed in a solution containing an electroactive species (Fe(CN)6(3-)). An electrode is fabricated at the base of each pore and the Faradaic current is used to monitor the decontamination as a function of time. For the largest pore, decontamination driven by ultrasound (generated by a horn type transducer) and bulk fluid flow are compared. It is shown that ultrasound is much more effective than flow alone, and that bulk fluid flow at the rates used cannot decontaminate the pore completely, but that ultrasound can. In the case of the 125 μm pore, high-speed imaging is used to elucidate the cleaning mechanisms involved in ultrasonic decontamination and reveals that acoustic bubble entrapment is a key feature. The smallest pore is used to explore the limits of decontamination and it is found that ultrasound is still effective at this size under the conditions employed.

  10. Acceleration of robust "biotube" vascular graft fabrication by in-body tissue architecture technology using a novel eosin Y-releasing mold.

    PubMed

    Nakayama, Yasuhide; Tsujinaka, Takahiro

    2014-02-01

    A novel eosin Y-releasing mold was designed to accelerate the fabrication of in vivo tissue engineered autologous vascular prosthetic tissues, called the "biotubes." The mold was prepared by addition of an aqueous solution of eosin Y (1∼6 w/v%) to the agar gel (0.3%), which was attached to the luminal surface of the microporous acrylate tube (diameter, 5 mm; length, 28 mm; pore size, 0.5 mmϕ). The eosin Y release period was controlled by the number of pores (3∼160). On embedding the molds into dorsal, subcutaneous pouches of rats for 1 week, completely encapsulated biotubes, mainly consisting of collagen, with thick walls (418.2 ± 173.4 μm) and robust mechanical properties (elastic modulus, 956.2 ± 196.5 kPa; burst pressure 5850 ± 2383 mmHg) were formed. These values were, respectively, more than 4.3, 3.8, and 5.6 times greater than the corresponding controls (acrylate rods). The high elastic modulus of the biotubes was obtained even with a small number of micropores (3), and a low concentration of eosin Y (1%) within a very short embedding period (5 days), irrespective of rat weights. This innovative method for rapid production of vascular grafts with thick walls and robust mechanical properties may be adaptable for the sub-emergency clinical use of biotubes in regenerative medicine. Copyright © 2013 Wiley Periodicals, Inc.

  11. Multiscale approach to (micro)porosity quantification in continental spring carbonate facies: Case study from the Cakmak quarry (Denizli, Turkey)

    NASA Astrophysics Data System (ADS)

    De Boever, Eva; Foubert, Anneleen; Oligschlaeger, Dirk; Claes, Steven; Soete, Jeroen; Bertier, Pieter; Özkul, Mehmet; Virgone, Aurélien; Swennen, Rudy

    2016-07-01

    Carbonate spring deposits gained renewed interest as potential contributors to subsurface reservoirs and as continental archives of environmental changes. In contrast to their fabrics, petrophysical characteristics - and especially the importance of microporosity (< 1µm) - are less understood. This study presents the combination of advanced petrophysical and imaging techniques to investigate the pore network characteristics of three, common and widespread spring carbonate facies, as exposed in the Pleistocene Cakmak quarry (Denizli, Turkey): the extended Pond, the dipping crystalline Proximal Slope Facies and the draping Apron and Channel Facies deposits formed by encrustation of biological substrate. Integrating mercury injection capillary pressure, bulk and diffusion Nuclear Magnetic Resonance (NMR), NMR profiling and Brunauer-Emmett-Teller (BET) measurements with microscopy and micro-computer tomography (µ-CT), shows that NMR T2 distributions systematically display a single group of micro-sized pore bodies, making up between 6 and 33% of the pore space (average NMR T2 cut-off value: 62 ms). Micropore bodies are systematically located within cloudy crystal cores of granular and dendritic crystal textures in all facies. The investigated properties therefore do not reveal differences in micropore size or shape with respect to more or less biology-associated facies. The pore network of the travertine facies is distinctive in terms of (i) the percentage of microporosity, (ii) the connectivity of micropores with meso- to macropores, and (ii) the degree of heterogeneity at micro- and macroscale. Results show that an approach involving different NMR experiments provided the most complete view on the 3-D pore network especially when microporosity and connectivity are of interest.

  12. Microporous polymer films and methods of their production

    DOEpatents

    Aubert, J.H.

    1995-06-06

    A process is described for producing thin microporous polymeric films for a variety of uses. The process utilizes a dense gas (liquefied gas or supercritical fluid) selected to combine with a solvent-containing polymeric film so that the solvent is dissolved in the dense gas, the polymer is substantially insoluble in the dense gas, and two phases are formed. A microporous film is obtained by removal of a dense gas-solvent phase. 9 figs.

  13. Plasma Reforming of Liquid Hydrocarbon Fuels in Non-Thermal Plasma-Liquid Systems

    DTIC Science & Technology

    2010-04-30

    microporous liquid which has a very large ratio of the plasma-liquid contact surface to the plasma volume. As is known the ultrasonic (US) cavitation is a very...effective method for creating micropores in liquid [17]. Therefore, the DGCLW with additional US pumping is also very interesting for research and...electrodes. Another PLS reactor was prepared with the DGCLW working with the air flow in the liquid under the induced microporous

  14. Ordered macro-microporous metal-organic framework single crystals

    NASA Astrophysics Data System (ADS)

    Shen, Kui; Zhang, Lei; Chen, Xiaodong; Liu, Lingmei; Zhang, Daliang; Han, Yu; Chen, Junying; Long, Jilan; Luque, Rafael; Li, Yingwei; Chen, Banglin

    2018-01-01

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional–ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent–induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  15. Effects of activated carbon surface chemistry and pore structure on the adsorption of trace organic contaminants from aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Lei

    The objectives were (1) to identify activated pore structure and surface chemistry characteristics that assure the effective removal of trace organic contaminants from aqueous-solution, and (2) to develop a procedure to predict the adsorption capacity of activated carbons from fundamental adsorbent and adsorbate properties. A matrix of activated carbon fibers (ACFs) (with three activation levels and four surface chemistry levels) and three commercially available granular activated carbons (GACs) served as the adsorbents. BET surface area, pore size distribution, elemental composition, point of zero charge and infrared spectroscopy data were obtained to characterize the adsorbents. The adsorption of relative hydrophilic methyl tertiary-butyl ether (MTBE) and relative hydrophobic trichloroethene (TCE) were conducted in both ultrapure water and Sacramento-San Joaquin Delta water. The results showed that an effective adsorbent for the removal of micropollutants from water requires (1) a large volume of micropores with widths that are about 1.5 times larger than the kinetic diameter of the target adsorbate, (2) a micropore size distribution that extends to widths that are approximately twice the kinetic diameter of the target adsorbate to prevent pore blockage by NOM, and (3) a hydrophobic pore surface chemistry with the sum of oxygen and nitrogen contents less than 2 to 3 mmol/g. A procedure based on the Polanyi Potential Theory (PPT) was developed to predict the adsorption capacities of activated carbons from fundamental adsorbent and adsorbate properties. A correlation between the coalescing factor for water adsorption and adsorbent oxygen content was developed. Based on this correlation, the PPT yielded reasonable estimates of aqueous phase adsorption capacities for both relatively polar and non-polar adsorbates on both relatively hydrophobic and hydrophilic activated carbons. With the developed procedure, the adsorption capacities of organic compounds that are partially miscible in water can be predicted from (1) N2 and CO2 adsorption isotherms of a given adsorbent, (2) the adsorbent oxygen content, and (3) the molar volume and parachor of the target adsorbate.

  16. Micropore closure kinetics are delayed following microneedle insertion in elderly subjects.

    PubMed

    Kelchen, Megan N; Siefers, Kyle J; Converse, Courtney C; Farley, Matthew J; Holdren, Grant O; Brogden, Nicole K

    2016-03-10

    Transdermal delivery is an advantageous method of drug administration, particularly for an elderly population. Microneedles (MNs) allow transdermal delivery of otherwise skin-impermeable drugs by creating transient micropores that bypass the barrier function of the skin. The response of aging skin to MNs has not been explored, and we report for the first time that micropore closure is delayed in elderly subjects in a manner that is dependent upon MN length, number, and occlusion of the micropores. Twelve control subjects (25.6±2.8years) and 16 elderly subjects (77.3±6.8years) completed the study. Subjects were treated with MNs of 500μm or 750μm length, in arrays containing 10 or 50 MNs. Impedance measurements made at baseline, post-MN insertion, and at predetermined time points demonstrated that restoration of the skin barrier is significantly slower in elderly subjects under both occluded and non-occluded conditions. This was confirmed via calculation of the total permeable area created by the micropores (which would approximate the area available for drug delivery), as well as calculation of the micropore half-life. This pilot study demonstrates that longer timeframes are required to restore the barrier function of aged skin following MN insertion, suggesting that drug delivery windows could be longer following one treatment with a MN array. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Understanding Diffusion in Hierarchical Zeolites with House-of-Cards Nanosheets.

    PubMed

    Bai, Peng; Haldoupis, Emmanuel; Dauenhauer, Paul J; Tsapatsis, Michael; Siepmann, J Ilja

    2016-08-23

    Introducing mesoporosity to conventional microporous sorbents or catalysts is often proposed as a solution to enhance their mass transport rates. Here, we show that diffusion in these hierarchical materials is more complex and exhibits non-monotonic dependence on sorbate loading. Our atomistic simulations of n-hexane in a model system containing microporous nanosheets and mesopore channels indicate that diffusivity can be smaller than in a conventional zeolite with the same micropore structure, and this observation holds true even if we confine the analysis to molecules completely inside the microporous nanosheets. Only at high sorbate loadings or elevated temperatures, when the mesopores begin to be sufficiently populated, does the overall diffusion in the hierarchical material exceed that in conventional microporous zeolites. Our model system is free of structural defects, such as pore blocking or surface disorder, that are typically invoked to explain slower-than-expected diffusion phenomena in experimental measurements. Examination of free energy profiles and visualization of molecular diffusion pathways demonstrates that the large free energy cost (mostly enthalpic in origin) for escaping from the microporous region into the mesopores leads to more tortuous diffusion paths and causes this unusual transport behavior in hierarchical nanoporous materials. This knowledge allows us to re-examine zero-length-column chromatography data and show that these experimental measurements are consistent with the simulation data when the crystallite size instead of the nanosheet thickness is used for the nominal diffusional length.

  18. The role of beaded activated carbon's pore size distribution on heel formation during cyclic adsorption/desorption of organic vapors.

    PubMed

    Jahandar Lashaki, Masoud; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2016-09-05

    The effect of activated carbon's pore size distribution (PSD) on heel formation during adsorption of organic vapors was investigated. Five commercially available beaded activated carbons (BAC) with varying PSDs (30-88% microporous) were investigated. Virgin samples had similar elemental compositions but different PSDs, which allowed for isolating the contribution of carbon's microporosity to heel formation. Heel formation was linearly correlated (R(2)=0.91) with BAC micropore volume; heel for the BAC with the lowest micropore volume was 20% lower than the BAC with the highest micropore volume. Meanwhile, first cycle adsorption capacities and breakthrough times correlated linearly (R(2)=0.87 and 0.93, respectively) with BAC total pore volume. Micropore volume reduction for all BACs confirmed that heel accumulation takes place in the highest energy pores. Overall, these results show that a greater portion of adsorbed species are converted into heel on highly microporous adsorbents due to higher share of high energy adsorption sites in their structure. This differs from mesoporous adsorbents (low microporosity) in which large pores contribute to adsorption but not to heel formation, resulting in longer adsorbent lifetime. Thus, activated carbon with high adsorption capacity and high mesopore fraction is particularly desirable for organic vapor application involving extended adsorption/regeneration cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Porous structure, permeability, and mechanical properties of polyolefin microporous films

    NASA Astrophysics Data System (ADS)

    Elyashevich, G. K.; Kuryndin, I. S.; Lavrentyev, V. K.; Bobrovsky, A. Yu.; Bukošek, V.

    2012-09-01

    Microporous films of polyolefins, namely, polyethylene and polypropylene, have been prepared using the process based on the extrusion of the melt with the subsequent annealing, uniaxial extension, and thermal fixation. The influence of the conditions used for preparation of the films on their morphology, porosity, number and sizes of through-flow channels, and mechanical properties has been investigated. It has been found that a significant influence on the characteristics of the porous structure of the films is exerted by the degree of orientation of the melt at extrusion, the annealing temperature, and the degree of uniaxial extension of the films. The threshold values of these parameters, at which through-flow channels are formed in the films, have been determined. It has been shown using filtration porosimetry that polyethylene films have a higher permeability to liquids as compared to the polypropylene samples (240 and 180 L/(m2 h atm), respectively). The porous structure of the polyethylene films is characterized by larger sizes of through pores than those of the polypropylene samples (the average pore sizes are 210 and 160 nm, respectively), whereas the polypropylene films contain a larger number of through-flow channels.

  20. Novel macro-microporous gelatin scaffold fabricated by particulate leaching for soft tissue reconstruction with adipose-derived stem cells.

    PubMed

    Phull, Manraj K; Eydmann, Trevor; Roxburgh, Judy; Sharpe, Justin R; Lawrence-Watt, Diana J; Phillips, Gary; Martin, Yella

    2013-02-01

    The restoration of body contours as shaped by adipose tissue remains a clinical challenge specifically in patients who have experienced loss of contour due to trauma, surgical removal of tumours or congenital abnormalities. We have developed a novel macro-microporous biomaterial for use in soft tissue re-bulking and augmentation. Alginate beads provided the pore template for the construct. Incorporation, and subsequent dissolution, of the beads within a 7 % (w/v) gelatin matrix, produced a highly porous scaffold with an average pore size of 2.01 ± 0.08 mm. The ability of this scaffold to support the in vitro growth and differentiation of human adipose-derived stem cells (ADSCs) was then investigated. Histological analysis confirmed that the scaffold itself provided a suitable environment to support the growth of ADSCs on the scaffold walls. When delivered into the macropores in a fibrin hydrogel, ADSCs proliferated and filled the pores. In addition, ADSCs could readily be differentiated along the adipogenic lineage. These results therefore describe a novel scaffold that can support the proliferation and delivery of ADSCs. The scaffold is the first stage in developing a clinical alternative to current treatment methods for soft tissue reconstruction.

  1. Effects of air temperature and velocity on the drying kinetics and product particle size of starch from arrowroot (Maranta arundinacae)

    NASA Astrophysics Data System (ADS)

    Caparanga, Alvin R.; Reyes, Rachael Anne L.; Rivas, Reiner L.; De Vera, Flordeliza C.; Retnasamy, Vithyacharan; Aris, Hasnizah

    2017-11-01

    This study utilized the 3k factorial design with k as the two varying factors namely, temperature and air velocity. The effects of temperature and air velocity on the drying rate curves and on the average particle diameter of the arrowroot starch were investigated. Extracted arrowroot starch samples were dried based on the designed parameters until constant weight was obtained. The resulting initial moisture content of the arrowroot starch was 49.4%. Higher temperatures correspond to higher drying rates and faster drying time while air velocity effects were approximately negligible or had little effect. Drying rate is a function of temperature and time. The constant rate period was not observed for the drying rate of arrowroot starch. The drying curves were fitted against five mathematical models: Lewis, Page, Henderson and Pabis, Logarithmic and Midili. The Midili Model was the best fit for the experimental data since it yielded the highest R2 and the lowest RSME values for all runs. Scanning electron microscopy (SEM) was used for qualitative analysis and for determination of average particle diameter of the starch granules. The starch granules average particle diameter had a range of 12.06 - 24.60 μm. The use of ANOVA proved that particle diameters for each run varied significantly with each other. And, the Taguchi Design proved that high temperatures yield lower average particle diameter, while high air velocities yield higher average particle diameter.

  2. Changes in neutrophil morphology and morphometry following exposure to cigarette smoke.

    PubMed Central

    Lannan, S.; McLean, A.; Drost, E.; Gillooly, M.; Donaldson, K.; Lamb, D.; MacNee, W.

    1992-01-01

    Acute cigarette smoking delays neutrophils within the pulmonary circulation in some smokers. Evidence from an in-vitro Micropore filter model of the pulmonary capillaries indicates that this may be due to a smoke induced decrease in cell deformability. In order to determine whether changes in cell shape are associated with the observed decrease in neutrophil deformability following smoke exposure, cell morphology, using scanning electron microscopy, and morphometric measurements, made using transmission electron microscopy, were performed on aliquots of neutrophils harvested from whole blood in non-smoking subjects before and after exposure in vitro to cigarette smoke. Smoke exposure increased the maximum diameter and circumference of neutrophils, without changing their area. There was also a change in the maximum to minimum cell diameter ratio, which indicated that the cells had become less spherical. Scanning electron microscopy showed that smoke exposed cells had developed blebbing of their surface membranes, suggestive of an oxidative injury to the cell membrane rather than the shape changes associated with cell activation. These changes in the morphology and morphometry of smoke exposed neutrophils may contribute to the reduction in cell deformability induced by cigarette smoke. Images Fig. 3 Fig. 4 Fig. 5 PMID:1571278

  3. Correlation between physicochemical properties of modified clinoptilolite and its performance in the removal of ammonia-nitrogen.

    PubMed

    Dong, Yingbo; Lin, Hai; He, Yinhai

    2017-03-01

    The physicochemical properties of the 24 modified clinoptilolite samples and their ammonia-nitrogen removal rates were measured to investigate the correlation between them. The modified clinoptilolites obtained by acid modification, alkali modification, salt modification, and thermal modification were used to adsorb ammonia-nitrogen. The surface area, average pore width, macropore volume, mecropore volume, micropore volume, cation exchange capacity (CEC), zeta potential, silicon-aluminum ratios, and ammonia-nitrogen removal rate of the 24 modified clinoptilolite samples were measured. Subsequently, the linear regression analysis method was used to research the correlation between the physicochemical property of the different modified clinoptilolite samples and the ammonia-nitrogen removal rate. Results showed that the CEC was the major physicochemical property affecting the ammonia-nitrogen removal performance. According to the impacts from strong to weak, the order was CEC > silicon-aluminum ratios > mesopore volume > micropore volume > surface area. On the contrary, the macropore volume, average pore width, and zeta potential had a negligible effect on the ammonia-nitrogen removal rate. The relational model of physicochemical property and ammonia-nitrogen removal rate of the modified clinoptilolite was established, which was ammonia-nitrogen removal rate = 1.415[CEC] + 173.533 [macropore volume] + 0.683 [surface area] + 4.789[Si/Al] - 201.248. The correlation coefficient of this model was 0.982, which passed the validation of regression equation and regression coefficients. The results of the significance test showed a good fit to the correlation model.

  4. Increases of Chamber Height and Base Diameter Have Contrasting Effects on Grazing Rate of Two Cladoceran Species: Implications for Microcosm Studies.

    PubMed

    Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun

    2015-01-01

    Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as "scale" effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments.

  5. Increases of Chamber Height and Base Diameter Have Contrasting Effects on Grazing Rate of Two Cladoceran Species: Implications for Microcosm Studies

    PubMed Central

    Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun

    2015-01-01

    Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as “scale” effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments. PMID:26273836

  6. Microporous Materials of Metal Carboxylates

    NASA Astrophysics Data System (ADS)

    Mori, Wasuke; Takamizawa, Satoshi

    2000-06-01

    Copper(II) terephthalate absorbs a large amount of gases such as N2, Ar, O2, and Xe. The maximum amounts of absorption of gases were 1.8, 1.9, 2.2, and 0.9 mole per mole of the copper(II) salt for N2, Ar, O2, and Xe, respectively, indicating that the gases were not adsorbed on the surface but occluded within the solid. Other microporous copper(II) dicarboxylates are also reviewed. The porous structure of copper(II) terephthalate, in which the gas is occluded, is deduced from the temperature dependence of magnetic susceptibilities and the linear structure of terephthalate. Microporous molybdenum(II) and ruthenium(II, III) dicarboxylates are discussed. We describe that rhodium(II) monocarboxylate bridged by pyrazine form stable micropores by self-assembly of infinite linear chain complexes.

  7. Evolution of Micro-Pores in a Single-Crystal Nickel-Based Superalloy During Solution Heat Treatment

    NASA Astrophysics Data System (ADS)

    Li, Xiangwei; Wang, Li; Dong, Jiasheng; Lou, Langhong; Zhang, Jian

    2017-06-01

    Evolution of micro-pores in a third-generation single-crystal nickel-based superalloy during solution heat treatment at 1603 K (1330 °C) was investigated by X-ray computed tomography. 3D information including morphology, size, number, and volume fraction of micro-pores formed during solidification (S-pores) and solution (H-pores) was analyzed. The growth behaviors of both S-pores and H-pores can be related to the vacancy formation and diffusion during heat treatment.

  8. Thermal Engineering Issues in Hydrogen Storage for Mobile and Portable Applications

    DTIC Science & Technology

    2010-09-01

    hydride beds Effective thermal conductivity measurement cell ::.·: .·:.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·:. Insulation ...generally classified as micropores (< 2 nm), mesopores (between 2 and 50 nm), and macropores (> 50 nm). •Above critical point, adsorption takes place in... micropores only and the density of adsorbed phase (in micropores ) is much greater than that of unadsorbed gaseous phase (in macropores and slit volumes

  9. Modeling Amorphous Microporous Polymers for CO2 Capture and Separations.

    PubMed

    Kupgan, Grit; Abbott, Lauren J; Hart, Kyle E; Colina, Coray M

    2018-06-13

    This review concentrates on the advances of atomistic molecular simulations to design and evaluate amorphous microporous polymeric materials for CO 2 capture and separations. A description of atomistic molecular simulations is provided, including simulation techniques, structural generation approaches, relaxation and equilibration methodologies, and considerations needed for validation of simulated samples. The review provides general guidelines and a comprehensive update of the recent literature (since 2007) to promote the acceleration of the discovery and screening of amorphous microporous polymers for CO 2 capture and separation processes.

  10. Synthesis and capacitance properties of N-doped porous carbon/NiO nanosheet composites using coal-based polyaniline as carbon and nitrogen source

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqin; Li, Qiaoqin; Zhang, Yong; Yang, Yufei; Cao, Zhi; Xiong, Shanxin

    2018-06-01

    A novel synthesis approach of N-doped porous carbon (NPC)/NiO composites possessing some honeycomb-shaped nanoporous carbon and plentiful NiO nanosheets is exploited. First NPC/Ni composites are achieved with NPC yield of 52.9% through a catalytic pyrolysis method, using coal-based polyaniline particles prepared by an in-situ polymerization method as a carbon and nitrogen source, and nickel particles as a catalyst, respectively. Next NPC/NiO composites are achieved unexpectedly with plentiful NiO nanosheets and N content of 1.00 wt% after a liquid oxidation process. In NPC/NiO composites, porous carbon mainly presents in the amorphous state, while the incorporated nitrogen mainly presents in the form of pyrrolic N (92.9 at.%) and oxidized N (7.1 at.%). Plentiful NiO nanosheets are embedded in the pores or on the NPC surface. 33.3 at.% Ni2O3 components exist in the surface of NiO nanosheets. NPC/NiO composites possess not only rich micropores, but also significant mesopores and nanoscale macropores. The BET specific surface area, BET average pore width and BJH adsorption average pore diameter are 627.5 m2/g, 2.0 nm and 5.1 nm, respectively. NPC/NiO composites demonstrate a high specific capacitance of 404.1 F/g at 1 A/g, and a good cycling stability maintaining high specific capacitance of 212.4 F/g (84.3% of the initial capacitance) at 5 A/g after 5000 cycles of charge and discharge, attributed to some honeycomb-shaped nanopores of carbon and large specific surface area of NiO nanosheets, and the synergistic effects between electric double-layer capacitance of NPC and pseudocapacitance of NiO. This study may provide a novel approach for the value-added applications of low-rank coal.

  11. Measurement and interpretation of skin prick test results.

    PubMed

    van der Valk, J P M; Gerth van Wijk, R; Hoorn, E; Groenendijk, L; Groenendijk, I M; de Jong, N W

    2015-01-01

    There are several methods to read skin prick test results in type-I allergy testing. A commonly used method is to characterize the wheal size by its 'average diameter'. A more accurate method is to scan the area of the wheal to calculate the actual size. In both methods, skin prick test (SPT) results can be corrected for histamine-sensitivity of the skin by dividing the results of the allergic reaction by the histamine control. The objectives of this study are to compare different techniques of quantifying SPT results, to determine a cut-off value for a positive SPT for histamine equivalent prick -index (HEP) area, and to study the accuracy of predicting cashew nut reactions in double-blind placebo-controlled food challenge (DBPCFC) tests with the different SPT methods. Data of 172 children with cashew nut sensitisation were used for the analysis. All patients underwent a DBPCFC with cashew nut. Per patient, the average diameter and scanned area of the wheal size were recorded. In addition, the same data for the histamine-induced wheal were collected for each patient. The accuracy in predicting the outcome of the DBPCFC using four different SPT readings (i.e. average diameter, area, HEP-index diameter, HEP-index area) were compared in a Receiver-Operating Characteristic (ROC) plot. Characterizing the wheal size by the average diameter method is inaccurate compared to scanning method. A wheal average diameter of 3 mm is generally considered as a positive SPT cut-off value and an equivalent HEP-index area cut-off value of 0.4 was calculated. The four SPT methods yielded a comparable area under the curve (AUC) of 0.84, 0.85, 0.83 and 0.83, respectively. The four methods showed comparable accuracy in predicting cashew nut reactions in a DBPCFC. The 'scanned area method' is theoretically more accurate in determining the wheal area than the 'average diameter method' and is recommended in academic research. A HEP-index area of 0.4 is determined as cut-off value for a positive SPT. However, in clinical practice, the 'average diameter method' is also useful, because this method provides similar accuracy in predicting cashew nut allergic reactions in the DBPCFC. Trial number NTR3572.

  12. Remote micro-encapsulation of curium-gold cermets

    NASA Astrophysics Data System (ADS)

    Coops, M. S.; Voegele, A. L.; Hayes, W. N.; Sisson, D. H.

    1982-09-01

    A technique has been developed to produce miniature, high-density capsules of curium-244 oxide contained in three concentric jackets of metallic gold or silver. The final capsules are right circular cylinders, 6.350 mm diameter by (3.18±0.05) mm long, with a minimum density of 11.0 g/cm 3. Each level of containment was soldered or brazed closed, with the outer surface free of detectable alpha contamination. Fabrication was performed in three separate small cells operated by standard master-slave manipulators. Production capsules have been stored for up to five years without indication of dimensional growth or leakage of radioactive contents. The dimensional stability of the capsules is attributed to the microporous structure of the plated-gold structure which permits helium gas resulting from alpha decay to diffuse through the capsule wall while retaining all radioactive materials.

  13. Respiration activity of Escherichia coli entrapped in a cone-shaped microwell and cylindrical micropore monitored by scanning electrochemical microscopy (SECM).

    PubMed

    Kaya, Takatoshi; Numai, Daisuke; Nagamine, Kuniaki; Aoyagi, Shigeo; Shiku, Hitoshi; Matsue, Tomokazu

    2004-06-01

    The metabolic activity of E. coli cells embedded in collagen gel microstructures in a cone-shaped well and in a cylindrical micropore was investigated using scanning electrochemical microscopy (SECM), based on the oxygen consumption rate and the conversion rate from ferrocyanide to ferricyanide. The analysis of the concentration profiles for oxygen and ferrocyanide afforded the oxygen consumption rate and the ferrocyanide production rate. A comparison indicated that the ferrocyanide production rates were larger than the oxygen consumption rate, and also that the rates observed in the cylindrical micropore were larger than those observed in the cone-shaped well. The ferrocyanide production rate of a single E. coli cell was calculated to be (5.4 +/- 2.6) x 10(-19) mol s(-1), using a cylindrical micropore system.

  14. Self-assembly of an electronically conductive network through microporous scaffolds.

    PubMed

    Sebastian, H Bri; Bryant, Steven L

    2017-06-15

    Electron transfer spanning significant distances through a microporous structure was established via the self-assembly of an electronically conductive iridium oxide nanowire matrix enveloping the pore walls. Microporous formations were simulated using two scaffold materials of varying physical and chemical properties; paraffin wax beads, and agar gel. Following infiltration into the micropores, iridium nanoparticles self-assembled at the pore wall/ethanol interface. Subsequently, cyclic voltammetry was employed to electrochemically crosslink the metal, erecting an interconnected, and electronically conductive metal oxide nanowire matrix. Electrochemical and spectral characterization techniques confirmed the formation of oxide nanowire matrices encompassing lengths of at least 1.6mm, 400× distances previously achieved using iridium nanoparticles. Nanowire matrices were engaged as biofuel cell anodes, where electrons were donated to the nanowires by a glucose oxidizing enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Brain Arterial Diameters as a Risk Factor for Vascular Events.

    PubMed

    Gutierrez, Jose; Cheung, Ken; Bagci, Ahmet; Rundek, Tatjana; Alperin, Noam; Sacco, Ralph L; Wright, Clinton B; Elkind, Mitchell S V

    2015-08-06

    Arterial luminal diameters are routinely used to assess for vascular disease. Although small diameters are typically considered pathological, arterial dilatation has also been associated with disease. We hypothesize that extreme arterial diameters are biomarkers of the risk of vascular events. Participants in the Northern Manhattan Study who had a time-of-flight magnetic resonance angiography were included in this analysis (N=1034). A global arterial Z-score, called the brain arterial remodeling (BAR) score, was obtained by averaging the measured diameters within each individual. Individuals with a BAR score <-2 SDs were considered to have the smallest diameters, individuals with a BAR score >-2 and <2 SDs had average diameters, and individuals with a BAR score >2 SDs had the largest diameters. All vascular events were recorded prospectively after the brain magnetic resonance imaging. Spline curves and incidence rates were used to test our hypothesis. The association of the BAR score with death (P=0.001), vascular death (P=0.02), any vascular event (P=0.05), and myocardial infarction (P=0.10) was U-shaped except for ischemic stroke (P=0.74). Consequently, incidence rates for death, vascular death, myocardial infarction, and any vascular event were higher in individuals with the largest diameters, whereas individuals with the smallest diameters had a higher incidence of death, vascular death, any vascular event, and ischemic stroke compared with individuals with average diameters. The risk of death, vascular death, and any vascular event increased at both extremes of brain arterial diameters. The pathophysiology linking brain arterial remodeling to systemic vascular events needs further research. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  16. Formation, Structure and Electrochemical Impedance Analysis of Microporous Polyelectrolyte Multilayers

    NASA Astrophysics Data System (ADS)

    Lutkenhaus, Jodie; McEnnis, Kathleen; Hammond, Paula

    2007-03-01

    Microporous networks are of interest as electrolyte materials, gas separation membranes and catalytic nanoparticle templates. Here, we create microporous polyelectrolyte networks of tunable pore size and connectivity using the layer-by-layer (LBL) technique. In this method, a film is formed from the alternate adsorption of oppositely charged polyelectrolytes from aqueous solution to create a cohesive thin film. Using poly(ethylene imine) (PEI) and poly(acrylic acid) (PAA), LBL thin films of variable composition and charge density were assembled; then, the films were treated in an acidic bath, which ionizes PEI and de-ionizes PAA. This shift in charge density induces morphological rearrangement realized by a microporous network. Depending on the assembly pH and acidic bath pH, we are able to precisely tune the morphology, which is characterized by atomic force microscopy and scanning electron microscopy. To demonstrate the porous nature of the polyelectrolyte multilayer, the pores were filled with non-aqueous electrolyte (i.e. ethylene carbonate, dimethyl carbonate and lithium hexafluorophosphate) and probed with electrochemical impedance spectroscopy. These microporous networks exhibited two time constants, indicative of ions traveling through the liquid-filled pores and ions traveling through the polyelectrolyte matrix.

  17. Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds

    NASA Astrophysics Data System (ADS)

    Jia, Yali; Bagnaninchi, Pierre O.; Yang, Ying; Haj, Alicia El; Hinds, Monica T.; Kirkpatrick, Sean J.; Wang, Ruikang K.

    2009-05-01

    Establishing a relationship between perfusion rate and fluid shear stress in a 3D cell culture environment is an ongoing and challenging task faced by tissue engineers. We explore Doppler optical coherence tomography (DOCT) as a potential imaging tool for in situ monitoring of local fluid flow profiles inside porous chitosan scaffolds. From the measured fluid flow profiles, the fluid shear stresses are evaluated. We examine the localized fluid flow and shear stress within low- and high-porosity chitosan scaffolds, which are subjected to a constant input flow rate of 0.5 ml.min-1. The DOCT results show that the behavior of the fluid flow and shear stress in micropores is strongly dependent on the micropore interconnectivity, porosity, and size of pores within the scaffold. For low-porosity and high-porosity chitosan scaffolds examined, the measured local fluid flow and shear stress varied from micropore to micropore, with a mean shear stress of 0.49+/-0.3 dyn.cm-2 and 0.38+/-0.2 dyn.cm-2, respectively. In addition, we show that the scaffold's porosity and interconnectivity can be quantified by combining analyses of the 3D structural and flow images obtained from DOCT.

  18. Fundamental Studies of Crystal Growth of Microporous Materials

    NASA Technical Reports Server (NTRS)

    Singh, Ramsharan; Doolittle, John, Jr.; Payra, Pramatha; Dutta, Prabir K.; George, Michael A.; Ramachandran, Narayanan; Schoeman, Brian J.

    2003-01-01

    Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (a) Nature of the molecular units responsible for the crystal nuclei formation; (b) Nature of the nuclei and nucleation process; (c) Growth process of the nuclei into crystal; (d) Morphological control and size of the resulting crystal; (e) Surface structure of the resulting crystals; and (f) Transformation of frameworks into other frameworks or condensed structures.

  19. Indirect and direct methods for measuring a dynamic throat diameter in a solid rocket motor

    NASA Astrophysics Data System (ADS)

    Colbaugh, Lauren

    In a solid rocket motor, nozzle throat erosion is dictated by propellant composition, throat material properties, and operating conditions. Throat erosion has a significant effect on motor performance, so it must be accurately characterized to produce a good motor design. In order to correlate throat erosion rate to other parameters, it is first necessary to know what the throat diameter is throughout a motor burn. Thus, an indirect method and a direct method for determining throat diameter in a solid rocket motor are investigated in this thesis. The indirect method looks at the use of pressure and thrust data to solve for throat diameter as a function of time. The indirect method's proof of concept was shown by the good agreement between the ballistics model and the test data from a static motor firing. The ballistics model was within 10% of all measured and calculated performance parameters (e.g. average pressure, specific impulse, maximum thrust, etc.) for tests with throat erosion and within 6% of all measured and calculated performance parameters for tests without throat erosion. The direct method involves the use of x-rays to directly observe a simulated nozzle throat erode in a dynamic environment; this is achieved with a dynamic calibration standard. An image processing algorithm is developed for extracting the diameter dimensions from the x-ray intensity digital images. Static and dynamic tests were conducted. The measured diameter was compared to the known diameter in the calibration standard. All dynamic test results were within +6% / -7% of the actual diameter. Part of the edge detection method consists of dividing the entire x-ray image by an average pixel value, calculated from a set of pixels in the x-ray image. It was found that the accuracy of the edge detection method depends upon the selection of the average pixel value area and subsequently the average pixel value. An average pixel value sensitivity analysis is presented. Both the indirect method and the direct method prove to be viable approaches to determining throat diameter during solid rocket motor operation.

  20. PHYSICAL PROPERTIES OF LARGE AND SMALL GRANULES IN SOLAR QUIET REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Daren; Xie Zongxia; Hu Qinghua

    The normal mode observations of seven quiet regions obtained by the Hinode spacecraft are analyzed to study the physical properties of granules. An artificial intelligence technique is introduced to automatically find the spatial distribution of granules in feature spaces. In this work, we investigate the dependence of granular continuum intensity, mean Doppler velocity, and magnetic fields on granular diameter. We recognized 71,538 granules by an automatic segmentation technique and then extracted five properties: diameter, continuum intensity, Doppler velocity, and longitudinal and transverse magnetic flux density to describe the granules. To automatically explore the intrinsic structures of the granules in themore » five-dimensional parameter space, the X-means clustering algorithm and one-rule classifier are introduced to define the rules for classifying the granules. It is found that diameter is a dominating parameter in classifying the granules and two families of granules are derived: small granules with diameters smaller than 1.''44, and large granules with diameters larger than 1.''44. Based on statistical analysis of the detected granules, the following results are derived: (1) the averages of diameter, continuum intensity, and Doppler velocity in the upward direction of large granules are larger than those of small granules; (2) the averages of absolute longitudinal, transverse, and unsigned flux density of large granules are smaller than those of small granules; (3) for small granules, the average of continuum intensity increases with their diameters, while the averages of Doppler velocity, transverse, absolute longitudinal, and unsigned magnetic flux density decrease with their diameters. However, the mean properties of large granules are stable; (4) the intensity distributions of all granules and small granules do not satisfy Gaussian distribution, while that of large granules almost agrees with normal distribution with a peak at 1.04 I{sub 0}.« less

  1. Nitrogen-doped MOF-derived micropores carbon as immobilizer for small sulfur molecules as a cathode for lithium sulfur batteries with excellent electrochemical performance.

    PubMed

    Li, Zhaoqiang; Yin, Longwei

    2015-02-25

    Nitrogen-doped carbon (NDC) spheres with abundant 22 nm mesopores and 0.5 nm micropores are obtained by directly carbonization of nitrogen-contained metal organic framework (MOF) nanocrystals. Large S8 and small S2-4 molecules are successfully infiltrated into 22 nm mesopores and 0.5 nm micropores, respectively. We successfully investigate the effect of sulfur immobilization in mesopores and micropores on the electrochemical performance of lithium-sulfur (Li-S) battery based on NDC-sulfur hybrid cathodes. The large S8 molecules in 22 nm mesopores can be removed by a prolonged heat treatment, with only small molecules of S2-4 immobilized in micropores of NDC matrices. The NDC/S2-4 hybrid exhibits excellent cycling performance, high Coulombic efficiency, and good rate capability as cathode for Li-S batteries. The confinement of smaller S2-4 molecules in the micropores of NDS efficiently avoids the loss of active sulfur and formation of soluble high-order Li polysulfides. The porous carbon can buffer the volume expansion and contraction changes, promising a stable structure for cathode. Furthermore, N doping in MOF-derived carbon not only facilitates the fast charge transfer but also is helpful in building a stronger interaction between carbon and sulfur, strengthening immobilization ability of S2-4 in micropores. The NDS-sulfur hybrid cathode exhibits a reversible capacity of 936.5 mAh g(-1) at 100th cycle with a Coulombic efficiency of 100% under a current density of 335 mA g(-1). It displays a superior rate capability performance, delivering a capacity of 632 mAh g(-1) at a high rate of 5 A g(-1). This uniquely porous NDC derived from MOF nanocrystals could be applied in related high-energy storage devices.

  2. Methyllithium-Doped Naphthyl-Containing Conjugated Microporous Polymer with Enhanced Hydrogen Storage Performance.

    PubMed

    Xu, Dan; Sun, Lei; Li, Gang; Shang, Jin; Yang, Rui-Xia; Deng, Wei-Qiao

    2016-06-01

    Hydrogen storage is a primary challenge for using hydrogen as a fuel. With ideal hydrogen storage kinetics, the weak binding strength of hydrogen to sorbents is the key barrier to obtain decent hydrogen storage performance. Here, we reported the rational synthesis of a methyllithium-doped naphthyl-containing conjugated microporous polymer with exceptional binding strength of hydrogen to the polymer guided by theoretical simulations. Meanwhile, the experimental results showed that isosteric heat can reach up to 8.4 kJ mol(-1) and the methyllithium-doped naphthyl-containing conjugated microporous polymer exhibited an enhanced hydrogen storage performance with 150 % enhancement compared with its counterpart naphthyl-containing conjugated microporous polymer. These results indicate that this strategy provides a direction for design and synthesis of new materials that meet the US Department of Energy (DOE) hydrogen storage target. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Nitrogen-doped micropore-dominant carbon derived from waste pine cone as a promising metal-free electrocatalyst for aqueous zinc/air batteries

    NASA Astrophysics Data System (ADS)

    Lei, Xiaoke; Wang, Mengran; Lai, Yanqing; Hu, Langtao; Wang, Hao; Fang, Zhao; Li, Jie; Fang, Jing

    2017-10-01

    The exploitation for highly effective and low-cost metal-free catalysts with facile and environmental friendly method for oxygen reduction reaction is still a great challenge. To find an effective method for catalyst synthesis, in this manuscript, waste biomass pine cone is employed as raw material and nitrogen-doped micropore-dominant carbon material with excellent ORR catalytic activity is successfully synthesized. The as-prepared N-doped micropore-dominant carbon possesses a high surface area of 1556 m2 g-1. In addition, this carbon electrocatalyst loaded electrode exhibits a high discharge voltage 1.07 V at the current density of 50 mA cm-2, which can be ascribed to the rich micropores and high content of pyridinic N of the prepared carbon, indicative of great potential in the application of zinc/air batteries.

  4. Effect of the platinum content on the microstructure and micropore size distribution of Pt/alumina-pillared clays.

    PubMed

    Barrera-Vargas, M; Valencia-Rios, J; Vicente, M A; Korili, S A; Gil, A

    2005-12-15

    The aim of this work is to study the effect of the platinum content (0-1.8 wt % Pt) on the microstructure of an alumina-pillared clay. For this purpose, the nitrogen physisorption data at -196 degrees C, the micropore size distributions of the supported platinum catalysts, and the hydrogen chemisorption results at 30 degrees C have been analyzed and compared. The preparation of the catalysts has modified the textural properties of the Al-pillared clay support, giving rise to a loss of surface area and micropore volume. After reduction at 420 degrees C, the presence of dispersed metallic platinum with mean crystallite size in the 22-55 A range has been found by hydrogen adsorption. Comparison of all results reveals that the platinum species block the micropore entrances by steric hindrance to nitrogen access as the platinum content increases.

  5. Methods for synthesizing microporous crystals and microporous crystal membranes

    DOEpatents

    Dutta, Prabir; Severance, Michael; Sun, Chenhu

    2017-02-07

    A method of making a microporous crystal material, comprising: a. forming a mixture comprising NaOH, water, and one or more of an aluminum source, a silicon source, and a phosphate source, whereupon the mixture forms a gel; b. heating the gel for a first time period, whereupon a first volume of water is removed from the gel and micoroporous crystal nuclei form, the nuclei having a framework; and c.(if a membrane is to be formed) applying the gel to a solid support seeded with microporous crystals having a framework that is the same as the framework of the nuclei; d. heating the gel for a second time period. during which a second volume of water is added to the gel; wherein the rate of addition of the second volume of water is between about 0.5 and about 2.0 fold the rate of removal of the first volume of water.

  6. Comparative study of the biodegradability of porous silicon films in simulated body fluid.

    PubMed

    Peckham, J; Andrews, G T

    2015-01-01

    The biodegradability of oxidized microporous, mesoporous and macroporous silicon films in a simulated body fluid with ion concentrations similar to those found in human blood plasma were studied using gravimetry. Film dissolution rates were determined by periodically weighing the samples after removal from the fluid. The dissolution rates for microporous silicon were found to be higher than those for mesoporous silicon of comparable porosity. The dissolution rate of macroporous silicon was much lower than that for either microporous or mesoporous silicon. This is attributed to the fact that its specific surface area is much lower than that of microporous and mesoporous silicon. Using an equation adapted from [Surf. Sci. Lett. 306 (1994), L550-L554], the dissolution rate of porous silicon in simulated body fluid can be estimated if the film thickness and specific surface area are known.

  7. Electrodeposition of platinum and silver into chemically modified microporous silicon electrodes

    PubMed Central

    2012-01-01

    Electrodeposition of platinum and silver into hydrophobic and hydrophilic microporous silicon layers was investigated using chemically modified microporous silicon electrodes. Hydrophobic microporous silicon enhanced the electrodeposition of platinum in the porous layer. Meanwhile, hydrophilic one showed that platinum was hardly deposited within the porous layer, and a film of platinum on the top of the porous layer was observed. On the other hand, the electrodeposition of silver showed similar deposition behavior between these two chemically modified electrodes. It was also found that the electrodeposition of silver started at the pore opening and grew toward the pore bottom, while a uniform deposition from the pore bottom was observed in platinum electrodeposition. These electrodeposition behaviors are explained on the basis of the both effects, the difference in overpotential for metal deposition on silicon and on the deposited metal, and displacement deposition rate of metal. PMID:22720690

  8. Organic Microporous Nanofillers with Unique Alcohol Affinity for Superior Ethanol Recovery toward Sustainable Biofuels.

    PubMed

    Cheng, Xi Quan; Konstas, Kristina; Doherty, Cara M; Wood, Colin D; Mulet, Xavier; Xie, Zongli; Ng, Derrick; Hill, Matthew R; Lau, Cher Hon; Shao, Lu

    2017-05-09

    To minimize energy consumption and carbon footprints, pervaporation membranes are fast becoming the preferred technology for alcohol recovery. However, this approach is confined to small-scale operations, as the flux of standard rubbery polymer membranes remain insufficient to process large solvent volumes, whereas membrane separations that use glassy polymer membranes are prone to physical aging. This study concerns how the alcohol affinity and intrinsic porosity of networked, organic, microporous polymers can simultaneously reduce physical aging and drastically enhance both flux and selectivity of a super glassy polymer, poly-[1-(trimethylsilyl)propyne] (PTMSP). Slight loss in alcohol transportation channels in PTMSP is compensated by the alcohol affinity of the microporous polymers. Even after continuous exposure to aqueous solutions of alcohols, PTMSP pervaporation membranes loaded with the microporous polymers outperform the state-of-the-art and commercial pervaporation membranes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Preparation of a new adsorbent from activated carbon and carbon nanofiber (AC/CNF) for manufacturing organic-vacbpour respirator cartridge

    PubMed Central

    2013-01-01

    In this study a composite of activated carbon and carbon nanofiber (AC/CNF) was prepared to improve the performance of activated carbon (AC) for adsorption of volatile organic compounds (VOCs) and its utilization for respirator cartridges. Activated carbon was impregnated with a nickel nitrate catalyst precursor and carbon nanofibers (CNF) were deposited directly on the AC surface using catalytic chemical vapor deposition. Deposited CNFs on catalyst particles in AC micropores, were activated by CO2 to recover the surface area and micropores. Surface and textural characterizations of the prepared composites were investigated using Brunauer, Emmett and Teller’s (BET) technique and electron microscopy respectively. Prepared composite adsorbent was tested for benzene, toluene and xylene (BTX) adsorption and then employed in an organic respirator cartridge in granular form. Adsorption studies were conducted by passing air samples through the adsorbents in a glass column at an adjustable flow rate. Finally, any adsorbed species not retained by the adsorbents in the column were trapped in a charcoal sorbent tube and analyzed by gas chromatography. CNFs with a very thin diameter of about 10-20 nm were formed uniformly on the AC/CNF. The breakthrough time for cartridges prepared with CO2 activated AC/CNF was 117 minutes which are significantly longer than for those cartridges prepared with walnut shell- based activated carbon with the same weight of adsorbents. This study showed that a granular form CO2 activated AC/CNF composite could be a very effective alternate adsorbent for respirator cartridges due to its larger adsorption capacities and lower weight. PMID:23369424

  10. New Observations of Subarcsecond Photospheric Bright Points

    NASA Technical Reports Server (NTRS)

    Berger, T. E.; Schrijver, C. J.; Shine, R. A.; Tarbell, T. D.; Title, A. M.; Scharmer, G.

