Kunita, Kenji; Fujiwara, Katsuo; Kiyota, Naoe; Yaguchi, Chie; Kiyota, Takeo
2018-01-10
We investigated developmental changes in shortening of pro-saccade reaction time while maintaining neck flexion. Subjects comprised 135 children (3-14 years) and 29 young adults (19-23 years). Children were divided into six groups in 2-year age strata. Pro-saccade reaction tasks for 30 s were performed in neck rest and flexion positions. Reaction times under each position were averaged in every 10-s period. Under neck rest position, reaction time in the 0-10 s period was significantly longer in the 3- to 4-year-old group than in the 5- to 6-year-old group and above. No significant age effect was found for reaction time in the 0-10 s period in the 5- to 6-year-old group and above. Although a significant effect of neck flexion was not observed until the 9- to 10-year-old group, significant shortening of reaction time with neck flexion was found in the 11- to 12-year-old group and above. Furthermore, this shortening was maintained until the first 20-s period in the 11- to 12-year-old group and during the entire 30 s in the 13- to 14-year-old and above. These results suggest that brain activation with the maintenance of neck flexion, related to shortening of the pro-saccade reaction time, was found from a later age of approximately 11 years and above, compared with the age at which information-processing function in the pro-saccade was enhanced. In addition, brain activation with the maintenance of neck flexion was sustained longer with age.
Takeuchi, Kazunari; Yokoyama, Toru; Ono, Atsushi; Numasawa, Takuya; Wada, Kanichiro; Itabashi, Taito; Toh, Satoshi
2008-03-01
Although difficulties with neck mobility often interfere with patients' activities of daily living (ADL) after cervical laminoplasty, there was no detailed study on the relation between the limitations of ADL accompanying postoperative reduced neck mobility and the cervical posterior approach. The aim of this study was to compare retrospectively the frequency of limitations of ADL accompanying neck mobility after laminoplasty preserving the semispinalis cervicis inserted into the C2 spinous process with that after laminoplasty reattaching the muscle to C2. Forty-nine patients after C4-C7 laminoplasty with C3 laminectomy preserving the semispinalis cervicis inserted into C2 (Group A) and 24 patients after C3-C7 laminoplasty reattaching the muscle (Group B) were evaluated. The frequency of postoperative limitations of ADL accompanying each of three neck movements of extension, flexion and rotation were investigated. The postoperative O-C7 angles at extension and flexion was measured on lateral extension and flexion radiographs of the cervical spine, respectively. The postoperative cervical range of motion in rotation was measured in the cranial view using a digital camera. Frequency of limitations of ADL accompanying extension was lower (P = 0.037) in Group A (2%) than in Group B (17%). Frequency of limitations of ADL accompanying flexion was similar in Group A (8%) and Group B (4%). Frequency of limitations of ADL accompanying rotation was lower (P = 0.031) in Group A (12%) than in Group B (33%). Average O-C7 angle at extension was significantly larger (P = 0.002) in Group A (147 degrees ) than in Group B (136 degrees ). Average O-C7 angle at flexion was similar in Group A (93 degrees ) and Group B (91 degrees ). Average range of motion in rotation was significantly larger (P = 0.004) in Group A (110 degrees ) than in Group B (91 degrees ). This retrospective study suggested that the frequency of limitations of ADL accompanying neck extension or rotation was lower after laminoplasty preserving the semispinalis cervicis inserted into C2 than after laminoplasty reattaching the muscle.
Femoral neck radiography: effect of flexion on visualization.
Garry, Steven C; Jhangri, Gian S; Lambert, Robert G W
2005-06-01
To determine whether flexion improves radiographic visualization of the femoral neck when the femur is externally rotated. Five human femora, with varying neck-shaft and anteversion angles, were measured and immobilized. Degree of flexion required to bring the femoral neck horizontal was measured, varying the rotation. Next, one bone was radiographed in 16 positions, varying rotation in 15 degrees and flexion in 10 degrees increments. Radiographs were presented in randomized blinded fashion to 15 staff radiologists for scoring of femoral neck visualization. Following this, all 5 bones were radiographed in 4 positions of rotation and at 0 degree and 20 degrees flexion, and blinded randomized review of radiographs was repeated. Comparisons between angles and rotations were made using the Mann-Whitney test. The flexion angle required to bring the long axis of the femoral neck horizontal correlated directly with the degree of external rotation (p < 0.05). Visualization of the femoral neck in the extended position progressively deteriorated from 15 degrees internal rotation to 30 degrees external rotation (p < 0.01). However, when 20 degrees flexion was applied to bones in external rotation, visualization significantly improved at 15 degrees (p < 0.05) and 30 degrees (p < 0.01). Flexion of the externally rotated femur can bring the femoral neck into horizontal alignment, and a relatively small amount (20 degrees) of flexion can significantly improve radiographic visualization. This manoeuvre could be useful for radiography of the femoral neck when initial radiographs are inadequate because of external rotation of the leg.
[Research, design and application of model NSE-1 neck muscle training machine for pilots].
Cheng, Haiping; Wang, Zhijie; Liu, Songyang; Yang, Yi; Zhao, Guang; Cong, Hong; Han, Xueping; Liu, Min; Yu, Mengsun
2011-04-01
Pain in the cervical region of air force pilots, who are exposed to high G-forces, is a specifically occupational health problem. To minimize neck problems, the cervical muscles need specific strength exercise. It is important that the training for the neck must be carried out with optimal resistance in exercises. The model NSE-1 neck training machine for pilots was designed for neck strengthening exercises under safe and effective conditions. In order to realize the functions of changeable velocity and resistant (CVR) training and neck isometric contractive exercises, the techniques of adaptive hydraulics, sensor, optic and auditory biological feedback, and signal processing were applied to this machine. The training system mainly consists of mechanical parts (including the chair of flexion and extension, the chair of right and left lateral flexion, the components of hydraulics and torque transformer, etc.), and the software of signal processing and biological feedback. Eleven volunteers were selected for the experiments of neck isometric contractive exercises, three times a week for 6 weeks, where CVR training (flexion, extension, right, left lateral flexion) one time a week. The increase in relative strength of the neck (flexion, extension, left and right lateral flexion) was 70.8%, 83.7%, 78.6% and 75.2%, respectively after training. Results show that the strength of the neck can be increased safely, effectively and rapidly with NSE-1 neck training machine to perform neck training.
Restriction of neck flexion using soft cervical collars: a preliminary study
Aker, Peter D; Randoll, Martine; Rheault, Chantal; O’Connor, Sandra
1991-01-01
This study investigates the use of dropped neck flexion as a manoeuvre to test the restrictive abilities of two different types of soft collars, an Airway soft cervical collar and a handmade cervical rough. The range of neck flexion of 40 asymptomatic subjects aged 20-29 was assessed, both with and without collar wear, using a Spinal Rangiometer. Dropped neck flexion is described as possibly being more representative of the type of movement that a patient with neck pain will undergo, and hence a more useful manoeuvre to employ when testing for the restrictive abilities of soft cervical collars. The mean dropped flexion was 64 degrees without collar wear, 58 degrees with the Airway soft collar, and 34 degrees with the cervical rough. Only the cervical rough provided both statistically (p < 0.001) and clinically (> 15°) significant restriction of dropped neck flexion. The comfort, preparation time, and ease of application of each of these collars is not addressed in this study, and may reflect on use in clinical practice. This preliminary study provides insight and pilot data for future studies in this area. ImagesFigure 2Figure 3
Tubbs, R Shane; Kirkpatrick, Christina M; Rizk, Elias; Chern, Joshua J; Oskouian, Rod J; Oakes, W Jerry
2016-03-01
In the past, diagnosis of the Chiari I malformation has primarily been made on midsagittal MRI. We hypothesized that based on the frequent presentation of opisthotonos in patients with hindbrain hernia (primarily Chiari II malformation but sometimes Chiari I malformation) that the hyperextension might be a compensatory technique used by such patients to bring the cerebellar tonsils up out of the cervical spine. This prospective study reviewed imaging of patients with Chiari I malformation who underwent flexion/extension MRI for evaluation of their hindbrain herniation. Age-matched controls were used for comparison. In general, there was elevation of the cerebellar tonsils with extension and increased descent with flexion of the cervical spine. In 72 % of patients, flexion of the neck resulted in descent of the cerebellar tonsils. In 64 % of patients, extension of the neck resulted in ascent of the cerebellar tonsils. In the 14 patients with an associated syrinx, 71 % were found to have caudal movement of the cerebellar tonsils with neck flexion, and only 43 % were observed to have any movement of the cerebellar tonsils in neck extension compared to patients without a syrinx where ascent of the tonsils was seen in only nine during neck extension. Two patients were observed to have the reverse finding of ascent of the cerebellar tonsils with neck flexion and descent of the cerebellar tonsils with neck extension. Five patients had no movement of the cerebellar tonsils in either flexion or extension of the neck, and one of these had a small syrinx. Although minimal and not in all patients, we observed elevation of the herniated cerebellar tonsils with extension of the cervical spine in patients with Chiari I malformation. This finding provides evidence as to why some patients with hindbrain herniation present with opisthotonos and supports earlier findings that CSF flow is reduced at the craniocervical junction in flexion in patients with Chiari I malformation.
Vannebo, Katrine Tranaas; Iversen, Vegard Moe; Fimland, Marius Steiro; Mork, Paul Jarle
2018-03-02
There is a lack of test-retest reliability studies of measurements of cervical muscle strength, taking into account gender and possible learning effects. To investigate test-retest reliability of measurement of maximal isometric cervical muscle strength by handheld dynamometry. Thirty women (age 20-58 years) and 28 men (age 20-60 years) participated in the study. Maximal isometric strength (neck flexion, neck extension, and right/left lateral flexion) was measured on three separate days at least five days apart by one evaluator. Intra-rater consistency tended to improve from day 1-2 measurements to day 2-3 measurements in both women and men. In women, the intra-class correlation coefficients (ICC) for day 2 to day 3 measurements were 0.91 (95% confidence interval [CI], 0.82-0.95) for neck flexion, 0.88 (95% CI, 0.76-0.94) for neck extension, 0.84 (95% CI, 0.68-0.92) for right lateral flexion, and 0.89 (95% CI, 0.78-0.95) for left lateral flexion. The corresponding ICCs among men were 0.86 (95% CI, 0.72-0.93) for neck flexion, 0.93 (95% CI, 0.85-0.97) for neck extension, 0.82 (95% CI, 0.65-0.91) for right lateral flexion and 0.73 (95% CI, 0.50-0.87) for left lateral flexion. This study describes a reliable and easy-to-administer test for assessing maximal isometric cervical muscle strength.
Neck muscle fatigue alters the cervical flexion relaxation ratio in sub-clinical neck pain patients.
Zabihhosseinian, Mahboobeh; Holmes, Michael W R; Ferguson, Brad; Murphy, Bernadette
2015-06-01
The cervical flexion relaxation ratio is lower in neck pain patients compared to healthy controls. Fatigue modulates the onset and offset angles of the silent period in both the lumbar and cervical spine in healthy individuals; however, this response has not been studied with neck pain patients. The purpose of this study was to determine if cervical extensor fatigue would alter the parameters of the cervical flexion relaxation more in a neck pain group than a healthy control group. Thirteen healthy and twelve neck pain patients participated. Cervical extensor activity was examined bilaterally and kinematics of the neck and head were collected. An isometric, repetitive neck extension task at 70% of maximum elicited fatigue. Participants performed 3 trials of maximal cervical flexion both pre and post fatigue. The healthy controls and neck pain groups fatigued after 56 (41) and 39 (31) repetitions, respectively. There was a significant interaction effect for the flexion relaxation ratio between the control and neck pain groups from pre to post fatigue trials (F1,96=22.67, P=0.0001), but not for onset and offset angles (F1, 96=0.017, P=0.897), although the onset and offset angles did decrease significantly for both groups following fatigue (F1,96=9.26, P=0.002). Individuals with mild to moderate neck pain have significant differences in their neuromuscular control relative to controls, experienced myoelectric fatigue with fewer repetitions in a shorter time, had a lower cervical flexion relaxation ratio at baseline and had an inability to decrease this ratio further in response to fatigue. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of yogic exercise on nonspecific neck pain in university students.
Kim, Sang Dol
2018-05-01
To assess the effects of yogic exercise on nonspecific neck pain in university students. This study is a pretest-posttest design with a non-equivalent control group. Thirty-eight university students were selected by convenience sampling, with 18 assigned to an exercise group and 20 assigned to a control group. The yoga group participated in one-hour sessions of yogic exercise two days a week for eight weeks. The exercise comprised eight stages: relaxation, flexion of neck, extension of neck, right lateral flexion of neck, left lateral flexion of neck, right rotation of neck, left rotation of neck, and relaxation. Neck pain intensity was measured using a 100 mm visual analogue scale. The yoga group showed significantly decreased neck pain scores compared with those of the control group. These findings indicate that yogic exercises could reduce neck pain in university students. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Han Suk; Chung, Hyung Kuk; Park, Sun Wook
2015-01-01
Objective. To assess the correlation of abnormal trunk postures and reposition sense of subjects with forward head neck posture (FHP). Methods. In all, postures of 41 subjects were evaluated and the FHP and trunk posture including shoulder, scapular level, pelvic side, and anterior tilting degrees were analyzed. We used the head repositioning accuracy (HRA) test to evaluate neck position senses of neck flexion, neck extension, neck right and left side flexion, and neck right and left rotation and calculated the root mean square error in trials for each subject. Spearman's rank correlation coefficients and regression analysis were used to assess the degree of correlation between the trunk posture and HRA value, and a significance level of α = 0.05 was considered. Results. There were significant correlations between the HRA value of right side neck flexion and pelvic side tilt angle (p < 0.05). If pelvic side tilting angle increases by 1 degree, right side neck flexion increased by 0.76 degrees (p = 0.026). However, there were no significant correlations between other neck motions and trunk postures. Conclusion. Verifying pelvic postures should be prioritized when movement is limited due to the vitiation of the proprioceptive sense of neck caused by FHP. PMID:26583125
Carnaz, Letícia; Moriguchi, Cristiane S; de Oliveira, Ana Beatriz; Santiago, Paulo R P; Caurin, Glauco A P; Hansson, Gert-Åke; Coury, Helenice J C Gil
2013-11-01
This study compared neck range of movement recording using three different methods goniometers (EGM), inclinometers (INC) and a three-dimensional video analysis system (IMG) in simultaneous and synchronized data collection. Twelve females performed neck flexion-extension, lateral flexion, rotation and circumduction. The differences between EGM, INC, and IMG were calculated sample by sample. For flexion-extension movement, IMG underestimated the amplitude by 13%; moreover, EGM showed a crosstalk of about 20% for lateral flexion and rotation axes. In lateral flexion movement, all systems showed similar amplitude and the inter-system differences were moderate (4-7%). For rotation movement, EGM showed a high crosstalk (13%) for flexion-extension axis. During the circumduction movement, IMG underestimated the amplitude of flexion-extension movements by about 11%, and the inter-system differences were high (about 17%) except for INC-IMG regarding lateral flexion (7%) and EGM-INC regarding flexion-extension (10%). For application in workplace, INC presents good results compared to IMG and EGM though INC cannot record rotation. EGM should be improved in order to reduce its crosstalk errors and allow recording of the full neck range of movement. Due to non-optimal positioning of the cameras for recording flexion-extension, IMG underestimated the amplitude of these movements. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Neck postures in air traffic controllers with and without neck/shoulder disorders.
Arvidsson, Inger; Hansson, Gert-Ake; Mathiassen, Svend Erik; Skerfving, Staffan
2008-03-01
Prolonged computer work with an extended neck is commonly believed to be associated with an increased risk of neck-shoulder disorders. The aim of this study was to compare neck postures during computer work between female cases with neck-shoulder disorders, and healthy referents. Based on physical examinations, 13 cases and 11 referents were selected among 70 female air traffic controllers with the same computer-based work tasks and identical workstations. Postures and movements were measured by inclinometers, placed on the forehead and upper back (C7/Th1) during authentic air traffic control. A recently developed method was applied to assess flexion/extension in the neck, calculated as the difference between head and upper back flexion/extension. cases and referents did not differ significantly in neck posture (median neck flexion/extension: -10 degrees vs. -9 degrees ; p=0.9). Hence, the belief that neck extension posture is associated with neck-shoulder disorders in computer work is not supported by the present data.
Extension and flexion in the upper cervical spine in neck pain patients.
Ernst, Markus J; Crawford, Rebecca J; Schelldorfer, Sarah; Rausch-Osthoff, Anne-Kathrin; Barbero, Marco; Kool, Jan; Bauer, Christoph M
2015-08-01
Neck pain is a common problem in the general population with high risk of ongoing complaints or relapses. Range of motion (ROM) assessment is scientifically established in the clinical process of diagnosis, prognosis and outcome evaluation in neck pain. Anatomically, the cervical spine (CS) has been considered in two regions, the upper and lower CS. Disorders like cervicogenic headache have been clinically associated with dysfunctions of the upper CS (UCS), yet ROM tests and measurements are typically conducted on the whole CS. A cross-sectional study assessing 19 subjects with non-specific neck pain was undertaken to examine UCS extension-flexion ROM in relation to self-reported disability and pain (via the Neck Disability Index (NDI)). Two measurement devices (goniometer and electromagnetic tracking) were employed and compared. Correlations between ROM and the NDI were stronger for the UCS compared to the CS, with the strongest correlation between UCS flexion and the NDI-headache (r = -0.62). Correlations between UCS and CS ROM were fair to moderate, with the strongest correlation between UCS flexion and CS extension ROM (r = -0.49). UCS flexion restriction is related to headache frequency and intensity. Consistency and agreement between both measurement systems and for all tests was high. The results demonstrate that separate UCS ROM assessments for extension and flexion are useful in patients with neck pain. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rezasoltani, A; Nasiri, R; Faizei, A M; Zaafari, G; Mirshahvelayati, A S; Bakhshidarabad, L
2013-04-01
Semispinalis capitis muscle (SECM) is a massive and long cervico-thoracic muscle which functions as a main head and neck extensor muscle. The aim of this study was to detect the effect of head and neck positions on the strength of neck extensor muscles and size of SECM in healthy subjects. Thirty healthy women students voluntarily participated in this study. An ultrasonography apparatus (Hitachi EUB 525) and a system of tension-meter were used to scan the right SECM at the level of third cervical spine and to measure the strength of neck extensor muscles at three head and neck positions. Neck extensor muscles were stronger in neutral than flexion or than extension positions while the size of SECM was larger in extension than neutral or than flexion position. The force generation capacity of the main neck extensor muscle was lower at two head and neck flexion and extension positions than neutral position. Copyright © 2012 Elsevier Ltd. All rights reserved.
Goostrey, Sonya; Treleaven, Julia; Johnston, Venerina
2014-05-01
This study evaluated the impact on neck movement and muscle activity of placing documents in three commonly used locations: in-line, flat desktop left of the keyboard and laterally placed level with the computer screen. Neck excursion during three standard head movements between the computer monitor and each document location and neck extensor and upper trapezius muscle activity during a 5 min typing task for each of the document locations was measured in 20 healthy participants. Results indicated that muscle activity and neck flexion were least when documents were placed laterally suggesting it may be the optimal location. The desktop option produced both the greatest neck movement and muscle activity in all muscle groups. The in-line document location required significantly more neck flexion but less lateral flexion and rotation than the laterally placed document. Evaluation of other holders is needed to guide decision making for this commonly used office equipment. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Gender difference in mobile phone use and the impact of digital device exposure on neck posture.
Guan, Xiaofei; Fan, Guoxin; Chen, Zhengqi; Zeng, Ying; Zhang, Hailong; Hu, Annan; Gu, Guangfei; Wu, Xinbo; Gu, Xin; He, Shisheng
2016-11-01
This cross-sectional study aimed to identify gender differences in the cervical postures when young adults were using mobile phones, as well as the correlations between the postures and the digital devices use (computer and mobile phone). Questionnaires regarding the habits of computer and mobile phone use were administrated to 429 subjects aged from 17 to 33 years old (19.75 ± 2.58 years old). Subjects were instructed to stand habitually and use a mobile phone as in daily life; the sagittal head and cervical postures were measured by head flexion, neck flexion angle and gaze angle. Male participants had a significantly larger head flexion angle (96.41° ± 12.23° vs. 93.57° ± 12.62°, p = 0.018) and neck flexion angle (51.92° ± 9.55° vs. 47.09° ± 9.45°, p < 0.001) than females. There were significant differences in head (F = 3.62, p = 0.014) and neck flexion (F = 3.99, p = 0.009) between different amounts of computer use. Practitioner Summary: We investigated possible gender differences in head and neck postures of young adults using mobile phones, as well as the potential correlations between these postures and digital device use. We found that males displayed larger head and neck flexion angles than females, which were associated with the amount of computer use.
Flexion-relaxation ratio in computer workers with and without chronic neck pain.
Pinheiro, Carina Ferreira; dos Santos, Marina Foresti; Chaves, Thais Cristina
2016-02-01
This study evaluated the flexion-relaxation phenomenon (FRP) and flexion-relaxation ratios (FR-ratios) using surface electromyography (sEMG) of the cervical extensor muscles of computer workers with and without chronic neck pain, as well as of healthy subjects who were not computer users. This study comprised 60 subjects 20-45years of age, of which 20 were computer workers with chronic neck pain (CPG), 20 were computer workers without neck pain (NPG), and 20 were control individuals who do not use computers for work and use them less than 4h/day for other purposes (CG). FRP and FR-ratios were analyzed using sEMG of the cervical extensors. Analysis of FR-ratios showed smaller values in the semispinalis capitis muscles of the two groups of workers compared to the control group. The reference FR-ratio (flexion relaxation ratio [FRR], defined as the maximum activity in 1s of the re-extension/full flexion sEMG activity) was significantly higher in the computer workers with neck pain compared to the CG (CPG: 3.10, 95% confidence interval [CI95%] 2.50-3.70; NPG: 2.33, CI95% 1.93-2.74; CG: 1.99, CI95% 1.81-2.17; p<0.001). The FR-ratios and FRR of sEMG in this study suggested that computer use could increase recruitment of the semispinalis capitis during neck extension (concentric and eccentric phases), which could explain our results. These results also suggest that the FR-ratios of the semispinalis may be a potential functional predictive neuromuscular marker of asymptomatic neck musculoskeletal disorders since even asymptomatic computer workers showed altered values. On the other hand, the FRR values of the semispinalis capitis demonstrated a good discriminative ability to detect neck pain, and such results suggested that each FR-ratio could have a different application. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tousignant, Michel; Smeesters, Cécil; Breton, Anne-Marie; Breton, Emilie; Corriveau, Hélène
2006-04-01
This study compared range of motion (ROM) measurements using a cervical range of motion device (CROM) and an optoelectronic system (OPTOTRAK). To examine the criterion validity of the CROM for the measurement of cervical ROM on healthy adults. Whereas measurements of cervical ROM are recognized as part of the assessment of patients with neck pain, few devices are available in clinical settings. Two papers published previously showed excellent criterion validity for measurements of cervical flexion/extension and lateral flexion using the CROM. Subjects performed neck rotation, flexion/extension, and lateral flexion while sitting on a wooden chair. The ROM values were measured by the CROM as well as the OPTOTRAK. The cervical rotational ROM values using the CROM demonstrated a good to excellent linear relationship with those using the OPTOTRAK: right rotation, r = 0.89 (95% confidence interval, 0.81-0.94), and left rotation, r = 0.94 (95% confidence interval, 0.90-0.97). Similar results were also obtained for flexion/extension and lateral flexion ROM values. The CROM showed excellent criterion validity for measurements of cervical rotation. We propose using ROM values measured by the CROM as outcome measures for patients with neck pain.
Komasawa, Nobuyasu; Mihara, Ryosuke; Imagawa, Kentaro; Hattori, Kazuo; Minami, Toshiaki
2015-01-01
The present study compared changes in cuff pressure by head and neck position between high-volume low-pressure (HVLP) and taper-shaped (taper) cuffs in a prospective randomized clinical trial. Methods. Forty patients were intubated using tracheal tubes with either HVLP (n = 20; HVLP group) or taper-shaped (n = 20; Taper group) cuffs. Initial cuff pressure was adjusted to 15, 20, or 25 cmH2O in the neutral position. Cuff pressure was evaluated after changing the head and neck positions to flexion, extension, and rotation. Results. Cuff pressure significantly increased with flexion in both HVLP and Taper groups at all initial cuff pressures. It significantly increased with extension in the HVLP group, but not in the Taper group. Cuff pressure did not significantly differ with rotation in either group and was significantly smaller in the Taper group during flexion and extension than in the HVLP group, regardless of initial cuff pressure. Conclusion. Cuff pressure changes with head and neck flexion and extension were smaller in the Taper group than in the HVLP group. Our results highlight the potential for taper cuffs to prevent excessive cuff pressure increases with positional changes in the head and neck. This trial is registered with UMIN000016119. PMID:26509152
Impairment in the cervical flexors: a comparison of whiplash and insidious onset neck pain patients.
Jull, G; Kristjansson, E; Dall'Alba, P
2004-05-01
There has been little investigation into whether or not differences exist in the nature of physical impairment associated with neck pain of whiplash and insidious origin. This study examined the neck flexor synergy during performance of the cranio-cervical flexion test, a test targeting the action of the deep neck flexors. Seventy-five volunteer subjects participated in this study and were equally divided between Group 1, asymptomatic control subjects, Group 2, subjects with insidious onset neck pain and Group 3, subjects with neck pain following a whiplash injury. The cranio-cervical flexion test was performed in five progressive stages of increasing cranio-cervical flexion range. Subjects' performance was guided by feedback from a pressure sensor inserted behind the neck which monitored the slight flattening of the cervical lordosis which occurs with the contraction of longus colli. Myoelectric signals (EMG) were detected from the muscles during performance of the test. The results indicated that both the insidious onset neck pain and whiplash groups had higher measures of EMG signal amplitude (normalized root mean square) in the sternocleidomastoid during each stage of the test compared to the control subjects (all P<0.05) and had significantly greater shortfalls from the pressure targets in the test stages (P<0.05). No significant differences were evident between the neck pain groups in either parameter indicating that this physical impairment in the neck flexor synergy is common to neck pain of both whiplash and insidious origin.
Snively, Eric; Russell, Anthony P
2007-08-01
Reconstructed neck muscles of large theropod dinosaurs suggest influences on feeding style that paralleled variation in skull mechanics. In all examined theropods, the head dorsiflexor m. transversospinalis capitis probably filled in the posterior dorsal concavity of the neck, for a more crocodilian- than avian-like profile in this region. The tyrannosaurine tyrannosaurids Daspletosaurus and Tyrannosaurus had relatively larger moment arms for latero-flexion by m. longissimus capitis superficialis and m. complexus than albertosaurine tyrannosaurids, and longer dorsiflexive moment arms for m. complexus. Areas of dorsiflexor origination are significantly larger relative to neck length in adult Tyrannosaurus rex than in other tyrannosaurids, suggesting relatively large muscle cross-sections and forces. Tyrannosaurids were not particularly specialized for neck ventro-flexion. In contrast, the hypothesis that Allosaurus co-opted m. longissimus capitis superficialis for ventro-flexion is strongly corroborated. Ceratosaurus had robust insertions for the ventro-flexors m. longissimus capitis profundus and m. rectus capitis ventralis. Neck muscle morphology is consistent with puncture-and-pull and powerful shake feeding in tyrannosaurids, relatively rapid strikes in Allosaurus and Ceratosaurus, and ventroflexive augmentation of weaker jaw muscle forces in the non tyrannosaurids. (c) 2007 Wiley-Liss, Inc.
Ivancic, Paul C
2013-06-01
In vitro biomechanical study. Our objective was to determine the effectiveness of cervical collars and cervicothoracic orthoses for stabilizing clinically relevant, experimentally produced cervical spine injuries. Most previous in vitro studies of cervical orthoses used a simplified injury model with all ligaments transected at a single spinal level, which differs from real-life neck injuries. Human volunteer studies are limited to measuring only sagittal motions or 3-dimensional motions only of the head or 1 or 2 spinal levels. Three-plane flexibility tests were performed to evaluate 2 cervical collars (Vista Collar and Vista Multipost Collar) and 2 cervicothoracic orthoses (Vista TS and Vista TS4) using a skull-neck-thorax model with 8 injured cervical spine specimens (manufacturer of orthoses: Aspen Medical Products Inc, Irvine, CA). The injuries consisted of flexion-compression at the lower cervical spine and extension-compression at superior spinal levels. Pair-wise repeated measures analysis of variance (P < 0.05) and Bonferroni post hoc tests determined significant differences in average range of motions of the head relative to the base, C7 or T1, among experimental conditions. RESULTS.: All orthoses significantly reduced unrestricted head/base flexion and extension. The orthoses allowed between 8.4% and 25.8% of unrestricted head/base motion in flexion/extension, 57.8% to 75.5% in axial rotation, and 53.8% to 73.7% in lateral bending. The average percentages of unrestricted motion allowed by the Vista Collar, Vista Multipost Collar, Vista TS, and Vista TS4 were: 14.0, 9.7, 6.1, and 4.7, respectively, for middle cervical spine extension and 13.2, 11.8, 3.3, and 0.4, respectively, for lower cervical spine flexion. Successive increases in immobilization were observed from Vista Collar to Vista Multipost Collar, Vista TS, and Vista TS4 in extension at the injured middle cervical spine and in flexion at the injured lower cervical spine. Our results may assist clinicians in selecting the most appropriate orthosis based upon patient-specific cervical spine injuries.
Improving car passengers' comfort and experience by supporting the use of handheld devices.
van Veen, S A T; Hiemstra-van Mastrigt, S; Kamp, I; Vink, P
2014-01-01
There is a demand for interiors to support other activities in a car than controlling the vehicle. Currently, this is the case for the car passengers and--in the future--autonomous driving cars will also facilitate drivers to perform other activities. One of these activities is working with handheld devices. Previous research shows that people experience problems when using handheld devices in a moving vehicle and the use of handheld devices generally causes unwanted neck flexion [Young et al. 2012; Sin and Zu 2011; Gold et al.2011]. In this study, armrests are designed to support the arms when using handheld devices in a driving car in order to decrease neck flexion. Neck flexion was measured by attaching markers on the C7 and tragus. Discomfort was indicated on a body map on a scale 1-10. User experience was evaluated in a semi-structured interview. Neck flexion is significantly decreased by the support of the armrests and approaches a neutral position. Furthermore, overall comfort and comfort in the neck region specifically are significantly increased. Subjects appreciate the body posture facilitated by the armrests and 9 out of 10 prefer using handheld devices with the armrests compared to using handheld devices without the armrests. More efforts are needed to develop the mock-up into an established product, but the angles and dimensions presented in this study could serve as guidelines.
The spinal posture of computing adolescents in a real-life setting
2014-01-01
Background It is assumed that good postural alignment is associated with the less likelihood of musculoskeletal pain symptoms. Encouraging good sitting postures have not reported consequent musculoskeletal pain reduction in school-based populations, possibly due to a lack of clear understanding of good posture. Therefore this paper describes the variability of postural angles in a cohort of asymptomatic high-school students whilst working on desk-top computers in a school computer classroom and to report on the relationship between the postural angles and age, gender, height, weight and computer use. Methods The baseline data from a 12 month longitudinal study is reported. The study was conducted in South African school computer classrooms. 194 Grade 10 high-school students, from randomly selected high-schools, aged 15–17 years, enrolled in Computer Application Technology for the first time, asymptomatic during the preceding month, and from whom written informed consent were obtained, participated in the study. The 3D Posture Analysis Tool captured five postural angles (head flexion, neck flexion, cranio-cervical angle, trunk flexion and head lateral bend) while the students were working on desk-top computers. Height, weight and computer use were also measured. Individual and combinations of postural angles were analysed. Results 944 Students were screened for eligibility of which the data of 194 students are reported. Trunk flexion was the most variable angle. Increased neck flexion and the combination of increased head flexion, neck flexion and trunk flexion were significantly associated with increased weight and BMI (p = 0.0001). Conclusions High-school students sit with greater ranges of trunk flexion (leaning forward or reclining) when using the classroom computer. Increased weight is significantly associated with increased sagittal plane postural angles. PMID:24950887
Reproducibility of cervical range of motion in patients with neck pain
Hoving, Jan Lucas; Pool, Jan JM; van Mameren, Henk; Devillé, Walter JLM; Assendelft, Willem JJ; de Vet, Henrica CW; de Winter, Andrea F; Koes, Bart W; Bouter, Lex M
2005-01-01
Background Reproducibility measurements of the range of motion are an important prerequisite for the interpretation of study results. The aim of the study is to assess the intra-rater and inter-rater reproducibility of the measurement of active Range of Motion (ROM) in patients with neck pain using the Cybex Electronic Digital Inclinometer-320 (EDI-320). Methods In an outpatient clinic in a primary care setting 32 patients with at least 2 weeks of pain and/or stiffness in the neck were randomly assessed, in a test- retest design with blinded raters using a standardized measurement protocol. Cervical flexion-extension, lateral flexion and rotation were assessed. Results Reliability expressed by the Intraclass Correlation Coefficient (ICC) was 0.93 (lateral flexion) or higher for intra-rater reliability and 0.89 (lateral flexion) or higher for inter-rater reliability. The 95% limits of agreement for intra-rater agreement, expressing the range of the differences between two ratings were -2.5 ± 11.1° for flexion-extension, -0.1 ± 10.4° for lateral flexion and -5.9 ± 13.5° for rotation. For inter-rater agreement the limits of agreement were 3.3 ± 17.0° for flexion-extension, 0.5 ± 17.0° for lateral flexion and -1.3 ± 24.6° for rotation. Conclusion In general, the intra-rater reproducibility and the inter-rater reproducibility were good. We recommend to compare the reproducibility and clinical applicability of the EDI-320 inclinometer with other cervical ROM measures in symptomatic patients. PMID:16351719
Beinert, Konstantin; Sofsky, Marc; Trojan, Jörg
2018-05-09
Sensorimotor tests, like cranio- cervical flexion and cervical joint position sense tests, share a strong cognitive component during their execution. However, cognitive training for those tests has not been investigated so far. To compare mental and physical exercises for improving the sensorimotor function of the cervical spine. A within-subject design with 16 participants. Outpatient physiotherapy centre. Patients with chronic neck pain. Participants were instructed to perform specific active or mental exercises for the deep and superficial neck flexor muscles. The primary outcomes were cranio-cervical flexion test performance, postural sway, cervical joint position sense and pressure pain threshold. A mixed model analysis was used. The interventions improved cranio-cervical flexion performance (p < 0.001), with no difference between actively or mentally performed exercises. Postural sway increased after actively (p < 0.01) and mentally (p < 0.05) performed deep cervical neck flexor exercises, but not after superficial neck flexor exercises. Mentally performed superficial neck flexor exercises improved cervical joint position sense when compared to mentally performed deep cervical flexor exercises (p < 0.05), and actively performed superficial neck flexor exercises were effective in improving cervical joint position sense acuity compared to mentally performed deep cervical flexor exercises (p < 0.05) for relocation tasks in the transverse plane. The pressure pain threshold at the cervical spine increased after active deep cervical flexor exercises (p < 0.05) and after mental superficial neck flexor exercise (p < 0.05). Mentally performed deep cervical flexor exercises improved cranio-cervical flexion test performance, postural sway and pressure pain threshold at the cervical spine. Mentally performed superficial neck flexor exercises improved cervical joint position sense acuity more than mentally performed deep cervical flexor exercises. Mentally performed exercises are recommended in the early stages of rehabilitation to counteract extensive muscle impairment, and these can be incorporated into daily routine.
Effect of neck flexion on somatosensory and motor evoked potentials in Hirayama disease.
Abraham, A; Gotkine, M; Drory, V E; Blumen, S C
2013-11-15
Hirayama disease (HD) is a rare motor disorder mainly affecting young men, characterized by atrophy and weakness of forearm and hand muscles corresponding to a C7-T1 myotome distribution. The weakness is usually unilateral or asymmetric and progression usually stops within several years. The etiology of HD is not well understood. One hypothesis, mainly based on MRI findings, is that the weakness is a consequence of cervical flexion myelopathy. The aim of this study was to explore the function of corticospinal and ascending somatosensory pathways during neck flexion using evoked responses. 15 men with HD and 7 age-matched control male subjects underwent somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP) studies with the neck in neutral position and fully flexed. SSEP studies included electrical stimulation of median and ulnar nerves at the wrist, and tibial nerve at the ankle with recording over the ipsilateral Erb's point, cervical spine, and contralateral sensory cortex. MEP recordings were obtained by magnetic stimulation of the motor cortex and the cervical lower spinal roots; the evoked responses were recorded from the contralateral thenar and abductor hallucis muscles. MEP recordings demonstrated significant lower amplitudes, and slightly prolonged latencies in HD patients on cervical stimulation, compared to control subjects. During neck flexion, MEP studies also demonstrated a statistically significant drop in mean upper limb amplitude on cervical stimulation in HD patients, as well as in control subjects, although to a lesser degree. In contrast, no significant differences were found in SSEP studies in HD patients compared to control subjects, or between neutral and flexed position in these groups. The study shows a negative effect of cervical flexion on MEP amplitudes in HD patients as well as in control subjects, requiring more studies to investigate its significance. Neck flexion did not have an influence on any SSEP parameters in patients or controls. © 2013 Elsevier B.V. All rights reserved.
Fernández-de-las-Peñas, César; Palomeque-del-Cerro, Luis; Rodríguez-Blanco, Cleofás; Gómez-Conesa, Antonia; Miangolarra-Page, Juan C
2007-05-01
Our aim was to report changes in neck pain at rest, active cervical range of motion, and neck pain at end-range of cervical motion after a single thoracic spine manipulation in a case series of patients with mechanical neck pain. Seven patients with mechanical neck pain (2 men, 5 women), 20 to 33 years old, were included. All patients received a single thoracic manipulation by an experienced manipulative therapist. The outcome measures of these cases series were neck pain at rest, as measured by a numerical pain rating scale; active cervical range of motion; and neck pain at the end of each neck motion (eg, flexion or extension). These outcomes were assessed pre treatment, 5 minutes post manipulation, and 48 hours after the intervention. A repeated-measures analysis was made with parametric tests. Within-group effect sizes were calculated using Cohen d coefficients. A significant (P < .001) decrease, with large within-group effect sizes (d > 1), in neck pain at rest were found after the thoracic spinal manipulation. A trend toward an increase in all cervical motions (flexion, extension, right or left lateral flexion, and right or left rotation) and a trend toward a decrease in neck pain at the end of each cervical motion were also found, although differences did not reach the significance (P > .05). Nevertheless, medium to large within-group effect sizes (0.5 < d < 1) were found between preintervention data and both postintervention assessments in both active range of motion and neck pain at the end of each neck motion. The present results demonstrated a clinically significant reduction in pain at rest in subjects with mechanical neck pain immediately and 48 hours following a thoracic manipulation. Although increases in all tested ranges of motion were obtained, none of them reached statistical significance at either posttreatment point. The same was found for pain at the end of range of motion for all tested ranges, with the exception of pain at the end of forward flexion at 48 hours. More than one mechanism likely explains the effects of thoracic spinal manipulation. Future controlled studies comparing spinal manipulation vs spinal mobilization of the thoracic spine are required.
Gallego Izquierdo, Tomás; Pecos-Martin, Daniel; Lluch Girbés, Enrique; Plaza-Manzano, Gustavo; Rodríguez Caldentey, Ricardo; Mayor Melús, Rodrigo; Blanco Mariscal, Diego; Falla, Deborah
2016-01-01
To compare the effects of cranio-cervical flexion vs cervical proprioception training on neuromuscular control, pressure pain sensitivity and perceived pain and disability in patients with chronic neck pain. Twenty-eight volunteers with chronic non-specific neck pain were randomly assigned to 1 of 2 interventions and undertook 6 physiotherapist-supervised sessions over a period of 2 months. Both groups performed daily home exercise. Performance on the cranio-cervical flexion test, pressure pain thresholds and reported levels of pain and disability were measured before and immediately after the first treatment session, 1 month after starting treatment and 2 months after starting treatment (at completion of the intervention). At 2 months, both groups improved their performance on the cranio-cervical flexion test (p < 0.05), but this did not differ between groups (p > 0.05). Both groups showed a reduction in their pain at rest and disability at 2 months, but this was also not different between groups (p > 0.05). Pressure pain sensitivity did not change for either group. Both specific cranio-cervical flexion training and proprioception training had a comparable effect on performance on the cranio-cervical flexion test, a test of the neuromuscular control of the deep cervical flexors. These results indicate that proprioception training may have positive effects on the function of the deep cervical flexors.
Head flexion angle while using a smartphone.
Lee, Sojeong; Kang, Hwayeong; Shin, Gwanseob
2015-01-01
Repetitive or prolonged head flexion posture while using a smartphone is known as one of risk factors for pain symptoms in the neck. To quantitatively assess the amount and range of head flexion of smartphone users, head forward flexion angle was measured from 18 participants when they were conducing three common smartphone tasks (text messaging, web browsing, video watching) while sitting and standing in a laboratory setting. It was found that participants maintained head flexion of 33-45° (50th percentile angle) from vertical when using the smartphone. The head flexion angle was significantly larger (p < 0.05) for text messaging than for the other tasks, and significantly larger while sitting than while standing. Study results suggest that text messaging, which is one of the most frequently used app categories of smartphone, could be a main contributing factor to the occurrence of neck pain of heavy smartphone users. Practitioner Summary: In this laboratory study, the severity of head flexion of smartphone users was quantitatively evaluated when conducting text messaging, web browsing and video watching while sitting and standing. Study results indicate that text messaging while sitting caused the largest head flexion than that of other task conditions.
Effects of neck strength training on isometric neck strength in rugby union players.
Geary, Kevin; Green, Brian S; Delahunt, Eamonn
2014-11-01
To investigate the effectiveness of a neck strengthening program on the isometric neck strength profile of male rugby union players. Controlled laboratory study. Professional rugby union club. Fifteen professional and 10 semiprofessional rugby union players. The 15 professional players undertook a 5-week neck strengthening intervention, which was performed twice per week, whereas the 10 semiprofessional players acted as the control group. Isometric strength of the neck musculature was tested using a hand-held dynamometer, for flexion (F), extension (E), left-side flexion (LSF), and right-side flexion (RSF). Preintervention and postintervention evaluations were undertaken. No significant between-group differences in isometric neck strength were noted preintervention. A significant main effect for time was observed (P < 0.05), whereby the intervention group increased isometric neck strength in all planes after the 5-week intervention (F preintervention = 334.45 ± 39.31 N vs F postintervention 396.05 ± 75.55 N; E preintervention = 606.19 ± 97.34 vs E postintervention = 733.88 ± 127.16 N; LSF preintervention = 555.56 ± 88.34 N vs LSF postintervention = 657.14 ± 122.99 N; RSF preintervention = 570.00 ± 106.53 N vs RSF postintervention = 668.00 ± 142.18 N). No significant improvement in neck strength was observed for control group participants. The results of the present study indicate that a 5-week neck strengthening program improves isometric neck strength in rugby union players, which may have implications for injury prevention, screening, and rehabilitation. The strengthening program described in the present study may facilitate rehabilitation specialists in the development of neck injury prevention, screening, and rehabilitation protocols.
Touch-screen tablet user configurations and case-supported tilt affect head and neck flexion angles.
Young, Justin G; Trudeau, Matthieu; Odell, Dan; Marinelli, Kim; Dennerlein, Jack T
2012-01-01
The aim of this study was to determine how head and neck postures vary when using two media tablet (slate) computers in four common user configurations. Fifteen experienced media tablet users completed a set of simulated tasks with two media tablets in four typical user configurations. The four configurations were: on the lap and held with the user's hands, on the lap and in a case, on a table and in a case, and on a table and in a case set at a high angle for watching movies. An infra-red LED marker based motion analysis system measured head/neck postures. Head and neck flexion significantly varied across the four configurations and across the two tablets tested. Head and neck flexion angles during tablet use were greater, in general, than angles previously reported for desktop and notebook computing. Postural differences between tablets were driven by case designs, which provided significantly different tilt angles, while postural differences between configurations were driven by gaze and viewing angles. Head and neck posture during tablet computing can be improved by placing the tablet higher to avoid low gaze angles (i.e. on a table rather than on the lap) and through the use of a case that provides optimal viewing angles.
Treating the Proximal Interphalangeal Joint in Swan Neck and Boutonniere Deformities.
Fox, Paige M; Chang, James
2018-05-01
Swan neck and boutonniere deformities of the proximal interphalangeal (PIP) joint are challenging to treat. In a swan neck deformity, the PIP joint is hyperextended with flexion at the distal interphalangeal (DIP) joint. In a boutonniere deformity, there is flexion the PIP joint with hyperextension of the DIP joint. When the deformities are flexible, treatment begins with splinting. However, when the deformity is fixed, serial casting or surgery is often necessary to restore joint motion before surgical correction. Many surgical techniques have been described to treat both conditions. Unfortunately, incomplete correction and deformity recurrence are common. Published by Elsevier Inc.
Noninvasive analysis of human neck muscle function
NASA Technical Reports Server (NTRS)
Conley, M. S.; Meyer, R. A.; Bloomberg, J. J.; Feeback, D. L.; Dudley, G. A.
1995-01-01
STUDY DESIGN. Muscle use evoked by exercise was determined by quantifying shifts in signal relaxation times of T2-weighted magnetic resonance images. Images were collected at rest and after exercise at each of two intensities (moderate and intense) for each of four head movements: 1) extension, 2) flexion, 3) rotation, and 4) lateral flexion. OBJECTIVE. This study examined the intensity and pattern of neck muscle use evoked by various movements of the head. The results will help elucidate the pathophysiology, and thus methods for treating disorders of the cervical musculoskeletal system. SUMMARY OF BACKGROUND DATA. Exercise-induced contrast shifts in T2 has been shown to indicate muscle use during the activity. The noninvasive nature of magnetic resonance imaging appears to make it an ideal approach for studying the function of the complex neuromuscular system of the neck. METHODS. The extent of T2 increase was examined to gauge how intensely nine different neck muscles or muscle pairs were used in seven subjects. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation was assessed to infer the pattern of use among and within individual neck muscles or muscle pairs. RESULTS. Signal relaxation increased with exercise intensity for each head movement. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation also increased with exercise load. Neck muscles or muscle pairs extensively used to perform each head movement were: extension--semispinalis capitis and cervicis and splenius capitis; flexion--sternocleidomastoid and longus capitis and colli; rotation--splenius capitis, levator scapulae, scalenus, semispinalis capitis ipsilateral to the rotation, and sternocleidomastoid contralateral; and lateral flexion--sternocleidomastoid CONCLUSION. The results of this study, in part, agree with the purported functions of neck muscles derived from anatomic location. This also was true for the few selected muscles that have been examined in human electromyographic studies. Neck muscle function and morphology can be studied at a detailed level using exercise-induced shifts in magnetic resonance images.
Florencio, Lidiane Lima; de Oliveira, Anamaria Siriani; Carvalho, Gabriela Ferreira; Tolentino, Gabriella de Almeida; Dach, Fabiola; Bigal, Marcelo Eduardo; Fernández-de-las-Peñas, César; Bevilaqua Grossi, Débora
2015-01-01
This cross-sectional study investigated potential differences in cervical musculature in groups of migraine headaches vs. non-headache controls. Differences in cervical muscle strength and antagonist coactivation during maximal isometric voluntary contraction (MIVC) were analyzed between individuals with migraine and non-headache subjects and relationships between force with migraine and neck pain clinical aspects. A customized hand-held dynamometer was used to assess cervical flexion, extension, and bilateral lateral flexion strength in subjects with episodic migraine (n=31), chronic migraine (n = 21) and healthy controls (n = 31). Surface electromyography (EMG) from sternocleidomastoid, anterior scalene, and splenius capitis muscles were recorded during MIVC to evaluate antagonist coactivation. Comparison of main outcomes among groups was conducted with one-way analysis of covariance with the presence of neck pain as covariable. Correlations between peak force and clinical variables were demonstrated by Spearman's coefficient. Chronic migraine subjects exhibited lower cervical extension force (mean diff. from controls: 4.4 N/kg; mean diff from episodic migraine: 3.7 N/kg; P = .006) and spent significantly more time to generate peak force during cervical flexion (mean diff. from controls: 0.5 seconds; P = .025) and left lateral-flexion (mean diff. from controls: 0.4 seconds; mean diff. from episodic migraine: 0.5 seconds; P = .007). Both migraine groups showed significantly higher antagonist muscle coactivity of the splenius capitis muscle (mean diff. from controls: 20%MIVC, P = .03) during cervical flexion relative to healthy controls. Cervical extension peak force was moderately associated with the migraine frequency (rs: -0.30, P = .034), neck pain frequency (rs: -0.26, P = .020), and neck pain intensity (rs: -0.27, P = .012). Patients with chronic migraine exhibit altered muscle performance, took longer to reach peak of force during some cervical movements, and had higher coactivation of the splenius capitis during maximal isometric cervical flexion contraction. Finally, patients with migraine reported the presence of neck and head pain complaints during maximal isometric voluntary cervical contractions. © 2015 American Headache Society.
Influence of smartphone use styles on typing performance and biomechanical exposure.
Ko, Ping-Hsin; Hwang, Yaw-Huei; Liang, Huey-Wen
2016-06-01
Twenty-seven subjects completed 2-min typing tasks using four typing styles: right-hand holding/typing (S-thumb) and two-hand typing at three heights (B-low, B-mid and B-high). The styles had significant effects on typing performance, neck and elbow flexion and muscle activities of the right trapezius and several muscles of the right upper limb (p < 0.0001 by repeated-measure analysis of variance). The subjects typed the fewest words (error-adjusted characters per minute: 78) with the S-thumb style. S-thumb style resulted in similar flexion angles of the neck, elbow and wrist, but significantly increased muscle activities in all tested muscles compared with the B-mid style. Holding the phone high or low reduced the flexion angles of the neck and right elbow compared with the B-mid style, but the former styles increased the muscle activity of the right trapezius. Right-hand holding/typing was not a preferable posture due to high muscle activities and slow typing speed. Practitioner Summary: Right-hand holding/typing was not favoured, due to increased muscle activities and slower typing speed. Holding the phone high or low reduced the flexion angles of the neck and right elbow, but the former styles increased the muscle activity of the right trapezius compared with holding the phone at chest level.
Neck motion due to the halo-vest in prone and supine positions.
Ivancic, Paul C; Telles, Connor J
2010-05-01
An in vitro biomechanical study of the effectiveness of halo-vest fixation. The objective was to evaluate motion of the injured cervical spine with normal halo-vest application and vest loose in the prone and supine positions. Snaking motion of the neck is defined as rotation in opposing directions throughout the cervical spine. Previous clinical studies have suggested snaking neck motion due to the halo-vest may lead to inadequate healing or nonunion. The halo-vest was applied to a Human Model of the Neck, which consisted of a cervical spine specimen mounted to the torso of an anthropometric test dummy and carrying a surrogate head. The model was transitioned from prone, to upright, to supine with the halo-vest applied normally and with the vest loose. Average peak spinal motions were computed in the prone and supine positions and contrasted with the physiologic rotation range, obtained from the intact flexibility test, and statistically compared (P < 0.05) between normal halo-vest application and vest loose. Snaking motion of the neck was observed in the prone and supine positions, consisting of extension at head/C1 and C1/2 and flexion at the inferior spinal levels. The intervertebral rotation peaks generally exceeded the physiologic range throughout the cervical spine due to the loose vest in the prone position. Significant increases in the extension peaks at head/C1 (16.9 degrees vs. 5.7 degrees) and flexion peaks at C4/5 (6.9 degrees vs. 3.6 degrees) and C7-T1 (5.2 degrees vs. 0.7 degrees) were observed in the prone position due to the loose vest, as compared to normal halo-vest application. Axial neck separation was consistently observed in the prone and supine positions. The present results, which document snaking motion of the cervical spine due to the halo-vest, indicate that an inadequately fitting or loose vest may significantly diminish its immobilization capacity leading to delayed healing or nonunion.
Chin tuck for prevention of aspiration: effectiveness and appropriate posture.
Ra, Jong Yun; Hyun, Jung Keun; Ko, Kyung Rok; Lee, Seong Jae
2014-10-01
Chin tuck has been has been widely used to prevent aspiration in the patients with dysphagia. This study was performed to investigate the effectiveness and the degree of optimal neck flexion of chin tuck. Ninety-seven patients who showed aspiration in the videofluoroscopic swallow study (VFSS). Participants were grouped into the effective (patients who showed effect with chin tuck) and ineffective group (those who did not show effect with chin tuck). VFSS was performed in neutral and chin tuck position and findings were compared between the groups. Severity of aspiration was assessed by the point penetration-aspiration scale. Duration of dysphagic symptoms, history of tracheostomy, and other possible contributing factors were also compared. Neck flexion angle was measured to find appropriate posture in which aspiration was prevented with chin tuck. Aspiration was reduced or eliminated in only 19 patients (19.6 %) with chin tuck. Oral transit time, pharyngeal delayed time and pharyngeal transit time were significantly shortened in both groups (p < 0.05), but the difference between the groups was not significant. Female sex and absence of residue in pyriform sinus favored the effect of chin tuck (p < 0.05). At least 17.5° of neck flexion was required to achieve an effect with chin tuck. The effectiveness of chin tuck was less than anticipated. Patients without residue in pyriform sinus were more likely to benefit from chin tuck. Sufficient neck flexion was important in chin tuck to prevent aspiration.
Working spectacles for sorting mail.
Hemphälä, Hillevi; Dahlqvist, Camilla; Nordander, Catarina; Gao, Chuansi; Kuklane, Kalev; Nylén, Per; Hansson, Gert-Åke
2014-01-01
Sorting mail into racks for postmen is visually demanding work. This can result in backward inclination of their heads, especially more pronounced for those who use progressive addition lenses. To evaluate the effects of customized working spectacles on the physical workload of postmen. Twelve male postmen sorted mail on two occasions: once using their private progressive spectacles and once using customized sorting spectacles with inverted progressive lenses. Postures and movements of the head, upper back, neck, and upper arms were measured by inclinometry. The muscular load of the trapezius was measured by surface electromyography. With the customized sorting spectacles, both the backward inclination of the head and backward flexion of the neck were reduced (3°), as well as the muscular load of the right upper trapezius, compared to sorting with private spectacles. However, with the sorting spectacles, there was a tendency for increased neck forward flexion, and increased sorting time. The reduction in work load may reduce the risk for developing work-related musculoskeletal disorders due to the positive reduction of the backward inclination of the head. But the tendency for increased neck forward flexion may reduce the positive effects. However, the magnitude of the possible reduction is difficult to predict, especially since quantitative data on exposure-response relationships are unknown. Alternative working spectacles with inverted near progressive lenses ought to be evaluated. They should still result in a positive reduced backward inclination of the head and may not cause any increased forward flexion.
Decreased neck muscle strength in patients with the loss of cervical lordosis.
Alpayci, Mahmut; Şenköy, Emre; Delen, Veysel; Şah, Volkan; Yazmalar, Levent; Erden, Metin; Toprak, Murat; Kaplan, Şeyhmus
2016-03-01
The loss of cervical lordosis is associated with some negative clinical outcomes. No previous study has examined cervical muscle strength, specifically in patients with the loss of cervical lordosis. This study aims to investigate whether there is weakness of the cervical muscles or an imbalance between cervical flexor and extensor muscle strength in patients with the loss of cervical lordosis compared with healthy controls matched by age, gender, body mass index (BMI), and employment status. Thirty-two patients with the loss of cervical lordosis (23 F, 9 M) and 31 healthy volunteers (23 F, 8 M) were included in the study. Maximal isometric neck extension and flexion strength, and the strength ratio between extension and flexion were used as evaluation parameters. All measurements were conducted by a blinded assessor using a digital force gauge. The participants were positioned on a chair in a neutral cervical position and without the trunk inclined during measurements. Maximal isometric neck extension and flexion strength values were significantly lower in the patients versus healthy controls (P<0.001 and P=0.040, respectively). The mean (SD) values of the extension/flexion ratio were 1.21 (0.34) in the patients and 1.46 ± 0.33 in the controls (P=0.004). According to our results, patients with the loss of cervical lordosis have reduced neck muscle strength, especially in the extensors. These findings may be beneficial for optimizing cervical exercise prescriptions. Copyright © 2016 Elsevier Ltd. All rights reserved.
2012-01-01
Background A flexed neck posture leads to non-specific activation of the brain. Sensory evoked cerebral potentials and focal brain blood flow have been used to evaluate the activation of the sensory cortex. We investigated the effects of a flexed neck posture on the cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in the related sensory cortices. Methods Twelve healthy young adults received right visual hemi-field, binaural auditory and left median nerve stimuli while sitting with the neck in a resting and flexed (20° flexion) position. Sensory evoked potentials were recorded from the right occipital region, Cz in accordance with the international 10–20 system, and 2 cm posterior from C4, during visual, auditory and somatosensory stimulations. The oxidative-hemoglobin concentration was measured in the respective sensory cortex using near-infrared spectroscopy. Results Latencies of the late component of all sensory evoked potentials significantly shortened, and the amplitude of auditory evoked potentials increased when the neck was in a flexed position. Oxidative-hemoglobin concentrations in the left and right visual cortices were higher during visual stimulation in the flexed neck position. The left visual cortex is responsible for receiving the visual information. In addition, oxidative-hemoglobin concentrations in the bilateral auditory cortex during auditory stimulation, and in the right somatosensory cortex during somatosensory stimulation, were higher in the flexed neck position. Conclusions Visual, auditory and somatosensory pathways were activated by neck flexion. The sensory cortices were selectively activated, reflecting the modalities in sensory projection to the cerebral cortex and inter-hemispheric connections. PMID:23199306
Reduced head steadiness in whiplash compared with non-traumatic neck pain.
Woodhouse, Astrid; Liljebäck, Pål; Vasseljen, Ottar
2010-01-01
While sensorimotor alterations have been observed in patients with neck pain, it is uncertain whether such changes distinguish whiplash-associated disorders from chronic neck pain without trauma. The aim of this study was to investigate head steadiness during isometric neck flexion in subjects with chronic whiplash-associated disorders (WAD), those with chronic non-traumatic neck pain and healthy subjects. Associations with fatigue and effects of pain and dizziness were also investigated. Head steadiness in terms of head motion velocity was compared in subjects with whiplash (n=59), non-traumatic neck pain (n=57) and healthy controls (n=57) during 2 40-s isometric neck flexion tests; a high load test and a low load test. Increased velocity was expected to reflect decreased head steadiness. The whiplash group showed significantly decreased head steadiness in the low load task compared with the other 2 groups. The difference was explained largely by severe levels of neck pain and dizziness. No group differences in head steadiness were found in the high load task. Reduced head steadiness during an isometric holding test was observed in a group of patients with whiplash-associated disorders. Decreased head steadiness was related to severe pain and dizziness.
Meisingset, Ingebrigt; Stensdotter, Ann-Katrin; Woodhouse, Astrid; Vasseljen, Ottar
2016-04-01
Neck pain is associated with several alterations in neck motion and motor control, but most of the findings are based on cross-sectional studies. The aim of this study was to investigate associations between changes in neck motion and motor control, and changes in neck pain and disability in physiotherapy patients during a course of treatment. Prospective cohort study. Subjects with non-specific neck pain (n = 71) participated in this study. Neck flexibility, joint position error (JPE), head steadiness, trajectory movement control and postural sway were recorded before commencement of physiotherapy (baseline), at 2 weeks, and at 2 months. Numerical Rating Scale and Neck Disability Index were used to measure neck pain and disability at the day of testing. To analyze within subjects effects in neck motion and motor control, neck pain, and disability over time we used fixed effects linear regression analysis. Changes in neck motion and motor control occurred primarily within 2 weeks. Reduction in neck pain was associated with increased cervical range of motion in flexion-/extension and increased postural sway when standing with eyes open. Decreased neck disability was associated with some variables for neck flexibility and trajectory movement control. Cervical range of motion in flexion-/extension was the only variable associated with changes in both neck pain and neck disability. This study shows that few of the variables for neck motion and motor control were associated with changes neck pain and disability over a course of 2 months with physiotherapy treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Moment arms of the human neck muscles in flexion, bending and rotation.
Ackland, David C; Merritt, Jonathan S; Pandy, Marcus G
2011-02-03
There is a paucity of data available for the moment arms of the muscles of the human neck. The objective of the present study was to measure the moment arms of the major cervical spine muscles in vitro. Experiments were performed on five fresh-frozen human head-neck specimens using a custom-designed robotic spine testing apparatus. The testing apparatus replicated flexion-extension, lateral bending and axial rotation of each individual intervertebral joint in the cervical spine while all other joints were kept immobile. The tendon excursion method was used to measure the moment arms of 30 muscle sub-regions involving 13 major muscles of the neck about all three axes of rotation of each joint for the neutral position of the cervical spine. Significant differences in the moment arm were observed across sub-regions of individual muscles and across the intervertebral joints spanned by each muscle (p<0.05). Overall, muscle moment arms were larger in flexion-extension and lateral bending than in axial rotation, and most muscles had prominent moment arms in at least 2 out of the 3 joint motions investigated. This study emphasizes the importance of detailed representation of a muscle's architecture in prediction of its torque capacity about the individual joints of the cervical spine. The dataset produced may be useful in developing and validating computational models of the human neck. Copyright © 2010 Elsevier Ltd. All rights reserved.
In-vivo spinal cord deformation in flexion
NASA Astrophysics Data System (ADS)
Yuan, Qing; Dougherty, Lawrence; Margulies, Susan S.
1997-05-01
Traumatic mechanical loading of the head-neck complex results cervical spinal cord injury when the distortion of the cord is sufficient to produce functional or structural failure of the cord's neural and/or vascular components. Characterizing cervical spinal cord deformation during physiological loading conditions is an important step to defining a comprehensive injury threshold associated with acute spinal cord injury. In this study, in vivo quasi- static deformation of the cervical spinal cord during flexion of the neck in human volunteers was measured using magnetic resonance (MR) imaging of motion with spatial modulation of magnetization (SPAMM). A custom-designed device was built to guide the motion of the neck and enhance more reproducibility. the SPAMM pulse sequence labeled the tissue with a series of parallel tagging lines. A single- shot gradient-recalled-echo sequence was used to acquire the mid-sagittal image of the cervical spine. A comparison of the tagged line pattern in each MR reference and deformed image pair revealed the distortion of the spinal cord. The results showed the cervical spinal cord elongates during head flexion. The elongation experienced by the spinal cord varies linearly with head flexion, with the posterior surface of the cord stretching more than the anterior surface. The maximal elongation of the cord is about 12 percent of its original length.
Analysis of Dual Mobility Liner Rim Damage Using Retrieved Components and Cadaver Models.
Nebergall, Audrey K; Freiberg, Andrew A; Greene, Meridith E; Malchau, Henrik; Muratoglu, Orhun; Rowell, Shannon; Zumbrunn, Thomas; Varadarajan, Kartik M
2016-07-01
The objective of this study was to assess the retentive rim of retrieved dual mobility liners for visible evidence of deformation from femoral neck contact and to use cadaver models to determine if anterior soft tissue impingement could contribute to such deformation. Fifteen surgically retrieved polyethylene liners were assessed for evidence of rim deformation. The average time in vivo was 31.4 months, and all patients were revised for reasons other than intraprosthetic dislocation. Liner interaction with the iliopsoas was studied visually and with fluoroscopy in cadaver specimens using a dual mobility system different than the retrieval study. For fluoroscopic visualization, a metal wire was sutured to the iliopsoas and wires were also embedded into grooves on the outer surface of the liner and the inner head. All retrievals showed evidence of femoral neck contact. The cadaver experiments showed that liner motion was impeded by impingement with the iliopsoas tendon in low flexion angles. When observing the hip during maximum hyperextension, 0°, 15°, and 30° of flexion, there was noticeable tenting of the iliopsoas caused by impingement with the liner. Liner rim deformation resulting from contact with the femoral neck likely begins during early in vivo function. The presence of deformation is indicative of a mechanism inhibiting mobility of the liner. The cadaver studies showed that liner motion could be impeded because of its impingement with the iliopsoas. Such soft tissue impingement may be one mechanism by which liner motion is routinely inhibited, which can result in load transfer from the neck to the rim. Copyright © 2015 Elsevier Inc. All rights reserved.
A review of direct neck measurement in occupational settings.
Carnaz, Letícia; Batistao, Mariana V; Coury, Helenice J C Gil
2010-01-01
No guidelines are available to orient researchers on the availability and applications of equipment and sensors for recording precise neck movements in occupational settings. In this study reports on direct measurements of neck movements in the workplace were reviewed. Using relevant keywords two independent reviewers searched for eligible studies in the following databases: Cinahal, Cochrane, Embase, Lilacs, PubMed, MEDLINE, PEDro, Scopus and Web of Science. After applying the inclusion criteria, 13 articles on direct neck measurements in occupational settings were retrieved from among 33,666 initial titles. These studies were then methodologically evaluated according to their design characteristics, exposure and outcome assessment, and statistical analysis. The results showed that in most of the studies the three axes of neck movement (flexion-extension, lateral flexion and rotation) were not simultaneously recorded. Deficiencies in available equipment explain this flaw, demonstrating that sensors and systems need to be improved so that a true understanding of real occupational exposure can be achieved. Further studies are also needed to assess neck movement in those who perform heavy-duty work, such as nurses and electricians, since no report about such jobs was identified.
The effect of hip positioning on the projected femoral neck-shaft angle: a modeling study.
Bhashyam, Abhiram R; Rodriguez, Edward K; Appleton, Paul; Wixted, John J
2018-04-03
The femoral neck-shaft angle (NSA) is used to restore normal hip geometry during hip fracture repair. Femoral rotation is known to affect NSA measurement, but the effect of hip flexion-extension is unknown. The goals of this study were to determine and test mathematical models of the relationship between hip flexion-extension, femoral rotation and NSA. We hypothesized that hip flexion-extension and femoral rotation would result in NSA measurement error. Two mathematical models were developed to predict NSA in varying degrees of hip flexion-extension and femoral rotation. The predictions of the equations were tested in vitro using a model that varied hip flexion-extension while keeping rotation constant, and vice versa. The NSA was measured from an AP radiograph obtained with a C-arm. Attributable measurement error based on hip positioning was calculated from the models. The predictions of the model correlated well with the experimental data (correlation coefficient = 0.82 - 0.90). A wide range of patient positioning was found to result in less than 5-10 degree error in the measurement of NSA. Hip flexion-extension and femoral rotation had a synergistic effect in measurement error of the NSA. Measurement error was minimized when hip flexion-extension was within 10 degrees of neutral. This study demonstrates that hip flexion-extension and femoral rotation significantly affect the measurement of the NSA. To avoid inadvertently fixing the proximal femur in varus or valgus, the hip should be positioned within 10 degrees of neutral flexion-extension with respect to the C-arm to minimize positional measurement error. N/A, basic science study.
Portelli, Andrew; Reid, Susan A
2018-02-01
The purpose of this study was to evaluate if young people with insidious-onset neck pain who spend long periods on mobile electronic devices (known as "text neck") have impaired cervical proprioception and if this is related to time on devices. A 2-group comparative observational study was conducted at an Australian university. Twenty-two participants with text neck and 22 asymptomatic controls, all of whom were 18 to 35 years old and spent ≥4 hours per day on unsupported electronic devices, were assessed using the head repositioning accuracy (HRA) test. Differences between groups were calculated using independent sample t-tests, and correlations between neck pain intensity, time on devices, and HRA test were performed using Pearson's bivariate analysis. During cervical flexion, those with text neck (n = 22, mean age ± standard deviation [SD]: 21 ± 4 years, 59% female) had a 3.9° (SD: 1.4°) repositioning error, and the control group (n = 22, 20 ± 1 years, 68% female) had a 2.9° (SD: 1.2°) error. The mean difference was 1° (95% confidence interval: 0-2, P = .02). For other cervical movements, there was no difference between groups. There was a moderately significant correlation (P ≤ .05) between time spent on electronic devices and cervical pain intensity and between cervical pain intensity and HRA during flexion. The participants with text neck had a greater proprioceptive error during cervical flexion compared with controls. This could be related to neck pain and time spent on electronic devices. Copyright © 2018. Published by Elsevier Inc.
Chiang, Hsin-Yu Ariel; Liu, Chien-Hsiou
2016-03-10
Tablet users may be at high risk of developing physical discomfort because of their usage behaviors and tablet design. Investigate the usage of tablets, variations in head and neck posture associated with different tablet tilt angles, and the association of tablet use with users' musculoskeletal discomfort. A survey of users' subjective perceptions conducted by questionnaire and measurements of users' postures by a 3D Motion analysis system was used to explore the effects of tablet use. The questionnaire results indicated that over half of the participants reported physical discomfort after using tablets, with the most prevalent discomfort in the neck and shoulders, and more intensity of discomfort for the back although only few participants experienced it. Chi-squared tests indicated that significantly more participants who tended to use tablet computers to play games reported having musculoskeletal discomfort after using a tablet. In addition, preferences for tablet tilt angles varied across tasks (reading and game playing). The results from the 3D motion analysis revealed that head and neck flexion angles were significantly reduced when the tablets were positioned at relatively steep tilt angles. Neck flexion angle was significantly higher in game playing. These data add information regarding to the usage of tablet and its associations with physical discomfort (significantly more participants who tended to use tablet computers to play games reported having musculoskeletal discomfort after using a tablet). Steep tilt angles (such as 60°) may cause tablet users to decrease their head and neck flexion angles, which could lead to a more neutral, effortless, and ergonomically correct posture. Maintaining proper neck posture during active activities such as game playing is recommended to avoid neck discomfort.
Developmental biomechanics of neck musculature
Lavallee, Amy V.; Ching, Randal P.; Nuckley, David J.
2012-01-01
Neck mechanics is central to head injury prevention since it is the musculoskeletal neck, which dictates the position and movement of the head. In the US, traumatic injury is the leading cause of death for children; however prevention is hampered by the lack of data concerning the mechanics of the immature head-and-neck. Thus, the objective of this study was to quantify neck muscle strength and endurance across the maturation spectrum and correlate these with head-and-neck anthropometry. A factorial study was performed on 91 human subjects measuring head-and-neck anthropometry and neck strength and endurance in three bending directions (flexion, extension, and lateral) as a function of age (6–23 years). Using a custom device, neck maximum voluntary contraction (MVC) force was measured in triplicate. Next, neck muscle endurance (sustained effort) was measured as the subjects’ ability to maintain 70% of peak force over 30 s. Linear regression of peak force and endurance as a function of age revealed each direction to significantly (p<0.0001) increase with age. The MVC force, averaged across all directions and normalized to the adult values, exhibits the following maturation curve: %MVC Force= −0.0879(age)2+6.018(age)+8.120. Neck muscle strength, similar between young males and females, becomes disparate in adolescence and adulthood with males exhibiting greater strength. Bending direction differences were also found with extension strength being the greatest regardless of age and sex. Furthermore, neck circumference appears predictive of neck strength and endurance in children. Together, these relationships may facilitate improved design of injury prevention interventions. PMID:23127787
Neck strength recovery after a single bout of specific strengthening exercise.
Netto, Kevin; Carstairs, Greg; Kidgell, Dawson; Aisbett, Brad
2010-08-01
To determine the level of neck strength decrement and the rate of strength recovery of the neck muscles after a single bout of specific neck conditioning exercise in both males and females. A decrement in neck strength may be evident after a bout of strengthening exercise. Intervention study with pre-and-post design. Biomechanics laboratory. Twenty healthy participants (10 male and 10 female, mean +/- standard deviation age 22 +/- 1.2 years). Participants performed a single bout of neck strengthening exercise. Neck strength testing using an isokinetic dynamometer was performed pre and at five time points (1 h, one, three, five and seven days) post-exercise to assess the level of neck strength decrement and neck strength recovery rate from pre-exercise levels. Statistically significant (p > or = 0.036) decreases in neck extension strength were recorded in all participants 1 h and one day post-exercise. The level of neck extension strength returned to pre-exercise levels three days post-exercise and surpassed pre-exercise levels five and seven days post-exercise. The male participants' neck flexion strength decrement and recovery followed a similar pattern to that displayed in neck extension but more variability in neck flexion strength recovery rates were recorded in the female participants in this study. The consistent strength recovery times for the male participants recorded in this study idealise the prescription of neck strengthening exercises in a periodised fashion. More investigation needs to be instigated for the female neck musculature as consistent strength recovery rates were not identified in this study. 2010 Elsevier Ltd. All rights reserved.
Shin, Seung-Je; Yoo, Won-Gyu
2014-01-01
The static posture in visual display terminal (VDT) workers results in increased forward neck flexion and increased static muscle tension in the neck and shoulder regions. However, few studies have objectively quantified the change in head posture induced shoulder pain during VDT work. This study elucidated changes in pressure pain in the upper trapezius muscles, cervical ROM, and the cervical flexion--relaxation ratio after continuous long-term VDT work. Twelve young VDT workers were recruited. The pressure pain of the upper trapezius muscles, active CROM, and cervical flexion--relaxation ratio were measured in all subjects once before and once after VDT work. The pressure pain threshold of the right upper trapezius muscle was 6.9 ± 1.6 lb before VDT work and 6.1 ± 1.0 lb after VDT work, revealing a significant increase with VDT work. The cervical extension, left and right lateral flexion, and left rotation measurers decreased significantly with VDT work. We postulate that even short-term VDT work has the potential to cause problems. It is necessary to develop a CROM self-measuring device and to monitor patients' musculoskeletal changes frequently.
Pharyngeal diameter in various head and neck positions during exercise in sport horses
2014-01-01
Background In equine athletes, dynamic stenotic disorders of the upper airways are often the cause for abnormal respiratory noises and/or poor performance. There are hypotheses, that head and neck flexion may influence the morphology and function of the upper airway and thus could even induce or deteriorate disorders of the upper respiratory tract. Especially the pharynx, without osseous or cartilaginous support is prone to changes in pressure and airflow during exercise. The objective of this study was to develop a method for measuring the pharyngeal diameter in horses during exercise, in order to analyse whether a change of head-neck position may have an impact on the pharyngeal diameter. Results Under the assumption that the width of the epiglottis remains constant in healthy horses, the newly developed method for calculating the pharyngeal diameter in horses during exercise is unsusceptible against changes of the viewing-angle and distance between the endoscope and the structures, which are to be assessed. The quotient of the width of the epiglottis and the perpendicular from a fixed point on the dorsal pharynx to the epiglottis could be used to determine the pharyngeal diameter. The percentage change of this quotient (pharynx-epiglottis-ratio; PE-ratio) in the unrestrained head-neck position against the reference position was significantly larger than that of any other combination of the head-neck positions investigated. A relation between the percentage change in PE-ratio and the degree of head and neck flexion could not be confirmed. Conclusions It could be shown, that the pharyngeal diameter is reduced through the contact position implemented by the rider in comparison to the unrestrained head and neck position. An alteration of the pharyngeal diameter depending on the degree of head and neck flexion (represented by ground and withers angle) could not be confirmed. PMID:24886465
Biomechanics of Sports-Induced Axial-Compression Injuries of the Neck
Ivancic, Paul C.
2012-01-01
Context Head-first sports-induced impacts cause cervical fractures and dislocations and spinal cord lesions. In previous biomechanical studies, researchers have vertically dropped human cadavers, head-neck specimens, or surrogate models in inverted postures. Objective To develop a cadaveric neck model to simulate horizontally aligned, head-first impacts with a straightened neck and to use the model to investigate biomechanical responses and failure mechanisms. Design Descriptive laboratory study. Setting Biomechanics research laboratory. Patients or Other Participants Five human cadaveric cervical spine specimens. Intervention(s) The model consisted of the neck specimen mounted horizontally to a torso-equivalent mass on a sled and carrying a surrogate head. Head-first impacts were simulated at 4.1 m/s into a padded, deformable barrier. Main Outcome Measure(s) Time-history responses were determined for head and neck loads, accelerations, and motions. Average occurrence times of the compression force peaks at the impact barrier, occipital condyles, and neck were compared. Results The first local compression force peaks at the impact barrier (3070.0 ± 168.0 N at 18.8 milliseconds), occipital condyles (2868.1 ± 732.4 N at 19.6 milliseconds), and neck (2884.6 ± 910.7 N at 25.0 milliseconds) occurred earlier than all global compression peaks, which reached 7531.6 N in the neck at 46.6 milliseconds (P < .001). Average peak head motions relative to the torso were 6.0 cm in compression, 2.4 cm in posterior shear, and 6.4° in flexion. Neck compression fractures included occipital condyle, atlas, odontoid, and subaxial comminuted burst and facet fractures. Conclusions Neck injuries due to excessive axial compression occurred within 20 milliseconds of impact and were caused by abrupt deceleration of the head and continued forward torso momentum before simultaneous rebound of the head and torso. Improved understanding of neck injury mechanisms during sports-induced impacts will increase clinical awareness and immediate care and ultimately lead to improved protective equipment, reducing the frequency and severity of neck injuries and their associated societal costs. PMID:23068585
Measurement properties of the craniocervical flexion test: a systematic review protocol.
Araujo, Francisco Xavier de; Ferreira, Giovanni Esteves; Scholl Schell, Maurício; Castro, Marcelo Peduzzi de; Silva, Marcelo Faria; Ribeiro, Daniel Cury
2018-02-22
Neck pain is the leading cause of years lived with disability worldwide and it accounts for high economic and societal burden. Altered activation of the neck muscles is a common musculoskeletal impairment presented by patients with neck pain. The craniocervical flexion test with pressure biofeedback unit has been widely used in clinical practice to assess function of deep neck flexor muscles. This systematic review will assess the measurement properties of the craniocervical flexion test for assessing deep cervical flexor muscles. This is a protocol for a systematic review that will follow the Preferred Reporting Items for Systematic Review and Meta-Analysis statement. MEDLINE (via PubMed), EMBASE, PEDro, Cochrane Central Register of Controlled Trials (CENTRAL), Scopus and Science Direct will be systematically searched from inception. Studies of any design that have investigated and reported at least one measurement property of the craniocervical flexion test for assessing the deep cervical flexor muscles will be included. All measurement properties will be considered as outcomes. Two reviewers will independently rate the risk of bias of individual studies using the updated COnsensus-based Standards for the selection of health Measurement Instruments risk of bias checklist. A structured narrative synthesis will be used for data analysis. Quantitative findings for each measurement property will be summarised. The overall rating for a measurement property will be classified as 'positive', 'indeterminate' or 'negative'. The overall rating will be accompanied with a level of evidence. Ethical approval and patient consent are not required since this is a systematic review based on published studies. Findings will be submitted to a peer-reviewed journal for publication. CRD42017062175. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Mateo, B; Porcar-Seder, R; Solaz, J S; Dürsteler, J C
2010-07-01
This study demonstrates that appropriate measurement procedures can detect differences in head movement in a near reading task when using three different progressive addition lenses (PALs). The movements were measured using an anatomical reference system with a biomechanical rationale. This reference system was capable of representing rotations for comparing head flexion relative to trunk, head flexion relative to neck, head rotation relative to trunk and trunk flexion. The subject sample comprised 31 volunteers and three PAL designs with different viewing zones were selected. Significant differences were found between the lenses for three of the seven movement parameters examined. The differences occurred for both vertical and horizontal head movements and could be attributed to aspects of the PAL design. The measurement of the complete kinematic trunk-neck-head chain improved the number of differences that were found over those in previous studies. STATEMENT OF RELEVANCE: The study proposes a methodology based on a biomechanical rationale able to differentiate head-neck-trunk posture and movements caused by different progressive addition lens designs with minimum invasiveness. This methodology could also be applied to analyse the ergonomics of other devices that restrict the user's field of view, such as helmets, personal protective equipment or helmet-mounted displays for pilots. This analysis will allow designers to optimise designs offering higher comfort and performance.
Cheng, Chih-Hsiu; Chien, Andy; Hsu, Wei-Li; Chen, Carl Pai-Chu; Cheng, Hsin-Yi Kathy
2016-01-01
Cervical spinal loads are predominately influenced by activities of cervical muscles. However, the coordination between deep and superficial muscles and their influence on the spinal loads is not well understood. This study aims to document the changes of cervical spinal loads and the differential contributions of superficial and deep muscles with varying head postures. Electromyography (EMG) of cervical muscles from seventeen healthy adults were measured during maximal isometric exertions for lateral flexion (at 10°, 20° and terminal position) as well as flexion/extension (at 10°, 20°, 30°, and terminal position) neck postures. An EMG-assisted optimization approach was used to estimate the muscle forces and subsequent spinal loads. The results showed that compressive and anterior-posterior shear loads increased significantly with neck flexion. In particular, deep muscle forces increased significantly with increasing flexion. It was also determined that in all different static head postures, the deep muscle forces were greater than those of the superficial muscle forces, however, such pattern was reversed during peak efforts where greater superficial muscle forces were identified with increasing angle of inclination. In summary, the identification of significantly increased spinal loads associated with increased deep muscle activation during flexion postures, implies higher risks in predisposing the neck to occupationally related disorders. The results also explicitly supported that deep muscles play a greater role in maintaining stable head postures where superficial muscles are responsible for peak exertions and reinforcing the spinal stability at terminal head postures. This study provided quantitative data of normal cervical spinal loads and revealed motor control strategies in coordinating the superficial and deep muscles during physical tasks. PMID:26938773
Cheng, Chih-Hsiu; Chien, Andy; Hsu, Wei-Li; Chen, Carl Pai-Chu; Cheng, Hsin-Yi Kathy
2016-01-01
Cervical spinal loads are predominately influenced by activities of cervical muscles. However, the coordination between deep and superficial muscles and their influence on the spinal loads is not well understood. This study aims to document the changes of cervical spinal loads and the differential contributions of superficial and deep muscles with varying head postures. Electromyography (EMG) of cervical muscles from seventeen healthy adults were measured during maximal isometric exertions for lateral flexion (at 10°, 20° and terminal position) as well as flexion/extension (at 10°, 20°, 30°, and terminal position) neck postures. An EMG-assisted optimization approach was used to estimate the muscle forces and subsequent spinal loads. The results showed that compressive and anterior-posterior shear loads increased significantly with neck flexion. In particular, deep muscle forces increased significantly with increasing flexion. It was also determined that in all different static head postures, the deep muscle forces were greater than those of the superficial muscle forces, however, such pattern was reversed during peak efforts where greater superficial muscle forces were identified with increasing angle of inclination. In summary, the identification of significantly increased spinal loads associated with increased deep muscle activation during flexion postures, implies higher risks in predisposing the neck to occupationally related disorders. The results also explicitly supported that deep muscles play a greater role in maintaining stable head postures where superficial muscles are responsible for peak exertions and reinforcing the spinal stability at terminal head postures. This study provided quantitative data of normal cervical spinal loads and revealed motor control strategies in coordinating the superficial and deep muscles during physical tasks.
Neck movement and muscle activity characteristics in female office workers with neck pain.
Johnston, V; Jull, G; Souvlis, T; Jimmieson, N L
2008-03-01
Cross-sectional study. To explore aspects of cervical musculoskeletal function in female office workers with neck pain. Evidence of physical characteristics that differentiate computer workers with and without neck pain is sparse. Patients with chronic neck pain demonstrate reduced motion and altered patterns of muscle control in the cervical flexor and upper trapezius (UT) muscles during specific tasks. Understanding cervical musculoskeletal function in office workers will better direct intervention and prevention strategies. Measures included neck range of motion; superficial neck flexor muscle activity during a clinical test, the craniocervical flexion test; and a motor task, a unilateral muscle coordination task, to assess the activity of both the anterior and posterior neck muscles. Office workers with and without neck pain were formed into 3 groups based on their scores on the Neck Disability Index. Nonworking women without neck pain formed the control group. Surface electromyographic activity was recorded bilaterally from the sternocleidomastoid, anterior scalene (AS), cervical extensor (CE) and UT muscles. Workers with neck pain had reduced rotation range and increased activity of the superficial cervical flexors during the craniocervical flexion test. During the coordination task, workers with pain demonstrated greater activity in the CE muscles bilaterally. On completion of the task, the UT and dominant CE and AS muscles demonstrated an inability to relax in workers with pain. In general, there was a linear relationship between the workers' self-reported levels of pain and disability and the movement and muscle changes. These results are consistent with those found in other cervical musculoskeletal disorders and may represent an altered muscle recruitment strategy to stabilize the head and neck. An exercise program including motor reeducation may assist in the management of neck pain in office workers.
Freimann, Tiina; Merisalu, Eda; Pääsuke, Mati
2015-01-01
Cervical and lumbar range of motion limitations are usually associated with musculoskeletal pain in the neck and lower back, and are a major health problem among nurses. Physical exercise has been evaluated as an effective intervention method for improving cervical and lumbar range of motion, and for preventing and reducing musculoskeletal pain. The purpose of this study was to investigate the effects of a home-exercise therapy programme on cervical and lumbar range of motion among intensive care unit nurses who had experienced mild to moderate musculoskeletal pain in the neck and or lower back during the previous six months. A quasi-experimental study was conducted among intensive care unit nurses at Tartu University Hospital (Estonia) between May and July 2011. Thirteen nurses who had suffered musculoskeletal pain episodes in the neck and or lower back during the previous six months underwent an 8-week home-exercise therapy programme. Eleven nurses without musculoskeletal pain formed a control group. Questions from the Nordic Musculoskeletal Questionnaire and the 11-point Visual Analogue Scale were used to select potential participants for the experimental group via an assessment of the prevalence and intensity of musculoskeletal pain. Cervical range of motion and lumbar range of motion in flexion, extension, lateral flexion and (cervical range of motion only) rotation were measured with a digital goniometer. A paired t-test was used to compare the measured parameters before and after the home-exercise therapy programme. A Student's t-test was used to analyse any differences between the experimental and control groups. After the home-exercise therapy, there was a significant increase (p < 0.05) in cervical range of motion in flexion, extension, lateral flexion and rotation, and in lumbar range of motion in lateral flexion. Cervical range of motion in flexion was significantly higher (p < 0.01) in the experimental group compared to the control group after therapy. Our results suggest an 8-week intensive home-exercise therapy programme may improve cervical and lumbar range of motion among intensive care nurses. Further studies are needed to develop this simple but effective home-exercise therapy programme to help motivate nurses to perform such exercises regularly. Current Controlled Trials ISRCTN19278735. Registered 27 November 2015.
Falla, Deborah; O'Leary, Shaun; Farina, Dario; Jull, Gwendolen
2012-09-01
Altered activation of the deep cervical flexors (longus colli and longus capitis) has been found in individuals with neck pain disorders but the response to training has been variable. Therefore, this study investigated the relationship between change in deep cervical flexor muscle activity and symptoms in response to specific training. Fourteen women with chronic neck pain undertook a 6-week program of specific training that consisted of a craniocervical flexion exercise performed twice per day (10 to 20 min) for the duration of the trial. The exercise targets the deep flexor muscles of the upper cervical region. At baseline and follow-up, measures were taken of neck pain intensity (visual analogue scale, 0 to 10), perceived disability (Neck Disability Index, 0 to 50) and electromyography (EMG) of the deep cervical flexors (by a nasopharyngeal electrode suctioned over the posterior oropharyngeal wall) during performance of craniocervical flexion. After training, the activation of the deep cervical flexors increased (P<0.0001) with the greatest change occurring in patients with the lowest values of deep cervical flexor EMG amplitude at baseline (R(2)=0.68; P<0.001). There was a significant relationship between initial pain intensity, change in pain level with training, and change in EMG amplitude for the deep cervical flexors during craniocervical flexion (R(2)=0.34; P<0.05). Specific training of the deep cervical flexor muscles in women with chronic neck pain reduces pain and improves the activation of these muscles, especially in those with the least activation of their deep cervical flexors before training. This finding suggests that the selection of exercise based on a precise assessment of the patients' neuromuscular control and targeted exercise interventions based on this assessment are likely to be the most beneficial to patients with neck pain.
Goo, Miran; Kim, Seong-Gil; Jun, Deokhoon
2015-08-01
[Purpose] The purpose of this study was to identify the imbalance of muscle recruitment in cervical flexor muscles during the craniocervical flexion test by using ultrasonography and to propose the optimal level of pressure in clinical craniocervical flexion exercise for people with neck pain. [Subjects and Methods] A total of 18 students (9 males and 9 females) with neck pain at D University in Gyeongsangbuk-do, South Korea, participated in this study. The change in muscle thickness in superficial and deep cervical flexor muscles during the craniocervical flexion test was measured using ultrasonography. The ratio of muscle thickness changes between superficial and deep muscles during the test were obtained to interpret the imbalance of muscle recruitment in cervical flexor muscles. [Results] The muscle thickness ratio of the sternocleidomastoid muscle/deep cervical flexor muscles according to the incremental pressure showed significant differences between 22 mmHg and 24 mmHg, between 24 mmHg and 28 mmHg, between 24 mmHg and 30 mmHg, and between 26 mmHg and 28 mmHg. [Conclusion] Ultrasonography can be applied for examination of cervical flexor muscles in clinical environment, and practical suggestion for intervention exercise of craniocervical flexors can be expected on the pressure level between 24 mmHg and 26 mmHg enabling the smallest activation of the sternocleidomastoid muscle.
Fujimori, Takahito; Le, Hai; Ziewacz, John E; Chou, Dean; Mummaneni, Praveen V
2013-07-01
There are little data on the effects of plated, or plate-only, open-door laminoplasty on cervical range of motion (ROM), neck pain, and clinical outcomes. The purpose of this study was to compare ROM after a plated laminoplasty in patients with ossification of posterior longitudinal ligament (OPLL) versus those with cervical spondylotic myelopathy (CSM) and to correlate ROM with postoperative neck pain and neurological outcomes. The authors retrospectively compared patients with a diagnosis of cervical stenosis due to either OPLL or CSM who had been treated with plated laminoplasty in the period from 2007 to 2012 at the University of California, San Francisco. Clinical outcomes were measured using the modified Japanese Orthopaedic Association (mJOA) scale and neck visual analog scale (VAS). Radiographic outcomes included assessment of changes in the C2-7 Cobb angle at flexion and extension, ROM at C2-7, and ROM of proximal and distal segments adjacent to the plated lamina. Sixty patients (40 men and 20 women) with an average age of 63.1 ± 10.9 years were included in the study. Forty-one patients had degenerative CSM and 19 patients had OPLL. The mean follow-up period was 20.9 ± 13.1 months. The mean mJOA score significantly improved in both the CSM and the OPLL groups (12.8 to 14.5, p < 0.01; and 13.2 to 14.2, respectively; p = 0.04). In the CSM group, the mean VAS neck score significantly improved from 4.2 to 2.6 after surgery (p = 0.01), but this improvement did not reach the minimum clinically important difference (MCID). Neither was there significant improvement in the VAS neck score in the OPLL group (3.6 to 3.1, p = 0.17). In the CSM group, ROM at C2-7 significantly decreased from 32.7° before surgery to 24.4° after surgery (p < 0.01). In the OPLL group, ROM at C2-7 significantly decreased from 34.4° to 20.8° (p < 0.01). In the CSM group, the change in the VAS neck score significantly correlated with the change in the flexion angle (r = - 0.31) and the extension angle (r = - 0.37); however, it did not correlate with the change in ROM at C2-7 (r = - 0.1). In the OPLL group, the change in the VAS neck score did not correlate with the change in the flexion angle (r = 0.03), the extension angle (r = - 0.17), or the ROM at C2-7 (r = - 0.28). The OPLL group had a significantly greater loss of ROM after surgery than did the CSM group (p = 0.04). There was no significant correlation between the change in ROM and the mJOA score in either group. Plated laminoplasty in patients with either OPLL or CSM decreases cervical ROM, especially in the extension angle. Among patients who have undergone laminoplasty, those with OPLL lose more ROM than do those with CSM. No correlation was observed between neck pain and ROM in either group. Neither group had a change in neck pain that reached the MCID following laminoplasty. Both groups improved in neurological function and outcomes.
The Effect of Technological Devices on Cervical Lordosis.
Öğrenci, Ahmet; Koban, Orkun; Yaman, Onur; Dalbayrak, Sedat; Yılmaz, Mesut
2018-03-15
There is a need for cervical flexion and even cervical hyperflexion for the use of technological devices, especially mobile phones. We investigated the effect of this use on the cervical lordosis angle. A group of 156 patients who applied with only neck pain between 2013-2016 and had no additional problems were included. Patients are specifically questioned about mobile phone, tablet, and other devices usage. The value obtained by multiplying the year of usage and the average usage (hour) in daily life was determined as the total usage value (an average hour per day x year: hy). Cervical lordosis angles were statistically compared with the total time of use. In the general ROC analysis, the cut-off value was found to be 20.5 hy. When the cut-off value is tested, the overall accuracy is very good with 72.4%. The true estimate of true risk and non-risk is quite high. The ROC analysis is statistically significant. The use of computing devices, especially mobile telephones, and the increase in the flexion of the cervical spine indicate that cervical vertebral problems will increase even in younger people in future. Also, to using with attention at this point, ergonomic devices must also be developed.
Straker, L; Burgess-Limerick, R; Pollock, C; Murray, K; Netto, K; Coleman, J; Skoss, R
2008-04-01
Computer display height and desk design to allow forearm support are two critical design features of workstations for information technology tasks. However there is currently no 3D description of head and neck posture with different computer display heights and no direct comparison to paper based information technology tasks. There is also inconsistent evidence on the effect of forearm support on posture and no evidence on whether these features interact. This study compared the 3D head, neck and upper limb postures of 18 male and 18 female young adults whilst working with different display and desk design conditions. There was no substantial interaction between display height and desk design. Lower display heights increased head and neck flexion with more spinal asymmetry when working with paper. The curved desk, designed to provide forearm support, increased scapula elevation/protraction and shoulder flexion/abduction.
van Det, M J; Meijerink, W J H J; Hoff, C; van Veelen, M A; Pierie, J P E N
2008-11-01
With the expanding implementation of minimally invasive surgery, the operating team is confronted with challenges in the field of ergonomics. Visual feedback is derived from a monitor placed outside the operating field. This crossover trial was conducted to evaluate and compare neck posture in relation to monitor position in a dedicated minimally invasive surgery (MIS) suite and a conventional operating room. Assessment of the neck was conducted for 16 surgeons, assisting surgeons, and scrub nurses performing a laparoscopic cholecystectomy in both types of operating room. Flexion and rotation of the cervical spine were measured intraoperatively using a video analysis system. A two-question visual analog scale (VAS) questionnaire was used to evaluate posture in relation to the monitor position. Neck rotation was significantly reduced in the MIS suite for the surgeon (p = 0.018) and the assisting surgeon (p < 0.001). Neck flexion was significantly improved in the MIS suite for the surgeon (p < 0.001) and the scrub nurse (p = 0.018). On the questionnaire, the operating room team scored their posture significantly higher in the MIS suite and also indicated fewer musculoskeletal complaints. The ergonomic quality of the neck posture is significantly improved in the MIS suite for the entire operating room team.
Assessment of neck pain and cervical mobility among female computer workers at Hail University.
Mohammad, Walaa S; Hamza, Hayat H; ElSais, Walaa M
2015-01-01
The aims of this study were to investigate the prevalence of neck pain among computer workers at Hail University, Saudi Arabia and to compare the cervical range of motion (ROM) of female computer workers suffering from neck pain to the cervical ROM of healthy female computer workers. One hundred and seventy-six female volunteers between 20 and 46 years of age were investigated. Fifty-six of these volunteers were staff members, 22 were administrators and 98 were students. The Cervical Range of Motion (CROM) instrument was used to measure the ROM of the cervical spine. A questionnaire was used to assess participants for the presence of neck pain. The data were analyzed using the Statistical Package for Social Sciences (SPSS) software, and the level of significant was set at p < .05 for all statistical tests. There was a high prevalence of neck pain (75%) among computer workers at Hail University, particularly among students. There were significant differences in cervical lateral flexion, rotation to the right side and protraction range between the pain and pain-free groups. Our results demonstrated that cervical ROM measurements, particularly cervical lateral flexion, rotation and protraction, could be useful for predicting changes in head and neck posture after long-term computer work.