    1995-01-01

    We have used an interference filter centered at 4305 A within the bandhead of the CH radical (the 'G band') and real-time image selection at the Swedish Vacuum Solar Telescope on La Palma to produce very high contrast images of subarcsecond photospheric bright points at all locations on the solar disk. During the 6 day period of 1993 September 15-20 we observed active region NOAA 7581 from its appearance on the East limb to a near-disk-center position on September 20. A total of 1804 bright points were selected for analysis from the disk center image using feature extraction image processing techniques. The measured Full Width at Half Maximum (FWHM) distribution of the bright points in the image is lognormal with a modal value of 220 km (0 sec .30) and an average value of 250 km (0 sec .35). The smallest measured bright point diameter is 120 km (0 sec .17) and the largest is 600 km (O sec .69). Approximately 60% of the measured bright points are circular (eccentricity approx. 1.0), the average eccentricity is 1.5, and the maximum eccentricity corresponding to filigree in the image is 6.5. The peak contrast of the measured bright points is normally distributed. The contrast distribution variance is much greater than the measurement accuracy, indicating a large spread in intrinsic bright-point contrast. When referenced to an averaged 'quiet-Sun' area in the image, the modal contrast is 29% and the maximum value is 75%; when referenced to an average intergranular lane brightness in the image, the distribution has a modal value of 61% and a maximum of 119%. The bin-averaged contrast of G-band bright points is constant across the entire measured size range. The measured area of the bright points, corrected for pixelation and selection effects, covers about 1.8% of the total image area. Large pores and micropores occupy an additional 2% of the image area, implying a total area fraction of magnetic proxy features in the image of 3.8%. We discuss the implications of this area fraction measurement in the context of previously published measurements which show that typical active region plage has a magnetic filling factor on the order of 10% or greater. The results suggest that in the active region analyzed here, less than 50% of the small-scale magnetic flux tubes are demarcated by visible proxies such as bright points or pores.

  11. An efficient one-step condensation and activation strategy to synthesize porous carbons with optimal micropore sizes for highly selective CO₂ adsorption.

    PubMed

    Wang, Jiacheng; Liu, Qian

    2014-04-21

    A series of microporous carbons (MPCs) were successfully prepared by an efficient one-step condensation and activation strategy using commercially available dialdehyde and diamine as carbon sources. The resulting MPCs have large surface areas (up to 1881 m(2) g(-1)), micropore volumes (up to 0.78 cm(3) g(-1)), and narrow micropore size distributions (0.7-1.1 nm). The CO₂ uptakes of the MPCs prepared at high temperatures (700-750 °C) are higher than those prepared under mild conditions (600-650 °C), because the former samples possess optimal micropore sizes (0.7-0.8 nm) that are highly suitable for CO₂ capture due to enhanced adsorbate-adsorbent interactions. At 1 bar, MPC-750 prepared at 750 °C demonstrates the best CO₂ capture performance and can efficiently adsorb CO₂ molecules at 2.86 mmol g(-1) and 4.92 mmol g(-1) at 25 and 0 °C, respectively. In particular, the MPCs with optimal micropore sizes (0.7-0.8 nm) have extremely high CO₂/N₂ adsorption ratios (47 and 52 at 25 and 0 °C, respectively) at 1 bar, and initial CO₂/N₂ adsorption selectivities of up to 81 and 119 at 25 °C and 0 °C, respectively, which are far superior to previously reported values for various porous solids. These excellent results, combined with good adsorption capacities and efficient regeneration/recyclability, make these carbons amongst the most promising sorbents reported so far for selective CO₂ adsorption in practical applications.

  12. Pool boiling characteristics and critical heat flux mechanisms of microporous surfaces and enhancement through structural modification

    NASA Astrophysics Data System (ADS)

    Ha, Minseok; Graham, Samuel

    2017-08-01

    Experimental studies have shown that microporous surfaces induce one of the highest enhancements in critical heat flux (CHF) during pool boiling. However, microporous surfaces may also induce a very large surface superheat (>100 °C) which is not desirable for applications such as microelectronics cooling. While the understanding of the CHF mechanism is the key to enhancing boiling heat transfer, a comprehensive understanding is not yet available. So far, three different theories for the CHF of microporous surfaces have been suggested: viscous-capillary model, hydrodynamic instability model, and dryout of the porous coatings. In general, all three theories account for some aspects of boiling phenomena. In this study, the theories are examined through their correlations with experimental data on microporous surfaces during pool boiling using deionized (DI) water. It was found that the modulation of the vapor-jet through the pore network enables a higher CHF than that of a flat surface based on the hydrodynamic instability theory. In addition, it was found that as the heat flux increases, a vapor layer grows in the porous coatings described by a simple thermal resistance model which is responsible for the large surface superheat. Once the vapor layer grows to fill the microporous structure, transition to film boiling occurs and CHF is reached. By disrupting the formation of this vapor layer through the fabrication of channels to allow vapor escape, an enhancement in the CHF and heat transfer coefficient was observed, allowing CHF greater than 3500 kW/m2 at a superheat less than 50 °C.

  13. Using Microporous Polytetrafluoroethylene Thin Sheets as a Flexible Solar Diffuser to Minimize Sunlight Glint to Cameras in Space

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2016-01-01

    An innovative design of using microporous PTFE thin sheets as a solar diffuser for MLI blankets or mechanical structure has been developed. It minimizes sunlight or stray-light glint to cameras when it is incident on these components in space. A microporous black PTFE thin sheet solar diffuser has been qualified for flight at NASA GSFC and installed to the TAGSAM arm MLI, OCAMS PolyCam sunshade MLI and SamCam motor riser MLI in the NASA OSIRIS-REx mission to meet the SamCam camera BRDF requirement.

  14. Subnanopore filling during water vapor adsorption on microporous silica thin films as seen by low-energy positron annihilation

    NASA Astrophysics Data System (ADS)

    Ito, Kenji; Yoshimoto, Shigeru; O'Rourke, Brian E.; Oshima, Nagayasu; Kumagai, Kazuhiro

    2018-02-01

    Positron annihilation lifetime spectroscopy (PALS) using a low-energy positron microbeam extracted into air was applied to elucidating molecular-level pore structures formed in silicon-oxide-backboned microporous thin films under controlled humidity conditions; as a result, a direct observation of the interstitial spaces in the micropores filled with water molecules was achieved. It was demonstrated that PALS using a microbeam extracted into air in combination with water vapor adsorption is a powerful tool for the in-situ elucidation of both open and closed subnanoscaled pores of functional thin materials under practical conditions.

  15. Cyclic voltammetric analysis of C 1-C 4 alcohol electrooxidations with Pt/C and Pt-Ru/C microporous electrodes

    NASA Astrophysics Data System (ADS)

    Lee, Choong-Gon; Umeda, Minoru; Uchida, Isamu

    The effect of temperature on methanol, ethanol, 2-propanol, and 2-butanol electrooxidation is investigated with Pt/C and Pt-Ru/C microporous electrodes. Cyclic voltammetry is employed in temperatures ranging from 25 to 80 °C to provide quantitative and qualitative information on the kinetics of alcohol oxidation. Methanol displays the greatest activity atom alcohols. The addition of ruthenium reduces the poisoning effect, although it is ineffective with secondary alcohols. Secondary alcohols undergo a different oxidation mechanism at higher temperatures. Microporous electrodes provide detailed information on alcohol oxidation.

  16. Using microporous polytetrafluoroethylene thin sheets as a flexible solar diffuser to minimize sunlight glint to cameras in space

    NASA Astrophysics Data System (ADS)

    Choi, Michael K.

    2016-09-01

    An innovative design of using microporous PTFE thin sheets as a solar diffuser for MLI blankets or mechanical structure has been developed. It minimizes sunlight or stray-light glint to cameras when it is incident on these components in space. A microporous black PTFE thin sheet solar diffuser has been qualified for flight at NASA GSFC and installed to the TAGSAM arm MLI, OCAMS PolyCam sunshade MLI and SamCam motor riser MLI in the NASA OSIRIS-REx mission to meet the SamCam camera BRDF requirement.

  17. Diclofenac enables unprecedented week-long microneedle-enhanced delivery of a skin impermeable medication in humans

    PubMed Central

    Brogden, Nicole K.; Banks, Stan L.; Crofford, Leslie J.; Stinchcomb, Audra L.

    2013-01-01

    Microneedles applied to the skin create micropores, allowing transdermal drug delivery of skin-impermeable compounds. The first human study with this technique demonstrated delivery of naltrexone (an opioid antagonist) for two to three days. Rapid micropore closure, however, blunts the delivery window. Application of diclofenac (an anti-inflammatory) allows seven days of naltrexone delivery in animals. Purpose the purpose of the current work was to demonstrate delivery of naltrexone for seven days following one microneedle treatment in humans. Methods Human subjects were treated with microneedles, diclofenac (or placebo), and naltrexone. Impedance measurements were used as a surrogate marker to measure micropore formation, and plasma naltrexone concentrations were measured for seven days post-microneedle application. Results Impedance dropped significantly from baseline to post-microneedle treatment, confirming micropore formation. Naltrexone was detected for seven days in Group 1 (diclofenac + naltrexone, n = 6), vs. 72 hours in Group 2 (placebo + naltrexone, n = 2). At study completion, a significant difference in impedance was observed between intact and microneedle-treated skin in Group 1 (confirming the presence of micropores). Conclusion This is the first study demonstrating week-long drug delivery after one microneedle application, which would increase patient compliance and allow delivery of therapies for chronic diseases. PMID:23761054

  18. Protein adsorption onto nanozeolite: effect of micropore openings.

    PubMed

    Wu, Jiamin; Li, Xiang; Yan, Yueer; Hu, Yuanyuan; Zhang, Yahong; Tang, Yi

    2013-09-15

    A clear and deep understanding of protein adsorption on porous surfaces is desirable for the reasonable design and applications of porous materials. In this study, the effect of surface micropores on protein adsorption was systematically investigated by comparing adsorption behavior of cytochrome c (Cyto-c) and Candida antarctica Lipase B (CALB) on porous and non-porous nanozeolites silicalite-1 and Beta. It was found that micropore openings on the surface of nanozeolites played a key role in determining adsorption affinity, conformations, and activities of proteins. Both Cyto-c and CALB showed higher affinity to porous nanozeolites than to non-porous ones, resulting in greater conformational change of proteins on porous surfaces which in turn affected their bio-catalytic performance. The activity of Cyto-c improved while that of CALB decreased on porous nanozeolites. Recognition of certain amino acid residues or size-matching secondary structures by micropore openings on the surface of nanozeolites was proposed to be the reason. Moreover, the pore opening effect of porous nanozeolites on protein behavior could be altered by changing protein coverage on them. This study gives a novel insight into the interaction between proteins and microporous materials, which will help to guide the rational fabrication and bio-applications of porous materials in the future. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection.

    PubMed

    Kosović, Marin; Balarin, Maja; Ivanda, Mile; Đerek, Vedran; Marciuš, Marijan; Ristić, Mira; Gamulin, Ozren

    2015-12-01

    Microporous and macro-mesoporous silicon templates for surface-enhanced Raman scattering (SERS) substrates were produced by anodization of low doped p-type silicon wafers. By immersion plating in AgNO3, the templates were covered with silver metallic film consisting of different silver nanostructures. Scanning electron microscopy (SEM) micrographs of these SERS substrates showed diverse morphology with significant difference in an average size and size distribution of silver nanoparticles. Ultraviolet-visible-near-infrared (UV-Vis-NIR) reflection spectroscopy showed plasmonic absorption at 398 and 469 nm, which is in accordance with the SEM findings. The activity of the SERS substrates was tested using rhodamine 6G (R6G) dye molecules and 514.5 nm laser excitation. Contrary to the microporous silicon template, the SERS substrate prepared from macro-mesoporous silicon template showed significantly broader size distribution of irregular silver nanoparticles as well as localized surface plasmon resonance closer to excitation laser wavelength. Such silver morphology has high SERS sensitivity that enables ultralow concentration detection of R6G dye molecules up to 10(-15) M. To our knowledge, this is the lowest concentration detected of R6G dye molecules on porous silicon-based SERS substrates, which might even indicate possible single molecule detection.

  20. Optimization and characterization of high pressure homogenization produced chemically modified starch nanoparticles.

    PubMed

    Ding, Yongbo; Kan, Jianquan

    2017-12-01

    Chemically modified starch (RS4) nanoparticles were synthesized through homogenization and water-in-oil mini-emulsion cross-linking. Homogenization was optimized with regard to z-average diameter by using a three-factor-three-level Box-Behnken design. Homogenization pressure (X 1 ), oil/water ratio (X 2 ), and surfactant (X 3 ) were selected as independent variables, whereas z-average diameter was considered as a dependent variable. The following optimum preparation conditions were obtained to achieve the minimum average size of these nanoparticles: 50 MPa homogenization pressure, 10:1 oil/water ratio, and 2 g surfactant amount, when the predicted z-average diameter was 303.6 nm. The physicochemical properties of these nanoparticles were also determined. Dynamic light scattering experiments revealed that RS4 nanoparticles measuring a PdI of 0.380 and an average size of approximately 300 nm, which was very close to the predicted z-average diameter (303.6 nm). The absolute value of zeta potential of RS4 nanoparticles (39.7 mV) was higher than RS4 (32.4 mV), with strengthened swelling power. X-ray diffraction results revealed that homogenization induced a disruption in crystalline structure of RS4 nanoparticles led to amorphous or low-crystallinity. Results of stability analysis showed that RS4 nanosuspensions (particle size) had good stability at 30 °C over 24 h.

  1. Shiitake mushroom production on small diameter oak logs in Ohio

    Treesearch

    S.M. Bratkovich

    1991-01-01

    Yields of different strains of shiitake mushrooms (Lentinus edodes) were evaluated when produced on small diameter oak logs in Ohio. Logs averaging between 3-4 inches in diameter were inoculated with four spawn strains in 1985.

  2. Effects of Current Density on Microstructure and Corrosion Property of Coating on AZ31 Mg Alloy Processed via Plasma Electrolytic Oxidation

    NASA Astrophysics Data System (ADS)

    Lee, Kang Min; Einkhah, Feryar; Sani, Mohammad Ali Faghihi; Ko, Young Gun; Shin, Dong Hyuk

    The effects of the current density on the micro structure and the corrosion property of the coating on AZ31 Mg alloy processed by the plasma electrolytic oxidation (PEO) were investigated. The present coatings were produced in an acid electrolyte containing K2ZrF6 with three different current densities, i.e., 100, 150, and 200 mA/cm2. From the microstructural observations, as the applied current density was increased, the diameter of micro-pores formed by the plasma discharges with high temperature increased. The coatings on AZ31 Mg alloy were mainly composed of MgO, ZrO2, MgF2, and Mg2Zr5O12 phases. The results of potentiodynamic polarization clearly showed that the PEO-treated AZ31 Mg alloy applied at 100 mA/cm2 of current density exhibited better corrosion properties than the others.

  3. Liquid-phase tuning of porous PVDF-TrFE film on flexible substrate for energy harvesting

    NASA Astrophysics Data System (ADS)

    Chen, Dajing; Chen, Kaina; Brown, Kristopher; Hang, Annie; Zhang, John X. J.

    2017-04-01

    Emerging wearable and implantable biomedical energy harvesting devices demand efficient power conversion, flexible structures, and lightweight construction. This paper presents Polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) micro-porous structures, which can be tuned to specific mechanical flexibilities and optimized for piezoelectric power conversion. Specifically, the water vapor phase separation method was developed to control microstructure formation, pore diameter, porosity, and mechanical flexibility. Furthermore, we investigated the effects of the piezoelectric layer to supporting layer Young's modulus ratio, through using both analytical calculation and experimentation. Both structure flexibility and stress-induced voltage were considered in the analyses. Specification of electromechanical coupling efficiency, made possible by carefully designed three-dimensional porous structures, was shown to increase the power output by five-fold relative to uncoupled structures. Therefore, flexible PVDF-TrFE films with tunable microstructures, paired with substrates of different rigidities, provide highly efficient designs of compact piezoelectric energy generating devices.

  4. Properties of micro-arc oxidation coatings on aluminum alloy at different negative peak current densities

    NASA Astrophysics Data System (ADS)

    Gu, Xin; Jiang, Bailing; Li, Hongtao; Liu, Cancan; Shao, Lianlian

    2018-05-01

    Micro-arc oxidation coatings were fabricated on 6061 aluminum alloy using whereby bipolar pulse mode in the case of different negative peak current densities. The phase composition, microstructures and wear properties were studied using x-ray diffraction, scanning electron microscopy and ball-on-disk wear tester, respectively. As results indicate, by virtue of negative peak current density, the oxygen can be expelled by produced hydrogen on anode in the case of negative pulse width and via the opened discharge channel. The results of x-ray diffraction, surface and cross-sectional morphology indicated that the coating was structured compactly taking on less small-diameter micro-pores and defects with negative peak current density of 75 A dm‑2. Additionally, as the results of wear tracks and weight loss bespeak, by virtue of appropriate negative peak current density, coatings resisted the abrasive wear and showed excellent wear resistance.

  5. Synthesis and characterization of mesoporous hydrocracking catalysts

    NASA Astrophysics Data System (ADS)

    Munir, D.; Usman, M. R.

    2016-08-01

    Mesoporous catalysts have shown great prospective for catalytic reactions due to their high surface area that aids better distribution of impregnated metal. They have been found to contain more adsorption sites and controlled pore diameter. Hydrocracking, in the presence of mesoporous catalyst is considered more efficient and higher conversion of larger molecules is observed as compared to the cracking reactions in smaller microporous cavities of traditional zeolites. In the present study, a number of silica-alumina based mesoporous catalysts are synthesized in the laboratory. The concentration and type of surfactants and quantities of silica and alumina sources are the variables studied in the preparation of catalyst supports. The supports prepared are well characterized using SEM, EDX, and N2-BET techniques. Finally, the catalysts are tested in a high pressure autoclave reactor to study the activity and selectivity of the catalysts for the hydrocracking of a model mixture of plastics comprising of LDPE, HDPE, PP, and PS.

  6. Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes.

    PubMed

    Oleszczuk, Patryk; Pan, Bo; Xing, Baoshan

    2009-12-15

    We investigated the adsorption-desorption by multiwalled carbon nanotubes (MWCNTs) of two pharmaceuticals, oxytetracycline (OTC) and carbamazepine (CBZ). The pharmaceuticals demonstrated relatively fast sorption kinetics on MWCNTs. All adsorption isotherms were nonlinear and fit the Polanyi-Manes model (PMM). The single point adsorption coefficient (K) values for OTC were more than 1 order of magnitude higher than those for CBZ on corresponding MWCNTs. The adsorbed volume capacity (Q(0)) and K values of PMM showed a significant relationship with surface areas and the meso- and micropore volume of MWCNTs for both chemicals. Depending on the MWCNT outer diameter, 13.8-25.2% and 62.7-90.6% of initially adsorbed OTC and CBZ, respectively, were desorbed after 200 h. The rate of desorption of both OTC and CBZ depended upon pH and the quantity of initially adsorbed pharmaceuticals, as well as aggregation in the case of OTC.

  7. Laboratory Testing of Silica Sol Grout in Coal Measure Mudstones.

    PubMed

    Pan, Dongjiang; Zhang, Nong; Xie, Zhengzheng; Feng, Xiaowei; Kong, Yong

    2016-11-22

    The effectiveness of silica sol grout on mudstones is reported in this paper. Using X-ray diffraction (XRD), the study investigates how the silica sol grout modifies mudstone mineralogy. Micropore sizes and mechanical properties of the mudstone before and after grouting with four different materials were determined with a surface area/porosity analyser and by uniaxial compression. Tests show that, after grouting, up to 50% of the mesopore volumes can be filled with grout, the dominant pore diameter decreases from 100 nm to 10 nm, and the sealing capacity is increased. Uniaxial compression tests of silica sol grouted samples shows that their elastic modulus is 21%-38% and their uniaxial compressive strength is 16%-54% of the non-grouted samples. Peak strain, however, is greater by 150%-270%. After grouting, the sample failure mode changes from brittle to ductile. This paper provides an experimental test of anti-seepage and strengthening properties of silica sol.

  8. Adsorbed Natural Gas Storage in Optimized High Surface Area Microporous Carbon

    NASA Astrophysics Data System (ADS)

    Romanos, Jimmy; Rash, Tyler; Nordwald, Erik; Shocklee, Joshua Shawn; Wexler, Carlos; Pfeifer, Peter

    2011-03-01

    Adsorbed natural gas (ANG) is an attractive alternative technology to compressed natural gas (CNG) or liquefied natural gas (LNG) for the efficient storage of natural gas, in particular for vehicular applications. In adsorbants engineered to have pores of a few molecular diameters, a strong van der Walls force allows reversible physisorption of methane at low pressures and room temperature. Activated carbons were optimized for storage by varying KOH:C ratio and activation temperature. We also consider the effect of mechanical compression of powders to further enhance the volumetric storage capacity. We will present standard porous material characterization (BET surface area and pore-size distribution from subcritical N2 adsorption) and methane isotherms up to 250 bar at 293K. At sufficiently high pressure, specific surface area, methane binding energy and film density can be extracted from supercritical methane adsorption isotherms. Research supported by the California Energy Commission (500-08-022).

  9. One-step preparing magnesium hydroxide particles from mother liquor of salt production

    NASA Astrophysics Data System (ADS)

    Guo, H.; Peng, C. S.; Ding, Z. W.; Yuan, H. T.; Yang, K.

    2018-01-01

    In this study, MH particles were prepared from mother liquor of salt production in one-step through employing ammonia gas as precipitant and stearic acid as dispersant respectively. Since adopting microporous plate to bubble ammonia gas, the percent conversion of magnesium was boosted obviously. The influence of operating condition of reacting temperature, stirring rate, ammonia flowrate and pore size of plate to magnesium percent conversion were investigated, the maximum is 88.1 % at optimum condition according to experimental results. The MH particle preparing from mother liquor in optimum condition was characterized by XRD, the result indicated the volume of brucite was reach to 99.7% within the composition of the product. In addition, the size distribution and crystal morphology was also detected, the median particle diameter d50 is 883 nm and possessing good dispersibility. From the thermogravimetric analysis of MH particles, the thermostability of product is suitable as flame-retardant composite materials.

  10. Straightforward Generation of Pillared, Microporous Graphene Frameworks for Use in Supercapacitors.

    PubMed

    Yuan, Kai; Xu, Yazhou; Uihlein, Johannes; Brunklaus, Gunther; Shi, Lei; Heiderhoff, Ralf; Que, Mingming; Forster, Michael; Chassé, Thomas; Pichler, Thomas; Riedl, Thomas; Chen, Yiwang; Scherf, Ullrich

    2015-11-01

    Microporous, pillared graphene-based frameworks are generated in a simple functionalization/coupling procedure starting from reduced graphene oxide. They are used for the fabrication of high-performance supercapacitor devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Microporous alumina ceramic membranes

    DOEpatents

    Anderson, M.A.; Guangyao Sheng.

    1993-05-04

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  12. Microporous alumina ceramic membranes

    DOEpatents

    Anderson, Marc A.; Sheng, Guangyao

    1993-01-01

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  13. Orthopedic stretcher with average-sized person can pass through 18-inch opening

    NASA Technical Reports Server (NTRS)

    Lothschuetz, F. X.

    1966-01-01

    Modified Robinson stretcher for vertical lifting and carrying, will pass through an opening 18 inches in diameter, while containing a person of average height and weight. A subject 6 feet tall and weighing 200 pounds was lowered and raised out of an 18 inch diameter opening in a tank to test the stretcher.

  14. Accurate Size and Size-Distribution Determination of Polystyrene Latex Nanoparticles in Aqueous Medium Using Dynamic Light Scattering and Asymmetrical Flow Field Flow Fractionation with Multi-Angle Light Scattering

    PubMed Central

    Kato, Haruhisa; Nakamura, Ayako; Takahashi, Kayori; Kinugasa, Shinichi

    2012-01-01

    Accurate determination of the intensity-average diameter of polystyrene latex (PS-latex) by dynamic light scattering (DLS) was carried out through extrapolation of both the concentration of PS-latex and the observed scattering angle. Intensity-average diameter and size distribution were reliably determined by asymmetric flow field flow fractionation (AFFFF) using multi-angle light scattering (MALS) with consideration of band broadening in AFFFF separation. The intensity-average diameter determined by DLS and AFFFF-MALS agreed well within the estimated uncertainties, although the size distribution of PS-latex determined by DLS was less reliable in comparison with that determined by AFFFF-MALS. PMID:28348293

  15. Influence of low molecular weight fractions of humic substances on reducing capacities and distribution of redox functional groups

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Jiang, Jie

    2016-04-01

    Humic substances (HS) are redox-active organic compounds and their reducing capacities depend on their molecule structure and distribution of redox functional groups (RFG). During dialysis experiments, bulk humic acids (HA) were separated into low molecular weight fractions (LMWF) and retentate. LMWF account for only 2% of the total organic carbon content of HA molecules, however, their reducing capacities are up to 33 times greater than either those of the bulk HA or retentate. Furthermore, the total reducing capacity of the bulk HA accounts for less than 15% of the total reducing capacity of bulk HA, retentate and LMWF combined, suggesting that releasing of LMWF cannot reduce the number of RFG. RFG are neither in fixed amounts nor in uniformly distributed in bulk HA. LWMF have great fluorescence intensities for humic-like fluorophores (quinone-like functional groups), where quinonoid π-π* transition is responsible for the great reducing capacities of LMWF, and protein-like fluorophores. The 3,500 Da molecules (1.25 nm diameter) of HS could stimulate transformation of redox-active metals or potential pollutants trapped in soil micropores (< 2 nm diameter). A development of relationship between reducing capacity and Ex/Em position provides a possibility to predicate relative reducing capacities of HS in environmental samples.

  16. Multi-scale imaging and elastic simulation of carbonates

    NASA Astrophysics Data System (ADS)

    Faisal, Titly Farhana; Awedalkarim, Ahmed; Jouini, Mohamed Soufiane; Jouiad, Mustapha; Chevalier, Sylvie; Sassi, Mohamed

    2016-05-01

    Digital Rock Physics (DRP) is an emerging technology that can be used to generate high quality, fast and cost effective special core analysis (SCAL) properties compared to conventional experimental techniques and modeling techniques. The primary workflow of DRP conssits of three elements: 1) image the rock sample using high resolution 3D scanning techniques (e.g. micro CT, FIB/SEM), 2) process and digitize the images by segmenting the pore and matrix phases 3) simulate the desired physical properties of the rocks such as elastic moduli and velocities of wave propagation. A Finite Element Method based algorithm, that discretizes the basic Hooke's Law equation of linear elasticity and solves it numerically using a fast conjugate gradient solver, developed by Garboczi and Day [1] is used for mechanical and elastic property simulations. This elastic algorithm works directly on the digital images by treating each pixel as an element. The images are assumed to have periodic constant-strain boundary condition. The bulk and shear moduli of the different phases are required inputs. For standard 1.5" diameter cores however the Micro-CT scanning reoslution (around 40 μm) does not reveal smaller micro- and nano- pores beyond the resolution. This results in an unresolved "microporous" phase, the moduli of which is uncertain. Knackstedt et al. [2] assigned effective elastic moduli to the microporous phase based on self-consistent theory (which gives good estimation of velocities for well cemented granular media). Jouini et al. [3] segmented the core plug CT scan image into three phases and assumed that micro porous phase is represented by a sub-extracted micro plug (which too was scanned using Micro-CT). Currently the elastic numerical simulations based on CT-images alone largely overpredict the bulk, shear and Young's modulus when compared to laboratory acoustic tests of the same rocks. For greater accuracy of numerical simulation prediction, better estimates of moduli inputs for this current unresolved phase is important. In this work we take a multi-scale imaging approach by first extracting a smaller 0.5" core and scanning at approx 13 µm, then further extracting a 5mm diameter core scanned at 5 μm. From this last scale, region of interests (containing unresolved areas) are identified for scanning at higher resolutions using Focalised Ion Beam (FIB/SEM) scanning technique reaching 50 nm resolution. Numerical simulation is run on such a small unresolved section to obtain a better estimate of the effective moduli which is then used as input for simulations performed using CT-images. Results are compared with expeirmental acoustic test moduli obtained also at two scales: 1.5" and 0.5" diameter cores.

  17. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOEpatents

    Friesen, Dwayne; Babcock, Walter C.; Tuttle, Mark

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets.

  18. Nitrogen-doped microporous carbon: An efficient oxygen reduction catalyst for Zn-air batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Yuan; Wang, Meng-Ran; Lai, Yan-Qing; Li, Xiao-Yan

    2017-08-01

    N-doped microporous carbon as an exceptional metal-free catalyst from waste biomass (banana peel as representative) was obtained via fast catalysis carbonization, followed by N-doping modification. The method achieves a relatively high C conversion efficiency of ∼41.9%. The final carbon materials are doped by N (∼3 at.%) and possess high surface area (∼1097 m2 g-1) and abundant micropores. Compared to commercial Pt/C materials, the as-prepared carbon catalyst exhibits a comparable electrocatalytic activity and much better stability. Furthermore, the metal-free catalyst loaded Zn-air battery possesses higher discharge voltage and power density as compared with that of commercial Pt/C. This novel technique can also be readily applied to produce metal-free carbon catalysts from other typical waste biomass (e.g., orange peel, leaves) as the carbon sources. The method can be developed as a potentially general and effective industrial route to transform waste biomass into high value-added microporous carbon with superior functionalities.

  19. Sorption of phenanthrene and benzene on differently structural kerogen: important role of micropore-filling.

    PubMed

    Zhang, Yulong; Ma, Xiaoxuan; Ran, Yong

    2014-02-01

    Shale was thermally treated to obtain a series of kerogen with varied maturation. Their chemical, structural and porous properties were related to the sorption and/or desorption behaviors of phenanthrene and benzene. As the treatment temperature increases, aliphatic and carbonyl carbon of the kerogen samples decrease, while their aromaticity and maturation increase. Meanwhile, the isothermal nonlinearity of phenanthrene and benzene increases whereas the sorption capacity and micropore adsorption volumes (Vo,d) initially increase and then decrease. The Vo,d of benzene is significantly correlated with, but higher than that of phenanthrene, suggesting similar micropore filling mechanism and molecular sieve effect. The benzene desorption exhibits hysteresis, which is related to the pore deformation of the kerogen and the entrapment of solute in the kerogen matrix. The Vo,d of phenanthrene and benzene on the kerogen samples accounts for 23-46% and 36-65% of the maximum sorption volumes, respectively, displaying the importance of the micropore filling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Search for selective ion diffusion through membranes

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.

    1983-01-01

    The diffusion rates of several ions through some membranes developed as battery separators were measured. The ions investigated were Li(+), Rb(+), Cl(-), and So4. The members were crosslinked polyvinyl alcohol, crosslinked polyacrylic acid, a copolymer of the two, crosslinked calcium polyacrylate, cellulose, and several microporous polyphenylene oxide based films. No true specificity for diffusion of any of these ions was found for any of the membranes. But the calcium polyacrylate membrane was found to exhibit ion exchange with the diffusing ions giving rise to the leaching of the calcium ion and low reproducibility. These findings contrast earlier work where the calcium polyacrylate membrane did show specificity to the diffusion of the copper ion. In general, Fick's law appeared to be obeyed. Except for the microporous membranes, the coefficients for ion diffusion through the membranes were comparable with their values in water. For the microporous membranes, the values found for the coefficients were much less, due to the tortuosity of the micropores.

  1. Temperature-regulated guest admission and release in microporous materials

    DOE PAGES

    Li, Gang; Shang, Jin; Gu, Qinfen; ...

    2017-06-09

    While it has long been known that some highly adsorbing microporous materials suddenly become inaccessible to guest molecules below certain temperatures, previous attempts to explain this phenomenon have failed. Here we show that this anomalous sorption behaviour is a temperature-regulated guest admission process, where the pore-keeping group’s thermal fluctuations are influenced by interactions with guest molecules. A physical model is presented to explain the atomic-level chemistry and structure of these thermally regulated micropores, which is crucial to systematic engineering of new functional materials such as tunable molecular sieves, gated membranes and controlled-release nanocontainers. The model was validated experimentally with Hmore » 2, N 2, Ar and CH 4 on three classes of microporous materials: trapdoor zeolites, supramolecular host calixarenes and metal-organic frameworks. We also demonstrate how temperature can be exploited to achieve appreciable hydrogen and methane storage in such materials without sustained pressure. Our findings also open new avenues for gas sensing and isotope separation.« less

  2. Characterization of porosity via secondary reactions. Final technical report, 1 September 1991--30 November 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calo, J.M.; Zhang, L.; Hall, P.J.

    1997-09-01

    A new approach to the study of porosity and porosity development in coal chars during gasification was investigated. This approach involves the establishment of the relationships between the amount and type of surface complexes evolved during post-activation temperature programmed desorption (TPD), and the porosity, as measured by gas adsorption and small angle neutron scattering (SANS) techniques. With this new method, the total surface area and micropore volume can be determined by the interpretation of post-activation TPD spectra. The primary conclusion of this work is that it is possible to predict total surface area and micropore volume from TPD spectra. Frommore » the extended random pore model, additional information about the micropore surface area, the nonmicroporous surface area, and the mean micropore size development as a function of reaction time (or burn-off) can also be predicted. Therefore, combining the TPD technique and the extended random pore model provides a new method for the characterization of char porosity.« less

  3. The Effect of Density on the Height-Diameter Relationship

    Treesearch

    Boris Zeide; Curtis Vanderschaaf

    2002-01-01

    Using stand density along with mean diameter to predict average height increases the proportion of explained variance. This result, obtained from permanent plots established in a loblolly pine plantation thinned to different levels, makes sense. We know that due to competition, trees with the same diameter are taller in denser stands. Diameter and density are not only...

  4. Silicotitanate molecular sieve and condensed phases

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2002-01-01

    A new microporous crystalline molecular sieve material having the formula Cs.sub.3 TiSi.sub.3 O.sub.95.cndot.3H.sub.2 O and its hydrothermally condensed phase, Cs.sub.2 TiSi.sub.6 O.sub.15, are disclosed. The microporous material can adsorb divalent ions of radionuclides or other industrial metals such as chromium, nickel, lead, copper, cobalt, zinc, cadmium, barium, and mercury, from aqueous or hydrocarbon solutions. The adsorbed metal ions can be leached out for recovery purposes or the microporous material can be hydrothermally condensed to a radiation resistant, structurally and chemically stable phase which can serve as a storage waste form for radionuclides.

  5. An analysis of the influence of production conditions on the development of the microporous structure of the activated carbon fibres using the LBET method

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Mirosław

    2017-12-01

    The paper presents the results of the research on the application of the new analytical models of multilayer adsorption on heterogeneous surfaces with the unique fast multivariant identification procedure, together called LBET method, as a tool for analysing the microporous structure of the activated carbon fibres obtained from polyacrylonitrile by chemical activation using potassium and sodium hydroxides. The novel LBET method was employed particularly to evaluate the impact of the used activator and the hydroxide to polyacrylonitrile ratio on the obtained microporous structure of the activated carbon fibres.

  6. Large-aperture focusing of x rays with micropore optics using dry etching of silicon wafers.

    PubMed

    Ezoe, Yuichiro; Moriyama, Teppei; Ogawa, Tomohiro; Kakiuchi, Takuya; Mitsuishi, Ikuyuki; Mitsuda, Kazuhisa; Aoki, Tatsuhiko; Morishita, Kohei; Nakajima, Kazuo

    2012-03-01

    Large-aperture focusing of Al K(α) 1.49 keV x-ray photons using micropore optics made from a dry-etched 4 in. (100 mm) silicon wafer is demonstrated. Sidewalls of the micropores are smoothed with high-temperature annealing to work as x-ray mirrors. The wafer is bent to a spherical shape to collect parallel x rays into a focus. Our result supports that this new type of optics allows for the manufacturing of ultralight-weight and high-performance x-ray imaging optics with large apertures at low cost. © 2012 Optical Society of America

  7. Micropore extrusion-induced alignment transition from perpendicular to parallel of cylindrical domains in block copolymers.

    PubMed

    Qu, Ting; Zhao, Yongbin; Li, Zongbo; Wang, Pingping; Cao, Shubo; Xu, Yawei; Li, Yayuan; Chen, Aihua

    2016-02-14

    The orientation transition from perpendicular to parallel alignment of PEO cylindrical domains of PEO-b-PMA(Az) films has been demonstrated by extruding the block copolymer (BCP) solutions through a micropore of a plastic gastight syringe. The parallelized orientation of PEO domains induced by this micropore extrusion can be recovered to perpendicular alignment via ultrasonication of the extruded BCP solutions and subsequent annealing. A plausible mechanism is proposed in this study. The BCP films can be used as templates to prepare nanowire arrays with controlled layers, which has enormous potential application in the field of integrated circuits.

  8. Numerical analysis of the effect of the kind of activating agent and the impregnation ratio on the parameters of the microporous structure of the active carbons

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Mirosław

    2015-09-01

    The paper presents the results of the research on the application of the LBET class adsorption models with the fast multivariant identification procedure as a tool for analysing the microporous structure of the active carbons obtained by chemical activation using potassium and sodium hydroxides as an activator. The proposed technique of the fast multivariant fitting of the LBET class models to the empirical adsorption data was employed particularly to evaluate the impact of the used activator and the impregnation ratio on the obtained microporous structure of the carbonaceous adsorbents.

  9. Discovery and development of microporous metal carboxylates.

    PubMed

    Mori, Wasuke; Sato, Tomohiko; Kato, Chika Nozaki; Takei, Tohru; Ohmura, Tetsushi

    2005-01-01

    We have found a form of copper(II) terephthalate that occluded an enormous amount of gases such as N2, Ar, O2, and Xe. Copper(II) terephthalate is the first metal complex found capable of adsorbing gases. This complex has opened a new field of adsorbent chemistry and is recognized as a leader in the construction of microporous metal complexes. In extending the route for the synthesis of microporous complexes, we obtained many new porous materials that are widely recognized as useful materials for applications in areas such as gas storage, molecular sieves, catalysis, inclusion complexes, and surface science. 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  10. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOEpatents

    Friesen, D.; Babcock, W.C.; Tuttle, M.

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets. 5 figs.

  11. Building ultramicropores within organic polymers based on a thermosetting cyanate ester resin.

    PubMed

    Zhang, Bufeng; Wang, Zhonggang

    2009-09-07

    Ultramicropores with high surface areas (>530 m(2) g(-1)) and narrow micropore size distribution (4-6 A) were engineered within a new cyanate ester resin, extending the microporous concept (<20 A) to general thermosetting resins in the area of polymer chemistry.

  12. The densest loblolly pine stand and its silvicultural implications

    Treesearch

    Boris Zeide; John Stephens

    2010-01-01

    Estimation of stand density index has been based on the assumption that the only cause of mortality in fully stocked stands is diameter growth. For example, when average diameter increases by 1 percent, a fixed proportion (1.6 percent) of trees must die, regardless of age, average tree size, and other factors. This balance between growth and mortality entails the...

  13. Phosphorus immobilization in micropores of drinking-water treatment residuals: implications for long-term stability.

    PubMed

    Makris, Konstantinos C; Harris, Willie G; O'Connor, George A; Obreza, Thomas A

    2004-12-15

    Drinking-water treatment residuals (WTRs) can immobilize excess soil phosphorus (P), but little is known about the long-term P retention by WTRs. To evaluate the long-term P sorption characteristics of one Fe- and one Al-based WTR, physicochemical properties pertinent to time-dependency and hysteresis of P sorption were assessed. This study also investigated the P sorption mechanisms that could affect the long-term stability of sorbed P by WTRs. Phosphorus sorption kinetics by the WTRs exhibited a slow phase that followed an initial rapid phase, as typically occurs with metal hydroxides. Phosphorus sorption maxima for both Fe- and Al-based WTRs exceeded 9100 mg of P kg(-1) and required a greater specific surface area (SSA) than would be available based on BET-N2 calculations. Electron microprobe analyses of cross-sectional, P-treated particles showed three-dimensional P sorption by WTRs. Carbon dioxide gas sorption was greater than N2, suggesting steric restriction of N2 diffusion by narrow micropore openings. Phosphorus-treated Co2 SSAs were reduced by P treatment, suggesting P sorption by micropores (5-20 A). Mercury intrusion porosimetry indicated negligible macroporosity (pores > 500 A). Slow P sorption kinetics by WTRs may be explained by intraparticle P diffusion in micropores. Micropore-bound P should be stable and immobilized over long periods.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yinhai; Xiang, Xiaoxia; Liu, Enhui, E-mail: liuenhui99@sina.com.cn

    Highlights: ► Microporous carbon was prepared by chemical activation of phenol-melamine-formaldehyde resin. ► Activation leads to high surface area, well-developed micropores. ► Micropores lead to strong intercalation between carbon and lithium ion. ► Large surface area promotes to improve the lithium storage capacity. -- Abstract: Microporous carbon anode materials were prepared from phenol-melamine-formaldehyde resin by ZnCl{sub 2} and KOH activation. The physicochemical properties of the obtained carbon materials were characterized by scanning electron microscope, X-ray diffraction, Brunauer–Emmett–Teller, and elemental analysis. The electrochemical properties of the microporous carbon as anode materials in lithium ion secondary batteries were evaluated. At a currentmore » density of 100 mA g{sup −1}, the carbon without activation shows a first discharge capacity of 515 mAh g{sup −1}. After activation, the capacity improved obviously. The first discharge capacity of the carbon prepared by ZnCl{sub 2} and KOH activation was 1010 and 2085 mAh g{sup −1}, respectively. The reversible capacity of the carbon prepared by KOH activation was still as high as 717 mAh g{sup −1} after 20 cycles, which was much better than that activated by ZnCl{sub 2}. These results demonstrated that it may be a promising candidate as an anode material for lithium ion secondary batteries.« less

  15. Microporous Co@C Nanoparticles Prepared by Dealloying CoAl@C Precursors: Achieving Strong Wideband Microwave Absorption via Controlling Carbon Shell Thickness.

    PubMed

    Li, Da; Liao, Haoyan; Kikuchi, Hiroaki; Liu, Tong

    2017-12-27

    Excellent magnetic features make Co-based materials promising candidates as high-performance microwave absorbers. However, it is still a significant challenge for Co-based absorbers to possess high-intensity and broadband absorption simultaneously, owing to the lack of dielectric loss and impedance matching. Herein, microporous Co@C nanoparticles (NPs) with carbon shell thicknesses ranging from 1.8-4.9 nm have been successfully synthesized by dealloying CoAl@C precursors. All of the samples exhibit high microwave absorption performance. The microporous Co@C sample possessing a carbon shell of 1.8 nm exhibits the highest absorption intensity among these samples with a minimum reflection loss (RL) of -141.1 dB, whose absorption bandwidth for RL ≤ -10 dB is 7.3 GHz. As the thickness of the carbon shell increases, the absorption bandwidth of the NPs becomes wider. For the sample with the carbon shell thickness of 4.9 nm, the absorption bandwidth for RL ≤ -10 dB reaches a record high of 13.2 GHz. The outstanding microwave attenuation properties are attributed to the dielectric loss of the carbon shell, the magnetic loss of the Co core, and the cooperation of the core-shell structure and microporous morphology. The strong wideband microwave absorption of the carbon-coated microporous Co NPs highlights their potential applications in microwave absorbing systems.

  16. Synergistic effects of dendritic cell targeting and laser-microporation on enhancing epicutaneous skin vaccination efficacy.

    PubMed

    Machado, Yoan; Duinkerken, Sanne; Hoepflinger, Veronika; Mayr, Melissa; Korotchenko, Evgeniia; Kurtaj, Almedina; Pablos, Isabel; Steiner, Markus; Stoecklinger, Angelika; Lübbers, Joyce; Schmid, Maximillian; Ritter, Uwe; Scheiblhofer, Sandra; Ablinger, Michael; Wally, Verena; Hochmann, Sarah; Raninger, Anna M; Strunk, Dirk; van Kooyk, Yvette; Thalhamer, Josef; Weiss, Richard

    2017-11-28

    Due to its unique immunological properties, the skin is an attractive target tissue for allergen-specific immunotherapy. In our current work, we combined a dendritic cell targeting approach with epicutaneous immunization using an ablative fractional laser to generate defined micropores in the upper layers of the skin. By coupling the major birch pollen allergen Bet v 1 to mannan from S. cerevisiae via mild periodate oxidation we generated hypoallergenic Bet-mannan neoglycoconjugates, which efficiently targeted CD14 + dendritic cells and Langerhans cells in human skin explants. Mannan conjugation resulted in sustained release from the skin and retention in secondary lymphoid organs, whereas unconjugated antigen showed fast renal clearance. In a mouse model, Bet-mannan neoglycoconjugates applied via laser-microporated skin synergistically elicited potent humoral and cellular immune responses, superior to intradermal injection. The induced antibody responses displayed IgE-blocking capacity, highlighting the therapeutic potential of the approach. Moreover, application via micropores, but not by intradermal injection, resulted in a mixed TH1/TH17-biased immune response. Our data clearly show that applying mannan-neoglycoconjugates to an organ rich in dendritic cells using laser-microporation is superior to intradermal injection. Due to their low IgE binding capacity and biodegradability, mannan neoglycoconjugates therefore represent an attractive formulation for allergen-specific epicutaneous immunotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Numerical and experimental study of the effects of the electrical resistance and diffusivity under clamping pressure on the performance of a metallic gas-diffusion layer in polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Tanaka, Shiro; Bradfield, Warwick W.; Legrand, Cloe; Malan, Arnaud G.

    2016-10-01

    The performance of a perforated metal-sheet gas-diffusion layer incorporated with a microporous layer in a fuel cell is evaluated with fine-pitch channel/land designs for the gas flow field on a bipolar plate. The combination of metal-sheet gas-diffusion layer and microporous layer exhibits significant performance without a large flooding effect. When comparing the performance with wider and narrower land cases, the land width affects the performance. To investigate the roles of the microporous layer, land width, etc. in the fuel cell with the metal-sheet gas-diffusion layer, a single-phase, isothermal, and multi-physics simulation is developed and coupled with electrical, mechanical, electrochemical and fluid dynamics factors. The simulated current-voltage performance is then compared to the experimentally measure performance. These are shown to be in good agreement apart for very high current-density cases i.e. greater than 1.5 A cm-2. This is due the flooding effect predominantly appearing. It is further demonstrated that the microporous layer serves as the key component in facilitating gas diffusion and for preventing flooding. Furthermore, the pressure is found to have a strong impact on the performance, affecting the gas diffusion and electric resistance around the microporous layer.

  18. Correlation between extraocular muscle size and motility restriction in thyroid eye disease.

    PubMed

    Dagi, Lora R; Zoumalan, Christopher I; Konrad, Hindola; Trokel, Stephen L; Kazim, Michael

    2011-01-01

    Evaluate the relationship between extraocular muscle (EOM) size, measured by computed tomography, and ocular motility in thyroid eye disease (TED). This case series is based on a retrospective review of the records of 54 patients (108 orbits) with TED. Main outcome measures included EOM size and degree of motility restriction. The average diameter of each rectus muscle was compared with published norms. Four subpopulations based on Age (< 40 or ≥ 40 years) and State of thyroid eye disease (active or stable) were studied. Versions were measured by the corneal light reflex method. The trend of muscle diameter versus motility restriction was evaluated. The average EOM diameter was greater than the norm in the study cohort and 4 subpopulations. The average diameter was largest in the Older and Active TED subpopulations. The inferior rectus and medial rectus were most frequently restricted in the study cohort and 4 subpopulations. The medial rectus had the strongest trend between increasing diameter and motility restriction, followed by the inferior rectus and the superior muscle group (comprised of the superior rectus and levator palpebrae superioris). However, there was a general lack of strong correlation between the diameter of the rectus muscles and their respective motility, especially in the Younger subpopulation. EOM diameters are larger and have more restricted motility in the Older and Active TED subpopulations. Contrary to prior publications, the correlation between EOM diameters and motility was weak, especially in the Younger subpopulation. These findings suggest that the pathophysiology of EOM enlargement is different based upon the age of the patient and the activity of the orbitopathy.

  19. COUNTER-DIFFUSION OF ISOTOPICALLY LABELED TRICHLOROETHYLENE IN SILICA GEL AND GEOSORBENT MICROPORES: COLUMN RESULTS. (R822626)

    EPA Science Inventory

    To investigate counter-diffusion in microporous sorbents, the rate of
    exchange between deuterated trichloroethylene (DTCE) in fast desorbing sites and
    nondeuterated TCE (1HTCE) in slow desorbing sites was measured.
    Exchange rates were measured for a sili...

  20. A new family of fluidic precursors for the self-templated synthesis of hierarchical nanoporous carbons

    DOE PAGES

    Fulvio, Pasquale F.; Hillesheim, Patrick C.; Oyola, Yatsandra; ...

    2016-06-24

    Hierarchical nanoporous nitrogen-doped carbons were prepared from task specific ionic liquids having a bis-imidazolium motif linked with various organic groups. While ethyl chains linking the imidazolium ions afford microporous-mesoporous carbons, long or aromatic groups resulted in microporous samples.

  1. The cost-effective synthesis of furan- and thienyl-based microporous polyaminals for adsorption of gases and organic vapors.

    PubMed

    Li, Guiyang; Zhang, Biao; Yan, Jun; Wang, Zhonggang

    2016-01-21

    This work reveals that furfural and 2-thenaldehyde can readily react with melamine via "one-step" polycondensation to yield hyper-cross-linked sulfur-, nitrogen- and oxygen-rich microporous polyaminals with promising applications in adsorption of gases and toxic organic vapors.

  2. A semiconducting microporous framework of Cd6Ag4(SPh)16 clusters interlinked using rigid and conjugated bipyridines.

    PubMed

    Xu, Chao; Hedin, Niklas; Shi, Hua-Tian; Zhang, Qian-Feng

    2014-04-11

    Ternary supertetrahedral chalcogenolate clusters were interlinked with bipyridines into a microporous semiconducting framework with properties qualitatively different from those of the original clusters. Both the framework and the clusters were effective photocatalysts, and rapidly degraded the dye rhodamine B.

  3. Height-diameter equations for thirteen midwestern bottomland hardwood species

    Treesearch

    Kenneth C. Colbert; David R. Larsen; James R. Lootens

    2002-01-01

    Height-diameter equations are often used to predict the mean total tree height for trees when only diameter at breast height (dbh) is measured. Measuring dbh is much easier and is subject to less measurement error than total tree height. However, predicted heights only reflect the average height for trees of a particular diameter. In this study, we present a set of...

  4. Adsorption kinetics of malachite green onto activated carbon prepared from Tunçbilek lignite.

    PubMed

    Onal, Y; Akmil-Başar, C; Eren, Didem; Sarici-Ozdemir, Cigdem; Depci, Tolga

    2006-02-06

    Adsorbent (T3K618) has been prepared from Tunçbilek lignite by chemical activation with KOH. Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by t-plot based on N2 adsorption isotherm. The N2 adsorption isotherm of malachite green on T3K618 is type I. The BET surface area of the adsorbent which was primarily contributed by micropores was determined 1000 m2/g. T3K618 was used to adsorb malachite green (MG) from an aqueous solution in a batch reactor. The effects of initial dye concentration, agitation time, initial pH and adsorption temperature have been studied. It was also found that the adsorption isotherm followed both Freundlich and Dubinin-Radushkevich models. However, the Freundlich gave a better fit to all adsorption isotherms than the Dubinin-Radushkevich. The kinetics of adsorption of MG has been tested using pseudo-first-order, pseudo-second-order and intraparticle diffusion models. Results show that the adsorption of MG from aqueous solution onto micropores T3K618 proceeds according to the pseudo-second-order model. The intraparticle diffusion of MG molecules within the carbon particles was identified to be the rate-limiting step. The adsorption of the MG was endothermic (DeltaH degrees = 6.55-62.37 kJ/mol) and was accompanied by an increase in entropy (DeltaS degrees = 74-223 J/mol K) and a decrease in mean value of Gibbs energy (DeltaG degrees = -6.48 to -10.32 kJ/mol) in the temperature range of 20-50 degrees C.

  5. Modification of ferrierite through post-synthesis treatments. Acidic and catalytic properties

    NASA Astrophysics Data System (ADS)

    Brylewska, Kamila; Tarach, Karolina A.; Mozgawa, Włodzimierz; Olejniczak, Zbigniew; Filek, Urszula; Góra-Marek, Kinga

    2016-12-01

    The main emphasis of this work was placed on a detailed characterization of structural, textural and acidic properties of FER zeolites with different Si/Al ratios in terms of their activity in ethanol dehydration reaction. Subsequent dealumination and desilication procedures were found to be an efficient methods of a secondary system of mesopore generation in the ferrierite crystals with preservation of their microporous characteristics. Through ethanol dehydration both the acidic and the textural features have a significant influence on catalytic performance of hierarchical ferrierites. It was shown that higher catalytic activity and selectivity to ethylene is ensured by zeolites with highly preserved microporous characteristic, i.e. well-developed micropore area and intrinsic acidity.

  6. Micropore-free surface-activated carbon for the analysis of polychlorinated dibenzo-p-dioxins-dibenzofurans and non-ortho-substituted polychlorinated biphenyls in environmental samples.

    PubMed

    Kemmochi, Yukio; Tsutsumi, Kaori; Arikawa, Akihiro; Nakazawa, Hiroyuki

    2002-11-22

    2,3,7,8-Substituted polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/Fs) and non-ortho-substituted polychlorinated biphenyls (PCBs) account for almost all of the total toxic equivalents (TEQ) in environmental samples. Activated carbon columns are used to fractionate the samples for GC-MS analysis or bioassay. Micropore-free surface-activated carbon is highly selective for PCDD/Fs and non-ortho-PCBs and can improve the conventional activated carbon column clean-up. Along with sulfuric acid-coated diatomaceous earth columns, micropore-free surface-activated carbon provides a rapid, robust, and high-throughput sample preparation method for PCDD/Fs and non-ortho-PCBs analysis.

  7. Seasonal morphological changes in the ovary of the Jungle crow (Corvus macrorhynchos).

    PubMed

    Islam, Muhammad Nazrul; Zhu, Xiao Bo; Aoyama, Masato; Sugita, Shoei

    2010-12-01

    Morphometric and histological studies were conducted to examine the seasonal ovarian changes in the Jungle crow of the Kanto area, Japan, from December to June. The ovary weights, largest diameters and atresias of the ovarian follicles and steroid-producing cells were examined. Hematoxylin and eosin-stained ovary sections and ImageJ software were used. The most developed ovary weight increased 373-fold in April, compared to those in December, followed by a 29-fold decrease in June. The average largest follicle diameter of the December and the January ovaries were 1.03 ± 0.35 and 1.05 ± 0.3 mm, respectively. The average largest follicle diameter increased by 2-fold in February, 4-fold in March and 8-fold in April, compared to those of December and January. Thereafter, the average largest follicle diameter declined by 6-fold in June. The average ovary weight and the largest follicle diameter in April increased significantly (P < 0.05) compared to those of December and January, followed by a significant decrease (P < 0.05) in June. The ovary weight correlated well with the expansion of the largest follicular diameter. Non-bursting and bursting atresias of smaller follicles were more common in the December, January, February and June ovaries, and bursting atresias of larger follicles were more common in the March, April and May ovaries. Ovarian steroidogenic cells became heavily charged with lipids in December, January, February and June, and they depleted their lipids in March and April, which might be due to steroid synthesis. Our results indicate that there are significant seasonal histomorphologic variations in the Jungle crow ovary.

  8. Lithographically defined microporous carbon-composite structures

    DOEpatents

    Burckel, David Bruce; Washburn, Cody M.; Lambert, Timothy N.; Finnegan, Patrick Sean; Wheeler, David R.

    2016-12-06

    A microporous carbon scaffold is produced by lithographically patterning a carbon-containing photoresist, followed by pyrolysis of the developed resist structure. Prior to exposure, the photoresist is loaded with a nanoparticulate material. After pyrolysis, the nanonparticulate material is dispersed in, and intimately mixed with, the carbonaceous material of the scaffold, thereby yielding a carbon composite structure.

  9. Preparation and characterization of microporous poly(d,l-lactic acid) film for tissue engineering scaffold

    PubMed Central

    Shi, Shuai; Wang, Xiu Hong; Guo, Gang; Fan, Min; Huang, Mei Juan; Qian, Zhi Yong

    2010-01-01

    We prepared a series of microporous films based on poly(d,l-lactic acid) (PLA) via phase separation. According to scanning electron microscopy (SEM), a 3-dimensional foamy structure with multimicrometer scale pores on the air surface of film could be observed. As the morphology of PLA film could not be stabilized using solvent–nonsolvent phase separation, we investigated the effect of temperature, air movement, and concentration on the properties of microporous PLA films. The results show that when the temperature was 25°C in a vacuum, it was easy to prepare PLA film with micropores, and it was stable. As the relationship between the morphology and formation factors was clear and the morphology of the PLA film was controllable, we studied the PLA film’s potential use for cell culture. SEM results showed that NIH3T3 cell could be adhered on the surface of film well after incubation for 2 days. Meanwhile, in vitro culture experiments revealed the great biocompatibility of the scaffold for adsorption and proliferation of fibroblasts. PMID:21179227

  10. Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Changyi; Meckler, Stephen M.; Smith, Zachary P.

    Many forward-looking clean-energy technologies hinge on the development of scalable and efficient membrane-based separations. Ongoing investment in the basic research of microporous materials is beginning to pay dividends in membrane technology maturation. Specifically, improvements in membrane selectivity, permeability, and durability are being leveraged for more efficient carbon capture, desalination, and energy storage, and the market adoption of membranes in those areas appears to be on the horizon. Herein, an overview of the microporous materials chemistry driving advanced membrane development, the clean-energy separations employing them, and the theoretical underpinnings tying membrane performance to membrane structure across multiple length scales is provided.more » The interplay of pore architecture and chemistry for a given set of analytes emerges as a critical design consideration dictating mass transport outcomes. Also discussed are opportunities and outstanding challenges in the field, including high-flux 2D molecular-sieving membranes, phase-change adsorbents as performance-enhancing components in composite membranes, and the need for quantitative metrologies for understanding mass transport in heterophasic materials and in micropores with unusual chemical interactions with analytes of interest.« less

  11. Highly sensitive gas-phase explosive detection by luminescent microporous polymer networks.

    PubMed

    Räupke, André; Palma-Cando, Alex; Shkura, Eugen; Teckhausen, Peter; Polywka, Andreas; Görrn, Patrick; Scherf, Ullrich; Riedl, Thomas

    2016-07-04

    We propose microporous networks (MPNs) of a light emitting spiro-carbazole based polymer (PSpCz) as luminescent sensor for nitro-aromatic compounds. The MPNs used in this study can be easily synthesized on arbitrarily sized/shaped substrates by simple and low-cost electrochemical deposition. The resulting MPN afford an extremely high specific surface area of 1300 m(2)/g, more than three orders of magnitude higher than that of the thin films of the respective monomer. We demonstrate, that the luminescence of PSpCz is selectively quenched by nitro-aromatic analytes, e.g. nitrobenzene, 2,4-DNT and TNT. In striking contrast to a control sample based on non-porous spiro-carbazole, which does not show any luminescence quenching upon exposure to TNT at levels of 3 ppm and below, the microporous PSpCz shows a clearly detectable response even at TNT concentrations as low as 5 ppb, clearly demonstrating the advantage of microporous films as luminescent sensors for traces of explosive analytes. This level states the vapor pressure of TNT at room temperature.

  12. Highly sensitive gas-phase explosive detection by luminescent microporous polymer networks

    PubMed Central

    Räupke, André; Palma-Cando, Alex; Shkura, Eugen; Teckhausen, Peter; Polywka, Andreas; Görrn, Patrick; Scherf, Ullrich; Riedl, Thomas

    2016-01-01

    We propose microporous networks (MPNs) of a light emitting spiro-carbazole based polymer (PSpCz) as luminescent sensor for nitro-aromatic compounds. The MPNs used in this study can be easily synthesized on arbitrarily sized/shaped substrates by simple and low-cost electrochemical deposition. The resulting MPN afford an extremely high specific surface area of 1300 m2/g, more than three orders of magnitude higher than that of the thin films of the respective monomer. We demonstrate, that the luminescence of PSpCz is selectively quenched by nitro-aromatic analytes, e.g. nitrobenzene, 2,4-DNT and TNT. In striking contrast to a control sample based on non-porous spiro-carbazole, which does not show any luminescence quenching upon exposure to TNT at levels of 3 ppm and below, the microporous PSpCz shows a clearly detectable response even at TNT concentrations as low as 5 ppb, clearly demonstrating the advantage of microporous films as luminescent sensors for traces of explosive analytes. This level states the vapor pressure of TNT at room temperature. PMID:27373905

  13. Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies

    DOE PAGES

    Li, Changyi; Meckler, Stephen M.; Smith, Zachary P.; ...

    2018-01-08

    Many forward-looking clean-energy technologies hinge on the development of scalable and efficient membrane-based separations. Ongoing investment in the basic research of microporous materials is beginning to pay dividends in membrane technology maturation. Specifically, improvements in membrane selectivity, permeability, and durability are being leveraged for more efficient carbon capture, desalination, and energy storage, and the market adoption of membranes in those areas appears to be on the horizon. Herein, an overview of the microporous materials chemistry driving advanced membrane development, the clean-energy separations employing them, and the theoretical underpinnings tying membrane performance to membrane structure across multiple length scales is provided.more » The interplay of pore architecture and chemistry for a given set of analytes emerges as a critical design consideration dictating mass transport outcomes. Also discussed are opportunities and outstanding challenges in the field, including high-flux 2D molecular-sieving membranes, phase-change adsorbents as performance-enhancing components in composite membranes, and the need for quantitative metrologies for understanding mass transport in heterophasic materials and in micropores with unusual chemical interactions with analytes of interest.« less

  14. Influence of rainfall microstructure on rainfall interception

    NASA Astrophysics Data System (ADS)

    Zabret, Katarina; Rakovec, Jože; Mikoš, Matjaž; Šraj, Mojca

    2016-04-01

    Rainfall interception is part of the hydrological cycle. Precipitation, which hits vegetation, is retained on the leaves and branches, from which it eventually evaporates into the atmosphere (interception) or reaches the ground by dripping from the canopy, falling through the gaps (throughfall) and running down the stems (stemflow). The process is influenced by various meteorological and vegetation parameters. Often neglected meteorological parameter influencing rainfall interception is also rainfall microstructure. Rain is a discrete process consisting of various numbers of individual raindrops with different sizes and velocities. This properties describe rainfall microstructure which is often neglected in hydrological analysis and replaced with rainfall intensity. Throughfall, stemflow and rainfall microstructure have been measured since the beginning of the year 2014 under two tree species (Betula pendula and Pinus nigra) on a study plot in Ljubljana, Slovenia. The preliminary analysis of the influence of rainfall microstructure on rainfall interception has been conducted using three events with different characteristics measured in May 2014. Event A is quite short with low rainfall amount and moderate rainfall intensity, whereas events B and C have similar length but low and high intensities, respectively. Event A was observed on the 1st of May 2014. It was 22 minutes long and delivered 1.2 mm of rainfall. The average rainfall intensity was equal to 3.27 mm/h. The event consisted of 1,350 rain drops with average diameter of 1.517 mm and average velocity of 5.110 m/s. Both Betula pendula and Pinus nigra intercepted similar amount of rainfall, 68 % and 69 %, respectively. Event B was observed in the night from the 7th to 8th of May 2014, it was 16 hours and 18 minutes long, and delivered 4.2 mm of rainfall with average intensity of 0.97 mm/h. There were 39,108 raindrops detected with average diameter of 0.858 mm and average velocity of 3.855 m/s. Betula pendula (23 %) has intercepted significantly less rainfall than Pinus nigra (85%). Event C was also observed in the night time between 11th and 12th of May 2014, it lasted 4 hours and 12 minutes and delivered 34.6 mm of rainfall with an average intensity equal to 8.24 mm/h. During the event 147,236 raindrops with average diameter of 1.020 mm and average velocity of 4.078 m/s were detected. Betula pendula has intercepted only 6 % of rainfall whereas Pinus nigra intercepted majority of rainfall, namely 85 %. In case of B. pendula rainfall interception is increasing with higher velocity whereas it is lower for medium diameters than for smaller or larger diameters. Rainfall interception under P. nigra is decreasing with higher velocities and behaving similar as under B. pendula for different diameters but with less obvious difference between diameter classes. We will continue with the measurements and further analysis of several rainfall events will be prepared.

  15. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces.

    PubMed

    Aili, Abulimiti; Li, Hongxia; Alhosani, Mohamed H; Zhang, TieJun

    2016-08-24

    Superhydrophobic nanostructured surfaces have demonstrated outstanding capability in energy and water applications by promoting dropwise condensation, where fast droplet growth and efficient condensate removal are two key parameters. However, these parameters remain contradictory. Although efficient droplet removal is easily obtained through coalescence jumping on uniform superhydrophobic surfaces, simultaneously achieving fast droplet growth is still challenging. Also, on such surfaces droplets can grow to larger sizes without restriction if there is no coalescence. In this work, we show that superhydrophobic nanostructured microporous surfaces can manipulate the droplet growth and jumping. Microporous surface morphology effectively enhances the growth of droplets in pores owing to large solid-liquid contact area. At low supersaturations, the upward growth rate (1-1.5 μm/s) of these droplets in pores is observed to be around 15-25 times that of the droplets outside the pores. Meanwhile, their top curvature radius increases relatively slowly (∼0.25 μm/s) due to pore confinement, which results in a highly stretched droplet surface. We also observed forced jumping of stretched droplets in pores either through coalescence with spherical droplets outside pores or through self-pulling without coalescence. Both experimental observation and theoretical modeling reveal that excess surface free energy stored in the stretched droplet surface and micropore confinement are responsible for this pore-scale-forced jumping. These findings reveal the insightful physics of stretched droplet dynamics and offer guidelines for the design and fabrication of novel super-repellent surfaces with microporous morphology.

  16. Finite-element simulations of the influence of pore wall adsorption on cyclic voltammetry of ion transfer across a liquid-liquid interface formed at a micropore.

    PubMed

    Ellis, Jonathan S; Strutwolf, Jörg; Arrigan, Damien W M

    2012-02-21

    Adsorption onto the walls of micropores was explored by computational simulations involving cyclic voltammetry of ion transfer across an interface between aqueous and organic phases located at the micropore. Micro-interfaces between two immiscible electrolyte solutions (micro-ITIES) have been of particular research interest in recent years and show promise for biosensor and biomedical applications. The simulation model combines diffusion to and within the micropore, Butler-Volmer kinetics for ion transfer at the liquid-liquid interface, and Langmuir-style adsorption on the pore wall. Effects due to pore radius, adsorption and desorption rates, surface adsorption site density, and scan rates were examined. It was found that the magnitude of the reverse peak current decreased due to adsorption of the transferring ion on the pore wall; this decrease was more marked as the scan rate was increased. There was also a shift in the half-wave potential to lower values following adsorption, consistent with a wall adsorption process which provides a further driving force to transfer ions across the ITIES. Of particular interest was the disappearance of the reverse peak from the cyclic voltammogram at higher scan rates, compared to the increase in the reverse peak size in the absence of wall adsorption. This occurred for scan rates of 50 mV s(-1) and above and may be useful in biosensor applications using micropore-based ITIES.

  17. Granular bamboo-derived activated carbon for high CO(2) adsorption: the dominant role of narrow micropores.

    PubMed

    Wei, Haoran; Deng, Shubo; Hu, Bingyin; Chen, Zhenhe; Wang, Bin; Huang, Jun; Yu, Gang

    2012-12-01

    Cost-effective biomass-derived activated carbons with a high CO(2) adsorption capacity are attractive for carbon capture. Bamboo was found to be a suitable precursor for activated carbon preparation through KOH activation. The bamboo size in the range of 10-200 mesh had little effect on CO(2) adsorption, whereas the KOH/C mass ratio and activation temperature had a significant impact on CO(2) adsorption. The bamboo-derived activated carbon had a high adsorption capacity and excellent selectivity for CO(2) , and also the adsorption process was highly reversible. The adsorbed amount of CO(2) on the granular activated carbon was up to 7.0 mmol g(-1) at 273 K and 1 bar, which was higher than almost all carbon materials. The pore characteristics of activated carbons responsible for high CO(2) adsorption were fully investigated. Based on the analysis of narrow micropore size distribution of several activated carbons prepared under different conditions, a more accurate micropore range contributing to CO(2) adsorption was proposed. The volume of micropores in the range of 0.33-0.82 nm had a good linear relationship with CO(2) adsorption at 273 K and 1 bar, and the narrow micropores of about 0.55 nm produced the major contribution, which could be used to evaluate CO(2) adsorption on activated carbons. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Highly hydrothermally stable microporous silica membranes for hydrogen separation.

    PubMed

    Wei, Qi; Wang, Fei; Nie, Zuo-Ren; Song, Chun-Lin; Wang, Yan-Li; Li, Qun-Yan

    2008-08-07

    Fluorocarbon-modified silica membranes were deposited on gamma-Al2O3/alpha-Al2O3 supports by the sol-gel technique for hydrogen separation. The hydrophobic property, pore structure, gas transport and separation performance, and hydrothermal stability of the modified membranes were investigated. It is observed that the water contact angle increases from 27.2+/-1.5 degrees for the pure silica membranes to 115.0+/-1.2 degrees for the modified ones with a (trifluoropropyl)triethoxysilane (TFPTES)/tetraethyl orthosilicate (TEOS) molar ratio of 0.6. The modified membranes preserve a microporous structure with a micropore volume of 0.14 cm3/g and a pore size of approximately 0.5 nm. A single gas permeation of H2 and CO2 through the modified membranes presents small positive apparent thermal activation energies, indicating a dominant microporous membrane transport. At 200 degrees C, a single H2 permeance of 3.1x10(-6) mol m(-2) s(-1) Pa(-1) and a H2/CO2 permselectivity of 15.2 were obtained after proper correction for the support resistance and the contribution from the defects. In the gas mixture measurement, the H2 permeance and the H2/CO2 separation factor almost remain constant at 200 degrees C with a water vapor pressure of 1.2x10(4) Pa for at least 220 h, indicating that the modified membranes are hydrothermally stable, benefiting from the integrity of the microporous structure due to the fluorocarbon modification.

  19. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network

    PubMed Central

    Sosa, Jose M.; Nielsen, Nathan D.; Vignes, Seth M.; Chen, Tanya G.; Shevkoplyas, Sergey S.

    2013-01-01

    The ability of red blood cells (RBC) to undergo a wide range of deformations while traversing the microvasculature is crucial for adequate perfusion. Interpretation of RBC deformability measurements performed in vitro in the context of microvascular perfusion has been notoriously difficult. This study compares the measurements of RBC deformability performed using micropore filtration and ektacytometry with the RBC ability to perfuse an artificial microvascular network (AMVN). Human RBCs were collected from healthy consenting volunteers, leukoreduced, washed and exposed to graded concentrations (0% – 0.08%) of glutaraldehyde (a non-specific protein cross-linker) and diamide (a spectrin-specific protein cross-linker) to impair the deformability of RBCs. Samples comprising cells with two different levels of deformability were created by adding non-deformable RBCs (hardened by exposure to 0.08% glutaraldehyde) to the sample of normal healthy RBCs. Ektacytometry indicated a nearly linear decline in RBC deformability with increasing glutaraldehyde concentration. Micropore filtration showed a significant reduction only for concentrations of glutaraldehyde higher than 0.04%. Neither micropore filtration nor ektacytometry measurements could accurately predict the AMVN perfusion. Treatment with diamide reduced RBC deformability as indicated by ektacytometry, but had no significant effect on either micropore filtration or the AMVN perfusion. Both micropore filtration and ektacytometry showed a linear decline in effective RBC deformability with increasing fraction of non-deformable RBCs in the sample. The corresponding decline in the AMVN perfusion plateaued above 50%, reflecting the innate ability of blood flow in the microvasculature to bypass occluded capillaries. Our results suggest that in vitro measurements of RBC deformability performed using either micropore filtration or ektacytometry may not represent the ability of same RBCs to perfuse microvascular networks. Further development of biomimetic tools for measuring RBC deformability (e.g. the AMVN) could enable a more functionally relevant testing of RBC mechanical properties. PMID:23603326

  20. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network.

    PubMed

    Sosa, Jose M; Nielsen, Nathan D; Vignes, Seth M; Chen, Tanya G; Shevkoplyas, Sergey S

    2014-01-01

    The ability of red blood cells (RBC) to undergo a wide range of deformations while traversing the microvasculature is crucial for adequate perfusion. Interpretation of RBC deformability measurements performed in vitro in the context of microvascular perfusion has been notoriously difficult. This study compares the measurements of RBC deformability performed using micropore filtration and ektacytometry with the RBC ability to perfuse an artificial microvascular network (AMVN). Human RBCs were collected from healthy consenting volunteers, leukoreduced, washed and exposed to graded concentrations (0-0.08%) of glutaraldehyde (a non-specific protein cross-linker) and diamide (a spectrin-specific protein cross-linker) to impair the deformability of RBCs. Samples comprising cells with two different levels of deformability were created by adding non-deformable RBCs (hardened by exposure to 0.08% glutaraldehyde) to the sample of normal healthy RBCs. Ektacytometry indicated a nearly linear decline in RBC deformability with increasing glutaraldehyde concentration. Micropore filtration showed a significant reduction only for concentrations of glutaraldehyde higher than 0.04%. Neither micropore filtration nor ektacytometry measurements could accurately predict the AMVN perfusion. Treatment with diamide reduced RBC deformability as indicated by ektacytometry, but had no significant effect on either micropore filtration or the AMVN perfusion. Both micropore filtration and ektacytometry showed a linear decline in effective RBC deformability with increasing fraction of non-deformable RBCs in the sample. The corresponding decline in the AMVN perfusion plateaued above 50%, reflecting the innate ability of blood flow in the microvasculature to bypass occluded capillaries. Our results suggest that in vitro measurements of RBC deformability performed using either micropore filtration or ektacytometry may not represent the ability of same RBCs to perfuse microvascular networks. Further development of biomimetic tools for measuring RBC deformability (e.g. the AMVN) could enable a more functionally relevant testing of RBC mechanical properties.

  1. Modification process optimization, characterization and adsorption property of granular fir-based activated carbon

    NASA Astrophysics Data System (ADS)

    Chen, Congjin; Li, Xin; Tong, Zhangfa; Li, Yue; Li, Mingfei

    2014-10-01

    Granular fir-based activated carbon (GFAC) was modified with H2O2, and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N2 adsorption-desorption isotherms, Brunauer-Emmett-Teller (BET) equation, Barett-Joyner-Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25-0.85 mm was modified by 150.0 ml of aqueous H2O2 solution, the optimized conditions were found to be as follows: aqueous H2O2 solution concentration 1.0 mol·l-1, modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I-IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased in the modified GFAC.

  2. Meso- and micropore characteristics of coal lithotypes: Implications for CO2 adsorption

    USGS Publications Warehouse

    Mastalerz, Maria; Drobniak, A.; Rupp, J.

    2008-01-01

    Lithotypes (vitrain, clarain, and fusain) of high volatile bituminous Pennsylvanian coals (Ro of 0.56-0.62%) from Indiana (the Illinois Basin) have been studied with regard to meso- and micropore characteristics using low-pressure nitrogen and carbon dioxide adsorption techniques, respectively. High-pressure CO2 adsorption isotherms were obtained from lithotypes of the Lower Block Coal Member (the Brazil Formation) and the Springfield Coal Member (the Petersburg Formation), and after evacuation of CO2, the lithotypes were re-analyzed for meso- and micropore characteristics to investigate changes related to high-pressure CO2 adsorption. Coal lithotypes have differing Brunauer-Emmett-Teller (BET) surface areas and mesopore volumes, with significantly lower values in fusains than in vitrains or clarains. Fusains have very limited pore volume in the pore size width of 4-10 nm, and the volume, increases with an increase in pore size, in contrast to vitrain, for which a 4-10 nm range is the dominant pore'Wlidth. For clarain, both pores of 4-10 nm and pores larger than 20 nm contribute substantially to the mesoporosity. Micropore surface areas are the smallest for fusain (from 72.8 to 98.2 m2/g), largest for vitrain (from 125.0 to,158.4 m2 /g), and intermediate for clarain (from 110.5 to 124.4 m2/g). Similar relationships are noted for micropore volumes, and the lower values of these parameters in fusains are related to smaller volumes of all incremental micropore sizes. In the Springfield and the Lower Block Coal Members, among lithotypes studied, fusain has the lowest adsorption capacity. For the Lower Block, vitrain has significantly higher adsorption capacity than fusain and clarain, whereas for the Springfield, vitrain and clarain have comparable but still significantly higher adsorption capacities than fusain. The Lower Block vitrain and fusain have much higher adsorption capacities than those in the Springfield, whereas the clarains of the two coals are comparable. After exposure of coal to CO2 at high pressure, vitrains experienced the largest porosity changes among all lithotypes studied. These changes are dominantly manifested in the mesoporosity (decrease in mesopore volume) range; whereas little to no change occurred in the micropore size range. In other lithotypes (clarains, the dominant lithology in the coals studied, and sporadic fusains), the changes were minimal. ?? 2008 American Chemical Society.

  3. Hierarchically assembled Au microspheres and sea urchin-like architectures: formation mechanism and SERS study

    NASA Astrophysics Data System (ADS)

    Wang, Xiansong; Yang, Da-Peng; Huang, Peng; Li, Min; Li, Chao; Chen, Di; Cui, Daxiang

    2012-11-01

    The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of the resulting products. Two different growth mechanisms are proposed. The study on surface enhanced Raman scattering (SERS) activities is also carried out between Au microspheres and Au sea urchin-like architectures. It is found that Au urchin-like architectures possess much higher SERS activity than the Au microspheres. Our work may shed light on the design and synthesis of hierarchically self-assembled 3D micro/nano-architectures for SERS, catalysis and biosensors.The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of the resulting products. Two different growth mechanisms are proposed. The study on surface enhanced Raman scattering (SERS) activities is also carried out between Au microspheres and Au sea urchin-like architectures. It is found that Au urchin-like architectures possess much higher SERS activity than the Au microspheres. Our work may shed light on the design and synthesis of hierarchically self-assembled 3D micro/nano-architectures for SERS, catalysis and biosensors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32405a

  4. Compliance effects on small diameter polyurethane graft patency.

    PubMed

    Uchida, N; Kambic, H; Emoto, H; Chen, J F; Hsu, S; Murabayshi, S; Harasaki, H; Nosé, Y

    1993-10-01

    Microporous compliance matched and noncompliant grafts were compared in a dog carotid artery interposition model. We fabricated 4 mm diameter sponge type polyurethane (Biomer) tubes 5 cm in length with a 0.5 mm wall thickness. The luminal surface was covered with a 50 microns coating of cross-linked gelatin. Compliance was measured in vitro and in vivo by volume and vessel diameter changes. Over a mean arterial pressure range of 55-155 mm Hg, the diameter changes of grafts and stump arteries were measured in situ using an ultrasonic Hokanson device. Compliance matched grafts were found to have the same in vitro compliance values as the natural canine carotid at a mean arterial pressure of 100 mm Hg. Compliance matched and noncompliant grafts had values of 10.3 +/- 1.3 and 0.9 +/- 0.1 x 10(-2) mm Hg, respectively. End to end arterial anastomoses were constructed between the graft and the host arteries. The use of synthetic grafts with matched compliance to the adjacent natural vessels has been advocated as the ideal solution to circumvent the problems of graft failure. These studies indicate that compliance values for compliance matched grafts decreased immediately after implantation (from 10.3 to 6.5 x 10(-2) %/mm Hg) and within 6 weeks decreased to 3.6 x 10(-2) %/mm Hg. The compliance values for noncompliant grafts remained constant throughout the test period. At autopsy all grafts showed a tightly adhered tissue capsule. The thickness of the anastomotic hyperplasia at the distal sites of compliance matched grafts was significantly different (P < .05) than that of the adjacent artery. The patency for compliant and noncompliant grafts was 64% and 50%, respectively. Evidence for polyurethane graft degradation was obtained by Fourier transform infrared spectroscopy and gel permeation chromatography analysis of patent explants. Compliance mismatch alone does not contribute to graft failure, however, material degradation, suture technique and/or capsule formation can play a contributory role although these were not tested directly.

  5. Fabrication of Microfibrous and Nano-/Microfibrous Scaffolds: Melt and Hybrid Electrospinning and Surface Modification of Poly(L-lactic acid) with Plasticizer

    PubMed Central

    Yoon, Young Il; Park, Ko Eun; Lee, Seung Jin; Park, Won Ho

    2013-01-01

    Biodegradable poly(L-lactic acid) (PLA) fibrous scaffolds were prepared by electrospinning from a PLA melt containing poly(ethylene glycol) (PEG) as a plasticizer to obtain thinner fibers. The effects of PEG on the melt electrospinning of PLA were examined in terms of the melt viscosity and fiber diameter. Among the parameters, the content of PEG had a more significant effect on the average fiber diameter and its distribution than those of the spinning temperature. Furthermore, nano-/microfibrous silk fibroin (SF)/PLA and PLA/PLA composite scaffolds were fabricated by hybrid electrospinning, which involved a combination of solution electrospinning and melt electrospinning. The SF/PLA (20/80) scaffolds consisted of a randomly oriented structure of PLA microfibers (average fiber diameter = 8.9 µm) and SF nanofibers (average fiber diameter = 820 nm). The PLA nano-/microfiber (20/80) scaffolds were found to have similar pore parameters to the PLA microfiber scaffolds. The PLA scaffolds were treated with plasma in the presence of either oxygen or ammonia gas to modify the surface of the fibers. This approach of controlling the surface properties and diameter of fibers could be useful in the design and tailoring of novel scaffolds for tissue engineering. PMID:24381937

  6. Supercritical multicomponent solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Corcoran, W. H.; Fong, W. S.; Pichaichanarong, P.; Chan, P. C. F.; Lawson, D. D. (Inventor)

    1983-01-01

    The yield of organic extract from the supercritical extraction of coal with larger diameter organic solvents such as toluene is increased by use of a minor amount of from 0.1 to 10% by weight of a second solvent such as methanol having a molecular diameter significantly smaller than the average pore diameter of the coal.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Routh, Prahlad K.; Nykypanchuk, Dmytro; Venkatesh, T. A.

    Large area, device relevant sized microporous thin films are formed with commercially available polythiophenes by the breath figure technique, a water-assisted micro patterning method, with such semitransparent thin films exhibiting periodicity and uniformity dictated by the length of the polymer side chain. Compared to drop casted thin films, the microporous thin films exhibit increased crystallinity due to stronger packing of the polymer inside the honeycomb frame.

  8. Structural micro-porous carbon anode for rechargeable lithium-ion batteries

    DOEpatents

    Delnick, Frank M.; Even, Jr., William R.; Sylwester, Alan P.; Wang, James C. F.; Zifer, Thomas

    1995-01-01

    A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc.

  9. New Mixed Conductivity Mechanisms in the Cold Plasma Device Based on Silver-Modified Zeolite Microporous Electronic Materials

    NASA Astrophysics Data System (ADS)

    Koç, Sevgul Ozturk; Galioglu, Sezin; Ozturk, Seckin; Kurç, Burcu Akata; Koç, Emrah; Salamov, Bahtiyar G.

    2018-02-01

    We have analyzed the interaction between microdischarge and microporous zeolite electronic materials modified by silver (Ag0) nanoparticles (resistivity 1011 to 106 Ω cm) on the atmospheric pressure cold plasma generation in air. The generation and maintenance of stable cold plasma is studied according to the effect of the Ag0 nanoparticles. The role of charge carriers in mixed conductivity processes and electrical features of zeolite from low pressure to atmospheric pressure is analyzed in air microplasmas for both before and after breakdown regimes. The results obtained from the experiments indicate that Ag0 nanoparticles play a significant role in considerably reducing the breakdown voltage in plasma electronic devices with microporous zeolite electronic materials.

  10. Detecting a single molecule using a micropore-nanopore hybrid chip

    PubMed Central

    2013-01-01

    Nanopore-based DNA sequencing and biomolecule sensing have attracted more and more attention. In this work, novel sensing devices were built on the basis of the chips containing nanopore arrays in polycarbonate (PC) membranes and micropores in Si3N4 films. Using the integrated chips, the transmembrane ionic current induced by biomolecule's translocation was recorded and analyzed, which suggested that the detected current did not change linearly as commonly expected with increasing biomolecule concentration. On the other hand, detailed translocation information (such as translocation gesture) was also extracted from the discrete current blockages in basic current curves. These results indicated that the nanofluidic device based on the chips integrated by micropores and nanopores possessed comparative potentials in biomolecule sensing. PMID:24261484

  11. Detecting a single molecule using a micropore-nanopore hybrid chip.

    PubMed

    Liu, Lei; Zhu, Lizhong; Ni, Zhonghua; Chen, Yunfei

    2013-11-21

    Nanopore-based DNA sequencing and biomolecule sensing have attracted more and more attention. In this work, novel sensing devices were built on the basis of the chips containing nanopore arrays in polycarbonate (PC) membranes and micropores in Si3N4 films. Using the integrated chips, the transmembrane ionic current induced by biomolecule's translocation was recorded and analyzed, which suggested that the detected current did not change linearly as commonly expected with increasing biomolecule concentration. On the other hand, detailed translocation information (such as translocation gesture) was also extracted from the discrete current blockages in basic current curves. These results indicated that the nanofluidic device based on the chips integrated by micropores and nanopores possessed comparative potentials in biomolecule sensing.

  12. Flexible microfluidic devices with three-dimensional interconnected microporous walls for gas and liquid applications.

    PubMed

    Yuen, Po Ki; DeRosa, Michael E

    2011-10-07

    This article presents a simple, low-cost method of fabrication and the applications of flexible polystyrene microfluidic devices with three-dimensional (3D) interconnected microporous walls based on treatment using a solvent/non-solvent mixture at room temperature. The complete fabrication process from device design concept to working device can be completed in less than an hour in a regular laboratory setting, without the need for expensive equipment. Microfluidic devices were used to demonstrate gas generation and absorption reactions by acidifying water with carbon dioxide (CO(2)) gas. By selectively treating the microporous structures with oxygen plasma, acidification of water by acetic acid (distilled white vinegar) perfusion was also demonstrated with the same device design.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondo, Atsushi, E-mail: kondoa@cc.tuat.ac.jp; Maeda, Kazuyuki

    A 3D flexible metal–organic framework (MOF) with 1D hydrophilic and hydrophobic pores shows anisotropic thermal expansion with relatively large thermal expansion coefficient (α{sub a}=−21×10{sup −6} K{sup −1} and α{sub c}=79×10{sup −6} K{sup −1}) between 133 K and 383 K. Temperature change gives deformation of both pores, which expand in diameter and elongate in length on cooling and vice versa. The thermally induced structural change should be derived from a unique framework topology like “lattice fence”. Silica accommodation changes not only the nature of the MOF but also thermal responsiveness of the MOF. Since the hydrophobic pores in the material aremore » selectively blocked by the silica, the MOF with the silica is considered as a hydrophilic microporous material. Furthermore, inclusion of silica resulted in a drastic pore contraction in diameter and anisotropically changed the thermal responsiveness of the MOF. - Graphical abstract: A 3D metal–organic framework with hydrophilic and hydrophobic pores shows anisotropic thermal expansion behavior. The influence of silica filler in the hydrophobic pore was investigated. - Highlights: • Thermally induced structural change of a 3D MOF with a lattice fence topology was investigated. • The structural change was analyzed by synchrotron X-ray diffraction patterns. • Temperature change induces anisotropic thermal expansion/contraction of the MOF. • Silica inclusion anisotropically changes the thermal responsiveness of the MOF.« less

  14. Influence of Low Molecular Weight Fractions of Humic Substances on Their Reducing Capacities and Distribution of Redox Functional Groups.

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Jiang, J.

    2015-12-01

    Humic substances (HS) are redox-active organic compounds and their reducing capacities depend on molecule structure and distribution of redox functional groups (RFG). During dialysis experiments, initial HS were separated into low molecular weight fractions (LMWF, molecular weight <3,500 Da or <14,000 Da) and retentate. LMWF accounts for only 2% in TOC contents of HS molecules, while their reducing capacities are up to 33 times greater than those of initial HA. However, great amount of reducing capacities of LMWF does not cause decreasing reducing capacities of retentate relative to those of initial HA. Total reducing capacities of whole dialysis device were calculated for initial HA, retentate and LMWF in native and reduced state, and result suggests that releasing of LMWF leads to production and explosion of RFG. LWMF have great fluorescence intensities for protein-like fluorophores and humic acids-like fluorophores (quinone-like functional groups), where quinonoid π-π* transition is responsible for the great reducing capacities of LMWF. The 3,500 Da molecules (0.25 nm diameter) of HS are capable of stimulating transformation of redox-active metals or potential pollutants trapped in soil micropores (< 2 nm diameter). A development of relationship between reducing capacity and Ex / Em position provides a possibility to predicate relative reducing capacities of HS in treated raw water sample.

  15. Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char.

    PubMed

    Nguyen, Thanh H; Cho, Hyun-Hee; Poster, Dianne L; Ball, William P

    2007-02-15

    Sorption isotherms for five aromatic hydrocarbons were obtained with a natural wood char (NC1) and its residue after solvent extraction (ENC1). Substantial isotherm nonlinearity was observed in all cases. ENC1 showed higher BET surface area, higher nitrogen-accessible micropore volume, and lower mass of extractable organic chemicals, including quantifiable polycyclic aromatic hydrocarbons (PAHs),while the two chars showed identical surface oxygen/ carbon (O/C) ratio. For two chlorinated benzenes that normally condense as liquids at the temperatures used, sorption isotherms with NC1 and ENC1 were found to be statistically identical. For the solid-phase compounds (1,4-dichlorobenzene (1,4-DCB) and two PAHs), sorption was statistically higher with ENC1, thus demonstrating sorption effects due to both (1) authigenic organic content in the sorbentand (2)the sorbate's condensed state. Polanyi-based isotherm modeling, pore size measurements, and comparisons with activated carbon showthe relative importance of adsorptive pore filling and help explain results. With both chars, maximum sorption increased in the order of decreasing molecular diameter: phenanthrene < naphthalene < 1,2-dichlorobenzene/1,2,4-trichlorobenzene < 1,4-DCB. Comparison of 1,4- and 1,2-DCB shows that the critical molecular diameter was apparently more important than the condensed state, suggesting that 1,4-DCB sorbed in the liquid state for ENC1.

  16. Assessment of the role of micropore size and N-doping in CO2 capture by porous carbons.

    PubMed

    Sevilla, Marta; Parra, Jose B; Fuertes, Antonio B

    2013-07-10

    The role of micropore size and N-doping in CO2 capture by microporous carbons has been investigated by analyzing the CO2 adsorption properties of two types of activated carbons with analogous textural properties: (a) N-free carbon microspheres and (b) N-doped carbon microspheres. Both materials exhibit a porosity made up exclusively of micropores ranging in size between <0.6 nm in the case of the pristine materials and up to 1.6 nm for the highly activated carbons (47% burnoff). The N-doped carbons possess ~3 wt % of N heteroatoms that are incorporated into several types of functional groups (i.e., pyrrole/pyridone, pyridine, quaternary, and pyridine-N-oxide). Under conventional operation conditions (i.e., T ~ 0-25 °C and P(CO2) ~ 0-1 bar), CO2 adsorption proceeds via a volume-filling mechanism, the size limit for volume-filling being ~0.7-0.8 nm. Under these circumstances, the adsorption of CO2 by nonfunctionalized porous carbons is mainly determined by the volume of the micropores with a size below 0.8 nm. It was also observed that the CO2 capture capacities of undoped and N-doped carbons are analogous which shows that the nitrogen functionalities present in these N-doped samples do not influence CO2 adsorption. Taking into account the temperature invariance of the characteristic curve postulated by the Dubinin theory, we show that CO2 uptakes can be accurately predicted by using the adsorption data measured at just one temperature.

  17. Micropore clogging by leachable pyrogenic organic carbon: A new perspective on sorption irreversibility and kinetics of hydrophobic organic contaminants to black carbon.

    PubMed

    Wang, Bingyu; Zhang, Wei; Li, Hui; Fu, Heyun; Qu, Xiaolei; Zhu, Dongqiang

    2017-01-01

    Black carbon (BC) plays a crucial role in sequestering hydrophobic organic contaminants in the environment. This study investigated key factors and mechanisms controlling nonideal sorption (e.g., sorption irreversibility and slow kinetics) of model hydrophobic organic contaminants (nitrobenzene, naphthalene, and atrazine) by rice-straw-derived BC. After removing the fraction of leachable pyrogenic organic carbon (LPyOC) (referring to composites of dissoluble non-condensed organic carbon and associated mineral components) with deionized water or 0.5 M NaOH, sorption of these sorbates to BC was enhanced. The sorption enhancement was positively correlated with sorbate molecular size in the order of atrazine > naphthalene > nitrobenzene. The removal of LPyOC also accelerated sorption kinetics and reduced sorption irreversibility. These observations were attributed to increased accessibility of BC micropores initially clogged by the LPyOC. Comparison of BC pore size distributions before and after atrazine sorption further suggested that the sorbate molecules preferred to access the micropores that were more open, and the micropore accessibility was enhanced by the removal of LPyOC. Consistently, the sorption of nitrobenzene and atrazine to template-synthesized mesoporous carbon (CMK3), a model sorbent with homogeneous pore structures, showed decreased kinetics, but increased irreversibility by impregnating sorbent pores with surface-grafted alkylamino groups and by subsequent loading of humic acid. These findings indicated an important and previously unrecognized role of LPyOC (i.e., micropore clogging) in the nonideal sorption of organic contaminants to BC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Small-angle neutron scattering study of micropore collapse in amorphous solid water.