Effects of neck exercise on high-school students' neck-shoulder posture.
Lee, Myoung-Hyo; Park, Su-Jin; Kim, Jin-Sang
2013-05-01
[Purpose] This study examined the effects of deep flexor muscle-strengthening exercise on the neck-shoulder posture, and the strength and endurance of the deep flexor muscles of high-school students. [Subjects] The subjects were 30 seventeen-year-old female high-school students who complained about bad posture and chronic neck-shoulder pain. They were randomly divided into an experimental group of 15 subjects, who performed a deep flexor muscle-strengthening exercise and a control group of 15 subjects, who performed a basic stretching exercise. [Methods] The experimental group of 15 subjects performed a deep flexor muscle-strengthening exercise consisting of low-load training of the cranio-cervical flexor muscle, and the control group of 15 subjects performed a basic stretching exercise consisting of seven motions. [Results] The experimental group showed statistically significant changes in head tilt angle, neck flexion angle, forward shoulder angle, and the result of the cranio-cervical flexion test after the training. In contrast, the control group showed no statistically significant changes in these measures following the training. When the results of the groups were compared, statistically significant differences were found for all items between the experimental group and the control group. [Conclusion] Strengthening cranio-cervical flexor muscles is important for the adjustment of neck posture, and maintaining their stability is required to improve neck-shoulder posture.
Yang, Chia-Chi; Su, Fong-Chin; Yang, Po-Ching; Lin, Hwai-Ting; Guo, Lan-Yuen
2016-01-01
Mechanical neck disorder is a widespread and non-neurological musculoskeletal condition resulting from modern lifestyles. Presently, the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles and the characteristics of the short-term synchronization of the motor unit in patients with neck pain are ambiguous. This study therefore aims to clarify the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles in patients with mechanical neck disorder and in asymptomatic individuals. We further investigated whether alterations in the degree of motor unit short-term synchronization occur. The surface electrophysiological signals of the bilateral sternal heads of the sternocleidomastoid muscles of twelve patients with mechanical neck disorder and asymptomatic individuals were detected at 25% of the maximum voluntary contraction during cervical isometric flexion and then decomposed into individual motor unit action potential trains. We found that the patients with mechanical neck disorder showed significantly higher initial and mean firing rates of the sternocleidomastoid muscles and displayed substantially lower motor unit short-term synchronization values compared with the asymptomatic subjects. Consequently, these convincing findings support the assertion that patients with mechanical neck disorder display altered neuromuscular control strategies, such as the reinforcement of motor unit recruitment firing rates in the sternocleidomastoid muscles. The motor units of these patients also revealed neural recruitment strategies with relatively poor efficiency when executing the required motor tasks.
Yang, Chia-Chi; Su, Fong-Chin; Yang, Po-Ching; Lin, Hwai-Ting
2016-01-01
Mechanical neck disorder is a widespread and non-neurological musculoskeletal condition resulting from modern lifestyles. Presently, the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles and the characteristics of the short-term synchronization of the motor unit in patients with neck pain are ambiguous. This study therefore aims to clarify the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles in patients with mechanical neck disorder and in asymptomatic individuals. We further investigated whether alterations in the degree of motor unit short-term synchronization occur. The surface electrophysiological signals of the bilateral sternal heads of the sternocleidomastoid muscles of twelve patients with mechanical neck disorder and asymptomatic individuals were detected at 25% of the maximum voluntary contraction during cervical isometric flexion and then decomposed into individual motor unit action potential trains. We found that the patients with mechanical neck disorder showed significantly higher initial and mean firing rates of the sternocleidomastoid muscles and displayed substantially lower motor unit short-term synchronization values compared with the asymptomatic subjects. Consequently, these convincing findings support the assertion that patients with mechanical neck disorder display altered neuromuscular control strategies, such as the reinforcement of motor unit recruitment firing rates in the sternocleidomastoid muscles. The motor units of these patients also revealed neural recruitment strategies with relatively poor efficiency when executing the required motor tasks. PMID:27941995
Javanshir, Khodabakhsh; Amiri, Mohsen; Mohseni Bandpei, Mohammad Ali; De las Penas, Cesar Fernandez; Rezasoltani, Asghar
2015-01-01
The effect of different exercise programs on cervical flexor muscles dimensions in patients with chronic neck pain is yet to be demonstrated. The purpose of this study was to assess the effect of two exercise programs; craniocervical flexion (CCF) and cervical flexion (CF), on flexor muscles dimensions in patients with chronic neck pain. Following ethical approval, 60 patients were randomly assigned into either a CCF group or a CF group. Patients in the CCF group were given CCF exercises and those in the CF group received CF exercises. All patients received interventions for a period of ten weeks. Pain intensity and functional disability were assessed using numerical pain rate scale and neck disability index, respectively. Dimensions of longus colli (LC) and sternoclidomastoid (SCM) muscles were measured using ultrasonography (US). All measurements were taken before and after interventions. Following intervention, the CCF group demonstrated a significant increase in LC muscle dimensions including cross sectional area, width and thickness compared with the CF group. A statistically significant increase was found on SCM thickness in the CF group. Following intervention, SCM thickness measurement in the CCF group showed no significant changes. Statistically significant decrease on pain intensity and disability were also found in both groups. Present findings demonstrated that craniocervical flexion program which specifically recruiting deep cervical flexor muscles increased LC muscle dimension significantly and CF program as an endurance training program increased SCM thickness.
Ventilation via Cut Nasotracheal Tube During General Anesthesia
Asahi, Yoshinao; Omichi, Shiro; Adachi, Seita; Kagamiuchi, Hajime; Kotani, Junichiro
2013-01-01
Many patients with disabilities need recurrent dental treatment under general anesthesia because of high caries prevalence and the nature of dental treatment. We evaluated the use of a nasal device as a possible substitute for flexible laryngeal mask airway to reduce the risk of unexpected failure accompanying intubation; we succeeded in ventilating the lungs with a cut nasotracheal tube (CNT) with its tip placed in the pharynx. We hypothesized that this technique would be useful during dental treatment under general anesthesia and investigated its usefulness as part of a minimally invasive technique. A prospective study was designed using general anesthesia in 37 dental patients with disabilities such as intellectual impairment, autism, and cerebral palsy. CNT ventilation was compared with mask ventilation with the patient in 3 positions: the neck in flexion, horizontal position, and in extension. The effect of mouth gags was also recorded during CNT ventilation. The percentages of cases with effective ventilation were similar for the 2 techniques in the neck extension and horizontal positions (89.2–97.3%). However, CNT ventilation was significantly more effective than mask ventilation in the neck flexion position (94.6 vs 45.9%; P < .0001). Mouth gags slightly reduced the rate of effective ventilation in the neck flexion position. Most dental treatments involving minor oral surgeries were performed using mouth gags during CNT ventilation. CNT ventilation was shown to be superior to mask ventilation and is useful during dental treatment under general anesthesia. PMID:23506278
Modal analysis of the human neck in vivo as a criterion for crash test dummy evaluation
NASA Astrophysics Data System (ADS)
Willinger, R.; Bourdet, N.; Fischer, R.; Le Gall, F.
2005-10-01
Low speed rear impact remains an acute automative safety problem because of a lack of knowledge of the mechanical behaviour of the human neck early after impact. Poorly validated mathematical models of the human neck or crash test dummy necks make it difficult to optimize automotive seats and head rests. In this study we have constructed an experimental and theoretical modal analysis of the human head-neck system in the sagittal plane. The method has allowed us to identify the mechanical properties of the neck and to validate a mathematical model in the frequency domain. The extracted modal characteristics consist of a first natural frequency at 1.3±0.1 Hz associated with head flexion-extension motion and a second mode at 8±0.7 Hz associated with antero-posterior translation of the head, also called retraction motion. Based on this new validation parameters we have been able to compare the human and crash test dummy frequency response functions and to evaluate their biofidelity. Three head-neck systems of current test dummies dedicated for use in rear-end car crash accident investigations have been evaluated in the frequency domain. We did not consider any to be acceptable, either because of excessive rigidity of their flexion-extension mode or because they poorly reproduce the head translation mode. In addition to dummy evaluation, this study provides new insight into injury mechanisms when a given natural frequency can be linked to a specific neck deformation.
Sarig Bahat, Hilla; Sprecher, Elliot; Sela, Itamar; Treleaven, Julia
2016-07-01
The use of virtual reality (VR) for assessment and intervention of neck pain has previously been used and shown reliable for cervical range of motion measures. Neck VR enables analysis of task-oriented neck movement by stimulating responsive movements to external stimuli. Therefore, the purpose of this study was to establish inter-tester reliability of neck kinematic measures so that it can be used as a reliable assessment and treatment tool between clinicians. This reliability study included 46 asymptomatic participants, who were assessed using the neck VR system which displayed an interactive VR scenario via a head-mounted device, controlled by neck movements. The objective of the interactive assessment was to hit 16 targets, randomly appearing in four directions, as fast as possible. Each participant was tested twice by two different testers. Good reliability was found of neck motion kinematic measures in flexion, extension, and rotation (0.64-0.93 inter-class correlation). High reliability was shown for peak velocity globally (0.93), in left rotation (0.9), right rotation and extension (0.88), and flexion (0.86). Mean velocity had a good global reliability (0.84), except for left rotation directed movement with moderate reliability (0.68). Minimal detectable change for peak velocity ranged from 41 to 53 °/s, while mean velocity ranged from 20 to 25 °/s. The results suggest high reliability for peak and mean velocity as measured by the interactive Neck VR assessment of neck motion kinematics. VR appears to provide a reliable and more ecologically valid method of cervical motion evaluation than previous conventional methodologies.
Xie, Yan Fei; Szeto, Grace; Madeleine, Pascal; Tsang, Sharon
2018-04-01
To advance our understanding about the association between smartphone use and chronic neck-shoulder pain, the objective of this study was to compare spinal kinematics between different text-entry methods in smartphone users with and without chronic neck-shoulder pain. Symptomatic (n = 19) and healthy participants (n = 18) were recruited and they performed three tasks: texting on a smartphone with one hand, with two hands, and typing on a desktop computer. Three-dimensional kinematics were examined in the cervical, thoracic and lumbar regions for each task. This study suggests that altered kinematics may be associated with pain since significantly increased angles of cervical right side flexion during smartphone texting and greater postural changes in cervical rotation were found during all text-entry tasks in the symptomatic group. Two-handed texting was associated with increased cervical flexion while one-handed texting was correlated with an asymmetric neck posture, indicating both text-entry methods are not favorable in terms of spinal postures. Copyright © 2017 Elsevier Ltd. All rights reserved.
2013-01-01
Background This study investigates the reliability of muscle performance tests using cost- and time-effective methods similar to those used in clinical practice. When conducting reliability studies, great effort goes into standardising test procedures to facilitate a stable outcome. Therefore, several test trials are often performed. However, when muscle performance tests are applied in the clinical setting, clinicians often only conduct a muscle performance test once as repeated testing may produce fatigue and pain, thus variation in test results. We aimed to investigate whether cervical muscle performance tests, which have shown promising psychometric properties, would remain reliable when examined under conditions similar to those of daily clinical practice. Methods The intra-rater (between-day) and inter-rater (within-day) reliability was assessed for five cervical muscle performance tests in patients with (n = 33) and without neck pain (n = 30). The five tests were joint position error, the cranio-cervical flexion test, the neck flexor muscle endurance test performed in supine and in a 45°-upright position and a new neck extensor test. Results Intra-rater reliability ranged from moderate to almost perfect agreement for joint position error (ICC ≥ 0.48-0.82), the cranio-cervical flexion test (ICC ≥ 0.69), the neck flexor muscle endurance test performed in supine (ICC ≥ 0.68) and in a 45°-upright position (ICC ≥ 0.41) with the exception of a new test (neck extensor test), which ranged from slight to moderate agreement (ICC = 0.14-0.41). Likewise, inter-rater reliability ranged from moderate to almost perfect agreement for joint position error (ICC ≥ 0.51-0.75), the cranio-cervical flexion test (ICC ≥ 0.85), the neck flexor muscle endurance test performed in supine (ICC ≥ 0.70) and in a 45°-upright position (ICC ≥ 0.56). However, only slight to fair agreement was found for the neck extensor test (ICC = 0.19-0.25). Conclusions Intra- and inter-rater reliability ranged from moderate to almost perfect agreement with the exception of a new test (neck extensor test), which ranged from slight to moderate agreement. The significant variability observed suggests that tests like the neck extensor test and the neck flexor muscle endurance test performed in a 45°-upright position are too unstable to be used when evaluating neck muscle performance. PMID:24299621
Descarreaux, Martin; Mayrand, Nancy; Raymond, Jean
2007-01-01
A number of recent scientific publications suggest that patients suffering from whiplash-associated disorders (WADs) exhibit sensorimotor deficits in the control of head and neck movements. The main objective of the present study was to evaluate if subjects with WADs can produce isometric neck extension and flexion forces with precision, variability, and a mode of control similar to the values of healthy subjects. A control group study with repeated measures. Neck force production parameters and neuromuscular control were measured in 17 whiplash and 14 control subjects. The experimental group included subjects who had a history of persistent neck pain or disability after a motor vehicle accident. Pain levels were assessed on a standard 100-mm visual analog pain scale at the beginning and end of the experiment. Each whiplash subject completed the neck disability index and the short-form 36 health survey (SF-36) questionnaire before the experiment. All subjects were asked to exert flexion and extension forces against a fixed head harness. Kinetic variables included time to peak force, time to peak force variability, peak force variability, and absolute error in peak force. Surface electrodes were applied bilaterally over the sternocleidomastoideus and paraspinal muscles. Electromyography (EMG)-dependent variables included EMG burst duration and amplitude using numerical integrated techniques. The average time to peak force was significantly longer for whiplash subjects than for the healthy controls. A significant increase in peak force variability was also observed in the whiplash group, and no group differences were noted for absolute error. Heightened muscular activity was seen in both paraspinal muscles, even though it only reached statistical significance for the left paraspinal muscle. Our results show that the whiplash subjects involved in the study were able to produce isometric forces with spatial precision similar to healthy controls using a motor strategy in which the time to peak force is increased. This trade-off between spatial precision and time to peak force probably reflects an adaptation aimed at limiting pain and further injuries.
Lopez-Lopez, A; Alonso Perez, J L; González Gutierez, J L; La Touche, R; Lerma Lara, S; Izquierdo, H; Fernández-Carnero, J
2015-04-01
Three different types of manual therapy techniques for patients with neck pain and relationship with psychological factors has not been evaluated. To compare the effectiveness high velocity and low amplitude (HVLA) manipulation vs. posteroanterior mobilization (PA mob) vs. sustain appophyseal natural glide (SNAG) in the management of patients with neck pain and to evaluate the interaction with psychological factors. Randomized clinical trial. Primary Health Care Center. Patients with history of chronic neck pain over the last 3 months were recruited. Patients were randomly assigned to receive treatment with HVLA (N.=15), with PA mob (N.=16) or with SNAG (N.=17). One session was applied. Pain intensity of neck pain, pressure pain threshold over processus spinosus of C2 (PPT_C2) and cervical range of motion (CROM) were measured pre- and post-intervention. Pain catastrophizing, depression, anxiety and kinesiophobia were assessed in baseline. ANOVAs were performed, with main effects, two-way (treatment x time) and three-way interactions (treatment x psychological variable x time) were examined. Fourthy-eight patients (mean±SD age, 36.5±8.7 years; 87.5% female). A significant interaction treatment x time was observed for VAS-rest in HVLA and AP mob groups (P<0.05). With more pain relief to HVLA and AP mob groups than SNAG groups but all groups improve the same in CROM. Also, a significant three-way treatment x anxiety x time interaction for VAS in Flexion/Extension was identified (P<0.01), and a trend toward significance was observed for the three way treatment x anxiety x time interaction, with respect to CROM in Lateral-Flexion movement (P<0.05). The results suggest that an HVLA and PA mob groups relieved pain at rest more than SNAG in patients with Neck pain. Among psychological factors, only trait anxiety seems interact with Manual therapy, mainly high anxiety conditions interact with the Mobilization and SNAG effects but under low anxiety conditions interact with the HVLA effects. Significant mean differences can be observed both in VAS in Flexion/Extension and in CROM in lateral-flexion movement when using mobilization under high anxiety conditions The findings provide preliminary evidence to support that three different techniques have similar immediate effects over neck pain and while under high anxiety levels a better outcome is expected after mobilization intervention, under low anxiety levels a better prognosis is expected after manipulation and SNAG intervention.
González-Iglesias, Javier; Fernández-de-las-Peñas, Cesar; Cleland, Joshua A; Alburquerque-Sendín, Francisco; Palomeque-del-Cerro, Luis; Méndez-Sánchez, Roberto
2009-06-01
Our aim was to examine the effects of a seated thoracic spine distraction thrust manipulation included in an electrotherapy/thermal program on pain, disability, and cervical range of motion in patients with acute neck pain. This randomized controlled trial included 45 patients (20 males, 25 females) between 23 and 44 years of age presenting with acute neck pain. Patients were randomly divided into 2 groups: an experimental group which received a thoracic manipulation, and a control group which did not receive the manipulative procedure. Both groups received an electrotherapy program consisting of 6 sessions of TENS (frequency 100Hz; 20min), superficial thermo-therapy (15min) and soft tissue massage. The experimental group also received a thoracic manipulation once a week for 3 consecutive weeks. Outcome measures included neck pain (numerical pain rate scale; NPRS), level of disability (Northwick Park Neck Pain Questionnaire; NPQ) and neck mobility. These outcomes were assessed at baseline and 1 week after discharge. A 2-way repeated-measures ANOVA with group as between-subject variable and time as within-subject variable was used. Patients receiving thoracic manipulation experienced greater reductions in both neck pain, with between-group difference of 2.3 (95% CI 2-2.7) points on a 11-NPRS, and perceived disability with between-group differences 8.5 (95% CI 7.2-9.8) points. Further, patients receiving thoracic manipulation experienced greater increases in all cervical motions with between-group differences of 10.6 degrees (95% CI 8.8-12.5 degrees) for flexion; 9.9 degrees (95% CI 8.1-11.7 degrees) for extension; 9.5 degrees (95% CI 7.6-11.4 degrees) for right lateral-flexion; 8 degrees (95% CI 6.2-9.8 degrees) for left lateral-flexion; 9.6 degrees (95% CI 7.7-11.6 degrees) for right rotation; and 8.4 degrees (95% CI 6.5-10.3 degrees) for left rotation. We found that the inclusion of a thoracic manipulation into an electrotherapy/thermal program was effective in reducing neck pain and disability, and in increasing active cervical mobility in patients with acute neck pain.
2014-01-01
Background Various head and neck positions in sport horses are significant as they can interfere with upper airway flow mechanics during exercise. Until now, research has focused on subjectively described head and neck positions. The objective of this study was to develop an objective, reproducible method for quantifying head and neck positions accurately. Results Determining the angle between the ridge of the nose and the horizontal plane (ground angle) together with the angle between the ridge of nose and the line connecting the neck and the withers (withers angle) has provided values that allow precise identification of three preselected head and neck positions for performing sport horses. The pharyngeal diameter, determined on lateral radiographs of 35 horses, differed significantly between the established flexed position and the remaining two head and neck positions (extended and neutral). There was a significant correlation between the pharyngeal diameter and the ground angle (Spearman’s rank correlation coefficient −0.769, p < 0.01) as well as between the pharyngeal diameter and the withers angle (Spearman’s rank correlation coefficient 0.774, p < 0.01). Conclusion The combination of the ground angle and the withers angle is a suitable tool for evaluating and distinguishing frequently used head and neck positions in sport horses. The ground angle and the withers angle show significant correlation with the measured pharyngeal diameter in resting horses. Hence, these angles provide an appropriate method for assessing the degree of head and neck flexion. Further research is required to examine the influence of increasing head and neck flexion and the related pharyngeal diameter on upper airway function in exercising horses. PMID:24886564
Yip, Y B; Tse, Hing-Min Sonny; Wu, Ka Kalina
2007-02-01
To compare the efficacy of combined transcutaneous acupoint electrical stimulation (TAES) and electromagnetic millimeter wave (EMMW) therapy as an add-on treatment for pain relief and physical functional activity enhancement among adults with sub-acute non-specific spinal pain in either the low back or neck. A non-blinded study with data obtained before, immediate, one week and three months after intervention. The Telehealth Clinic and Community Centre, Hong Kong. Forty-seven subjects with either sub-acute neck or low back pain. Subjects were randomly allocated to either an intervention group (n=23) or a control group (n=24). These groups were then divided into subgroups according to the site of their spinal pain-neck or back. The intervention group had eight treatments over a three-week period of TAES and EMMW. Changes from baseline to the end of treatment were assessed at intervals of one week and three months on either neck or low back pain intensity [by Visual Analogue Scale (VAS)]; stiffness level; stress level; neck or low back lateral flexion and forward flexion in cm, and interference with daily activities. The baseline VAS scores for the intervention and control groups were 5.34 and 5.18 out of 10, respectively (P value=0.77). At the one week and three month assessments, there were no significant differences between the groups-VAS (P value=0.09 and 0.27, respectively). A further subgroup of chronic pain sufferers (n=31) was identified and these had significantly reduced pain intensity at the one week assessment (P value=0.04) but this was not sustained at post three months after treatment (P value=0.15). Improvements in stiffness level, stress level, and functional disability level in the intervention group were not significant. Our study shows that there was a reduction in pain intensity, stress and stiffness level immediately after the eight sessions of treatment (TAES and EMMW), though the effect is not sustained after a week. No pain relief was found with the neck pain subgroup. However, the reduction in subjective average pain intensity among the chronic pain subgroup was sustained at the post one week assessment for the intervention group but not at the post three month assessment.
Rohe, Benjamin G; Carter, Ronald; Thompson, William R; Duncan, Randall L; Cooper, Carlton R
2015-04-01
Neck pain presents a tremendous physical and financial burden. This study compared the efficacy of the complementary and alternative medical treatments of integrative muscular movement technique (IMMT) and Swedish massage on neck pain in women of occupation age, the largest demographic group with neck pain. A total of 38 women were assigned to IMMT (n=28) or Swedish massage (n=10) in a blinded manner. Both groups received eight 30-minute treatments over 4 weeks. Cervical range of motion (ROM) in flexion, extension, sidebending, and rotation was measured before and after treatment. Each patient's pain was assessed by using an analogue pain scale of 0-10. Compared with the Swedish massage group, patients receiving IMMT experienced a significant increase in ROM in cervical flexion (p<0.001), extension (p<0.001), sidebending (p<0.05), and rotation (p<0.001). Absolute change in pain for IMMT was -1.75 units compared with -0.3 units for Swedish massage (p<0.05). Patients receiving the IMMT demonstrated significantly improved cervical ROM in every movement measured compared with Swedish massage. Inclusion of the IMMT in a treatment regimen for chronic neck pain may lead to decreased pain and increased cervical ROM. These positive effects of the IMMT intervention may have a role in enhancing functional outcomes in patients with neck pain.
Puntumetakul, Rungthip; Suvarnnato, Thavatchai; Werasirirat, Phurichaya; Uthaikhup, Sureeporn; Yamauchi, Junichiro; Boucaut, Rose
2015-01-01
Background Thoracic spine manipulation has become a popular alternative to local cervical manipulative therapy for mechanical neck pain. This study investigated the acute effects of single-level and multiple-level thoracic manipulations on chronic mechanical neck pain (CMNP). Methods Forty-eight patients with CMNP were randomly allocated to single-level thoracic manipulation (STM) at T6–T7 or multiple-level thoracic manipulation (MTM), or to a control group (prone lying). Cervical range of motion (CROM), visual analog scale (VAS), and the Thai version of the Neck Disability Index (NDI-TH) scores were measured at baseline, and at 24-hour and at 1-week follow-up. Results At 24-hour and 1-week follow-up, neck disability and pain levels were significantly (P<0.05) improved in the STM and MTM groups compared with the control group. CROM in flexion and left lateral flexion were increased significantly (P<0.05) in the STM group when compared with the control group at 1-week follow-up. The CROM in right rotation was increased significantly after MTM compared to the control group (P<0.05) at 24-hour follow-up. There were no statistically significant differences in neck disability, pain level at rest, and CROM between the STM and MTM groups. Conclusion These results suggest that both single-level and multiple-level thoracic manipulation improve neck disability, pain levels, and CROM at 24-hour and 1-week follow-up in patients with CMNP. PMID:25624764
Qu, Feng; Yuan, Bangtuo; Qi, Wei; Wang, Junliang; Shen, Xuezhen; Wang, Jiangtao; Zhao, Gang; Liu, Yujie
2014-07-01
To discuss the effectiveness of Poking reduction with shoulder arthroscopy-assisted surgery for displaced scapular neck fracture. Between January 2009 and January 2012, 9 cases of displaced scapular neck fracture underwent shoulder arthroscopy-assisted surgery for Poking reduction treatment. Of 9 cases, 6 were men, and 3 were women, aged 21-54 years (mean, 39 years). The causes were traffic accident injury in 7 cases, falling injury from height in 1 case, and hurt injury in 1 case. The shoulder abduction, flexion, and external rotation were obviously limited. X-ray films showed all cases had obvious displaced scapular neck fracture. Three-dimensional reconstruction of CT showed a grossly displaced of fracture. The time of injury to surgery was 4-27 days (mean, 11 days). Patients obtained healing of incision by first intension, without infection, neurovascular injury, or other surgery-related complications. All patients were followed up 19- 31 months (mean, 23 months). X-ray films showed scapular neck fractures healed from 7 to 11 weeks (mean, 8 weeks). At last follow-up, the shoulder abduction, flexion, and external rotation activity were improved significantly when compared with ones at preoperation (P < 0.05); the shoulder Constant score, American Shoulder and Elbow Surgenos (ASES) score, and Rowe score were significantly better than preoperative scores (P < 0.05). The reduction of displaced scapular neck fracture is necessary, and arthroscopic Poking reduction and fixation for displaced scapular neck fracture can reconstruct the shoulder stability and reduce complications.
Yu, Yan; Mao, Haiqing; Li, Jing-Sheng; Tsai, Tsung-Yuan; Cheng, Liming; Wood, Kirkham B; Li, Guoan; Cha, Thomas D
2017-06-01
While abnormal loading is widely believed to cause cervical spine disc diseases, in vivo cervical disc deformation during dynamic neck motion has not been well delineated. This study investigated the range of cervical disc deformation during an in vivo functional flexion-extension of the neck. Ten asymptomatic human subjects were tested using a combined dual fluoroscopic imaging system (DFIS) and magnetic resonance imaging (MRI)-based three-dimensional (3D) modeling technique. Overall disc deformation was determined using the changes of the space geometry between upper and lower endplates of each intervertebral segment (C3/4, C4/5, C5/6, and C6/7). Five points (anterior, center, posterior, left, and right) of each disc were analyzed to examine the disc deformation distributions. The data indicated that between the functional maximum flexion and extension of the neck, the anterior points of the discs experienced large changes of distraction/compression deformation and shear deformation. The higher level discs experienced higher ranges of disc deformation. No significant difference was found in deformation ranges at posterior points of all the discs. The data indicated that the range of disc deformation is disc level dependent and the anterior region experienced larger changes of deformation than the center and posterior regions, except for the C6/7 disc. The data obtained from this study could serve as baseline knowledge for the understanding of the cervical spine disc biomechanics and for investigation of the biomechanical etiology of disc diseases. These data could also provide insights for development of motion preservation surgeries for cervical spine.
Functional cervicothoracic boundary modified by anatomical shifts in the neck of giraffes
Gunji, Megu; Endo, Hideki
2016-01-01
Here we examined the kinematic function of the morpho- logically unique first thoracic vertebra in giraffes. The first thoracic vertebra of the giraffe displayed similar shape to the seventh cervical vertebra in general ruminants. The flexion experiment using giraffe carcasses demonstrated that the first thoracic vertebra exhibited a higher dorsoventral mobility than other thoracic vertebrae. Despite the presence of costovertebral joints, restriction in the intervertebral movement imposed by ribs is minimized around the first thoracic vertebra by subtle changes of the articular system between the vertebra and ribs. The attachment area of musculus longus colli, mainly responsible for ventral flexion of the neck, is partly shifted posteriorly in the giraffe so that the force generated by muscles is exerted on the cervical vertebrae and on the first thoracic vertebra. These anatomical modifications allow the first thoracic vertebra to adopt the kinematic function of a cervical vertebra in giraffes. The novel movable articulation in the thorax functions as a fulcrum of neck movement and results in a large displacement of reachable space in the cranial end of the neck. The unique first thoracic vertebra in giraffes provides higher flexibility to the neck and may provide advantages for high browsing and/or male competition behaviours specific to giraffes. PMID:26998330
Functional cervicothoracic boundary modified by anatomical shifts in the neck of giraffes.
Gunji, Megu; Endo, Hideki
2016-02-01
Here we examined the kinematic function of the morpho- logically unique first thoracic vertebra in giraffes. The first thoracic vertebra of the giraffe displayed similar shape to the seventh cervical vertebra in general ruminants. The flexion experiment using giraffe carcasses demonstrated that the first thoracic vertebra exhibited a higher dorsoventral mobility than other thoracic vertebrae. Despite the presence of costovertebral joints, restriction in the intervertebral movement imposed by ribs is minimized around the first thoracic vertebra by subtle changes of the articular system between the vertebra and ribs. The attachment area of musculus longus colli, mainly responsible for ventral flexion of the neck, is partly shifted posteriorly in the giraffe so that the force generated by muscles is exerted on the cervical vertebrae and on the first thoracic vertebra. These anatomical modifications allow the first thoracic vertebra to adopt the kinematic function of a cervical vertebra in giraffes. The novel movable articulation in the thorax functions as a fulcrum of neck movement and results in a large displacement of reachable space in the cranial end of the neck. The unique first thoracic vertebra in giraffes provides higher flexibility to the neck and may provide advantages for high browsing and/or male competition behaviours specific to giraffes.
Lin, I-Hsien; Chang, Kwang-Hwa; Liou, Tsan-Hon; Tsou, Chih-Min; Huang, Yi-Ching
2018-02-01
Although neck pain is a common musculoskeletal disorder, there is no consensus on suitable exercise methods for middle-aged and senior patients with chronic neck pain. Therefore, this study investigated the effectiveness of a 6-week shoulder-neck exercise intervention program on cervical muscle function improvement in patients aged 45 years or older with chronic neck pain. The aim of the present study was to evaluate the effects of progressive shoulder-neck exercise on cervical muscle functions of middle-aged and senior patients with chronic neck pain. A randomized controlled single-blind trial. Rehabilitation department of a hospital. A total of 72 subjects aged ≥45 years with chronic neck pain were randomly allocated to either an experimental group (N.=36; age 57.3±8.74 years) or a control group (N.=36; age 58.15±8.17 years). The control group received only traditional physiotherapy, whereas the experimental group participated in a 6-week shoulder-neck exercise program consisting of cranio-cervical flexion and progressive resistance exercises in addition to receiving traditional physiotherapy. The muscle functions of subjects in both groups were tested before the experiment and also after the intervention program. The pretest and posttest measured the cranio-cervical flexion test (CCFT) and the superficial cervical muscle strength. After the intervention, the experimental group had a 56.48 point improvement in the performance index of the CCFT (P<0.001), a 1.71-kg improvement in superficial neck flexor strength (P<0.001), and a 2.52-kg improvement in superficial neck extensor strength (P<0.001), indicating that in 6-week intervention significantly influenced the improvement of cervical muscle functions. This study confirmed that the 6-week progressive shoulder-neck exercise program can effectively improve cervical muscle function in middle-aged and senior patients with chronic neck pain. Progressive shoulder-neck exercise might provide positive effect on deep and superficial neck muscle strength in patients with chronic neck pain. Therefore, this study may serve as a reference for the clinical rehabilitation of patients with chronic neck pain.
Neck muscle function in violinists/violists with and without neck pain.
Steinmetz, Anke; Claus, Andrew; Hodges, Paul W; Jull, Gwendolen A
2016-04-01
Neck pain is associated with changes in neuromuscular control of cervical muscles. Violin and viola playing requires good function of the flexor muscles to stabilize the instrument. This study investigated the flexor muscle behaviour in violin/viola players with and without neck pain using the craniocervical flexion test (CCFT). In total, 12 violin/viola players with neck pain, 21 violin/viola players without neck pain in the preceding 12 weeks and 21 pain-free non-musicians were included. Activity of the sternocleidomastoid muscles (SCM) was measured with surface electromyography (EMG) during the CCFT. Violin/viola players with neck pain displayed greater normalised SCM EMG amplitudes during CCFT than the pain-free musicians and non-musicians (P < 0.05). Playing-related neck pain in violinists/violists is associated with altered behaviour of the superficial neck flexor muscles consistent with neck pain, despite the specific use of the deep and superficial neck flexors during violin playing.
The Effect of Technological Devices on Cervical Lordosis
Öğrenci, Ahmet; Koban, Orkun; Yaman, Onur; Dalbayrak, Sedat; Yılmaz, Mesut
2018-01-01
PURPOSE: There is a need for cervical flexion and even cervical hyperflexion for the use of technological devices, especially mobile phones. We investigated the effect of this use on the cervical lordosis angle. MATERIAL AND METHODS: A group of 156 patients who applied with only neck pain between 2013–2016 and had no additional problems were included. Patients are specifically questioned about mobile phone, tablet, and other devices usage. The value obtained by multiplying the year of usage and the average usage (hour) in daily life was determined as the total usage value (an average hour per day x year: hy). Cervical lordosis angles were statistically compared with the total time of use. RESULTS: In the general ROC analysis, the cut-off value was found to be 20.5 hy. When the cut-off value is tested, the overall accuracy is very good with 72.4%. The true estimate of true risk and non-risk is quite high. The ROC analysis is statistically significant. CONCLUSION: The use of computing devices, especially mobile telephones, and the increase in the flexion of the cervical spine indicate that cervical vertebral problems will increase even in younger people in future. Also, to using with attention at this point, ergonomic devices must also be developed. PMID:29610602
Ceca, Diego; Elvira, Laura; Guzmán, José F; Pablos, Ana
2017-01-01
Fibromyalgia (FM) is a disease with symptoms that significantly limit the life of affected patients. Earlier studies have shown that the application of self-myofascial release provides benefits in variables such as fatigue, range of motion (ROM) or perceived muscle pain in a healthy population. Despite this, the self-myofascial release technique has not yet been used in people with FM. This study aimed to find out the benefits of applying a self-myofascial release program on health-related quality of life in people with FM. Sixty-six participants with FM were randomized into two groups, intervention (N.=33) and control (N.=33). The intervention group (IG) participated in the self-myofascial release program for twenty weeks. The study assessed the impact of a self-myofascial release program on cervical spine, shoulder and hip ROM and self-reported disease impact. Two measurements were performed, one at baseline (preintervention) and one postintervention. Two-way mixed-effect (between-within) ANOVA was used for the statistical analysis. Significant changes (P<0.05) were achieved between the two measurements and between groups for final Fibromyalgia Impact Questionnaire (FIQ-S) Score and for five of its seven subscales, including: days per week feeling good, pain intensity, fatigue, stiffness and depression/sadness, as well as all the ROM variables evaluated (neck flexion, neck extension, lateral neck flexion and rotation (bilateral), shoulder flexion and abduction and hip abduction) excluding hip flexion. The application of a self-myofascial release program can improve the health-related quality of life of people with FM, provided that regular, structured practice is carried out.
The effects of smart phone gaming duration on muscle activation and spinal posture: Pilot study.
Park, Joo-Hee; Kang, Sun-Young; Lee, Sa-Gyeom; Jeon, Hye-Seon
2017-08-01
This study investigates changes in the posture angles of the neck and trunk, together with changes in the muscle activation of users, at the start of and at 5, 10, and 15 minutes of smartphone use. Eighteen males participated in this study. Surface electromyography (EMG) and a digital camera were used to measure the muscle activation and angular changes of the neck and trunk of participants during smartphone use for a period of 16 minutes. Neck and trunk flexion significantly increased at 5, 10, and 15 minutes (p < 0.05) in comparison with the neck and trunk flexion of participants at the start of smartphone usage. The EMG activation and 10th%amplitude probability distribution function (APDF) values of the bilateral cervical erector spinae at 5-6, 10-11, and 15-16 minutes of usage (p < 0.05) were also significantly greater than at the start of usage. The EMG activation of the bilateral thoracic erector spinae and lower trapezius was significantly decreased at 5-6, 10-11, and 15-16 minutes of usage (p < 0.05). Smartphone use induced more flexed posture on the neck and trunk than other visual display terminal (VDT) work. Smartphone use also changed posture and muscle activation within a relatively short amount of time, just 5 minutes. Pain after 16 minutes of smartphone use was also observed. Thus, clinicians should consider the influences of smartphone use in posture and muscle activity in evaluation, intervention, and prevention of neck and trunk conditions.
Flexibility along the Neck of the Neogene Terror Bird Andalgalornis steulleti (Aves Phorusrhacidae)
Tambussi, Claudia P.; de Mendoza, Ricardo; Degrange, Federico J.; Picasso, Mariana B.
2012-01-01
Background Andalgalornis steulleti from the upper Miocene–lower Pliocene (≈6 million years ago) of Argentina is a medium-sized patagornithine phorusrhacid. It was a member of the predominantly South American radiation of ‘terror birds’ (Phorusrhacidae) that were apex predators throughout much of the Cenozoic. A previous biomechanical study suggests that the skull would be prepared to make sudden movements in the sagittal plane to subdue prey. Methodology/Principal Findings We analyze the flexion patterns of the neck of Andalgalornis based on the neck vertebrae morphology and biometrics. The transitional cervical vertebrae 5th and 9th clearly separate regions 1–2 and 2–3 respectively. Bifurcate neural spines are developed in the cervical vertebrae 7th to 12th suggesting the presence of a very intricate ligamentary system and of a very well developed epaxial musculature. The presence of the lig. elasticum interespinale is inferred. High neural spines of R3 suggest that this region concentrates the major stresses during downstrokes. Conclusions/Significance The musculoskeletal system of Andalgalornis seems to be prepared (1) to support a particularly big head during normal stance, and (2) to help the neck (and the head) rising after the maximum ventroflexion during a strike. The study herein is the first interpretation of the potential performance of the neck of Andalgalornis in its entirety and we considered this an important starting point to understand and reconstruct the flexion pattern of other phorusrhacids from which the neck is unknown. PMID:22662194
Shan, Chow Li; Bin Adon, Mohd Yusoff; Rahman, Anita Binti Abd; Hassan, Syed Tajuddin Syed; Ismail, Kamal Bin
2011-12-29
Rubber tapping processes posed potential risk of various health problems among rubber workers. It ranges from simple musculoskeletal aches to more serious and complicated structural damage to bone, muscles, tendons and nerves of musculoskeletal system. These health problems might be linked directly to the arduous demands of farm labor. A cross-sectional study was conducted to determine the prevalence of neck pain (NP) and musculoskeletal symptoms (MSS) and its association with personal characteristics, physical workloads and psychosocial factors among rubber workers. Stratified random sampling method was adopted and a total of 419 rubber workers in FELDA's scheme Malaysia participated in this study. Data was collected through face to face interview using modified Standardized Nordic Questionnaire (SNQ) and Job Content Questionnaire (JCQ). The results revealed the prevalence of NP was 59.9% and weak correlation with age (?= -0.184, p= 0.001) and a positive weak correlation with working hours per day (?= 0.099, p= 0.043) significantly. All physical workloads (neck flexion or rotation, awkward postures, repetitive motion and static postures) had significant weak to moderate positive correlation with NP (p<0.05). Job insecurity was found to have weak and positive correlation with NP (p<0.05). Binary logistic regression analysis showed risk factors for NP were decreased with age (OR= 3.92, 95% CI 1.61 - 9.58, p=0.003), increase in neck flexion or rotation (OR= 9.52, 95% CI 5.55 - 16.32, p= 0.001), awkward postures (OR=2.23, 95% CI 1.29 - 3.86, p= 0.004) and static postures (OR= 1.86, 95% CI 1.10 - 3.14, p= 0.021). This study showed that high prevalence of NP was associated with neck flexion or rotation, awkward and static postures.
Shan, Chow Li; Adon, Mohd Yusoff Bin; Rahman, Anita Binti Abd; Hassan, Syed Tajuddin Syed; Ismail, Kamal Bin
2012-01-01
Rubber tapping processes posed potential risk of various health problems among rubber workers. It ranges from simple musculoskeletal aches to more serious and complicated structural damage to bone, muscles, tendons and nerves of musculoskeletal system. These health problems might be linked directly to the arduous demands of farm labor. Objectives: A cross-sectional study was conducted to determine the prevalence of neck pain (NP) and musculoskeletal symptoms (MSS) and its association with personal characteristics, physical workloads and psychosocial factors among rubber workers. Methods: Stratified random sampling method was adopted and a total of 419 rubber workers in FELDA’s scheme Malaysia participated in this study. Data was collected through face to face interview using modified Standardized Nordic Questionnaire (SNQ) and Job Content Questionnaire (JCQ). Results: The results revealed the prevalence of NP was 59.9% and weak correlation with age (ρ= -0.184, p= 0.001) and a positive weak correlation with working hours per day (ρ= 0.099, p= 0.043) significantly. All physical workloads (neck flexion or rotation, awkward postures, repetitive motion and static postures) had significant weak to moderate positive correlation with NP (p<0.05). Job insecurity was found to have weak and positive correlation with NP (p<0.05). Binary logistic regression analysis showed risk factors for NP were decreased with age (OR= 3.92, 95% CI 1.61 – 9.58, p=0.003), increase in neck flexion or rotation (OR= 9.52, 95% CI 5.55 – 16.32, p= 0.001), awkward postures (OR=2.23, 95% CI 1.29 – 3.86, p= 0.004) and static postures (OR= 1.86, 95% CI 1.10 – 3.14, p= 0.021). Conclusion: This study showed that high prevalence of NP was associated with neck flexion or rotation, awkward and static postures. PMID:22980103
Sex Differences in Anthropometrics and Heading Kinematics Among Division I Soccer Athletes
Bretzin, Abigail C.; Mansell, Jamie L.; Tierney, Ryan T.; McDevitt, Jane K.
2016-01-01
Background: Soccer players head the ball repetitively throughout their careers; this is also a potential mechanism for a concussion. Although not all soccer headers result in a concussion, these subconcussive impacts may impart acceleration, deceleration, and rotational forces on the brain, leaving structural and functional deficits. Stronger neck musculature may reduce head-neck segment kinematics. Hypothesis: The relationship between anthropometrics and soccer heading kinematics will not differ between sexes. The relationship between anthropometrics and soccer heading kinematics will not differ between ball speeds. Study Design: Pilot, cross-sectional design. Level of Evidence: Level 3. Methods: Division I soccer athletes (5 male, 8 female) were assessed for head-neck anthropometric and neck strength measurements in 6 directions (ie, flexion, extension, right and left lateral flexions and rotations). Participants headed the ball 10 times (25 or 40 mph) while wearing an accelerometer secured to their head. Kinematic measurements (ie, linear acceleration and rotational velocity) were recorded at 2 ball speeds. Results: Sex differences were observed in neck girth (t = 5.09, P < 0.001), flexor and left lateral flexor strength (t = 3.006, P = 0.012 and t = 4.182, P = 0.002, respectively), and rotational velocity at both speeds (t = −2.628, P = 0.024 and t = −2.227, P = 0.048). Neck girth had negative correlations with both linear acceleration (r = −0.599, P = 0.031) and rotational velocity at both speeds (r = −0.551, P = 0.012 and r = −0.652, P = 0.016). Also, stronger muscle groups had lower linear accelerations at both speeds (P < 0.05). Conclusion: There was a significant relationship between anthropometrics and soccer heading kinematics for sex and ball speeds. Clinical Relevance: Neck girth and neck strength are factors that may limit head impact kinematics. PMID:28225689
Sex Differences in Anthropometrics and Heading Kinematics Among Division I Soccer Athletes.
Bretzin, Abigail C; Mansell, Jamie L; Tierney, Ryan T; McDevitt, Jane K
Soccer players head the ball repetitively throughout their careers; this is also a potential mechanism for a concussion. Although not all soccer headers result in a concussion, these subconcussive impacts may impart acceleration, deceleration, and rotational forces on the brain, leaving structural and functional deficits. Stronger neck musculature may reduce head-neck segment kinematics. The relationship between anthropometrics and soccer heading kinematics will not differ between sexes. The relationship between anthropometrics and soccer heading kinematics will not differ between ball speeds. Pilot, cross-sectional design. Level 3. Division I soccer athletes (5 male, 8 female) were assessed for head-neck anthropometric and neck strength measurements in 6 directions (ie, flexion, extension, right and left lateral flexions and rotations). Participants headed the ball 10 times (25 or 40 mph) while wearing an accelerometer secured to their head. Kinematic measurements (ie, linear acceleration and rotational velocity) were recorded at 2 ball speeds. Sex differences were observed in neck girth ( t = 5.09, P < 0.001), flexor and left lateral flexor strength ( t = 3.006, P = 0.012 and t = 4.182, P = 0.002, respectively), and rotational velocity at both speeds ( t = -2.628, P = 0.024 and t = -2.227, P = 0.048). Neck girth had negative correlations with both linear acceleration ( r = -0.599, P = 0.031) and rotational velocity at both speeds ( r = -0.551, P = 0.012 and r = -0.652, P = 0.016). Also, stronger muscle groups had lower linear accelerations at both speeds ( P < 0.05). There was a significant relationship between anthropometrics and soccer heading kinematics for sex and ball speeds. Neck girth and neck strength are factors that may limit head impact kinematics.
Free groin flap for recurrent severe contractures of the neck in children
Ghosh, Abhishek; Jayakumar, R.
2010-01-01
Context: Severe post burns contracture in children not only leads to functional impairment but also has profound psychological impact on the child. Untreated neck contractures have been shown to inhibit mandibular growth. Skin grafting in children has a higher rate of recurrence and in these cases a thin pliable flap seems to provide a durable solution. Aim: To study the feasibility of using primarily thinned free groin flap in the treatment of recurrent neck contractures in children. Materials and Methods: Five patients, in the age group of 5–10 years, with recurrent neck contractures and operated between 2005 and 2008 were included in this study. The sternomental distance, lateral flexion angle and cervicomental angle were measured preoperatively, postoperatively and during the subsequent follow-up visits. The patients were followed up for a period between 1 and 3 years with a mean of 29 months. Results: All the flaps survived. The cervicomental angle improved significantly to 90–105°, the lateral flexion angle improved to 35–45° and the sternomental distance increased considerably. Conclusions: Recurrent post burns contracture of the neck in children causes not only functional and aesthetic impairment but also psychological problems. A free microthinned groin flap provides a very attractive solution for this problem and should be seen as an effective alternative in recurrent cases. PMID:21321662
Asundi, Krishna; Odell, Dan; Luce, Adam; Dennerlein, Jack T
2012-03-01
This study evaluated the use of simple inclines as a portable peripheral for improving head and neck postures during notebook computer use on tables in portable environments such as hotel rooms, cafés, and airport lounges. A 3D motion analysis system measured head, neck and right upper extremity postures of 15 participants as they completed a 10 min computer task in six different configurations, all on a fixed height desk: no-incline, 12° incline, 25° incline, no-incline with external mouse, 25° incline with an external mouse, and a commercially available riser with external mouse and keyboard. After completion of the task, subjects rated the configuration for comfort and ease of use and indicated perceived discomfort in several body segments. Compared to the no-incline configuration, use of the 12° incline reduced forward head tilt and neck flexion while increasing wrist extension. The 25° incline further reduced head tilt and neck flexion while further increasing wrist extension. The 25° incline received the lowest comfort and ease of use ratings and the highest perceived discomfort score. For portable, temporary computing environments where internal input devices are used, users may find improved head and neck postures with acceptable wrist extension postures with the utilization of a 12° incline. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Ergonomic strategies to improve radiographers' posture during mammography activities.