    PubMed

    Mitterdorfer, Christian; Bauer, Marion; Youngs, Tristan G A; Bowron, Daniel T; Hill, Catherine R; Fraser, Helen J; Finney, John L; Loerting, Thomas

    2014-08-14

    Vapor-deposited amorphous solid water (ASW) is the most abundant solid molecular material in space, where it plays a direct role in both the formation of more complex chemical species and the aggregation of icy materials in the earliest stages of planet formation. Nevertheless, some of its low temperature physics such as the collapse of the micropore network upon heating are still far from being understood. Here we characterize the nature of the micropores and their collapse using neutron scattering of gram-quantities of D2O-ASW of internal surface areas up to 230 ± 10 m(2) g(-1) prepared at 77 K. The model-free interpretation of the small-angle scattering data suggests micropores, which remain stable up to 120-140 K and then experience a sudden collapse. The exact onset temperature to pore collapse depends on the type of flow conditions employed in the preparation of ASW and, thus, the specific surface area of the initial deposit, whereas the onset of crystallization to cubic ice is unaffected by the flow conditions. Analysis of the small-angle neutron scattering signal using the Guinier-Porod model suggests that a sudden transition from three-dimensional cylindrical pores with 15 Å radius of gyration to two-dimensional lamellae is the mechanism underlying the pore collapse. The rather high temperature of about 120-140 K of micropore collapse and the 3D-to-2D type of the transition unraveled in this study have implications for our understanding of the processing and evolution of ices in various astrophysical environments.

  19. A new algorithm for stand table projection models.

    Treesearch

    Quang V. Cao; V. Clark Baldwin

    1999-01-01

    The constrained least squares method is proposed as an algorithm for projecting stand tables through time. This method consists of three steps: (1) predict survival in each diameter class, (2) predict diameter growth, and (3) use the least squares approach to adjust the stand table to satisfy the constraints of future survival, average diameter, and stand basal area....

  20. Effect of Processing Variables on the Microstructure and Mechanical Properties of Microporous Carbon Materials

    NASA Technical Reports Server (NTRS)

    Singh, M.; Dacek, R. F.

    1996-01-01

    Microporous carbon materials with different pore and strut sizes have been fabricated by the pyrolysis of furfuryl alcohol resin, triethylene glycol, and p-toluene sulfonic acid mixtures. The resulting materials were characterized by scanning electron microscopy and density measurements. The room temperature flexural strength and modulus of these materials decreases with increasing amount of acid curing agent.

  1. Structural micro-porous carbon anode for rechargeable lithium-ion batteries

    DOEpatents

    Delnick, F.M.; Even, W.R. Jr.; Sylwester, A.P.; Wang, J.C.F.; Zifer, T.

    1995-06-20

    A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc. 6 figs.

  2. An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance

    DOE PAGES

    Chang, Liang; Stacchiola, Dario J.; Hu, Yun Hang

    2017-07-03

    The efficient charge accumulation of an ideal supercapacitor electrode requires abundant micropores and its fast electrolyte-ions transport prefers meso/macropores. But, current electrode materials cannot meet both requirements, resulting in poor performance. We creatively constructed three-dimensional cabbage-coral-like graphene as an ideal electrode material, in which meso/macro channels are formed by graphene walls and rich micropores are incorporated in the surface layer of the graphene walls. The unique 3D graphene material can achieve a high gravimetric capacitance of 200 F/g with aqueous electrolyte, 3 times larger than that of commercially used activated carbon (70.8 F/g). Furthermore, it can reach an ultrahigh arealmore » capacitance of 1.28 F/cm 2 and excellent rate capability (83.5% from 0.5 to 10 A/g) as well as high cycling stability (86.2% retention after 5000 cycles). The excellent electric double-layer performance of the 3D graphene electrode can be attributed to the fast electrolyte ion transport in the meso/macro channels and the rapid and reversible charge adsorption with negligible transport distance in the surface micropores.« less

  3. Fabrication of high-transmission microporous membranes by proton beam writing-based molding technique

    NASA Astrophysics Data System (ADS)

    Wang, Liping; Meyer, Clemens; Guibert, Edouard; Homsy, Alexandra; Whitlow, Harry J.

    2017-08-01

    Porous membranes are widely used as filters in a broad range of micro and nanofluidic applications, e.g. organelle sorters, permeable cell growth substrates, and plasma filtration. Conventional silicon fabrication approaches are not suitable for microporous membranes due to the low mechanical stability of thin film substrates. Other techniques like ion track etching are limited to the production of randomly distributed and randomly orientated pores with non-uniform pore sizes. In this project, we developed a procedure for fabricating high-transmission microporous membranes by proton beam writing (PBW) with a combination of spin-casting and soft lithography. In this approach, focused 2 MeV protons were used to lithographically write patterns consisting of hexagonal arrays of high-density pillars of few μm size in a SU-8 layer coated on a silicon wafer. After development, the pillars were conformably coated with a thin film of poly-para-xylylene (Parylene)-C release agent and spin-coated with polydimethylsiloxane (PDMS). To facilitate demolding, a special technique based on the use of a laser-cut sealing tape ring was developed. This method facilitated the successful delamination of 20-μm thick PDMS membrane with high-density micropores from the mold without rupture or damage.

  4. Ion transport in the microporous titanosilicate ETS-10.

    PubMed

    Wei, Ta-Chen; Hillhouse, Hugh W

    2006-07-20

    Impedance spectroscopy was used to investigate ion transport in the microporous crystalline framework titanosilicate ETS-10 in the frequency range from 1 Hz to 10 MHz. These data were compared to measured data from the microporous aluminosilicate zeolite X. Na-ETS-10 was found to have a lower activation energy for ion conduction than that of NaX, 58.5 kJ/mol compared to 66.8 kJ/mol. However, the dc conductivity and ion hopping rate for Na-ETS-10 were also lower than NaX. This was found to be due to the smaller entropy contribution in Na-ETS-10 because of its high cation site occupancy. This was verified by ion exchanging Na(+) with Cu(2+) in both microporous frameworks. This exchange decreases the cation site occupancy and reduces correlation effects. The exchanged Cu-ETS-10 was found to have both lower activation energy and higher ionic conductivity than CuX. Zeolite X has the highest ion conductivity among the zeolites, and thus the data shown here indicate that ETS-10 has more facile transport of higher valence cations which may be important for ion-exchange, environmental remediation of radionucleotides, and nanofabrication.

  5. Facile Synthesis of a Pentiptycene-Based Highly Microporous Organic Polymer for Gas Storage and Water Treatment.

    PubMed

    Luo, Shuangjiang; Zhang, Qinnan; Zhang, Yizhou; Weaver, Kevin P; Phillip, William A; Guo, Ruilan

    2018-05-02

    Rigid H-shaped pentiptycene units, with an intrinsic hierarchical structure, were employed to fabricate a highly microporous organic polymer sorbent via Friedel-Crafts reaction/polymerization. The obtained microporous polymer exhibits good thermal stability, a high Brunauer-Emmett-Teller surface area of 1604 m 2 g -1 , outstanding CO 2 , H 2 , and CH 4 storage capacities, as well as good adsorption selectivities for the separation of CO 2 /N 2 and CO 2 /CH 4 gas pairs. The CO 2 uptake values reached as high as 5.00 mmol g -1 (1.0 bar and 273 K), which, along with high adsorption selectivity values (e.g., 47.1 for CO 2 /N 2 ), make the pentiptycene-based microporous organic polymer (PMOP) a promising sorbent material for carbon capture from flue gas and natural gas purification. Moreover, the PMOP material displayed superior absorption capacities for organic solvents and dyes. For example, the maximum adsorption capacities for methylene blue and Congo red were 394 and 932 mg g -1 , respectively, promoting the potential of the PMOP as an excellent sorbent for environmental remediation and water treatment.

  6. The influence of plasticizers on the release of theophylline from microporous-controlled tablets.

    PubMed

    Lin, W J; Lee, H K; Wang, D M

    2004-10-19

    The aim of present work was to investigate the influence of plasticizer on the release of theophylline from microporous-controlled tablets. Three plasticizers, acetyltributyl citrate (ATBC), castor oil, and triacetin, were included in this study. These plasticizers reduced the crystallinity of poly(epsilon-caprolactone) (PCL)/poly(ethylene glycol) (PEG)-blended films, and the most prominent change of enthalpy of fusion was the film plasticized by triacetin. This might be due to triacetin penetrating into both PCL and PEG domains. However, the lipophilic property of castor oil only allowed it to alter the crystallization of hydrophobic PCL domain. The Young's modulus and the tensile strength of films showed a decreased tendency while increasing the amount of plasticizer. The change of elongation of plasticized blended films was irregular and was dependent of the type of plasticizer. The size of micropores formed in the presence of plasticizer was larger than those micropores formed in its absence. The fatty plasticizer, castor oil, altered the thermal and mechanical performance and pore size of films via soluble in PCL domain, which resulted in the release of theophylline from castor oil plasticized-coated tablets, which in turn enhanced and closed to a constant release pattern.

  7. Pt thermal atomic layer deposition for silicon x-ray micropore optics.

    PubMed

    Takeuchi, Kazuma; Ezoe, Yuichiro; Ishikawa, Kumi; Numazawa, Masaki; Terada, Masaru; Ishi, Daiki; Fujitani, Maiko; Sowa, Mark J; Ohashi, Takaya; Mitsuda, Kazuhisa

    2018-04-20

    We fabricated a silicon micropore optic using deep reactive ion etching and coated by Pt with atomic layer deposition (ALD). We confirmed that a metal/metal oxide bilayer of Al 2 O 3 ∼10  nm and Pt ∼20  nm was successfully deposited on the micropores whose width and depth are 20 μm and 300 μm, respectively. An increase of surface roughness of sidewalls of the micropores was observed with a transmission electron microscope and an atomic force microscope. X-ray reflectivity with an Al Kα line at 1.49 keV before and after the deposition was measured and compared to ray-tracing simulations. The surface roughness of the sidewalls was estimated to increase from 1.6±0.2  nm rms to 2.2±0.2  nm rms. This result is consistent with the microscope measurements. Post annealing of the Pt-coated optic at 1000°C for 2 h showed a sign of reduced surface roughness and better angular resolution. To reduce the surface roughness, possible methods such as the annealing after deposition and a plasma-enhanced ALD are discussed.

  8. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation.

    PubMed

    Zeng, Zhirui; Tice, Michael M

    2018-01-01

    Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms. Key Words: Microbial iron reduction-Micropore-Electron transfer strategies-Microbial carbonate. Astrobiology 18, 28-36.

  9. An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Liang; Stacchiola, Dario J.; Hu, Yun Hang

    The efficient charge accumulation of an ideal supercapacitor electrode requires abundant micropores and its fast electrolyte-ions transport prefers meso/macropores. But, current electrode materials cannot meet both requirements, resulting in poor performance. We creatively constructed three-dimensional cabbage-coral-like graphene as an ideal electrode material, in which meso/macro channels are formed by graphene walls and rich micropores are incorporated in the surface layer of the graphene walls. The unique 3D graphene material can achieve a high gravimetric capacitance of 200 F/g with aqueous electrolyte, 3 times larger than that of commercially used activated carbon (70.8 F/g). Furthermore, it can reach an ultrahigh arealmore » capacitance of 1.28 F/cm 2 and excellent rate capability (83.5% from 0.5 to 10 A/g) as well as high cycling stability (86.2% retention after 5000 cycles). The excellent electric double-layer performance of the 3D graphene electrode can be attributed to the fast electrolyte ion transport in the meso/macro channels and the rapid and reversible charge adsorption with negligible transport distance in the surface micropores.« less

  10. A single-ligand ultra-microporous MOF for precombustion CO2 capture and hydrogen purification.

    PubMed

    Nandi, Shyamapada; De Luna, Phil; Daff, Thomas D; Rother, Jens; Liu, Ming; Buchanan, William; Hawari, Ayman I; Woo, Tom K; Vaidhyanathan, Ramanathan

    2015-12-01

    Metal organic frameworks (MOFs) built from a single small ligand typically have high stability, are rigid, and have syntheses that are often simple and easily scalable. However, they are normally ultra-microporous and do not have large surface areas amenable to gas separation applications. We report an ultra-microporous (3.5 and 4.8 Å pores) Ni-(4-pyridylcarboxylate)2 with a cubic framework that exhibits exceptionally high CO2/H2 selectivities (285 for 20:80 and 230 for 40:60 mixtures at 10 bar, 40°C) and working capacities (3.95 mmol/g), making it suitable for hydrogen purification under typical precombustion CO2 capture conditions (1- to 10-bar pressure swing). It exhibits facile CO2 adsorption-desorption cycling and has CO2 self-diffusivities of ~3 × 10(-9) m(2)/s, which is two orders higher than that of zeolite 13X and comparable to other top-performing MOFs for this application. Simulations reveal a high density of binding sites that allow for favorable CO2-CO2 interactions and large cooperative binding energies. Ultra-micropores generated by a small ligand ensures hydrolytic, hydrostatic stabilities, shelf life, and stability toward humid gas streams.

  11. Translational diffusion of water inside hydrophobic carbon micropores studied by neutron spectroscopy and molecular dynamics simulation

    DOE PAGES

    Diallo, S. O.; Vlcek, L.; Mamontov, E.; ...

    2015-02-17

    When water molecules are confined to nanoscale spacings, such as in the nanometer-size pores of activated carbon fiber (ACF), their freezing point gets suppressed down to very low temperatures (~150 K), leading to a metastable liquid state with remarkable physical properties. Here we have investigated the ambient pressure diffusive dynamics of water in microporous Kynol ACF-10 (average pore size ~11.6 Å, with primarily slit-like pores) from temperature T = 280 K in its stable liquid state down to T = 230 K into the metastable supercooled phase. The observed characteristic relaxation times and diffusion coefficients are found to be, respectively, higher and lower than those in bulk water, indicating a slowing down of the water mobility with decreasing temperature. The observed temperature-dependent average relaxation time (more » $${{\\tau}}$$) when compared to previous findings indicate that it is the width of the slit pores-not their curvature-that primarily affects the dynamics of water for pore sizes larger than 10 Å. The experimental observations are compared to complementary molecular dynamics simulations of a model system, in which we studied the diffusion of water within the 11.6 Å gap of two parallel graphene sheets. We find generally a reasonable agreement between the observed and calculated relaxation times at the low momentum transfer Q (Q ≤ 0.9 Å -1). At high Q, however, where localized dynamics becomes relevant, this ideal system does not satisfactorily reproduce the measurements. Consequently, the simulations are compared to the experiments at low Q, where the two can be best reconciled. The best agreement is obtained for the diffusion parameter D associated with the hydrogen-site when a representative stretched exponential function, rather than the standard bimodal exponential model, is used to parametrize the self-correlation function I (Q,t).« less

  12. Accurate Characterization of the Pore Volume in Microporous Crystalline Materials

    PubMed Central

    2017-01-01

    Pore volume is one of the main properties for the characterization of microporous crystals. It is experimentally measurable, and it can also be obtained from the refined unit cell by a number of computational techniques. In this work, we assess the accuracy and the discrepancies between the different computational methods which are commonly used for this purpose, i.e, geometric, helium, and probe center pore volumes, by studying a database of more than 5000 frameworks. We developed a new technique to fully characterize the internal void of a microporous material and to compute the probe-accessible and -occupiable pore volume. We show that, unlike the other definitions of pore volume, the occupiable pore volume can be directly related to the experimentally measured pore volumes from nitrogen isotherms. PMID:28636815

  13. An ultrasonic analysis of the comparative efficiency of various cardiotomy reservoirs and micropore blood filters.

    PubMed Central

    Pearson, D T; Watson, B G; Waterhouse, P S

    1978-01-01

    The ability of 12 commercially available cardiotomy reservoirs to remove bubbles from aspirated blood was investigated by means of a simulated cardiopulmonary bypass circuit and an ultrasonic microbubble detector. Performance varied considerably. The number of gaseous microemboli remaining after passage of blood through the reservoir was reduced by (a) holding the blood in the reservoir, (b) reducing the volume of air mixed with the aspirated blood, and (c) using a reservoir that did not induce turbulence and that contained integral micropore filtration material. Further micropore filtration of the blood after passage through the cardiotomy reservoir was beneficial, and significantly more bubbles were extracted when the microfilter was sited below the reservoir than when it was placed in the arterial line. PMID:684672

  14. Accurate Characterization of the Pore Volume in Microporous Crystalline Materials

    DOE PAGES

    Ongari, Daniele; Boyd, Peter G.; Barthel, Senja; ...

    2017-06-21

    Pore volume is one of the main properties for the characterization of microporous crystals. It is experimentally measurable, and it can also be obtained from the refined unit cell by a number of computational techniques. In this work, we assess the accuracy and the discrepancies between the different computational methods which are commonly used for this purpose, i.e, geometric, helium, and probe center pore volumes, by studying a database of more than 5000 frameworks. We developed a new technique to fully characterize the internal void of a microporous material and to compute the probe-accessible and -occupiable pore volume. Lasty, wemore » show that, unlike the other definitions of pore volume, the occupiable pore volume can be directly related to the experimentally measured pore volumes from nitrogen isotherms.« less

  15. Morphological Study on Porous Silicon Carbide Membrane Fabricated by Double-Step Electrochemical Etching

    NASA Astrophysics Data System (ADS)

    Omiya, Takuma; Tanaka, Akira; Shimomura, Masaru

    2012-07-01

    The structure of porous silicon carbide membranes that peeled off spontaneously during electrochemical etching was studied. They were fabricated from n-type 6H SiC(0001) wafers by a double-step electrochemical etching process in a hydrofluoric electrolyte. Nanoporous membranes were obtained after double-step etching with current densities of 10-20 and 60-100 mA/cm2 in the first and second steps, respectively. Microporous membranes were also fabricated after double-step etching with current densities of 100 and 200 mA/cm2. It was found that the pore diameter is influenced by the etching current in step 1, and that a higher current is required in step 2 when the current in step 1 is increased. During the etching processes in steps 1 and 2, vertical nanopore and lateral crack formations proceed, respectively. The influx pathway of hydrofluoric solution, expansion of generated gases, and transfer limitation of positive holes to the pore surface are the key factors in the peeling-off mechanism of the membrane.

  16. Curvature dependence of single-walled carbon nanotubes for SO2 adsorption and oxidation

    NASA Astrophysics Data System (ADS)

    Chen, Yanqiu; Yin, Shi; Li, Yueli; Cen, Wanglai; Li, Jianjun; Yin, Huaqiang

    2017-05-01

    Porous carbon-based catalysts showing high catalytic activity for SO2 oxidation to SO3 is often used in flue gas desulfurization. Their catalytic activity has been ascribed in many publications to the microporous structure and the effect of its spatial confinement. First principles method was used to investigate the adsorption and oxidation of SO2 on the inner and outer surface of single-walled carbon nanotubes (SWCNTs) with different diameters. It is interesting to found that there is a direct correlation: the barrier for the oxidation O_SWCNT + SO2 → SO3 + SWCNT monotonically decreases with the increase of SWCNTs' curvature. The oxygen functional located at the inner wall of SWCNTs with small radius is of higher activity for SO2 oxidation, which is extra enhanced by the spatial confinement effects of SWCNTs. These findings can be useful for the development of carbon-based catalysts and provide clues for the optimization and design of porous carbon catalysts.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pascal, Tod A.; Villaluenga, Irune; Wujcik, Kevin H.

    Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ~30° below the expectedmore » freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.« less

  18. Laboratory Testing of Silica Sol Grout in Coal Measure Mudstones

    PubMed Central

    Pan, Dongjiang; Zhang, Nong; Xie, Zhengzheng; Feng, Xiaowei; Kong, Yong

    2016-01-01

    The effectiveness of silica sol grout on mudstones is reported in this paper. Using X-ray diffraction (XRD), the study investigates how the silica sol grout modifies mudstone mineralogy. Micropore sizes and mechanical properties of the mudstone before and after grouting with four different materials were determined with a surface area/porosity analyser and by uniaxial compression. Tests show that, after grouting, up to 50% of the mesopore volumes can be filled with grout, the dominant pore diameter decreases from 100 nm to 10 nm, and the sealing capacity is increased. Uniaxial compression tests of silica sol grouted samples shows that their elastic modulus is 21%–38% and their uniaxial compressive strength is 16%–54% of the non-grouted samples. Peak strain, however, is greater by 150%–270%. After grouting, the sample failure mode changes from brittle to ductile. This paper provides an experimental test of anti-seepage and strengthening properties of silica sol. PMID:28774061

  19. A new step aeration approach towards the improvement of nitrogen removal in a full scale Carrousel oxidation ditch.

    PubMed

    Jin, Pengkang; Wang, Xianbao; Wang, Xiaochang; Ngo, Huu Hao; Jin, Xin

    2015-12-01

    Two aeration modes, step aeration and point aeration, were used in a full-scale Carrousel oxidation ditch with microporous aeration. The nitrogen removal performance and mechanism were analyzed. With the same total aeration input, both aeration modes demonstrated good nitrification outcomes with the average efficiency in removing NH4(+)-N of more than 98%. However, the average removal efficiencies for total nitrogen were 89.3% and 77.6% under step aeration and point aeration, respectively. The results indicated that an extended aerobic zone followed the aeration zones could affect the proportion of anoxic and oxic zones. The step aeration with larger anoxic zones indicated better TN removal efficiency. More importantly, step aeration provided the suitable environment for both nitrifiers and denitrifiers. The diversity and relative abundance of denitrifying bacteria under the step aeration (1.55%) was higher than that under the point aeration (1.12%), which resulted in an overall higher TN removal efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Multiscale modelling of hydraulic conductivity in vuggy porous media

    PubMed Central

    Daly, K. R.; Roose, T.

    2014-01-01

    Flow in both saturated and non-saturated vuggy porous media, i.e. soil, is inherently multiscale. The complex microporous structure of the soil aggregates and the wider vugs provides a multitude of flow pathways and has received significant attention from the X-ray computed tomography (CT) community with a constant drive to image at higher resolution. Using multiscale homogenization, we derive averaged equations to study the effects of the microscale structure on the macroscopic flow. The averaged model captures the underlying geometry through a series of cell problems and is verified through direct comparison to numerical simulations of the full structure. These methods offer significant reductions in computation time and allow us to perform three-dimensional calculations with complex geometries on a desktop PC. The results show that the surface roughness of the aggregate has a significantly greater effect on the flow than the microstructure within the aggregate. Hence, this is the region in which the resolution of X-ray CT for image-based modelling has the greatest impact. PMID:24511248

  1. A conjugated microporous polymer based visual sensing platform for aminoglycoside antibiotics in water.

    PubMed

    Bhunia, Subhajit; Dey, Nilanjan; Pradhan, Anirban; Bhattacharya, Santanu

    2018-06-20

    A donor-acceptor based conjugated microporous polymer, PER@NiP-CMOP-1, has been synthesized which can achieve highly sensitive stereo-specific "Turn ON" biosensing of an aminoglycoside up to the ppb level. The coordination-driven inhibition of photo-induced electron transfer (d-PET) for d-electrons and the rotational freezing are the key factors for the recovery of the emission.

  2. Modeling of microporous silicon betaelectric converter with 63Ni plating in GEANT4 toolkit*

    NASA Astrophysics Data System (ADS)

    Zelenkov, P. V.; Sidorov, V. G.; Lelekov, E. T.; Khoroshko, A. Y.; Bogdanov, S. V.; Lelekov, A. T.

    2016-04-01

    The model of electron-hole pairs generation rate distribution in semiconductor is needed to optimize the parameters of microporous silicon betaelectric converter, which uses 63Ni isotope radiation. By using Monte-Carlo methods of GEANT4 software with ultra-low energy electron physics models this distribution in silicon was calculated and approximated with exponential function. Optimal pore configuration was estimated.

  3. Consideration of growth (age)-related effects on globe size and corneal thickness in ovine eyes for use in laboratory studies.

    PubMed

    Doughty, Michael J

    2017-07-01

    The aim was to assess differences in eyeball mass, corneal diameter and central corneal thickness in slaughterhouse-procured ovine eyes. Over a 12-year period, measurements of eye globe mass, horizontal corneal diameter and central corneal thickness were routinely undertaken within two hours post-mortem. Only eyes free of obvious mechanical damage or disease were used. From measurements on 736 quality-selected and trimmed eyes, globe wet mass ranged from 10.4 to 25.2 g, horizontal corneal diameter from 19.0 to 26.5 mm and central corneal thickness measured by ultrasonic pachymetry from 0.543 to 0.836 mm (with an overall average of 690 ± 0.056 mm). The ocular globe mass was strongly correlated to horizontal corneal diameter (r 2  = 0.829). Central corneal thickness correlated with globe mass (r = 0.543) and to horizontal corneal diameter (r = 0.402). Based on the different anatomical measurements, a lamb's eye would be expected to have a thinner cornea (average 0.640 mm) than that of an adult outbred ewe (average 0.730 mm). In freshly procured eyes showing signs of slight corneal oedema, central corneal thickness was greater (average 0.856 ± 0.052 mm) and up to 24 hours of cold storage resulted in predictable increases in central corneal thickness of six to 24 per cent, especially in eyes showing signs of corneal oedema before storage. Based on the correlations obtained, differences in ovine eyes can be attributed to growth-related differences in the animals and thus, indirectly to their expected ages. A simple measure of the horizontal corneal diameter in ovine eyes used for laboratory studies would be a useful indicator in reporting these studies. © 2016 Optometry Australia.

  4. Updating Indiana Annual Forest Inventory and Analysis Plot Data Using Eastern Broadleaf Forest Diameter Growth Models

    Treesearch

    Veronica C. Lessard

    2001-01-01

    The Forest Inventory and Analysis (FIA) program of the North Central Research Station (NCRS), USDA Forest Service, has developed nonlinear, individual-tree, distance-independent annual diameter growth models. The models are calibrated for species groups and formulated as the product of an average diameter growth component and a modifier component. The regional models...

  5. Tortuosity correction of Kozeny's hydraulic diameter of a porous medium

    NASA Astrophysics Data System (ADS)

    Shin, C.

    2017-02-01

    The hydraulic diameter of a porous medium is the most important characteristic parameter governing porous flow aspects. Kozeny's hydraulic diameter has been used as the representative definition ever since he proposed it in 1927. However, it seems likely that this definition does not perfectly reflect the porous flow features even if the geometric relations of porous media are reasonably considered. Here we reviewed its definition by introducing Darcy's friction flow relation, and discovered that the term "tortuosity" should be included in the definition to more accurately characterize porous flows. Thus, the definition of "Tortuous Hydraulic Diameter (THD)," which corrects Kozeny's hydraulic diameter using tortuosity, is newly presented. Moreover, computational fluid dynamics simulations were performed to check the validity and applicability of the THD approach. As a result, it is seen that the THD demonstrates very low errors, with an average of 1.67%, whereas Kozeny's definition has relatively large errors, with an average of 12.8%. Accordingly, it is confirmed that the THD relation is the more accurate hydraulic diameter definition for a porous medium. Ultimately, the corrected definition can contribute to more reliable determinations of the other characteristic parameters and more reasonable porous flow analyses.

  6. Characterization of fiber diameter using image analysis

    NASA Astrophysics Data System (ADS)

    Baheti, S.; Tunak, M.

    2017-10-01

    Due to high surface area and porosity, the applications of nanofibers have increased in recent years. In the production process, determination of average fiber diameter and fiber orientation is crucial for quality assessment. The objective of present study was to compare the relative performance of different methods discussed in literature for estimation of fiber diameter. In this work, the existing automated fiber diameter analysis software packages available in literature were developed and validated based on simulated images of known fiber diameter. Finally, all methods were compared for their reliable and accurate estimation of fiber diameter in electro spun nanofiber membranes based on obtained mean and standard deviation.

  7. Fundamental Studies of Crystal Growth of Microporous Materials

    NASA Technical Reports Server (NTRS)

    Dutta, P.; George, M.; Ramachandran, N.; Schoeman, B.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (1) Nature of the molecular units responsible for the crystal nuclei formation; (2) Nature of the nuclei and nucleation process; (3) Growth process of the nuclei into crystal; (4) Morphological control and size of the resulting crystal; (5) Surface structure of the resulting crystals; (6) Transformation of frameworks into other frameworks or condensed structures. The NASA-funded research described in this report focuses to varying degrees on all of the above issues and has been described in several publications. Following is the presentation of the highlights of our current research program. The report is divided into five sections: (1) Fundamental aspects of the crystal growth process; (2) Morphological and Surface properties of crystals; (3) Crystal dissolution and transformations; (4) Modeling of Crystal Growth; (5) Relevant Microgravity Experiments.

  8. Structural studies of the crystallisation of microporous materials

    NASA Astrophysics Data System (ADS)

    Davies, Andrew Treharne

    A range of powerful synchrotron radiation characterisation techniques have been used to study fundamental aspects of the fonnation of microporous solids, specifically alumi nosilicates, heteroatom substituted aluminophosphates and titanosilicates. This work has been performed with the aim of investigating in situ the structural changes occurring during crystallisation and post synthetic treatment. In situ EDXRD was used to follow the crystallisation of these materials under a wide range of synthesis conditions using a hydrothermal cell and a solid-state detector array. A quantitative analysis of the crystallisation kinetics was performed for the large pore aluminosilicate, zeolite A, using a simple mathematical model to calculate the activation energy of formation. The results obtained were found to closely agree with both the experimental results and theoretical models of others. A qualitative study of the effect of altering the synthesis conditions was also investigated for this material. Similar kinetic studies were then performed for a range of microporous aluminophosphates and their cobalt substituted derivatives in order to follow the effects of varying synthesis conditions such as the synthesis temperature, organic template type, and cobalt concentration. Distinct trends were noted in the formation times, stability and nature of the resulting crystalline phases as conditions were varied. The relationship between the cobalt and organic template molecules during crystallisation was considered in some detail with reference to other experimental data and theoretical models. The alumi nophosphate studies were subsequently extended to a range of other heteroatom substituted aluminophosphates, using in situ EDXRD, complimented by EXAFS, which allowed investigation of the local environments around the heteroatoms within the microporous structure. EDXRD and EXAFS studies have been performed on the microporous titanosilicate, ETS-10, while the thermal stability of this material has also been investigated in situ using synchrotron X-ray diffraction in conjunction with a high temperature environmental cell.

  9. Diagenesis and porosity preservation in Eocene microporous limestones, South Florida, USA

    NASA Astrophysics Data System (ADS)

    Maliva, Robert G.; Missimer, Thomas M.; Clayton, Edward A.; Dickson, J. A. D.

    2009-05-01

    Microporous limestones may contain immobile, capillary-bound (irreducible) water that is only in diffusional contact with mobile pore waters or in some reservoirs may contain producible hydrocarbons. The preservation and distribution of microporosity impact both subsurface fluid flow and solute transport. The diagenesis of microporous limestones has received relatively little attention because their very fine grains and cements are not amenable to standard analytical methods. The Ocala Limestone (Upper Eocene) and upper Avon Park Formation (Middle Eocene) in South Florida contain microporous micritic limestones (mudstones to packstones) that are at an intermediate stage of diagenesis. The limestones have been exposed to the active near-surface environment, but have not yet reached a burial depth sufficient for intense chemical compaction and associated porosity reduction. Nuclear magnetic resonance (NMR) logging allowed for the quantification of total porosity, pore-size distribution, and permeability. The Ocala Limestone and Avon Park Formation have different predominant microfacies and porosity size distributions, but yet both retain total porosities predominantly between 35% and 37%. Estimated microporosities range mostly between 12% and 45%. The mudstones and wackestones of the Ocala Limestone have significantly lower permeabilities (mostly 3 to 12 md) than the wackestones to grainstones of the Avon Park Formation (commonly in the 100 to 3000 md range), which have more mixed and overall coarser pore sizes. Computer modeling using carbon and oxygen stable data indicates that the studied microporous limestones underwent only a low degree of chemical diagenetic alteration, despite likely experiencing episodes of freshwater flushing associated with post-depositional sea-level lowstands. The Ocala Limestone and Avon Park Formation limestones illustrate the general concept that total porosity is often largely preserved through early diagenesis (although may undergo intra-formational redistribution) and that confined aquifers are diagenetic quiescent environments.

  10. Revisiting elastic anisotropy of biotite gneiss from the Outokumpu scientific drill hole based on new texture measurements and texture-based velocity calculations

    NASA Astrophysics Data System (ADS)

    Wenk, H.-R.; Vasin, R. N.; Kern, H.; Matthies, S.; Vogel, S. C.; Ivankina, T. I.

    2012-10-01

    A sample of biotite gneiss from the Outokumpu deep drilling project in Finland was investigated by Kern et al. (2008) for crystal preferred orientation and elastic anisotropy. Considerable differences between measured acoustic velocities and velocities calculated on the basis of texture patterns were observed. Measured P-wave anisotropy was 15.1% versus a Voigt average yielding 7.9%. Here we investigate the same sample with different methods and using different averaging techniques. Analyzing time-of-flight neutron diffraction data from Dubna-SKAT and LANSCE-HIPPO diffractometers with the Rietveld technique, much stronger preferred orientation for biotite is determined, compared to conventional pole-figure analysis reported previously. The comparison reveals important differences: HIPPO has much better counting statistics but pole figure coverage is poor. SKAT has better angular resolution. Using the new preferred orientation data and applying a self-consistent averaging method that takes grain shapes into account, close agreement of calculated and measured P-wave velocities is observed (12.6%). This is further improved by adding 0.1 vol.% flat micropores parallel to the biotite platelets in the simulation (14.9%).

  11. Covalent organic framework-derived microporous carbon nanoparticles coated with conducting polypyrrole as an electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Kim, Dong Jun; Yoon, Jung Woon; Lee, Chang Soo; Bae, Youn-Sang; Kim, Jong Hak

    2018-05-01

    We report a high-performance electrochemical capacitor based on covalent organic framework (COF)-derived microporous carbon (MPC) nanoparticles and electrochemically polymerized polypyrrole (Ppy) as a pseudocapacitive material. The COF, Schiff-based network-1 (SNW-1) nanoparticles are prepared via a condensation reaction between melamine and terephthalaldehyde, and the resultant MPC film is prepared via a screen-printing method. The MPC film exhibits a bimodal porous structure with micropores and macropores, resulting in both a large surface area and good electrolyte infiltration. Ppy is synthesized potentio-statically (0.8 V vs. Ag/AgCl) by varying the reaction time, and successful synthesis of Ppy is confirmed via Raman spectroscopy. The specific capacitance with the Ppy coating is enhanced by up to 2.55 F cm-2 due to the synergetic effect of pseudocapacitance and reduced resistance.

  12. Microporous structure with layered interstitial surface treatment, and method and apparatus for preparation thereof

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1994-01-01

    A microporous structure with layered interstitial surface treatments, and method and apparatus for preparation thereof is presented. The structure is prepared by sequentially subjecting a uniformly surface-treated structure to atomic oxygen treatment to remove an outer layer of surface treatment to a generally uniform depth, and then surface treating the so exposed layer with another surface treating agent. The atomic oxygen/surface treatment steps may optionally be repeated, each successive time to a lesser depth, to produce a microporous structure having multilayered surface treatments. The apparatus employs at least one side arm from a main atomic oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.

  13. Microporous structure with layered interstitial surface treatment, and method and apparatus for preparation thereof

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1992-01-01

    A microporous structure with layered interstitial surface treatments, and the method and apparatus for its preparation are disclosed. The structure is prepared by sequentially subjecting a uniformly surface treated structure to atomic oxygen treatment to remove an outer layer of surface treatment to a generally uniform depth, and then surface treating the so exposed layer with another surface treating agent. The atomic oxygen/surface treatment steps may optionally be repeated, each successive time to a lesser depth, to produce a microporous structure having multilayered surface treatments. The apparatus employs at least one side arm from a main oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.

  14. Zeolite-templated carbons - three-dimensional microporous graphene frameworks.

    PubMed

    Nishihara, H; Kyotani, T

    2018-05-31

    Zeolite-templated carbons (ZTCs) are ordered microporous carbons synthesized by using zeolite as a sacrificial template. Unlike well-known ordered mesoporous carbons obtained by using mesoporous silica templates, ZTCs consist of curved and single-layer graphene frameworks, thereby affording uniform micropore size (ca. 1.2 nm), developed microporosity (∼1.7 cm3 g-1), very high surface area (∼4000 m2 g-1), good compatibility with chemical modification, and remarkable softness/elasticity. Thus, ZTCs have been used in many applications such as hydrogen storage, methane storage, CO2 capture, liquid-phase adsorption, catalysts, electrochemical capacitors, batteries, and fuel cells. Herein, the relevant research studies are summarized, and the properties as well as the performances of ZTCs are compared with those of other materials including metal-organic frameworks, to elucidate the intrinsic advantages of ZTCs and their future development.

  15. Aperture averaging in strong oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Gökçe, Muhsin Caner; Baykal, Yahya

    2018-04-01

    Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.

  16. Fabrication of chitosan/gallic acid 3D microporous scaffold for tissue engineering applications.

    PubMed

    Thangavel, Ponrasu; Ramachandran, Balaji; Muthuvijayan, Vignesh

    2016-05-01

    This study explores the potential of gallic acid incorporated chitosan (CS/GA) 3D scaffolds for tissue engineering applications. Scaffolds were prepared by freezing and lyophilization technique and characterized. FTIR spectra confirmed the presence of GA in chitosan (CS) gel. DSC and TGA analysis revealed that the structure of chitosan was not altered due to the incorporation of GA, but thermal stability was significantly increased compared to the CS scaffold. SEM micrographs showed smooth, homogeneous, and microporous architecture of the scaffolds with good interconnectivity. CS/GA scaffolds exhibited approximately 90% porosity on average, increased swelling (600-900%) and controlled biodegradation (15-40%) in PBS (pH 7.4 at 37°C) with 1 mg/mL of lysozyme. CS/GA scaffolds showed 2-4 fold decrease in CFUs (p < 0.05) for both gram positive and gram negative bacteria compared to the CS scaffold. Cytotoxicity of these scaffolds was evaluated using NIH 3T3 L1 fibroblast cells. CS/GA 0.25% scaffold showed similar viability with CS scaffold at 24 and 48 h. CS/GA scaffolds (0.5-1.0%) showed 60-75% viability at 24 h and 90% at 48 h. SEM images showed that an increased cell attachment was observed for CS/GA scaffolds compared to CS scaffolds. These findings authenticate that CS/GA scaffolds were cytocompatible and would be useful for tissue engineering applications. © 2015 Wiley Periodicals, Inc.

  17. Limitations of disordered carbons obtained from biomass as anodes for real lithium-ion batteries.

    PubMed

    Caballero, Alvaro; Hernán, Lourdes; Morales, Julián

    2011-05-23

    Two disordered microporous carbons were obtained from two different types of biomass residues: olive and cherry stones. The former (OS) was activated physically under steam while the latter (CS) chemically with an aqueous solution of ZnCl(2). Their structural and textural properties were studied by X-ray diffraction, scanning electron microscopy, and N(2) adsorption/desorption. Although the samples possess similar textural properties (BET surface areas, micropore surfaces and volumes), the CS carbon is more disordered than the OS carbon. Their electrochemical response in half-cells (CS[OS]/Li) is good; the values are comparable to those obtained from mesocarbon microbeads commonly used in commercial lithium-ion batteries, which consist of highly graphitized carbon. However, cells featuring the OS or CS carbon as anode and LiMn(2)O(4) as cathode perform poorly. Electrochemical activation of the electrodes against lithium metal, a recommended procedure for boosting the electrochemical properties of real lithium-ion batteries, improves cell performance (particularly with OS) but is ultimately ineffective: the delivered average capacity of the activated cell made from OS was less than half its theoretical value. The high irreversible capacity, high polarization between the charge and discharge curves, combined with the presence of various functional groups and the high disorder of the studied carbons which may facilitate side reactions such as electrolyte decomposition, results in a degraded cell performance. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Electromigration and Deposition of Micro-Scale Calcium Carbonate Structures with Controlled Morphology and Polymorphism

    DTIC Science & Technology

    2013-04-01

    precipitation of calcium carbonate in structured templates including microporous polycarbonate membranes and polyethylene foams. Para- meters...polyethylene foam). Microporous polycarbonate membranes and Medium-Density PolyEthylene (MDPE) foam specimens were used as the porous organic...voids in hardened concrete. DOI:10.1520/C624-06. West Conshohocken, PA: ASTM International . www.astm.org. Bersa, L., and M. Liu. 2007. A review on

  19. Long range self-assembly of polythiophene breath figures: Optical and morphological characterization

    DOE PAGES

    Routh, Prahlad K.; Nykypanchuk, Dmytro; Venkatesh, T. A.; ...

    2015-09-01

    Large area, device relevant sized microporous thin films are formed with commercially available polythiophenes by the breath figure technique, a water-assisted micro patterning method, with such semitransparent thin films exhibiting periodicity and uniformity dictated by the length of the polymer side chain. Compared to drop casted thin films, the microporous thin films exhibit increased crystallinity due to stronger packing of the polymer inside the honeycomb frame.

  20. Finite element simulation of a novel composite light-weight microporous cladding panel

    NASA Astrophysics Data System (ADS)

    Tian, Lida; Wang, Dongyan

    2018-04-01

    A novel composite light-weight microporous cladding panel with matched connection detailing is developed. Numerical simulation on the experiment is conducted by ABAQUS. The accuracy and rationality of the finite element model is verified by comparison between the simulation and the experiment results. It is also indicated that the novel composite cladding panel is of desirable bearing capacity, stiffness and deformability under out-of-plane load.

  1. Experimental Study on Composite Light-weight Microporous Concrete Cladding Panels

    NASA Astrophysics Data System (ADS)

    Lida, Tian; Dongyan, Wang; Kang, Liu

    2018-03-01

    A new type of composite light-weight microporous concrete cladding panel was developed, with the compound function of retaining and heat preservation. Two specimens of the new cladding panel and connection detailing were made for out-of-plane bending experiment. The results indicate that the new cladding panel and its connection detailing are of sufficient stiffness, bearing capacity and deformability under wind load and out-of-plane seismic action.

  2. Preparation of hierarchical porous carbon from waste printed circuit boards for high performance electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Du, Xuan; Wang, Li; Zhao, Wei; Wang, Yi; Qi, Tao; Li, Chang Ming

    2016-08-01

    Renewable clean energy and resources recycling have become inevitable choices to solve worldwide energy shortages and environmental pollution problems. It is a great challenge to recycle tons of waste printed circuit boards (PCB) produced every year for clean environment while creating values. In this work, low cost, high quality activated carbons (ACs) were synthesized from non-metallic fractions (NMF) of waste PCB to offer a great potential for applications of electrochemical double-layer capacitors (EDLCs). After recovering metal from waste PCB, hierarchical porous carbons were produced from NMF by carbonization and activation processes. The experimental results exhibit that some pores were formed after carbonization due to the escape of impurity atoms introduced by additives in NMF. Then the pore structure was further tailored by adjusting the activation parameters. Roles of micropores and non-micropores in charge storage were investigated when the hierarchical porous carbons were applied as electrode of EDLCs. The highest specific capacitance of 210 F g-1 (at 50 mA g-1) and excellent rate capability were achieved when the ACs possessing a proper micropores/non-micropores ratio. This work not only provides a promising method to recycle PCB, but also investigates the structure tailoring arts for a rational hierarchical porous structure in energy storage/conversion.

  3. Towards high water permeability in triazine-framework-based microporous membranes for dehydration of ethanol.

    PubMed

    Tang, Yu Pan; Wang, Huan; Chung, Tai Shung

    2015-01-01

    The microstructural evolution of a series of triazine framework-based microporous (TFM) membranes under different conditions has been explored in this work. The pristine TFM membrane is in situ fabricated in the course of polymer synthesis via a facile Brønsted-acid-catalyzed cyclotrimerizaiton reaction. The as-synthesized polymer exhibits a microporous network with high thermal stability. The free volume size of the TFM membranes gradually evolved from a unimodal distribution to a bimodal distribution under annealing, as analyzed by positron annihilation lifetime spectroscopy (PALS). The emergence of the bimodal distribution is probably ascribed to the synergetic effect of quenching and thermal cyclization reaction. In addition, the fractional free volume (FFV) of the membranes presents a concave trend with increasing annealing temperature. Vapor sorption tests reveal that the mass transport properties are closely associated with the free volume evolution, which provides an optimal condition for dehydration of biofuels. A promising separation performance with extremely high water permeability has been attained for dehydration of an 85 wt % ethanol aqueous solution at 45 °C. The study on the free volume evolution of the TFM membranes may provide useful insights about the microstructure and mass transport behavior of the microporous polymeric materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. CO 2 capture in the sustainable wheat-derived activated microporous carbon compartments

    DOE PAGES

    Hong, Seok -Min; Jang, Eunji; Dysart, Arthur D.; ...

    2016-10-04

    Here, microporous carbon compartments (MCCs) were developed via controlled carbonization of wheat flour producing large cavities that allow CO 2 gas molecules to access micropores and adsorb effectively. KOH activation of MCCs was conducted at 700 °C with varying mass ratios of KOH/C ranging from 1 to 5, and the effects of activation conditions on the prepared carbon materials in terms of the characteristics and behavior of CO 2 adsorption were investigated. Textural properties, such as specific surface area and total pore volume, linearly increased with the KOH/C ratio, attributed to the development of pores and enlargement of pores withinmore » carbon. The highest CO 2 adsorption capacities of 5.70 mol kg -1 at 0 °C and 3.48 mol kg -1 at 25 °C were obtained for MCC activated with a KOH/C ratio of 3 (MCC-K3). In addition, CO 2 adsorption uptake was significantly dependent on the volume of narrow micropores with a pore size of less than 0.8 nm rather than the volume of larger pores or surface area. MCC-K3 also exhibited excellent cyclic stability, facile regeneration, and rapid adsorption kinetics. As compared to the pseudofirst-order model, the pseudo-second-order kinetic model described the experimental adsorption data methodically.« less

  5. Track-Etched Magnetic Micropores for Immunomagnetic Isolation of Pathogens

    PubMed Central

    Muluneh, Melaku; Shang, Wu

    2014-01-01

    A microfluidic chip is developed to selectively isolate magnetically tagged cells from heterogeneous suspensions, the track-etched magnetic micropore (TEMPO) filter. The TEMPO consists of an ion track-etched polycarbonate membrane coated with soft magnetic film (Ni20Fe80). In the presence of an applied field, provided by a small external magnet, the filter becomes magnetized and strong magnetic traps are created along the edges of the micropores. In contrast to conventional microfluidics, fluid flows vertically through the porous membrane allowing large flow rates while keeping the capture rate high and the chip compact. By utilizing track-etching instead of conventional semiconductor fabrication, TEMPOs can be fabricated with microscale pores over large areas A > 1 cm2 at little cost (< 5 ¢ cm−2). To demonstrate the utility of this platform, a TEMPO with 5 μm pore size is used to selectively and rapidly isolate immunomagnetically targeted Escherichia coli from heterogeneous suspensions, demonstrating enrichment of ζ > 500 at a flow rate of Φ = 5 mL h−1. Furthermore, the large density of micropores (ρ = 106 cm−2) allows the TEMPO to sort E. coli from unprocessed environmental and clinical samples, as the blockage of a few pores does not significantly change the behavior of the device. PMID:24535921

  6. Influence of size, shape, and flexibility on bacterial passage through micropore membrane filters.

    PubMed

    Wang, Yingying; Hammes, Frederik; Düggelin, Marcel; Egli, Thomas

    2008-09-01

    Sterilization of fluids by means of microfiltration is commonly applied in research laboratories as well as in pharmaceutical and industrial processes. Sterile micropore filters are subject to microbiological validation, where Brevundimonas diminuta is used as a standard test organism. However, several recent reports on the ubiquitous presence of filterable bacteria in aquatic environments have cast doubt on the accuracy and validity of the standard filter-testing method. Six different bacterial species of various sizes and shapes (Hylemonella gracilis, Escherichia coli, Sphingopyxis alaskensis, Vibrio cholerae, Legionella pneumophila, and B. diminuta) were tested for their filterability through sterile micropore filters. In all cases, the slender spirillum-shaped Hylemonella gracilis cells showed a superior ability to pass through sterile membrane filters. Our results provide solid evidence that the overall shape (including flexibility), instead of biovolume, is the determining factor for the filterability of bacteria, whereas cultivation conditions also play a crucial role. Furthermore, the filtration volume has a more important effect on the passage percentage in comparison with other technical variables tested (including flux and filter material). Based on our findings, we recommend a re-evaluation of the grading system for sterile filters, and suggest that the species Hylemonella should be considered as an alternative filter-testing organism for the quality assessment of micropore filters.

  7. CO2 Capture in the Sustainable Wheat-Derived Activated Microporous Carbon Compartments

    NASA Astrophysics Data System (ADS)

    Hong, Seok-Min; Jang, Eunji; Dysart, Arthur D.; Pol, Vilas G.; Lee, Ki Bong

    2016-10-01

    Microporous carbon compartments (MCCs) were developed via controlled carbonization of wheat flour producing large cavities that allow CO2 gas molecules to access micropores and adsorb effectively. KOH activation of MCCs was conducted at 700 °C with varying mass ratios of KOH/C ranging from 1 to 5, and the effects of activation conditions on the prepared carbon materials in terms of the characteristics and behavior of CO2 adsorption were investigated. Textural properties, such as specific surface area and total pore volume, linearly increased with the KOH/C ratio, attributed to the development of pores and enlargement of pores within carbon. The highest CO2 adsorption capacities of 5.70 mol kg-1 at 0 °C and 3.48 mol kg-1 at 25 °C were obtained for MCC activated with a KOH/C ratio of 3 (MCC-K3). In addition, CO2 adsorption uptake was significantly dependent on the volume of narrow micropores with a pore size of less than 0.8 nm rather than the volume of larger pores or surface area. MCC-K3 also exhibited excellent cyclic stability, facile regeneration, and rapid adsorption kinetics. As compared to the pseudo-first-order model, the pseudo-second-order kinetic model described the experimental adsorption data methodically.

  8. Solvo-thermal synthesis of a unique alkaline earth-transition Ba-Cd micro-porous coordination framework as hetero-metallic luminescent sensor for Cu2+ and real-time detection of benzaldehyde

    NASA Astrophysics Data System (ADS)

    Ding, Bin; Ma, Dian Xue; Zhang, Hui Min; Meng, Xin; Qiu, Rong Rong; Ren, Rong; Wu, Jie; Wu, Xiang Xia; Huo, Jian Zhong; Liu, Yuan Yuan; Shi, Xue Fang

    2018-06-01

    In this work a unique hetero-metallic alkaline earth-transition Ba-Cd luminescent micro-porous metal-organic framework {[BaCd(μ6-tp)1.5(μ2-Cl)(H2O) (DMF)2]·0.75H2O}n (H2tp = terephthalic acid) (1) has been prepared under solvo-thermal conditions. In 1 infinite 1D {Ba-X-Cd} (X = O, Cl) inorganic chains are linked via these full de-pronated tp2- ligands forming a unique 3D I1O2 type micro-porous coordination framework. PXRD patterns of 1 have been determined confirming pure phases of 1. Luminescence investigations suggested that 1 exhibits highly selective and sensitive sensing for trace amounts of benzaldehyde in ethanol, which provides a facile method for real-time detection of benzaldehyde. Meanwhile 1 also exhibits highly selective and sensitive sensing for Cu2+ over other cations with high quenching efficiency Ksv value 1.15 × 104 L·mol-1. As far as we know, 1 represents the first example of alkaline earth-transition hetero-metallic Ba-Cd micro-porous coordination framework as bi-functional luminescent probes for Cu2+ and benzaldehyde.

  9. New laser media based on microporous glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altshuler, G.B.; Bakanov, V.A.; Dulneva, E.G.

    The results of the investigation of new class of the laser media based on dye solutions impregnated microporous glasses are presented. Based on such media highly effective active elements of tunable dye lasers and passive modulators for solid-state lasers are created. This article is devoted to laser media of the new type - the heterogenous solid-liquid media on the basis of the impregnated by the solutions of the dyes of the microporous glasses. The microporous glasses represent themselves the products of the leaching of heat - treated sodium borosilicate glasses of a certain composition range. As a result of heatmore » treatment is realized the phase separated glass. It consists of two interconnected phases: the silica rich phase and the chemical unstable sodium - borate - rich phase. If we place this glass in the acid then the ions of sodium and borate will be transfered to the solution. As a result we obtain the porous glass and this process produces the continuous claster. Therefore it could be easily impregnated by liquids and gases. We now have the technology that permits us to obtain the samples with the volume porosity from ten to fifty percent and the size of this poroses could be varied from twenty angstroms up to one thousand angstroms.« less

  10. A single-ligand ultra-microporous MOF for precombustion CO2 capture and hydrogen purification

    PubMed Central

    Nandi, Shyamapada; De Luna, Phil; Daff, Thomas D.; Rother, Jens; Liu, Ming; Buchanan, William; Hawari, Ayman I.; Woo, Tom K.; Vaidhyanathan, Ramanathan

    2015-01-01

    Metal organic frameworks (MOFs) built from a single small ligand typically have high stability, are rigid, and have syntheses that are often simple and easily scalable. However, they are normally ultra-microporous and do not have large surface areas amenable to gas separation applications. We report an ultra-microporous (3.5 and 4.8 Å pores) Ni-(4-pyridylcarboxylate)2 with a cubic framework that exhibits exceptionally high CO2/H2 selectivities (285 for 20:80 and 230 for 40:60 mixtures at 10 bar, 40°C) and working capacities (3.95 mmol/g), making it suitable for hydrogen purification under typical precombustion CO2 capture conditions (1- to 10-bar pressure swing). It exhibits facile CO2 adsorption-desorption cycling and has CO2 self-diffusivities of ~3 × 10−9 m2/s, which is two orders higher than that of zeolite 13X and comparable to other top-performing MOFs for this application. Simulations reveal a high density of binding sites that allow for favorable CO2-CO2 interactions and large cooperative binding energies. Ultra-micropores generated by a small ligand ensures hydrolytic, hydrostatic stabilities, shelf life, and stability toward humid gas streams. PMID:26824055

  11. Transcutaneous vaccination via laser microporation

    PubMed Central

    Weiss, Richard; Hessenberger, Michael; Kitzmüller, Sophie; Bach, Doris; Weinberger, Esther E.; Krautgartner, Wolf D.; Hauser-Kronberger, Cornelia; Malissen, Bernard; Boehler, Christof; Kalia, Yogeshvar N.; Thalhamer, Josef; Scheiblhofer, Sandra

    2012-01-01

    Driven by constantly increasing knowledge about skin immunology, vaccine delivery via the cutaneous route has recently gained renewed interest. Considering its richness in immunocompetent cells, targeting antigens to the skin is considered to be more effective than intramuscular or subcutaneous injections. However, circumvention of the superficial layer of the skin, the stratum corneum, represents the major challenge for cutaneous immunization. An optimal delivery method has to be effective and reliable, but also highly adaptable to specific demands, should avoid the use of hypodermic needles and the requirement of specially trained healthcare workers. The P.L.E.A.S.E.® (Precise Laser Epidermal System) device employed in this study for creation of aqueous micropores in the skin fulfills these prerequisites by combining the precision of its laser scanning technology with the flexibility to vary the number, density and the depth of the micropores in a user-friendly manner. We investigated the potential of transcutaneous immunization via laser-generated micropores for induction of specific immune responses and compared the outcomes to conventional subcutaneous injection. By targeting different layers of the skin we were able to bias polarization of T cells, which could be modulated by addition of adjuvants. The P.L.E.A.S.E.® device represents a highly effective and versatile platform for transcutaneous vaccination. PMID:22750193

  12. Synthesis of N-doped microporous carbon via chemical activation of polyindole-modified graphene oxide sheets for selective carbon dioxide adsorption.

    PubMed

    Saleh, Muhammad; Chandra, Vimlesh; Kemp, K Christian; Kim, Kwang S

    2013-06-28

    A polyindole-reduced graphene oxide (PIG) hybrid was synthesized by reducing graphene oxide sheets in the presence of polyindole. We have shown PIG as a material for capturing carbon dioxide (CO2). The PIG hybrid was chemically activated at temperatures of 400-800 °C, which resulted in nitrogen (N)-doped graphene sheets. The N-doped graphene sheets are microporous with an adsorption pore size of 0.6 nm for CO2 and show a maximum (Brunauer, Emmet and Teller) surface area of 936 m(2) g(-1). The hybrid activated at 600 °C (PIG6) possesses a surface area of 534 m(2) g(-1) and a micropore volume of 0.29 cm(3) g(-1). PIG6 shows a maximum CO2 adsorption capacity of 3.0 mmol g(-1) at 25 °C and 1 atm. This high CO2 uptake is due to the highly microporous character of the material and its N content. The material retains its original adsorption capacity on recycling even after 10 cycles (within experimental error). PIG6 also shows high adsorption selectivity ratios for CO2 over N2, CH4 and H2 of 23, 4 and 85 at 25 °C, respectively.

  13. Solvo-thermal synthesis of a unique alkaline earth-transition Ba-Cd micro-porous coordination framework as hetero-metallic luminescent sensor for Cu2+ and real-time detection of benzaldehyde.

    PubMed

    Ding, Bin; Ma, Dian Xue; Zhang, Hui Min; Meng, Xin; Qiu, Rong Rong; Ren, Rong; Wu, Jie; Wu, Xiang Xia; Huo, Jian Zhong; Liu, Yuan Yuan; Shi, Xue Fang

    2018-06-15

    In this work a unique hetero-metallic alkaline earth-transition Ba-Cd luminescent micro-porous metal-organic framework {[BaCd(μ 6 -tp) 1.5 (μ 2 -Cl)(H 2 O) (DMF) 2 ]·0.75H 2 O} n (H 2 tp=terephthalic acid) (1) has been prepared under solvo-thermal conditions. In 1 infinite 1D {Ba-X-Cd} (X=O, Cl) inorganic chains are linked via these full de-pronated tp 2- ligands forming a unique 3D I 1 O 2 type micro-porous coordination framework. PXRD patterns of 1 have been determined confirming pure phases of 1. Luminescence investigations suggested that 1 exhibits highly selective and sensitive sensing for trace amounts of benzaldehyde in ethanol, which provides a facile method for real-time detection of benzaldehyde. Meanwhile 1 also exhibits highly selective and sensitive sensing for Cu 2+ over other cations with high quenching efficiency K sv value 1.15×10 4 L·mol -1 . As far as we know, 1 represents the first example of alkaline earth-transition hetero-metallic Ba-Cd micro-porous coordination framework as bi-functional luminescent probes for Cu 2+ and benzaldehyde. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. The influence of partial cutting on mountain pine beetle-caused tree mortality in Black Hills ponderosa pine stands

    Treesearch

    J.M. Schmid; S.A. Mata; R.R. Kessler; J.B. Popp

    2007-01-01

    Ponderosa pine stands were partially cut to various stocking levels at five locations, periodically surveyed, and remeasured during the 20 years after installation. Mean diameter generally increased 2 inches over the 20-year period on most partially cut plots and less than 2 inches on unmanaged controls. Average diameter growth for diameter classes in partially cut...

  15. Hierarchically assembled Au microspheres and sea urchin-like architectures: formation mechanism and SERS study.

    PubMed

    Wang, Xiansong; Yang, Da-Peng; Huang, Peng; Li, Min; Li, Chao; Chen, Di; Cui, Daxiang

    2012-12-21

    The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of the resulting products. Two different growth mechanisms are proposed. The study on surface enhanced Raman scattering (SERS) activities is also carried out between Au microspheres and Au sea urchin-like architectures. It is found that Au urchin-like architectures possess much higher SERS activity than the Au microspheres. Our work may shed light on the design and synthesis of hierarchically self-assembled 3D micro/nano-architectures for SERS, catalysis and biosensors.

  16. Attenuation-based size metric for estimating organ dose to patients undergoing tube current modulated CT exams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Lu, Peiyun

    2015-02-15

    Purpose: Task Group 204 introduced effective diameter (ED) as the patient size metric used to correlate size-specific-dose-estimates. However, this size metric fails to account for patient attenuation properties and has been suggested to be replaced by an attenuation-based size metric, water equivalent diameter (D{sub W}). The purpose of this study is to investigate different size metrics, effective diameter, and water equivalent diameter, in combination with regional descriptions of scanner output to establish the most appropriate size metric to be used as a predictor for organ dose in tube current modulated CT exams. Methods: 101 thoracic and 82 abdomen/pelvis scans frommore » clinically indicated CT exams were collected retrospectively from a multidetector row CT (Sensation 64, Siemens Healthcare) with Institutional Review Board approval to generate voxelized patient models. Fully irradiated organs (lung and breasts in thoracic scans and liver, kidneys, and spleen in abdominal scans) were segmented and used as tally regions in Monte Carlo simulations for reporting organ dose. Along with image data, raw projection data were collected to obtain tube current information for simulating tube current modulation scans using Monte Carlo methods. Additionally, previously described patient size metrics [ED, D{sub W}, and approximated water equivalent diameter (D{sub Wa})] were calculated for each patient and reported in three different ways: a single value averaged over the entire scan, a single value averaged over the region of interest, and a single value from a location in the middle of the scan volume. Organ doses were normalized by an appropriate mAs weighted CTDI{sub vol} to reflect regional variation of tube current. Linear regression analysis was used to evaluate the correlations between normalized organ doses and each size metric. Results: For the abdominal organs, the correlations between normalized organ dose and size metric were overall slightly higher for all three differently (global, regional, and middle slice) reported D{sub W} and D{sub Wa} than they were for ED, but the differences were not statistically significant. However, for lung dose, computed correlations using water equivalent diameter calculated in the middle of the image data (D{sub W,middle}) and averaged over the low attenuating region of lung (D{sub W,regional}) were statistically significantly higher than correlations of normalized lung dose with ED. Conclusions: To conclude, effective diameter and water equivalent diameter are very similar in abdominal regions; however, their difference becomes noticeable in lungs. Water equivalent diameter, specifically reported as a regional average and middle of scan volume, was shown to be better predictors of lung dose. Therefore, an attenuation-based size metric (water equivalent diameter) is recommended because it is more robust across different anatomic regions. Additionally, it was observed that the regional size metric reported as a single value averaged over a region of interest and the size metric calculated from a single slice/image chosen from the middle of the scan volume are highly correlated for these specific patient models and scan types.« less

  17. The analysis of corneal asphericity (Q value) and its related factors of 1,683 Chinese eyes older than 30 years.

    PubMed

    Xiong, Ying; Li, Jing; Wang, Ningli; Liu, Xue; Wang, Zhao; Tsai, Frank F; Wan, Xiuhua

    2017-01-01

    To determine corneal Q value and its related factors in Chinese subjects older than 30 years. Cross sectional study. 1,683 participants (1,683 eyes) from the Handan Eye Study were involved, including 955 female and 728 male with average age of 53.64 years old (range from 30 to 107 years). The corneal Q values of anterior and posterior surfaces were measured at 3.0, 5.0 and 7.0mm aperture diameters using Bausch & Lomb Orbscan IIz (software version 3.12). Age, gender and refractive power were recorded. The average Q values of the anterior surface at 3.0, 5.0 and 7.0mm aperture diameters were -0.28±0.18, -0.28±0.18, and -0.29±0.18, respectively. The average Q value of the anterior surface at the 5.0mm aperture diameter was negatively correlated with age (B = -0.003, p<0.01) and the refractive power (B = -0.013, p = 0.016). The average Q values of the posterior surface at 3.0, 5.0, and 7.0mm were -0.26±0.216, -0.26±0.214, and -0.26±0.215, respectively. The average Q value of the posterior surface at the 5.0mm aperture diameter was positively correlated with age (B = 0.002, p = 0.036) and the refractive power (B = 0.016, p = 0.043). The corneal Q value of the elderly Chinese subjects is different from that of previously reported European and American subjects, and the Q value appears to be correlated with age and refractive power.

  18. Growth, chamber building rate and reproduction time of Palaeonummulites venosus under natural conditions.

    NASA Astrophysics Data System (ADS)

    Kinoshita, Shunichi; Eder, Wolfgang; Wöger, Julia; Hohenegger, Johann; Briguglio, Antonino

    2017-04-01

    Investigations on Palaeonummulites venosus using the natural laboratory approach for determining chamber building rate, test diameter increase rate, reproduction time and longevity is based on the decomposition of monthly obtained frequency distributions based on chamber number and test diameter into normal-distributed components. The shift of the component parameters 'mean' and 'standard deviation' during the investigation period of 15 months was used to calculate Michaelis-Menten functions applied to estimate the averaged chamber building rate and diameter increase rate under natural conditions. The individual dates of birth were estimated using the inverse averaged chamber building rate and the inverse diameter increase rate fitted by the individual chamber number or the individual test diameter at the sampling date. Distributions of frequencies and densities (i.e. frequency divided by sediment weight) based on chamber building rate and diameter increase rate resulted both in a continuous reproduction through the year with two peaks, the stronger in May /June determined as the beginning of the summer generation (generation1) and the weaker in November determined as the beginning of the winter generation (generation 2). This reproduction scheme explains the existence of small and large specimens in the same sample. Longevity, calculated as the maximum difference in days between the individual's birth date and the sampling date seems to be round about one year, obtained by both estimations based on the chamber building rate and the diameter increase rate.

  19. Harvesting Productionin Uneven-Aged Loblolly-Shortleaf Pine Stands:The Crossett Farm Forestry Forties

    Treesearch

    R. Kluender; B. Stokes; S. Woodfin

    1992-01-01

    Twostands managed using uneven-aged techniques werehar- vested aspar-t of a5-year entry schedule. Felling and skidding productivity varied significantly with average stem diameter and volume and was affected by diameter distribution of the removed material.

  20. Development of the Statocyst in the Freshwater Snail Biomphalaria Glabrata (Pulmonata, Basommatophora)

    NASA Technical Reports Server (NTRS)

    Gao, Wenyuan; Wiederhold, Michael; Hejl, Robert

    1997-01-01

    The development of the statocyst of the freshwater snail Biomphalaria glabrata has been examined from embryo to adult. Special emphasis was put on the growth of the statoconia in the statocysts. In the statocysts of embryonic snails (90-120 h after oviposition) there is not a single statolith but an average of 40-50 statoconia per statocyst. The number of statoconia increases to 385-400 when the snails reach a shell diameter of 4 mm and remains relatively constant thereafter, irrespective of shell size. Small statoconia are found in supporting cells, which suggests that the statoconia are produced within these cells. The average diameter of statoconia and the total mass of statoconia increase with increasing shell diameter. The average number of large statoconia (diameter greater than 7 micrometers) per statocyst continues to increase from 2 to 10 mm animals while the number of small ones (diameter less than 4 micrometers) initially rises and then decreases after 4 mm. These results demonstrate continuous growth of the statoconia in the cyst lumen of Biomphalaria. The single statoconia vibrate in a regular pattern in vivo, indicating beating of the statocyst cilia. The statoconia sink under the influence of gravity to load and stimulate receptor cells which are at the bottom. The length of cilia and the size of statocyst gradually increase as the animal grows. However, the increase in the volume of the statocyst is relatively small compared with the increase in body weight during normal development.

  1. GHGfrack: An Open-Source Model for Estimating Greenhouse Gas Emissions from Combustion of Fuel during Drilling and Hydraulic Fracturing.

    PubMed

    Vafi, Kourosh; Brandt, Adam

    2016-07-19

    This paper introduces GHGfrack, an open-source engineering-based model that estimates energy consumption and associated GHG emissions from drilling and hydraulic fracturing operations. We describe verification and calibration of GHGfrack against field data for energy and fuel consumption. We run GHGfrack using data from 6927 wells in Eagle Ford and 4431 wells in Bakken oil fields. The average estimated energy consumption in Eagle Ford wells using lateral hole diameters of 8 (3)/4 and 6 (1)/8 in. are 2.25 and 2.73 TJ/well, respectively. The average estimated energy consumption in Bakken wells using hole diameters of 6 in. for horizontal section is 2.16 TJ/well. We estimate average greenhouse gas (GHG) emissions of 419 and 510 tonne of equivalent CO2 per well (tonne of CO2 eq/well) for the two aforementioned assumed geometries in Eagle Ford, respectively, and 417 tonne of CO2 eq/well for the case of Bakken. These estimates are limited only to GHG emissions from combustion of diesel fuel to supply energy only for rotation of drill string, drilling mud circulation, and fracturing pumps. Sensitivity analysis of the model shows that the top three key variables in driving energy intensity in drilling are the lateral hole diameter, drill pipe internal diameter, and mud flow rate. In hydraulic fracturing, the top three are lateral casing diameter, fracturing fluid volume, and length of the lateral.

  2. Echocolor Doppler morpho-functional study of the jugulo-subclavian confluence in chronic cerebro-spinal venous insufficiency and multiple sclerosis patients.

    PubMed

    Mandolesi, Sandro; d'Alessandro, Aldo; Desogus, Antonello Ignazio; Ciccone, Marco Matteo; Zito, Annapaola; Stammegna, Immacolata; Niglio, Tarcisio; Orsini, Augusto; Mandolesi, Dimitri; d'Alessandro, Alessandro; Revelli, Luca

    2017-01-01

    The aim of this work is to measure the mean diameter of the confluence jugulo- subclavian, the impact of different types of jugular confluences and the correlation between the types of confluences and the Valsalva maneuver (jugular reflux) in subjects with Chronic Cerebro-Spinal Venous Insufficiency (CCSVI) and Multiple Sclerosis. We investigated by Echo-Color-Doppler (ECD) 103 subjects (67 F 36M) of mean age 45 ± 12 years (a minimum of 22 to a maximum of 79 years, with a median of 44 and a modal value 42 years), mean EDSS of 4.7 and average disease duration of 12 years. The 103 right jugular veins investigated had an average diameter of 8.4 ± 2.4 mm (minimum 4.0, maximum 14.9 mm; median 7.9; modal value 7.6 mm). Three form types were found: 56 cylindrical, 29 conical and 18 funnel. Valsalva maneuver was positive in 30 patients. The 103 left jugular investigated had an average diameter of 8.9 ± 2.4 mm (minimum 2.8, maximum 14.4 mm; median of 8.8; modal value 8.7 mm). The form types were found: 42 cylindrical, 45 conical and 16 funnel. Valsalva maneuver was positive in 30 patients. The mean diameter of the jugular veins was 8.7 mm. Internal jugular veins with cylindrical morphology have a diameter smaller than other forms; this difference is statistically significant. The different morphology of the jugular vein confluence does not increase the possibility of a reflux because the positive Valsalva maneuvers are not statistically significant when compared to the various types. CCSVI, EchoColorDoppler Map, Jugulo-Subclavian Confluence Diameter.

  3. Electrolyte Engineering: Optimizing High-Rate Double-Layer Capacitances of Micropore- and Mesopore-Rich Activated Carbon.

    PubMed

    Chen, Ting-Hao; Yang, Cheng-Hsien; Su, Ching-Yuan; Lee, Tai-Chou; Dong, Quan-Feng; Chang, Jeng-Kuei

    2017-09-22

    Various types of electrolyte cations as well as binary cations are used to optimize the capacitive performance of activated carbon (AC) with different pore structures. The high-rate capability of micropore-rich AC, governed by the mobility of desolvated cations, can outperform that of mesopore-rich AC, which essentially depends on the electrolyte conductivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Explosive Destruction System’s Drum Filter. Part 1. Experimental Validation

    DTIC Science & Technology

    2011-06-01

    test to quantify filtration performance for MEA. Being a relatively low vapor pressure chemical, MEA is strongly adsorbed by microporous adsorbents...DMMP and the nerve/HD agents I I that it simulates are strongly adsorbed by microporous adsorbents, loading on the adsorbent is relatively...is started, the challenge chemical is fed to the top of the test filter located in an insulated enclosure (9), which can be seen immediately to the

  5. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces.

    PubMed

    Jung, Sungmook; Kim, Ji Hoon; Kim, Jaemin; Choi, Suji; Lee, Jongsu; Park, Inhyuk; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2014-07-23

    A novel method to produce porous pressure-sensitive rubber is developed. For the controlled size distribution of embedded micropores, solution-based procedures using reverse micelles are adopted. The piezosensitivity of the pressure sensitive rubber is significantly increased by introducing micropores. Using this method, wearable human-machine interfaces are fabricated, which can be applied to the remote control of a robot. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Spectroscopic and volumetric characterization of a non-microporous amorphous ice

    NASA Astrophysics Data System (ADS)

    Manca, C.; Martin, C.; Roubin, P.

    2002-10-01

    The aim of this Letter is to re-investigate the characterization of ice porosity. N 2, CH 4 and Ar adsorption on amorphous ice has been compared to that on crystalline ice at low temperatures, using adsorption isotherm volumetry and infrared spectroscopy simultaneously. Here we show that amorphous ice can present a large specific surface area and nevertheless be non-microporous; this provides new ways for the understanding of interstellar reactivity.

  7. Ozone treatment of coal- and coffee grounds-based active carbons: Water vapor adsorption and surface fractal micropores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsunoda, Ryoichi; Ozawa, Takayoshi; Ando, Junichi

    1998-09-15

    Characteristics of the adsorption iostherms of water vapor on active carbons from coal and coffee grounds and those ozonized ones from the surface fractal dimension analysis are discussed. The upswing of the adsorption isotherms in the low relative pressure of coffee grounds-based active carbon, of which isotherms were not scarcely affected on ozonization, was attributed to the adsorption of water molecules on the metallic oxides playing the role of oxygen-surface complexes, which formed the corrugated surfaces on the basal planes of micropore walls with the surface fractal dimension D{sub s} > 2. On the other hand, coal-based active carbon withmore » D{sub s} < 2, which indicated the flat surfaces of micropore walls, showed little effect on the upswing even on ozonization, even though the adsorption amounts of water vapor were increased in the low relative pressure.« less

  8. Freestanding, heat resistant microporous film for use in energy storage devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pekala, Richard W.; Cherukupalli, Srinivas; Waterhouse, Robert R.

    Preferred embodiments of a freestanding, heat resistant microporous polymer film (10) constructed for use in an energy storage device (70, 100) implements one or more of the following approaches to exhibit excellent high temperature mechanical and dimensional stability: incorporation into a porous polyolefin film of sufficiently high loading levels of inorganic or ceramic filler material (16) to maintain porosity (18) and achieve low thermal shrinkage; use of crosslinkable polyethylene to contribute to crosslinking the polymer matrix (14) in a highly inorganic material-filled polyolefin film; and heat treating or annealing of biaxially oriented, highly inorganic material-filled polyolefin film above the meltingmore » point temperature of the polymer matrix to reduce residual stress while maintaining high porosity. The freestanding, heat resistant microporous polymer film embodiments exhibit extremely low resistance, as evidenced by MacMullin numbers of less than 4.5.« less

  9. Competitive adsorption of Pb2+, Cu2+, and Cd2+ ions on microporous titanosilicate ETS-10.

    PubMed

    Lv, Lu; Hor, Mei Peng; Su, Fabing; Zhao, X S

    2005-07-01

    In the present study, the competitive adsorption characteristics of binary and ternary heavy metal ions Pb2+, Cu2+, and Cd2+ on microporous titanosilicate ETS-10 were investigated in batch systems. Pure microporous titanosilicate ETS-10 was synthesized with P25 as the Ti source and characterized by the techniques of X-ray diffraction (XRD), field emission-scanning electron microscope (FESEM), nitrogen adsorption, and zeta-potential. Equilibrium and kinetic adsorption data showed that ETS-10 displays a high selectivity toward one metal in a two-component or a three-component system with an affinity order of Pb2+ > Cd2+ > Cu2+. The equilibrium behaviors of heavy metals species with stronger affinity toward ETS-10 can be described by the Langmuir equation while the adsorption kinetics of the metals can be well fitted to a pseudo-second-order (PSO) model.

  10. Submicroporous/microporous and compatible/incompatible multi-functional dual-layer polymer electrolytes and their interfacial characteristics with lithium metal anode

    NASA Astrophysics Data System (ADS)

    Lee, Young-Gi; Kyhm, Kwangseuk; Choi, Nam-Soon; Ryu, Kwang Sun

    A novel multi-functional dual-layer polymer electrolyte was prepared by impregnating the interconnected pores with an ethylene carbonate (EC)/dimethyl carbonate (DMC)/lithium hexafluorophosphate (LiPF 6) solution. An incompatible layer is based on a microporous polyethylene (PE) and a compatible layer, based on a poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) is sub-microporous and compatible with an electrolyte solution. The Li electrode/the dual-layer polymer electrolyte/Li[Ni 0.15Li 0.23M n0.62]O 2 cell showed stable cycle performance under prolonged cycle number. This behavior is due to the enhanced compatibility between the matrix polymer and the liquid electrolytes within the submicroporous compatible layer, which could lead to a controlled Li + deposition on the Li anode surface by forming homegeneous electrolyte zone near the anode.

  11. Water vapor weathering of Taurus-Littrow orange soil - A pore-structure analysis

    NASA Technical Reports Server (NTRS)

    Cadenhead, D. A.; Mikhail, R. S.

    1975-01-01

    A pore-volume analysis was performed on water vapor adsorption data previously obtained on a fresh sample of Taurus-Littrow orange soil, and the analysis was repeated on the same sample after its exposure to moist air for a period of approximately six months. The results indicate that exposure of an outgassed sample to high relative pressures of water vapor can result in the formation of substantial micropore structure, the precise amount being dependent on the sample pretreatment, particularly the outgassing temperature. Micropore formation is explained in terms of water penetration into surface defects. In contrast, long-term exposure to moist air at low relative pressures appears to reverse the process with the elimination of micropores and enlargement of mesopores possibly through surface diffusion of metastable adsorbent material. The results are considered with reference to the storage of lunar samples.

  12. Conjugated Microporous Polymers for Heterogeneous Catalysis.

    PubMed

    Zhou, Yun-Bing; Zhan, Zhuang-Ping

    2018-01-04

    Conjugated microporous polymers (CMPs) are a class of crosslinked polymers that combine permanent micropores with π-conjugated skeletons and possess three-dimensional (3D) networks. Compared with conventional materials such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), CMPs usually have superior chemical and thermal stability. CMPs have made significant progress in heterogeneous catalysis in the past seven years. With a bottom-up strategy, catalytic moieties can be directly introduced into in the framework to produce heterogeneous CMP catalysts. Higher activity, stability, and selectivity can be obtained with heterogeneous CMP catalysts in comparison with their homogeneous analogs. In addition, CMP catalysts can be easily isolated and recycled. In this review, we focus on CMPs as an intriguing platform for developing various highly efficient and recyclable heterogeneous catalysts in organic reactions. The design, synthesis, and structure of these CMP catalysts are also discussed in this focus review. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Simulations and experiments on gas adsorption in novel microporous polymers

    NASA Astrophysics Data System (ADS)

    Larsen, Gregory Steven

    Microporous materials represent a fascinating class of materials with a broad range of applications. The work presented here focuses on the use of a novel class of microporous material known as polymers of intrinsic micrioporosity, or PIMs, for use in gas separation and storage technologies. The aim of this research is to develop a detailed understanding of the relationship between the monomeric structure and the adsorptive performance of PIMs. First, a generalizable structure generation technique was developed such that simulation samples of PIM-1 recreated experimental densities, scattering, surface areas, pore size distributions, and adsorption isotherms. After validation, the simulations were applied as virtual experiments on several new PIMs with the intent to screen their capabilities as adsorbent materials and elucidate design principles for linear PIMs. The simulations are useful in understanding the unique properties such as pore size distribution and scattering observed experimentally.

  14. Internal Surface Adsorption of Methane in the Microporous and the Mesoporous Montmorillonite Models

    NASA Astrophysics Data System (ADS)

    Shao, Changjin; Nie, Dakai; Zhai, Zengqiang; Yang, Zhenqing

    2018-05-01

    Due to the rising worldwide energy demands and the shortage of natural gas resources, the development of shale gas has become the new research focus in the field of novel energy resources. To understand the adsorption mechanism of shale gas in the reservoir, we use grand canonical Monte Carlo (GCMC) method to investigate the internal surface adsorption behavior of methane (main component of shale gas) in microporous and mesoporous montmorillonite materials for changing pressure, temperature and surface spacing. The results show that the adsorption capacity of methane decreases with increasing temperature while increasing as the surface spacing increases. Especially, the adsorption isotherm of the microporous model has a mutation when the surface spacing is about 10 ˚A. According to the trend for the change in the adsorption capacity, the best scheme for the exploitation of shale gas can be selected so that the mining efficiency is greatly improved.

  15. Dynamic laser speckle technique as an alternative tool to determine hygroscopic capacity and specific surface area of microporous zeolites

    NASA Astrophysics Data System (ADS)

    Mojica-Sepulveda, Ruth Dary; Mendoza-Herrera, Luís Joaquín; Grumel, Eduardo; Soria, Delia Beatriz; Cabello, Carmen Inés; Trivi, Marcelo

    2018-07-01

    Adsorption phenomena have several technological applications such as desiccants, catalysts, and separation of gases. Their uses depend on the textural properties of the solid adsorbent and the type of the adsorbed liquid or gas. Therefore, it is important to determine these properties. The most common measurement methods are physicochemical based on adsorption of N2 to determine the surface area and the distribution of pores size. However these techniques present certain limitations for microporous materials. In this paper we propose the use of the Dynamic Laser Speckle (DLS) technique to measure the hygroscopic capacity of a microporous natural zeolite and their modified forms. This new approach based on the adsorption of water by solids allows determine their specific surface area (S). To test the DLS results, we compared the obtained S values to those calculated by different conventional isotherms using the N2 adsorption-desorption method.

  16. Ordered microporous layered lanthanide 1,3,5-benzenetriphosphonates pillared with cationic organic molecules.

    PubMed

    Araki, Takahiro; Kondo, Atsushi; Maeda, Kazuyuki

    2015-04-13

    Novel isomorphous pillared-layer-type crystalline lanthanide 1,3,5-benzenetriphosphonates were prepared with bpy and dbo as organic pillars (LnBP-bpy and LnBP-dbo; Ln: Ce, Pr, and Nd). Ab initio crystal structure solution using synchrotron X-ray powder diffraction data revealed that the organic pillars do not exist as neutral coordinating ligands but as cationic molecules. Especially the LnBP-dbo phases have ordered interlayer space filled with water molecules between the dbo pillars, and the interlayer water is successfully removed by heating under vacuum with slightly distorted but basically retained pillared layer structures. Microporosity of the materials is confirmed by adsorption of nitrogen, carbon dioxide, and hydrogen gases. Such microporous layered metal phosphonates pillared with cationic molecules should be unprecedented and should offer new strategies to design ordered microporous materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Comparison of the arithmetic and geometric means in estimating crown diameter and crown cross-sectional area

    Treesearch

    KaDonna Randolph

    2010-01-01

    The use of the geometric and arithmetic means for estimating tree crown diameter and crown cross-sectional area were examined for trees with crown width measurements taken at the widest point of the crown and perpendicular to the widest point of the crown. The average difference between the geometric and arithmetic mean crown diameters was less than 0.2 ft in absolute...

  18. [Microsurgical anatomy importance of A1-anterior communicating artery complex].

    PubMed

    Monroy-Sosa, Alejandro; Pérez-Cruz, Julio César; Reyes-Soto, Gervith; Delgado-Hernández, Carlos; Macías-Duvignau, Mario Alberto; Delgado-Reyes, Luis

    2013-01-01

    The anterior cerebral artery originates from the bifurcation of the internal carotid artery lateral to the optic chiasm, then joins with its contralateral counterpart via the anterior communicating artery. A1-anterior communicating artery complex is the most frequent anatomical variants and is the major site of aneurysms between 30 to 37%. Know the anatomy microsurgical, variants anatomical and importance of complex precommunicating segment-artery anterior communicating in surgery neurological of the pathology vascular, mainly aneurysms, in Mexican population. The study was performed in 30 brains injected. Microanatomy was studied (length and diameter) of A1-anterior communicating artery complex and its variants. 60 segments A1, the average length of left side was 11.35 mm and 11.84 mm was right. The average diameter of left was 1.67 mm and the right was 1.64 mm. The average number of perforators on the left side was 7.9 and the right side was 7.5. Anterior communicating artery was found in 29 brains of the optic chiasm, its course depended on the length of the A1 segment. The average length of the segment was 2.84 mm, the average diameter was 1.41 mm and the average number of perforators was 3.27. A1-anterior communicating artery complex variants were found in 18 (60%) and the presence of two blister-like aneurysms. It is necessary to understand the A1-anterior communicating artery complex microanatomy of its variants to have a three-dimensional vision during aneurysm surgery.

  19. Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces

    DOEpatents

    Hauge, Robert H [Houston, TX; Xu, Ya-Qiong [Houston, TX; Shan, Hongwei [Houston, TX; Nicholas, Nolan Walker [South Charleston, WV; Kim, Myung Jong [Houston, TX; Schmidt, Howard K [Cypress, TX; Kittrell, W Carter [Houston, TX

    2012-02-28

    A new and useful nanotube growth substrate conditioning processes is herein disclosed that allows the growth of vertical arrays of carbon nanotubes where the average diameter of the nanotubes can be selected and/or controlled as compared to the prior art.

  20. Biomass of singleleaf pinyon and Utah juniper

    Treesearch

    E. L. Miller; R. O. Meeuwig; J. D. Budy

    1981-01-01

    Biomass determinations in singleleaf pinyon (Pinus monophylla) - Utah juniper (Juniperus osteosperma) stands in Nevada indicate that stem diameter and average crown diameter are the tree measurements most highly correlated with ovendry weights. The equations and tables developed provide a means for estimating the total aboveground...

  1. Inorganic membranes for carbon capture and power generation

    NASA Astrophysics Data System (ADS)

    Snider, Matthew T.

    Inorganic membranes are under consideration for cost-effective reductions of carbon emissions from coal-fired power plants, both in the capture of pollutants post-firing and in the direct electrochemical conversion of coal-derived fuels for improved plant efficiency. The suitability of inorganic membrane materials for these purposes stems as much from thermal and chemical stability in coal plant operating conditions as from high performance in gas separations and power generation. Hydrophilic, micro-porous zeolite membrane structures are attractive for separating CO2 from N2 in gaseous waste streams due to the attraction of CO2 to the membrane surface and micropore walls that gives the advantage to CO2 transport. Recent studies have indicated that retention of the templating agent used in zeolite synthesis can further block N2 from the micropore interior and significantly improve CO2/N2 selectivity. However, the role of the templating agent in micro-porous transport has not been well investigated. In this work, gas sorption studies were conducted by high-pressure thermo-gravimetric analysis on Zeolite Y membrane materials to quantify the effect of the templating agent on CO2, N2, and H2O adsorption/desorption, as well as to examine the effect of humidification on overall membrane performance. In equilibrium conditions, the N2 sorption enthalpy was nearly unchanged by the presence of the templating agent, but the N2 pore occupation was reduced ˜1000x. Thus, the steric nature of the blocking of N2 from the micropores by the templating agent was confirmed. CO2 and H2O sorption enthalpies were similarly unaffected by the templating agent, and the micropore occupations were only reduced as much as the void volume taken up by the templating agent. Thus, the steric blocking effect did not occur for molecules more strongly attracted to the micropore walls. Additionally, in time-transient measurements the CO 2 and H2O mobilities were significantly enhanced by the presence of the templating agent. This meant that small restrictions in the micropores were beneficial to the transport of molecules with some attraction to the micropore walls. Further evidence of this effect were discovered in transport studies on Zeolite Y membranes, in which small amounts of residual water were observed to enhance the CO2 permeance in a similar way as the templating agent in the powder. However, the effect was only observed for dry CO 2 streams and previously humidified membranes. H2O affinity for the zeolite framework was so high and mobility in the micropores was so low that even 0.8 mol% H2O included in the gas stream was enough to reduce CO2 transport by 100x. This poses a serious concern for carbon capture by zeolite Y membrane in coal-fired power plants: the waste stream must be dehumidified first. In the long-term, raising the efficiencies of fossil-fuel power plants is preferable to post-combustion capture for cost- and resource-effective carbon emissions reduction. Supplementing combustion of the fuel with electrochemical conversion by solid oxide fuel cell (SOFC) shows promise in this effort. Thin-film (<1microm thick) SOFCs have recently exhibited power densities at low temperature (LT) that rival those of thick-film, high-temperature designs, with improved stability and quick ramp times. Low operating temperatures also provide the potential for fast, high-volume production, but so far high-performing LT-SOFCs have all been made by micro-fabrication methods. In this work, thin-film LT-SOFC modules were fabricated by colloidal processing and their performance was demonstrated. Nano-particulate colloid syntheses, dip-coating, and rapid thermal processing methods yielded fine-particle membrane microstructures, with high porosity and conductivity in the platinum/gadolinium-doped ceria (GDC) composite electrodes and density in the yttria-stabilized zirconia (YSZ) electrolytes. Power densities of >1000 W/m2 at 450°C and ˜5000 W/m2 at 600°C were achieved, and the modules ran >100hrs at peak power after 8 thermal cycles. Thus it was demonstrated that high performing LT-SOFCs can be produced with large-scale methods.

  2. Spontaneous and controlled-diameter synthesis of single-walled and few-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Inoue, Shuhei; Lojindarat, Supanat; Kawamoto, Takahiro; Matsumura, Yukihiko; Charinpanitkul, Tawatchai

    2018-05-01

    In this study, we explored the spontaneous and controlled-diameter growth of carbon nanotubes. We evaluated the effects of catalyst density, reduction time, and a number of catalyst coating on the substrate (for multi-walled carbon nanotubes) on the diameter of single-walled carbon nanotubes and the number of layers in few-walled carbon nanotubes. Increasing the catalyst density and reduction time increased the diameters of the carbon nanotubes, with the average diameter increasing from 1.05 nm to 1.86 nm for single-walled carbon nanotubes. Finally, we succeeded in synthesizing a significant double-walled carbon nanotube population of 24%.

  3. Study on regeneration effect and mechanism of high-frequency ultrasound on biological activated carbon.

    PubMed

    Sun, Zhehao; Liu, Cheng; Cao, Zhen; Chen, Wei

    2018-06-01

    High frequency ultrasonic radiation technology was developed as a novel and efficient means of regenerating spent biological activated carbon (BAC) used in drinking water treatment plants (DWTPs). The results of this study indicated that high frequency ultrasonic treatment could recover the spent BAC, to some extent, with the following optimal conditions: a frequency of 400 kHz, sonication power of 60 W, water temperature of 30 °C, and sonication time of 6 min. Under the above conditions, the iodine value increased from 300 mg/g to 409 mg/g, the volume of total pores and micropores increased from 0.2600 cm 3 /g and 0.1779 cm 3 /g to 0.3560 cm 3 /g and 0.2662 cm 3 /g, respectively; the specific surface area of micropores and the mean pore diameter expanded from 361.15 m 2 /g and 2.0975 nm to 449.92 m 2 /g and 2.1268 nm, respectively. The biological activity increased from 0.0297 mgO 2 /gC·h to 0.0521 mgO 2 /gC·h, while the biomass decreased from 203 nmolP/gC to 180 nmolP/gC. The results of high throughput 16S rRNA gene amplicon sequencing showed that microorganisms such as Clostridia and Nitrospira were markedly decreased due to high frequency ultrasound. The method used in this study caused the inhibition of certain carbon-attached microbials resulting in a negative effect on the removal rate of ammonia-N during the initial stage of the long-term reuse operation. The removal of UV254 and atrazine were restored from 8.1% and 55% to 21% and 76%, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Carbonaceous adsorbents derived from textile cotton waste for the removal of Alizarin S dye from aqueous effluent: kinetic and equilibrium studies.

    PubMed

    Wanassi, Béchir; Hariz, Ichrak Ben; Ghimbeu, Camélia Matei; Vaulot, Cyril; Hassen, Mohamed Ben; Jeguirim, Mejdi

    2017-04-01

    Recycling cotton waste derived from the textile industry was used as a low-cost precursor for the elaboration of an activated carbon (AC) through carbonization and zinc chloride chemical activation. The AC morphological, textural, and surface chemistry properties were determined using different analytical techniques including Fourier transform infrared, temperature programmed desorption-mass spectroscopy, nitrogen manometry and scanning electron microscopy. The results show that the AC was with a hollow fiber structure in an apparent diameter of about 6.5 μm. These analyses indicate that the AC is microporous and present a uniform pore size distributed centered around 1 nm. The surface area and micropore volume were 292 m 2 .g -1 and 0.11 cm 3 .g -1 , respectively. Several types of acidic and basic oxygenated surface groups were highlighted. The point of zero charge (pH PZC ) of theca was 6.8. The AC performance was evaluated for the removal of Alizarin Red S (ARS) from aqueous solution. The maximum adsorption capacity was 74 mg.g -1 obtained at 25 °C and pH = 3. Kinetics and equilibrium models were used to determine the interaction nature of the ARS with the AC. Statistical tools were used to select the suitable models. The pseudo-second order was found to be the most appropriate kinetic model. The application of two and three isotherm models shows that Langmuir-Freundlich (n = 0.84, K = 0.0014 L.mg -1 , and q = 250 mg.g -1 ) and Sips (n = 0.84, K = 0.003 L.mg -1 , and q = 232.6 mg.g -1 ) were the suitable models. The results demonstrated that cotton waste can be used in the textile industry as a low-cost precursor for the AC synthesis and the removal of anionic dye from textile wastewater.

  5. Effects of a high mean stress on the high cycle fatigue life of PWA 1480 and correlation of data by linear elastic fracture mechanics

    NASA Technical Reports Server (NTRS)

    Majumdar, S.; Kwasny, R.

    1985-01-01

    High-cycle fatigue tests using 5-mm-diameter smooth specimens were performed on the single crystal alloy PWA 1480 (001 axis) at 70F (room temperature) in air and at 100F (538C) in vacuum (10 to the -6 power torr). Tests were conducted at zero mean stress as well as at high tensile mean stress. The results indicate that, although a tensile mean stress, in general, reduces life, the reduction in fatigue strength, for a given mean stress at a life of one million cycles, is much less than what is predicted by the usual linear Goodman plot. Further, the material appears to be significantly more resistant to mean stress effects at 1000F than at 70F. Metallographic examinations of failed specimens indicate that failures in all cases are initiated from micropores of sizes of the order of 30 to 40 microns. Since the macroscopic stress-strain response in all cases was observed to be linear elastic, linear elastic fracture mechanics (LEFM) analyses were carried out to determine the crack growth curves of the material assuming that crack initiation from a micropore (a sub o = 40 microns) occurs very early in life. The results indicate that the calculated crack growth rates at an R (defined as the ratio between minimum stress to maximum stress) value of zero are approximately the same at 70F as at 1000F. However, the calculated crack growth rates at other R ratios, both positive and negative, tend to be higher at 70F than at 1000F. Calculated threshold effects at large R values tend to be independent of temperature in the temperature regime studied. They are relatively constant with increasing R ratio up to a value of about 0.6, beyond which the calculated threshold stress intensity factor range decreases rapidly with increasing R ratios.

  6. Fractional ablative erbium YAG laser: histological characterization of relationships between laser settings and micropore dimensions.