Cernean, Nicolai; Serranheira, Florentino; Gonçalves, Pedro; Sá Dos Reis, Cláudia
2017-08-01
To identify alternatives for radiographers' postures while performing mammography that can contribute to reduce the risk of work-related musculoskeletal disorders (WRMSDs). Radiographers' postures to positioning craniocaudal (CC) and mediolateral oblique (MLO) views were simulated without any intervention for three scenarios: radiographer/patient with similar statures, radiographer smaller than patient and radiographer taller than patient. Actions were taken to modify the postures: seated radiographer; patient on a step; seated patient; radiographer on a step. All the postures were analysed using kinovea 0.8.15 software and the angles were measured twice and classified according to European standard EN1005-4: 2005. The non-acceptable angles were measured mainly during MLO positioning when radiographer was taller than the patient: 139° and 120° for arm-flexion and abduction, 72° for trunk and -24° for head/neck-flexion. The introduction of alternative postures (radiographer seated), allowed improvements in posture (60° and 99° for arm flexion and abduction, 14° for trunk and 0° for head/neck flexion), being classified as acceptable. The alternative postures simulated have the potential to reduce the risk of developing WRMSDs when radiographers and patients have different statures. • Radiographers' postures in mammography can contribute to work-related musculoskeletal disorders • Non-acceptable posture was identified for MLO breast positioning (radiographer taller than patient) • Adapting posture to patient biotype reduces the WRMSD risk for radiographers.
Malmström, Eva-Maj; Karlberg, Mikael; Holmström, Eva; Fransson, Per-Anders; Hansson, Gert-Ake; Magnusson, Måns
2010-06-01
The ability to reproduce a specified head-on-trunk position can be an indirect test of cervical proprioception. This ability is affected in subjects with neck pain, but it is unclear whether and how much pain or continuous muscle contraction factors contribute to this effect. We studied the influence of a static unilateral neck muscle contraction task (5 min of lateral flexion at 30% of maximal voluntary contraction) on head repositioning ability in 20 subjects (10 women, 10 men; mean age 37 years) with healthy necks. Head repositioning ability was tested in the horizontal plane with 30 degrees target and neutral head position tests; head position was recorded by Zebris((R)), an ultrasound-based motion analyser. Head repositioning ability was analysed for accuracy (mean of signed differences between introduced and reproduced positions) and precision (standard deviation of the differences). Accuracy of head repositioning ability increased significantly after the muscle contraction task, as the normal overshoot was reduced. An average overshoot of 7.1 degrees decreased to 4.6 degrees after the muscle contraction task for the 30 degrees target and from 2.2 degrees to 1.4 degrees for neutral head position. The increased accuracy was most pronounced for movements directed towards the activated side. Hence, prolonged unilateral neck muscle contraction may increase the sensitivity of cervical proprioceptors.
Baschung Pfister, Pierrette; Sterkele, Iris; Maurer, Britta; de Bie, Rob A.; Knols, Ruud H.
2018-01-01
Manual muscle testing (MMT) and hand-held dynamometry (HHD) are commonly used in people with inflammatory myopathy (IM), but their clinimetric properties have not yet been sufficiently studied. To evaluate the reliability and validity of MMT and HHD, maximum isometric strength was measured in eight muscle groups across three measurement events. To evaluate reliability of HHD, intra-class correlation coefficients (ICC), the standard error of measurements (SEM) and smallest detectable changes (SDC) were calculated. To measure reliability of MMT linear Cohen`s Kappa was computed for single muscle groups and ICC for total score. Additionally, correlations between MMT8 and HHD were evaluated with Spearman Correlation Coefficients. Fifty people with myositis (56±14 years, 76% female) were included in the study. Intra-and interrater reliability of HHD yielded excellent ICCs (0.75–0.97) for all muscle groups, except for interrater reliability of ankle extension (0.61). The corresponding SEMs% ranged from 8 to 28% and the SDCs% from 23 to 65%. MMT8 total score revealed excellent intra-and interrater reliability (ICC>0.9). Intrarater reliability of single muscle groups was substantial for shoulder and hip abduction, elbow and neck flexion, and hip extension (0.64–0.69); moderate for wrist (0.53) and knee extension (0.49) and fair for ankle extension (0.35). Interrater reliability was moderate for neck flexion (0.54) and hip abduction (0.44); fair for shoulder abduction, elbow flexion, wrist and ankle extension (0.20–0.33); and slight for knee extension (0.08). Correlations between the two tests were low for wrist, knee, ankle, and hip extension; moderate for elbow flexion, neck flexion and hip abduction; and good for shoulder abduction. In conclusion, the MMT8 total score is a reliable assessment to consider general muscle weakness in people with myositis but not for single muscle groups. In contrast, our results confirm that HHD can be recommended to evaluate strength of single muscle groups. PMID:29596450
Lai, Weng-Hang; Shih, Yi-Fen; Lin, Pei-Ling; Chen, Wen-Yin; Ma, Hsiao-Li
2012-12-01
To assess the specificity of the femoral slump test (FST) when assessing experimentally induced anterior knee pain. Cross-sectional, exploratory study. Research laboratory. Asymptomatic subjects (N=12; 6 men; 6 women) for the study. An experimental pain model was used to simulate anterior knee pain by injecting .25 mL of hypertonic saline solution (5% NaCl) into the medial infrapatellar fat pad. Not applicable. The changes in pain intensity and diameter after applying the structure differential maneuver (neck flexion/extension) during the FST were recorded and analyzed. Results revealed that the structure differential maneuver of the FST did not alter the pain intensity or diameter in 9 (neck extension) and 10 (neck flexion) out of 12 subjects, which meant that the FST provided appropriate testing responses in 75% to 83% cases when the anterior knee pain did not originate in neural tissues. The FST had a specificity of more than .75 when detecting nerve mechanosensitivity problems of anterior knee pain. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Wang, Wendy T J; Olson, Sharon L; Campbell, Anne H; Hanten, William P; Gleeson, Peggy B
2003-03-01
The purpose of this study was to determine the effectiveness of an individualized physical therapy intervention in treating neck pain based on a clinical reasoning algorithm. Treatment effectiveness was examined by assessing changes in impairment, physical performance, and disability in response to intervention. One treatment group of 30 patients with neck pain completed physical therapy treatment. The control group of convenience was formed by a cohort group of 27 subjects who also had neck pain but did not receive treatment for various reasons. There were no significant differences between groups in demographic data and the initial test scores of the outcome measures. A quasi-experimental, nonequivalent, pretest-posttest control group design was used. A physical therapist rendered an eclectic intervention to the treatment group based on a clinical decision-making algorithm. Treatment outcome measures included the following five dependent variables: cervical range of motion, numeric pain rating, timed weighted overhead endurance, the supine capital flexion endurance test, and the Patient Specific Functional Scale. Both the treatment and control groups completed the initial and follow-up examinations, with an average duration of 4 wk between tests. Five mixed analyses of variance with follow-up tests showed a significant difference for all outcome measures in the treatment group compared with the control group. After an average 4 wk of physical therapy intervention, patients in the treatment group demonstrated statistically significant increases of cervical range of motion, decrease of pain, increases of physical performance measures, and decreases in the level of disability. The control group showed no differences in all five outcome variables between the initial and follow-up test scores. This study delineated algorithm-based clinical reasoning strategies for evaluating and treating patients with cervical pain. The algorithm can help clinicians classify patients with cervical pain into clinical patterns and provides pattern-specific guidelines for physical therapy interventions. An organized and specific physical therapy program was effective in improving the status of patients with neck pain.
Eckner, James T; Oh, Youkeun K; Joshi, Monica S; Richardson, James K; Ashton-Miller, James A
2014-03-01
Greater neck strength and activating the neck muscles to brace for impact are both thought to reduce an athlete's risk of concussion during a collision by attenuating the head's kinematic response after impact. However, the literature reporting the neck's role in controlling postimpact head kinematics is mixed. Furthermore, these relationships have not been examined in the coronal or transverse planes or in pediatric athletes. In each anatomic plane, peak linear velocity (ΔV) and peak angular velocity (Δω) of the head are inversely related to maximal isometric cervical muscle strength in the opposing direction (H1). Under impulsive loading, ΔV and Δω will be decreased during anticipatory cervical muscle activation compared with the baseline state (H2). Descriptive laboratory study. Maximum isometric neck strength was measured in each anatomic plane in 46 male and female contact sport athletes aged 8 to 30 years. A loading apparatus applied impulsive test forces to athletes' heads in flexion, extension, lateral flexion, and axial rotation during baseline and anticipatory cervical muscle activation conditions. Multivariate linear mixed models were used to determine the effects of neck strength and cervical muscle activation on head ΔV and Δω. Greater isometric neck strength and anticipatory activation were independently associated with decreased head ΔV and Δω after impulsive loading across all planes of motion (all P < .001). Inverse relationships between neck strength and head ΔV and Δω presented moderately strong effect sizes (r = 0.417 to r = 0.657), varying by direction of motion and cervical muscle activation. In male and female athletes across the age spectrum, greater neck strength and anticipatory cervical muscle activation ("bracing for impact") can reduce the magnitude of the head's kinematic response. Future studies should determine whether neck strength contributes to the observed sex and age group differences in concussion incidence. Neck strength and impact anticipation are 2 potentially modifiable risk factors for concussion. Interventions aimed at increasing athletes' neck strength and reducing unanticipated impacts may decrease the risk of concussion associated with sport participation.
Kim, Bo-Been; Lee, Ji-Hyun; Jeong, Hyo-Jung; Cynn, Heon-Seock
2016-10-01
Forward head posture is a head-on-trunk malalignment, which results in musculoskeletal dysfunction and neck pain. To improve forward head posture, both the craniocervical flexion exercise and the suboccipital release technique have been used. The purpose of this study was to compare the immediate effects of craniocervical flexion exercise and suboccipital release combined with craniocervical flexion exercise on craniovertebral angle, cervical flexion and extension range of motion, and the muscle activities of the sternocleidomastoid, anterior scalene, and splenius capitis during craniocervical flexion exercise in subjects with forward head posture. In total, 19 subjects (7 males, 12 females) with forward head posture were recruited using G-power software. Each subject performed craniocervical flexion exercise and suboccipital release combined with craniocervical flexion exercise in random order. After one intervention was performed, the subject took a 20min wash out period to minimize any carry-over effect between interventions. Craniovertebral angle, cervical flexion and extension range of motion, and the muscle activities of the sternocleidomastoid, anterior scalene, and splenius capitis were measured. A one-way, repeated-measures ANOVA was used to assess differences between the effects of the craniocervical flexion exercise and suboccipital release combined with craniocervical flexion exercise interventions in the same group. Craniovertebral angle (p<0.05), cervical flexion range of motion (p<0.05), and cervical extension range of motion (p<0.001) were significantly greater after suboccipital release combined with craniocervical flexion exercise compared to craniocervical flexion exercise alone. The muscle activities of the sternocleidomastoid, anterior scalene, and splenius capitis were significantly lower during suboccipital release combined with craniocervical flexion exercise than during craniocervical flexion exercise alone across all craniocervical flexion exercise phases except the first (all p<0.05). The addition of suboccipital release to craniocervical flexion exercise provided superior benefits relative to craniocervical flexion exercise alone as an intervention for subjects with forward head posture. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of different head-neck-jaw postures on cervicocephalic kinesthetic sense.
Zafar, H; Alghadir, A H; Iqbal, Z A
2017-12-01
To investigate the effect of different induced head-neck-jaw postures on head-neck relocation error among healthy subjects. 30 healthy adult male subjects participated in this study. Cervicocephalic kinesthetic sense was measured while standing, habitual sitting, habitual sitting with clenched jaw and habitual sitting with forward head posture during right rotation, left rotation, flexion and extension using kinesthetic sensibility test. Head-neck relocation error was least while standing, followed by habitual sitting, habitual sitting with forward head posture and habitual sitting with jaw clenched. However, there was no significant difference in error between different tested postures during all the movements. To the best of our knowledge, this is the first study to see the effect of different induced head-neck-jaw postures on head-neck position sense among healthy subjects. Assuming a posture for a short duration of time doesn't affect head-neck relocation error in normal healthy subjects.
Tran, Baotram; Saxe, Jonathan M; Ekeh, Akpofure Peter
2013-09-01
There are variations in cervical spine (CS) clearance protocols in neurologically intact blunt trauma patients with negative radiological imaging but persistent neck pain. Current guidelines from the current Eastern Association for the Surgery of Trauma include options of maintaining the cervical collar or obtaining either magnetic resonance imaging (MRI) or flexion-extension films (FEF). We evaluated the utility of FEF in the current era of routine computerized tomography (CT) for imaging the CS in trauma. All neurologically intact, awake, nonintoxicated patients who underwent FEF for persistent neck pain after negative CT scan of the CS at our level I trauma center over a 13-mo period were identified. Their charts were reviewed and demographic data obtained. There were 354 patients (58.5% male) with negative cervical CS CT scans who had FEF for residual neck pain. Incidental degenerative changes were seen in 37%--which did not affect their acute management. FEF were positive for possible ligamentous injury in 5 patients (1.4%). Two of these patients had negative magnetic resonance images and the other three had collars removed within 3 wk as the findings were ultimately determined to be degenerative. In the current era, where cervical CT has universally supplanted initial plain films, FEF appear to be of little value in the evaluation of persistent neck pain. Their use should be excluded from cervical spine clearance protocols in neurologically intact, awake patients. Copyright © 2013 Elsevier Inc. All rights reserved.
Ramos, Renato M; da Costa, Ronaldo C; Oliveira, Andre L A; Kodigudla, Manoj K; Goel, Vijay K
2015-08-06
Previous studies in humans have reported that the dimensions of the intervertebral foramina change significantly with movement of the spine. Cervical spondylomyelopathy (CSM) in dogs is characterized by dynamic and static compressions of the neural components, leading to variable degrees of neurologic deficits and neck pain. Studies suggest that intervertebral foraminal stenosis has implications in the pathogenesis of CSM. The dimensions of the cervical intervertebral foramina may significantly change during neck movements. This could have implication in the pathogenesis of CSM and other diseases associated with radiculopathy such as intervertebral disc disease. The purpose of this study was to quantify the morphological changes in the intervertebral foramina of dogs during flexion, extension, traction, and compression of the canine cervical vertebral column. All vertebral columns were examined with magnetic resonance imaging prior to biomechanic testing. Eight normal vertebral columns were placed in Group 1 and eight vertebral columns with intervertebral disc degeneration or/and protrusion were assigned to Group 2. Molds of the left and right intervertebral foramina from C4-5, C5-6 and C6-7 were taken during all positions and loading modes. Molds were frozen and vertical (height) and horizontal (width) dimensions of the foramina were measured. Comparisons were made between neutral to flexion and extension, flexion to extension, and traction to compression in neutral position. Extension decreased all the foraminal dimensions significantly, whereas flexion increased all the foraminal dimensions significantly. Compression decreased all the foraminal dimensions significantly, and traction increased the foraminal height, but did not significantly change the foraminal width. No differences in measurements were seen between groups. Our results show movement-related changes in the dimensions of the intervertebral foramina, with significant foraminal narrowing in extension and compression.
History of pediatric neurology in Poland.
Steinborn, Barbara; Józwiak, Sergiusz
2010-02-01
This review presents the past and the present of pediatric neurology in Poland. Pediatric neurology has its roots in Polish general neurology represented by many outstanding scientists. The founder of Polish school of neurology at the end of 19th century was Edward Flatau, known as the author of Flatau's law. The most famous Polish neurologist was Joseph Babiński, recognized for the first description of pathological plantar reflex. First Polish publication related to child neurology was Brudziński's report on a new meningeal symptom (the flexion of lower limbs during passive neck flexion with pain in neck). Contemporary child neurology in Poland was created by Professor Zofia Majewska after the Second World War. Now 10 academic centers of child neurology exist in Poland fulfilling educational, scientific, and therapeutic roles. Polish Society of Child Neurology was established in 1991 and now there are about 580 members, including 300 child neurologists.
Martínez-Segura, Raquel; Fernández-de-las-Peñas, César; Ruiz-Sáez, Mariana; López-Jiménez, Cristina; Rodríguez-Blanco, Cleofás
2006-09-01
The objective of this study is to analyze the immediate effects on neck pain and active cervical range of motion after a single cervical high-velocity low-amplitude (HVLA) manipulation or a control mobilization procedure in mechanical neck pain subjects. In addition, we assessed the possible correlation between neck pain and neck mobility. Seventy patients with mechanical neck pain (25 males and 45 females, aged 20-55 years) participated in this study. The lateral gliding test was used to establish the presence of an intervertebral joint dysfunction at the C3 through C4 or C4 through C5 levels. Subjects were divided randomly into either an experimental group, which received an HVLA thrust, or a control group, which received a manual mobilization procedure. The outcome measures were active cervical range of motion and neck pain at rest assessed pretreatment and 5 minutes posttreatment by an assessor blinded to the treatment allocation of the patient. Intragroup and intergroup comparisons were made with parametric tests. Within-group effect sizes were calculated using Cohen's d coefficient. Within-group changes showed a significant improvement in neck pain at rest and mobility after application of the manipulation (P < .001). The control group also showed a significant improvement in neck pain at rest (P < .01), flexion (P < .01), extension (P < .05), and both lateral flexions (P < .01), but not in rotation. Pre-post effect sizes were large for all the outcomes in the experimental group (d > 1), but were small to medium in the control mobilization group (0.2 < d < 0.6). The intergroup comparison showed that the experimental group obtained a greater improvement than the control group in all the outcome measures (P < .001). Decreased neck pain and increased range of motion were negatively associated for all cervical motions: the greater the increase in neck mobility, the less the pain at rest. Our results suggest that a single cervical HVLA manipulation was more effective in reducing neck pain at rest and in increasing active cervical range of motion than a control mobilization procedure in subjects suffering from mechanical neck pain.
Smith, Ashley Dean; Jull, Gwendolen; Schneider, Geoff; Frizzell, Bevan; Hooper, Robert Allen; Sterling, Michele
2014-01-01
This study aims to determine if cervical medial branch radiofrequency neurotomy reduces psychophysical indicators of augmented central pain processing and improves motor function in individuals with chronic whiplash symptoms. Prospective observational study of consecutive patients with healthy control comparison. Tertiary spinal intervention centre in Calgary, Alberta, Canada. Fifty-three individuals with chronic whiplash associated disorder symptoms (Grade 2); 30 healthy controls. Measures were made at four time points: two prior to radiofrequency neurotomy, and 1- and 3-months post-radiofrequency neurotomy. Measures included: comprehensive quantitative sensory testing (including brachial plexus provocation test), nociceptive flexion reflex, and motor function (cervical range of movement, superficial neck flexor activity during the craniocervical flexion test). Self-report pain and disability measures were also collected. One-way repeated measures analysis of variance and Friedman's tests were performed to investigate the effect of time on the earlier measures. Differences between the whiplash and healthy control groups were investigated with two-tailed independent samples t-test or Mann-Whitney tests. Following cervical radiofrequency neurotomy, there were significant early (within 1 month) and sustained (3 months) improvements in pain, disability, local and widespread hyperalgesia to pressure and thermal stimuli, nociceptive flexor reflex threshold, and brachial plexus provocation test responses as well as increased neck range of motion (all P < 0.0001). A nonsignificant trend for reduced muscle activity with the craniocervical flexion test (P > 0.13) was measured. Attenuation of psychophysical measures of augmented central pain processing and improved cervical movement imply that these processes are maintained by peripheral nociceptive input. Wiley Periodicals, Inc.
Biomechanical analyses of whiplash injuries using an experimental model.
Yoganandan, Narayan; Pintar, Frank A; Cusick, Joseph F
2002-09-01
Neck pain and headaches are the two most common symptoms of whiplash. The working hypothesis is that pain originates from excessive motions in the upper and lower cervical segments. The research design used an intact human cadaver head-neck complex as an experimental model. The intact head-neck preparation was fixed at the thoracic end with the head unconstrained. Retroreflective targets were placed on the mastoid process, anterior regions of the vertebral bodies, and lateral masses at every spinal level. Whiplash loading was delivered using a mini-sled pendulum device. A six-axis load cell and an accelerometer were attached to the inferior fixation of the specimen. High-speed video cameras were used to obtain the kinematics. During the initial stages of loading, a transient decoupling of the head occurs with respect to the neck exhibiting a lag of the cranium. The upper cervical spine-head undergoes local flexion concomitant with a lag of the head while the lower column is in local extension. This establishes a reverse curvature to the head-neck complex. With continuing application of whiplash loading, the inertia of the head catches up with the neck. Later, the entire head-neck complex is under an extension mode with a single extension curvature. The lower cervical facet joint kinematics demonstrates varying local compression and sliding. While the anterior- and posterior-most regions of the facet joint slide, the posterior-most region of the joint compresses more than the anterior-most region. These varying kinematics at the two ends of the facet joint result in a pinching mechanism. Excessive flexion of the posterior upper cervical regions can be correlated to headaches. The pinching mechanism of the facet joints can be correlated to neck pain. The kinematics of the soft tissue-related structures explain the mechanism of these common whiplash associated disorders.
A comparison of the postures assumed when using laptop computers and desktop computers.
Straker, L; Jones, K J; Miller, J
1997-08-01
This study evaluated the postural implications of using a laptop computer. Laptop computer screens and keyboards are joined, and are therefore unable to be adjusted separately in terms of screen height and distance, and keyboard height and distance. The posture required for their use is likely to be constrained, as little adjustment can be made for the anthropometric differences of users. In addition to the postural constraints, the study looked at discomfort levels and performance when using laptops as compared with desktops. Statistical analysis showed significantly greater neck flexion and head tilt with laptop use. The other body angles measured (trunk, shoulder, elbow, wrist, and scapula and neck protraction/retraction) showed no statistical differences. The average discomfort experienced after using the laptop for 20 min, although appearing greater than the discomfort experienced after using the desktop, was not significantly greater. When using the laptop, subjects tended to perform better than when using the desktop, though not significantly so. Possible reasons for the results are discussed and implications of the findings outlined.
Ahn, Jeoung-Ah; Kim, Joong-Hwi; Bendik, Anthony L; Shin, Ju-Yong
2015-04-01
[Purpose] This study compared the effects on neck-shoulder pain and mobility of strengthening exercises for the neck flexors and scapular retractors performed on a Swiss ball and a mat. [Subjects] Twenty student volunteers were the subjects. [Methods] The students were randomly assigned to two groups: Mat group (n=10), and Swiss ball group (n=10). At pre-test, post-test, and 1-week follow-up pain was assessed using the visual analogue scale (VAS), the pain pressure threshold (PPT) of the shoulder was measured with an algometer, and neck mobility was measured with a Zebris. [Results] The data analysis revealed that there was a significant decrease in pain and significant increase in neck flexion in both groups, and the Swiss ball group showed better results. [Conclusion] Strengthening the neck flexors and scapular retractors for stabilization of the neck using exercises on a Swiss ball was more effective at reducing the pain and stabilizing the neck than mat exercises.
The Effect of Soft and Rigid Cervical Collars on Head and Neck Immobilization in Healthy Subjects.
Barati, Kourosh; Arazpour, Mokhtar; Vameghi, Roshanak; Abdoli, Ali; Farmani, Farzad
2017-06-01
Whiplash injury is a prevalent and often destructive injury of the cervical column, which can lead to serious neck pain. Many approaches have been suggested for the treatment of whiplash injury, including anti-inflammatory drugs, manipulation, supervised exercise, and cervical collars. Cervical collars are generally divided into two groups: soft and rigid collars. The present study aimed to compare the effect of soft and rigid cervical collars on immobilizing head and neck motion. Many studies have investigated the effect of collars on neck motion. Rigid collars have been shown to provide more immobilization in the sagittal and transverse planes compared with soft collars. However, according to some studies, soft and rigid collars provide the same range of motion in the frontal plane. Twenty-nine healthy subjects aged 18-26 participated in this study. Data were collected using a three-dimensional motion analysis system and six infrared cameras. Eight markers, weighing 4.4 g and thickened 2 cm 2 were used to record kinematic data. According to the normality of the data, a paired t -test was used for statistical analyses. The level of significance was set at α=0.01. All motion significantly decreased when subjects used soft collars ( p <0.01). According to the obtained data, flexion and lateral rotation experienced the maximum (39%) and minimum (11%) immobilization in all six motions using soft collars. Rigid collars caused maximum immobilization in flexion (59%) and minimum immobilization in the lateral rotation (18%) and limited all motion much more than the soft collar. This study showed that different cervical collars have different effects on neck motion. Rigid and soft cervical collars used in the present study limited the neck motion in both directions. Rigid collars contributed to significantly more immobilization in all directions.
Rudolfsson, Thomas; Björklund, Martin; Svedmark, Åsa; Srinivasan, Divya; Djupsjöbacka, Mats
2017-01-01
Cervical range of motion (ROM) is commonly assessed in clinical practice and research. In a previous study we decomposed active cervical sagittal ROM into contributions from lower and upper levels of the cervical spine and found level- and direction-specific impairments in women with chronic non-specific neck pain. The present study aimed to validate these results and investigate if the specific impairments can be explained by the neutral posture (defining zero flexion/extension) or a movement strategy to avoid large gravitationally induced torques on the cervical spine. Kinematics of the head and thorax was assessed in sitting during maximal sagittal cervical flexion/extension (high torque condition) and maximal protraction (low torque condition) in 120 women with chronic non-specific neck pain and 40 controls. We derived the lower and upper cervical angles, and the head centre of mass (HCM), from a 3-segment kinematic model. Neutral head posture was assessed using a standardized procedure. Previous findings of level- and direction-specific impairments in neck pain were confirmed. Neutral head posture was equal between groups and did not explain the direction-specific impairments. The relative magnitude of group difference in HCM migration did not differ between high and low torques conditions, lending no support for our hypothesis that impairments in sagittal ROM are due to torque avoidance behaviour. The direction- and level-specific impairments in cervical sagittal ROM can be generalised to the population of women with non-specific neck pain. Further research is necessary to clarify if torque avoidance behaviour can explain the impairments.
Greenbaum, Tzvika; Dvir, Zeevi; Reiter, Shoshana; Winocur, Ephraim
2017-02-01
Temporomandibular Disorders (TMD) refer to several common clinical disorders which involve the masticatory muscles, the temporomandibular joint (TMJ) and the adjacent structures. Although neck signs and symptoms are found with higher prevalence in TMD patients compared to the overall population, whether limitation of cervical mobility is an additional positive finding in this cohort is still an open question. To compare the physiological cervical range of motion (CROM) and the extent of rotation during cervical flexion (flexion-rotation test, FRT) in people with TMD (muscular origin) and healthy control subjects. The range of motion of the neck and FRT was measured in 20 women with myogenic TMD and 20 age matched healthy controls. Women with myogenic TMD had significantly lower FRT scores compared to their matched healthy women. No difference was found between groups in CROM in any of the planes of movement. The FRT was positive (less than 32°) in 90% of the TMD participants versus 5% in the healthy control but the findings were not correlated with TMD severity. The results point out a potential involvement of the upper cervical joints (c1-c2) in women with myogenic TMD. Copyright © 2016 Elsevier Ltd. All rights reserved.
1975-09-01
34 whiplash " phenomenon, little information has been published concerning variation in head mass, center of gravity in the seated position, and neck...which occur in head -on collisions (i.e., an abrupt flexion of the neck followed by a recoil in extension). While " whiplash " may occur in this manner...Jackson) or rear impact with the occupant’s head turned. The term " whiplash " has been widely misused in the literature to denote a medical
Effect of different head-neck-jaw postures on cervicocephalic kinesthetic sense
Zafar, Hamayun; Alghadir, Ahmad H.; Iqbal, Zaheen A.
2017-01-01
Objectives: To investigate the effect of different induced head-neck-jaw postures on head-neck relocation error among healthy subjects. Methods: 30 healthy adult male subjects participated in this study. Cervicocephalic kinesthetic sense was measured while standing, habitual sitting, habitual sitting with clenched jaw and habitual sitting with forward head posture during right rotation, left rotation, flexion and extension using kinesthetic sensibility test. Results: Head-neck relocation error was least while standing, followed by habitual sitting, habitual sitting with forward head posture and habitual sitting with jaw clenched. However, there was no significant difference in error between different tested postures during all the movements. Conclusions: To the best of our knowledge, this is the first study to see the effect of different induced head-neck-jaw postures on head-neck position sense among healthy subjects. Assuming a posture for a short duration of time doesn’t affect head-neck relocation error in normal healthy subjects. PMID:29199196
Brar, Abheetinder S; Howell, Stephen M; Hull, Maury L; Mahfouz, Mohamed R
2016-08-01
Kinematically aligned total knee arthroplasty uses a femoral component designed for mechanical alignment (MA) and sets the component in more internal, valgus, and flexion rotation than MA. It is unknown how much kinematic alignment (KA) and flexion of the femoral component reduce the proximal and lateral reach of the trochlea; two reductions that could increase the risk of abnormal patella tracking. We simulated MA and KA of the femoral component in 0° of flexion on 20 3-dimensional bone models of normal femurs. The mechanically and kinematically aligned components were then aligned in 5°, 10°, and 15° of flexion and downsized until the flange contacted the anterior femur. The reductions in the proximal and lateral reach from the proximal point of the trochlea of the MA component set in 0° of flexion were computed. KA at 0° of flexion did not reduce the proximal reach and reduced the lateral reach an average of 3 mm. Flexion of the MA and KA femoral component 5°, 10°, and 15° reduced the proximal reach an average of 4 mm, 8 mm, and 12 mm, respectively (0.8 mm/degree of flexion), and reduced the lateral reach an average of 1 mm and 4 mm regardless of the degree of flexion, respectively. Arthroplasty surgeons and biomechanical engineers striving to optimize patella tracking might consider developing surgical techniques to minimize flexion of the femoral component when performing KA and MA total knee arthroplasty to promote early patella engagement and consider designing a femoral component with a trochlea shaped specifically for KA. Copyright © 2016 Elsevier Inc. All rights reserved.
Stoll, C; Levy, J M; Kehr, P; Roth, M P
1980-11-01
Two sisters affected with the same disorder are described. They had webbing of the neck, the antecubital fossae and the popliteal regions, together with flexion deformities of the limb joints and anomalies of the vertebrae. Eight other cases are known. The condition is inherited in an autosomal recessive mode.
Pourahmadi, Mohammad Reza; Bagheri, Rasool; Taghipour, Morteza; Takamjani, Ismail Ebrahimi; Sarrafzadeh, Javad; Mohseni-Bandpei, Mohammad Ali
2018-03-01
Measurement of cervical spine range of motion (ROM) is often considered to be an essential component of cervical spine physiotherapy assessment. This study aimed to investigate the reliability and validity of an iPhone application (app) (Goniometer Pro) for measuring active craniocervical ROM (ACCROM) in patients with non-specific neck pain. A cross-sectional study was conducted at the musculoskeletal biomechanics laboratory located at Iran University of Medical Sciences. Forty non-specific neck pain patients participated in this study. The outcome measure was the ACCROM, including flexion, extension, lateral flexion, and rotation. Following the recruitment process, ACCROM was measured using a universal goniometer (UG) and iPhone 7 app. Two blinded examiners each used the UG and iPhone to measure ACCROM in the following sequences: flexion, extension, lateral flexion, and rotation. The second (2 hours later) and third (48 hours later) sessions were carried out in the same manner as the first session. Intraclass correlation coefficient (ICC) models were used to determine the intra-rater and inter-rater reliability. The Pearson correlation coefficients were used to establish concurrent validity of the iPhone app. Minimum detectable change at the 95% confidence level (MDC 95 ) was also computed. Good intra-rater and inter-rater reliability was demonstrated for the goniometer with ICC values of ≥0.66 and ≥0.70 and the iPhone app with ICC values of ≥0.62 and ≥0.65, respectively. The MDC 95 ranged from 2.21° to 12.50° for the intra-rater analysis and from 3.40° to 12.61° for the inter-rater analysis. The concurrent validity between the two instruments was high, with r valuesof ≥0.63. The magnitude of the differences between the UG and iPhone app values (effect sizes) was small, with Cohen d values of ≤0.17. The iPhone app possesses good reliability and high validity. It seems that this app can be used for measuring ACCROM. Copyright © 2017 Elsevier Inc. All rights reserved.
Alahmari, Khalid A; Reddy, Ravi Shankar; Silvian, Paul; Ahmad, Irshad; Nagaraj, Venkat; Mahtab, Mohammad
2017-11-06
Evaluation of cervical joint position sense in subjects with chronic neck pain has gained importance in recent times. Different authors have established increased joint position error (JPE) in subjects with acute neck pain. However, there is a paucity of studies to establish the influence of chronic neck pain on cervical JPE. The objective of the study was to understand the influence of chronic neck pain on cervical JPE, and to examine the differences in cervical JPE between young and elderly subjects with chronic neck pain. Forty-two chronic neck pain patients (mean age 47.4) were compared for cervical JPE with 42 age-matched healthy subjects (mean age 47.8), using a digital inclinometer. The cervical JPE were measured in flexion, extension, and rotation in right and left movement directions. The comparison of JPE showed significantly larger errors in subjects with chronic neck pain when compared to healthy subjects (p< 0.001). The errors were larger in all of the movement directions tested. Comparison between young and older subjects with chronic neck pain revealed no significant differences (P> 0.05) in cervical JPE. Cervical joint position sense is impaired in subjects with chronic neck pain.
Clinical effects of deep cervical flexor muscle activation in patients with chronic neck pain
Kim, Jin Young; Kwag, Kwang Il
2016-01-01
[Purpose] The purpose of this study was to investigate clinical effects of deep cervical flexor (DCF) muscles exercise on pain, Neck Disability Index (NDI), and neck and shoulder postures in patients with chronic neck pain. [Subjects and Methods] Twenty-eight patients with chronic neck pain were randomly assigned into either the general strengthening exercise (GSE) group or the DCF activation group as control and experimental groups, respectively. All exercises were performed three times per week over 4 weeks. NDI and numeric rating scale (NRS) score for pain were determined and radiological assessment of neck-shoulder postures (head tilt angle [HTA], neck flexion angle [NFA], and forward shoulder angle [FSA]) was performed before (baseline), 4 weeks after, and 8 weeks after exercise in order to directly compare the exercise effects between the groups. [Results] In the DCF group, the NDI, NRS score, and neck-shoulder postures (analyzed by uisng HTA, NFA, and FSA) were significantly improved. [Conclusion] DCF activation exercise was effective to alleviate pain, recover functions, and correct forward head posture in the patients with neck pain. Hence, it might be recommended in the rehabilitation of patients with chronic neck pain. PMID:26957772
Reliability and validity of the Microsoft Kinect for assessment of manual wheelchair propulsion.
Milgrom, Rachel; Foreman, Matthew; Standeven, John; Engsberg, Jack R; Morgan, Kerri A
2016-01-01
Concurrent validity and test-retest reliability of the Microsoft Kinect in quantification of manual wheelchair propulsion were examined. Data were collected from five manual wheelchair users on a roller system. Three Kinect sensors were used to assess test-retest reliability with a still pose. Three systems were used to assess concurrent validity of the Kinect to measure propulsion kinematics (joint angles, push loop characteristics): Kinect, Motion Analysis, and Dartfish ProSuite (Dartfish joint angles were limited to shoulder and elbow flexion). Intraclass correlation coefficients revealed good reliability (0.87-0.99) between five of the six joint angles (neck flexion, shoulder flexion, shoulder abduction, elbow flexion, wrist flexion). ICCs suggested good concurrent validity for elbow flexion between the Kinect and Dartfish and between the Kinect and Motion Analysis. Good concurrent validity was revealed for maximum height, hand-axle relationship, and maximum area (0.92-0.95) between the Kinect and Dartfish and maximum height and hand-axle relationship (0.89-0.96) between the Kinect and Motion Analysis. Analysis of variance revealed significant differences (p < 0.05) in maximum length between Dartfish (mean 58.76 cm) and the Kinect (40.16 cm). Results pose promising research and clinical implications for propulsion assessment and overuse injury prevention with the application of current findings to future technology.
Cervical isometric strength and range of motion of elite rugby union players: a cohort study
2014-01-01
Background Head and neck injury is relatively common in Rugby Union. Despite this, strength and range-of-motion characteristics of the cervical spine are poorly characterised. The aim of this study was to provide data on the strength and range-of-motion of the cervical spine of professional rugby players to guide clinical rehabilitation. Methods A cohort study was performed evaluating 27 players from a single UK professional rugby club. Cervical isometric strength and range-of-motion were assessed in 3 planes of reference. Anthropometric data was collected and multivariate regression modelling performed with a view to predicting cervical isometric strength. Results Largest forces were generated in extension, with broadly equal isometric side flexion forces at around 90% of extension values. The forwards generated significantly more force than the backline in all parameters bar flexion. The forwards had substantially reduced cervical range-of-motion and larger body mass, with differences observed in height, weight, neck circumference and chest circumference (p < 0.002). Neck circumference was the sole predictor of isometric extension (adjusted R2 = 30.34). Conclusion Rehabilitative training programs aim to restore individuals to pre-injury status. This work provides reference ranges for the strength and range of motion of the cervical spine of current elite level rugby players. PMID:25120916
Cervical isometric strength and range of motion of elite rugby union players: a cohort study.
Hamilton, David F; Gatherer, Don
2014-01-01
Head and neck injury is relatively common in Rugby Union. Despite this, strength and range-of-motion characteristics of the cervical spine are poorly characterised. The aim of this study was to provide data on the strength and range-of-motion of the cervical spine of professional rugby players to guide clinical rehabilitation. A cohort study was performed evaluating 27 players from a single UK professional rugby club. Cervical isometric strength and range-of-motion were assessed in 3 planes of reference. Anthropometric data was collected and multivariate regression modelling performed with a view to predicting cervical isometric strength. Largest forces were generated in extension, with broadly equal isometric side flexion forces at around 90% of extension values. The forwards generated significantly more force than the backline in all parameters bar flexion. The forwards had substantially reduced cervical range-of-motion and larger body mass, with differences observed in height, weight, neck circumference and chest circumference (p < 0.002). Neck circumference was the sole predictor of isometric extension (adjusted R(2) = 30.34). Rehabilitative training programs aim to restore individuals to pre-injury status. This work provides reference ranges for the strength and range of motion of the cervical spine of current elite level rugby players.
Björklund, Martin; Svedmark, Åsa; Srinivasan, Divya; Djupsjöbacka, Mats
2017-01-01
Background Cervical range of motion (ROM) is commonly assessed in clinical practice and research. In a previous study we decomposed active cervical sagittal ROM into contributions from lower and upper levels of the cervical spine and found level- and direction-specific impairments in women with chronic non-specific neck pain. The present study aimed to validate these results and investigate if the specific impairments can be explained by the neutral posture (defining zero flexion/extension) or a movement strategy to avoid large gravitationally induced torques on the cervical spine. Methods Kinematics of the head and thorax was assessed in sitting during maximal sagittal cervical flexion/extension (high torque condition) and maximal protraction (low torque condition) in 120 women with chronic non-specific neck pain and 40 controls. We derived the lower and upper cervical angles, and the head centre of mass (HCM), from a 3-segment kinematic model. Neutral head posture was assessed using a standardized procedure. Findings Previous findings of level- and direction-specific impairments in neck pain were confirmed. Neutral head posture was equal between groups and did not explain the direction-specific impairments. The relative magnitude of group difference in HCM migration did not differ between high and low torques conditions, lending no support for our hypothesis that impairments in sagittal ROM are due to torque avoidance behaviour. Interpretation The direction- and level-specific impairments in cervical sagittal ROM can be generalised to the population of women with non-specific neck pain. Further research is necessary to clarify if torque avoidance behaviour can explain the impairments. PMID:28099504
Björklund, Martin; Djupsjöbacka, Mats; Svedmark, Asa; Häger, Charlotte
2012-05-20
A major problem with rehabilitation interventions for neck pain is that the condition may have multiple causes, thus a single treatment approach is seldom efficient. The present study protocol outlines a single blinded randomised controlled trial evaluating the effect of tailored treatment for neck-shoulder pain. The treatment is based on a decision model guided by standardized clinical assessment and functional tests with cut-off values. Our main hypothesis is that the tailored treatment has better short, intermediate and long-term effects than either non-tailored treatment or treatment-as-usual (TAU) on pain and function. We sub-sequentially hypothesize that tailored and non-tailored treatment both have better effect than TAU. 120 working women with minimum six weeks of nonspecific neck-shoulder pain aged 20-65, are allocated by minimisation with the factors age, duration of pain, pain intensity and disability in to the groups tailored treatment (T), non-tailored treatment (NT) or treatment-as-usual (TAU). Treatment is given to the groups T and NT for 11 weeks (27 sessions evenly distributed). An extensive presentation of the tests and treatment decision model is provided. The main treatment components are manual therapy, cranio-cervical flexion exercise and strength training, EMG-biofeedback training, treatment for cervicogenic headache, neck motor control training. A decision algorithm based on the baseline assessment determines the treatment components given to each participant of T- and NT-groups. Primary outcome measures are physical functioning (Neck Disability Index) and average pain intensity last week (Numeric Rating Scale). Secondary outcomes are general improvement (Patient Global Impression of Change scale), symptoms (Profile Fitness Mapping neck questionnaire), capacity to work in the last 6 weeks (quality and quantity) and pressure pain threshold of m. trapezius. Primary and secondary outcomes will be reported for each group with effect size and its precision. We have chosen not to include women with psychological ill-health and focus on biomedical aspects of neck pain. Future studies should aim at including psychosocial aspects in a widened treatment decision model. No important adverse events or side-effects are expected.
Waeyaert, Patirck; Jansen, Daniel; Bastiaansen, Marco; Scafoglieri, Aldo; Buyl, Ronald; Schmitt, Maarten; Cattrysse, Erik
2016-08-01
A cross-sectional observational study of three-dimensional (3D) cervical kinematics in 41 chronic neck pain (CNPs) patients and 156 asymptomatic controls. The objective was to investigate 3D cervical kinematics by analyzing and comparing quantitative and qualitative parameters in healthy subjects and CNPs. Furthermore, subgroups were formed to explore the influence of pain-location on cervical kinematics. The possible correlation of kinematic parameters with the degree of functional disability was examined as well. In patients with chronic neck pain, a clear pathological cause is frequently not identifiable. Therefore, the need to assess neck pain with a broader view than structure or anatomical-based divergences is desirable. Movements of the cervical spine were registered using an electromagnetic tracking system. Quantitative and qualitative kinematics were analyzed for active axial rotation, lateral bending, and flexion-extension motion components. During lateral bending, the range of the main motion demonstrated significant higher values (P = 0.001) in the controls (mean: 68.67° ± 15.17°) than patients (mean: 59.28° ± 15.41°). Significant differences were demonstrated between subgroups for several kinematic parameters (P < 0.05). Although differences were predominantly recorded between the "symmetrical" and "asymmetrical" pain group, some parameters also distinguished subgroups from controls. On average, the symmetrical group showed significant less harmonic movement patterns, expressed by qualitative parameters, in comparison with the "asymmetrical" group and controls. Furthermore, the "asymmetrical" group showed significant lower scores on quantitative parameters than the "symmetrical" group and controls. The degree of functional disability correlated moderately with changes in qualitative parameters. In this study, chronic neck pain patients with a symmetrical pain pattern showed significant poorer quality of movement, while those with asymmetrical pain showed a significant reduction in quantitative measures. Subgrouping of neck patients based on pain location may be of help for further research and clinics. 4.
Fernández-Mayoralas, Daniel M; Fernández-de-las-Peñas, César; Palacios-Ceña, Domingo; Cantarero-Villanueva, Irene; Fernández-Lao, Carolina; Pareja, Juan A
2010-10-01
The main purpose of this study was to analyze the differences in neck mobility between children with chronic tension type headache (CTTH) and healthy children, and to determine the influence of cervical mobility on headache intensity, frequency and duration. Fifty children, 13 boys and 37 girls (mean age 8.5 ± 1.6 years) with CTTH associated to peri-cranial tenderness (IHS 2.3.1) and 50 age- and sex matched children without headache (13 boys, 37 girls, mean age 8.5 ± 1.8 years, P = 0.955) participated. Cervical range of motion (CROM) was objectively assessed with a cervical goniometer by an assessor blinded to the children's condition. Children completed a headache diary for 4 weeks to confirm the diagnosis. Children with CTTH showed decreased CROM as compared to children without headache for flexion (z = -6.170; P < 0.001), extension (z = -4.230; P < 0.001), right (z = -4.505; P < 0.001) and left (z = -4.768; P < 0.001) lateral-flexions, but not for rotation (right z = -0.802; P = 0.425; left z = -1.254; P = 0.213) and also for total range of motion for flexion-extension (z = -4.267; P < 0.001) and lateral-flexion (z = -4.801; P < 0.001), but not for rotation (z = -1.058; P = 0.293). Within CTTH children, CROM was not correlated with headache intensity, frequency or duration. Additionally, age (P > 0.125) or gender (P > 0.250) did not influence CROM in either children with CTTH or without headache. Current results support the hypothesis that the cervical spine should be explored in children with headache. Further research is also needed to clearly define the potential role of the cervical spine in the genesis or maintenance of CTTH.
NASA Astrophysics Data System (ADS)
Ciunel, St.; Tica, B.
2016-08-01
The paper presents the studies made on a similar biomechanical system composed by neck, head and thorax bones. The models were defined in a CAD environment which includes Adams algorithm for dynamic simulations. The virtual models and the entire morphology were obtained starting with CT images made on a living human subject. The main movements analyzed were: axial rotation (left-right), lateral bending (left-right) and flexion- extension movement. After simulation was obtained the entire biomechanical behavior based on data tables or diagrams. That virtual model composed by neck and head can be included in complex system (as a car system) and supposed to several impact simulations (virtual crash tests). Also, our research team built main components of a testing device for dummy car crash neck-head system using anatomical data.
Grip, Helena; Sundelin, Gunnevi; Gerdle, Björn; Karlsson, J Stefan
2007-10-01
The ability to reproduce head position can be affected in patients after a neck injury. The repositioning error is commonly used as a measure of proprioception, but variations in the movement might provide additional information. The axis of motion and target performance were analyzed during a head repositioning task (flexion, extension and side rotations) for 24 control subjects, 22 subjects with whiplash-associated disorders and 21 with non-specific neck pain. Questionnaires regarding pain intensity and fear avoidance were collected. Head position and axis of motion parameters were calculated using a helical axis model with a moving window of 4 degrees . During flexion the whiplash group had a larger constant repositioning error than the control group (-1.8(2.9) degrees vs. 0.1(2.4) degrees , P=0.04). The axis was more inferior in both neck pain groups (12.0(1.6)cm vs. 14.5(2.0)cm, P<0.05) indicating movement at a lower level in the spine. Including pain intensity from shoulder and neck region as covariates showed an effect on the axis position (P=0.03 and 0.04). During axial rotation to the left there was more variation in axis direction for neckpain groups as compared with controls (4.0(1.7) degrees and 3.7(2.4) degrees vs. 2.3(1.9) degrees , P=0.01 and 0.05). No significant difference in fear avoidance was found between the two neck pain groups. Measuring variation in the axis of motion together with target performance gives objective measures on proprioceptive ability that are difficult to quantify by visual inspection. Repositioning errors were in general small, suggesting it is not sufficient as a single measurement variable in a clinical situation, but should be measured in combination with other tests, such as range of motion.
Cheever, Kelly M; Myrer, J William; Johnson, A Wayne; Fellingham, Gilbert W
2017-09-22
Inconsistencies in the literature concerning the effect of neck pain have led to a lack of understanding concerning the complete pathophysiology of neck pain. While the effect of neck pain on motor function as measured by active range of motion and isometric neck strength is well documented the effect of neck pain on sensory measures such as tactical acuity and neck reposition error (NRE) remain poorly understood. The purpose of this study was to evaluate a combined sensorimotor evaluation to explore the potential benefits of incorporating both sensory and motor task into a physical evaluation of neck pain suffers to gain an added knowledge of the complete pathophysiology of their health status. A cross-sectional study that measured neck joint reposition error, tactical acuity, neck isometric strength and range of motion in 40 volunteer participants (22 pain, 18 control). A statistically significant increase in NRE in flexion (2.75∘± 1.52∘ vs. 4.53∘± 1.74∘ and in extension (3.78∘± 1.95∘ vs 5.77∘± 2.73∘ in participants suffering from neck pain was observed. Additionally, the dermatome C5 was found to be the most affected. No differences were found in neck strength or neck range of motion between healthy controls and patients with chronic moderate neck pain.
Mizu-Uchi, Hideki; Colwell, Clifford W; Fukagawa, Shingo; Matsuda, Shuichi; Iwamoto, Yukihide; D'Lima, Darryl D
2012-10-01
We constructed patient-specific models from computed tomography data after total knee arthroplasty to predict knee flexion based on implant-bone impingement. The maximum flexion before impingement between the femur and the tibial insert was computed using a musculoskeletal modeling program (KneeSIM; LifeModeler, Inc, San Clemente, California) during a weight-bearing deep knee bend. Postoperative flexion was measured in a clinical cohort of 21 knees (low-flex group: 6 knees with <100° of flexion and high-flex group: 15 size-matched knees with >125° of flexion at 2 years). Average predicted flexion angles were within 2° of clinical measurements for the high-flex group. In the low-flex group, 4 cases had impingement involving the bone cut at the posterior condyle, and the average predicted knee flexion was 102° compared with 93° measured clinically. These results indicate that the level of the distal femoral resection should be carefully planned and that exposed bone proximal to the tips of the posterior condyles of the femoral component should be removed if there is risk of impingement. Copyright © 2012 Elsevier Inc. All rights reserved.
Luo, Peng; Dou, Hai-cheng; Ni, Wen-fei; Huang, Qi-shan; Wang, Xiang-yang; Xu, Hua-zi; Chi, Yong-long
2011-03-01
To explore the efficacy of anterior percutaneous screw fixation in the treatment of odontoid process fractures in aged people. From February 2001 to April 2009, 15 elderly patients with odontoid fracture were treated with anterior percutaneous screw fixation,including 13 males and 2 females; the average age was 69.3 years (ranged, 60 to 86 years). According to Anderson classification, there were 10 patients with type II fractures (type II A in 7 cases, type II B in 3 cases, based on Eysel and Roosen classification), 4 patients with shallow type III fractures, 1 patient with deep type III fractures. Thirteen patients were fresh fractures, 2 patients were obsolete fractures. All patients had varying degrees of neck or shoulder pain, and limit activity of neck. There were 4 patients with neural symptoms including 2 grade D and 2 grade C according to Frankel classification. All the patients were followed up and were assessed by radiology. Clinical examination included neck activity, neurological function and the degree of neck pain. Radiology examinations including anteroposterior, lateral, open mouth position and flexion-extension radiographs of cervical vertebra were performed. After surgery, all patients were followed up,and the duration ranged from 6 to 60 months (averaged 31.3 months). Two patients died of other diseases during the follow-up period (18 and 22 months after surgery respectively). All patients got satisfactory results, and all screws were in good position. As the screw was too long, esophagus was compressed by screw tail in one case. One case showed fibrous union, 12 cases had achieved solid bony union, 2 cases showed nonunion without clinical symptoms. The rotation of neck in 3 cases was mildly limited,the neck function of the remaining patients were normal. Four patients with symptoms nerve injuries improved after operation (Frankel E in 3 cases, Frankel D in 1 case). The symptom of neck pain had a significant improvement after surgery (P < 0.001). The VAS score decreased from preoperative (6.07 +/- 1.44) (4 to 8 scores),to postoperative (1.13 +/- 0.92) (0 to 3 scores). And there were no severe postoperative complications. The anterior percutaneous screw fixation is less traumatic than conventional approaches for aged people in dealing with odontoid process fractures. Most patients will achieve satisfactory clinical results, as long as the general conditions of them are comprehensively assess. However, this procedure should not be used in patients with comminuted odontoid fractures or severe osteoporosis.
Niederer, Daniel; Vogt, Lutz; Wilke, Jan; Rickert, Marcus; Banzer, Winfried
2015-03-01
The present study aims to develop age-dependent cutoff values in a quasi-experimental, cross-sectional diagnostic test study. One hundred and twenty (120) asymptomatic subjects (n = 100, 36♀, 18 75 years, for normative values; n = 20, 23-75 years, 15♀, for selectivity analyses) and 20 patients suffering from idiopathic neck pain (selectivity analyses, 22-71 years, 15♀) were included. Subjects performed five repetitive maximal cervical flexion/extension movements in an upright sitting position. Cervical kinematic characteristics (maximal range of motion (ROM), coefficient of variation (CV) and mean conjunct movements in rotation and flexion (CM)) were calculated from raw 3D ultrasonic data. Regression analyses were conducted to reveal associations between kinematic characteristics and age and gender and thus to determine normative values for healthy subjects. Age explains 53 % of the variance in ROM (decrease 10.2° per decade), 13 % in CV (increase 0.003 per decade) and 9 % in CM (increase 0.57° per decade). Receivers operating characteristic (ROC) analyses were conducted for differences between individual values of the kinematic characteristics and normative values to optimise cutoff values for distinguishing patients from unimpaired subjects (20 patients and 20 healthy). Cutoff values distinguished asymptomatic subjects' and chronic nonspecific neck patient's movement characteristics with sufficient quality (sensitivity 70-80 %, specificity 65-70 %). By including such classifications, the present findings expand actual research stating an age-related decrease in kinematic behaviour only using categorising span widths across decades. Future study is warranted to reveal our results' potential applicability for intervention onset decision making for idiopathic neck pain patients.
Arthroscopic lysis of adhesions for the stiff total knee: results after failed manipulation.
Tjoumakaris, Fotios Paul; Tucker, Bradfords Chofield; Post, Zachary; Pepe, Matthew David; Orozco, Fabio; Ong, Alvin C
2014-05-01
Arthrofibrosis after total knee arthroplasty (TKA) is a potentially devastating complication, resulting in loss of motion and function and residual pain. For patients in whom aggressive physical therapy and manipulation under anesthesia fail, lysis of adhesions may be the only option to rescue the stiff TKA. The purpose of this study is to report the results of arthroscopic lysis of adhesions after failed manipulation for a stiff, cruciate-substituting TKA. This retrospective study evaluated patients who had undergone arthroscopic lysis of adhesions for arthrofibrosis after TKA between 2007 and 2011. Minimum follow-up was 12 months (average, 31 months). Average total range of motion of patients in this series was 62.3°. Average preoperative flexion contracture was 16° and average flexion was 78.6°. Statistical analysis was performed using Student's t test. Pre- to postoperative increase in range of motion was significant (P<.001) (average, 62° preoperatively to 98° postoperatively). Average preoperative extension deficit was 16°, which was reduced to 4° at final follow-up. This value was also found to be statistically significant (P<.0001). With regard to ultimate flexion attained, average preoperative flexion was 79°, which was improved to 103° at final follow-up. This improvement in flexion was statistically significant (P<.0001). Patients can reliably expect an improvement after arthroscopic lysis of adhesions for a stiff TKA using a standardized arthroscopic approach; however, patients achieved approximately half of the improvement that was obtained at the time of surgery. Copyright 2014, SLACK Incorporated.
A painful stiff neck following an ear, nose, and throat surgical procedure: case report.
Pavlidis, Elena; Copioli, Cristiana; Spagnoli, Carlotta; Mazzotta, Silvia; Ormitti, Francesca; Crisi, Girolamo; Pisani, Francesco
2015-02-01
Grisel syndrome is a rare, nontraumatic atlantoaxial subluxation, typical of developmental ages and characterized by head flexion/rotation and painful fixation. Neurological symptoms may occur. It is secondary to head/neck infections and ear, nose, and throat surgery (adenoidectomy, tonsillectomy, and mastoidectomy). Here, we report the case of a child who presented a painful stiff neck following an adenotonsillectomy, with imaging evidencing an atlantoaxial subluxation. The child showed improvement in his condition following a conservative treatment with antibiotics, anti-inflammatory, and analgesic therapy and cervical collar. We believe it is of great significance for clinicians taking into account this peculiar condition in the differential diagnosis of a stiff neck in pediatric patients, thus avoiding misdiagnosis and delays. Indeed, its diagnosis is mainly based on a focused anamnesis associated with the detection of the typical neuroradiological findings. Georg Thieme Verlag KG Stuttgart · New York.
The association between asymmetric hip mobility and neck pain in young adults.
Lee, Hsin-Yi; Wang, Jung-Der; Wang, Jung-Er; Chang, Hsiao-Lan; He, Yang-Chien; Chu, Mei-Mang; Chen, Li-Fei
2013-01-01
The objective of this cross-sectional observational study was to determine whether asymmetric hip mobility was associated with neck pain in young adults. Three hundred twenty-seven freshmen students were recruited from an urban university and underwent the Patrick's flexion, abduction, external rotation, extension (FABERE) test for comparison of the functional mobility of bilateral hip joints during the health examination. A logistic regression model was constructed to determine whether the asymmetry measured by the Patrick's FABERE test was associated with neck pain after adjusting for factors of sex and exercise habits. The frequency of asymmetric results of the Patrick's FABERE test among the students who reported neck pain was significantly higher than that of those without neck pain (54.2% vs 26.5%; P < .001). After adjusting for the above confounders, the odds ratio of asymmetric results of a Patrick's FABERE test was 2.99 (95% confidence interval, 1.57-5.72; P < .001). Imbalanced mobility of the hip joints might be associated with an increased incidence of neck pain. Copyright © 2013 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.
Hollenbeck, S Matt; Glattes, R Christopher; Asher, Marc A; Lai, Sue Min; Burton, Douglas C
2008-07-01
Retrospective case series. To determine the prevalence of proximal junctional sagittal plane flexion increase after posterior instrumentation and arthrodesis. Increased flexion proximal to the junction of the instrumented and fused spinal region with the adjacent mobile spine seems to be a relatively recent observation, may be increasing, and is occasionally problematic. The proximal junctional sagittal angulation 2 motion segments above the upper end instrumentation levels was measured on lateral standing preoperative and follow-up radiographs. One hundred seventy-four of 208 consecutive patients (84%) at an average radiograph follow-up of 4.9 +/- 2.73 years had increased proximal junctional flexion in 9.2%. The preoperative junctional measurements were normal for both normal and increased flexion groups. At follow-up, proximal junctional flexion had increased significantly more in the increased flexion group (2.1 degrees vs. 14.1 degrees , P < 0.0001). None of the possible risk factors studied, including demographic comparisons, Lenke classification (including lumbar and sagittal modifiers), end-instrumented vertebrae, end vertebra anchor configurations, surgical sequence, additional anterior surgery, rib osteotomies, and instrumentation length, were significantly associated with increased proximal junctional flexion at follow-up. Lenke 6 curves were at marginal risk of increased proximal junctional flexion (P = 0.0108). There were no differences between the groups in total Scoliosis Research Society-22r scores at an average follow-up of 8.0 +/- 3.74 years. No patient had additional surgery related to increased proximal junctional flexion. The prevalence of increased proximal junctional flexion was 9.2%. No significant risk factors were identified. Total Scoliosis Research Society-22r scores were similar for groups with normal and increased proximal junctional flexion at follow-up.
Martínez-Segura, Raquel; De-la-Llave-Rincón, Ana I; Ortega-Santiago, Ricardo; Cleland, Joshua A; Fernández-de-Las-Peñas, César
2012-09-01
Randomized clinical trial. To compare the effects of cervical versus thoracic thrust manipulation in patients with bilateral chronic mechanical neck pain on pressure pain sensitivity, neck pain, and cervical range of motion (CROM). Evidence suggests that spinal interventions can stimulate descending inhibitory pain pathways. To our knowledge, no study has investigated the neurophysiological effects of thoracic thrust manipulation in individuals with bilateral chronic mechanical neck pain, including widespread changes on pressure sensitivity. Ninety patients (51% female) were randomly assigned to 1 of 3 groups: cervical thrust manipulation on the right, cervical thrust manipulation on the left, or thoracic thrust manipulation. Pressure pain thresholds (PPTs) over the C5-6 zygapophyseal joint, lateral epicondyle, and tibialis anterior muscle, neck pain (11-point numeric pain rating scale), and cervical spine range of motion (CROM) were collected at baseline and 10 minutes after the intervention by an assessor blinded to the treatment allocation of the patients. Mixed-model analyses of covariance were used to examine the effects of the treatment on each outcome variable, with group as the between-subjects variable, time and side as the within-subject variables, and gender as the covariate. The primary analysis was the group-by-time interaction. No significant interactions were found with the mixed-model analyses of covariance for PPT level (C5-6, P>.210; lateral epicondyle, P>.186; tibialis anterior muscle, P>.268), neck pain intensity (P = .923), or CROM (flexion, P = .700; extension, P = .387; lateral flexion, P>.672; rotation, P>.192) as dependent variables. All groups exhibited similar changes in PPT, neck pain, and CROM (all, P<.001). Gender did not influence the main effects or the interaction effects in the analyses of the outcomes (P>.10). The results of the current randomized clinical trial suggest that cervical and thoracic thrust manipulation induce similar changes in PPT, neck pain intensity, and CROM in individuals with bilateral chronic mechanical neck pain. However, changes in PPT and CROM were small and did not surpass their respective minimal detectable change values. Further, because we did not include a control group, we cannot rule out a placebo effect of the thrust interventions on the outcomes. Therapy, level 1b.J Orthop Sports Phys Ther 2012;42(9):806-814, Epub 18 June 2012. doi:10.2519/jospt.2012.4151.
Dunning, James R; Cleland, Joshua A; Waldrop, Mark A; Arnot, Cathy F; Young, Ian A; Turner, Michael; Sigurdsson, Gisli
2012-01-01
Randomized clinical trial. To compare the short-term effects of upper cervical and upper thoracic high-velocity low-amplitude (HVLA) thrust manipulation to nonthrust mobilization in patients with neck pain. Although upper cervical and upper thoracic HVLA thrust manipulation and nonthrust mobilization are common interventions for the management of neck pain, no studies have directly compared the effects of both upper cervical and upper thoracic HVLA thrust manipulation to nonthrust mobilization in patients with neck pain. Patients completed the Neck Disability Index, the numeric pain rating scale, the flexion-rotation test for measurement of C1-2 passive rotation range of motion, and the craniocervical flexion test for measurement of deep cervical flexor motor performance. Following the baseline evaluation, patients were randomized to receive either HVLA thrust manipulation or nonthrust mobilization to the upper cervical (C1-2) and upper thoracic (T1-2) spines. Patients were reexamined 48-hours after the initial examination and again completed the outcome measures. The effects of treatment on disability, pain, C1-2 passive rotation range of motion, and motor performance of the deep cervical flexors were examined with a 2-by-2 mixed-model analysis of variance (ANOVA). One hundred seven patients satisfied the eligibility criteria, agreed to participate, and were randomized into the HVLA thrust manipulation (n = 56) and nonthrust mobilization (n = 51) groups. The 2-by-2 ANOVA demonstrated that patients with mechanical neck pain who received the combination of upper cervical and upper thoracic HVLA thrust manipulation experienced significantly (P<.001) greater reductions in disability (50.5%) and pain (58.5%) than those of the nonthrust mobilization group (12.8% and 12.6%, respectively) following treatment. In addition, the HVLA thrust manipulation group had significantly (P<.001) greater improvement in both passive C1-2 rotation range of motion and motor performance of the deep cervical flexor muscles as compared to the group that received nonthrust mobilization. The number needed to treat to avoid an unsuccessful outcome was 1.8 and 2.3 at 48-hour follow-up, using the global rating of change and Neck Disability Index cut scores, respectively. The combination of upper cervical and upper thoracic HVLA thrust manipulation is appreciably more effective in the short term than nonthrust mobilization in patients with mechanical neck pain. Therapy, level 1b.
Cervical biomechanics and neck pain of "head-spinning" breakdancers.
Kauther, M D; Piotrowski, M; Hussmann, B; Lendemans, S; Wedemeyer, C; Jaeger, M
2014-05-01
The cervical spine of breakdancers is at great risk due to reversed body loading during headspin manoeuvers. This study focused on the cervical biomechanics of breakdancers and a correlation with neck pain. A standardized interview and biomechanical testing of the cervical spine of 25 participants with "headspin" ability ages 16-34 years and an age-matched cohort of 25 participants without any cervical spine problems was conducted. Neck pain history, Neck Disability Index (NDI), cervical range of motion (CROM) and cervical torque were recorded. The "headspin" group reported significantly better subjective fitness, more cervical complaints, higher pain intensity, a longer history of neck pain and a worse NDI compared to the "normal" collective. The "headspin" group showed a 2-2.5 times higher rate of neck pain than the normal population, with increased cervical flexion (p<0.05) and increased cervical torque in all planes (p<0.001). The CROM showed a negative moderate to strong correlation with NDI, pain intensity and history of neck pain. Sports medicine practitioners should be aware of headspin maneuver accidents that pose the risk of fractures, dislocations and spinal cord injuries of breakdancers. © Georg Thieme Verlag KG Stuttgart · New York.
Neck arthritis pain is reduced and range of motion is increased by massage therapy.
Field, Tiffany; Diego, Miguel; Gonzalez, Gladys; Funk, C G
2014-11-01
The literature on the effects of massage therapy on neck arthritis pain is mixed depending on the dose level, and it is also based on self-report. In the present study an attempt was made to enhance the effects of weekly massage therapy by having the participants massage themselves daily. And in addition to self-reports on pain, range of motion (ROM) and the associated ROM pain were assessed before and after the first massage session and pre-post the last session one month later. Staff and faculty members at a medical school who were eligible for the study if they had neck arthritis pain were randomly assigned to a massage or a waitlist control group (N = 24 per group). The massage group received moderate pressure massages weekly by a massage therapist plus daily self-massages. The waitlist control group received the same schedule massages one month after being control subjects. The massage group showed significant short-term reductions after the first and last day massages in self-reported pain and in ROM-associated pain as well as an increase in ROM. Comparisons between the massage group (N = 23) and the control group (N = 14) on the last versus the first day data suggested significantly different changes including increased ROM and reduced ROM-associated pain for the massage group and reduced ROM and increased ROM-associated pain for the control group. These changes occurred specifically for flexion and right and left lateral flexion motions. These data highlight the importance of designing massage therapy protocols that target the most affected neck muscle groups and then assessing range of motion and related pain before and after the massage therapy. Comparisons with other studies also suggest that moderate pressure may contribute to the massage effects, and the use of daily self-massages between sessions may sustain the effects and serve as a cost-effective therapy for individuals with neck arthritis pain. Copyright © 2014. Published by Elsevier Ltd.
Roth, Joshua D; Howell, Stephen M; Hull, Maury L
2018-06-01
Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion. Using cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor. The average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm (p < 0.0001) and 18 mm (p < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion. After kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give surgeons who perform kinematically aligned TKA confidence that the alignment method and surgical technique limit high tibial forces, differences in tibial forces between compartments, and anterior translation of the tibial contact locations during passive flexion.
2012-01-01
Background A major problem with rehabilitation interventions for neck pain is that the condition may have multiple causes, thus a single treatment approach is seldom efficient. The present study protocol outlines a single blinded randomised controlled trial evaluating the effect of tailored treatment for neck-shoulder pain. The treatment is based on a decision model guided by standardized clinical assessment and functional tests with cut-off values. Our main hypothesis is that the tailored treatment has better short, intermediate and long-term effects than either non-tailored treatment or treatment-as-usual (TAU) on pain and function. We sub-sequentially hypothesize that tailored and non-tailored treatment both have better effect than TAU. Methods/Design 120 working women with minimum six weeks of nonspecific neck-shoulder pain aged 20–65, are allocated by minimisation with the factors age, duration of pain, pain intensity and disability in to the groups tailored treatment (T), non-tailored treatment (NT) or treatment-as-usual (TAU). Treatment is given to the groups T and NT for 11 weeks (27 sessions evenly distributed). An extensive presentation of the tests and treatment decision model is provided. The main treatment components are manual therapy, cranio-cervical flexion exercise and strength training, EMG-biofeedback training, treatment for cervicogenic headache, neck motor control training. A decision algorithm based on the baseline assessment determines the treatment components given to each participant of T- and NT-groups. Primary outcome measures are physical functioning (Neck Disability Index) and average pain intensity last week (Numeric Rating Scale). Secondary outcomes are general improvement (Patient Global Impression of Change scale), symptoms (Profile Fitness Mapping neck questionnaire), capacity to work in the last 6 weeks (quality and quantity) and pressure pain threshold of m. trapezius. Primary and secondary outcomes will be reported for each group with effect size and its precision. Discussion We have chosen not to include women with psychological ill-health and focus on biomedical aspects of neck pain. Future studies should aim at including psychosocial aspects in a widened treatment decision model. No important adverse events or side-effects are expected. Trial registration Current Controlled Trials registration ISRCTN49348025. PMID:22607546
Naish, Robert; Burnett, Angus; Burrows, Sally; Andrews, Warren; Appleby, Brendyn
2013-01-01
Cervical spine injuries in Rugby Union are a concerning issue at all levels of the game. The primary aim of this retrospective analysis conducted in a professional Rugby Union squad was to determine whether a 26-week isometric neck strengthening intervention program (13-week strengthening phase and 13-week maintenance phase) was effective in reducing the number and severity of cervical spine injuries. The secondary aim was to determine whether at week five, where the program had been the similar for all players, there was increased isometric neck strength. All 27 players who were common to both the 2007-2008 and 2008-2009 seasons were included in this analysis and data was extracted from a Sports Medicine/Sports Science database which included the squad's injury records. Primary outcome variables included; the number of cervical spine injuries and the severity of these injuries as determined by the total number of days lost from training and competition. Secondary outcome variables included isometric neck strength in flexion, extension and left and right lateral flexion. Using non-parametric statistical methods, no significant differences were evident for the total number of cervical spine injuries (n = 8 in 2007-2008, n = 6 in 2008-2009) or time loss due to these injuries (100 days in 2007-2008, 40 days in 2008-2009). However, a significant (p = 0.03) reduction in the number of match injuries was evident from 2007-2008 (n = 11) to 2008-09 (n = 2). Non-significant increases in isometric neck strength were found in all directions examined. A significant reduction in the number of match injuries was evident in this study. However, no other significant changes to primary outcome variables were achieved. Further, no significant increases in isometric neck strength were found in this well-trained group of professional athletes. Key PointsWhile many authors have proposed that neck strengthening could be an effective strategy in preventing cervical spine injuries in Rugby Union, there is currently little information in the literature pertaining to how such a study might be conducted.A significant decrease in the number of injuries recorded in matches can be achieved using a specific neck strengthening program at the elite level.In an elite rugby union team as investigated in this study a significant increase in neck strength is difficult to achieve in a short period of time such as five weeks.
Saavedra-Hernández, Manuel; Castro-Sánchez, Adelaida M; Arroyo-Morales, Manuel; Cleland, Joshua A; Lara-Palomo, Inmaculada C; Fernández-de-Las-Peñas, César
2012-08-01
Randomized clinical trial. To compare the effectiveness of cervical spine thrust manipulation to that of Kinesio Taping applied to the neck in individuals with mechanical neck pain, using self-reported pain and disability and cervical range of motion as measures. The effectiveness of cervical manipulation has received considerable attention in the literature. However, because some patients cannot tolerate cervical thrust manipulation, alternative therapeutic options should be investigated. Eighty patients (36 women) were randomly assigned to 1 of 2 groups: the manipulation group, which received 2 cervical thrust manipulations, and the tape group, which received Kinesio Taping applied to the neck. Neck pain (11-point numeric pain rating scale), disability (Neck Disability Index), and cervical-range-of-motion data were collected at baseline and 1 week after the intervention by an assessor blinded to the treatment allocation of the patients. Mixed-model analyses of variance were used to examine the effects of the treatment on each outcome variable, with group as the between-subjects variable and time as the within-subjects variable. The primary analysis was the group-by-time interaction. No significant group-by-time interactions were found for pain (F = 1.892, P = .447) or disability (F = 0.115, P = .736). The group-by-time interaction was statistically significant for right (F = 7.317, P = .008) and left (F = 9.525, P = .003) cervical rotation range of motion, with the patients who received the cervical thrust manipulation having experienced greater improvement in cervical rotation than those treated with Kinesio Tape (P<.01). No significant group-by-time interactions were found for cervical spine range of motion for flexion (F = 0.944, P = .334), extension (F = 0.122, P = .728), and right (F = 0.220, P = .650) and left (F = 0.389, P = .535) lateral flexion. Patients with mechanical neck pain who received cervical thrust manipulation or Kinesio Taping exhibited similar reductions in neck pain intensity and disability and similar changes in active cervical range of motion, except for rotation. Changes in neck pain surpassed the minimal clinically important difference, whereas changes in disability did not. Changes in cervical range of motion were small and not clinically meaningful. Because we did not include a control or placebo group in this study, we cannot rule out a placebo effect or natural changes over time as potential reasons for the improvements measured in both groups. Therapy, level 1b.
Naish, Robert; Burnett, Angus; Burrows, Sally; Andrews, Warren; Appleby, Brendyn
2013-01-01
Cervical spine injuries in Rugby Union are a concerning issue at all levels of the game. The primary aim of this retrospective analysis conducted in a professional Rugby Union squad was to determine whether a 26-week isometric neck strengthening intervention program (13-week strengthening phase and 13-week maintenance phase) was effective in reducing the number and severity of cervical spine injuries. The secondary aim was to determine whether at week five, where the program had been the similar for all players, there was increased isometric neck strength. All 27 players who were common to both the 2007-2008 and 2008-2009 seasons were included in this analysis and data was extracted from a Sports Medicine/Sports Science database which included the squad's injury records. Primary outcome variables included; the number of cervical spine injuries and the severity of these injuries as determined by the total number of days lost from training and competition. Secondary outcome variables included isometric neck strength in flexion, extension and left and right lateral flexion. Using non-parametric statistical methods, no significant differences were evident for the total number of cervical spine injuries (n = 8 in 2007-2008, n = 6 in 2008-2009) or time loss due to these injuries (100 days in 2007-2008, 40 days in 2008-2009). However, a significant (p = 0.03) reduction in the number of match injuries was evident from 2007-2008 (n = 11) to 2008-09 (n = 2). Non-significant increases in isometric neck strength were found in all directions examined. A significant reduction in the number of match injuries was evident in this study. However, no other significant changes to primary outcome variables were achieved. Further, no significant increases in isometric neck strength were found in this well-trained group of professional athletes. Key Points While many authors have proposed that neck strengthening could be an effective strategy in preventing cervical spine injuries in Rugby Union, there is currently little information in the literature pertaining to how such a study might be conducted. A significant decrease in the number of injuries recorded in matches can be achieved using a specific neck strengthening program at the elite level. In an elite rugby union team as investigated in this study a significant increase in neck strength is difficult to achieve in a short period of time such as five weeks. PMID:24149163
Chen, Chee Keong; Hamdan, Nor Faeiza; Ooi, Foong Kiew; Wan Abd Hamid, Wan Zuraida
2016-01-01
This study investigated the effects of Lignosus rhinocerotis (LRS) supplementation and resistance training (RT) on isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters in young males. Participants were randomly assigned to four groups: Control (C), LRS, RT, and combined RT-LRS (RT-LRS). Participants in the LRS and RT-LRS groups consumed 500 mg of LRS daily for 8 weeks. RT was conducted 3 times/week for 8 weeks for participants in the RT and RT-LRS groups. The following parameters were measured before and after the intervention period: Anthropometric data, isokinetic muscular strength and power, and anaerobic and aerobic fitness. Blood samples were also collected to determine immune parameters. Isokinetic muscular strength and power were increased ( P < 0.05) in participants of both RT and RT-LRS groups. RT-LRS group had shown increases ( P < 0.05) in shoulder extension peak torque, shoulder flexion and extension average power, knee flexion peak torque, and knee flexion and extension average power. There were also increases ( P < 0.05) in anaerobic power and capacity and aerobic fitness in this group. Similarly, RT group had increases ( P < 0.05) in shoulder flexion average power, knee flexion and extension peak torque, and knee flexion and extension average power. In addition, increases ( P < 0.05) in anaerobic power and capacity, aerobic fitness, T lymphocytes (CD3 and CD4), and B lymphocytes (CD19) counts were observed in the RT group. RT elicited increased isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters among young males. However, supplementation with LRS during RT did not provide additive benefits.
Chen, Chee Keong; Hamdan, Nor Faeiza; Ooi, Foong Kiew; Wan Abd Hamid, Wan Zuraida
2016-01-01
Background: This study investigated the effects of Lignosus rhinocerotis (LRS) supplementation and resistance training (RT) on isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters in young males. Methods: Participants were randomly assigned to four groups: Control (C), LRS, RT, and combined RT-LRS (RT-LRS). Participants in the LRS and RT-LRS groups consumed 500 mg of LRS daily for 8 weeks. RT was conducted 3 times/week for 8 weeks for participants in the RT and RT-LRS groups. The following parameters were measured before and after the intervention period: Anthropometric data, isokinetic muscular strength and power, and anaerobic and aerobic fitness. Blood samples were also collected to determine immune parameters. Results: Isokinetic muscular strength and power were increased (P < 0.05) in participants of both RT and RT-LRS groups. RT-LRS group had shown increases (P < 0.05) in shoulder extension peak torque, shoulder flexion and extension average power, knee flexion peak torque, and knee flexion and extension average power. There were also increases (P < 0.05) in anaerobic power and capacity and aerobic fitness in this group. Similarly, RT group had increases (P < 0.05) in shoulder flexion average power, knee flexion and extension peak torque, and knee flexion and extension average power. In addition, increases (P < 0.05) in anaerobic power and capacity, aerobic fitness, T lymphocytes (CD3 and CD4), and B lymphocytes (CD19) counts were observed in the RT group. Conclusions: RT elicited increased isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters among young males. However, supplementation with LRS during RT did not provide additive benefits. PMID:27833721
Kinematics of a Head-Neck Model Simulating Whiplash
NASA Astrophysics Data System (ADS)
Colicchia, Giuseppe; Zollman, Dean; Wiesner, Hartmut; Sen, Ahmet Ilhan
2008-02-01
A whiplash event is a relative motion between the head and torso that occurs in rear-end automobile collisions. In particular, the large inertia of the head results in a horizontal translation relative to the thorax. This paper describes a simulation of the motion of the head and neck during a rear-end (whiplash) collision. A head-neck model that qualitatively undergoes the same forces acting in whiplash and shows the same behavior is used to analyze the kinematics of both the head and the cervical spine and the resulting neck loads. The rapid acceleration during a whiplash event causes the extension and flexion of the cervical spine, which in turn can cause dislocated vertebrae, torn ligaments, intervertebral disc herniation, and other trauma that appear to be the likely causes of subsequent painful headache or neck pain symptoms. Thus, whiplash provides a connection between the dynamics of the human body and physics. Its treatment can enliven the usual teaching in kinematics, and both theoretical and experimental approaches provide an interesting biological context to teach introductory principles of mechanics.
Holdorff, Bernd
2016-01-01
Tonic neck reflexes were investigated by Rudolf Magnus and Adriaan de Kleijn in animals and men in 1912 and eventually by Arthur Simons, a neurologist in Berlin and coworker of Hermann Oppenheim. Simons studied these reflexes in hemiplegic patients, who were mainly victims of World War I. This work became his most important contribution and remained unsurpassed for many years. The film (Filmarchiv, Bundesarchiv [Film Archive, National Archive] Berlin) with Simons as an examiner shows 11 war casualties with brain lesions that occurred between 1916 and 1919. The injuries reveal asymmetric neck reflexes with "Mitbewegungen," that is, flexion or extension on the hemiplegic side. Mitbewegungen is identical with Francis Walshe's "associated reactions" caused by neck rotation and/or by cocontraction of the nonaffected extremities, for example, by closing of the fist (Walshe). The knowledge of the neck reflexes is important in acute neurology and in rehabilitation therapy of hemiplegics for antispastic positions. Simons' investigations were conducted in the early era of increasing use of cinematography in medical studies. The film had been nearly forgotten until its rediscovery in 2010.
Nath, Rahul K; Somasundaram, Chandra
2016-01-01
Assessment of surgical outcomes of biceps tendon lengthening (BTL) surgery in obstetric brachial plexus injury (OBPI) patients with elbow flexion contractures, who had unsuccessful serial casting. Serial casting and splinting have been shown to be effective in correcting elbow flexion contractures in OBPI. However, the possibilities of radial head dislocations and other complications have been reported in serial casting and splinting. Literature indicates surgical intervention when such nonoperative techniques and range-of-motion exercises fail. Here, we demonstrated a significant reduction of the contractures of the affected elbow and improvement in arm length to more normal after BTL in these patients, who had unsuccessful serial casting. Ten OBPI patients (6 girls and 4 boys) with an average age of 11.2 years (4-17.7 years) had BTL surgery after unsuccessful serial casting. Mean elbow flexion contracture was 40° before and 37° (average) after serial casting. Mean elbow flexion contracture was reduced to 8° (0°-20°) post-BTL surgical procedure with an average follow-up of 11 months. This was 75% improvement and statistically significant (P < .001) when compared to 7% insignificant (P = .08) improvement after serial casting. These OBPI patients in our study had 75% significant reduction in elbow flexion contractures and achieved an improved and more normal length of the affected arm after the BTL surgery when compared to only 7% insignificant reduction and no improvement in arm length after serial casting.
Mesfar, Wissal; Moglo, Kodjo
2013-10-01
In order to diagnosis a transverse ligament rupture in the cervical spine, clinicians normally measure the atlas-dens interval by using CT scan images. However, the impact of this tear on the head and neck complex biomechanics is not widely studied. The transverse ligament plays a very important role in stabilizing the joint and its alteration may have a substantial effect on the whole head and neck complex. A finite element model consisting of bony structures along with cartilage, intervertebral discs and all ligaments was developed based on CT and MRI images. The effect of head weights (compressive load) of 30 N to 57 N was investigated in the cases of intact and ruptured transverse ligament joints. The model was validated based on experimental studies investigating the response of the cervical spine under the extension-flexion moment. The predictions indicate a significant alteration of the kinematics and load distribution at the facet joints of the cervical spine with a transverse ligament tear. The vertebrae flexion, the contact force at the facets joints and the atlas-dens interval increase with the rupture of the transverse ligament and are dependent to the head weight. A transverse ligament tear increases the flexion angle of the head and the vertebrae as well as the atlas-dens interval. The atlas-dens interval reaches a critical value when the compressive loading exceeds 40 N. Supporting the head after an injury should be considered to avoid compression of the spinal cord and permanent neurologic damage. © 2013.
Reliability of doming and toe flexion testing to quantify foot muscle strength.
Ridge, Sarah Trager; Myrer, J William; Olsen, Mark T; Jurgensmeier, Kevin; Johnson, A Wayne
2017-01-01
Quantifying the strength of the intrinsic foot muscles has been a challenge for clinicians and researchers. The reliable measurement of this strength is important in order to assess weakness, which may contribute to a variety of functional issues in the foot and lower leg, including plantar fasciitis and hallux valgus. This study reports 3 novel methods for measuring foot strength - doming (previously unmeasured), hallux flexion, and flexion of the lesser toes. Twenty-one healthy volunteers performed the strength tests during two testing sessions which occurred one to five days apart. Each participant performed each series of strength tests (doming, hallux flexion, and lesser toe flexion) four times during the first testing session (twice with each of two raters) and two times during the second testing session (once with each rater). Intra-class correlation coefficients were calculated to test for reliability for the following comparisons: between raters during the same testing session on the same day (inter-rater, intra-day, intra-session), between raters on different days (inter-rater, inter-day, inter-session), between days for the same rater (intra-rater, inter-day, inter-session), and between sessions on the same day by the same rater (intra-rater, intra-day, inter-session). ICCs showed good to excellent reliability for all tests between days, raters, and sessions. Average doming strength was 99.96 ± 47.04 N. Average hallux flexion strength was 65.66 ± 24.5 N. Average lateral toe flexion was 50.96 ± 22.54 N. These simple tests using relatively low cost equipment can be used for research or clinical purposes. If repeated testing will be conducted on the same participant, it is suggested that the same researcher or clinician perform the testing each time for optimal reliability.
Notebook computer use on a desk, lap and lap support: effects on posture, performance and comfort.
Asundi, Krishna; Odell, Dan; Luce, Adam; Dennerlein, Jack T
2010-01-01
This study quantified postures of users working on a notebook computer situated in their lap and tested the effect of using a device designed to increase the height of the notebook when placed on the lap. A motion analysis system measured head, neck and upper extremity postures of 15 adults as they worked on a notebook computer placed on a desk (DESK), the lap (LAP) and a commercially available lapdesk (LAPDESK). Compared with the DESK, the LAP increased downwards head tilt 6 degrees and wrist extension 8 degrees . Shoulder flexion and ulnar deviation decreased 13 degrees and 9 degrees , respectively. Compared with the LAP, the LAPDESK decreased downwards head tilt 4 degrees , neck flexion 2 degrees , and wrist extension 9 degrees. Users reported less discomfort and difficulty in the DESK configuration. Use of the lapdesk improved postures compared with the lap; however, all configurations resulted in high values of wrist extension, wrist deviation and downwards head tilt. STATEMENT OF RELEVANCE: This study quantifies postures of users working with a notebook computer in typical portable configurations. A better understanding of the postures assumed during notebook computer use can improve usage guidelines to reduce the risk of musculoskeletal injuries.
Bruno Garza, Jennifer L.; Eijckelhof, Belinda H.W.; Huysmans, Maaike A.; Catalano, Paul J.; Katz, Jeffrey N.; Johnson, Peter W.; van Dieen, Jaap H.; van der Beek, Allard J.; Dennerlein, Jack T.
2015-01-01
Background Because of reported associations of psychosocial factors and computer related musculoskeletal symptoms, we investigated the effects of a workplace psychosocial factor, reward, in the presence of over-commitment, on trapezius muscle activity and shoulder, head, neck, and torso postures during computer use. Methods We measured 120 office workers across four groups (lowest/highest reward/over-commitment), performing their own computer work at their own workstations over a 2 hour period. Results Median trapezius muscle activity (p=0.04) and median neck flexion (p=0.03) were largest for participants reporting simultaneously low reward and high over-commitment. No differences were observed for other muscle activities or postures. Conclusions These data suggest that the interaction of reward and over-commitment can affect upper extremity muscle activity and postures during computer use in the real work environment. This finding aligns with the hypothesized biomechanical pathway connecting workplace psychosocial factors and musculoskeletal symptoms of the neck and shoulder. PMID:23818000
Sreenivas, T; Menon, Jagdish; Nataraj, A R
2013-12-01
Heterotopic ossification around the elbow can lead to considerable functional disability. We describe a case of a 42-year-old man who developed heterotopic ossification of his elbow after closed reduction of the elbow dislocation and radial neck fracture and retrograde intramedullary nailing for radial neck fracture. During the follow-up after initial surgery, movements of the elbow were gradually deteriorated and diagnosed as heterotopic ossification of the elbow. Implant removal, radial head excision along with heterotopic mass, and also interposition of the anconeus muscle resulted in improvement of his elbow mobility. At 18 months of follow-up, patient had elbow flexion arc of 15°-110°, 70° of supination, and 50° of pronation without recurrence of heterotopic ossification. The uniqueness of this case lies in the treatment of heterotopic ossification of the elbow to prevent its recurrence, which was developed after retrograde intramedullary nailing for radial neck fracture following closed reduction.
Hynd, David; Depinet, Paul; Lorenz, Bernd
2013-01-01
The United Nations Economic Commission for Europe Informal Group on GTR No. 7 Phase 2 are working to define a build level for the BioRID II rear impact (whiplash) crash test dummy that ensures repeatable and reproducible performance in a test procedure that has been proposed for future legislation. This includes the specification of dummy hardware, as well as the development of comprehensive certification procedures for the dummy. This study evaluated whether the dummy build level and certification procedures deliver the desired level of repeatability and reproducibility. A custom-designed laboratory seat was made using the seat base, back, and head restraint from a production car seat to ensure a representative interface with the dummy. The seat back was reinforced for use in multiple tests and the recliner mechanism was replaced by an external spring-damper mechanism. A total of 65 tests were performed with 6 BioRID IIg dummies using the draft GTR No.7 sled pulse and seating procedure. All dummies were subject to the build, maintenance, and certification procedures defined by the Informal Group. The test condition was highly repeatable, with a very repeatable pulse, a well-controlled seat back response, and minimal observed degradation of seat foams. The results showed qualitatively reasonable repeatability and reproducibility for the upper torso and head accelerations, as well as for T1 Fx and upper neck Fx . However, reproducibility was not acceptable for T1 and upper neck Fz or for T1 and upper neck My . The Informal Group has not selected injury or seat assessment criteria for use with BioRID II, so it is not known whether these channels would be used in the regulation. However, the ramping-up behavior of the dummy showed poor reproducibility, which would be expected to affect the reproducibility of dummy measurements in general. Pelvis and spine characteristics were found to significantly influence the dummy measurements for which poor reproducibility was observed. It was also observed that the primary neck response in these tests was flexion, not extension. This correlates well with recent findings from Japan and the United States showing a correlation between neck flexion and injury in accident replication simulations and postmortem human subjects (PMHS) studies, respectively. The present certification tests may not adequately control front cervical spine bumper characteristics, which are important for neck flexion response. The certification sled test also does not include the pelvis and so cannot be used to control pelvis response and does not substantially load the lumbar bumpers and so does not control these parts of the dummy. The stiffness of all spine bumpers and of the pelvis flesh should be much more tightly controlled. It is recommended that a method for certifying the front cervical bumpers should be developed. Recommendations are also made for tighter tolerance on the input parameters for the existing certification tests.
Gender differences in head-neck segment dynamic stabilization during head acceleration.
Tierney, Ryan T; Sitler, Michael R; Swanik, C Buz; Swanik, Kathleen A; Higgins, Michael; Torg, Joseph
2005-02-01
Recent epidemiological research has revealed that gender differences exist in concussion incidence but no study has investigated why females may be at greater risk of concussion. Our purpose was to determine whether gender differences existed in head-neck segment kinematic and neuromuscular control variables responses to an external force application with and without neck muscle preactivation. Forty (20 females and 20 males) physically active volunteers participated in the study. The independent variables were gender, force application (known vs unknown), and force direction (forced flexion vs forced extension). The dependent variables were kinematic and EMG variables, head-neck segment stiffness, and head-neck segment flexor and extensor isometric strength. Statistical analyses consisted of multiple multivariate and univariate analyses of variance, follow-up univariate analyses of variance, and t-tests (P < or = 0.05). Gender differences existed in head-neck segment dynamic stabilization during head angular acceleration. Females exhibited significantly greater head-neck segment peak angular acceleration (50%) and displacement (39%) than males despite initiating muscle activity significantly earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity (79% peak activity and 117% muscle activity area). The head-neck segment angular acceleration differences may be because females exhibited significantly less isometric strength (49%), neck girth (30%), and head mass (43%), resulting in lower levels of head-neck segment stiffness (29%). For our subject demographic, the results revealed gender differences in head-neck segment dynamic stabilization during head acceleration in response to an external force application. Females exhibited significantly greater head-neck segment peak angular acceleration and displacement than males despite initiating muscle activity earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity.
Campa-Moran, Irene; Rey-Gudin, Etelvina; Fernández-Carnero, Josué; Paris-Alemany, Alba; Gil-Martinez, Alfonso; Lerma Lara, Sergio; Prieto-Baquero, Almudena; Alonso-Perez, José Luis; La Touche, Roy
2015-01-01
Objective. The aim of this study was to compare the efficacy of three interventions for the treatment of myofascial chronic neck pain. Methods. Thirty-six patients were randomly assigned to one of three intervention groups: orthopedic manual therapy (OMT), dry needling and stretching (DN-S), and soft tissue techniques (STT). All groups received two treatment sessions with a 48 h time interval. Outcome measures included neck pain intensity measured using a visual analogue scale, cervical range of motion (ROM), pressure pain threshold for measuring mechanical hyperalgesia, and two self-reported questionnaires (neck disability index and pain catastrophizing scale). Results. The ANOVA revealed significant differences for the group × time interaction for neck disability, neck pain intensity, and pain catastrophizing. The DN-S and OMT groups reduced neck disability. Only the OMT group showed decreases in mechanical hyperalgesia and pain catastrophizing. The cervical ROM increased in OMT (i.e., flexion, side-bending, and rotation) and DN-S (i.e., side-bending and rotation) groups. Conclusions. The three interventions are all effective in reducing pain intensity. Reduction in mechanical hyperalgesia and pain catastrophizing was only observed in the OMT group. Cervical ROM improved in the DN-S and OMT groups and also neck disability being only clinically relevant for OMT group. PMID:26640708
Acceleration effects on neck muscle strength: pilots vs. non-pilots.
Seng, Kok-Yong; Lam, Pin-Min; Lee, Vee-Sin
2003-02-01
Conditioning of neck muscles, if any, due to repeated exposures to +Gz forces has received little research attention. This study was conducted to evaluate and compare the neck muscle strength of test volunteers representative of the general populations of fighter aircraft pilots and non-pilots. The tests were performed using a special attachment device on a computerized dynamometer. Ten pilots and ten non-pilots volunteered as test subjects. Each individual's maximal isometric neck muscle strength was evaluated in the extension, flexion, and left and right lateral bending directions in a single day. Peak values from the measurements were used for data analysis. Overall neck strength was calculated as the mean values for the four directions in each group. The overall muscular strength of the necks of pilots did not differ significantly from that of non-pilots, nor did exposure to +Gz forces lead to specific changes in isometric muscle strength across any of the four principal directions. Neck muscle strength in the four measured directions pooled across the two subgroups were statistically significant. The widespread practice of adopting protective head-positioning strategies to minimize neck strains, coupled with results from this research study, suggest that the neck muscles are subjected to reduced in-flight strengthening workouts during exposures to +Gz forces. To maximize in-flight performance and minimize +Gz-induced neck injuries, fighter pilots should be encouraged to perform on-land neck muscle strengthening exercise and in-flight head-positioning techniques. More research is needed to fine-tune this countermeasure strategy against cervical spine injury.
Somasundaram, Chandra
2016-01-01
Objective: Assessment of surgical outcomes of biceps tendon lengthening (BTL) surgery in obstetric brachial plexus injury (OBPI) patients with elbow flexion contractures, who had unsuccessful serial casting. Background: Serial casting and splinting have been shown to be effective in correcting elbow flexion contractures in OBPI. However, the possibilities of radial head dislocations and other complications have been reported in serial casting and splinting. Literature indicates surgical intervention when such nonoperative techniques and range-of-motion exercises fail. Here, we demonstrated a significant reduction of the contractures of the affected elbow and improvement in arm length to more normal after BTL in these patients, who had unsuccessful serial casting. Methods and Patients: Ten OBPI patients (6 girls and 4 boys) with an average age of 11.2 years (4-17.7 years) had BTL surgery after unsuccessful serial casting. Results: Mean elbow flexion contracture was 40° before and 37° (average) after serial casting. Mean elbow flexion contracture was reduced to 8° (0°-20°) post-BTL surgical procedure with an average follow-up of 11 months. This was 75% improvement and statistically significant (P < .001) when compared to 7% insignificant (P = .08) improvement after serial casting. Conclusion: These OBPI patients in our study had 75% significant reduction in elbow flexion contractures and achieved an improved and more normal length of the affected arm after the BTL surgery when compared to only 7% insignificant reduction and no improvement in arm length after serial casting. PMID:27648115
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogunmolu, O; Gans, N; Jiang, S
Purpose: We propose a surface-image-guided soft robotic patient positioning system for maskless head-and-neck radiotherapy. The ultimate goal of this project is to utilize a soft robot to realize non-rigid patient positioning and real-time motion compensation. In this proof-of-concept study, we design a position-based visual servoing control system for an air-bladder-based soft robot and investigate its performance in controlling the flexion/extension cranial motion on a mannequin head phantom. Methods: The current system consists of Microsoft Kinect depth camera, an inflatable air bladder (IAB), pressured air source, pneumatic valve actuators, custom-built current regulators, and a National Instruments myRIO microcontroller. The performance ofmore » the designed system was evaluated on a mannequin head, with a ball joint fixed below its neck to simulate torso-induced head motion along flexion/extension direction. The IAB is placed beneath the mannequin head. The Kinect camera captures images of the mannequin head, extracts the face, and measures the position of the head relative to the camera. This distance is sent to the myRIO, which runs control algorithms and sends actuation commands to the valves, inflating and deflating the IAB to induce head motion. Results: For a step input, i.e. regulation of the head to a constant displacement, the maximum error was a 6% overshoot, which the system then reduces to 0% steady-state error. In this initial investigation, the settling time to reach the regulated position was approximately 8 seconds, with 2 seconds of delay between the command start of motion due to capacitance of the pneumatics, for a total of 10 seconds to regulate the error. Conclusion: The surface image-guided soft robotic patient positioning system can achieve accurate mannequin head flexion/extension motion. Given this promising initial Result, the extension of the current one-dimensional soft robot control to multiple IABs for non-rigid positioning control will be pursued.« less
Musculoskeletal neck pain in children and adolescents: Risk factors and complications.