    PubMed

    Taudorf, Elisabeth H; Haak, Christina S; Erlendsson, Andrés M; Philipsen, Peter A; Anderson, R Rox; Paasch, Uwe; Haedersdal, Merete

    2014-04-01

    Treatment of a variety of skin disorders with ablative fractional lasers (AFXL) is driving the development of portable AFXLs. This study measures micropore dimensions produced by a small 2,940 nm AFXL using a variety of stacked pulses, and determines a model correlating laser parameters with tissue effects. Ex vivo pig skin was exposed to a miniaturized 2,940 nm AFXL, spot size 225 µm, density 5%, power levels 1.15-2.22 W, pulse durations 50-225 microseconds, pulse repetition rates 100-500 Hz, and 2, 20, or 50 stacked pulses, resulting in pulse energies of 2.3-12.8 mJ/microbeam and total energy levels of 4.6-640 mJ/microchannel. Histological endpoints were ablation depth (AD), coagulation zone (CZ) and ablation width (AW). Data were logarithmically transformed if required prior to linear regression analyses. Results for histological endpoints were combined in a mathematical model. In 138 sections from 91 biopsies, AD ranged from 16 to a maximum of 1,348 µm and increased linearly with the logarithm of total energy delivered by stacked pulses, but also depended on variations in power, pulse duration, pulse repetition rate, and pulse energy (r(2)  = 0.54-0.85, P < 0.0001). Microchannels deeper than 500 µm were created only by the highest pulse energy of 12.8 mJ/microbeam. Pulse stacking increased AD, and enlarged CZ and AW. CZ varied from 0 to 205 µm and increased linearly with total energy (r(2)  = 0.56-0.75, P < 0.0001). AW ranged from 106 to 422 µm and increased linearly with the logarithm of number of stacked pulses (r(2)  = 0.53-0.61, P < 0.001). The mathematical model estimated micropores of specific ADs with an associated range of CZs and AWs, for example, 300 µm ADs were associated with CZs from 27 to 73 µm and AWs from 190 to 347 µm. Pulse stacking with a small, low power 2,940 nm AFXL created reproducible shallow to deep micropores, and influenced micropore configuration. Mathematical modeling established relations between laser settings and micropore dimensions, which assists in choosing laser settings for desired tissue effects. © 2014 Wiley Periodicals, Inc.

  7. Half-peroneus-longus-tendon graft augmentation for unqualified hamstring tendon graft of anterior cruciate ligament reconstruction.

    PubMed

    Liu, Chung-Ting; Lu, Yung-Chang; Huang, Chang-Hung

    2015-09-01

    In some situations, harvested hamstring tendon grafts are not qualified for anterior cruciate ligament (ACL) reconstruction. This study aimed to present a reinforcing method with additional half peroneus longus tendon (half-PLT) graft augmentation. Eight cases underwent ACL reconstruction with unqualified hamstring tendon grafts (diameter <7 mm) and were salvaged by additional half-PLT graft augmentation. The pivot shift test and KT-1000 tests were performed 3 years after surgery. Functional evaluation of subjective International Knee Documentation Committee (IKDC) and Lysholm scores was also done. In addition, Foot and Ankle Disability Index (FADI) scores were used to evaluate the function of the ankle donor site. The diameter of unqualified four-strand hamstring tendon grafts was 6.2 mm on average (range, 6.0-6.5 mm). The average diameter of hamstring grafts with half-PLT augmentation was 9.6 mm (range, 9.5-10.0 mm). The pivot shift test was negative in all patients. No significant differences between normal and abnormal knees were found by KT-1000. The average IKDC score was 86.0 (range, 83 to 89), and the average Lysholm score was 84.4 (range, 80-90). The average FADI score for the donor sites of half-PLT was 135.8 (range, 134-136). Additional half-PLT can successfully and safely reinforce unqualified hamstring tendon grafts for ACL reconstruction.

  8. Neutrophil-endothelial cell interactions on endothelial monolayers grown on micropore filters.

    PubMed Central

    Taylor, R F; Price, T H; Schwartz, S M; Dale, D C

    1981-01-01

    We have developed a technique for growing endothelial monolayers on micropore filters. These monolayers demonstrate confluence by phase and electron microscopy and provide a functional barrier to passage of radiolabeled albumin. Neutrophils readily penetrate the monolayer in response to chemotaxin, whereas there is little movement in the absence of chemotaxin. This system offers unique advantages over available chemotaxis assays and may have wider applications in the study of endothelial function. Images PMID:7007441

  9. N-Doped carbon spheres with hierarchical micropore-nanosheet networks for high performance supercapacitors.

    PubMed

    Wang, Shoupei; Zhang, Jianan; Shang, Pei; Li, Yuanyuan; Chen, Zhimin; Xu, Qun

    2014-10-18

    N-doped carbon spheres with hierarchical micropore-nanosheet networks (HPSCSs) were facilely fabricated by a one-step carbonization and activation process of N containing polymer spheres by KOH. With the synergy effect of the multiple structures, HPSCSs exhibit a very high specific capacitance of 407.9 F g(-1) at 1 mV s(-1) (1.2 times higher than that of porous carbon spheres) and a robust cycling stability for supercapacitors.

  10. Cooling Performance of a Partially-Confined FC-72 Spray: The Effect of Dissolved Air (Postprint)

    DTIC Science & Technology

    2007-01-01

    plate FC = FC-72 fluid htr = heater conductive layer int = interface between heater substrate and insulating support post m = measured s = heater... microporous enhanced surface and a plain reference surface, and developed correlations for nucleate boiling and CHF. The results of the experiment...8Rainey, K. N., You, S. M., and Lee, S., “Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer from Microporous Surfaces

  11. Enhancing the carbon capture capacities of a rigid ultra-microporous MOF through gate-opening at low CO2 pressures assisted by swiveling oxalate pillars.

    PubMed

    Banerjee, Aparna; Nandi, Shyamapada; Nasa, Parveen; Vaidhyanathan, Ramanathan

    2016-01-31

    Porosity enhancement assisted by an unusual gate opening has been realized in an exceptionally rigid ultra-microporous framework. The gate-opening has been attributed to the presence of symmetrically positioned Zn-O bonds of the Zn-oxalate units that facilitate subtle swiveling motion resulting in a drastic improvement (42%) in the CO2 capacity without compromising the CO2/N2 selectivity.

  12. Adsorption of pharmaceuticals to microporous activated carbon treated with potassium hydroxide, carbon dioxide, and steam.

    PubMed

    Fu, Heyun; Yang, Liuyan; Wan, Yuqiu; Xu, Zhaoyi; Zhu, Dongqiang

    2011-01-01

    Adsorption of sulfapyridine, tetracycline, and tylosin to a commercial microporous activated carbon (AC) and its potassium hydroxide (KOH)-, CO-, and steam-treated counterparts (prepared by heating at 850°C) was studied to explore efficient adsorbents for the removal of selected pharmaceuticals from water. Phenol and nitrobenzene were included as additional adsorbates, and nonporous graphite was included as a model adsorbent. The activation treatments markedly increased the specific surface area and enlarged the pore sizes of the mesopores of AC (with the strongest effects shown on the KOH-treated AC). Adsorption of large-size tetracycline and tylosin was greatly enhanced, especially for the KOH-treated AC (more than one order of magnitude), probably due to the alleviated size-exclusion effect. However, the treatments had little effect on adsorption of low-size phenol and nitrobenzene due to the predominance of micropore-filling effect in adsorption and the nearly unaffected content of small micropores causative to such effect. These hypothesized mechanisms on pore-size dependent adsorption were further tested by comparing surface area-normalized adsorption data and adsorbent pore size distributions with and without the presence of adsorbed antibiotics. The findings indicate that efficient adsorption of bulky pharmaceuticals to AC can be achieved by enlarging the adsorbent pore size through suitable activation treatments. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Effect of phase inversion on microporous structure development of Al 2O 3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Jeong, Hyun-Seok; Kim, Dong-Won; Jeong, Yeon Uk; Lee, Sang-Young

    To improve the thermal shrinkage of the separators that are essential to securing the electrical isolation between electrodes in lithium-ion batteries, we develop a new separator based on a ceramic composite membrane. Introduction of microporous, ceramic coating layers onto both sides of a polyethylene (PE) separator allows such a progress. The ceramic coating layers consist of nano-sized alumina (Al 2O 3) powders and polymeric binders (PVdF-HFP). The microporous structure of the ceramic coating layers is observed to be crucial to governing the thermal shrinkage as well as the ionic transport of the ceramic composite separators. This microporous structure is determined by controlling the phase inversion, more specifically, nonsolvent (water) contents in the coating solutions. To provide a theoretical basis for this approach, a pre-investigation on the phase diagram for a ternary mixture comprising PVdF-HFP, acetone, and water is conducted. On the basis of this observation, the effect of phase inversion on the morphology and air permeability (i.e. Gurley value) of ceramic coating layers is systematically discussed. In addition, to explore the application of ceramic composite separators to lithium-ion batteries, the influence of the structural change in the coating layers on the thermal shrinkage and electrochemical performance of the separators is quantitatively identified.

  14. Highly microporous carbons derived from a complex of glutamic acid and zinc chloride for use in supercapacitors

    NASA Astrophysics Data System (ADS)

    Dong, Xiao-Ling; Lu, An-Hui; He, Bin; Li, Wen-Cui

    2016-09-01

    The selection of carbon precursor is an important factor when designing carbon materials. In this study, a complex derived from L-glutamic acid and zinc chloride was used to prepare highly microporous carbons via facile pyrolysis. L-glutamic acid, a new carbon precursor with nitrogen functionality, coordinated with zinc chloride resulted in a homogeneous distribution of Zn2+ on the molecular level. During pyrolysis, the evaporation of the in situ formed zinc species creates an abundance of micropores together with the inert gases. The obtained carbons exhibit high specific surface area (SBET: 1203 m2 g-1) and a rich nitrogen content (4.52 wt%). In excess of 89% of the pore volume consists of micropores with pore size ranging from 0.5 to 1.2 nm. These carbons have been shown to be suitable for use as supercapacitor electrodes, and have been tested in 6 M KOH where a capacitance of 217 F g-1 was achieved at a current density of 0.5 A g-1. A long cycling life of 30 000 cycles was achieved at a current density of 1 A g-1, with only a 9% loss in capacity. The leakage current through a two-electrode device was measured as 2.3 μA per mg of electrode and the self-discharge characteristics were minimal.

  15. Optimisation of the conditions for stripping voltammetric analysis at liquid-liquid interfaces supported at micropore arrays: a computational simulation.

    PubMed

    Strutwolf, Jörg; Arrigan, Damien W M

    2010-10-01

    Micropore membranes have been used to form arrays of microinterfaces between immiscible electrolyte solutions (µITIES) as a basis for the sensing of non-redox-active ions. Implementation of stripping voltammetry as a sensing method at these arrays of µITIES was applied recently to detect drugs and biomolecules at low concentrations. The present study uses computational simulation to investigate the optimum conditions for stripping voltammetric sensing at the µITIES array. In this scenario, the diffusion of ions in both the aqueous and the organic phases contributes to the sensing response. The influence of the preconcentration time, the micropore aspect ratio, the location of the microinterface within the pore, the ratio of the diffusion coefficients of the analyte ion in the organic and aqueous phases, and the pore wall angle were investigated. The simulations reveal that the accessibility of the microinterfaces during the preconcentration period should not be hampered by a recessed interface and that diffusional transport in the phase where the analyte ions are preconcentrated should be minimized. This will ensure that the ions are accumulated within the micropores close to the interface and thus be readily available for back transfer during the stripping process. On the basis of the results, an optimal combination of the examined parameters is proposed, which together improve the stripping voltammetric signal and provide an improvement in the detection limit.

  16. A systematic investigation of SO2 removal dynamics by coal-based activated cokes: The synergic enhancement effect of hierarchical pore configuration and gas components

    NASA Astrophysics Data System (ADS)

    Sun, Fei; Gao, Jihui; Liu, Xin; Tang, Xiaofan; Wu, Shaohua

    2015-12-01

    For the aim to break through the long-term roadblock to porous carbon based SO2 removal technology, typical coal-based activated cokes differing in terms of surface area, pore configuration and surface functional properties, were employed to investigate the SO2 removal dynamics. Among the employed activated cokes, the one with a hierarchically porous structure greatly enhanced the SO2 removal dynamics under the simulated flue gas compositions. More detailedly, SO2 separate adsorption property under normal temperature and pressure evidenced that monolayer SO2 molecules anchoring on micropore surface is the main adsorption pattern. The catalytic oxidation of SO2 follows the Eley-Rideal mechanism by which SO2 was firstly oxidized by molecular oxygen into SO3 which could depart partially to release the active sites for further adsorption. For the role of hierarchical pore configuration, it was proposed that micropores serve as gas adsorption and reaction accommodation, meso-/macropores act as byproduct H2SO4 transport and buffing reservoirs, which may in turn gives rise to the recovery of active sites in micropores and guarantees the continuous proceeding of sulfur-containing species transformation in the micropores. The present results suggest that pore configuration or interconnecting pattern, but not mere surface area or pore volume, should be favourably considered for optimizing heterogeneous gas-solid adsorption and reaction.

  17. Degradation of N-nitrosodimethylamine (NDMA) and its precursor dimethylamine (DMA) in mineral micropores induced by microwave irradiation.

    PubMed

    He, Yuanzhen; Cheng, Hefa

    2016-05-01

    Removal of N-nitrosodimethylamine (NDMA) in drinking water treatment poses a significant technical challenge due to its small molecular size, high polarity and water solubility, and poor biodegradability. Degradation of NDMA and its precursor, dimethylamine (DMA), was investigated by adsorbing them from aqueous solution using porous mineral sorbents, followed by destruction under microwave irradiation. Among the mineral sorbents evaluated, dealuminated ZSM-5 exhibited the highest sorption capacities for NDMA and DMA, which decreased with the density of surface cations present in the micropores. In contrast, the degradation rate of the sorbed NDMA increased with the density of surface cations under microwave irradiation. Evolutions of the degradation products and C/N ratio indicate that the sorbed NDMA and DMA could be eventually mineralized under continuous microwave irradiation. The degradation rate was strongly correlated with the bulk temperature of ZSM-5 and microwave power, which is consistent with the mechanism of pyrolysis caused by formation of micro-scale "hot spots" within the mineral micropores under microwave irradiation. Compared to existing treatment options for NDMA removal, microporous mineral sorption coupled with microwave-induced degradation has the unique advantages of being able to simultaneously remove NDMA and DMA and cause their full mineralization, and thus could serve as a promising alternative method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. CO2 Capture in the Sustainable Wheat-Derived Activated Microporous Carbon Compartments

    PubMed Central

    Hong, Seok-Min; Jang, Eunji; Dysart, Arthur D.; Pol, Vilas G.; Lee, Ki Bong

    2016-01-01

    Microporous carbon compartments (MCCs) were developed via controlled carbonization of wheat flour producing large cavities that allow CO2 gas molecules to access micropores and adsorb effectively. KOH activation of MCCs was conducted at 700 °C with varying mass ratios of KOH/C ranging from 1 to 5, and the effects of activation conditions on the prepared carbon materials in terms of the characteristics and behavior of CO2 adsorption were investigated. Textural properties, such as specific surface area and total pore volume, linearly increased with the KOH/C ratio, attributed to the development of pores and enlargement of pores within carbon. The highest CO2 adsorption capacities of 5.70 mol kg−1 at 0 °C and 3.48 mol kg−1 at 25 °C were obtained for MCC activated with a KOH/C ratio of 3 (MCC-K3). In addition, CO2 adsorption uptake was significantly dependent on the volume of narrow micropores with a pore size of less than 0.8 nm rather than the volume of larger pores or surface area. MCC-K3 also exhibited excellent cyclic stability, facile regeneration, and rapid adsorption kinetics. As compared to the pseudo-first-order model, the pseudo-second-order kinetic model described the experimental adsorption data methodically. PMID:27698448

  19. Water Relations, Gas Exchange, and Nutrient Response to a Long Term Constant Water Deficit

    NASA Technical Reports Server (NTRS)

    Berry, Wade L.; Goldstein, Guillermo; Dreschel, Thomas W.; Wheeler, Raymond M.; Sager, John C.; Knott, William M.

    1992-01-01

    Wheat plants (Triticum aestivum) were grown for 43 days in a micro-porous tube nutrient delivery system. Roots were unable to penetrate the microporous tube, but grew on the surface and maintained capillary contact with the nutrient solution on the inside of the tube through the 5-microns pores of the porous tube. Water potential in the system was controlled at -0.4, -0.8, and -3.0 kPa by adjusting the applied pressure (hydrostatic head) to the nutrient solution flowing through the microporous tubes. A relatively small decrease in applied water potential from -0.4 to -3.0 kPa resulted in a 34% reduction of shoot growth but only a moderate reduction in the mid-day leaf water potential from - 1.3 to - 1.7 MPa. Carbon dioxide assimilation decreased and water use efficiency increased with the more negative applied water Potentials, while intercellular C02 concentration remained constant. The physiological responses observed in this study in response to small constant differences in applied water potentials were much greater than expected from either the applied water potential or the observed plant water potential. Even though the micro-porous tube may not represent natural conditions and could possibly introduce morphological and physiological artifacts , it enables a high degree of control of water potential that facilitates the investigation of many aspects of water relations not practical with other experimental systems.

  20. A novel strategy to translate the biomechanical rupture risk of abdominal aortic aneurysms to their equivalent diameter risk: method and retrospective validation.

    PubMed

    Gasser, T C; Nchimi, A; Swedenborg, J; Roy, J; Sakalihasan, N; Böckler, D; Hyhlik-Dürr, A

    2014-03-01

    To translate the individual abdominal aortic aneurysm (AAA) patient's biomechanical rupture risk profile to risk-equivalent diameters, and to retrospectively test their predictability in ruptured and non-ruptured aneurysms. Biomechanical parameters of ruptured and non-ruptured AAAs were retrospectively evaluated in a multicenter study. General patient data and high resolution computer tomography angiography (CTA) images from 203 non-ruptured and 40 ruptured aneurysmal infrarenal aortas. Three-dimensional AAA geometries were semi-automatically derived from CTA images. Finite element (FE) models were used to predict peak wall stress (PWS) and peak wall rupture index (PWRI) according to the individual anatomy, gender, blood pressure, intra-luminal thrombus (ILT) morphology, and relative aneurysm expansion. Average PWS diameter and PWRI diameter responses were evaluated, which allowed for the PWS equivalent and PWRI equivalent diameters for any individual aneurysm to be defined. PWS increased linearly and PWRI exponentially with respect to maximum AAA diameter. A size-adjusted analysis showed that PWS equivalent and PWRI equivalent diameters were increased by 7.5 mm (p = .013) and 14.0 mm (p < .001) in ruptured cases when compared to non-ruptured controls, respectively. In non-ruptured cases the PWRI equivalent diameters were increased by 13.2 mm (p < .001) in females when compared with males. Biomechanical parameters like PWS and PWRI allow for a highly individualized analysis by integrating factors that influence the risk of AAA rupture like geometry (degree of asymmetry, ILT morphology, etc.) and patient characteristics (gender, family history, blood pressure, etc.). PWRI and the reported annual risk of rupture increase similarly with the diameter. PWRI equivalent diameter expresses the PWRI through the diameter of the average AAA that has the same PWRI, i.e. is at the same biomechanical risk of rupture. Consequently, PWRI equivalent diameter facilitates a straightforward interpretation of biomechanical analysis and connects to diameter-based guidelines for AAA repair indication. PWRI equivalent diameter reflects an additional diagnostic parameter that may provide more accurate clinical data for AAA repair indication. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  1. Effective separation technique for small diameter whiskers.

    NASA Technical Reports Server (NTRS)

    Westfall, L. J.

    1972-01-01

    Description of a technique for separating small-diameter whiskers from the as-grown matt by gently agitating the whisker matts in a solution of deionized or distilled water for six to eight hours. High-strength Al2O3 whiskers were effectively separated by this technique, comprising an average 48% of the original weight of the whisker matt. According to estimation, more than 90% of separated whiskers had diameters between 0.7 and 2.0 microns.

  2. Transition of carbon nanostructures in heptane diffusion flames

    NASA Astrophysics Data System (ADS)

    Hu, Wei-Chieh; Hou, Shuhn-Shyurng; Lin, Ta-Hui

    2017-02-01

    The flame synthesis has high potential in industrial production of carbon nanostructure (CNS). Unfortunately, the complexity of combustion chemistry leads to less controlling of synthesized products. In order to improve the understanding of the relation between flames and CNSs synthesized within, experiments were conducted through heptane flames in a stagnation-point liquid-pool system. The operating parameters for the synthesis include oxygen supply, sampling position, and sampling time. Two kinds of nanostructures were observed, carbon nanotube (CNT) and carbon nano-onion (CNO). CNTs were synthesized in a weaker flame near extinction. CNOs were synthesized in a more sooty flame. The average diameter of CNTs formed at oxygen concentration of 15% was in the range of 20-30 nm. For oxygen concentration of 17%, the average diameter of CNTs ranged from 24 to 27 nm, while that of CNOs was around 28 nm. For oxygen concentration of 19%, the average diameter of CNOs produced at the sampling position 0.5 mm below the flame front was about 57 nm, while the average diameters of CNOs formed at the sampling positions 1-2.5 mm below the flame front were in the range of 20-25 nm. A transition from CNT to CNO was observed by variation of sampling position in a flame. We found that the morphology of CNS is directly affected by the presence of soot layer due to the carbonaceous environment and the growth mechanisms of CNT and CNO. The sampling time can alter the yield of CNSs depending on the temperature of sampling position, but the morphology of products is not affected.

  3. Purification of 1.9-nm-diameter semiconducting single-wall carbon nanotubes by temperature-controlled gel-column chromatography and its application to thin-film transistor devices

    NASA Astrophysics Data System (ADS)

    Thendie, Boanerges; Omachi, Haruka; Hirotani, Jun; Ohno, Yutaka; Miyata, Yasumitsu; Shinohara, Hisanori

    2017-06-01

    Large-diameter semiconductor single-wall carbon nanotubes (s-SWCNTs) have superior mobility and conductivity to small-diameter s-SWCNTs. However, the purification of s-SWCNTs with diameters larger than 1.6 nm by gel filtration has been difficult owing to the low selectivity of the conventional purification method in these large-diameter regions. We report a combination of temperature-controlled gel filtration and the gradient elution technique that we developed to enrich a high-purity s-SWCNT with a diameter as large as 1.9 nm. The thin-film transistor (TFT) device using the 1.9-nm-diameter SWCNT shows an average channel mobility of 23.7 cm2 V-1 s-1, which is much higher than those of conventional SWCNT-TFTs with smaller-diameters of 1.5 and 1.4 nm.

  4. Reverse Micelle Based Synthesis of Microporous Materials in Microgravity

    NASA Technical Reports Server (NTRS)

    Dutta, Prabir K.

    2001-01-01

    Microporous materials include a large group of solids of varying chemical composition as well as porosity. These materials are characterized by channels and cavities of molecular dimensions. The framework structure is made up of interconnecting T-O-T' bonds, where T and T' can be Si, Al, P, Ga, Fe, Co, Zn, B and a host of other elements. Materials with Si-O-Al bonding in the framework are called zeolites and are extensively used in many applications. Ion-exchange properties of these materials are exploited in the consumer and environmental industries. Chemical and petroleum industries use zeolites as catalysts in hydrocarbon transform ations. Synthesis of new microporous frameworks has led to the development of new technologies, and thus considerable effort worldwide is expended in their discovery. Microporous materials are typically made under hydrothermal conditions. Influence of nature of starting reactants, structure directing agents, pH, temperature, and aging all have profound influence on the synthesis process. This is primarily because the most interesting open frameworks are not necessarily the stable structures in the reaction medium. Thus, the discovery of new frameworks is often tied to finding the right composition and synthesis conditions that allow for kinetic stabilization of the structure. This complexity of the synthesis process and limited understanding of it has made it difficult to develop directed is of microporous materials and most advances in this field have been made by trial and error. The basic issues in crystal growth of these materials include: (1) Nature of the nucleation process; (2) Molecular structure and assembly of nuclei; (3) Growth of nuclei into crystals; (4) Morphology control; and (5) Transformation of frameworks into other structures. The NASA-funded research described in this paper focuses on all the above issues and has been described in several publications. We present the highlights of our program, especially with the focus on possible experiments in microgravity.

  5. Growth and yield of Giant Sequoia

    Treesearch

    David J. Dulitz

    1986-01-01

    Very little information exists concerning growth and yield of giant sequoia (Sequoiadendron giganteum [Lindl.] Buchholz). For old-growth trees, diameter growth is the single factor adding increment since maximum height has been obtained. Diameter growth averages 0.04 inches per year in normal old-growth trees but will fluctuate with changes in the...

  6. Error rate of automated calculation for wound surface area using a digital photography.

    PubMed

    Yang, S; Park, J; Lee, H; Lee, J B; Lee, B U; Oh, B H

    2018-02-01

    Although measuring would size using digital photography is a quick and simple method to evaluate the skin wound, the possible compatibility of it has not been fully validated. To investigate the error rate of our newly developed wound surface area calculation using digital photography. Using a smartphone and a digital single lens reflex (DSLR) camera, four photographs of various sized wounds (diameter: 0.5-3.5 cm) were taken from the facial skin model in company with color patches. The quantitative values of wound areas were automatically calculated. The relative error (RE) of this method with regard to wound sizes and types of camera was analyzed. RE of individual calculated area was from 0.0329% (DSLR, diameter 1.0 cm) to 23.7166% (smartphone, diameter 2.0 cm). In spite of the correction of lens curvature, smartphone has significantly higher error rate than DSLR camera (3.9431±2.9772 vs 8.1303±4.8236). However, in cases of wound diameter below than 3 cm, REs of average values of four photographs were below than 5%. In addition, there was no difference in the average value of wound area taken by smartphone and DSLR camera in those cases. For the follow-up of small skin defect (diameter: <3 cm), our newly developed automated wound area calculation method is able to be applied to the plenty of photographs, and the average values of them are a relatively useful index of wound healing with acceptable error rate. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Electrospun polyvinylpyrrolidone (PVP)/green tea extract composite nanofiber mats and their antioxidant activities

    NASA Astrophysics Data System (ADS)

    Pusporini, Pusporini; Edikresnha, Dhewa; Sriyanti, Ida; Suciati, Tri; Miftahul Munir, Muhammad; Khairurrijal, Khairurrijal

    2018-05-01

    Electrospinning was employed to make PVP (polyvinylpyrrolidone)/GTE (green tea extract) composite nanofiber mats. The electrospun PVP nanofiber mat as well as the PVP/GTE nanofiber mats were uniform. The average fiber diameter of PVP/GTE composite nanofiber mat decreased with increasing the GTE weight fraction (or decreasing the PVP weight fraction) in the PVP/GTE solution because the PVP/GTE solution concentration decreased. Then, the broad FTIR peak representing the stretching vibrations of O–H in hydroxyl groups of phenols and the stretching of N–H in amine groups of the GTE paste shifted to higher wavenumbers in the PVP/GTE composite nanofiber mats. These peak shifts implied that PVP and catechins of GTE in the PVP/GTE composite nanofiber mats had intermolecular interactions via hydrogen bonds between carbonyl groups of PVP and hydroxyl groups of catechins in GTE. Lastly, the antioxidant activity of the PVP/GTE composite nanofiber mat increased with reducing the average fiber diameter because the amount of catechins in the composite nanofiber mat increased with the increase of surface area due to the reduction of the average fiber diameter.

  8. Comparison between Single-Walled CNT, Multi-Walled CNT, and Carbon Nanotube-Fiber Pyrograf III

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.

    2018-02-01

    Single-Walled CNT (SWCNTs), Multi-walled Carbon Nanotubes (MWCNTs), and Carbon Nanotube-Fibers Pyrograf III PR-1 (CNTFs) were deposited by chemical vapor deposition under vacuum pressure value of (10-7mbar). Their structures were investigated by field emission microscopy. Carbon Nano-Fibers Pyrograf III PR-1 showed an average fiber diameter within the range of 100-200 nm and a length of (30-100) μm. Single-walled Carbon Nanotubes were produced by high-pressure Carbon Monoxide process with an average diameter ranging between (1-4) nm and a length of (1-3) μm. Thin Multiwall Carbon Nanotube of carbon purity (90%) showed an average diameter tube (9.5 nm) with a high-aspect-ratio (>150). The research work reported here includes the field electron emission current-voltage (I-V) characteristics and presented as Fowler-Nordheim (FN) plots and the spatial emission current distributions (electron emission images) obtained and analyzed in terms of electron source features. For the three types of emitters, a single spot pattern for the electron spatial; distributions were observed, with emission current fluctuations in some voltage region.

  9. Normal Cerebellar Growth by Using Three-dimensional US in the Preterm Infant from Birth to Term-corrected Age.

    PubMed

    Benavente-Fernández, Isabel; Rodríguez-Zafra, Enrique; León-Martínez, Jesús; Jiménez-Gómez, Gema; Ruiz-González, Estefanía; Fernández-Colina, Rosalía Campuzano; Lechuga-Sancho, Alfonso M; Lubián-López, Simón P

    2018-04-03

    Purpose To establish cross-sectional and longitudinal reference values for cerebellar size in preterm infants with normal neuroimaging findings and normal 2-year neurodevelopmental outcome by using cranial ultrasonography (US). Materials and Methods This prospective study consecutively enrolled preterm infants admitted to a neonatal intensive care unit from June 2011 to June 2014 with a birth weight of less than or equal to 1500 g and/or gestational age (GA) of less than or equal to 32 weeks. They underwent weekly cranial US from birth to term-equivalent age and magnetic resonance (MR) imaging at term-equivalent age. The infants underwent neurodevelopmental assessments at age 2 years with Bayley Scales of Infant and Toddler Development, 3rd edition (BSID-III). Patients with adverse outcomes (death or abnormal neuroimaging findings and/or BSID-III score of <85) were excluded. The following measurements were performed: vermis height, craniocaudal diameter, superior width, inferior width, vermis area, and transcerebellar diameter. Statistical analyses were conducted by using multilevel analyses. Results A total of 137 infants with a mean GA at birth of 29.4 weeks (range, 25-32 weeks) were included. Transcerebellar diameter increased by 1.04 mm per week on average; vermis height and craniocaudal diameter increased by 0.55 mm and 0.59 mm, respectively. Superior vermian width increased by an average of 0.45 mm, whereas inferior vermian width increased by an average of 0.51 mm per week. Vermis area was found to increase by 0.22 cm 2 per week on average. The sex effect was significant (female lower than male) for vermis height (P < .05), craniocaudal diameter (P < .05), inferior vermian width (P <. 05), and vermis area (P <. 05). Conclusion Cross-sectional and longitudinal reference values were established for cerebellar growth in preterm infants, which may be included in routine cranial US. © RSNA, 2018 Online supplemental material is available for this article.

  10. Production of polycaprolactone nanoparticles with low polydispersity index in a tubular recirculating system by using a multifactorial design of experiments

    NASA Astrophysics Data System (ADS)

    Colmenares Roldán, Gabriel Jaime; Agudelo Gomez, Liliana María; Carlos Cornelio, Jesús Antonio; Rodriguez, Luis Fernando; Pinal, Rodolfo; Hoyos Palacio, Lina Marcela

    2018-03-01

    Encapsulation and controlled release of substances using polymeric nanoparticles require that these have a high reproducibility, homogeneity, and control over their properties (diameter and polydispersity), especially when they are to be used in medical, pharmaceutical, or nutritional applications among others. In conventional production systems, it is tough to ensure these characteristics; hence, the cost increases when we try to control these properties. This paper shows a comparison between a recirculating system and the standard nanoprecipitation technique for producing polymeric nanoparticles. In previous investigations, we evaluate the effect of recirculating flow and the ratio between the organic and aqueous phase. For this paper, we evaluated the effect of polymer and surfactant concentrations using a multifactorial design of experiments on the recirculating system and on the standard nanoprecipitation system. The response of the design was the average diameter of the nanoparticles and polydispersity index. Finally, we found that the polymer and surfactant concentrations could change the average diameter and polydispersity index of the nanoparticles obtained. On the other hand, it was found that the effect of the polymer concentration was stronger than the surfactant concentration to reduce the average diameter of the nanoparticles. The results of the present study show that the proposed recirculation system presents a high potential to produce polymer nanoparticles with good morphological characteristics, particle size distributions in the nano range, and with a low polydispersity. The average mean size of nanoparticles of polycaprolactone for the design using the recirculating system was of 61 to 140 nm and the values of polydispersity index PDI for this design were between 0.097 and 0.22, while for the design using the standard nanoprecipitation technique, the obtained diameters were 74 to 176 nm and the polydispersity was between 0.26 and 0.41.

  11. Red-shouldered hawk nesting habitat preference in south Texas

    USGS Publications Warehouse

    Strobel, Bradley N.; Boal, Clint W.

    2010-01-01

    We examined nesting habitat preference by red-shouldered hawks Buteo lineatus using conditional logistic regression on characteristics measured at 27 occupied nest sites and 68 unused sites in 2005–2009 in south Texas. We measured vegetation characteristics of individual trees (nest trees and unused trees) and corresponding 0.04-ha plots. We evaluated the importance of tree and plot characteristics to nesting habitat selection by comparing a priori tree-specific and plot-specific models using Akaike's information criterion. Models with only plot variables carried 14% more weight than models with only center tree variables. The model-averaged odds ratios indicated red-shouldered hawks selected to nest in taller trees and in areas with higher average diameter at breast height than randomly available within the forest stand. Relative to randomly selected areas, each 1-m increase in nest tree height and 1-cm increase in the plot average diameter at breast height increased the probability of selection by 85% and 10%, respectively. Our results indicate that red-shouldered hawks select nesting habitat based on vegetation characteristics of individual trees as well as the 0.04-ha area surrounding the tree. Our results indicate forest management practices resulting in tall forest stands with large average diameter at breast height would benefit red-shouldered hawks in south Texas.

  12. Stone Attenuation Values Measured by Average Hounsfield Units and Stone Volume as Predictors of Total Laser Energy Required During Ureteroscopic Lithotripsy Using Holmium:Yttrium-Aluminum-Garnet Lasers.

    PubMed

    Ofude, Mitsuo; Shima, Takashi; Yotsuyanagi, Satoshi; Ikeda, Daisuke

    2017-04-01

    To evaluate the predictors of the total laser energy (TLE) required during ureteroscopic lithotripsy (URS) using the holmium:yttrium-aluminum-garnet (Ho:YAG) laser for a single ureteral stone. We retrospectively analyzed the data of 93 URS procedures performed for a single ureteral stone in our institution from November 2011 to September 2015. We evaluated the association between TLE and preoperative clinical data, such as age, sex, body mass index, and noncontrast computed tomographic findings, including stone laterality, location, maximum diameter, volume, stone attenuation values measured using average Hounsfield units (HUs), and presence of secondary signs (severe hydronephrosis, tissue rim sign, and perinephric stranding). The mean maximum stone diameter, volume, and average HUs were 9.2 ± 3.8 mm, 283.2 ± 341.4 mm 3 , and 863 ± 297, respectively. The mean TLE and operative time were 2.93 ± 3.27 kJ and 59.1 ± 28.1 minutes, respectively. Maximum stone diameter, volume, average HUs, severe hydronephrosis, and tissue rim sign were significantly correlated with TLE (Spearman's rho analysis). Stepwise multiple linear regression analysis defining stone volume, average HUs, severe hydronephrosis, and tissue rim sign as explanatory variables showed that stone volume and average HUs were significant predictors of TLE (standardized coefficients of 0.565 and 0.320, respectively; adjusted R 2  = 0.55, F = 54.7, P <.001). Stone attenuation values measured by average HUs and stone volume were strong predictors of TLE during URS using Ho:YAG laser procedures. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation.

    PubMed

    Bae, Kyuyoung; Kang, Gumin; Cho, Suehyun K; Park, Wounjhang; Kim, Kyoungsik; Padilla, Willie J

    2015-12-14

    Solar steam generation has been achieved by surface plasmon heating with metallic nanoshells or nanoparticles, which have inherently narrow absorption bandwidth. For efficient light-to-heat conversion from a wider solar spectrum, we employ adiabatic plasmonic nanofocusing to attain both polarization-independent ultrabroadband light absorption and high plasmon dissipation loss. Here we demonstrate large area, flexible thin-film black gold membranes, which have multiscale structures of varying metallic nanoscale gaps (0-200 nm) as well as microscale funnel structures. The adiabatic nanofocusing of self-aggregated metallic nanowire bundle arrays produces average absorption of 91% at 400-2,500 nm and the microscale funnel structures lead to average reflection of 7% at 2.5-17 μm. This membrane allows heat localization within the few micrometre-thick layer and continuous water provision through micropores. We efficiently generate water vapour with solar thermal conversion efficiency up to 57% at 20 kW m(-2). This new structure has a variety of applications in solar energy harvesting, thermoplasmonics and related technologies.

  14. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation

    PubMed Central

    Bae, Kyuyoung; Kang, Gumin; Cho, Suehyun K.; Park, Wounjhang; Kim, Kyoungsik; Padilla, Willie J.

    2015-01-01

    Solar steam generation has been achieved by surface plasmon heating with metallic nanoshells or nanoparticles, which have inherently narrow absorption bandwidth. For efficient light-to-heat conversion from a wider solar spectrum, we employ adiabatic plasmonic nanofocusing to attain both polarization-independent ultrabroadband light absorption and high plasmon dissipation loss. Here we demonstrate large area, flexible thin-film black gold membranes, which have multiscale structures of varying metallic nanoscale gaps (0–200 nm) as well as microscale funnel structures. The adiabatic nanofocusing of self-aggregated metallic nanowire bundle arrays produces average absorption of 91% at 400–2,500 nm and the microscale funnel structures lead to average reflection of 7% at 2.5–17 μm. This membrane allows heat localization within the few micrometre-thick layer and continuous water provision through micropores. We efficiently generate water vapour with solar thermal conversion efficiency up to 57% at 20 kW m−2. This new structure has a variety of applications in solar energy harvesting, thermoplasmonics and related technologies. PMID:26657535

  15. Microporous Ni₁₁(HPO₃)₈(OH)₆ nanocrystals for high-performance flexible asymmetric all solid-state supercapacitors.

    PubMed

    Gao, Yanping; Zhao, Junhong; Run, Zhen; Zhang, Guangqin; Pang, Huan

    2014-12-07

    Microporous nickel phosphite [Ni11(HPO3)8(OH)6] nanocrystals were prepared using a hydrothermal method, and were successfully applied as a positive electrode in a flexible all solid-state asymmetric supercapacitor. Because of the specific micro/nanostructure, the flexible solid-state asymmetric supercapacitor can achieve a maximum energy density of 0.45 mW h cm(-3), which is higher than most reported supercapacitors. More importantly, the device performance remains efficient for 10,000 cycles.

  16. A combination of subcuticular suture and sterile Micropore tape compared with conventional interrupted sutures for skin closure. A controlled trial.

    PubMed Central

    Taube, M.; Porter, R. J.; Lord, P. H.

    1983-01-01

    We have conducted a controlled trial to compare skin closure using conventional interrupted sutures with a combination of subcuticular suture and sterile Micropore tape in 169 patients undergoing appendicectomy, inguinal herniorrhaphy, or saphenofemoral ligation. We have found that the combination technique consistently gives a better cosmetic result and that the tape acts well as a dressing, is convenient, and is well tolerated by patients. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:6344732

  17. Inhibition of neutrophil migration by aggregated immunoglobulin attached to micropore membranes.

    PubMed Central

    Kemp, A S; Brown, S

    1980-01-01

    The effect of substrate-bound immunoglobulin on neutrophil migration was examined. Immunoglobulin aggregates bound to micropore membranes inhibited the neutrophil response to a chemotactic stimulus. This inhibition was reversed by the presence of aggregates in suspension suggesting competition between substrate-bound and free aggregates for neutrophil surface binding sites. The immobilization of neutrophils by substrate-bound aggregated immunoglobulin suggests a mechanism for the accumulation of neutrophils at sites of immune complex deposition and tissue-bound antibodies in vivo. PMID:7380477

  18. Enhanced catalytic activity through the tuning of micropore environment and supercritical CO2 processing: Al(porphyrin)-based porous organic polymers for the degradation of a nerve agent simulant.

    PubMed

    Totten, Ryan K; Kim, Ye-Seong; Weston, Mitchell H; Farha, Omar K; Hupp, Joseph T; Nguyen, SonBinh T

    2013-08-14

    An Al(porphyrin) functionalized with a large axial ligand was incorporated into a porous organic polymer (POP) using a cobalt-catalyzed acetylene trimerization strategy. Removal of the axial ligand afforded a microporous POP that is catalytically active in the methanolysis of a nerve agent simulant. Supercritical CO2 processing of the POP dramatically increased the pore size and volume, allowing for significantly higher catalytic activities.

  19. Effect of vanadium contamination on the framework and micropore structure of ultra stable Y-zeolite.

    PubMed

    Etim, U J; Xu, B; Ullah, Rooh; Yan, Z

    2016-02-01

    Y-zeolites are the main component of fluid catalytic cracking (FCC) catalyst for conversion of crude petroleum to products of high demand including transportation fuel. We investigated effects of vanadium which is present as one of the impurities in FCC feedstock on the framework and micropore structure of ultra-stable (US) Y-zeolite. The zeolite samples were prepared and characterized using standard techniques including: (1) X-ray diffraction, (2) N2 adsorption employing non local density functional theory method, NLDFT, (3) Transmittance and Pyridine FTIR, (4) Transmittance electron microscopy (TEM), and (5) (27)Al and (29)Si MAS-NMR. Results revealed that in the presence of steam, vanadium caused excessive evolution of non inter-crystalline mesopores and structural damage. The evolved mesopore size averaged about 25.0nm at 0.5wt.% vanadium loading, far larger than mesopore size in zeolitic materials with improved hydrothermal stability and performance for FCC catalyst. A mechanism of mesopore formation based on accelerated dealumination has been proposed and discussed. Vanadium immobilization experiments conducted to mitigate vanadium migration into the framework clearly showed vanadium is mobile at reaction conditions. From the results, interaction of vanadium with the passivator limits and decreases mobility and activity of vanadium into inner cavities of the zeolite capable of causing huge structure breakdown and acid sites destruction. This study therefore deepens insight into the causes of alteration in activity and selectivity of vanadium contaminated catalyst and hints on a possible mechanism of passivation in vanadium passivated FCC catalyst. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Stochastic theory of fatigue corrosion

    NASA Astrophysics Data System (ADS)

    Hu, Haiyun

    1999-10-01

    A stochastic theory of corrosion has been constructed. The stochastic equations are described giving the transportation corrosion rate and fluctuation corrosion coefficient. In addition the pit diameter distribution function, the average pit diameter and the most probable pit diameter including other related empirical formula have been derived. In order to clarify the effect of stress range on the initiation and growth behaviour of pitting corrosion, round smooth specimen were tested under cyclic loading in 3.5% NaCl solution.

  1. Acoustic fill factors for a 120 inch diameter fairing

    NASA Technical Reports Server (NTRS)

    Lee, Y. Albert

    1992-01-01

    Data from the acoustic test of a 120-inch diameter payload fairing were collected and an analysis of acoustic fill factors were performed. Correction factors for obtaining a weighted spatial average of the interior sound pressure level (SPL) were derived based on this database and a normalized 200-inch diameter fairing database. The weighted fill factors were determined and compared with statistical energy analysis (VAPEPS code) derived fill factors. The comparison is found to be reasonable.

  2. Formation of small gold clusters in solution by laser excitation of interband transition

    NASA Astrophysics Data System (ADS)

    Mafuné, Fumitaka; Kondow, Tamotsu

    2003-04-01

    Gold nanoparticles with ˜10 nm in average diameter were prepared by laser ablation of a gold metal plate in an aqueous solution of sodium dodecyl sulfate (SDS) and were fragmented by excitation of an interband transition of gold nanoparticles under irradiation of an intense 355-nm pulsed laser. Fragmentation dynamics was investigated by comparing the fragmentation by excitation of a surface plasmon band of gold nanoparticles by a 532-nm laser. It is found that gold nanoparticles with 1.5-nm average diameter are produced together with small gold clusters by properly optimizing the surfactant concentration.

  3. Estimation of ultrashort laser irradiation effect over thin transparent biopolymer films morphology

    NASA Astrophysics Data System (ADS)

    Daskalova, A.; Nathala, C.; Bliznakova, I.; Slavov, D.; Husinsky, W.

    2015-01-01

    The collagen - elastin biopolymer thin films treated by CPA Ti:Sapphire laser (Femtopower - Compact Pro) at 800nm central wavelength with 30fs and 1kHz repetition rate are investigated. A process of surface modifications and microporous scaffold creation after ultrashort laser irradiation has been observed. The single-shot (N=1) and multi-shot (N<1) ablation threshold values were estimated by studying the linear relationship between the square of the crater diameter D2 and the logarithm of the laser fluence F for determination of the threshold fluences for N=1, 2, 5, 10, 15 and 30 number of laser pulses. The incubation analysis by calculation of the incubation coefficient ξ for multi - shot fluence threshold for selected materials by power - law relationship form Fth(N)=Fth(1)Nξ-1 was also obtained. In this paper, we have also shown another consideration of the multi - shot ablation threshold calculation by logarithmic dependence of the ablation rate d on the laser fluence. The morphological surface changes of the modified regions were characterized by scanning electron microscopy to estimate the generated variations after the laser treatment.

  4. Preparation of modified semi-coke by microwave heating and adsorption kinetics of methylene blue.

    PubMed

    Wang, Xin; Peng, Jin-Hui; Duan, Xin-Hui; Srinivasakannan, Chandrasekar

    2013-01-01

    Preparation of modified semi-coke has been achieved, using phosphoric acid as the modifying agent, by microwave heating from virgin semi-coke. Process optimization using a Central Composite Design (CCD) design of Response Surface Methodology (RSM) technique for the preparation of modifies semi-coke is presented in this paper. The optimum conditions for producing modified semi-coke were: concentration of phosphoric acid 2.04, heating time 20 minutes and temperature 587 degrees C, with the optimum iodine of 862 mg/g and yield of 47.48%. The textural characteristics of modified semi-coke were analyzed using scanning electron microscopy (SEM) and nitrogen adsorption isotherm. The BET surface area of modified semi-coke was estimated to be 989.60 m2/g, with the pore volume of 0.74 cm3/g and a pore diameter of 3.009 nm, with micro-pore volume contributing to 62.44%. The Methylene Blue monolayer adsorption capacity was found to be mg/g at K. The adsorption capacity of the modified semi-coke highlights its suitability for liquid phase adsorption application with a potential usage in waste water treatment.

  5. Development of activated carbon derived from banana peel for CO2 removal

    NASA Astrophysics Data System (ADS)

    Borhan, Azry; Thangamuthu, Subhashini; Taha, Mohd Faisal; Ramdan, Amira Nurain

    2015-08-01

    This research work highlights on the constraints involved in the preparation of the banana peel bio-sorbent, such as impregnation ratio, activation temperature and period of activation for reducing carbon dioxide (CO2) in the atmosphere. Micromeritics ASAP 2020 and Field Emission Scanning Electron Microscope (FESEM) were used in identifying the best sample preparation method with the largest surface area which directly contributes to the effectiveness of adsorbent in removing CO2. Sample A10 was identified to yield activated carbon with the largest surface area (260.3841 m2/g), total pore volume (0.01638 cm3/g) and pore diameter (0.2508 nm). Through nitrogen adsorption-desorption isotherm analysis, the existence of sub-micropores was proven when a combination of Type-I and Type-II isotherms were exhibited by the activated carbon produced. The results from the final adsorption test found that the material synthesized from the above mentioned parameter is capable of removing up to 1.65% wt of CO2 through adsorption at 25°C, suggesting that it can be effectively used as an adsorption material.