Fares, Jawad; Fares, Mohamad Y; Fares, Youssef
2017-01-01
Neck pain is a major public health concern that has been extensively studied in adults but not in children and adolescents. Therefore, the purpose of this article is to explore musculoskeletal neck pain in children and adolescents, as well as to discuss its possible risk factors and complications. Participants were patients under 18 years of age, who had presented to the clinic (Beirut, Lebanon) in 2015, with nonspecific neck pain. They were examined and asked to evaluate and localize the pain. Neck positioning during various activities along with other complications were explored. Patients reporting pain associated with congenital or systemic diseases and fractures were excluded. Two-hundred-and-seven children and adolescents presented with nonspecific neck pain. Musculoskeletal neck pain with spasm was diagnosed in 180 patients ( N = 180). Participants did not show any findings on physical examination and radiological studies, and had no comorbidities. More females (57%) than males (43%) and more adolescents (60%) than children (40%) were affected. All the 180 participants (100%) reported flawed flexion of their back and neck while studying and/or using smartphones and tablets. Eye symptoms were reported in 21% of the cases, and parents of most participants (82%) reported a change in the psychological and social behavior of their children. Musculoskeletal neck pain is an important disease in children and adolescents with numerous risk factors contributing to its development. Increased stresses regarding the cervical spine may lead to cervical degeneration along with other developmental, medical, psychological, and social complications.
Isometric hip-rotator torque production at varying degrees of hip flexion.
Johnson, Sam; Hoffman, Mark
2010-02-01
Hip torque production is associated with certain knee injuries. The hip rotators change function depending on hip angle. To compare hip-rotator torque production between 3 angles of hip flexion, limbs, and sexes. Descriptive. University sports medicine research laboratory. 15 men and 15 women, 19-39 y. Three 6-s maximal isometric contractions of the hip external and internal rotators at 10 degrees, 40 degrees, and 90 degrees of hip flexion on both legs. Average torque normalized to body mass. Internal-rotation torque was greatest at 90 degrees of hip flexion, followed by 40 degrees of hip flexion and finally 10 degrees of hip flexion. External-rotation torque was not different based on hip flexion. The nondominant leg's external rotators were stronger than the dominant leg's, but the reverse was true for internal rotators. Finally, the men had more overall rotator torque. Hip-rotation torque production varies between flexion angle, leg, and sex. Clinicians treating lower extremity problems need to be aware of these differences.
Pisiform excision for pisotriquetral instability and arthritis.
Campion, Heather; Goad, Andrea; Rayan, Ghazi; Porembski, Margaret
2014-07-01
To evaluate wrist strength and kinematics after pisiform excision and preservation of its soft tissue confluence for pisotriquetral instability and arthritis. We evaluated 12 patients, (14 wrists) subjectively and objectively an average of 7.5 years after pisiform excision. Three additional patients were interviewed by phone. Subjective evaluation included inquiry about pain and satisfaction with the treatment. Objective testing included measuring wrist flexion and extension range of motion, grip strength, and static and dynamic flexion and ulnar deviation strengths of the operative hand compared with the nonsurgical normal hand. Four patients had concomitant ulnar nerve decompression at the wrist. All patients were satisfied with the outcome. Wrist flexion averaged 99% and wrist extension averaged 95% of the nonsurgical hand. Mean grip strength of the operative hand was 90% of the nonsurgical hand. Mean static flexion strength of the operative hand was 94% of the nonsurgical hand, whereas mean dynamic flexion strength was 113%. Mean static ulnar deviation strength of the operative hand was 87% of the nonsurgical hand. The mean dynamic ulnar deviation strength of the operative hand was 103% of the nonsurgical hand. Soft tissue confluence-preserving pisiform excision relieved pain and retained wrist motion and static and dynamic strength. Associated ulnar nerve compression was a confounding factor that may have affected outcomes. Therapeutic IV. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Persistent hydrocephalus due to postural activation of a ventricular shunt anti-gravity device.
Craven, Claudia L; Toma, Ahmed K; Watkins, Laurence D
2017-03-01
The ever present need to balance over drainage with under drainage in hydrocephalus has required innovations including adjustable valves with antigravity devices. These are activated in the vertical position to prevent siphoning. We describe a group of bedridden patients who presented with unexplained under drainage caused by activation of antigravity shunt components produced by peculiar head/body position. Retrospective single centre case series of hydrocephalus patients, treated with ventriculo-peritoneal (VP) shunt insertion between April 2014 - February 2016. These patients presented with clinical and radiological under drainage syndrome. Medical notes were reviewed for clinical picture and outcome. Radiological studies were reviewed assessing shunt placement and ventricular size. Seven patients presented with clinical and radiological under drainage syndrome. A consistent posturing of long term hyper-flexion of the neck whilst lying supine was observed. All patients had similar shunt construct (adjustable Miethke ProGAV valve and shunt assistant anti-gravity component). In each of those patients a hypothesis was formulated that neck flexion was activating the shunt assistance anti-gravity component in supine position. Five patients underwent shunt revision surgery removing the shunt assistant device from the cranium and adding an anti-gravity component to the shunt system at the chest. One had the shunt assistant completely removed and one patient was managed conservatively with mobilisation. All patients had clinical and radiological improvement. Antigravity shunt components implanted cranially in bedridden hydrocephalus patients will produce underdrainage due to head flexion induced anti-gravity device activation. In these patients, anti-gravity devices should be placed at the chest. Alternatively, special nursing attention should be paid to head-trunk angle. Copyright © 2016 Elsevier Ltd. All rights reserved.
Separate Vertical Wirings for the Extra-articular Fractures of the Distal Pole of the Patella.
Kim, Young Mo; Yang, Jun Young; Kim, Kyung Cheon; Kang, Chan; Joo, Yong Bum; Lee, Woo Yong; Hwang, Jung Mo
2011-12-01
To evaluate the usefulness of separate vertical wirings for extra-articular fracture of distal pole of patella. We have analyzed the clinical results of 18 cases that underwent separate vertical wirings for extra-articular fracture of distal pole of the patella from March 2005 to March 2010, by using the range of motion and Bostman score. Occurrence of complication was also evaluated. Additionally, by taking simple radiographs, the correlation between the postoperative degree of anterior transposition of bone fragment and the time of bone fusion, preoperative length of bone fragment, and occurrence of comminuted fracture were investigated. It took an average of 13.8 weeks for radiological bone union after separate vertical wiring fixation. Flexion contracture was an average of 0.8 degrees and further flexion was an average of 127.6°, and Bostman score was an average of 27.5 points (excellent in 12 cases, and good in 6 cases). On the first postoperative year, average flexion contracture was 0.6 degrees and further flexion was an average of 136.3°, which exhibited increased joint motion and recovery to normal range of motion, and Bostman score was an average of 28.7 points (excellent in 16 cases, and good in 2 cases). There was no statistically significant difference between the preoperative bone fragment length and presence of comminution, and degree of anterior transposition of bone fragment after fracture union on simple radiograph (p=0.175, p=0.146). We were able to obtain satisfactory clinical results, while preserving the bone fragment by separate vertical wiring fixation for extra-articular fracture of distal pole of patella. Moreover, the method is easy to perform, which is also considered as a useful surgical method for extra-articular fracture of distal pole of patella.
Lopez-de-Uralde-Villanueva, Ibai; Beltran-Alacreu, Hector; Fernandez-Carnero, Josue; Kindelan-Calvo, Paula; La Touche, Roy
2016-02-01
Neck pain has an elevated prevalence worldwide. Most people with neck pain are diagnosed as nonspecific neck pain patients. Poor recovery in neck disorders, as well as high levels of pain and disability, are associated with widespread sensory hypersensitivity. Nevertheless, there is controversy regarding the presence of widespread hyperalgesia in chronic nonspecific neck pain (CNSNP); this lack of agreement could be due to the presence of different pathophysiological mechanisms in CNSNP. To determinate differences in pressure pain thresholds (PPTs) over extracervical and cervical regions, and differences in cervical range of motion (ROM) between patients with CNSNP with and without neuropathic features (NF and No-NF, respectively). In addition, this study expected to observe correlations in these 2 types of CNSNP of psychosocial factors with PPTs and with cervical ROM separately. Descriptive, cross-sectional study. A hospital physiotherapy outpatient department. This research involved 53 patients with CNSNP that had obtained a Self-completed Leeds Assessment of Neuropathic Symptoms and Signs pain scale (S-LANSS) score = 12 (pain with NF, NF group); 54 that had obtained a S-LANSS score < 12 (pain with No-NF, No-NF group), and 53 healthy controls (control group, CG). Measures included: PPTs (suboccipital muscle, upper fibers trapezius muscle, lateral epicondyle, and anterior tibial muscle), cervical ROM (flexion, extension, rotation, and latero-flexion), pain intensity (Visual Analog Scale [VAS]), neck disability index (NDI), kinesiophobia (Tampa Scale of Kinesiophobia-11 [TSK-11]), and Pain Catastrophizing Scale (PCS). A statistically significant effect was observed for the group factor in all assessed measures (P < 0.01). Both CNSNP groups showed statistically significant differences compared to the CG for PPTs in the cervical region (suboccipital and upper fibers trapezius muscles), but only the NF group demonstrated statistically significant differences for PPTs in the lateral epincondyle and anterior tibial muscle when compared to the CG or No-NF group. The largest statistically significant correlation found in the NF group was between PPT in the anterior tibial muscle and TSK-11 (r = -0.372; P < 0.01), while in the No-NF group it was between PPT in the suboccipital muscle and NDI (r = -0.288; P < 0.05). Statistically significant differences were found between the 2 CNSNP groups and CG in all cervical ROMs, but not between both CNSNP groups. The largest statistically significant correlation observed in the NF group was between cervical total rotation and TSK-11 (r = -0.473; P < 0.01), while in the No-NF group it was between cervical total latero-flexion and PCS (r = -0.532; P < 0.01). Although the S-LANSS scale has been validated as a screening tool for pain with NF, currently there is no "gold standard," so these findings should be interpreted with caution. Widespread pressure pain hyperalgesia was detected in patients with CNSNP with NF, but not in patients with CNSNP with No-NF. Patients with CNSNP presented bilateral pressure pain hyperalgesia over the cervical region and a decreased cervical ROM compared to healthy controls. However, no differences were found between the 2 CNSNP groups. These findings suggest differences in the mechanism of pain processing between patients with CNSNP with NF and No-NF.
[Whiplash injury of the neck from concepts to facts].
Revel, M
2003-04-01
To focus on a topic of traumatology and rehabilitation becoming recently a much debated public health problem. A references search from Medline database with whiplash as keyword was carried out. Were selected articles with abstracts in french or english and focusing on accidentology, biomechanics, demonstrated lesions, epidemiology and treatments. From 1664 references found, 232 were reviewed. The usual mechanism of crash is a rear-end collision inducing in the occupants of the bumped vehicle a sudden lower cervical spine extension with upper flexion followed by a global flexion. In nearly 50% of the cases, the stress occurring in the collision is comparable to that observed in bumper cars. The velocity changes are seldom up to 15 km/h. A headrest at the level of the center of gravity of the head restrict significantly the extension of the neck. Every structure of the cervical spine could be damaged and mainly the facet joints but the lesions were only demonstrated in severes traumatisms. The discrepancies in incidence among the different countries could be related to their medicolegal system. Although subjectives, the early symptoms are rather similar among patients suggesting true anatomical or functional disorders but the chronicity seems to be mainly related to social and psychological factors. The association of: no posterior midline cervical tenderness, no intoxication, normal alertness, no focal neurological deficit and no painful distracting injuries has a good predictive value of the lack of osteo-articular lesion on X-rays. Except the grade IV of the Quebec task Force (0, no symptom; 1, pain and stiffness; 2, neck complaint and physical signs; 3, neck complaint and neurological signs; 4, fracture or dislocation) the use of a collar should be avoided and the cervical spine should be mobilized. In most whiplash injuries, the mildness should be early stated, mobilization encouraged, and procedures of compensation shortened.
Chen, Samuel; Arsenault, Marc; Moglo, Kodjo
2012-11-01
The human neck is susceptible to traumatic injuries due to impacts as well as chronic injuries caused by loads such as those attributed to the wearing of heavy headgear. To facilitate the analysis of the loads that cause injuries to the cervical spine, it is possible to replicate the human neck's behaviour with mechanical devices. The goal of this work is to lay the foundation for the eventual development of a novel mechanism used to simulate the behaviour of the cervical spine during laboratory experiments. The research presented herein focuses on the design of a mechanism capable of reproducing the non-linear relationships between moments applied to the C3 vertebra and its corresponding rotations with respect to the C4 vertebra. The geometrical and mechanical properties of the mechanism are optimized based on the ability of the latter to replicate the load-deflection profile of the osteoligamentous structure of the C3-C4 vertebral pair in the flexion-extension and lateral bending directions. The results show that the proposed design concept is capable of faithfully replicating the non-linear behaviour of the motion segment within acceptable tolerances.
Johnston, Venerina; Jimmieson, Nerina L; Jull, Gwendolen; Souvlis, Tina
2009-10-01
This study investigated the relative contribution of individual, workplace, psychosocial and physiological features associated with neck pain in female office workers towards developing appropriate intervention programs. Workers without disability (Neck Disability Index (NDI) score < or = 8, n=33); workers with neck pain and disability (NDI > or = 9/100, n=52) and 22 controls (women who did not work and without neck pain) participated in this study. Two logistic regression models were constructed to test the association between various measures in (1) workers with and without disability, and (2) workers without disability and controls. Measures included those found to be significantly associated with higher NDI in our previous studies: psychosocial domains; individual factors; task demands; quantitative sensory measures and measures of motor function. In the final model, higher score on negative affectivity scale (OR=4.47), greater activity in the neck flexors during cranio-cervical flexion (OR=1.44), cold hyperalgesia (OR=1.27) and longer duration of symptoms (OR=1.19) remained significantly associated with neck pain in workers. Workers without disability and controls could only be differentiated by greater muscle activity in the cervical flexors and extensors during a typing task. No psychosocial domains remained in either regression model. These results suggest that impairments in the sensory and motor system should be considered in any assessment of the office worker with neck pain and may have stronger influences on the presenting symptoms than workplace and psychosocial features.
Seacrist, Thomas; Mathews, Emily A; Balasubramanian, Sriram; Maltese, Matthew R; Arbogast, Kristy B
2013-11-01
Debate exists in the automotive community regarding the validity of the pediatric ATD neck response and corresponding neck loads. Previous research has shown that the pediatric ATDs exhibit hyper-flexion and chin-to-chest contact resulting in overestimations of neck loads and neck injury criteria. Our previous work comparing the kinematics of the Hybrid III and Q-series 6 and 10-year-old ATDs to pediatric volunteers in low-speed frontal sled tests revealed decreased ATD cervical and thoracic spine excursions. These kinematic differences may contribute to the overestimation of upper neck loads by the ATD. The current study compared upper neck loads of the Hybrid III and Q-series 6 and 10-year-old ATDs against size-matched male pediatric volunteers in low-speed frontal sled tests. A 3-D near-infrared target tracking system quantified the position of markers on the ATD and pediatric volunteers (head top, nasion, bilateral external auditory meatus). Shear force (F x ), axial force (F z ), bending moment (M y ), and head angular acceleration ([Formula: see text]) were calculated about the upper neck using standard equations of motion. In general, the ATDs underestimated axial force and overestimated bending moment compared to the human volunteers. The Hybrid III 6, Q6, and Q10 exhibited reduced head angular acceleration and modest increases in upper neck shear compared to the pediatric volunteers. The reduction in axial force and bending moment has important implications for neck injury predictions as both are used when calculating N ij . These analyses provide insight into the biofidelity of the pediatric ATD upper neck loads in low-speed crash environments.
López-de-Uralde-Villanueva, Ibai; Sollano-Vallez, Ernesto; Del Corral, Tamara
2017-06-11
To investigate whether patients with chronic nonspecific neck pain and having moderate to severe disability have a greater cervical motor function impairment and respiratory disturbances compared with patients with chronic nonspecific neck pain having mild disability and asymptomatic subjects; and the association between these outcomes in patients with chronic nonspecific neck pain and healthy controls. Cross-sectional study, 44 patients with chronic nonspecific neck pain and 31 healthy subjects participated. The neck disability index was used to divide the patients into 2 groups: 1) mild disability group (scores between 5 and 14 points); and 2) moderate to severe disability group (scores >14 points). Cervical motor function was measured by cervical range of motion, forward head posture, neck flexor, and extensor muscle strength. Respiratory function and maximum respiratory pressures were also measured. Statistically differences were found between the patients with chronic nonspecific neck pain having a moderate to severe disability and the asymptomatic subjects for cervical and respiratory muscle strength. Comparisons between chronic nonspecific neck pain and the asymptomatic groups showed differences for all the variables, except for forward head posture. The regression model determined that strength of cervical flexion explained 36.4 and 45.6% of the variance of maximum inspiratory pressures and maximum expiratory pressures, respectively. Only the chronic nonspecific neck pain group with moderate to severe disability showed differences compared with the healthy subjects. Neck muscle strength could be a good predictor of respiratory muscle function. Implications for rehabilitation Neck pain severity could be closely associated with decreased respiratory pressure in patients with chronic nonspecific neck pain. These findings suggest a new therapeutic approach for patients with moderate to severe disability, such as respiratory muscle training. The regression models show that a simple measurement of neck muscle strength could provide a reasonably accurate prediction for the respiratory function of these patients. Hence, this could provide an easy tool to assess respiratory function to physiotherapists without the need for sophisticated instrumentation.
A comparative study of proximal hindlimb flexion in horses: 5 versus 60 seconds.
Armentrout, A R; Beard, W L; White, B J; Lillich, J D
2012-07-01
The flexion test is routinely used in lameness and prepurchase examinations. There is no accepted standard for duration of flexion or evidence that interpretation of results would differ with different durations of flexion. There will be no difference in interpretation of proximal hindlimb flexion for 5 or 60 s. Video recordings of lameness examinations of 34 client-owned horses were performed that included: baseline lameness, proximal hindlimb flexion for 60 s, and flexion of the same limb for 5 s. Videos were edited to blind reviewers to the hypothesis being tested. The baseline lameness video from each horse was paired with each flexion to make 2 pairs of videos for each case. Twenty video pairs were repeated to assess intraobserver repeatability. Fifteen experienced equine clinicians were asked to review the baseline lameness video followed by the flexion test and grade the response to flexion as either positive or negative. Potential associations between the duration of flexion and the likelihood of a positive flexion test were evaluated using generalised linear mixed models. A kappa value was calculated to assess the degree of intraobserver agreement on the repeated videos. Significance level was set at P<0.05. Proximal hindlimb flexion of 60 s was more likely to be called positive than flexion of 5 s (P<0.0001), with the likelihood of the same interpretation 74% of the time. The first flexion performed was more likely to be called positive than subsequent flexions (P = 0.029). Intra-assessor agreement averaged 75% with κ= 0.49. Proximal hindlimb flexion of a limb for 5 s does not yield the same result as flexing a limb for 60 s. Shorter durations of flexion may be useful for clinicians that have good agreement with flexions of 5 and 60 s. © 2011 EVJ Ltd.
Musculoskeletal disorders of the upper cervical spine in women with episodic or chronic migraine.
Ferracini, Gabriela N; Florencio, Lidiane L; Dach, Fabíola; Bevilaqua Grossi, Débora; Palacios-Ceña, María; Ordás-Bandera, Carlos; Chaves, Thais C; Speciali, José G; Fernández-de-Las-Peñas, César
2017-06-01
The role of musculoskeletal disorders of the cervical spine in migraine is under debate. To investigate differences in musculoskeletal impairments of the neck including active global and upper cervical spine mobility, the presence of symptomatic upper cervical spine joints, cervicocephalic kinesthesia and head/neck posture between women with episodic migraine, chronic migraine, and controls. A cross-sectional study. Tertiary university-based hospital. Fifty-five women with episodic migraine, 16 with chronic migraine, and 22 matched healthy women. Active cervical range of motion, upper cervical spine mobility (i.e., flexion-rotation test), referred pain from upper cervical joints, cervicocephalic kinesthesia (joint position sense error test, JPSE), and head/neck posture (i.e. the cranio-vertebral and cervical lordosis angles) were assessed by an assessor blinded to the subject's condition. Women with migraine showed reduced cervical rotation than healthy women (P=0.012). No differences between episodic and chronic migraine were found in cervical mobility. Significant differences for flexion-rotation test were also reported, suggesting that upper cervical spine mobility was restricted in both migraine groups (P<0.001). Referred pain elicited on manual examination of the upper cervical spine mimicking pain symptoms was present in 50% of migraineurs. No differences were observed on the frequency of symptomatic upper cervical joints between episodic and chronic migraine. No differences on JPSE or posture were found among groups (P>0.121). Women with migraine exhibit musculoskeletal impairments of the upper cervical spine expressed as restricted cervical rotation, decreased upper cervical rotation, and the presence of symptomatic upper cervical joints. No differences were found between episodic or chronic migraine. Identification treatment of the musculoskeletal impairments of the cervical spine may help to clinician for better management of patients with migraine.
Neck muscle activity in helicopter pilots: effect of position and helmet-mounted equipment.
Thuresson, Marcus; Ang, Björn; Linder, Jan; Harms-Ringdahl, Karin
2003-05-01
Helicopter pilots usually work in unfavorable ergonomic positions, often with bulky head-worn equipment during flying missions. The purpose of this study was to evaluate and compare immediate muscle response in the dorsal neck muscles to different positions with a variety of head-worn equipment. Fourteen healthy male helicopter pilots volunteered for this study. EMG activity in the upper and lower dorsal neck muscles and the trapezius muscle was measured in a laboratory situation for 5 s in different sitting positions (neutral, trunk inclined 20 degrees, neck flexed 20 degrees), including registration of a 30 degrees left and right rotation in every position; all measurements were performed while wearing a helmet, a helmet and night vision goggles (hNVG), and a helmet, night vision goggles, and counterweight (hCW), in random order. There was significant higher EMG activity in the upper neck with hNVG and hCW than with the helmet only when comparing the mean activity level of all positions. However, there was no significant difference in EMG activity between any variations of head-worn equipment when comparing activity levels during each position separately. In the upper and lower neck, respectively, there was significantly higher muscle activity during the ipsilateral rotated positions plus neck flexion and trunk inclination than in most other positions. The increased load caused by different positions seems to have a greater influence on muscle activity than the increased load of the head-worn equipment, which must be considered when designing helicopter work-places.
Human Preferences for Conformation Attributes and Head-And-Neck Positions in Horses
2015-01-01
Human preferences for certain morphological attributes among domestic animals may be entirely individual or, more generally, may reflect evolutionary pressures that favor certain conformation. Artificial selection for attributes, such as short heads and crested necks of horses, may have functional and welfare implications because there is evidence from other species that skull shape co-varies with behaviour. Crested necks can be accentuated by flexion of the neck, a quality that is often manipulated in photographs vendors use when selling horses. Equine head-and-neck positions acquired through rein tension can compromise welfare. Our investigation was designed to identify conformations and postures that people are attracted to when choosing their ‘ideal’ horse. Participants of an internet survey were asked to rate their preference for horse silhouettes that illustrated three gradations of five variables: facial shape, crest height, ear length, ear position and head-and-neck carriage. There were 1,234 usable responses. The results show that overall preferences are for the intermediate, rather than extreme, morphological choices (p=<0.001). They also indicate that males are 2.5 times less likely to prefer thicker necks rather than the intermediate shape, and 4 times more likely to prefer the thinner neck shape. When compared to the novice participants, experienced participants were 1.9 times more likely to prefer a thicker neck shape than the intermediate neck shape and 2.8 times less likely to prefer a thinner neck shape than the intermediate neck shape. There was overall preference of 93% (n=939) for the category of head carriage ‘In front of the vertical’. However, novice participants were 1.8 times more likely to choose ‘behind the vertical’ than ‘in front of the vertical’. Our results suggest that people prefer a natural head carriage, concave facial profile (dished face), larger ears and thicker necks. From these survey data, it seems that some innate preferences may run counter to horse health and welfare. PMID:26126209
Ghamkhar, Leila; Kahlaee, Amir Hossein
2017-12-01
This study compared the relationship between some clinical factors and the size of neck flexors in participants with or without chronic neck pain. In this case-control study, the correlation between flexor endurance capacity as well as thickness, cross-section area, and shape ratio of longus colli/capitis and sternocleidomastoid muscles were examined in 30 patients with chronic neck pain and 30 asymptomatic participants. The patients showed lower flexor endurance (P = 0.02), smaller thickness (P = 0.03), and cross-section area (P < 0.01) of longus colli as compared with controls. Longus capitis and sternocleidomastoid size were not different between the two groups. The flexor endurance showed a negative correlation with longus colli shape ratio (r = -0.38, P = 0.03) and a positive correlation with longus capitis cross-section area (r = 0.38, P = 0.03) in the patients with chronic neck pain. In the control group, flexor endurance was negatively correlated with longus colli shape ratio (r = -0.45, P = 0.01) but positively correlated with longus capitis thickness (r = 0.45, P = 0.01) and cross-section area (r = 0.38, P = 0.03). Neck disability and pain intensity indices were not significantly correlated with either flexor muscles endurance or size. The ultrasonographic measures of the deep neck flexor muscles and the flexor endurance test, being associated with each other, could successfully differentiate patients with chronic neck pain from asymptomatic participants. However, the endurance test scores were not correlated with self-reported disability or pain intensity indices.
Nguyen, Jacqueline; Chu, Bryant; Kuo, Calvin C; Leasure, Jeremi M; Ames, Christopher; Kondrashov, Dimitriy
2017-12-01
OBJECTIVE Anterior cervical discectomy and fusion (ACDF) with or without partial uncovertebral joint resection (UVR) and posterior keyhole foraminotomy are established operative procedures to treat cervical disc degeneration and radiculopathy. Studies have demonstrated reliable results with each procedure, but none have compared the change in neuroforaminal area between indirect and direct decompression techniques. The purpose of this study was to determine which cervical decompression method most consistently increases neuroforaminal area and how that area is affected by neck position. METHODS Eight human cervical functional spinal units (4 each of C5-6 and C6-7) underwent sequential decompression. Each level received the following surgical treatment: bilateral foraminotomy, ACDF, ACDF + partial UVR, and foraminotomy + ACDF. Multidirectional pure moment flexibility testing combined with 3D C-arm imaging was performed after each procedure to measure the minimum cross-sectional area of each foramen in 3 different neck positions: neutral, flexion, and extension. RESULTS Neuroforaminal area increased significantly with foraminotomy versus intact in all positions. These area measurements did not change in the ACDF group through flexion-extension. A significant decrease in area was observed for ACDF in extension (40 mm 2 ) versus neutral (55 mm 2 ). Foraminotomy + ACDF did not significantly increase area compared with foraminotomy in any position. The UVR procedure did not produce any changes in area through flexion-extension. CONCLUSIONS All procedures increased neuroforaminal area. Foraminotomy and foraminotomy + ACDF produced the greatest increase in area and also maintained the area in extension more than anterior-only procedures. The UVR procedure did not significantly alter the area compared with ACDF alone. With a stable cervical spine, foraminotomy may be preferable to directly decompress the neuroforamen; however, ACDF continues to play an important role for indirect decompression and decompression of more centrally located herniated discs. These findings pertain to bony stenosis of the neuroforamen and may not apply to soft disc herniation. The key points of this study are as follows. Both ACDF and foraminotomy increase the foraminal space. Foraminotomy was most successful in maintaining these increases during neck motion. Partial UVR was not a significant improvement over ACDF alone. Foraminotomy may be more efficient at decompressing the neuroforamen. Results should be taken into consideration only with stable spines.
Kinematic Patterns Associated with the Vertical Force Produced during the Eggbeater Kick.
Oliveira, Nuno; Chiu, Chuang-Yuan; Sanders, Ross H
2015-01-01
The purpose of this study was to determine the kinematic patterns that maximized the vertical force produced during the water polo eggbeater kick. Twelve water polo players were tested executing the eggbeater kick with the trunk aligned vertically and with the upper limbs above water while trying to maintain as high a position as possible out of the water for nine eggbeater kick cycles. Lower limb joint angular kinematics, pitch angles and speed of the feet were calculated. The vertical force produced during the eggbeater kick cycle was calculated using inverse dynamics for the independent lower body segments and combined upper body segments, and a participant-specific second-degree regression equation for the weight and buoyancy contributions. Vertical force normalized to body weight was associated with hip flexion (average, r = 0.691; maximum, r = 0.791; range of motion, r = 0.710), hip abduction (maximum, r = 0.654), knee flexion (average, r = 0.716; minimum, r = 0.653) and knee flexion-extension angular velocity (r = 0.758). Effective orientation of the hips resulted in fast horizontal motion of the feet with positive pitch angles. Vertical motion of the feet was negatively associated with vertical force. A multiple regression model comprising the non-collinear variables of maximum hip abduction, hip flexion range of motion and knee flexion angular velocity accounted for 81% of the variance in normalized vertical force. For high performance in the water polo, eggbeater kick players should execute fast horizontal motion with the feet by having large abduction and flexion of the hips, and fast extension and flexion of the knees.
Cohen, Steven B; Woods, Daniel P; Siegler, Sorin; Dodson, Christopher C; Namani, Ramya; Ciccotti, Michael G
2015-02-01
Ulnar collateral ligament (UCL) injuries have been successfully treated by the docking reconstruction. Although fixation of the graft has been suggested at 30° of elbow flexion, no quantitative biomechanical data exist to provide guidelines for the optimal elbow flexion angle for graft fixation. Testing was conducted on 10 matched pairs of cadaver elbows with use of a loading system and optoelectric tracking device. After biomechanical data on the native UCL were obtained, reconstruction by the docking technique was performed with use of palmaris longus autograft with one elbow fixated at 30° and the contralateral elbow at 90° of elbow flexion. Biomechanical testing was undertaken on these specimens. The load to failure of the native UCL (mean, 20.1 N-m) was significantly higher (P = .004) than that of the reconstructed UCL (mean, 4.6 N-m). There was no statistically significant difference in load to failure of the UCL reconstructions fixated at 30° of elbow flexion (average, 4.86 N-m) compared with those at 90° (average, 4.35 N-m). Elbows reconstructed at 30° and 90° of elbow flexion produced similar kinematic coupling and valgus laxity characteristics compared with each other and with the intact UCL. Although not statistically significant, the reconstructions fixated at 30° more closely resembled the biomechanical characteristics of the intact elbow than did reconstructions fixated at 90°. No statistically significant difference was found in comparing the docking technique of UCL reconstruction with graft fixation at 30° vs. 90° of elbow flexion. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Palmgren, Per J; Andreasson, Daniel; Eriksson, Magnus; Hägglund, Andreas
2009-06-30
Although cervical pain is widespread, most victims are only mildly and occasionally affected. A minority, however, suffer chronic pain and/or functional impairments. Although there is abundant literature regarding nontraumatic neck pain, little focuses on diagnostic criteria. During the last decade, research on neck pain has been designed to evaluate underlying pathophysiological mechanisms, without noteworthy success. Independent researchers have investigated postural balance and cervicocephalic kinesthetic sensibility among patients with chronic neck pain, and have (in most cases) concluded the source of the problem is a reduced ability in the neck's proprioceptive system. Here, we investigated cervicocephalic kinesthetic sensibility and postural balance among patients with nontraumatic chronic neck pain. Ours was a two-group, observational pilot study of patients with complaints of continuous neck pain during the 3 months prior to recruitment. Thirteen patients with chronic neck pain of nontraumatic origin were recruited from an institutional outpatient clinic. Sixteen healthy persons were recruited as a control group. Cervicocephalic kinesthetic sensibility was assessed by exploring head repositioning accuracy and postural balance was measured with computerized static posturography. Parameters of cervicocephalic kinesthetic sensibility were not reduced. However, in one of six test movements (flexion), global repositioning errors were significantly larger in the experimental group than in the control group (p < .05). Measurements did not demonstrate any general impaired postural balance, and varied substantially among participants in both groups. In patients with nontraumatic chronic neck pain, we found statistically significant global repositioning errors in only one of six test movements. In this cohort, we found no evidence of impaired postural balance.Head repositioning accuracy and computerized static posturography are imperfect measures of functional proprioceptive impairments. Validity of (and procedures for using) these instruments demand further investigation. Current Controlled Trials ISRCTN96873990.
Impact Injury Caused by Linear Acceleration: Mechanisms, Prevention and Cost
1982-04-29
lying in a ventral position to the flexion axis failed by fracture as a result of stress-loading. On the other hand, on the thoracic spinal column...the dorsal ligamentous structures showed signs of stress-1oading and the ventral bony structures showed signs of pressure-1oading. of the most...anguiation upon impact. Are you consider- ing different angulations of the neck-torso to get more cervical injuries which would be expected? AUTHOR’S
Blazar, P E; Floyd, E W; Earp, B E
2016-07-01
Controversy exists regarding intra-operative treatment of residual proximal interphalangeal joint contractures after Dupuytren's fasciectomy. We test the hypothesis that a simple release of the digital flexor sheath can correct residual fixed flexion contracture after subtotal fasciectomy. We prospectively enrolled 19 patients (22 digits) with Dupuytren's contracture of the proximal interphalangeal joint. The average pre-operative extension deficit of the proximal interphalangeal joints was 58° (range 30-90). The flexion contracture of the joint was corrected to an average of 28° after fasciectomy. In most digits (20 of 21), subsequent incision of the flexor sheath further corrected the contracture by an average of 23°, resulting in correction to an average flexion contracture of 4.7° (range 0-40). Our results support that contracture of the tendon sheath is a contributor to Dupuytren's contracture of the joint and that sheath release is a simple, low morbidity addition to correct Dupuytren's contractures of the proximal interphalangeal joint. Additional release of the proximal interphalangeal joint after fasciectomy, after release of the flexor sheath, is not necessary in many patients. IV (Case Series, Therapeutic). © The Author(s) 2015.
Decrement in manual arm performance during whole body cooling.
Giesbrecht, G G; Bristow, G K
1992-12-01
Six subjects performed three manual arm tasks: 1) prior to immersion in 8 degrees C water; 2) soon after immersion to the neck, but prior to any decrease in core temperature; and 3) every 15 min until core temperatures decreased 2-4.5 degrees C. The tasks were speed of flexion and extension of the fingers, handgrip strength and manual dexterity. There was no immediate effect of cold immersion; however, all scores decreased significantly after core temperature decreased 0.5 degrees C. Further decrease in core temperature was associated with a progressive impairment of performance, although at a slower rate than during the first 0.5 degrees C decrease. Flexion and extension of the fingers was affected relatively more than handgrip strength or manual dexterity. Decrement in performance is a result of peripheral cooling on sensorimotor function with a probable additional effect of central cooling on cerebral function.
Kieser, David C; Cox, P J; Kieser, S C J
2018-06-01
Hirayama disease is an initially progressive disease caused by cervical neck flexion compressing the anterior horns of the lower cervical spinal cord. It is primarily seen in young males of Indian or Asian descent. With increasing dispersion of these populations this condition is increasingly being encountered internationally. This grand round reviews this rare but increasingly recognized condition. We present a classic case of a young Indian male with progressive hand and forearm weakness. We discuss the typical clinical presentation, appropriate investigations and management of this condition. Our patient presented with oblique amyotrophy and underwent a diagnostic flexion MRI scan which revealed anterior translation of the posterior dura with compression of the anterior horns of the lower cervical cord. He has been successfully treated in a cervical collar. This case illustrates the typical presentation, diagnostic investigations and treatment of Hirayama syndrome. It is hoped that this review will alert clinicians of this condition and optimize the management of affected individuals.
Kocjan, Andrej; Sarabon, Nejc
2014-05-01
The aim of the study was to assess the differences in maximal isometric trunk extension and flexion strength during standing, sitting and kneeling. Additionally, we were interested in correlations between the maximal strength in sagittal, frontal and transverse plane, measured in the sitting position. Sixty healthy subjects (24 male, 36 female; age 41.3 ± 15.1 yrs; body height 1.70 ± 0.09 m; body mass 72.7 ± 13.3 kg) performed maximal voluntary isometric contractions of the trunk flexor and extensor muscles in standing, sitting and kneeling position. The subjects also performed lateral flexions and rotations in the sitting position. Each task was repeated three times and average of maximal forces was used for data analysis. RANOVA with post-hoc testing was applied to the flexion and extension data. The level of statistical significance was set to p < 0.05. Overall, in both genders together, the highest average force for trunk extension was recorded in sitting posture (910.5 ± 271.5 N), followed by kneeling (834.3 ± 242.9 N) and standing (504.0 ± 165.4 N), compared with flexion, where we observed the opposite trend (508.5 ± 213.0 N, 450.9 ± 165.7 N and 443.4 ± 153.1 N, respectively). Post-hoc tests showed significant differences in all extension positions (p < 0.0001) and between sitting/standing (p = 0.018) and kneeling/standing (p = 0.033) flexion exertions. The extension/flexion ratio for sitting was 2.1 ± 0.4, for kneeling 1.9 ± 0.4, followed by standing, where motion forward approximately equals motion backward (1.1 ± 0.6). Trunk sagittal-transverse strength showed the strongest correlation, followed by frontal-transverse and sagittal-frontal plane correlation pairs (R(2) = 0.830, 0.712 and 0.657). The baseline trunk isometric strength data provided by this study should help further strength diagnostics, more precisely, the prevention of low back disorders. Key pointsMaximal voluntary isometric force of the trunk extensors increased with the angle at the hips (highest in sitting, medium in kneeling and lowest in upright standing).The opposite trend was true for isometric MVC force of trunk flexors (both genders together and men only).In the sitting position, the strongest correlation between MVC forces was found between sagittal (average flexion/extension) and transverse plane (average left/right rotation).IN ORDER TO INCREASE THE VALIDITY OF TRUNK STRENGTH TESTING THE LETTER SHOULD INCLUDE: specific warm-up, good pelvic fixation and visual feedback.
Kocjan, Andrej; Sarabon, Nejc
2014-01-01
The aim of the study was to assess the differences in maximal isometric trunk extension and flexion strength during standing, sitting and kneeling. Additionally, we were interested in correlations between the maximal strength in sagittal, frontal and transverse plane, measured in the sitting position. Sixty healthy subjects (24 male, 36 female; age 41.3 ± 15.1 yrs; body height 1.70 ± 0.09 m; body mass 72.7 ± 13.3 kg) performed maximal voluntary isometric contractions of the trunk flexor and extensor muscles in standing, sitting and kneeling position. The subjects also performed lateral flexions and rotations in the sitting position. Each task was repeated three times and average of maximal forces was used for data analysis. RANOVA with post-hoc testing was applied to the flexion and extension data. The level of statistical significance was set to p < 0.05. Overall, in both genders together, the highest average force for trunk extension was recorded in sitting posture (910.5 ± 271.5 N), followed by kneeling (834.3 ± 242.9 N) and standing (504.0 ± 165.4 N), compared with flexion, where we observed the opposite trend (508.5 ± 213.0 N, 450.9 ± 165.7 N and 443.4 ± 153.1 N, respectively). Post-hoc tests showed significant differences in all extension positions (p < 0.0001) and between sitting/standing (p = 0.018) and kneeling/standing (p = 0.033) flexion exertions. The extension/flexion ratio for sitting was 2.1 ± 0.4, for kneeling 1.9 ± 0.4, followed by standing, where motion forward approximately equals motion backward (1.1 ± 0.6). Trunk sagittal-transverse strength showed the strongest correlation, followed by frontal-transverse and sagittal-frontal plane correlation pairs (R2 = 0.830, 0.712 and 0.657). The baseline trunk isometric strength data provided by this study should help further strength diagnostics, more precisely, the prevention of low back disorders. Key points Maximal voluntary isometric force of the trunk extensors increased with the angle at the hips (highest in sitting, medium in kneeling and lowest in upright standing). The opposite trend was true for isometric MVC force of trunk flexors (both genders together and men only). In the sitting position, the strongest correlation between MVC forces was found between sagittal (average flexion/extension) and transverse plane (average left/right rotation). In order to increase the validity of trunk strength testing the letter should include: specific warm-up, good pelvic fixation and visual feedback. PMID:24790491
Anteroposterior translation does not correlate with knee flexion after total knee arthroplasty.
Ishii, Yoshinori; Noguchi, Hideo; Takeda, Mitsuhiro; Sato, Junko; Toyabe, Shin-ichi
2014-02-01
Stiffness after a TKA can cause patient dissatisfaction and diminished function, therefore it is important to characterize predictors of ROM after TKA. Studies of AP translation in conscious individuals disagree whether AP translation affects maximum knee flexion angle after implantation of a highly congruent sphere and trough geometry PCL-substituting prosthesis in a TKA. We investigated whether AP translation correlated with maximum knee flexion angle (1) in patients who were awake, and (2) who were under anesthesia (to minimize the effects of voluntary muscle contraction) in a TKA with implantation of a PCL-substituting mobile-bearing prosthesis. AP translation was examined under both conditions in 34 primary TKAs. Measurements under anesthesia were performed when the patients were having anesthesia for a contralateral TKA. Awake measurements were made within 4 days of that anesthetic session in patients who had no residual sedative effects. The average postoperative interval for the index TKA flexion measurements was 23 months (range, 6-114 months). AP translation was evaluated at 75° flexion using an arthrometer. There was no correlation between postoperative maximum knee flexion and AP translation at 75° during consciousness. There was no correlation between postoperative maximum knee flexion and AP translation under anesthesia. AP translation at 75° flexion did not correlate with postoperative maximum knee flexion in either awake or anesthetized patients during a TKA with implantation of a posterior cruciate-substituting prosthesis.
Casanova-Méndez, Amaloha; Oliva-Pascual-Vaca, Angel; Rodriguez-Blanco, Cleofás; Heredia-Rizo, Alberto Marcos; Gogorza-Arroitaonandia, Kristobal; Almazán-Campos, Ginés
2014-08-01
Spinal Manipulation (SM) has been purported to decrease pain and improve function in subjects with non-specific neck pain. Previous research has investigated which individuals with non-specific neck pain will be more likely to benefit from SM. It has not yet been proven whether or not the effectiveness of thoracic SM depends on the specific technique being used. This double-blind randomized trial has compared the short-term effects of two thoracic SM maneuvers in subjects with chronic non-specific neck pain. Sixty participants were distributed randomly into two groups. One group received the Dog technique (n = 30), with the subject in supine position, and the other group underwent the Toggle-Recoil technique (n = 30), with the participant lying prone, T4 being the targeted area in both cases. Evaluations were made of self-reported neck pain (Visual Analogue Scale); neck mobility (Cervical Range of Motion); and pressure pain threshold at the cervical and thoracic levels (C4 and T4 spinous process) and over the site described for location of tense bands of the upper trapezius muscle. Measurements were taken before intervention, immediately afterward, and 20 min later. Both maneuvers improved neck mobility and mechanosensitivity and reduced pain in the short term. No major or clinical differences were found between the groups. In the between-groups comparison slightly better results were observed in the Toggle-Recoil group only for cervical extension (p = 0.009), right lateral flexion (p = 0.004) and left rotation (p < 0.05). Copyright © 2014 Elsevier Ltd. All rights reserved.
Griswold, David; Learman, Ken; O'Halloran, Bryan; Cleland, Josh
2015-05-01
Neck pain is routinely managed using manual therapy (MT) to the cervical and thoracic spines. While both mobilizations and manipulations to these areas have been shown to reduce neck pain, increase cervical range of motion, and reduce disability, the most effective option remains elusive. The purpose of this preliminary trial was to compare the pragmatic use of cervical and thoracic mobilizations vs. manipulation for mechanical neck pain. This trial included 20 patients with mechanical neck pain. Each patient was randomized to receive either mobilization or manipulation to both the cervical and thoracic spines during their plan of care. Within-group analyses were made with Wilcoxon signed-rank tests and between-group analyses were made with Mann-Whitney U. There were no between-group differences for any of the dependent variables including cervical active range of motion (CAROM) (P = 0.18), deep cervical flexion (DCF) endurance (P = 0.06), numerical pain rating scale (NPRS) (P = 0.26), the neck disability index (NDI, P = 0.33), patient-specific functional scale (PSFS, P = 0.20), or the global rating of change (GROC) scale (P = 0.94). Within-group results were significant for all outcome variables (P<0.001) from initial evaluation to discharge for both groups. These findings were consistent with other trials previously conducted that applied the MT techniques in a pragmatic fashion, but varied from previous trials where the treatment was standardized. A larger experimental study is necessary to further examine the differences between mobilization and manipulation for neck pain.
Peolsson, Anneli; Ludvigsson, Maria Landén; Wibault, Johanna; Dedering, Åsa; Peterson, Gunnel
2014-05-01
The purposes of this study were to examine whether any differences in function and health exist between patients with cervical radiculopathy (CR) due to disk disease scheduled for surgery and patients with chronic whiplash-associated disorders (WADs) and to compare measures of patients' physical function with those obtained from healthy volunteers. This is a cross-sectional study of patients with CR (n = 198) and patients with chronic WAD (n = 215). Patient data were compared with raw data previously obtained from healthy people. Physical measures included cervical active range of motion, neck muscle endurance, and hand grip strength. Self-rated measures included pain intensity (visual analog scale), neck disability (Neck Disability Index), self-efficacy (Self-Efficacy Scale), and health-related quality of life (EuroQol 5-dimensional self-classifier). Patient groups exhibited significantly lower performance than the healthy group in all physical measures (P < .0005) except for neck muscle endurance in flexion for women (P > .09). There was a general trend toward worse results in the CR group than the WAD group, with significant differences in neck active range of motion, left hand strength for women, pain intensity, Neck Disability Index, EuroQol 5-dimensional self-classifier, and Self-Efficacy Scale (P < .0001). Patients had worse values than healthy individuals in almost all physical measures. There was a trend toward worse results for CR than WAD patients. Copyright © 2014 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.
Evaluating the head posture of dentists with no neck pain.
Mostamand, J; Lotfi, H; Safi, N
2013-10-01
Dentistry is one of the professions that requires a high degree of concentration during the treatment of patients. There are many predisposing factors, affecting dentists when working on the patient's teeth, including neck flexion, arm abduction and inflexible postural positions, which may put them at the risk of developing musculoskeletal disorders related to the neck. Although dentists with long records of service show different levels of pain and discomfort in their necks, there is no evidence regarding whether younger dentists report neck pain before the onset of an abnormal condition in this region, including forward head posture (FHP). Discovering any alteration in the head posture of dentists might confirm one of the reasons for neck pain in this population. Forty one dentists with no neck pain and forty controls having jobs other than dentistry who had no risk factors related to head posture voluntarily participated in the present study. A standard method was used to measure the cervical curve in these two groups. There was no significant difference between the mean values of cervical curve in dentists and the control group (p > 0.05). There was also no significant difference between cervical curve values in dentists working for either 5-8 years or 8-12 years (p > 0.05). The only significant difference was observed in mean cervical curve values of men and women in the dentist group (p < 0.05). No alteration of cervical curve in the dentist group compared to controls might be due to absence of pain sensation in the dentists in the current study. In other words, this group might have not yet experienced sufficient change in head posture to experience significant pain in their neck region. Copyright © 2012 Elsevier Ltd. All rights reserved.