  6. Quality of poultry litter-derived granular activated carbon.

    PubMed

    Qiu, Guannan; Guo, Mingxin

    2010-01-01

    Utilization of poultry litter as a source material for generating activated carbon is a value-added and environmentally beneficial approach to recycling organic waste. In this study, the overall quality of poultry litter-derived granular activated carbon was systematically evaluated based on its various physical and chemical properties. Granular activated carbon generated from pelletized poultry litter following a typical steam-activation procedure possessed numerous micropores in the matrix. The product exhibited a mean particle diameter of 2.59 mm, an apparent density of 0.45 g cm(-3), a ball-pan hardness of 91.0, an iodine number of 454 mg g(-1), and a BET surface area of 403 m(2) g(-1). It contained high ash, nitrogen, phosphorus contents and the trace elements Cu, Zn, and As. Most of the nutrients and toxic elements were solidified and solution-unextractable. In general, poultry litter-based activated carbon demonstrated overall quality comparable to that of low-grade commercial activated carbon derived from coconut shell and bituminous coal. It is promising to use poultry litter as a feedstock to manufacture activated carbon for wastewater treatment.

  7. Pool boiling with high heat flux enabled by a porous artery structure

    NASA Astrophysics Data System (ADS)

    Bai, Lizhan; Zhang, Lianpei; Lin, Guiping; Peterson, G. P.

    2016-06-01

    A porous artery structure utilizing the concept of "phase separation and modulation" is proposed to enhance the critical heat flux of pool boiling. A series of experiments were conducted on a range of test articles in which multiple rectangular arteries were machined directly into the top surface of a 10.0 mm diameter copper rod. The arteries were then covered by a 2.0 mm thickness microporous copper plate through silver brazing. The pool wall was fabricated from transparent Pyrex glass to allow a visualization study, and water was used as the working fluid. Experimental results confirmed that the porous artery structure provided individual flow paths for the liquid supply and vapor venting, and avoided the detrimental effects of the liquid/vapor counter flow. As a result, a maximum heat flux of 610 W/cm2 over a heating area of 0.78 cm2 was achieved with no indication of dryout, prior to reaching the heater design temperature limit. Following the experimental tests, the mechanisms responsible for the boiling critical heat flux and performance enhancement of the porous artery structure were analyzed.

  8. Gel-based morphological design of zirconium metal-organic frameworks.

    PubMed

    Bueken, Bart; Van Velthoven, Niels; Willhammar, Tom; Stassin, Timothée; Stassen, Ivo; Keen, David A; Baron, Gino V; Denayer, Joeri F M; Ameloot, Rob; Bals, Sara; De Vos, Dirk; Bennett, Thomas D

    2017-05-01

    The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero- or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr 4+ -based MOFs: UiO-66-X (X = H, NH 2 , NO 2 , (OH) 2 ), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO 2 . Electron microscopy, combined with N 2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 μm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations.

  9. Fundamental adsorption characteristics of carbonaceous adsorbents for 1,2,3,4-tetrachlorobenzene in a model gas of an incineration plant.

    PubMed

    Inoue, Kenichiro; Kawamoto, Katsuya

    2005-08-01

    Carbonaceous adsorbents such as activated carbon have been used to reduce the emission of organic pollutants from incineration plants. However, with this method, the amount and type of adsorbent to be used are based only on empirical results, which may lead to overuse of the adsorbents. The fundamental adsorption characteristics of several kinds of activated carbon, activated coke, and carbide wood were examined using 1 ,2,3,4-tetrachlorobenzene as an adsorbate. The removal performance and various equilibrium adsorption characteristics of these adsorbents were analyzed using laboratory-scale adsorption equipment. The equilibrium adsorption amount increased by a factor of 1.9-3.2 at 150 degrees C compared with that at 190 degrees C. The effect of the moisture content on adsorption capacity was relatively small in comparison with that of the temperature. The micropore volume for pore diameters of 2 nm or less was the most important factor governing the adsorption capacity for all adsorbents. Activated carbon showed superior adsorption ability compared to activated coke and carbide wood, although all adsorbents were sufficient for practical use.

  10. Pyrolyzed feather fibers for adsorbent and high temperature applications

    NASA Astrophysics Data System (ADS)

    Senoz, Erman

    Chicken feather fibers (CFF) are problematic and costly for the poultry industry in terms of managing maintenance and disposal. Considering their great availability, low cost, and unique protein structure, CFF can be an environmentally friendly and bio-renewable candidate to replace petroleum products. CFF's low degradation and melting temperature render them useless at high temperatures. Pyrolysis methods were developed for CFF by using two temperature steps to convert them into high temperature resistant and adsorbent fibers while retaining their original physical appearance and affine dimensions. An intermolecular crosslinking mechanism in the first step of pyrolysis at 215 ºC for 24 h provided an intact fibrous structure with no subsequent melting. The evidence obtained from the thermal, bulk, and surface analysis techniques was indication of the simultaneous side chain degradation, polypeptide backbone scission, disulfide bond cleavage, and isopeptide crosslinking. The variation in the reaction kinetics of disulfide bond cleavage and isopeptide crosslinking played an important role in the melting transition. Consequently, long-lasting heat treatments below the melting point provided sufficient crosslinks in the protein matrix to keep the fibrous structure intact. Water-insoluble and crosslinked CFF reinforced the triglyceride-fatty acid based composites by providing a 15 fold increase in storage and tensile modulus at room temperature. These thermally stable fibers can be used instead of CFF in composites which may require high temperature compounding and molding processes. The second step of pyrolysis at 400--450 ºC for 1 h resulted in microporous fibers with a micropore volume of ˜0.18 cm3/g STP and with a narrower pore size distribution than commercial activated carbons through thermal degradation. Nearly all accessible pores in the microporous pyrolyzed chicken feather fibers (PCFF) had diameters less than 1 nm and therefore, showed a potential to be used in applications such as adsorption, storage, and separation of small gas molecules. The maximum excess H2 storage capacity was 1.5 wt% at 77 K and at pressures below 2 MPa. The notable H2 adsorption of PCFF below 1 MPa can be justified by the abundance of microporosity and the nanopores available for H2 penetration. In the second step of the pyrolysis the protein matrix went through a series of transformations including cyclization and aromatization reactions above the melting point. A partially cyclic carbon-nitrogen framework (carbon/nitrogen ratio=2.38) supported by double and triple bonds and oxygen functionalities is the suggested structural model for the PCFF. The useful fibers and adsorbents produced from CFF in this dissertation can encourage researchers to use high temperature heat treatments on keratin-based fibers. Also, the identified pyrolysis mechanisms can serve as a guide for producing materials with desired properties from protein-based materials, particularly in textile, high performance composite and catalyst industries.

  11. Diameters of the cavo-sinus-tricuspid area in relation to type I atrial flutter.

    PubMed

    Kozłowski, Dariusz; Hreczecha, Jolanta; Skwarek, Magdalena; Piwko, Grzegorz; Kosiński, Adam; Gawrysiak, Marcin; Grzybiak, Marek

    2003-05-01

    Cardiac arrhythmias have troubled patients and fascinated physicians for centuries. The twentieth century was an era of progress, when the mechanism of cardiac disorders became more commonly recognised. Arrhythmias may be due to abnormalities of automaticity, to abnormalities of conduction, or to a combination of both. In order for re-entry to occur, an area of slowing conduction combined with unidirectional block must be present. Much investigation has centred on the underlying re-entry mechanisms of atrial flutter. In the light of these facts, it would seem that a close acquaintance with the detailed topography of the vena cava orifice (cavo), coronary sinus orifice (sinus) and the attachment of the septal leaflet of the tricuspid valve (tricupid) area could be of great interest, especially for invasive cardiologists. The research was conducted carried out on material consisting of 41 hearts of humans of both sexes from the age of 12 to 80 (6 female, 35 male). Classical macroscopic methods of anatomical evaluation were used. The following measurements were made: the shortest distance between the Eustachian valve and the attachment of the tricuspid valve on the left margin of the coronary sinus orifice (diameter 1), the distance between the attachment of the tricuspid valve and the inferior margin of the sinus orifice (diameter 2), the distance between the Eustachian valve and the attachment of the tricuspid valve on the right margin of the coronary sinus orifice (diameter 3), the distance between the inferior margin of the vena cava inferior and the attachment of the tricuspid valve (diameter 4) and, finally, the diameter between the attachment of the septal cusp of the tricuspid valve and the extemal border of the vena cava inferior (diameter 5). No correlation was found between the age and sex of the three groups of the material. The dimensions of the structure examined were similar in the three groups of hearts. In young adult hearts all the diameters measured ranged from 4 to 47 mm. The average diameters were, respectively: 15.02 mm (diameter 1), 8.97 mm (diameter 2), 17.27 mm (diameter 3), 26.87 mm (diameter 4), 36.42 mm (diameter 5). In the mature adult hearts all the diameters measured ranged from 8 to 45 mm; 18.19 mm (diameter 1), 10.54 mm (diameter 2), 19.95 mm (diameter 3), 28.90 mm (diameter 4), 39.63 mm (diameter 5). In the older adults hearts all the diameters measured ranged from 4 to 47 mm. The average diameters were, respectively: 15.65 mm (diameter 1), 8.70 mm (diameter 2), 7.25 mm (diameter 3), 26.80 mm (diameter 4), 35.85 mm (diameter 5). On the basis of our study we were able to conclude that the diameters of the cavo-sinus-tricuspid area were constant and did not differ significantly within the three (young, mature, old) adult groups examined.

  12. Microporous spongy chitosan monoliths doped with graphene oxide as highly effective adsorbent for methyl orange and copper nitrate (Cu(NO3)2) ions.

    PubMed

    Wang, Ying; Liu, Xu; Wang, Hongfang; Xia, Guangmei; Huang, Wei; Song, Rui

    2014-02-15

    In the current study, microporous spongy chitosan monoliths doped with small amount of graphene oxide (CSGO monoliths) with high porosity (96-98%), extraordinary high water absorption (more than 2000%) and low density (0.0436-0.0607 g cm(-3)) were prepared by the freeze-drying method and used as adsorbents for anionic dyes methyl orange (MO) and Cu(2+) ions. The adsorption behavior of the CSGO monoliths and influencing factors such as pH value, graphene oxide (GO) content, concentration of pollutants as well as adsorption kinetics were studied. Specifically, the saturated adsorption capacity for MO is 567.07 mg g(-1), the highest comparing with other publication results, and it is 53.69 mg g(-1) for Cu(2+) ions. Since they are biodegradable, non-toxic, efficient, low-cost and easy to prepare, we believe that these microporous spongy CSGO monoliths will be the promising candidates for water purification. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Micropore engineering of carbonized porous aromatic framework (PAF-1) for supercapacitors application.

    PubMed

    Li, Yanqiang; Roy, Soumyajit; Ben, Teng; Xu, Shixian; Qiu, Shilun

    2014-07-07

    Micropore engineering of porous carbons on the effect of capacitance was explored using a carbonized porous aromatic framework (PAF-1). The porous carbons obtained through different carbonization methods show different pore structures enabling us to do this. The capacitance was measured both in aqueous electrolyte and different organic electrolytes. The porous carbons prepared by KOH activation show both high microporous volume, which is beneficial for charge storage, and mesoporous volume, which is devoted to fast ion diffusion in the pores; properties which are highly desirable. It shows a capacitance as high as 280 F g(-1) and 203 F g(-1) at a current density of 1 A g(-1) in 6.0 M KOH and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMImTFSI), respectively. We also demonstrate the effect of diffusion and that of geometric packing of the electrolyte ions in the pores, where a commensurate match of the electrolyte ions with the pores of carbonized materials control and influence significantly the capacitance of these materials.

  14. Interfacial micropore defect formation in PEDOT:PSS-Si hybrid solar cells probed by TOF-SIMS 3D chemical imaging.

    PubMed

    Thomas, Joseph P; Zhao, Liyan; Abd-Ellah, Marwa; Heinig, Nina F; Leung, K T

    2013-07-16

    Conducting p-type polymer layers on n-type Si have been widely studied for the fabrication of cost-effective hybrid solar cells. In this work, time-of-flight secondary ion mass spectrometry (TOF-SIMS) is used to provide three-dimensional chemical imaging of the interface between poly(3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS) and SiOx/Si in a hybrid solar cell. To minimize structural damage to the polymer layer, an Ar cluster sputtering source is used for depth profiling. The present result shows the formation of micropore defects in the interface region of the PEDOT:PSS layer on the SiOx/Si substrate. This interfacial micropore defect formation becomes more prominent with increasing thickness of the native oxide layer, which is a key device parameter that greatly affects the hybrid solar cell performance. Three-dimensional chemical imaging coupled with Ar cluster ion sputtering has therefore been demonstrated as an emerging technique for probing the interface of this and other polymer-inorganic systems.

  15. Importance of Ion Packing on the Dynamics of Ionic Liquids during Micropore Charging.

    PubMed

    He, Yadong; Qiao, Rui; Vatamanu, Jenel; Borodin, Oleg; Bedrov, Dmitry; Huang, Jingsong; Sumpter, Bobby G

    2016-01-07

    Molecular simulations of the diffusion of EMIM(+) and TFSI(-) ions in slit-shaped micropores under conditions similar to those during charging show that in pores that accommodate only a single layer of ions, ions diffuse increasingly faster as the pore becomes charged (with diffusion coefficients even reaching ∼5 × 10(-9) m(2)/s), unless the pore becomes very highly charged. In pores wide enough to fit more than one layer of ions, ion diffusion is slower than in the bulk and changes modestly as the pore becomes charged. Analysis of these results revealed that the fast (or slow) diffusion of ions inside a micropore during charging is correlated most strongly with the dense (or loose) ion packing inside the pore. The molecular details of the ions and the precise width of the pores modify these trends weakly, except when the pore is so narrow that the ion conformation relaxation is strongly constrained by the pore walls.

  16. An adsorption diffusion model for removal of para-chlorophenol by activated carbon derived from bituminous coal.

    PubMed

    Sze, M F F; McKay, G

    2010-05-01

    Batch adsorption experiments were carried out to study the adsorptive removal and diffusion mechanism of para-chlorophenol (p-CP) onto Calgon Filtrasorb 400 (F400) activated carbon. The external mass transfer resistance is negligible in the adsorption process carried out under different conditions in batch operation. Intraparticle diffusion model plots were used to correlate the batch p-CP adsorption data; three distinct linear sections were obtained for every batch operation. The textural properties of F400 activated carbon showed that it has a large portion of supermicropores, which is comparable to the size of the p-CP molecules. Due to the stronger interactions between p-CP molecules and F400 micropores, p-CP molecules predominantly diffused and occupied active sites in micropore region by hopping mechanism, and eventually followed by a slow filling of mesopores and micropores. This hypothesis is proven by the excellent agreement of the intraparticle diffusion model plots and the textural properties of F400 activated carbon. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. High electrochemical capacitor performance of oxygen and nitrogen enriched activated carbon derived from the pyrolysis and activation of squid gladius chitin

    NASA Astrophysics Data System (ADS)

    Raj, C. Justin; Rajesh, Murugesan; Manikandan, Ramu; Yu, Kook Hyun; Anusha, J. R.; Ahn, Jun Hwan; Kim, Dong-Won; Park, Sang Yeup; Kim, Byung Chul

    2018-05-01

    Activated carbon containing nitrogen functionalities exhibits excellent electrochemical property which is more interesting for several renewable energy storage and catalytic applications. Here, we report the synthesis of microporous oxygen and nitrogen doped activated carbon utilizing chitin from the gladius of squid fish. The activated carbon has large surface area of 1129 m2 g-1 with microporous network and possess ∼4.04% of nitrogen content in the form of pyridinic/pyrrolic-N, graphitic-N and N-oxide groups along with oxygen and carbon species. The microporous oxygen/nitrogen doped activated carbon is utilize for the fabrication of aqueous and flexible supercapacitor electrodes, which presents excellent electrochemical performance with maximum specific capacitance of 204 Fg-1 in 1 M H2SO4 electrolyte and 197 Fg-1 as a flexible supercapacitor. Moreover, the device displays 100% of specific capacitance retention after 25,000 subsequent charge/discharge cycles in 1 M H2SO4 electrolyte.

  18. Importance of Ion Packing on the Dynamics of Ionic Liquids during Micropore Charging

    DOE PAGES

    He, Yadong; Qiao, Rui; Vatamanu, Jenel; ...

    2015-12-07

    In molecular simulations of the diffusion of EMIM+ and TESI- ions in slit-shaped micropores under conditions similar to those during charging show that in pores that accommodate only a single layer of ions, ions diffuse increasingly faster as the pore becomes charged (with diffusion coefficients even reaching similar to 5 x 10 -9 m 2/s), unless the pore becomes very highly charged. In pores wide enough to fit more than one layer of ions, ion diffusion is slower than in the bulk and changes modestly as the pore becomes charged. Moreover, analysis of these results revealed that the fast (ormore » slow) diffusion of ions inside a micropore during charging is correlated most strongly with the dense (or loose) ion packing inside the pore. Finally, the molecular details of the ions and the precise width of the pores modify these trends weakly, except when the pore is so narrow that the ion conformation relaxation is strongly constrained by the pore walls.« less

  19. Simulation of gas flow in micro-porous media with the regularized lattice Boltzmann method

    DOE PAGES

    Wang, Junjian; Kang, Qinjun; Wang, Yuzhu; ...

    2017-06-01

    One primary challenge for prediction of gas flow in the unconventional gas reservoir at the pore-scale such as shale and tight gas reservoirs is the geometric complexity of the micro-porous media. In this paper, a regularized multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is applied to analyze gas flow in 2-dimensional micro-porous medium reconstructed by quartet structure generation set (QSGS) on pore-scale. In this paper, the velocity distribution inside the porous structure is presented and analyzed, and the effects of the porosity and specific surface area on the rarefied gas flow and apparent permeability are examined and investigated. The simulation resultsmore » indicate that the gas exhibits different flow behaviours at various pressure conditions and the gas permeability is strongly related to the pressure. Finally, the increased porosity or the decreased specific surface area leads to the increase of the gas apparent permeability, and the gas flow is more sensitive to the pore morphological properties at low-pressure conditions.« less

  20. Injectable and microporous scaffold of densely-packed, growth factor-encapsulating chitosan microgels.

    PubMed

    Riederer, Michael S; Requist, Brennan D; Payne, Karin A; Way, J Douglas; Krebs, Melissa D

    2016-11-05

    In this work, an emulsion crosslinking method was developed to produce chitosan-genipin microgels which acted as an injectable and microporous scaffold. Chitosan was characterized with respect to pH by light scattering and aqueous titration. Microgels were characterized with swelling, light scattering, and rheometry of densely-packed microgel solutions. The results suggest that as chitosan becomes increasingly deprotonated above the pKa, repulsive forces diminish and intermolecular attractions cause pH-responsive chain aggregation; leading to microgel-microgel aggregation as well. The microgels with the most chitosan and least cross-linker showed the highest yield stress and a storage modulus of 16kPa when condensed as a microgel paste at pH 7.4. Two oppositely-charged growth factors could be encapsulated into the microgels and endothelial cells were able to proliferate into the 3D microgel scaffold. This work motivates further research on the applications of the chitosan microgel scaffold as an injectable and microporous scaffold in regenerative medicine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Simulation of gas flow in micro-porous media with the regularized lattice Boltzmann method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Junjian; Kang, Qinjun; Wang, Yuzhu

    One primary challenge for prediction of gas flow in the unconventional gas reservoir at the pore-scale such as shale and tight gas reservoirs is the geometric complexity of the micro-porous media. In this paper, a regularized multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is applied to analyze gas flow in 2-dimensional micro-porous medium reconstructed by quartet structure generation set (QSGS) on pore-scale. In this paper, the velocity distribution inside the porous structure is presented and analyzed, and the effects of the porosity and specific surface area on the rarefied gas flow and apparent permeability are examined and investigated. The simulation resultsmore » indicate that the gas exhibits different flow behaviours at various pressure conditions and the gas permeability is strongly related to the pressure. Finally, the increased porosity or the decreased specific surface area leads to the increase of the gas apparent permeability, and the gas flow is more sensitive to the pore morphological properties at low-pressure conditions.« less

  2. Nanoscale assembly of lanthanum silica with dense and porous interfacial structures.

    PubMed

    Ballinger, Benjamin; Motuzas, Julius; Miller, Christopher R; Smart, Simon; Diniz da Costa, João C

    2015-02-03

    This work reports on the nanoscale assembly of hybrid lanthanum oxide and silica structures, which form patterns of interfacial dense and porous networks. It was found that increasing the molar ratio of lanthanum nitrate to tetraethyl orthosilicate (TEOS) in an acid catalysed sol-gel process alters the expected microporous metal oxide silica structure to a predominantly mesoporous structure above a critical lanthanum concentration. This change manifests itself by the formation of a lanthanum silicate phase, which results from the reaction of lanthanum oxide nanoparticles with the silica matrix. This process converts the microporous silica into the denser silicate phase. Above a lanthanum to silica ratio of 0.15, the combination of growth and microporous silica consumption results in the formation of nanoscale hybrid lanthanum oxides, with the inter-nano-domain spacing forming mesoporous volume. As the size of these nano-domains increases with concentration, so does the mesoporous volume. The absence of lanthanum hydroxide (La(OH)3) suggests the formation of La2O3 surrounded by lanthanum silicate.

  3. CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate.

    PubMed

    Datta, Shuvo Jit; Khumnoon, Chutharat; Lee, Zhen Hao; Moon, Won Kyung; Docao, Son; Nguyen, Thanh Huu; Hwang, In Chul; Moon, Dohyun; Oleynikov, Peter; Terasaki, Osamu; Yoon, Kyung Byung

    2015-10-16

    Capturing CO2 from humid flue gases and atmosphere with porous materials remains costly because prior dehydration of the gases is required. A large number of microporous materials with physical adsorption capacity have been developed as CO2-capturing materials. However, most of them suffer from CO2 sorption capacity reduction or structure decomposition that is caused by co-adsorbed H2O when exposed to humid flue gases and atmosphere. We report a highly stable microporous coppersilicate. It has H2O-specific and CO2-specific adsorption sites but does not have H2O/CO2-sharing sites. Therefore, it readily adsorbs both H2O and CO2 from the humid flue gases and atmosphere, but the adsorbing H2O does not interfere with the adsorption of CO2. It is also highly stable after adsorption of H2O and CO2 because it was synthesized hydrothermally. Copyright © 2015, American Association for the Advancement of Science.

  4. Reactivity assay of surface carboxyl chain-ends of poly(ethylene terephthalate) (PET) film and track-etched microporous membranes using fluorine labelled- and/or 3H-labelled derivatization reagents: tandem analysis by X-ray photoelectron spectroscopy (XPS) and liquid scintillation counting (LSC)

    NASA Astrophysics Data System (ADS)

    Deldime, Michèle; Dewez, Jean-Luc; Schneider, Yves-Jacques; Marchand-Brynaert, Jacqueline

    1995-09-01

    Poly(ethylene terephthalate) (PET) films and track-etched microporous membranes of two different porosities were pretreated by hydrolysis and/or oxidation in order to enhance the amount of carboxyl chain-ends displayed on their surface. The reactivity of these carboxyl functions was determined by derivatization assays in which the reactions were carried out under conditions likely to be encountered in the coupling of water-soluble biochemical signals on the surface of biomaterials. Original reagents, fluorine-labelled and/or 3H-labelled aminoacid compounds, were used. The derivatized PET samples were examined by X-ray photoelectron spectroscopy (XPS) to characterize their apparent surfaces, and by liquid scintillation counting (LSC) to quantify the amount of tags fixed on their open surfaces. Using this dual assay technique, we analyzed the surface of microporous membranes which are currently used as substrates for cell culture systems.

  5. A Sugar-Derived Room-Temperature Sodium Sulfur Battery with Long Term Cycling Stability.

    PubMed

    Carter, Rachel; Oakes, Landon; Douglas, Anna; Muralidharan, Nitin; Cohn, Adam P; Pint, Cary L

    2017-03-08

    We demonstrate a room-temperature sodium sulfur battery based on a confining microporous carbon template derived from sucrose that delivers a reversible capacity over 700 mAh/g S at 0.1C rates, maintaining 370 mAh/g S at 10 times higher rates of 1C. Cycling at 1C rates reveals retention of over 300 mAh/g S capacity across 1500 cycles with Coulombic efficiency >98% due to microporous sulfur confinement and stability of the sodium metal anode in a glyme-based electrolyte. We show sucrose to be an ideal platform to develop microporous carbon capable of mitigating electrode-electrolyte reactivity and loss of soluble intermediate discharge products. In a manner parallel to the low-cost materials of the traditional sodium beta battery, our work demonstrates the combination of table sugar, sulfur, and sodium, all of which are cheap and earth abundant, for a high-performance stable room-temperature sodium sulfur battery.

  6. Multifunction Sr, Co and F co-doped microporous coating on titanium of antibacterial, angiogenic and osteogenic activities

    PubMed Central

    Zhou, Jianhong; Zhao, Lingzhou

    2016-01-01

    Advanced multifunction titanium (Ti) based bone implant with antibacterial, angiogenic and osteogenic activities is stringently needed in clinic, which may be accomplished via incorporation of proper inorganic bioactive elements. In this work, microporous TiO2/calcium-phosphate coating on Ti doped with strontium, cobalt and fluorine (SCF-TiCP) was developed, which had a hierarchical micro/nano-structure with a microporous structure evenly covered with nano-grains. SCF-TiCP greatly inhibited the colonization and growth of both gram-positive and gram-negative bacteria. No cytotoxicity appeared for SCF-TiCP. Furthermore, SCF-TiCP stimulated the expression of key angiogenic factors in rat bone marrow stem cells (MSCs) and dramatically enhanced MSC osteogenic differentiation. The in vivo animal test displayed that SCF-TiCP induced more new bone and tighter implant/bone bonding. In conclusion, multifunction SCF-TiCP of antibacterial, angiogenic and osteogenic activities is a promising orthopedic and dental Ti implant coating for improved clinical performance. PMID:27353337

  7. Method and electrochemical cell for synthesis and treatment of metal monolayer electrocatalysts metal, carbon, and oxide nanoparticles ion batch, or in continuous fashion

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Sasaki, Kotaro

    2015-04-28

    An apparatus and method for synthesis and treatment of electrocatalyst particles in batch or continuous fashion is provided. In one embodiment, the apparatus comprises a sonication bath and a two-compartment chamber submerged in the sonication bath. The upper and lower compartments are separated by a microporous material surface. The upper compartment comprises a cover and a working electrode (WE) connected to a Pt foil contact, with the foil contact connected to the microporous material. The upper chamber further comprises reference counter electrodes. The lower compartment comprises an electrochemical cell containing a solution of metal ions. In one embodiment, the method for synthesis of electrocatalysts comprises introducing a plurality of particles into the apparatus and applying sonication and an electrical potential to the microporous material connected to the WE. After the non-noble metal ions are deposited onto the particles, the non-noble metal ions are displaced by noble-metal ions by galvanic displacement.

  8. Speciation of copper diffused in a bi-porous molecular sieve

    NASA Astrophysics Data System (ADS)

    Huang, C.-H.; Paul Wang, H.; Wei, Y.-L.; Chang, J.-E.

    2010-07-01

    To better understand diffusion of copper in the micro- and mesopores, speciation of copper in a bi-porous molecular sieve (BPMS) possessing inter-connecting 3-D micropores (0.50-0.55 nm) and 2-D mesopores (4.1 nm) has been studied by X-ray absorption near edge structure (XANES) spectroscopy. It is found that about 77% (16% of CuO nanoparticles and 61% of CuO clusters) and 23% (CuO ads) of copper can be diffused into the meso- and micropores, respectively, in the BPMS. At least two diffusion steps in the BPMS may be involved: (i) free diffusion of copper in the mesopores and (ii) diffusion-controlled copper migrating into the micropores of the BPMS. The XANES data also indicate that diffusion rate of copper in the BPMS (4.68×10 -5 g/s) is greater than that in the ZSM-5 (1.11×10 -6 g/s) or MCM-41 (1.17×10 -5 g/s).

  9. Removal of pesticides from aqueous solution: Quantitative relationship between activated carbon characteristics and adsorption properties.

    PubMed

    Cougnaud, A; Faur, C; Le Cloirec, P

    2005-08-01

    The adsorption of pesticides (atrazin, atrazin-desethyl and triflusulfuron-methyl) from aqueous solution is performed by activated carbon fibers (ACF) and granular activated carbons (GAC) in static and dynamic reactors, in order to study the co-influence of adsorbent and adsorbate characteristics on the adsorption mechanisms. First, mono-component adsorption equilibrium is carried out in a batch reactor for a wide range of concentrations (from 5 microg 1(-1) to 21.4 mg 1(-1)). Classic models, like Freundlich and Langmuir equations, are applied: the maximum adsorption capacities are high, ranging between 63 and 509 mg g(-1). The comparison of single-solute isotherms tends to confirm the decisive role of the adsorbent properties in the adsorption capacity of pesticides by the activated carbons: the performance of ACF is significantly higher than that of GAC due to a narrower pore size distribution of fibers in the area of micropores. Furthermore, their small diameter (10 microm compared with 1 mm for grains) enables faster adsorption kinetics because of the larger surface area exposed to the fluid. The influence of adsorbate size is also demonstrated. A multiple linear regression enables the co-influence of adsorbent and adsorbate properties to be quantified, a relationship being assessed between Langmuir maximum adsorption capacity and pesticide molecular weight and adsorbent diameter (R2 = 0.90). Secondly, the adsorption of the three pesticides is studied in a dynamic reactor: in this case, the influence of operating conditions (inlet concentration C0, flow velocity U0) is also taken into account. As the initial concentration or flow velocity decreases, the column performance significantly improves. Both operating factors are included in a multiple linear regression (R2 = 0.91) used to predict saturation adsorption capacity, with molecular weight and particle diameter being again designed as influent explicative variables.

  10. Biochar from Coffee Residues: A New Promising Sorbent

    NASA Astrophysics Data System (ADS)

    Fotopoulou, Kalliopi; Karapanagioti, Hrissi; Manariotis, Ioannis

    2014-05-01

    Biochar is a carbon-rich material produced by heating biomass in an oxygen-limited environment. Biochar is mainly used as an additive to soils to sequester carbon and improve soil fertility as well as a sorbent for environmental remediation processes. Surface properties such as point of zero charge, surface area and pore volume, surface topography, surface functional groups and acid-base behavior are important factors, which affect sorption efficiency. Understanding the surface alteration of biochars increases our understanding of the pollutant-sorbent interaction. The objective of the present study was to characterize the surface properties of biochar produced, and to investigate the effect of thermal treatment conditions on key characteristics that affect sorptive properties. The espresso coffee residue was obtained after the coffee was brewed through espresso machines in coffee shops. The coffee residue was dried and kept in an oven at 50oC until its pyrolysis at 850oC. Pyrolysis with different coffee mass and containers were tested in order to find optimum biochar characteristics. Detailed characterization techniques were carried out to determine the properties of the produced biochar. The surface area, the pore volume, and the average pore size of the biochars were determined using gas (N2) adsorption-desorption cycles using the Brunauer, Emmett, and Teller (BET) equation. Open surface area and micropore volume were determined using the t-plot method and the Harkins & Jura equation. Total organic carbon was also determined because it is an important factor that affects sorption. The results were compared with the corresponding properties of activated carbons. The biochar produced exhibited a wide range of surface area from 21 to 770 m2/g and open surface area from 21 to 65 m2/g. It is obvious that the surface area results from the formation of pores. Actually it was calculated that up to 90% of the porosity is due to the micropores. More specifically the average size of the pores for the high surface area biochars was 32 A. Finally, the organic carbon content of the produced biochar ranged from 45 to 75%.

  11. Stress changes ahead of an advancing tunnel

    USGS Publications Warehouse

    Abel, J.F.; Lee, F.T.

    1973-01-01

    Instrumentation placed ahead of three model tunnels in the laboratory and ahead of a crosscut driven in a metamorphic rock mass detected stress changes several tunnel diameters ahead of the tunnel face. Stress changes were detected 4 diameters ahead of a model tunnel drilled into nearly elastic acrylic, 2??50 diameters ahead of a model tunnel drilled into concrete, and 2 diameters ahead of a model tunnel drilled into Silver Plume Granite. Stress changes were detected 7??50 diameters ahead of a crosscut driven in jointed, closely foliated gneisses and gneissic granites in an experimental mine at Idaho Springs, Colorado. These results contrast markedly with a theoretical elastic estimate of the onset of detectable stress changes at 1 tunnel diameter ahead of the tunnel face. A small compressive stress concentration was detected 2 diameters ahead of the model tunnel in acrylic, 1.25 diameters ahead of the model tunnel in concrete, and 1 diameter ahead of the model tunnel in granite. A similar stress peak was detected about 6 diameters ahead of the crosscut. No such stress peak is predicted from elastic theory. The 3-dimensional in situ stress determined in the field demonstrate that geologic structure controls stress orientations in the metamorphic rock mass. Two of the computed principal stresses are parallel to the foliation and the other principal stress is normal to it. The principal stress orientations vary approximately as the foliation attitude varies. The average horizontal stress components and the average vertical stress component are three times and twice as large, respectively, as those predicted from the overburden load. An understanding of the measured stress field appears to require the application of either tectonic or residual stress components, or both. Laboratory studies indicate the presence of proportionately large residual stresses. Mining may have triggered the release of strain energy, which is controlled by geologic structure. ?? 1973.

  12. Synthesis and characterization of two new TiO2-containing benzothiazole-based imine composites for organic device applications.

    PubMed

    Różycka, Anna; Iwan, Agnieszka; Bogdanowicz, Krzysztof Artur; Filapek, Michal; Górska, Natalia; Pociecha, Damian; Malinowski, Marek; Fryń, Patryk; Hreniak, Agnieszka; Rysz, Jakub; Dąbczyński, Paweł; Marzec, Monika

    2018-01-01

    The effect of the presence of titanium dioxide in two new imines, ( E , E )-(butane-1,4-diyl)bis(oxybutane-4,1-diyl) bis(4-{[(benzo[ d ][1,3]thiazol-2-yl)methylidene]amino}benzoate) (SP1) and ( E )- N -[(benzo[ d ][1,3]thiazol-2-yl)methylidene]-4-dodecylaniline (SP2), on the properties and stability of imine:TiO 2 composites for organic device applications were examined. The investigated titanium dioxide (in anatase form, obtained via the sol-gel method) exhibited a surface area of 59.5 m 2 /g according to Brunauer-Emmett-Teller theory, and its structure is a combination of both meso- and microporous. The average pore diameter calculated by the Barrett-Joyner-Halenda method was 6.2 nm and the cumulative volume of pores was 0.117 m 3 /g. The imine SP1 exhibited columnar organization (Col), while SP2 revealed a hexagonal columnar crystalline phase (Col hk ). The imine:TiO 2 mixtures in various weight ratio (3:0, 3:1, 3:2, 3:3) showed a lower energy gap and HOMO-LUMO energy levels compared to pure TiO 2 . This implies that TiO 2 provides not only a larger surface area for sensitizer adsorption and good electron collection, but also causes a shift of the imine energy levels resulting from intermolecular interaction. Also the temperature of the phase transition was slightly affected with the increase of TiO 2 concentration in imine-based composites. The changes observed in the Fourier transform middle-infrared absorption (FT-MIR) spectra confirmed the significant influence of TiO 2 on structural properties of both investigated imines. Similar interactions of oxygen vacancies existing on the TiO 2 surface with SP1 and SP2 were observed. The imine:TiO 2 mixtures showed good air stability and reusability, which demonstrates its potential for organic device applications.

  13. Synthesis and characterization of two new TiO2-containing benzothiazole-based imine composites for organic device applications

    PubMed Central

    Różycka, Anna; Bogdanowicz, Krzysztof Artur; Filapek, Michal; Górska, Natalia; Pociecha, Damian; Malinowski, Marek; Fryń, Patryk; Hreniak, Agnieszka; Rysz, Jakub; Dąbczyński, Paweł

    2018-01-01

    The effect of the presence of titanium dioxide in two new imines, (E,E)-(butane-1,4-diyl)bis(oxybutane-4,1-diyl) bis(4-{[(benzo[d][1,3]thiazol-2-yl)methylidene]amino}benzoate) (SP1) and (E)-N-[(benzo[d][1,3]thiazol-2-yl)methylidene]-4-dodecylaniline (SP2), on the properties and stability of imine:TiO2 composites for organic device applications were examined. The investigated titanium dioxide (in anatase form, obtained via the sol–gel method) exhibited a surface area of 59.5 m2/g according to Brunauer–Emmett–Teller theory, and its structure is a combination of both meso- and microporous. The average pore diameter calculated by the Barrett–Joyner–Halenda method was 6.2 nm and the cumulative volume of pores was 0.117 m3/g. The imine SP1 exhibited columnar organization (Col), while SP2 revealed a hexagonal columnar crystalline phase (Colhk). The imine:TiO2 mixtures in various weight ratio (3:0, 3:1, 3:2, 3:3) showed a lower energy gap and HOMO–LUMO energy levels compared to pure TiO2. This implies that TiO2 provides not only a larger surface area for sensitizer adsorption and good electron collection, but also causes a shift of the imine energy levels resulting from intermolecular interaction. Also the temperature of the phase transition was slightly affected with the increase of TiO2 concentration in imine-based composites. The changes observed in the Fourier transform middle-infrared absorption (FT-MIR) spectra confirmed the significant influence of TiO2 on structural properties of both investigated imines. Similar interactions of oxygen vacancies existing on the TiO2 surface with SP1 and SP2 were observed. The imine:TiO2 mixtures showed good air stability and reusability, which demonstrates its potential for organic device applications. PMID:29600135

  14. Morphological control of three-dimensional carbon nanotube anode for high-capacity lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Kang, Chiwon; Lee, Hoo-Jeong

    2018-05-01

    In this paper, we report the results of modulating the processing conditions (mainly, temperature) of a two-step method consisting of sputtering deposition of a Ni catalytic layer and chemical vapor deposition (CVD) of carbon nanotubes (CNTs) on a three-dimensional (3D)-structured Cu mesh to control the morphology of CNTs for advanced Li-ion battery (LIB) applications. We disclosed that CNT growth at a low temperature (700 °C) produced small-diameter CNTs (CNT_S) with an average diameter of ∼20 nm, while that at a high temperature (750 °C) produced large-diameter CNTs (CNT_L) with an average diameter of 200–300 nm. The high-resolution transmission electron microscopy (HR-TEM) and Raman analyses manifested poorly crystalline CNTs for both samples. CNTS showed a specific capacity of 476 mAh g‑1, which is ∼176% superior to that of CNTL (271 mAh g‑1) and ∼128% higher than the theoretical capacity of the state-of-the-art graphites and recently reported nanostructured carbon-based anode materials.

  15. Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles.

    PubMed

    Kuśnieruk, Sylwia; Wojnarowicz, Jacek; Chodara, Agnieszka; Chudoba, Tadeusz; Gierlotka, Stanislaw; Lojkowski, Witold

    2016-01-01

    Hydroxyapatite (HAp) nanoparticles of tunable diameter were obtained by the precipitation method at room temperature and by microwave hydrothermal synthesis (MHS). The following parameters of the obtained nanostructured HAp were determined: pycnometric density, specific surface area, phase purity, lattice parameters, particle size, particle size distribution, water content, and structure. HAp nanoparticle morphology and structure were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction measurements confirmed crystalline HAp was synthesized, which was pure in terms of phase. It was shown that by changing the synthesis parameters, the diameter of HAp nanoparticles could be controlled. The average diameter of the HAp nanoparticles was determined by Scherrer's equation via the Nanopowder XRD Processor Demo web application, which interprets the results of specific surface area and TEM measurements using the dark-field technique. The obtained nanoparticles with average particle diameter ranging from 8-39 nm were characterized by having homogeneous morphology with a needle shape and a narrow particle size distribution. Strong similarities were found when comparing the properties of some types of nanostructured hydroxyapatite with natural occurring apatite found in animal bones and teeth.

  16. Positioning of the sensor cell on the sensing area using cell trapping pattern in incubation type planar patch clamp biosensor.

    PubMed

    Wang, Zhi-Hong; Takada, Noriko; Uno, Hidetaka; Ishizuka, Toru; Yawo, Hiromu; Urisu, Tsuneo

    2012-08-01

    Positioning the sensor cell on the micropore of the sensor chip and keeping it there during incubation are problematic tasks for incubation type planar patch clamp biosensors. To solve these problems, we formed on the Si sensor chip's surface a cell trapping pattern consisting of a lattice pattern with a round area 5 μm deep and with the micropore at the center of the round area. The surface of the sensor chip was coated with extra cellular matrix collagen IV, and HEK293 cells on which a chimera molecule of channel-rhodopsin-wide-receiver (ChR-WR) was expressed, were then seeded. We examined the effects of this cell trapping pattern on the biosensor's operation. In the case of a flat sensor chip without a cell trapping pattern, it took several days before the sensor cell covered the micropore and formed an almost confluent state. As a result, multi-cell layers easily formed and made channel current measurements impossible. On the other hand, the sensor chip with cell trapping pattern easily trapped cells in the round area, and formed the colony consisted of the cell monolayer covering the micropore. A laser (473 nm wavelength) induced channel current was observed from the whole cell arrangement formed using the nystatin perforation technique. The observed channel current characteristics matched measurements made by using a pipette patch clamp. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Chars from gasification of coal and pine activated with K2CO3: acetaminophen and caffeine adsorption from aqueous solutions.

    PubMed

    Galhetas, Margarida; Mestre, Ana S; Pinto, Moisés L; Gulyurtlu, Ibrahim; Lopes, Helena; Carvalho, Ana P

    2014-11-01

    The high carbon contents and low toxicity levels of chars from coal and pine gasification provide an incentive to consider their use as precursors of porous carbons obtained by chemical activation with K2CO3. Given the chars characteristics, previous demineralization and thermal treatments were made, but no improvement on the solids properties was observed. The highest porosity development was obtained with the biomass derived char (Pi). This char sample produced porous materials with preparation yields near 50% along with high porosity development (ABET≈1500m(2)g(-1)). For calcinations at 800°C, the control of the experimental conditions allowed the preparation of samples with a micropore system formed almost exclusively by larger micropores. A mesopore network was developed only for samples calcined at 900°C. Kinetic and equilibrium acetaminophen and caffeine adsorption data, showed that the processes obey to a pseudo-second order kinetic equation and to the Langmuir model, respectively. The results of sample Pi/1:3/800/2 outperformed those of the commercial carbons. Acetaminophen adsorption process was ruled by the micropore size distribution of the carbons. The caffeine monolayer capacities suggest a very efficient packing of this molecule in samples presenting monomodal micropore size distribution. The surface chemistry seems to be the determinant factor that controls the affinity of caffeine towards the carbons. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Microporous carbons derived from melamine and isophthalaldehyde: One-pot condensation and activation in a molten salt medium for efficient gas adsorption.

    PubMed

    Rehman, Adeela; Park, Soo-Jin

    2018-04-17

    In the present work, mixture of melamine and isophthalaldehyde undergo simultaneous polymerization, carbonization, and in situ activation in the presence of molten salt media through a single all-in-one route to design microporous carbons with high specific surface areas (~3000 m 2 /g). The effect of the activation temperature and molten salts on the polymerization process and final texture of the carbon was explored. Carbon materials prepared at 700 °C, in the presence of KOH (referred as MIK-700), exhibited a narrower pore-size distribution ~1.05 nm than those prepared in the presence of the eutectic KOH-NaOH mixture (MIKN). Additionally, MIK-700 possesses an optimum micropore volume (1.33 cm 3 /g) along with a high nitrogen content (2.66 wt%), resulting in the excellent CO 2 adsorption capacity of 9.7 mmol/g at 273 K and 1 bar. Similarly, the high specific area and highest total pore volume play an important role in H 2 storage at 77 K, with 4.0 wt% uptake by MIKN-800 (specific surface area and pore volume of 2984 m 2 /g and 1.98 cm 3 /g, respectively.) Thus, the facile one-step solvent-free synthesis and activation strategy is an economically favorable avenue for designing microporous carbons as an efficient gas adsorbents.

  19. Nitrogen and sulfur Co-doped microporous activated carbon macro-spheres for CO2 capture.

    PubMed

    Sun, Yahui; Li, Kaixi; Zhao, Jianghong; Wang, Jianlong; Tang, Nan; Zhang, Dongdong; Guan, Taotao; Jin, Zuer

    2018-04-27

    Millimeter-sized nitrogen and sulfur co-doped microporous activated carbon spheres (NSCSs) were first synthesized from poly(styrene-vinylimidazole-divinylbenzene) resin spheres through concentrated H 2 SO 4 sulfonation, carbonization and KOH activation. Styrene (ST) and N-vinylimidazole (VIM) were carbon and nitrogen sources, while the sulfonic acid functional groups introduced by the simple concentrated sulfuric acid sulfonation worked simultaneously as cross-linking agent and sulfur source during the following thermal treatments. It was found that the surface chemistries, textural structures, and CO 2 adsorption performances of the NSCSs were significantly affected by the addition of VIM. The NSCS-4-700 sample with a molar ratio of ST: VIM = 1: 0.75 showed the best CO 2 uptake at different temperatures and pressures. An exhaustive adsorption evaluation indicated that CO 2 sorption at low pressures originated from the synergistic effect of surface chemistry and micropores below 8.04 Å, while at the moderate pressure of 8.0 bar, CO 2 uptake was dominated by the volume of micropores. The thermodynamics suggested the exothermic and orderly nature of the adsorption process, which was dominated by a physisorption mechanism. The high CO 2 adsorption capacity, fast kinetic adsorption rate, and great regeneration stability of the nitrogen and sulfur co-doped activated carbon spheres indicated that the as-prepared carbon adsorbents were good candidates for large-scale CO 2 capture. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Mechanism of total electron emission yield reduction using a micro-porous surface

    NASA Astrophysics Data System (ADS)

    Ye, Ming; Wang, Dan; He, Yongning

    2017-03-01

    Suppression of the total secondary electron yield (TEY) of metal surfaces is important in many areas such as accelerator, satellite, and Hall thruster. Among TEY suppression techniques, micro-porous surfaces have been demonstrated as an effective method. In this work, we developed an analytical model that is able to obtain the contributions of TEY from both the 1st and 2nd generation secondary electrons (SEs). Calculation results show that the TEY contributed by the bottom of the hole dominates the TEY of the micro-porous surface with the aspect ratio we have chosen. Thus, we developed the following design guidance for the improvement of the TEY suppression efficiency of the micro-porous surface: either lower the TEY of the bottom or guide its SEs to the lateral side of the hole. To verify this idea, we performed the following numerical simulations: a micro-hole with its inner surfaces coated with a low TEY material and a micro-hole with nano-triangular grooves or nano-truncated cone pillars embedded at its bottom. Compared with a usual micro-hole, the proposed hybrid micro/nano structures show improved TEY suppression efficiency as expected from the analytical model. The percentage ratios of the 1st and 2nd generation SEs obtained from the simulation agree well with the predictions of the analytical model. What is more, we also present the results of the emitting angle distribution of SEs which represent remarkable deviation from the usual cosine distribution.

  1. Converting biomass waste into microporous carbon with simultaneously high surface area and carbon purity as advanced electrochemical energy storage materials

    NASA Astrophysics Data System (ADS)

    Sun, Fei; Wang, Lijie; Peng, Yiting; Gao, Jihui; Pi, Xinxin; Qu, Zhibin; Zhao, Guangbo; Qin, Yukun

    2018-04-01

    Developing carbon materials featuring both high accessible surface area and high structure stability are desirable to boost the performance of constructed electrochemical electrodes and devices. Herein, we report a new type of microporous carbon (MPC) derived from biomass waste based on a simple high-temperature chemical activation procedure. The optimized MPC-900 possesses microporous structure, high surface area, partially graphitic structure, and particularly low impurity content, which are critical features for enhancing carbon-based electrochemical process. The constructed MPC-900 symmetric supercapacitor exhibits high performances in commercial organic electrolyte such as widened voltage window up to 3 V and thereby high energy/power densities (50.95 Wh kg-1 at 0.44 kW kg-1; 25.3 Wh kg-1 at 21.5 kW kg-1). Furthermore, a simple melt infiltration method has been employed to enclose SnO2 nanocrystals onto the carbon matrix of MPC-900 as a high-performance lithium storage material. The obtained SnO2-MPC composite with ultrafine SnO2 nanocrystals delivers high capacities (1115 mAh g-1 at 0.2 A g-1; 402 mAh g-1 at 10 A g-1) and high-rate cycling lifespan of over 2000 cycles. This work not only develops a microporous carbon with high carbon purity and high surface area, but also provides a general platform for combining electrochemically active materials.

  2. Covalent attachment of microbial lipase onto microporous styrene-divinylbenzene copolymer by means of polyglutaraldehyde.

    PubMed

    Dizge, Nadir; Keskinler, Bülent; Tanriseven, Aziz

    2008-10-01

    A novel method for immobilization of Thermomyces lanuginosus lipase onto polyglutaraldehyde-activated poly(styrene-divinylbenzene) (STY-DVB), which is a hydrophobic microporous support has been successfully developed. The copolymer was prepared by the polymerization of the continuous phase of a high internal phase emulsion (polyHIPE). The concentrated emulsion consists of a mixture of styrene and divinylbenzene containing a suitable surfactant and an initiator as the continuous phase and water as the dispersed phase. Lipase from T. lanuginosus was immobilized covalently with 85% yield on the internal surface of the hydrophobic microporous poly(styrene-divinylbenzene) copolymer and used as a biocatalyst for the transesterification reaction. The immobilized enzyme has been fully active 30 days in storage and retained the activity during the 15 repeated batch reactions. The properties of free and immobilized lipase were studied. The effects of protein concentration, pH, temperature, and time on the immobilization, activity, and stability of the immobilized lipase were also studied. The newly synthesized microporous poly(styrene-divinylbenzene) copolymer constitutes excellent support for lipase. It given rise to high immobilization yield, retains enzymatic activity for 30 days, stable in structure and allows for the immobilization of large amount of protein (11.4mg/g support). Since immobilization is simple yet effective, the newly immobilized lipase could be used in several application including oil hydrolysis, production of modified oils, biodiesel synthesis, and removal of fatty acids from oils.

  3. Load deflection characteristics and force level of nickel titanium initial archwires.

    PubMed

    Lombardo, Luca; Marafioti, Matteo; Stefanoni, Filippo; Mollica, Francesco; Siciliani, Giuseppe

    2012-05-01

    To investigate and compare the characteristics of commonly used types of traditional and heat-activated initial archwire by plotting their load/deflection graphs and quantifying three suitable parameters describing the discharge plateau phase. Forty-eight archwires (22 nickel titanium [NiTi] and 26 heat-activated) of cross-sectional diameter ranging from 0.010 to 0.016 inch were obtained from seven different manufacturers. A modified three-point wire-bending test was performed on three analogous samples of each type of archwire at a constant temperature (37.0°C). For each resulting load/deflection curve, the plateau section was isolated, along with the mean value of the average plateau force, the plateau length, and the plateau slope for each type of wire obtained. Statistically significant differences were found between almost all wires for the three parameters considered. Statistically significant differences were also found between traditional and heat-activated archwires, the latter of which generated longer plateaus and lighter average forces. The increase in average force seen with increasing diameter tended to be rather stable, although some differences were noted between traditional and heat-activated wires. Although great variation was seen in the plateau behavior, heat-activated versions appear to generate lighter forces over greater deflection plateaus. On average, the increase in plateau force was roughly 50% when the diameter was increased by 0.002 inch (from 0.012 to 0.014 and from 0.014 to 0.016 inch) and about 150% when the diameter was increased by 0.004 inch (from 0.012 to 0.016), with differences between traditional and heat-activated wires noted in this case.

  4. Hierarchical Metal–Organic Framework Hybrids: Perturbation-Assisted Nanofusion Synthesis

    DOE PAGES

    Yue, Yanfeng; Fulvio, Pasquale F.; Dai, Sheng

    2015-12-04

    Metal–organic frameworks (MOFs) represent a new family of microporous materials; however, microporous–mesoporous hierarchical MOF materials have been less investigated because of the lack of simple, reliable methods to introduce mesopores to the crystalline microporous particles. State-of-the-art MOF hierarchical materials have been prepared by ligand extension methods or by using a template, resulting in intrinsic mesopores of longer ligands or replicated pores from template agents, respectively. However, mesoporous MOF materials obtained through ligand extension often collapse in the absence of guest molecules, which dramatically reduces the size of the pore aperture. Although the template-directed strategy allows for the preparation of hierarchicalmore » materials with larger mesopores, the latter requires a template removal step, which may result in the collapse of the implemented mesopores. Recently, a general template-free synthesis of hierarchical microporous crystalline frameworks, such as MOFs and Prussian blue analogues (PBAs), has been reported. Our new method is based on the kinetically controlled precipitation (perturbation), with simultaneous condensation and redissolution of polymorphic nanocrystallites in the mother liquor. This method further eliminates the use of extended organic ligands and the micropores do not collapse upon removal of trapped guest solvent molecules, thus yielding hierarchical MOF materials with intriguing porosity in the gram scale. The hierarchical MOF materials prepared in this way exhibited exceptional properties when tested for the adsorption of large organic dyes over their corresponding microporous frameworks, due to the enhanced pore accessibility and electrolyte diffusion within the mesopores. As for PBAs, the pore size distribution of these materials can be tailored by changing the metals substituting Fe cations in the PB lattice. For these, the textural mesopores increased from approximately 10 nm for Cu analogue (mesoCuHCF), to 16 nm in Co substituted compound (mesoCoHCF), and to as large as 30 nm for the Ni derivative (mesoNiHCF). And while bulk PB and analogues have a higher capacitance than hierarchical analogues for Na-batteries, the increased accessibility to the microporous channels of PBAs allow for faster intercalated ion exchange and diffusion than in bulk PBA crystals. Therefore, hierarchical PBAs are promising candidates for electrodes in future electrochemical energy storage devices with faster charge–discharge rates than batteries, namely pseudocapacitors. Finally, this new synthetic method opens the possibility to prepare hierarchical materials having bimodal distribution of mesopores, and to tailor the structural properties of MOFs for different applications, including contrasting agents for MRI, and drug delivery.« less

  5. Morphology of Lonar Crater, India: Comparisons and implications

    USGS Publications Warehouse

    Fudali, R.F.; Milton, D.J.; Fredriksson, K.; Dube, A.

    1980-01-01

    Lonar Crater is a young meteorite impact crater emplaced in Deccan basalt. Data from 5 drillholes, a gravity network, and field mapping are used to reconstruct its original dimensions, delineate the nature of the pre-impact target rocks, and interpret the emplacement mode of the ejecta. Our estimates of the pre-erosion dimensions are: average diameter of 1710 m; average rim height of 40 m (30-35 m of rim rock uplift, 5-10 m of ejected debris); depth of 230-245 m (from rim crest to crater floor). The crater's circularity index is 0.9 and is unlikely to have been lower in the past. There are minor irregularities in the original crater floor (present sediment-breccia boundary) possibly due to incipient rebound effects. A continuous ejecta blanket extends an average of 1410 m beyond the pre-erosion rim crest. In general, 'fresh' terrestrial craters, less than 10 km in diameter, have smaller depth/diameter and larger rim height/diameter ratios than their lunar counterparts. Both ratios are intermediate for Mercurian craters, suggesting that crater shape is gravity dependent, all else being equal. Lonar demonstrates that all else is not always equal. Its depth/diameter ratio is normal but, because of less rim rock uplift, its rim height/diameter ratio is much smaller than both 'fresh' terrestrial and lunar impact craters. The target rock column at Lonar consists of one or more layers of weathered, soft basalt capped by fresh, dense flows. Plastic deformation and/or compaction of this lower, incompetent material probably absorbed much of the energy normally available in the cratering process for rim rock uplift. A variety of features within the ejecta blanket and the immediately underlying substrate, plus the broad extent of the blanket boundaries, suggest that a fluidized debris surge was the dominant mechanism of ejecta transportation and deposition at Lonar. In these aspects, Lonar should be a good analog for the 'fluidized craters' of Mars. ?? 1980 D. Reidel Publishing Co.

  6. Airflow and temperature distribution inside the maxillary sinus: a computational fluid dynamics simulation.

    PubMed

    Zang, Hongrui; Liu, Yingxi; Han, Demin; Zhang, Luo; Wang, Tong; Sun, Xiuzhen; Li, Lifeng

    2012-06-01

    The airflow velocity and flux in maxillary sinuses were much lower than those in the nasal cavity, and the temperature in maxillary sinuses was much higher than the temperature in the middle meatus. With the increase of maximum diameter of the ostium, the above indices changed little. The purpose of the paper was to investigate, first, the flow and temperature distribution inside normal maxillary sinus in inspiration, and second, flow and temperature alteration with the increase of maximum ostium diameter. Three-dimensional models with nasal cavities and bilateral maxillary sinuses were constructed for computational fluid dynamics analysis. Virtual surgeries were implemented for the maxillary ostium, the maximum diameters of which were 8, 10, 12, and 15 mm, respectively. The finite volume method was used for numerical simulation. The indices of velocity, pressure, vector, and temperature were processed and compared between models. The airflow velocity in maxillary sinuses (average velocity 0.062 m/s) was much lower than that in the middle meatus (average velocity 3.26 m/s). With the increase of ostium diameter, airflow characteristics distributed in the maxillary sinuses changed little. The normal temperature in the maxillary sinus remained almost constant at 34°C and changed little with the increase of ostium diameter.

  7. Definition of the Spatial Resolution of X-Ray Microanalysis in Thin Foils

    NASA Technical Reports Server (NTRS)

    Williams, D. B.; Michael, J. R.; Goldstein, J. I.; Romig, A. D., Jr.

    1992-01-01

    The spatial resolution of X-ray microanalysis in thin foils is defined in terms of the incident electron beam diameter and the average beam broadening. The beam diameter is defined as the full width tenth maximum of a Gaussian intensity distribution. The spatial resolution is calculated by a convolution of the beam diameter and the average beam broadening. This definition of the spatial resolution can be related simply to experimental measurements of composition profiles across interphase interfaces. Monte Carlo calculations using a high-speed parallel supercomputer show good agreement with this definition of the spatial resolution and calculations based on this definition. The agreement is good over a range of specimen thicknesses and atomic number, but is poor when excessive beam tailing distorts the assumed Gaussian electron intensity distributions. Beam tailing occurs in low-Z materials because of fast secondary electrons and in high-Z materials because of plural scattering.

  8. Silicon crystallization in nanodot arrays organized by block copolymer lithography

    NASA Astrophysics Data System (ADS)

    Perego, Michele; Andreozzi, Andrea; Seguini, Gabriele; Schamm-Chardon, Sylvie; Castro, Celia; BenAssayag, Gerard

    2014-12-01

    Asymmetric polystyrene- b-polymethylmethacrylate (PS- b-PMMA) block copolymers are used to fabricate nanoporous PS templates with different pore diameter depending on the specific substrate neutralization protocol. The resulting polymeric templates are used as masks for the subsequent deposition of a thin ( h = 5 nm) amorphous Si layer by electron beam evaporation. After removal of the polymeric film and of the silicon excess, well-defined hexagonally packed amorphous Si nanodots are formed on the substrate. Their average diameter ( d < 20 nm), density (1.2 × 1011 cm-2), and lateral distribution closely mimic the original nanoporous template. Upon capping with SiO2 and high temperature annealing (1050 °C, N2), each amorphous Si nanodot rearranges in agglomerates of Si nanocrystals ( d < 4 nm). The average diameter and shape of these Si nanocrystals strongly depend on the size of the initial Si nanodot.

  9. [Retinal vessels before and after photocoagulation in diabetic retinopathy. Determining the diameter using digitized color fundus slides].

    PubMed

    Remky, A; Arend, O; Beausencourt, E; Elsner, A E; Bertram, B

    1996-01-01

    Retinal vessel diameter is an important parameter in blood flow analysis. Despite modern digital image technology, most clinical studies investigate diameters subjectively using projected fundus slides or negatives. In the present study we used a technique to examine vessel diameters by digital image analysis of color fundus slides. We investigated in a retrospective manner diameter changes in twenty diabetic patients before and after panretinal laser coagulation. Color fundus slides were digitized by a new high resolution scanning device. The resulting images consisted in three channels (red, green, blue). Since vessel contrast was the highest in the green channel, we assessed grey value profiles perpendicular to the vessels in the green channel. Diameters were measured at the half-height of the profile. After panretinal laser coagulation, average venous diameter was decreased, whereas arterial diameter remained unchanged. There was no significant relation between the diameter change and the number of laser burns or the presence of neovascularization. Splitting digitized images into color planes enables objective measurements of retinal diameters in conventional color slides.

  10. Microcalcification detectability using a bench-top prototype photon-counting breast CT based on a Si strip detector.

    PubMed

    Cho, Hyo-Min; Ding, Huanjun; Barber, William C; Iwanczyk, Jan S; Molloi, Sabee

    2015-07-01

    To investigate the feasibility of detecting breast microcalcification (μCa) with a dedicated breast computed tomography (CT) system based on energy-resolved photon-counting silicon (Si) strip detectors. The proposed photon-counting breast CT system and a bench-top prototype photon-counting breast CT system were simulated using a simulation package written in matlab to determine the smallest detectable μCa. A 14 cm diameter cylindrical phantom made of breast tissue with 20% glandularity was used to simulate an average-sized breast. Five different size groups of calcium carbonate grains, from 100 to 180 μm in diameter, were simulated inside of the cylindrical phantom. The images were acquired with a mean glandular dose (MGD) in the range of 0.7-8 mGy. A total of 400 images was used to perform a reader study. Another simulation study was performed using a 1.6 cm diameter cylindrical phantom to validate the experimental results from a bench-top prototype breast CT system. In the experimental study, a bench-top prototype CT system was constructed using a tungsten anode x-ray source and a single line 256-pixels Si strip photon-counting detector with a pixel pitch of 100 μm. Calcium carbonate grains, with diameter in the range of 105-215 μm, were embedded in a cylindrical plastic resin phantom to simulate μCas. The physical phantoms were imaged at 65 kVp with an entrance exposure in the range of 0.6-8 mGy. A total of 500 images was used to perform another reader study. The images were displayed in random order to three blinded observers, who were asked to give a 4-point confidence rating on each image regarding the presence of μCa. The μCa detectability for each image was evaluated by using the average area under the receiver operating characteristic curve (AUC) across the readers. The simulation results using a 14 cm diameter breast phantom showed that the proposed photon-counting breast CT system can achieve high detection accuracy with an average AUC greater than 0.89 ± 0.07 for μCas larger than 120 μm in diameter at a MGD of 3 mGy. The experimental results using a 1.6 cm diameter breast phantom showed that the prototype system can achieve an average AUC greater than 0.98 ± 0.01 for μCas larger than 140 μm in diameter using an entrance exposure of 1.2 mGy. The proposed photon-counting breast CT system based on a Si strip detector can potentially offer superior image quality to detect μCa with a lower dose level than a standard two-view mammography.

  11. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China

    PubMed Central

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable. PMID:26285123

  12. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    PubMed

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  13. H5PV2Mo10O40 encapsulated in MIL-101(Cr): facile synthesis and characterization of rationally designed composite materials for efficient decontamination of sulfur mustard.

    PubMed

    Li, Yanqin; Gao, Qi; Zhang, Lijuan; Zhou, Yunshan; Zhong, Yuxu; Ying, Ying; Zhang, Mingcai; Huang, Chunqian; Wang, Yong'an

    2018-05-08

    Currently extensive effort is compulsively expended to decontaminate efficiently banned chemical war agents. In this work, H5PV2Mo10O40 molecules have been encapsulated in mesoporous MIL-101(Cr), which features two types of mesoporous cages (internal diameters of 29 Å and 34 Å) and microporous windows (diameters of 12 Å and 16 Å), leading to the formation of a new composite H5PV2Mo10O40@MIL-101(Cr) through a simple impregnation method. The composite was characterized thoroughly by elemental analysis, FT-IR spectroscopy, powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, TG/DTA, and textural analysis thereby confirming the encapsulation of the H5PV2Mo10O40 into MIL-101(Cr). The decontamination efficiency of sulfur mustard (4 μL HD in 40 μL of petroleum ether) by 20 mg of the composite is found to be 97.39% in 120 min under ambient conditions. GC-MS analysis on the decontaminated products using 2-chloroethyl ethyl sulfide (CEES), which has been widely used as a simulant of sulfur mustard, showed that MIL-101(Cr) just decontaminates CEES by adsorption, while CEES can be decontaminated under ambient conditions by a synergetic combination of adsorption of MIL-101(Cr) and subsequent chemical oxidation degradation to nontoxic 2-chloroethyl ethyl sulfoxide (CEESO) due to the presence of highly dispersed H5PV2Mo10O40 within the composites.

  14. Supported microporous ceramic membranes

    DOEpatents

    Webster, Elizabeth; Anderson, Marc

    1993-01-01

    A method for permformation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms.

  15. Supported microporous ceramic membranes

    DOEpatents

    Webster, E.; Anderson, M.

    1993-12-14

    A method for the formation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms. 4 figures.

  16. Electrolyte additive for improved battery performance

    DOEpatents

    Bellows, Richard J.; Kantner, Edward

    1989-04-04

    In one embodiment of the present invention, there is provided an electrochemical cell having a metal bromine couple. The cell includes an electrode structure on which to deposit the metal of the couple and a counterelectrode at which to generate bromine. A microporous membrane separates the electrode and counterelectrode. Importantly, the aqueous electrolyte comprises an aqueous metal bromide solution containing a water soluble bromine complexing agent capable of forming a water immiscible complex with bromine and an additive capable of decreasing the wettability of the microporous separators employed in such cells by such water immiscible bromine complexes.

  17. Carbon film electrodes for super capacitor applications

    DOEpatents

    Tan, Ming X.

    1999-01-01

    A microporous carbon film for use as electrodes in energy strorage devices is disclosed, which is made by the process comprising the steps of: (1) heating a polymer film material consisting essentially of a copolymer of polyvinylidene chloride and polyvinyl chloride in an inert atmosphere to form a carbon film; and (2) activating said carbon film to form said microporous carbon film having a density between about 0.7 g/cm.sup.2 and 1 g/cm.sup.2 and a gravimetric capacitance of about between 120 F/g and 315 F/g.

  18. Functional microporous materials of metal carboxylate: Gas-occlusion properties and catalytic activities

    NASA Astrophysics Data System (ADS)

    Mori, Wasuke; Sato, Tomohiko; Ohmura, Tesushi; Nozaki Kato, Chika; Takei, Tohru

    2005-08-01

    Copper(II) terephthalate is the first transition metal complex found capable of adsorbing gases. This complex has opened the new field of adsorbent complex chemistry. It is recognized as the lead complex in the construction of microporous complexes. This specific system has been expanded to a systematic series of derivatives of other isomorphous transition metals, molybdenum(II), ruthenium(II, III), and rhodium(II). These complexes with open frameworks are widely recognized as very useful materials for applications to catalysis, separation at molecular level, and gas storage.

  19. Technical note: estimating absorbed doses to the thyroid in CT.

    PubMed

    Huda, Walter; Magill, Dennise; Spampinato, Maria V

    2011-06-01

    To describe a method for estimating absorbed doses to the thyroid in patients undergoing neck CT examinations. Thyroid doses in anthropomorphic phantoms were obtained for all 23 scanner dosimetry data sets in the ImPACT CT patient dosimetry calculator. Values of relative thyroid dose [R(thy)(L)], defined as the thyroid dose for a given scan length (L) divided by the corresponding thyroid dose for a whole body scan, were determined for neck CT scans. Ratios of the maximum thyroid dose to the corresponding CTDI(vol) and [D'(thy)], were obtained for two phantom diameters. The mass-equivalent water cylinder of any patient can be derived from the neck cross-sectional area and the corresponding average Hounsfield Unit, and compared to the 16.5-cm diameter water cylinder that models the ImPACT anthropomorphic phantom neck. Published values of relative doses in water cylinders of varying diameter were used to adjust thyroid doses in the anthropomorphic phantom to those of any sized patient. Relative thyroid doses R(thy)(L) increase to unity with increasing scan length and with very small difference between scanners. A 10-cm scan centered on the thyroid would result in a dose that is, nearly 90% of the thyroid dose from a whole body scan when performed using the constant radiographic techniques. At 120 kV, the average value of D'(thy) for the 16-cm diameter was 1.17 +/- 0.05 and was independent of CT vendor and year of CT scanner, and choice of x-ray tube voltage. The corresponding average value of D'(thy) in the 32-cm diameter phantom was 2.28 +/- 0.22 and showed marked variations depending on vendor, year of introduction into clinical practice as well as x-ray tube voltage. At 120 kV, a neck equivalent to a 10-cm diameter cylinder of water would have thyroid doses 36% higher than those in the ImPACT phantom, whereas a neck equivalent to a 25-cm cylinder diameter would have thyroid doses 35% lower. Patient thyroid doses can be estimated by taking into account the amount of radiation used to perform the CT examination (CTDI(vol)) and accounting for scan length and patient anatomy (i.e., neck diameter) at the thyroid location.

  20. Lactic acid production on liquid distillery stillage by Lactobacillus rhamnosus immobilized onto zeolite.

    PubMed

    Djukić-Vuković, Aleksandra P; Mojović, Ljiljana V; Jokić, Bojan M; Nikolić, Svetlana B; Pejin, Jelena D

    2013-05-01

    In this study, lactic acid and biomass production on liquid distillery stillage from bioethanol production with Lactobacillus rhamnosus ATCC 7469 was studied. The cells were immobilized onto zeolite, a microporous aluminosilicate mineral and the lactic acid production with free and immobilized cells was compared. The immobilization allowed simple cell separation from the fermentation media and their reuse in repeated batch cycles. A number of viable cells of over 10(10) CFU g(-1) of zeolite was achieved at the end of fourth fermentation cycle. A maximal process productivity of 1.69 g L(-1), maximal lactic acid concentration of 42.19 g L(-1) and average yield coefficient of 0.96 g g(-1) were achieved in repeated batch fermentation on the liquid stillage without mineral or nitrogen supplementation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Intraparticle diffusion limitations in the hydrogenation of monounsaturated edible oils and their fatty acid methyl esters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonker, G.H.; Veldsink, J.W.; Beenackers, A.A.C.M.

    1998-12-01

    Intraparticle diffusion limitation in the hydrogenation and isomerization of fatty acid methyl esters (FAMEs) and edible oils (triacylglycerol, TAG) in porous nickel catalyst was investigated both under reactive and under inert conditions. Under reactive conditions, the diffusion coefficients were determined from the best fits of the model simulations applying the intrinsic reacting kinetics of monounsaturated FAME hydrogenation to experiments under diffusion limited conditions. Due to the absence of reaction (hydrogenation of double bonds), the obtained effective H{sub z} diffusion coefficient (D{sub e}) with the HPLC technique is volume averaged and thereby determined by the larger intercrystalline pores (<30% of themore » total pore volume) only. Moreover, D{sub e} measured under reaction conditions reflected the influence of the micropores, resulting in a 10-fold lower value.« less

  2. Effect of tank geometry on its average performance

    NASA Astrophysics Data System (ADS)

    Orlov, Aleksey A.; Tsimbalyuk, Alexandr F.; Malyugin, Roman V.; Leontieva, Daria A.; Kotelnikova, Alexandra A.

    2018-03-01

    The mathematical model of non-stationary filling of vertical submerged tanks with gaseous uranium hexafluoride is presented in the paper. There are calculations of the average productivity, heat exchange area, and filling time of various volumes tanks with smooth inner walls depending on their "height : radius" ratio as well as the average productivity, degree, and filling time of horizontal ribbing tank with volume 6.10-2 m3 with change central hole diameter of the ribs. It has been shown that the growth of "height / radius" ratio in tanks with smooth inner walls up to the limiting values allows significantly increasing tank average productivity and reducing its filling time. Growth of H/R ratio of tank with volume 1.0 m3 to the limiting values (in comparison with the standard tank having H/R equal 3.49) augments tank productivity by 23.5 % and the heat exchange area by 20%. Besides, we have demonstrated that maximum average productivity and a minimum filling time are reached for the tank with volume 6.10-2 m3 having central hole diameter of horizontal ribs 6.4.10-2 m.

  3. Estimating the board foot to cubic foot ratio

    Treesearch

    Steve P. Verrill; Victoria L. Herian; Henry N. Spelter

    2004-01-01

    Certain issues in recent softwood lumber trade negotiations have centered on the method for converting estimates of timber volumes reported in cubic meters to board feet. Such conversions depend on many factors; three of the most important of these are log length, diameter, and taper. Average log diameters vary by region and have declined in the western United States...

  4. Diameter class volume tables for California old-growth timber

    Treesearch

    Duncan Dunning

    1945-01-01

    Tables giving average tree volumes by breast-height diameter classes frequently may be used in timber cruising to save money, time, and men. Such tables may be appropriate in cruises of large areas having many trees in low-intensity cruises warranting the sacrifice in accuracy that results from omission of individual tree height measurements, during wartime when men...

  5. Projecting a Stand Table Through Time

    Treesearch

    Quang V. Cao; V. Clark Baldwin

    1999-01-01

    Stand tables provide number of trees per acre for each diameter class. This paper presents a general technique to predict a future stand table, based on the current stand table and future stand summary statistics such as trees and basal area per acre, and average diameter. The stand projection technique involves (a) predicting surviving trees for each class, and (b)...

  6. Simulation study of poled low-water ionomers with different architectures

    NASA Astrophysics Data System (ADS)

    Allahyarov, Elshad; Taylor, Philip L.; Löwen, Hartmut

    2011-11-01

    The role of the ionomer architecture in the formation of ordered structures in poled membranes is investigated by molecular dynamics computer simulations. It is shown that the length of the sidechain Ls controls both the areal density of cylindrical aggregates Nc and the diameter of these cylinders in the poled membrane. The backbone segment length Lb tunes the average diameter Ds of cylindrical clusters and the average number of sulfonates Ns in each cluster. A simple empirical formula is noted for the dependence of the number density of induced rod-like aggregates on the sidechain length Ls within the parameter range considered in this study.

  7. Studying the effects of nucleating agents on texture modification of puffed corn-fish snack.

    PubMed

    Shahmohammadi, Hamid Reza; Bakar, Jamilah; Rahman, Russly Abdul; Adzhan, Noranizan Mohd

    2014-02-01

    To improve textural attributes of puffed corn-fish snack, the effects of 1%, 1.5%, and 2% of calcium carbonate, magnesium silicate (talc), sodium bicarbonate as well as 5% and 10% of wheat bran (as the nucleating materials) on textural attributes were studied. Sensory evaluation, bulk density, expansion ratio, maximum force, and count peaks were measured using the Kramer test. The results showed that all of the additives except bran significantly enhanced the texture. Among them, talc at 0.5% was the best to enhance the density and expansion ratio. Effects of using 0.5% talc on puffed corn-fish snack microstructure were studied using scanning electron microscopy. The average cell diameter of 109 ± 48 μm and cell numbers per square centimeter of 67.4 for talc-treated products were obtained, while for nontalc-treated extrudates, average cell diameter of 798 ± 361 μm and cell numbers per square centimeter of 13.9 were found. Incorporation of 0.5% w/w of magnesium silicate reduced (7-fold) the average cell diameter while increased (4-fold) the cell number. © 2014 Institute of Food Technologists®

  8. [Predictability of the corneal flap creation with the femtosecond laser in LASIK].

    PubMed

    Mai, Zhi-bin; Liu, Su-bing; Nie, Xiao-li; Sun, Hong-xia; Xin, Bao-li; Tang, Xiu-xia

    2012-05-01

    To observe the predictability of corneal flap creation with the FEMTO LDV femtosecond laser and analyze preliminarily the factors correlating to the thickness and diameter of the flap . It was a study of serial cases. 260 eyes of 130 consecutive patients were treated with the FEMTO LDV. The eyes were assigned to two groups according to intended flap thickness, 110 µm (208 eyes) and 90 µm (52 eyes). Intended flap diameter varied from 8.5 to 9.5 mm. Difference analysis of flap diameter and intended diameter as well as flap thickness and intended thickness were made. The data was analyzed with SPSS to sum up a multiple stepwise regression formula that could express their quantitative relationship. The 90 µm flap group had a average flap thickness of (95.12 ± 7.65) µm, while for the 110 µm group the average flap thickness was (104.81 ± 3.09) µm. The difference between right and left eyes was not statistically significant (t(110 µm) = -1.223, t(90 µm) = -1.343, P > 0.05). Corneal flap thickness was inversely correlated with flap diameter (r(110 µm) = -0.143, r(90 µm) = -0.315, P < 0.05), but was not related to preoperative patient age, corneal thickness, keratometric value K or intraocular pressure (r(110 µm) = -0.160, 0.054, -0.011, -0.363; r(90 µm) = 0.024, 0.074, -0.212, -0.434, all P > 0.05). Corneal flap diameter was positively correlated with preoperative corneal keratometric value K and thickness (P < 0.001, P < 0.05). Multiple stepwise regression analysis showed flap diameter was an influencing factor for flap thickness. Preoperative corneal keratometric value K and thickness were influencing factors for flap diameter. The LASIK flap creation with the FEMTO LDV laser has relatively good predictability. Flap diameter is an influencing factor for flap thickness.

  9. DFT study of CO2 and H2O co-adsorption on carbon models of coal surface.

    PubMed

    Gao, Zhengyang; Ding, Yi

    2017-06-01

    The moisture content of coal affects the adsorption capacity of CO 2 on the coal surface. Since the hydrogen bonds are formed between H 2 O and oxygen functional group, the H 2 O cluster more easily adsorbs on the coal micropore than CO 2 molecule. The coal micropores are occupied by H 2 O molecules that cannot provide extra space for CO 2 adsorption, which may leads to the reduction of CO 2 adsorption capacity. However, without considering factors of micropore and oxygen functional groups, the co-adsorption mechanisms of CO 2 and adsorbed H 2 O molecule are not clear. Density functional theory (DFT) calculations were performed to elucidate the effect of adsorbed H 2 O to CO 2 adsorption. This study reports some typical coal-H 2 O···CO 2 complexes, along with a detailed analysis of the geometry, energy, electrostatic potential (ESP), atoms in molecules (AIM), reduced density gradient (RDG), and energy decomposition analysis (EDA). The results show that H 2 O molecule can more stably adsorb on the aromatic ring surface than CO 2 molecule, and the absolute values of local ESP maximum and minimum of H 2 O cluster are greater than CO 2 . AIM analysis shows a detailed interaction path and strength between atoms in CO 2 and H 2 O, and RDG analysis shows that the interactions among CO 2 , H 2 O, and coal model belong to weak van der Waals force. EDA indicates that electrostatic and long-range dispersion terms play a primary role in the co-adsorption of CO 2 and H 2 O. According to the DFT calculated results without considering micropore structure and functional group, it is shown that the adsorbed H 2 O can promote CO 2 adsorption on the coal surface. These results demonstrate that the micropore factor plays a dominant role in affecting CO 2 adsorption capacity, the attractive interaction of adsorbed H 2 O to CO 2 makes little contribution.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de; Grenacher, L.; Stampfl, U.

    The purpose of this study was to evaluate the impact of stent design on in-stent stenosis in rabbit iliac arteries. Four different types of stent were implanted in rabbit iliac arteries, being different in stent design (crown or wave) and strut thickness (50 or 100 {mu}m). Ten stents of each type were implanted. Each animal received one crown and one wave stent with the same strut thickness. Follow-up was either 12 weeks (n = 10 rabbits) or 24 weeks (n = 10 rabbits). Primary study end points were angiographic and microscopic in-stent stenosis. Secondary study end points were vessel injury,more » vascular inflammation, and stent endothelialization. Average stent diameter, relative stent overdilation, average and minimal luminal diameter, and relative average and maximum luminal loss were not significantly different. However, a trend to higher relative stent overdilation was recognized in crown stents compared to wave stents. A trend toward higher average and minimal luminal diameter and lower relative average and maximum luminal loss was recognized in crown stents compared to wave stents with a strut thickness of 100 {mu}m. Neointimal height, relative luminal area stenosis, injury score, inflammation score, and endothelialization score were not significantly different. However, a trend toward higher neointimal height was recognized in crown stents compared to wave stents with a strut thickness of 50 {mu}m and a follow-up of 24 weeks. In conclusion, in this study, crown stents seem to trigger neointima. However, the optimized radial force might equalize the theoretically higher tendency for restenosis in crown stents. In this context, also more favorable positive remodeling in crown stents could be important.« less

  11. High-Pressure CO2 Sorption in Polymers of Intrinsic Microporosity under Ultrathin Film Confinement.

    PubMed

    Ogieglo, Wojciech; Ghanem, Bader; Ma, Xiaohua; Wessling, Matthias; Pinnau, Ingo

    2018-04-04

    Ultrathin microporous polymer films are pertinent to the development and further spread of nanotechnology with very promising potential applications in molecular separations, sensors, catalysis, or batteries. Here, we report high-pressure CO 2 sorption in ultrathin films of several chemically different polymers of intrinsic microporosity (PIMs), including the prototypical PIM-1. Films with thicknesses down to 7 nm were studied using interference-enhanced in situ spectroscopic ellipsometry. It was found that all PIMs swell much more than non-microporous polystyrene and other high-performance glassy polymers reported previously. Furthermore, chemical modifications of the parent PIM-1 strongly affected the swelling magnitude. By investigating the behavior of relative refractive index, n rel , it was possible to study the interplay between micropores filling and matrix expansion. Remarkably, all studied PIMs showed a maximum in n rel at swelling of 2-2.5% indicating a threshold point above which the dissolution in the dense matrix started to dominate over sorption in the micropores. At pressures above 25 bar, all PIMs significantly plasticized in compressed CO 2 and for the ones with the highest affinity to the penetrant, a liquidlike mixing typical for rubbery polymers was observed. Reduction of film thickness below 100 nm revealed pronounced nanoconfinement effects and resulted in a large swelling enhancement and a quick loss of the ultrarigid character. On the basis of the partial molar volumes of the dissolved CO 2 , the effective reduction of the T g was estimated to be ∼200 °C going from 128 to 7 nm films.

  12. Ordered micro/macro porous K-OMS-2/SiO2 nanocatalysts: Facile synthesis, low cost and high catalytic activity for diesel soot combustion

    PubMed Central

    Yu, Xuehua; Zhao, Zhen; Wei, Yuechang; Liu, Jian

    2017-01-01

    A series of novel oxide catalysts, which contain three-dimensionally ordered macroporous (3DOM) and microporous structure, were firstly designed and successfully synthesized by simple method. In the as-prepared catalysts, 3DOM SiO2 is used as support and microporous K-OMS-2 oxide nanoparticles are supported on the wall of SiO2. 3DOM K-OMS-2/SiO2 oxide catalysts were firstly used in soot particle oxidation reaction and they show very high catalytic activities. The high activities of K-OMS-2/SiO2 oxide catalysts can be assigned to three possible reasons: macroporous effect of 3DOM structure for improving contact between soot and catalyst, microporous effect of K-OMS-2 for adsorption of small gas molecules and interaction of K and Mn for activation of gas molecules. The catalytic activities of catalysts are comparable to or even higher than noble metal catalyst in the medium and high temperature range. For example, the T50 of K-OMS-2/SiO2-50, 328 °C, is much lower than those of Pt/Al2O3 and 3DOM Au/LaFeO3, 464 and 356 °C,respectively. Moreover, catalysts exhibited high catalytic stability. It is attributed to that the K+ ions are introduced into the microporous structure of OMS-2 and stabilized in the catalytic reaction. Meanwhile, the K+ ions play an important role in templating and stabilizing the tunneled framework of OMS-2. PMID:28443610

  13. Influence of Fe loadings on desulfurization performance of activated carbon treated by nitric acid.

    PubMed

    Guo, Jia-Xiu; Shu, Song; Liu, Xiao-Li; Wang, Xue-Jiao; Yin, Hua-Qiang; Chu, Ying-Hao

    2017-02-01

    A series of Fe supported on activated carbon treated by nitric acid are prepared by incipient wetness impregnation with ultrasonic assistance and characterized by N 2 adsorption-desorption, X-ray diffraction, Fourier transform infrared spectrum and X-ray photoelectron spectroscopy. It has shown that Fe loadings significantly influence the desulfurization activity. Fe/NAC5 exhibits an excellent removal ability of SO 2 , corresponding to breakthrough sulfur capacity of 323 mg/g. With the increasing Fe loadings, the generated Fe 3 O 4 and Fe 2 SiO 4 increase, but Fe 2 (SO 4 ) 3 is observed after desulfurization. Fe/NAC1 has a Brunauer-Emmett-Teller (BET) surface area of 925 m 2 /g with micropore surface area of 843 m 2 /g and total pore volume of 0.562 cm 3 /g including a micropore volume of 0.300 cm 3 /g. With the increasing Fe loadings, BET surface area and micropore volume decrease, and those of Fe/NAC10 decrease to 706 m 2 /g and 0.249 cm 3 /g. The Fe loadings influence the pore-size distribution, and SO 2 adsorption mainly reacts in micropores at about 0.70 nm. C=O and C-O are observed for all samples before SO 2 removal. After desulfurization, the C-O stretching is still detected, but the C=O stretching vibration of carbonyl groups disappears. The stretching of S-O or S=O in sulfate is observed at 592 cm -1 for the used sample, proving that the existence of [Formula: see text].

  14. Adsorbed natural gas storage with activated carbons made from Illinois coals and scrap tires

    USGS Publications Warehouse

    Sun, Jielun; Brady, T.A.; Rood, M.J.; Lehmann, C.M.; Rostam-Abadi, M.; Lizzio, A.A.

    1997-01-01

    Activated carbons for natural gas storage were produced from Illinois bituminous coals (IBC-102 and IBC-106) and scrap tires by physical activation with steam or CO2 and by chemical activation with KOH, H3PO4, or ZnCl2. The products were characterized for N2-BET area, micropore volume, bulk density, pore size distribution, and volumetric methane storage capacity (Vm/Vs). Vm/Vs values for Illinois coal-derived carbons ranged from 54 to 83 cm3/cm3, which are 35-55% of a target value of 150 cm3/cm3. Both granular and pelletized carbons made with preoxidized Illinois coal gave higher micropore volumes and larger Vm/Vs values than those made without preoxidation. This confirmed that preoxidation is a desirable step in the production of carbons from caking materials. Pelletization of preoxidized IBC-106 coal, followed by steam activation, resulted in the highest Vm/Vs value. With roughly the same micropore volume, pelletization alone increased Vm/Vs of coal carbon by 10%. Tire-derived carbons had Vm/Vs values ranging from 44 to 53 cm3/cm3, lower than those of coal carbons due to their lower bulk densities. Pelletization of the tire carbons increased bulk density up to 160%. However, this increase was offset by a decrease in micropore volume of the pelletized materials, presumably due to the pellet binder. As a result, Vm/Vs values were about the same for granular and pelletized tire carbons. Compared with coal carbons, tire carbons had a higher percentage of mesopores and macropores.

  15. Effect of hole geometry and Electric-Discharge Machining (EDM) on airflow rates through small diameter holes in turbine blade material

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Cochran, R. P.

    1980-01-01

    The effects of two design parameters, electrode diameter and hole angle, and two machine parameters, electrode current and current-on time, on air flow rates through small-diameter (0.257 to 0.462 mm) electric-discharge-machined holes were measured. The holes were machined individually in rows of 14 each through 1.6 mm thick IN-100 strips. The data showed linear increase in air flow rate with increases in electrode cross sectional area and current-on time and little change with changes in hole angle and electrode current. The average flow-rate deviation (from the mean flow rate for a given row) decreased linearly with electrode diameter and increased with hole angle. Burn time and finished hole diameter were also measured.

  16. Effect of lung and target density on small-field dose coverage and PTV definition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, Patrick D., E-mail: higgi010@umn.edu; Ehler, Eric D.; Cho, Lawrence C.

    We have studied the effect of target and lung density on block margin for small stereotactic body radiotherapy (SBRT) targets. A phantom (50 × 50 × 50 cm{sup 3}) was created in the Pinnacle (V9.2) planning system with a 23-cm diameter lung region of interest insert. Diameter targets of 1.6, 2.0, 3.0, and 4.0 cm were placed in the lung region of interest and centered at a physical depth of 15 cm. Target densities evaluated were 0.1 to 1.0 g/cm{sup 3}, whereas the surrounding lung density was varied between 0.05 and 0.6 g/cm{sup 3}. A dose of 100 cGy wasmore » delivered to the isocenter via a single 6-MV field, and the ratio of the average dose to points defining the lateral edges of the target to the isocenter dose was recorded for each combination. Field margins were varied from none to 1.5 cm in 0.25-cm steps. Data obtained in the phantom study were used to predict planning treatment volume (PTV) margins that would match the clinical PTV and isodose prescription for a clinical set of 39 SBRT cases. The average internal target volume (ITV) density was 0.73 ± 0.17, average local lung density was 0.33 ± 0.16, and average ITV diameter was 2.16 ± 0.8 cm. The phantom results initially underpredicted PTV margins by 0.35 cm. With this offset included in the model, the ratio of predicted-to-clinical PTVs was 1.05 ± 0.32. For a given target and lung density, it was found that treatment margin was insensitive to target diameter, except for the smallest (1.6-cm diameter) target, for which the treatment margin was more sensitive to density changes than the larger targets. We have developed a graphical relationship for block margin as a function of target and lung density, which should save time in the planning phase by shortening the design of PTV margins that can satisfy Radiation Therapy Oncology Group mandated treatment volume ratios.« less

  17. Diameter control of single-walled carbon nanotube forests from 1.3–3.0 nm by arc plasma deposition

    PubMed Central

    Chen, Guohai; Seki, Yasuaki; Kimura, Hiroe; Sakurai, Shunsuke; Yumura, Motoo; Hata, Kenji; Futaba, Don N.

    2014-01-01

    We present a method to both precisely and continuously control the average diameter of single-walled carbon nanotubes in a forest ranging from 1.3 to 3.0 nm with ~1 Å resolution. The diameter control of the forest was achieved through tuning of the catalyst state (size, density, and composition) using arc plasma deposition of nanoparticles. This 1.7 nm control range and 1 Å precision exceed the highest reports to date. PMID:24448201

  18. Novel approach for modifying microporous filters for virus concentration from water.

    PubMed Central

    Preston, D R; Vasudevan, T V; Bitton, G; Farrah, S R; Morel, J L

    1988-01-01

    Electronegative microporous filters composed of epoxyfiberglass (Filterite) were treated with cationic polymers to enhance their virus-adsorbing properties. This novel and inexpensive approach to microporous filter modification entails soaking filters in an aqueous solution of a cationic polymer such as polyethyleneimine (PEI) for 2 h at room temperature and then allowing the filters to air dry overnight on absorbent paper towels. PEI-treated filters were evaluated for coliphage (MS2, T2, and phi X174) and enterovirus (poliovirus type 1 and coxsackievirus type B5) adsorption from buffer at pH 3.5 to 9.0 and for indigenous coliphages from unchlorinated secondary effluent at ambient pH. Adsorbed viruses were recovered with 3% beef extract (pH 9). Several other cationic polymers were used to modify epoxyfiberglass filters and were evaluated for their ability to concentrate viruses from water. Zeta potentials of disrupted filter material indicated that electronegative epoxyfiberglass filters were made more electropositive when treated with cationic polymers. In general, epoxyfiberglass filters treated with cationic polymers were found to adsorb a greater percentage of coliphages and enteroviruses than were untreated filters. PMID:2843091

  19. Microporous MOFs Engaged in the Formation of Nitrogen-Doped Mesoporous Carbon Nanosheets for High-Rate Supercapacitors.

    PubMed

    Hou, Ya-Nan; Zhao, Zongbin; Yu, Zhengfa; Zhang, Su; Li, Shaofeng; Yang, Juan; Zhang, Han; Liu, Chang; Wang, Zhiyu; Qiu, Jieshan

    2018-02-21

    Nitrogen-doped mesoporous carbon nanosheets (NMCS) have been fabricated from zinc-based microporous metal-organic frameworks (ZIF-8) by pyrolysis in a molten salt medium. The as-prepared NMCS exhibit significantly improved specific capacitance (NMCS-8: 232 F g -1 at 0.5 A g -1 ) and capacitance retention ratio (75.9 % at 50 A g -1 ) compared with the micropore-dominant nitrogen-doped porous carbon polyhedrons (NPCP-5: 178 F g -1 at 0.5 A g -1 , 15.9 % at 20 A g -1 ) obtained by direct pyrolysis of nanocrystalline ZIF-8. The excellent capacitive performance and high rate performance of the NMCS can be attributed to their unique combination of structure and composition, that is, the two-dimensional and hierarchically porous structure provides a short ion-transport pathway and facilitates the supply of electrolyte ions, and the nitrogen-doped polar surface improves the interface wettability when used as an electrode. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells.

    PubMed

    Chen, Qin; Pu, Wenhong; Hou, Huijie; Hu, Jingping; Liu, Bingchuan; Li, Jianfeng; Cheng, Kai; Huang, Long; Yuan, Xiqing; Yang, Changzhu; Yang, Jiakuan

    2018-02-01

    Microbial fuel cells (MFCs) are promising biotechnologies tool to harvest electricity by decomposing organic matter in waste water, and the anode material is a critical factor in determining the performance of MFCs. In this study, chestnut shell is proposed as a novel anode material with mesoporous and microporous structure prepared via a simple carbonization procedure followed by an activation process. The chemical activation process successfully modified the macroporous structure, created more mesoporous and microporous structure and decreased the O-content and pyridinic/pyrrolic N groups on the biomass anode, which were beneficial for improving charge transfer efficiency between the anode surface and microbial biofilm. The MFC with activated biomass anode achieved a maximum power density (23.6 W m -3 ) 2.3 times higher than carbon cloth anode (10.4 W m -3 ). This study introduces a promising and feasible strategy for the fabrication of high performance anodes for MFCs derived from cost-effective, sustainable natural materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

Top