Koutras, Georgios; Bernard, Manfred; Terzidis, Ioannis P; Papadopoulos, Pericles; Georgoulis, Anastasios; Pappas, Evangelos
2016-07-01
Hamstrings grafts are commonly used in ACL reconstruction, however, the effect of graft harvesting on knee flexion strength has not been longitudinally evaluated in functional positions. We hypothesized that greater deficits in knee flexion strength exist in the prone compared to the seated position and these deficits remain as rehabilitation progresses. Case series. Forty-two consecutive patients who underwent ACL reconstruction with a hamstrings graft were followed prospectively for 9 months. Isokinetic knee flexion strength at a slow and a fast speed were collected at 3, 4, 6, and 9 months in two different positions: conventional (seated) and functional (0° of hip flexion). Peak torque knee flexion deficits were higher in the prone position compared to the seated position by an average of 6.5% at 60°/s and 9.1% at 180°/s (p<0.001). Measuring knee flexion strength in prone demonstrates higher deficits than in the conventional seated position. Most athletes would not be cleared to return to sports even at 9 months after surgery with this method. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Helito, Camilo Partezani; Helito, Paulo Victor Partezani; Bonadio, Marcelo Batista; da Mota e Albuquerque, Roberto Freire; Bordalo-Rodrigues, Marcelo; Pecora, Jose Ricardo; Camanho, Gilberto Luis; Demange, Marco Kawamura
2014-01-01
Background: Recent anatomical studies have identified the anterolateral ligament (ALL). Injury to this structure may lead to the presence of residual pivot shift in some reconstructions of the anterior cruciate ligament. The behavior of the length of this structure and its tension during range of motion has not been established and is essential when planning reconstruction. Purpose: To establish differences in the ALL length during range of knee motion. Study Design: Descriptive laboratory study. Methods: Ten unpaired cadavers were dissected. The attachments of the ALL were isolated. Its origin and insertion were marked with a 2 mm–diameter metallic sphere. Computed tomography scans were performed on the dissected parts under extension and 30°, 60°, and 90° of flexion; measurements of the distance between the 2 markers were taken at all mentioned degrees of flexion. The distances between the points were compared. Results: The mean ALL length increased with knee flexion. Its mean length at full extension and at 30°, 60°, and 90° of flexion was 37.9 ± 5.3, 39.3 ± 5.4, 40.9 ± 5.4, and 44.1 ± 6.4 mm, respectively. The mean increase in length from 0° to 30° was 3.99% ± 4.7%, from 30° to 60° was 4.20% ± 3.2%, and from 60° to 90° was 7.45% ± 4.8%. From full extension to 90° of flexion, the ligament length increased on average 16.7% ± 12.1%. From 60° to 90° of flexion, there was a significantly higher increase in the mean distance between the points compared with the flexion from 0° to 30° and from 30° to 60°. Conclusion: The ALL shows no isometric behavior during the range of motion of the knee. The ALL increases in length from full extension to 90° of flexion by 16.7%, on average. The increase in length was greater from 60° to 90° than from 0° to 30° and from 30° to 60°. The increase in length at higher degrees of flexion suggests greater tension with increasing flexion. Clinical Relevance: Knowledge of ALL behavior during the range of motion of the knee will allow for fixation (during its reconstruction) to be performed with a higher or lower tension, depending on the chosen degree of flexion. PMID:26535292
2011-01-01
Background This paper reports the development of an in-vitro technique allowing quantification of relative (not absolute) deformations measured at the level of the cancellous bone of the tibial proximal epiphysis (CBTPE) during knee flexion-extension. This method has been developed to allow a future study of the effects of low femoral osteotomies consequence on the CBTPE. Methods Six strain gages were encapsulated in an epoxy resin solution to form, after resin polymerisation, six measurement elements (ME). The latter were inserted into the CBTPE of six unembalmed specimens, just below the tibial plateau. Knee motion data were collected by three-dimensional (3D) electrogoniometry during several cycles of knee flexion-extension. Intra- and inter-observer reproducibility was estimated on one specimen for all MEs. Intra-specimen repeatability was calculated to determine specimen's variability and the error of measurement. A varum and valgum chirurgical procedure was realised on another specimen to observed CBTPE deformation after these kind of procedure. Results Average intra-observer variation of the deformation ranged from 8% to 9% (mean coefficient of variation, MCV) respectively for extension and flexion movement. The coefficient of multiple correlations (CMC) ranged from 0.93 to 0.96 for flexion and extension. No phase shift of maximum strain peaks was observed. Inter-observer MCV averaged 23% and 28% for flexion and extension. The CMC were 0.82 and 0.87 respectively for extension and flexion. For the intra-specimen repeatability, the average of mean RMS difference and the mean ICC were calculated only for flexion movement. The mean RMS variability ranged from 7 to 10% and the mean ICC was 0.98 (0.95 - 0.99). A Pearson's correlation coefficient was calculated showing that RMS was independent of signal intensity. For the chirurgical procedure, valgum and varum deviation seems be in agree with the frontal misalignment theory. Conclusions Results show that the methodology is reproducible within a range of 10%. This method has been developed to allow analysis the indirect reflect of deformation variations in CBTPE before and after distal femoral osteotomies. The first results of the valgum and varum deformation show that our methodology allows this kind of measurement and are encourageant for latter studies. It will therefore allow quantification and enhance the understanding of the effects of this kind of surgery on the CBTPE loading. PMID:21371297
Sobczak, Stéphane; Salvia, Patrick; Dugailly, Pierre-Michel; Lefèvre, Philippe; Feipel, Véronique; Van Sint Jan, Serge; Rooze, Marcel
2011-03-03
This paper reports the development of an in-vitro technique allowing quantification of relative (not absolute) deformations measured at the level of the cancellous bone of the tibial proximal epiphysis (CB(TPE)) during knee flexion-extension. This method has been developed to allow a future study of the effects of low femoral osteotomies consequence on the CB(TPE). Six strain gages were encapsulated in an epoxy resin solution to form, after resin polymerisation, six measurement elements (ME). The latter were inserted into the CB(TPE) of six unembalmed specimens, just below the tibial plateau. Knee motion data were collected by three-dimensional (3D) electrogoniometry during several cycles of knee flexion-extension. Intra- and inter-observer reproducibility was estimated on one specimen for all MEs. Intra-specimen repeatability was calculated to determine specimen's variability and the error of measurement. A varum and valgum chirurgical procedure was realised on another specimen to observed CB(TPE) deformation after these kind of procedure. Average intra-observer variation of the deformation ranged from 8% to 9% (mean coefficient of variation, MCV) respectively for extension and flexion movement. The coefficient of multiple correlations (CMC) ranged from 0.93 to 0.96 for flexion and extension. No phase shift of maximum strain peaks was observed. Inter-observer MCV averaged 23% and 28% for flexion and extension. The CMC were 0.82 and 0.87 respectively for extension and flexion. For the intra-specimen repeatability, the average of mean RMS difference and the mean ICC were calculated only for flexion movement. The mean RMS variability ranged from 7 to 10% and the mean ICC was 0.98 (0.95-0.99). A Pearson's correlation coefficient was calculated showing that RMS was independent of signal intensity. For the chirurgical procedure, valgum and varum deviation seems be in agree with the frontal misalignment theory. Results show that the methodology is reproducible within a range of 10%. This method has been developed to allow analysis the indirect reflect of deformation variations in CB(TPE) before and after distal femoral osteotomies. The first results of the valgum and varum deformation show that our methodology allows this kind of measurement and are encourageant for latter studies. It will therefore allow quantification and enhance the understanding of the effects of this kind of surgery on the CB(TPE) loading.
Anesthetic management of a parturient with type III Klippel-Feil syndrome.
Hsu, G; Manabat, E; Huffnagle, S; Huffnagle, H J
2011-01-01
Klippel-Feil syndrome is believed to occur from failure of normal segmentation of cervical somites during gestation. We present the case of a 38-year-old primiparous woman with type III Klippel-Feil syndrome for elective cesarean delivery. Our patient had a short webbed neck, short stature, limited neck flexion and extension, and thoraco-lumbar abnormalities. A multidisciplinary approach, involving obstetrics, medical subspecialties, anesthesiology, otolaryngology, and radiology, were utilized to evaluate and manage this patient. Pulmonary function testing revealed a restrictive defect, but transthoracic echocardiography was normal without pulmonary hypertension. We planned a combined spinal-epidural technique; however, only the epidural technique was obtained. Cesarean delivery was commenced with favorable maternal and fetal outcomes. Post-operative pain management was provided with intravenous morphine patient-controlled analgesia. Copyright © 2010 Elsevier Ltd. All rights reserved.
Dynamic cervical stabilization: a multicenter study.
Matgé, Guy; Buddenberg, Peter; Eif, Marcus; Schenke, Holger; Herdmann, Joerg
2015-12-01
The dynamic cervical implant (DCI) is a novel motion-preserving concept for the treatment of degenerative cervical disorders. The aim of this prospective clinical study was to validate the concept and analyse clinical and radiological performance of the implant. One hundred seventy-five consecutive patients with degenerative cervical disorders, median age, 47 years, were treated with discectomy and DCI, and followed for 2 years. Clinical outcome was evaluated with the Neck Disability Index (NDI), the SF-12, and visual analogue scale (VAS) assessment of arm and neck pain. Range of motion (ROM) and cervical alignment were analysed using radiographic imaging. All clinical outcome measures--VAS neck and arm pain, NDI, and SF-12 mental and physical component summaries--improved significantly after surgery (each p < 0.001) and remained stable over the whole observation period. The ROM (flexion/extension) at the level treated with DCI was slightly reduced, but no significant changes could be verified at the adjacent levels. Six surgery or device-related adverse events were documented during the study. Good clinical and excellent radiological outcomes demonstrate that DCI is a safe and efficient treatment option in patients with degenerative cervical disorders.
Head-Neck Biomechanics in Simulated Rear Impact
Yoganandan, Narayan; Pintar, Frank A.; Cusick, Joseph F.; Kleinberger, Michael
1998-01-01
The first objective of this study is to present an overview of the human cadaver studies aimed to determine the biomechanics of the head-neck in a simulated rear crash. The need for kinematic studies to better understand the mechanisms of load transfer to the human head-neck complex is emphasized. Based on this need, a methodology is developed to delineate the dynamic kinematics of the human head-neck complex. Intact human cadaver head-neck complexes were subjected to postero-anterior impact using a mini-sled pendulum device. The integrity of the soft tissues including the musculature and skin were maintained. The kinematic data were recorded using high-speed photography coupled with retroreflective targets placed at various regions of the human head-neck complex. The overall and segmental kinematics of the entire head-neck complex, and the localized facet joint motions were determined. During the initial stages of loading, a transient decoupling of the head occurred with respect to the neck exhibiting a lag of the cranium. The upper cervical spine-head undergoes local flexion concomitant with a lag of the head while the lower cervical spinal column is in local extension. This establishes a reverse curvature to the cervical head-neck complex. With continued loading, head motion ensues and approximately at the end of the loading phase, the entire head-neck complex is under the extension mode with a single curvature. In contrast, the lower cervical spine facet joint kinematics show varying compression and sliding. While both the anterior and posterior-most regions of the facet joint slide, the posterior-most region (mean: 2.84 mm) of the joint compresses more than the anterior-most (mean: 2.02 mm) region. These varying kinematics at the ends of the facet joint result in a pinching mechanism. These biomechanical kinematic findings may be correlated to the presence of headaches and neck pain (Lord, Bogduk et al. 1992; Barnsley, Lord et al. 1995), based on the unique human head-neck anatomy at the upper cervical spine region and the associated facet joint characteristics, and clinical studies.
Amiri Arimi, Somayeh; Mohseni Bandpei, Mohammad Ali; Javanshir, Khodabakhsh; Rezasoltani, Asghar; Biglarian, Akbar
2017-08-01
Neck pain is one of the major public health problems, which has a great impact on people's lives. The purpose of this study was to systematically review published studies conducted on the effect of different exercise programs on activity, size, endurance, and strength of deep cervical flexor (DCF) muscles in patients with chronic neck pain. The PubMed, Science Direct, OVID, Google scholar, Cochrane Library, and Physiotherapy Evidence Databases were searched to determine relevant articles published from 1990 to March 2016. The articles were qualitatively assessed based on the Physiotherapy Evidence Databases scale for randomized controlled trials studies. Nine articles were identified and evaluated in the final analysis. Four studies had moderate quality, and five studies had good quality. From those nine studies, eight studies gave support to the effectiveness of specific low-load exercise training on DCF muscles parameters, while one study reported no significant difference between this exercise and other cervical exercise programs. The results of reviewed studies are in favor of specific low-load craniocervical flexion exercise, which seems to be a highly effective exercise regimen compared to other types of exercises in improving DCF muscles impairments in patients with chronic neck pain.
Oh, Hyung-Taek; Hwangbo, Gak
2018-04-01
[Purpose] The aim of this study was to determine the effect of short-term self-joint mobilization of the upper spine using a Kaltenborn wedge on the pain and cervical dysfunction of patients with neck pain. [Subjects and Methods] Twenty-seven patients with neck pain were divided into two groups; the self-mobilization group (SMG, n=13) and the self-stretching group (SSG, n=14). The SMG performed upper thoracic self-mobilization and the SSG performed self-stretching exercises as a short-term intervention for a week. To assess the degree of neck pain, the visual analog scale (VAS) was utilized, and to measure the joint range of motion at the flexion-extension, it was compared and analyzed by using the goniometer. [Results] Both SMG and SSG show a significant decrease in the visual analog scale and a significant increase in joint range of motion within the group. In the comparison of groups, there was no significant difference, but it indicated effects on improving the range of motion of extension in SMG. [Conclusion] Self-mobilization of the upper spine, using a Kaltenborn wedge, was useful in alleviating pain in and dysfunction of the cervical spine, and in particular, in improving cervical spine extension in this study.
The effect of neck pain on cervical kinematics, as assessed in a virtual environment.
Sarig Bahat, Hilla; Weiss, Patrice L; Laufer, Yocheved
2010-12-01
To compare cervical kinematics during functional motion in patients with neck pain and in asymptomatic participants using a novel virtual reality assessment. Clinical comparative trial. Participants were recruited from university staff and students, and from a local physical therapy clinic. Patients with chronic neck pain (n=25) and asymptomatic participants (n=42). Not applicable. Kinematic measures (response time, peak and mean velocity, number of velocity peaks, time to peak velocity percentage) were sampled while participants were engaged in the virtual game. Group and motion direction differences were assessed with a 2-way repeated-measures analysis of variance, Tukey-Kramer testing, and contrast analysis when relevant. Participants with neck pain had lower peak and mean velocities than the asymptomatic participants (P<.0001). They also demonstrated a greater number of velocity peaks, indicating impaired motion smoothness (P=.0036). No significant group differences were found for response time or for time to peak velocity percentage. Cervical rotations were significantly faster and smoother than flexion and extension movements (P<.05). The overall impairment percentage in velocity and smoothness of cervical motion in patients with neck pain ranged from 22% to 44% compared with asymptomatic participants. Velocity and smoothness of cervical motion were more restricted in patients with chronic neck pain than found previously. Unlike range of motion and other static measurements, these dynamic variables reflect functional cervical motion and therefore contribute to a better understanding of the impairment associated with neck pain. Because the ability to move quickly in response to external stimuli is a commonly occurring phenomenon, this deficit is highly relevant to clinical assessment and management. Copyright © 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Non-invasive methods to maintain cervical spine position after pediatric tracheal resections.
Aydinyan, Kahren K; Day, Jonathan D; Troiano, Gina M; Digoy, G Paul
2017-07-01
To present our experience with two methods of neck stabilization after pediatric tracheal resection with primary anastomosis as possible alternatives to the traditional chest-chin suture. Children undergoing tracheal resection and/or cricotracheal resection with anastomosis under tension were placed in cervical spine flexion postoperatively with either a chest-chin (Grillo) suture, an Aspen cervical collar or Trulife Johnson cervical-thoracic orthosis (CTO). A retrospective chart review of tracheal resections performed between 2005 and 2016 was completed to evaluate the positive and negative factors associated with each neck flexion technique. Of the 20 patients, there were 13 patients with the Grillo suture, 4 with the Aspen collar and 3 patients with the Johnson CTO. There were 13 tracheal resection procedures and 7 cricotracheal resections, all of which had anastomosis under tension. One major anastomosis dehiscence was noted with the Grillo suture technique which required reoperation. Two patients with the Grillo suture experienced skin breakdown at the suture site. The Aspen cervical collar, which fixed the cervical spine and prevented lateral and rotational motion, was limited in several cases in that it placed the spine in slight hyperextension. The Johnson CTO provided the most support in a flexed position and prevented cervical spine motion in all directions. No anastomosis complications were noted with the Aspen collar or the Johnson CTO, however, several patients sustained minor cutaneous wounds. In this series the Aspen cervical collar and Johnson CTO were used successfully as non-Grillo alternatives to postoperative neck stabilization in pediatric tracheal resections. Modifications to both devices are proposed to minimize cutaneous injuries and increase immobilization of the cervical spine in the desired flexed position. Although these devices appear to be safe and may be better tolerated, further innovation is needed to improve the design and fit of these devices. Copyright © 2017 Elsevier B.V. All rights reserved.
Park, Junhyung; Hur, Jingang; Ko, Taesung
2015-01-01
The muscle activity of the deep cervical flexors is emphasized more than that of the superficial cervical flexors, and it has been reported that functional disorders of the longuscolli are found in patients who experience neck pain. The objective of this study was to analyze the recruitment patterns and muscle activities of the cervical flexors during Cranio-Cervical Flexion Tests (CCFTs) through real-time ultrasonography and surface electromyography with a view to presenting appropriate pressure levels for deep cervical flexor exercise protocols based on the results of the analysis. The twenty subjects without neck pain were trained until they became accustomed to CCFTs, and the pressure level was increased gradually from 20 mmHg to 40 mmHg by increasing the pressure level 5 mmHg at a time. Real-time ultrasonography images of the longuscolli and the sternocleidomastoid were taken to measure the amounts of changes in the thicknesses of these muscles, and surface electromyography was implemented to observe the muscle activity of the sternocleidomastoid. The measured value is RMS. According to the results of the ultrasonography, the muscle thicknesses of both the longuscolli and the sternocleidomastoid showed significant increases, as the pressure increased up to 40 mmHg (p< 0.05). The differences in the muscle thicknesses at all individual pressure levels showed significant increases (p< 0.05). According to the results of the electromyography, the muscle activity of the sternocleidomastoid gradually increased as the pressure increased up to 40 mmHg, the increases were significant between 20 mmHg and 25 mmHg, between 30 mmHg and 35 mmHg (p< 0.05). The pressure levels of exercise methods at which the muscle activity of the deep cervical flexors is maximally increased and the muscle activity of the superficial cervical flexors is minimally increased are 25 mmHg-30 mmHg.
Palmgren, Per J; Andreasson, Daniel; Eriksson, Magnus; Hägglund, Andreas
2009-01-01
Background Although cervical pain is widespread, most victims are only mildly and occasionally affected. A minority, however, suffer chronic pain and/or functional impairments. Although there is abundant literature regarding nontraumatic neck pain, little focuses on diagnostic criteria. During the last decade, research on neck pain has been designed to evaluate underlying pathophysiological mechanisms, without noteworthy success. Independent researchers have investigated postural balance and cervicocephalic kinesthetic sensibility among patients with chronic neck pain, and have (in most cases) concluded the source of the problem is a reduced ability in the neck's proprioceptive system. Here, we investigated cervicocephalic kinesthetic sensibility and postural balance among patients with nontraumatic chronic neck pain. Methods Ours was a two-group, observational pilot study of patients with complaints of continuous neck pain during the 3 months prior to recruitment. Thirteen patients with chronic neck pain of nontraumatic origin were recruited from an institutional outpatient clinic. Sixteen healthy persons were recruited as a control group. Cervicocephalic kinesthetic sensibility was assessed by exploring head repositioning accuracy and postural balance was measured with computerized static posturography. Results Parameters of cervicocephalic kinesthetic sensibility were not reduced. However, in one of six test movements (flexion), global repositioning errors were significantly larger in the experimental group than in the control group (p < .05). Measurements did not demonstrate any general impaired postural balance, and varied substantially among participants in both groups. Conclusion In patients with nontraumatic chronic neck pain, we found statistically significant global repositioning errors in only one of six test movements. In this cohort, we found no evidence of impaired postural balance. Head repositioning accuracy and computerized static posturography are imperfect measures of functional proprioceptive impairments. Validity of (and procedures for using) these instruments demand further investigation. Trial registration Current Controlled Trials ISRCTN96873990 PMID:19566929
López-de-Uralde-Villanueva, Ibai; Beltran-Alacreu, Hector; Fernández-Carnero, Josué; Gil-Martínez, Alfonso; La Touche, Roy
2016-01-01
To assess differences in neural mechanosensitivity between patients with chronic nonspecific neck pain with and without neuropathic features (NF and No-NF, respectively). Descriptive, cross-sectional study. A primary care center, a hospital physiotherapy outpatient department, and a university campus. Chronic nonspecific neck pain patients classified by the self-completed leeds assessment of neuropathic symptoms and signs pain scale (S-LANSS; 49 patients with NF [S-LANSS ≥ 12] and 50 patients with No-NF [S-LANSS < 12]) and a healthy control group (n = 48). The primary measurements were the mechanosensitivity of the median nerve and cervical region, specifically the assessment of the onset of symptoms and submaximal pain intensity according to the upper limb neural test 1 (ULNT1) for the median nerve and the modified passive neck flexion test (MPNFT) for the cervical region; secondary measurements included pain intensity, neck disability, kinesiophobia, and pain catastrophizing. Statistically significant differences between the NF and No-NF groups were found with respect to the onset of symptoms of ULNT1 (-15.11 [-23.19 to -7.03]) and MPNFT (-6.58 [-11.54 to -1.62]), as well as the outcomes of the visual analogue scale (Mean difference [95% Confidence Interval]; 7.12 [1.81-12.42]) and neck disability index (3.72 [1.72-5.71]). Both chronic nonspecific neck pain groups showed statistically significant differences compared with the control group for all outcomes assessed (P < 0.01) except for the onset of symptoms of ULNT1 in the No-NF group. The findings of this study suggest that chronic nonspecific neck pain patients with NF have greater neural mechanosensitivity, pain intensity, and neck disability than those with No-NF. Published by Oxford University Press on behalf of the American Academy of Pain Medicine. 2016. This work is written by US Government employees and is in the public domain in the US.
Ivancic, Paul C
2012-09-01
To simulate horizontally aligned head-first impacts with initial head protrusion using a human cadaveric neck model and to determine biomechanical responses, injuries, and injury severity. Head-first impacts with initial head protrusion were simulated at 2.4 m/s using a human cadaver neck model (n = 10) mounted horizontally to a torso-equivalent mass on a sled and carrying a surrogate head. Macroscopic neck injuries were determined, and ligamentous injuries were quantified using fluoroscopy and visual inspection after the impacts. Representative time-history responses for injured specimens were determined during impact using load cell data and analyses of high-speed video. Biomechanics research laboratory. Cervical spines of 10 human cadavers. Injury severity at the middle and lower cervical spine was statistically compared using a 2-sample t test (P < 0.05). Neck buckling consisted of hyperflexion at C6/7 and C7/T1 and hyperextension at superior spinal levels. Noncontiguous neck injuries included forward dislocation at C7/T1, spinous process fracture and compression-extension injuries at the middle cervical spine, and atlas and odontoid fractures. Ligamentous injury severity at C7/T1 was significantly greater than at the middle cervical spine. Distinct injury mechanisms were observed throughout the neck, consisting of extension-compression and posterior shear at the upper and middle cervical spine and flexion-compression and anterior shear at C6/7 and C7/T1. Our experimental results highlight the importance of clinical awareness of potential noncontiguous cervical spine injuries due to head-first sports impacts.
Ris, I; Søgaard, K; Gram, B; Agerbo, K; Boyle, E; Juul-Kristensen, B
2016-12-01
To investigate the effect of combining pain education, specific exercises and graded physical activity training (exercise) compared with pain education alone (control) on physical health-related quality of life (HR-QoL) in chronic neck pain patients. A multicentre randomised controlled trial of 200 neck pain patients receiving pain education. The exercise group received additional exercises for neck/shoulder, balance and oculomotor function, plus graded physical activity training. Patient-reported outcome measures (Short Form-36 Physical and Mental component summary scores, EuroQol-5D, Beck Depression Inventory-II, Neck Disability Index, Pain Bothersomeness, Patient-Specific Functioning Scale, Tampa Scale of Kinesiophobia, Global Perceived Effect) and clinical tests (Aastrand Physical Fitness, cervical Range of Motion, Pressure Pain Threshold at infraspinatus, tibialis anterior and cervical spine, Cranio-cervical Flexion, Cervical Extension muscle function, and oculomotion) were recorded at baseline and after 4 months. The exercise group showed statistically significant improvement in physical HR-QoL, mental HR-QoL, depression, cervical pressure pain threshold, cervical extension movement, muscle function, and oculomotion. Per protocol analyses confirmed these results with additional significant improvements in the exercise group compared with controls. This multimodal intervention may be an effective intervention for chronic neck pain patients. The trial was registered on www.ClinicalTrials.govNCT01431261 and at the Regional Scientific Ethics Committee of Southern Denmark S-20100069. Copyright © 2016 Elsevier Ltd. All rights reserved.
Role of central command in carotid baroreflex resetting in humans during static exercise
NASA Technical Reports Server (NTRS)
Ogoh, S.; Wasmund, W. L.; Keller, D. M.; O-Yurvati, A.; Gallagher, K. M.; Mitchell, J. H.; Raven, P. B.
2002-01-01
The purpose of the experiments was to examine the role of central command in the exercise-induced resetting of the carotid baroreflex. Eight subjects performed 30 % maximal voluntary contraction (MVC) static knee extension and flexion with manipulation of central command (CC) by patellar tendon vibration (PTV). The same subjects also performed static knee extension and flexion exercise without PTV at a force development that elicited the same ratings of perceived exertion (RPE) as those observed during exercise with PTV in order to assess involvement of the exercise pressor reflex. Carotid baroreflex (CBR) function curves were modelled from the heart rate (HR) and mean arterial pressure (MAP) responses to rapid changes in neck pressure and suction during steady state static exercise. Knee extension exercise with PTV (decreased CC activation) reset the CBR-HR and CBR-MAP to a lower operating pressure (P < 0.05) and knee flexion exercise with PTV (increased CC activation) reset the CBR-HR and CBR-MAP to a higher operating pressure (P < 0.05). Comparison between knee extension and flexion exercise at the same RPE with and without PTV found no difference in the resetting of the CBR-HR function curves (P > 0.05) suggesting the response was determined primarily by CC activation. However, the CBR-MAP function curves were reset to operating pressures determined by both exercise pressor reflex (EPR) and central command activation. Thus the physiological response to exercise requires CC activation to reset the carotid-cardiac reflex but requires either CC or EPR to reset the carotid-vasomotor reflex.
Sánchez-Zuriaga, Daniel; López-Pascual, Juan; Garrido-Jaén, David; García-Mas, Maria Amparo
2015-02-01
The purpose of this study was to determine the patterns of lumbopelvic motion and erector spinae (ES) activity during trunk flexion-extension movements and to compare these patterns between patients with recurrent low back pain (LBP) in their pain-free periods and matched asymptomatic subjects. Thirty subjects participated (15 patients with disc herniation and recurrent LBP in their pain-free periods and 15 asymptomatic control subjects). A 3-dimensional videophotogrammetric system and surface electromyography (EMG) were used to record the angular displacements of the lumbar spine and hip in the sagittal plane and the EMG activity of the ES during standardized trunk flexion-extension cycles. Variables were maximum ranges of spine and hip flexion; percentages of maximum lumbar and hip flexion at the start and end of ES relaxation; average percentages of EMG activity during flexion, relaxation, and extension; and flexion-extension ratio of myoelectrical activity. Recurrent LBP patients during their pain-free period showed significantly greater ES activation both in flexion and extension, with a higher flexion-extension ratio than controls. Maximum ranges of lumbar and hip flexion showed no differences between controls and patients, although patients spent less time with their lumbar spine maximally flexed. This study showed that reduced maximum ranges of motion and absence of ES flexion-relaxation phenomenon were not useful to identify LBP patients in the absence of acute pain. However, these patients showed subtle alterations of their lumbopelvic motion and ES activity patterns, which may have important clinical implications. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.
An unusual cause of cervical kyphosis.
Raj, Mamtha S; Schwab, Joseph H
2017-02-01
Acute fixed cervical kyphosis may be a rare presentation of conversion disorder, psychogenic dystonia, and potentially as a side effect from typical antipsychotic drugs. Haldol has been associated with acute dystonic reactions. In some cases, rigid deformities ensue. We are reporting a case of a fixed cervical kyphosis after the use of Haldol. To present a case of a potential acute dystonic reaction temporally associated with Haldol ingestion leading to fixed cervical kyphosis. This is a case report. A patient diagnosed with bipolar disorder presented to the emergency room several times with severe neck pain and stiffness. The neck appeared fixed in flexion with extensive osteophyte formation over a 3-month period. The patient's condition was resolved by a posterior-anterior-posterior surgical approach. It corrected the patient's cervical curvature from 88° to 5°. Acute dystonic reactions have the potential to apply enough pressure on bone to cause rapid osteophyte formation. Copyright © 2016 Elsevier Inc. All rights reserved.
Hirose, G; Kadoya, S
1984-01-01
The acute onset of symptoms of severe cervical radiculo-myelopathy in four patients with athetoid-dystonic cerebral palsy is reported. Neurological and radiological examination showed that the spondylotic changes of the cervical spine were responsible for new neurological deficits leading to the patients being bedridden. Dystonic-athetoid neck movements may cause excessive axial neck rotation as well as flexion and extension movements of the spine. These repetitive exaggerated movements may result in early degenerative changes of the vertebrae which may enhance the radiculo-myelopathy. The four patients were treated with an anterior discectomy with interbody fusion. They were bedridden pre-operatively but all have since been able to walk with or without a cane. It is concluded that early anterior decompression with interbody fusion is a treatment of choice for cervical spondylotic radiculo-myelopathy in association with athetoid cerebral palsy. Images PMID:6470718
LaPrade, Robert F; Smith, Sean D; Wilson, Katharine J; Wijdicks, Coen A
2015-10-01
Counteracting posterior translation of the tibia with an anterior force on the posterior proximal tibia has been demonstrated clinically to improve posterior knee laxity following posterior cruciate ligament (PCL) injury. This study quantified forces applied to the posterior proximal tibia by two knee braces designed for treatment of PCL injuries. The forces applied by two knee braces to the posterior proximal tibia and in vivo three-dimensional knee kinematics of six adult, male, healthy volunteer subjects (mean ± standard deviation: height, 182.5 ± 5.2 cm; body mass, 83.2 ± 9.3 kg; body mass index, 24.9 ± 1.5 kg/m(2); age, 25.8 ± 2.9 years) were measured using a custom pressure mapping technique and traditional surface marker motion capture techniques, while subjects performed three functional activities. The activities included seated unloaded knee flexion, squatting, and stair descent in a new generation dynamic force (DF) PCL brace and a static force (SF) PCL brace. During unloaded flexion at the lowest force level setting, the force applied by the DF brace increased as a function of flexion angle (slope = 0.7 N/°; p < 0.001) compared to the SF brace effect. Force applied by the SF brace did not significantly change as a function of flexion angle (slope = 0.0 N/°; n.s.). By 45° of flexion, the average force applied by the DF brace (48.1 N) was significantly larger (p < 0.001) than the average force applied by the SF brace (25.0 N). The difference in force continued to increase as flexion angle increased. During stair descent, average force (mean ± standard deviation) at toe off was significantly higher (p = 0.013) for the DF brace (78.7 ± 21.6 N) than the SF brace (37.3 ± 7.2 N). Similar trends were observed for squatting and for the higher force level settings. The DF brace applied forces to the posterior proximal tibia that dynamically increased with increased flexion angle. Additionally, the DF brace applied significantly larger forces at higher flexion angles compared to the SF brace where the PCL is known to experience larger in situ forces. Clinical studies are necessary to determine whether the loading characteristics of the DF brace, which more closely replicated the in situ loading profile of the native PCL, results in long-term improved posterior knee laxity following PCL injury. II.
Budelmann, Kim; von Piekartz, Harry; Hall, Toby
2016-09-01
Cervical movement impairment has been identified as a core component of cervicogenic headache evaluation. However, normal range of motion values in children has been investigated rarely and no study has reported such values for the flexion-rotation test (FRT). The purpose of this study was to identify normal values and side-to-side variation for cervical spine range of motion (ROM) and the FRT, in asymptomatic children aged 6-12 years. Another important purpose was to identify the presence of pain during the FRT. Thirty-four asymptomatic children without history of neck pain or headache (26 females and 8 males, mean age 125.38 months [SD 13.14]) were evaluated. Cervical spine cardinal plane ROM and the FRT were evaluated by a single examiner using a cervical ROM device. Values for cardinal plane ROM measures are presented. No significant gender difference was found for any ROM measure. Mean difference in ROM for rotation, side flexion, and the FRT were less than one degree. However, intra-individual variation was greater, with lower bound scores of 9.32° for rotation, 5.30° for side flexion, and 10.89° for the FRT. Multiple linear regression analysis indicates that movement in the cardinal planes only explains 19% of the variance in the FRT. Pain scores reported following the FRT were less than 2/10. Children have consistently greater cervical spine ROM than adults. In children, side-to-side variation in rotation and side flexion ROM and range recorded during the FRT indicates that the clinician should be cautious when using range in one direction to determine impairment in another. Range recorded during the FRT is independent of cardinal movement variables, which further adds to the importance of the FRT, as a test that mainly evaluates range of movement of the upper cervical spine.
Biomechanics of halo-vest and dens screw fixation for type II odontoid fracture.
Ivancic, Paul C; Beauchman, Naseem N; Mo, Fred; Lawrence, Brandon D
2009-03-01
An in vitro biomechanical study of halo-vest and odontoid screw fixation of Type II dens fracture. The objective were to determine upper cervical spine instability due to simulated dens fracture and investigate stability provided by the halo-vest and odontoid screw, applied individually and combined. Previous studies have evaluated posterior fixation techniques for stabilizing dens fracture. No previous biomechanical study has investigated the halo-vest and odontoid screw for stabilizing dens fracture. A biofidelic skull-neck-thorax model was used with 5 osteoligamentous whole cervical spine specimens. Three-dimensional flexibility tests were performed on the specimens while intact, following simulated dens fracture, and following application of the halo-vest alone, odontoid screw alone, and halo-vest and screw combined. Average total neutral zone and total ranges of motion at C0/1 and C1/2 were computed for each experimental condition and statistically compared with physiologic motion limits, obtained from the intact flexibility test. Significance was set at P < 0.05 with a trend toward significance at P < 0.1. Type II dens fracture caused trends toward increased sagittal neutral zone and lateral bending range of motion at C1/2. Spinal motions with the dens screw alone could not be differentiated from physiologic limits. Significant reductions in motion were observed at C0/1 and C1/2 in flexion-extension and axial rotation due to the halo-vest, applied individually or combined with the dens screw. At C1/2, the halo-vest combined with the dens screw generally allowed the smallest average percentages of intact motion: 3% in axial rotation, 17% in flexion-extension, and 18% in lateral bending. The present reduction in C1/2 motion observed, due to the halo-vest and dens screw combined is similar to previously reported immobilization provided by the polyaxial screw/rod system and transarticular screw fixation combined with wiring. The present biomechanical data may be useful to clinicians when choosing an appropriate treatment for those with Type II dens fracture.
Use of a wireless, inertial sensor-based system to objectively evaluate flexion tests in the horse.
Marshall, J F; Lund, D G; Voute, L C
2012-12-01
A wireless, inertial sensor-based system has previously been validated for evaluation of equine lameness. However, threshold values have not been determined for the assessment of responses to flexion tests. The aim of this investigation was to evaluate a sensor-based system for objective assessment of the response to flexion. Healthy adult horses (n = 17) in work were recruited prospectively. Horses were instrumented with sensors on the head (accelerometer), pelvis (accelerometer) and right forelimb (gyroscope), before trotting in a straight line (minimum 25 strides) for 2 consecutive trials. Sensors measured 1) vertical pelvic movement asymmetry (PMA) for both right and left hindlimb strides and 2) average difference in maximum and minimum pelvic height (PDMax and PDMin) between right and left hindlimb strides in millimetres. A hindlimb was randomly selected for proximal flexion (60 s), after which the horse trotted a minimum of 10 strides. Response to flexion was blindly assessed as negative or positive by an experienced observer. Changes in PMA, PDMax and PDMin between baseline and flexion examinations were calculated for each test. Statistical analysis consisted of a Pearson's product moment test and linear regression on baseline trials, Mann-Whitney rank sum test for effect of flexion and receiver operator curve (ROC) analysis of test parameters. There was a strong correlation between trials for PMA, PDMin and PDMax measurements (P < 0.001). A positive flexion test resulted in a significant increase in PMA (P = 0.021) and PDMax (P = 0.05) only. Receiver-operator curve analysis established cut-off values for change in PMA and PDMax of 0.068 and 4.47 mm, respectively (sensitivity = 0.71, specificity = 0.65) to indicate a positive response to flexion. A positive response to flexion resulted in significant changes to objective measurements of pelvic symmetry. Findings support the use of inertial sensor systems to objectively assess response to flexion tests. Further investigation is warranted to establish cut-off values for objective assessment of other diagnostic procedures.
Aerodynamics of dynamic wing flexion in translating wings
NASA Astrophysics Data System (ADS)
Liu, Yun; Cheng, Bo; Sane, Sanjay P.; Deng, Xinyan
2015-06-01
We conducted a systematic experimental study to investigate the aerodynamic effects of active trailing-edge flexion on a high-aspect-ratio wing translating from rest at a high angle of attack. We varied the timing and speed of the trailing-edge flexion and measured the resulting aerodynamic effects using a combination of direct force measurements and two-dimensional PIV flow measurements. The results indicated that the force and flow characteristics depend strongly on the timing of flexion, but relatively weakly on its speed. This is because the force and vortical flow structure are more sensitive to the timing of flexion relative to the shedding of starting vortex and leading-edge vortex. When the trailing-edge flexion occurred slightly before the starting vortex was shed, the lift production was greatly improved with the instantaneous peak lift increased by 54 % and averaged lift increased by 21 % compared with the pre-flexed case where the trailing-edge flexed before wing translation. However, when the trailing-edge flexed during or slightly after the leading-edge vortex shedding, the lift was significantly reduced by the disturbed development of leading-edge vortex. The force measurement results also imply that the trailing-edge flexion prior to wing translation does not augment lift but increases drag, thus resulting in a lower lift-drag ratio as compared to the case of flat wing.
Bidez, Martha W; Cochran, John E; King, Dottie; Burke, Donald S
2007-11-01
Motor vehicle crashes are the leading cause of death in the United States for people ages 3-33, and rollover crashes have a higher fatality rate than any other crash mode. At the request and under the sponsorship of Ford Motor Company, Autoliv conducted a series of dynamic rollover tests on Ford Explorer sport utility vehicles (SUV) during 1998 and 1999. Data from those tests were made available to the public and were analyzed in this study to investigate the magnitude of and the temporal relationship between roof deformation, lap-shoulder seat belt loads, and restrained anthropometric test dummy (ATD) neck loads. During each of the three FMVSS 208 dolly rollover tests of Ford Explorer SUVs, the far-side, passenger ATDs exhibited peak neck compression and flexion loads, which indicated a probable spinal column injury in all three tests. In those same tests, the near-side, driver ATD neck loads never predicted a potential injury. In all three tests, objective roof/pillar deformation occurred prior to the occurrence of peak neck loads (F ( z ), M ( y )) for far-side, passenger ATDs, and peak neck loads were predictive of probable spinal column injury. The production lap and shoulder seat belts in the SUVs, which restrained both driver and passenger ATDs, consistently allowed ATD head contact with the roof while the roof was contacting the ground during this 1000 ms test series. Local peak neck forces and moments were noted each time the far-side, passenger ATD head contacted ("dived into") the roof while the roof was in contact with the ground; however, the magnitude of these local peaks was only 2-13% of peak neck loads in all three tests. "Diving-type" neck loads were not predictive of injury for either driver or passenger ATD in any of the three tests.
Cochran, John E.; King, Dottie; Burke, Donald S.
2007-01-01
Motor vehicle crashes are the leading cause of death in the United States for people ages 3–33, and rollover crashes have a higher fatality rate than any other crash mode. At the request and under the sponsorship of Ford Motor Company, Autoliv conducted a series of dynamic rollover tests on Ford Explorer sport utility vehicles (SUV) during 1998 and 1999. Data from those tests were made available to the public and were analyzed in this study to investigate the magnitude of and the temporal relationship between roof deformation, lap–shoulder seat belt loads, and restrained anthropometric test dummy (ATD) neck loads. During each of the three FMVSS 208 dolly rollover tests of Ford Explorer SUVs, the far-side, passenger ATDs exhibited peak neck compression and flexion loads, which indicated a probable spinal column injury in all three tests. In those same tests, the near-side, driver ATD neck loads never predicted a potential injury. In all three tests, objective roof/pillar deformation occurred prior to the occurrence of peak neck loads (Fz, My) for far-side, passenger ATDs, and peak neck loads were predictive of probable spinal column injury. The production lap and shoulder seat belts in the SUVs, which restrained both driver and passenger ATDs, consistently allowed ATD head contact with the roof while the roof was contacting the ground during this 1000 ms test series. Local peak neck forces and moments were noted each time the far-side, passenger ATD head contacted (“dived into”) the roof while the roof was in contact with the ground; however, the magnitude of these local peaks was only 2–13% of peak neck loads in all three tests. “Diving-type” neck loads were not predictive of injury for either driver or passenger ATD in any of the three tests. PMID:17641975
López-de-Uralde-Villanueva, Ibai; Acuyo-Osorio, Mario; Prieto-Aldana, María; La Touche, Roy
2017-04-01
The Passive Neck Flexion Test (PNFT) can diagnose meningitis and potential spinal disorders. Little evidence is available concerning the use of a modified version of the PNFT (mPNFT) in patients with chronic nonspecific neck pain (CNSNP). To assess the reliability of the mPNFT in subjects with and without CNSNP. The secondary objective was to assess the differences in the symptoms provoked by the mPNFT between these two populations. We used repeated measures concordance design for the main objective and cross-sectional design for the secondary objective. A total of 30 asymptomatic subjects and 34 patients with CNSNP were recruited. The following measures were recorded: the range of motion at the onset of symptoms (OS-mPNFT), the range of motion at the submaximal pain (SP-mPNFT), and evoked pain intensity on the mPNFT (VAS-mPNFT). Good to excellent reliability was observed for OS-mPNFT and SP-mPNFT in the asymptomatic group (intra-examiner reliability: 0.95-0.97; inter-examiner reliability: 0.86-0.90; intra-examiner test-retest reliability: 0.84-0.87). In the CNSNP group, a good to excellent reliability was obtained for the OS-mPNFT (intra-examiner reliability: 0.89-0.96; inter-examiner reliability: 0.83-0.86; intra-examiner test-retest reliability: 0.83-0.85) and the SP-PNFT (intra-examiner reliability: 0.94-0.98; inter-examiner reliability: 0.80-0.82; intra-examiner test-retest reliability: 0.88-0.91). The CNSNP group showed statistically significant differences in OS-mPNFT (t = 4.92; P < 0.001), SP-mPNFT (t = 2.79; P = 0.007) and in VAS-mPNFT (t = -10.39; P < 0.001) versus the asymptomatic group. The mPNFT is a reliable tool regardless of the examiner and the time factor. Patients with CNSNP have a decrease range of motion and more pain than asymptomatic subjects in the mPNFT. This exceeds the minimal detectable changes for OS-mPNFT and VAS-mPNFT. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aitchison, Lucy Ping; Cui, Cathy Kexin; Arnold, Amy; Nesbitt-Hawes, Erin; Abbott, Jason
2016-11-01
Laparoscopic surgery presents multiple ergonomic difficulties for the surgeon, requiring awkward body postures and prolonged static muscle loading that increases risk of musculoskeletal strain and injury. This prospective study quantitatively measures the biomechanical movements of surgeons during laparoscopic procedures to determine at-risk movements from prolonged static muscle loading and repetitive motions that may lead to injury. A total of 150 video recordings of 18 surgeons, standing at the patient's left, were captured from three fixed camera positions during live gynecological laparoscopic surgery. Postoperative processing quantified surgeon movements at the neck, shoulders and elbows using computer software to measure extreme joint angles and time spent within defined joint angle ranges. Surgeons spent a median of 98 % (range 77-100 %) of surgical time with their neck rotated at 21° (range 0°-52°). The non-dominant arm was subjected to more extreme positions for significantly longer periods of time compared to the dominant, with shoulder flexion at 45°-90° for 35 vs. 0 % (p < 0.001) and elbow flexion at >120° for 31 vs. 0 % (p < 0.001) of total surgical time. Procedures involving power morcellation required significantly greater number of instrument insertion/removals-119 (range 56-182) compared with 12 (range 2-122) when morcellation was not used (p < 0.001). Shorter surgeons maintained significantly greater degrees of neck rotation when viewing the monitor (p < 0.003) and surgeons with shorter arm lengths spent longer in extreme positions with their non-dominant shoulder at >90° (p = 0.04) and elbow at >120° (p < 0.001) compared with taller surgeons. No significant correlations were found between BMI or surgical experience and more extreme joint positions. Four primary areas have been identified where surgeons are consistently demonstrating movements that increase their risk of harm: (1) extended periods of neck rotation; (2) asymmetrical loading between the dominant and non-dominant shoulders; (3) power morcellation and frequent insertions/removals of laparoscopic instruments resulting in repetitions of the most extreme shoulder positions and (4) a negative correlation between height and percentage time spent in more extreme positions.
Anderst, William; Baillargeon, Emma; Donaldson, William; Lee, Joon; Kang, James
2013-01-01
Study Design Case-control. Objective To characterize the motion path of the instant center of rotation (ICR) at each cervical motion segment from C2 to C7 during dynamic flexion-extension in asymptomatic subjects. To compare asymptomatic and single-level arthrodesis patient ICR paths. Summary of Background Data The ICR has been proposed as an alternative to range of motion (ROM) for evaluating the quality of spine movement and for identifying abnormal midrange kinematics. The motion path of the ICR during dynamic motion has not been reported. Methods 20 asymptomatic controls, 12 C5/C6 and 5 C6/C7 arthrodesis patients performed full ROM flexion-extension while biplane radiographs were collected at 30 Hz. A previously validated tracking process determined three-dimensional vertebral position with sub-millimeter accuracy. The finite helical axis method was used to calculate the ICR between adjacent vertebrae. A linear mixed-model analysis identified differences in the ICR path among motion segments and between controls and arthrodesis patients. Results From C2/C3 to C6/C7, the mean ICR location moved superior for each successive motion segment (p < .001). The AP change in ICR location per degree of flexion-extension decreased from the C2/C3 motion segment to the C6/C7 motion segment (p < .001). Asymptomatic subject variability (95% CI) in the ICR location averaged ±1.2 mm in the SI direction and ±1.9 mm in the AP direction over all motion segments and flexion-extension angles. Asymptomatic and arthrodesis groups were not significantly different in terms of average ICR position (all p ≥ .091) or in terms of the change in ICR location per degree of flexion-extension (all p ≥ .249). Conclusions To replicate asymptomatic in vivo cervical motion, disc replacements should account for level-specific differences in the location and motion path of ICR. Single-level anterior arthrodesis does not appear to affect cervical motion quality during flexion-extension. PMID:23429677
Bertolaccini, Luca; Viti, Andrea; Terzi, Alberto
2015-10-01
Single-port access video-assisted thoracic surgery (VATS), a technique progressively developed from the standard three-port approach in minimally invasive surgery, offers ergonomic advantages but also new challenges for the surgeon. We compared the ergonomics of three-port versus single-port VATS. Posture analysis of surgeons was evaluated during 100 consecutive VATS wedge resections (50 triportal vs. 50 uniportal). Technically demanding procedures (major lung resection) were excluded. Operating table height, monitor height, distance and inclination were adjusted according to operator preference. Body posture was assessed by measuring head-trunk axial rotation and head flexion. Perceived physical strain was self-evaluated on the Borg Category Ratio (CR-10) scale. Mental workload was assessed with the National Aeronautics Space Administration-Task Load indeX (NASA-TLX), a multidimensional tool that rates workloads on six scales (mental, physical and temporal demand; effort; performance; frustration). All procedures were completed without complications. Head-trunk axial rotation was significantly reduced and neck flexion significantly improved in uniportal VATS. Viewing direction significantly declined (p = 0.01), body posture as measured on the Borg CR-10 scale was perceived as more stressful and the NASA-TLX score for overall workload was higher (p = 0.04) during triportal VATS. The NASA-TLX score for frustration was higher with uniportal VATS (p = 0.02), but the score for physical demand was higher in triportal VATS (p = 0.006). The surgeon can maintain a more neutral body posture during uniportal VATS by standing straight and facing the monitor with only minimal neck extension/rotation; however, frustration is greater than with triportal VATS.
Torgén, M; Winkel, J; Alfredsson, L; Kilbom, A
1999-06-01
The principal aim of the present study was to evaluate questionnaire-based information on past physical work loads (6-year recall). Effects of memory difficulties on reproducibility were evaluated for 82 subjects by comparing previously reported results on current work loads (test-retest procedure) with the same items recalled 6 years later. Validity was assessed by comparing self-reports in 1995, regarding work loads in 1989, with worksite measurements performed in 1989. Six-year reproducibility, calculated as weighted kappa coefficients (k(w)), varied between 0.36 and 0.86, with the highest values for proportion of the workday spent sitting and for perceived general exertion and the lowest values for trunk and neck flexion. The six-year reproducibility results were similar to previously reported test-retest results for these items; this finding indicates that memory difficulties was a minor problem. The validity of the questionnaire responses, expressed as rank correlations (r(s)) between the questionnaire responses and workplace measurements, varied between -0.16 and 0.78. The highest values were obtained for the items sitting and repetitive work, and the lowest and "unacceptable" values were for head rotation and neck flexion. Misclassification of exposure did not appear to be differential with regard to musculoskeletal symptom status, as judged by the calculated risk estimates. The validity of some of these self-administered questionnaire items appears sufficient for a crude assessment of physical work loads in the past in epidemiologic studies of the general population with predominantly low levels of exposure.
Development and validation of a 10-year-old child ligamentous cervical spine finite element model.
Dong, Liqiang; Li, Guangyao; Mao, Haojie; Marek, Stanley; Yang, King H
2013-12-01
Although a number of finite element (FE) adult cervical spine models have been developed to understand the injury mechanisms of the neck in automotive related crash scenarios, there have been fewer efforts to develop a child neck model. In this study, a 10-year-old ligamentous cervical spine FE model was developed for application in the improvement of pediatric safety related to motor vehicle crashes. The model geometry was obtained from medical scans and meshed using a multi-block approach. Appropriate properties based on review of literature in conjunction with scaling were assigned to different parts of the model. Child tensile force-deformation data in three segments, Occipital-C2 (C0-C2), C4-C5 and C6-C7, were used to validate the cervical spine model and predict failure forces and displacements. Design of computer experiments was performed to determine failure properties for intervertebral discs and ligaments needed to set up the FE model. The model-predicted ultimate displacements and forces were within the experimental range. The cervical spine FE model was validated in flexion and extension against the child experimental data in three segments, C0-C2, C4-C5 and C6-C7. Other model predictions were found to be consistent with the experimental responses scaled from adult data. The whole cervical spine model was also validated in tension, flexion and extension against the child experimental data. This study provided methods for developing a child ligamentous cervical spine FE model and to predict soft tissue failures in tension.
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Bernauer, E. M.; Ertl, A. C.; Bulbulian, R.; Bond, M.
1994-01-01
The purpose of our study was to determine if an intensive, intermittent, isokinetic, lower extremity exercise training program would attenuate or eliminate the decrease of muscular strength and endurance during prolonged bed rest (BR). The 19 male subjects (36 +/- 1 yr, 178 +/- 2 cm, 76.5 +/- 1.7 kg) were allocated into a no exercise (NOE) training group (N = 5), an isotonic (lower extremity cycle ergometer) exercise (ITE) training group (N = 7), and an isokinetic (isokinetic knee flexion-extension) exercise (IKE) training group (N = 7). Peak knee (flexion and extension) and shoulder (abduction-adduction) functions were measured weekly in all groups with one 5-repetition set. After BR, average knee extension total work decreased by 16% with NOE, increased by 27% with IKE, and was unchanged with ITE. Average knee flexion total work and peak torque (strength) responses were unchanged in all groups. Force production increased by 20% with IKE and was unchanged with NOE and ITE. Shoulder total work was unchanged in all groups, while gross average peak torque increased by 27% with ITE and by 22% with IKE, and was unchanged with NOE. Thus, while ITE training can maintain some isokinetic functions during BR, maximal intermittent IKE training can increase other functions above pre-BR control levels.
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Bernauer, E. M.; Ertl, A. C.; Bond, M.; Bulbulian, R.
1994-01-01
The purpose of our study was to determine if an intensive, intermittent, isokinetic, lower extremity exercise training program would attenuate or eliminate the decrease of muscular strength and endurance during prolonged bed rest (BR). The 19 male subjects (36 +/- 1 yr, 178 +/- 2 cm, 76.5 +/- 1.7 kg) were allocated into a no exercise (NOE) training group (N = 5), an isotonic (lower extremity cycle orgometer) exercise (ITE) training group (N = 7), and an isokinetic (isokinetic knee flexion-extension) exercise (IKE) training group (N = 7). Peak knee (flexion and extension) and shoulder (abduction-adduction) functions were measured weekly in all groups with one 5-repetition set. After BR, average knee extension total work decreased by 16% with NOE, increased by 27% with IKE, and was unchanged with ITE. Average knee flexion total work and peak torque (strength) responses were unchanged in all groups. Force production increased by 20% with IKE and was unchanged with NOE and ITE. Shoulder total work was unchanged in all groups, while gross average peak torque increased by 27% with ITE and by 22% with IKE, and was unchanged with NOE. Thus, while ITE training can maintain some isokinetic functions during BR, maximal intermittent IKE training can increase other functions above pre-BR control levels.
Griswold, David; Learman, Ken; Kolber, Morey J; O'Halloran, Bryan; Cleland, Joshua A
2018-03-01
Study Design Randomized clinical trial. Background The comparative effectiveness between nonthrust manipulation (NTM) and thrust manipulation (TM) for mechanical neck pain has been investigated, with inconsistent results. Objective To compare the clinical effectiveness of concordant cervical and thoracic NTM and TM for patients with mechanical neck pain. Methods The Neck Disability Index (NDI) was the primary outcome. Secondary outcomes included the Patient-Specific Functional Scale (PSFS), numeric pain-rating scale (NPRS), deep cervical flexion endurance (DCF), global rating of change (GROC), number of visits, and duration of care. The covariate was clinical equipoise for intervention. Outcomes were collected at baseline, visit 2, and discharge. Patients were randomly assigned to receive either NTM or TM directed at the cervical and thoracic spines. Techniques and dosages were selected pragmatically and applied to the most symptomatic level. Two-way mixed-model analyses of covariance were used to assess clinical outcomes at 3 time points. Analyses of covariance were used to assess between-group differences for the GROC, number of visits, and duration of care at discharge. Results One hundred three patients were included in the analyses (NTM, n = 55 and TM, n = 48). The between-group analyses revealed no differences in outcomes on the NDI (P = .67), PSFS (P = .26), NPRS (P = .25), DCF (P = .98), GROC (P = .77), number of visits (P = .21), and duration of care (P = .61) for patients with mechanical neck pain who received either NTM or TM. Conclusion NTM and TM produce equivalent outcomes for patients with mechanical neck pain. The trial was registered with ClinicalTrials.gov (NCT02619500). Level of Evidence Therapy, level 1b. J Orthop Sports Phys Ther 2018;48(3):137-145. Epub 6 Feb 2018. doi:10.2519/jospt.2018.7738.
Compressive tibiofemoral force during crouch gait.
Steele, Katherine M; Demers, Matthew S; Schwartz, Michael H; Delp, Scott L
2012-04-01
Crouch gait, a common walking pattern in individuals with cerebral palsy, is characterized by excessive flexion of the hip and knee. Many subjects with crouch gait experience knee pain, perhaps because of elevated muscle forces and joint loading. The goal of this study was to examine how muscle forces and compressive tibiofemoral force change with the increasing knee flexion associated with crouch gait. Muscle forces and tibiofemoral force were estimated for three unimpaired children and nine children with cerebral palsy who walked with varying degrees of knee flexion. We scaled a generic musculoskeletal model to each subject and used the model to estimate muscle forces and compressive tibiofemoral forces during walking. Mild crouch gait (minimum knee flexion 20-35°) produced a peak compressive tibiofemoral force similar to unimpaired walking; however, severe crouch gait (minimum knee flexion>50°) increased the peak force to greater than 6 times body-weight, more than double the load experienced during unimpaired gait. This increase in compressive tibiofemoral force was primarily due to increases in quadriceps force during crouch gait, which increased quadratically with average stance phase knee flexion (i.e., crouch severity). Increased quadriceps force contributes to larger tibiofemoral and patellofemoral loading which may contribute to knee pain in individuals with crouch gait. Copyright © 2011 Elsevier B.V. All rights reserved.
Signorelli, Cecilia; Lopomo, Nicola; Bonanzinga, Tommaso; Marcheggiani Muccioli, Giulio Maria; Safran, Marc R; Marcacci, Maurilio; Zaffagnini, Stefano
2013-02-01
Different approaches have been proposed to diagnose femoroacetabular impingement (FAI) condition and hip instability. It is still debatable which test is the most effective to make a correct diagnosis. The true mechanics of the hip during particular physical examination manoeuvres is unknown. Eight fresh frozen hips were passively taken through 3 different commonly used positions for FAI diagnosis and hip instability: 90° Flexion-Adduction-Internal Rotation, Hyperextension-Adduction-External Rotation and Hyperextension-Neutral-External Rotation. Kinematics and anatomical data were acquired by an optoelectronic system. The contact areas between acetabulum and femoral head were analysed to determine whether these tests are able to localize regions of the hip that may give patients pain. In the hip positions where the femur was in Hyperextension-External Rotation, the contact area was mainly concentrated in the posterosuperior area of the acetabulum, while during 90° Flexion-Adduction-Internal Rotation position, there was a wider distribution of contact, not specific to the anterolateral acetabulum. The results confirm the ability of the Hyperextension-External Rotation tests to particularly analyse the posterior region of the acetabulum. Placing the hip in 90° of Flexion-Adduction-Internal Rotation allows for testing a wider zone of the acetabulum and is not specific to abutment of the femoral head-neck region against the anterolateral acetabulum.
Roberts, Carolyn W; Toczyski, Jacek; Kerrigan, Jason R
2018-04-22
While rollover crashes are rare, approximately one third of vehicle occupant fatalities occur in rollover crashes. Most severe-to-fatal injuries resulting from rollover crashes occur in the head or neck region, due to head and neck interaction with the roof during the crash. While many studies have used anthropomorphic test devices (ATDs) to predict head and neck injury, the biofidelity of ATDs in rollover has not been established. This study aims to build on previous research to compare the dynamic response and injuries sustained by four post mortem human surrogates (PMHS) to those predicted by six different ATDs in full-scale rollover crash tests. Additionally, this study evaluates injuries sustained by PMHS relative to possible contributing factors including occupant kinematics, occupant anthropometry, and vehicle roof deformation. While the vehicle kinematics and roof deformation were comparable for all tests, three out of the four PMHS sustained cervical spine injury, but only the tallest specimen sustained cervical spine fracture. Neck flexion at the time of head-to-roof contact appears to have affected cervical spine injury risk in these cases. Despite the injuries sustained in the PMHS, none of the six ATDs measured forces or accelerations that exceeded injury assessment reference values (IARVs), which adds to recent literature illustrating substantial differences between ATDs and PMHS in a rollover-like scenario. Copyright © 2018. Published by Elsevier Ltd.
Brink, Yolandi; Louw, Quinette; Grimmer, Karen; Jordaan, Esmè
2015-12-01
There is evidence that consistent sitting for prolonged periods is associated with upper quadrant musculoskeletal pain (UQMP). It is unclear whether postural alignment is a significant risk factor. The aim of the prospective study (2010-2011) was to ascertain if three-dimensional sitting postural angles, measured in a real-life school computer classroom setting, predict seated-related UQMP. Asymptomatic Grade 10 high-school students, aged 15-17 years, undertaking Computer Application Technology, were eligible to participate. Using the 3D Posture Analysis Tool, sitting posture was measured while students used desk-top computers. Posture was reported as five upper quadrant angles (Head flexion, Neck flexion; Craniocervical angle, Trunk flexion and Head lateral bending). The Computer Usage Questionnaire measured seated-related UQMP and hours of computer use. The Beck Depression Inventory and the Multidimensional Anxiety Scale for Children assessed psychosocial factors. Sitting posture, computer use and psychosocial factors were measured at baseline. UQMP was measured at six months and one-year follow-up. 211, 190 and 153 students participated at baseline, six months and one-year follow-up respectively. 34.2% students complained of seated-related UQMP during the follow-up period. Increased head flexion (HF) predicted seated-related UQMP developing over time for a small group of students with pain scores greater than the 90th pain percentile, adjusted for age, gender, BMI, computer use and psychosocial factors (p = 0.003). The pain score increased 0.22 points per 1° increase in HF. Classroom ergonomics and postural hygiene should therefore focus on reducing large HF angles among computing adolescents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Levine, Iris C; Minty, Lauren E; Laing, Andrew C
2015-03-01
Fall-related hip injuries are a concern for the growing population of older adults. Evidence suggests that soft tissue overlying the greater trochanter attenuates the forces transmitted to the proximal femur during an impact, reducing mechanical risk of hip fracture. However, there is limited information about the factors that influence trochanteric soft tissue thickness. The current study used ultrasonography and electromyography to determine whether trochanteric soft tissue thickness could be quantified reproducibly and whether it was influenced by: (1) gender; (2) hip postures associated with potential falling configurations in the sagittal plane (from 30° of extension to 60° of flexion, at 15° intervals), combined adduction-flexion, and combined adduction-extension; and (3) activation levels of the tensor fascia lata (TFL) and gluteus medius (GM) muscles. Our results demonstrated that soft tissue thickness can be measured reliably in nine hip postures and three muscle activation conditions (for all conditions, ICC >0.98). Mean (SD) thickness in quiet stance was 2.52 cm. Thickness was 27.0% lower for males than females during quiet stance. It was 16.4% greater at maximum flexion than quiet standing, 27.2% greater at maximum extension, and 12.5% greater during combined adduction-flexion. However, there was no significant difference between combined adduction-extension and quiet standing. Thickness was not affected by changes in muscle activity. Forces applied to the femoral neck during a lateral fall decrease as trochanteric soft tissue thickness increases; gender and postural configuration at impact could influence the loads applied to the proximal femur (and thus hip fracture risk) during falls on the hip. © 2014 Wiley Periodicals, Inc.
Body posture and hand strength of patients with temporomandibular disorder.
Shiau, Y Y; Chai, H M
1990-07-01
The aim of this study was to observe the difference between patients of craniocervical muscle pain and nonpatients in head-neck posture, masticatory muscle activity, and the force exerted by the hand. Fifty-one patients and 28 nonpatients were observed. The electric activity of the masseter muscles was recorded when the subjects were doing pinching or grasping with the jaw in positions of rest, clenched, and clenched with gauze. Measurement of right and left tilting or extension and flexion of the head and neck was made from photographs of frontal and lateral views. It was found that the pinching and grasping force was much stronger in men than in women and in nonpatients than in patients with pain. The pinching and grasping force was more powerful with the teeth clenched. Clenching with gauze did not increase, but more often decreased the strength of the hand. The activity of the masseter muscle during clenching was about 10 to 26 times that of the resting activity. The activity decreased slightly when clenching with pinching or grasping. Patients were more likely to have a stretched neck with more extension of the head. Their masseter muscle activity and hand force were significantly weaker than that of the nonpatients.
A study on the measurement of wrist motion range using the iPhone 4 gyroscope application.
Kim, Tae Seob; Park, David Dae Hwan; Lee, Young Bae; Han, Dong Gil; Shim, Jeong Su; Lee, Young Jig; Kim, Peter Chan Woo
2014-08-01
Measuring the range of motion (ROM) of the wrist is an important physical examination conducted in the Department of Hand Surgery for the purpose of evaluation, diagnosis, prognosis, and treatment of patients. The most common method for performing this task is by using a universal goniometer. This study was performed using 52 healthy participants to compare wrist ROM measurement using a universal goniometer and the iPhone 4 Gyroscope application. Participants did not have previous wrist illnesses and their measured values for wrist motion were compared in each direction. Normal values for wrist ROM are 73 degrees of flexion, 71 degrees of extension, 19 degrees of radial deviation, 33 degrees of ulnar deviation, 140 degrees of supination, and 60 degrees of pronation.The average measurement values obtained using the goniometer were 74.2 (5.1) degrees for flexion, 71.1 (4.9) degrees for extension, 19.7 (3.0) degrees for radial deviation, 34.0 (3.7) degrees for ulnar deviation, 140.8 (5.6) degrees for supination, and 61.1 (4.7) degrees for pronation. The average measurement values obtained using the iPhone 4 Gyroscope application were 73.7 (5.5) degrees for flexion, 70.8 (5.1) degrees for extension, 19.5 (3.0) degrees for radial deviation, 33.7 (3.9) degrees for ulnar deviation, 140.4 (5.7) degrees for supination, and 60.8 (4.9) degrees for pronation. The differences between the measurement values by the Gyroscope application and average value were 0.7 degrees for flexion, -0.2 degrees for extension, 0.5 degrees for radial deviation, 0.7 degrees for ulnar deviation, 0.4 degrees for supination, and 0.8 degrees for pronation. The differences in average value were not statistically significant. The authors introduced a new method of measuring the range of wrist motion using the iPhone 4 Gyroscope application that is simpler to use and can be performed by the patient outside a clinical setting.
Herrera, Fernando Antonio; Benhaim, Prosper; Suliman, Ahmed; Roostaeian, Jason; Azari, Kodi; Mitchell, Scott
2013-04-01
Many surgical options exist for the treatment of Dupuytren contracture. Little has been written regarding their financial implications. The purpose of this study was to compare the immediate direct costs of open fasciectomy to percutaneous needle aponeurotomy (NA) for the surgical treatment of Dupuytren contracture. A retrospective review was performed comparing patients treated with open fasciectomy (group 1) to patients treated with percutaneous NA (group 2) for the treatment of Dupuytren disease from 2008 to 2010. Financial and medical records were reviewed. Direct cost of treatment was calculated from hospital billing records, including surgical, anesthesia, and facility fees. Statistical analysis was performed using unpaired t test. Twenty-four patients received open segmental palmar and/or digital fasciectomy (group 1). Average preoperative metacarpophalangeal joint flexion contracture was 30 degrees, and proximal interphalangeal joint flexion contracture was 42 degrees. Group 2 consisted of 24 patients. Average preoperative metacarpophalangeal flexion contracture was 31 degrees, and proximal interphalangeal flexion contracture was 27 degrees. Mean cost for group 1 was $11,240 and mean cost for group 2 was $4657 (P < 0.0001). Immediate postoperative contracture correction was similar between both. Two complications occurred in group 1 (wound dehiscence and nerve injury); no complications in group 2. Percutaneous NA is associated with decreased direct costs in the short-term compared to traditional open fasciectomy with comparable deformity correction.
Morphometric analysis of the femur in cerebral palsy: 3-dimensional CT study.
Gose, Shinichi; Sakai, Takashi; Shibata, Toru; Murase, Tsuyoshi; Yoshikawa, Hideki; Sugamoto, Kazuomi
2010-09-01
The cause of hip disorder in cerebral palsy (CP) has been thought to involve muscle imbalance, flexion, and adduction contracture of the hip joint, acetabular dysplasia, and femoral growth abnormalities. The aim of this study was to quantitatively evaluate the 3-dimensional femoral geometry and subluxation/dislocation of the hip in spastic CP using 3D-CT reconstructed images of the pelvis and the femur, focusing on the femoral growth abnormalities in CP. Between June 2006 and September 2009, 186 hips in 93 bilateral spastic CP patients, including spastic diplegia (SD) in 73 patients and spastic quadriplegia (SQ) in 20 patients, who had not received any surgical treatment, were investigated using 3D-CT at our hospital. There were 59 boys and 34 girls with an average age of 5.3 years (range: 2.6 to 6.8 y). As an index for the femoral geometry, the neck-shaft angle, the femoral anteversion, and the femoral offset were 3-dimensionally measured. The center of the acetabulum and the femoral head were determined to calculate the CT migration percentage as the distance between these centers divided by the femoral head diameter. To elucidate the factors related to hip subluxation/dislocation, the relationships between the neck-shaft angle, the femoral anteversion, the femoral offset, and the CT migration percentage were investigated. The mean neck-shaft angle was 150.4+/-9.4 degrees (range: 129.4 to 173.2 degrees). The mean femoral anteversion was 44.4+/-13.6 degrees (range: 5.8 to 84.0 degrees). The mean CT migration percentage was 22.4+/-22.7% (range: 3 to 129%). There was positive correlation between the CT migration percentage and the neck-shaft angle (r=0.49). Hips with large CT migration percentage tended to show coxa valga. There was an inverse correlation between the neck-shaft angle and the femoral offset (r=-0.90), but no correlation between the CT migration percentage and the femoral anteversion (r=0.26), between the femoral offset and the femoral anteversion (r=-0.25), or between the neck-shaft angle and the femoral anteversion (r=0.23). The neck-shaft angle, the femoral anteversion, and the CT migration percentage were significantly larger, and the femoral offset was significantly smaller, in patients with the Gross Motor Functional Classification System (GMFCS) level IV/V (nonwalking children) and SQ type, than in patients with GMFCS level II/III (mostly walking children) and SD type. The 3-dimensional femoral geometry in CP patients can be analyzed quantitatively using 3D-CT regardless of the abnormal spastic posture. Our data indicate that 3-dimensional evaluation is accurate and useful for analysis of the femur and acetabulum in CP, and that the extent of coxa valga and femoral anteversion is more severe in the patients with GMFCS level IV/V and SQ type. Level IV.
Kim, Abraham D; Shah, Vivek M; Scott, Richard D
2016-05-01
We evaluated the intraoperative effect of patellar thickness on intraoperative passive knee flexion and patellar tracking during total knee arthroplasty (TKA) in patients with preoperative arthrofibrosis and compared them to patients with normal preoperative range of motion (ROM) documented in a prior study. Routine posterior cruciate ligament-retaining TKA was performed in a total of 34 knees, 23 with normal ROM and 11 with arthrofibrosis, defined as ≤100° of passive knee flexion against gravity under anesthesia. Once clinical balance and congruent patellar tracking were established, custom trial patellar components thicker than the standard trial by 2-mm increments (2-8 mm) were sequentially placed and trialed. Passive flexion against gravity was recorded using digital photograph goniometry. Gross mechanics of patellofemoral tracking were visually assessed. On average, passive knee flexion decreased 2° for every 2-mm increment of patellar thickness (P < .0001), which was similar to patients with normal preoperative ROM. In addition, increased patellar thickness had no gross effect on patellar subluxation and tilt in patients with arthrofibrosis as well as those with normal ROM. Patellar thickness had a modest effect on intraoperative passive flexion and no effect on patellar tracking in patients with arthrofibrosis undergoing TKA. There was no marked difference in intraoperative flexion and patellar tracking between patients with arthrofibrosis and patients with normal preoperative ROM. Copyright © 2016 Elsevier Inc. All rights reserved.
Young, Aaron J.; Foss, Jessica; Gannon, Hannah; Ferris, Daniel P.
2017-01-01
A broad goal in the field of powered lower limb exoskeletons is to reduce the metabolic cost of walking. Ankle exoskeletons have successfully achieved this goal by correctly timing a plantarflexor torque during late stance phase. Hip exoskeletons have the potential to assist with both flexion and extension during walking gait, but the optimal timing for maximally reducing metabolic cost is unknown. The focus of our study was to determine the best assistance timing for applying hip assistance through a pneumatic exoskeleton on human subjects. Ten non-impaired subjects walked with a powered hip exoskeleton, and both hip flexion and extension assistance were separately provided at different actuation timings using a simple burst controller. The largest average across-subject reduction in metabolic cost for hip extension was at 90% of the gait cycle (just prior to heel contact) and for hip flexion was at 50% of the gait cycle; this resulted in an 8.4 and 6.1% metabolic reduction, respectively, compared to walking with the unpowered exoskeleton. However, the ideal timing for both flexion and extension assistance varied across subjects. When selecting the assistance timing that maximally reduced metabolic cost for each subject, average metabolic cost for hip extension was 10.3% lower and hip flexion was 9.7% lower than the unpowered condition. When taking into account user preference, we found that subject preference did not correlate with metabolic cost. This indicated that user feedback was a poor method of determining the most metabolically efficient assistance power timing. The findings of this study are relevant to developers of exoskeletons that have a powered hip component to assist during human walking gait. PMID:28337434
Young, Aaron J; Foss, Jessica; Gannon, Hannah; Ferris, Daniel P
2017-01-01
A broad goal in the field of powered lower limb exoskeletons is to reduce the metabolic cost of walking. Ankle exoskeletons have successfully achieved this goal by correctly timing a plantarflexor torque during late stance phase. Hip exoskeletons have the potential to assist with both flexion and extension during walking gait, but the optimal timing for maximally reducing metabolic cost is unknown. The focus of our study was to determine the best assistance timing for applying hip assistance through a pneumatic exoskeleton on human subjects. Ten non-impaired subjects walked with a powered hip exoskeleton, and both hip flexion and extension assistance were separately provided at different actuation timings using a simple burst controller. The largest average across-subject reduction in metabolic cost for hip extension was at 90% of the gait cycle (just prior to heel contact) and for hip flexion was at 50% of the gait cycle; this resulted in an 8.4 and 6.1% metabolic reduction, respectively, compared to walking with the unpowered exoskeleton. However, the ideal timing for both flexion and extension assistance varied across subjects. When selecting the assistance timing that maximally reduced metabolic cost for each subject, average metabolic cost for hip extension was 10.3% lower and hip flexion was 9.7% lower than the unpowered condition. When taking into account user preference, we found that subject preference did not correlate with metabolic cost. This indicated that user feedback was a poor method of determining the most metabolically efficient assistance power timing. The findings of this study are relevant to developers of exoskeletons that have a powered hip component to assist during human walking gait.
Kaul, Anand; Abbas, Ahmed; Smith, Gabriel; Manjila, Sunil; Pace, Jonathan; Steinmetz, Michael
2016-12-01
Fatal craniovertebral junction (CVJ) injuries were the most common cause of death in high-speed motor sports prior to 2001. Following the death of a mutual friend and race car driver, Patrick Jacquemart (1946-1981), biomechanical engineer Dr. Robert Hubbard, along with race car driver and brother-in-law Jim Downing, developed the concept for the Head and Neck Support (HANS) device to prevent flexion-distraction injuries during high-velocity impact. Biomechanical testing showed that neck shear and loading forces experienced during collisions were 3 times the required amount for a catastrophic injury. Crash sled testing with and without the HANS device elucidated reductions in neck tension, neck compression, head acceleration, and chest acceleration experienced by dummies during high-energy crashes. Simultaneously, motor sports accidents such as Dale Earnhardt Sr.'s fatal crash in 2001 galvanized public opinion in favor of serious safety reform. Analysis of Earnhardt's accident demonstrated that his car's velocity parallel to the barrier was more than 150 miles per hour (mph), with deceleration upon impact of roughly 43 mph in a total of 0.08 seconds. After careful review, several major racing series such as the National Association for Stock Car Auto Racing (NASCAR) and Championship Auto Racing Team (CART) made major changes to ensure the safety of drivers at the turn of the 21st century. Since the rule requiring the HANS device in professional auto racing series was put in place, there has not been a single reported case of a fatal CVJ injury.
Grip, Helena; Sundelin, Gunnevi; Gerdle, Björn; Stefan Karlsson, J
2008-09-18
The helical axis model can be used to describe translation and rotation of spine segments. The aim of this study was to investigate the cervical helical axis and its center of rotation during fast head movements (side rotation and flexion/extension) and ball catching in patients with non-specific neck pain or pain due to whiplash injury as compared with matched controls. The aim was also to investigate correlations with neck pain intensity. A finite helical axis model with a time-varying window was used. The intersection point of the axis during different movement conditions was calculated. A repeated-measures ANOVA model was used to investigate the cervical helical axis and its rotation center for consecutive levels of 15 degrees during head movement. Irregularities in axis movement were derived using a zero-crossing approach. In addition, head, arm and upper body range of motion and velocity were observed. A general increase of axis irregularity that correlated to pain intensity was observed in the whiplash group. The rotation center was superiorly displaced in the non-specific neck pain group during side rotation, with the same tendency for the whiplash group. During ball catching, an anterior displacement (and a tendency to an inferior displacement) of the center of rotation and slower and more restricted upper body movements implied a changed movement strategy in neck pain patients, possibly as an attempt to stabilize the cervical spine during head movement.
Tang, Lin-Feng; Ju, Ji-Hui; Liu, Yue-Fei; Lan, Bo; Hou, Rui-Xing
2018-02-01
To investigate blood supply features of the flap based on the plantar digital artery arch and arch branch artery, and the treatment of outcomes of reconstructed fingers by the plantar digital artery arch branch island flap. Eight fresh foot specimens were employed with red emulsion infusion and microdissection. The vascular organization was observed in the second toe, such as initiation site, the course, and the number of the plantar digital artery arch branch. There were 15 fingers of 13 patients (8 males and 5 females) with finger defects accompanied by toe transfer, using the plantar digital artery arch branch flap inserted in the neck of the second toe to correct the appearance defect caused by a narrow "neck" and a bulbous tip. The intact plantar digital arches were identified in all specimens. The plantar digital artery arch had 5 branches. The range of external diameter of the arch branch was 0.4-0.6 mm. All the plantar digital artery arch branch island flaps and the reconstructed fingers survived. These cases were conducted with a follow-up period for 3-18 months (average, 9 months). All the plantar digital artery arch branch island flaps and reconstructed fingers demonstrated a satisfactory appearance and favorable sense function. The reconstructed finger-tip characteristic was good, with no obvious scar hyperplasia. The range of flexion and extension of reconstructed fingers was favorable as well. The plantar digital artery arch and arch branch artery possess regular vasa vasorum and abundant vascularity. A flap based on the plantar digital artery arch branch is an ideal selection for plastic surgery of reconstructed fingers. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Biomechanical consequences of a nonanatomic posterior medial meniscal root repair.
LaPrade, Christopher M; Foad, Abdullah; Smith, Sean D; Turnbull, Travis Lee; Dornan, Grant J; Engebretsen, Lars; Wijdicks, Coen A; LaPrade, Robert F
2015-04-01
Posterior medial meniscal root tears have been reported to extrude with the meniscus becoming adhered posteromedially along the posterior capsule. While anatomic repair has been reported to restore tibiofemoral contact mechanics, it is unknown whether nonanatomic positioning of a meniscal root repair to a posteromedial location would restore the loading profile of the knee joint. The purpose of this study was to compare the tibiofemoral contact mechanics of a nonanatomic posterior medial meniscal tear with that of the intact knee or anatomic repair. It was hypothesized that a nonanatomic root repair would not restore the tibiofemoral contact pressures and areas to that of the intact or anatomic repair state. Controlled laboratory study. Tibiofemoral contact mechanics were recorded in 6 male human cadaveric knee specimens (average age, 45.8 years) using pressure sensors. Each knee underwent 5 testing conditions for the posterior medial meniscal root: (1) intact knee; (2) root tear; (3) anatomic transtibial pull-out repair; (4) nonanatomic transtibial pull-out repair, placed 5 mm posteromedially along the edge of the articular cartilage; and (5) root tear concomitant with an ACL tear. Knees were loaded with a 1000-N axial compressive force at 4 flexion angles (0°, 30°, 60°, 90°), and contact area, mean contact pressure, and peak contact pressure were calculated. Contact area was significantly lower after nonanatomic repair than for the intact knee at all flexion angles (mean = 44% reduction) and significantly higher for anatomic versus nonanatomic repair at all flexion angles (mean = 27% increase). At 0° and 90°, and when averaged across flexion angles, the nonanatomic repair significantly increased mean contact pressures in comparison to the intact knee or anatomic repair. When averaged across flexion angles, the peak contact pressures after nonanatomic repair were significantly higher than the intact knee but not the anatomic repair. In contrast, when averaged across all flexion angles, the anatomic repair resulted in a 17% reduction in contact area and corresponding increases in mean and peak contact pressures of 13% and 26%, respectively, compared with the intact knee. For most testing conditions, the nonanatomic repair did not restore the contact area or mean contact pressures to that of the intact knee or anatomic repair. However, the anatomic repair produced near-intact contact area and resulted in relatively minimal increases in mean and peak contact pressures compared with the intact knee. Results emphasize the importance of ensuring an anatomic posterior medial meniscal root repair by releasing the extruded menisci from adhesions and the posteromedial capsule. Similar caution toward preventing displacement of the meniscal root repair construct should be emphasized. © 2015 The Author(s).
Conservative management of femoroacetabular impingement (FAI) in the long distance runner.
Loudon, Janice K; Reiman, Michael P
2014-05-01
Femoroacetabular impingement (FAI) is one cause of anterior hip pain that may occur in a long distance runner. By definition FAI is due to bony abutment of the femoral neck and the acetabulum. This occurs primarily with end-ranges of hip flexion and adduction. An understanding of running mechanics and performing a thorough examination will help the clinician provide an appropriate intervention for these athletes. A course of conservative treatment that includes patient education, manual therapy and strengthening should be tried prior to surgical management. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nieuwenhuijse, Marc J; Nelissen, R G H H; Schoones, J W; Sedrakyan, A
2014-09-09
To determine the evidence of effectiveness and safety for introduction of five recent and ostensibly high value implantable devices in major joint replacement to illustrate the need for change and inform guidance on evidence based introduction of new implants into healthcare. Systematic review of clinical trials, comparative observational studies, and registries for comparative effectiveness and safety of five implantable device innovations. PubMed (Medline), Embase, Web of Science, Cochrane, CINAHL, reference lists of articles, annual reports of major registries, summaries of safety and effectiveness for pre-market application and mandated post-market studies at the US Food and Drug Administration. The five selected innovations comprised three in total hip replacement (ceramic-on-ceramic bearings, modular femoral necks, and uncemented monoblock cups) and two in total knee replacement (high flexion knee replacement and gender specific knee replacement). All clinical studies of primary total hip or knee replacement for symptomatic osteoarthritis in adults that compared at least one of the clinical outcomes of interest (patient centred outcomes or complications, or both) in the new implant group and control implant group were considered. Data searching, abstraction, and analysis were independently performed and confirmed by at least two authors. Quantitative data syntheses were performed when feasible. After assessment of 10,557 search hits, 118 studies (94 unique study cohorts) met the inclusion criteria and reported data related to 15,384 implants in 13,164 patients. Comparative evidence per device innovation varied from four low to moderate quality retrospective studies (modular femoral necks) to 56 studies of varying quality including seven high quality (randomised) studies (high flexion knee replacement). None of the five device innovations was found to improve functional or patient reported outcomes. National registries reported two to 12 year follow-up for revision occurrence related to more than 200,000 of these implants. Reported comparative data with well established alternative devices (over 1,200,000 implants) did not show improved device survival. Moreover, we found higher revision occurrence associated with modular femoral necks (hazard ratio 1.9) and ceramic-on-ceramic bearings (hazard ratio 1.0-1.6) in hip replacement and with high flexion knee implants (hazard ratio 1.0-1.8). We did not find convincing high quality evidence supporting the use of five substantial, well known, and already implemented device innovations in orthopaedics. Moreover, existing devices may be safer to use in total hip or knee replacement. Improved regulation and professional society oversight are necessary to prevent patients from being further exposed to these and future innovations introduced without proper evidence of improved clinical efficacy and safety. © Nieuwenhuijse et al 2014.
Nieuwenhuijse, Marc J; Nelissen, R G H H; Schoones, J W
2014-01-01
Objective To determine the evidence of effectiveness and safety for introduction of five recent and ostensibly high value implantable devices in major joint replacement to illustrate the need for change and inform guidance on evidence based introduction of new implants into healthcare. Design Systematic review of clinical trials, comparative observational studies, and registries for comparative effectiveness and safety of five implantable device innovations. Data sources PubMed (Medline), Embase, Web of Science, Cochrane, CINAHL, reference lists of articles, annual reports of major registries, summaries of safety and effectiveness for pre-market application and mandated post-market studies at the US Food and Drug Administration. Study selection The five selected innovations comprised three in total hip replacement (ceramic-on-ceramic bearings, modular femoral necks, and uncemented monoblock cups) and two in total knee replacement (high flexion knee replacement and gender specific knee replacement). All clinical studies of primary total hip or knee replacement for symptomatic osteoarthritis in adults that compared at least one of the clinical outcomes of interest (patient centred outcomes or complications, or both) in the new implant group and control implant group were considered. Data searching, abstraction, and analysis were independently performed and confirmed by at least two authors. Quantitative data syntheses were performed when feasible. Results After assessment of 10 557 search hits, 118 studies (94 unique study cohorts) met the inclusion criteria and reported data related to 15 384 implants in 13 164 patients. Comparative evidence per device innovation varied from four low to moderate quality retrospective studies (modular femoral necks) to 56 studies of varying quality including seven high quality (randomised) studies (high flexion knee replacement). None of the five device innovations was found to improve functional or patient reported outcomes. National registries reported two to 12 year follow-up for revision occurrence related to more than 200 000 of these implants. Reported comparative data with well established alternative devices (over 1 200 000 implants) did not show improved device survival. Moreover, we found higher revision occurrence associated with modular femoral necks (hazard ratio 1.9) and ceramic-on-ceramic bearings (hazard ratio 1.0-1.6) in hip replacement and with high flexion knee implants (hazard ratio 1.0-1.8). Conclusion We did not find convincing high quality evidence supporting the use of five substantial, well known, and already implemented device innovations in orthopaedics. Moreover, existing devices may be safer to use in total hip or knee replacement. Improved regulation and professional society oversight are necessary to prevent patients from being further exposed to these and future innovations introduced without proper evidence of improved clinical efficacy and safety. PMID:25208953
Bladder neck competency at rest in women with incontinence.
English, S F; Amundsen, C L; McGuire, E J
1999-02-01
We determine the presence of an open bladder neck during video urodynamic studies and relate that finding to the presence of stress urinary incontinence. Patients presenting with urinary incontinence, voiding dysfunction or pelvic floor prolapse underwent video urodynamics. With the patient upright and after 200 ml. contrast material had been instilled into the bladder the bladder neck was viewed to determine if it was open or closed. At that point the abdominal leak point pressure was measured. Of 102 women, average age 56.5 years (range 31 to 82), 13% had an open bladder neck and demonstrable stress incontinence on video urodynamics with an average abdominal leak point pressure of 45 cm. water (range 26 to 90). Of those with stress incontinence on urodynamics 23% had an open bladder neck. No continent patient had an open bladder neck. The presence of an open bladder neck with the bladder filled to 200 ml. correlates strongly with the presence of stress incontinence.
Koo, Seungbum; Lee, Kyoung Min; Cha, Young Joo
2015-10-01
Gross motion of the ankle joint complex (AJC) is a summation of the ankle and subtalar joints. Although AJC kinematics have been widely used to evaluate the function of the AJC, the coordinated movements of the ankle and subtalar joints are not well understood. The purpose of this study was to accurately quantify the individual kinematics of the ankle and subtalar joints in the intact foot during ground walking by using a bi-planar fluoroscopic system. Bi-planar fluoroscopic images of the foot and ankle during walking and standing were acquired from 10 healthy subjects. The three-dimensional movements of the tibia, talus, and calcaneus were calculated with a three-dimensional/two-dimensional registration method. The skeletal kinematics were quantified from 9% to 86% of the full stance phase because of the limited camera speed of the X-ray system. At the beginning of terminal stance, plantar-flexion of the AJC was initiated in the subtalar joint on average at 75% ranging from 62% to 76% of the stance phase, and plantar-flexion of the ankle joint did not start until 86% of the stance phase. The earlier change to plantar-flexion in the AJC than the ankle joint due to the early plantar-flexion in the subtalar joint was observed in 8 of the 10 subjects. This phenomenon could be explained by the absence of direct muscle insertion on the talus. Preceding subtalar plantar-flexion could contribute to efficient and stable ankle plantar-flexion by locking the midtarsal joint, but this explanation needs further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.
Oh, Won Seok; Lee, Yong Seuk; Kim, Byung Kak; Sim, Jae Ang; Lee, Beom Koo
2016-06-01
To analyze the contact mechanics of the femoral component and polyethylene of the Low Contact Stress rotating platform (LCS-RP) in nonweight bearing and weight bearing conditions using full flexion lateral radiographs. From May 2009 to December 2013, 58 knees in 41 patients diagnosed with osteoarthritis and treated with total knee arthroplasty (TKA) were included in this study. TKA was performed using an LCS-RP knee prosthesis. Full flexion lateral radiographs in both weight bearing and nonweight bearing condition were taken at least one month postoperatively (average, 28.8 months). Translation of femoral component was determined by the contact point between the femoral component and polyethylene. Maximum flexion was measured as the angle between the lines drawn at the midpoint of the femur and tibia. Posterior shift of the contact point in LCS-RP TKA was observed under weight bearing condition, which resulted in deeper flexion compared to LCS-RP TKA under nonweight bearing condition. In the LCS-RP TKA, the contact point between the femoral component and polyethylene moved posteriorly under weight bearing condition, and the joint was more congruent and maximum flexion increased with weight bearing.
Pan, Xianming; Quan, Yi; Tan, Yingjun; Zhang, Bo; Wang, Yuanshan; Huang, Tong; Ma, Zehui; Liao, Dongfa; Li, Ting; Liu, Jinbiao
2005-03-15
To evaluate the effect of self-designed anti-rotation reduction internal fixator (ARRIF) on treating different spine segment fracture. From August 1999 to March 2003, 76 patients(48 males and 28 females, aged from 22 to 59 with an average of 34.1) with thoracolumbar fracture were operatively treated by ARRIF. The follow-up period ranged from 6 to 21 months (15 months in average). Classification according to injury segment: flexion compression fracture 27 cases, burst fracture 42 cases, flexion distraction injury 3 cases, flexion revolving type fracture dislocation 2 cases, shear force type dislocation 2 cases. Classification according Frankel's grade: A grade 16 cases, B grade 15 cases, C grade 27 cases, D grade 10 cases, E grade 8 cases. Operation duration, volume of bleeding, incidence post-operation complication and effect of reduction-fixation were observed. The operation duration of ARRIF was 1.2 h in average, and there was about 200 ml volume of bleeding during operation. The nerve function showed one Frankel's grade improvement after operation were as follows: A grade 8 cases (50%), B grade 11 cases (73.3%), C grade 20 cases (74.1%), D grade 3 cases (30%); 2 Frankel's E cases have no nerve function changes. The nerve function damage have no aggravation in all the patients, the postoperation Cobb's angle was averagely corrected 22 degrees. The horizontal displacement of dislocation vertebrae was averagely corrected 28% in sagittal plane, the statistical analysis had significant variance (P < 0.01). ARRIF had no complications of the breakage of screws and rods. ARRIF proves to be a valid internal fixator in reducing and fixing different thoracic lumbar segment spine fracture.
Briggs, Andrew; Straker, Leon; Greig, Alison
2004-06-10
The objective of this study was to quantitatively analyse the sitting posture of school children interacting with both old (book) and new (laptop and desktop computers) information technologies to test the hypothesis that posture is effected by the type of information technology (IT) used. A mixed model design was used to test the effect of IT type (within subjects) and age and gender (between subjects). The sitting posture of 32 children aged 4-17 years was measured whilst they read from a book, laptop, and desktop computer at a standard school chair and desk. Video images were captured and then digitized to calculate mean angles for head tilt, neck flexion, trunk flexion, and gaze angle. Posture was found to be influenced by IT type (p < 0.001), age (p < 0.001) and gender (p = 0.024) and significantly correlated to the stature of the participants. Measurement of resting posture and the maximal range of motion of the upper and lower cervical spines in the sagittal plane was also undertaken. The biophysical impact and the suitability of the three different information technologies are discussed.
Arjunan, Sridhar Poosapadi; Kumar, Dinesh Kant
2010-10-21
Identifying finger and wrist flexion based actions using a single channel surface electromyogram (sEMG) can lead to a number of applications such as sEMG based controllers for near elbow amputees, human computer interface (HCI) devices for elderly and for defence personnel. These are currently infeasible because classification of sEMG is unreliable when the level of muscle contraction is low and there are multiple active muscles. The presence of noise and cross-talk from closely located and simultaneously active muscles is exaggerated when muscles are weakly active such as during sustained wrist and finger flexion. This paper reports the use of fractal properties of sEMG to reliably identify individual wrist and finger flexion, overcoming the earlier shortcomings. SEMG signal was recorded when the participant maintained pre-specified wrist and finger flexion movements for a period of time. Various established sEMG signal parameters such as root mean square (RMS), Mean absolute value (MAV), Variance (VAR) and Waveform length (WL) and the proposed fractal features: fractal dimension (FD) and maximum fractal length (MFL) were computed. Multi-variant analysis of variance (MANOVA) was conducted to determine the p value, indicative of the significance of the relationships between each of these parameters with the wrist and finger flexions. Classification accuracy was also computed using the trained artificial neural network (ANN) classifier to decode the desired subtle movements. The results indicate that the p value for the proposed feature set consisting of FD and MFL of single channel sEMG was 0.0001 while that of various combinations of the five established features ranged between 0.009 - 0.0172. From the accuracy of classification by the ANN, the average accuracy in identifying the wrist and finger flexions using the proposed feature set of single channel sEMG was 90%, while the average accuracy when using a combination of other features ranged between 58% and 73%. The results show that the MFL and FD of a single channel sEMG recorded from the forearm can be used to accurately identify a set of finger and wrist flexions even when the muscle activity is very weak. A comparison with other features demonstrates that this feature set offers a dramatic improvement in the accuracy of identification of the wrist and finger movements. It is proposed that such a system could be used to control a prosthetic hand or for a human computer interface.
2010-01-01
Background Identifying finger and wrist flexion based actions using a single channel surface electromyogram (sEMG) can lead to a number of applications such as sEMG based controllers for near elbow amputees, human computer interface (HCI) devices for elderly and for defence personnel. These are currently infeasible because classification of sEMG is unreliable when the level of muscle contraction is low and there are multiple active muscles. The presence of noise and cross-talk from closely located and simultaneously active muscles is exaggerated when muscles are weakly active such as during sustained wrist and finger flexion. This paper reports the use of fractal properties of sEMG to reliably identify individual wrist and finger flexion, overcoming the earlier shortcomings. Methods SEMG signal was recorded when the participant maintained pre-specified wrist and finger flexion movements for a period of time. Various established sEMG signal parameters such as root mean square (RMS), Mean absolute value (MAV), Variance (VAR) and Waveform length (WL) and the proposed fractal features: fractal dimension (FD) and maximum fractal length (MFL) were computed. Multi-variant analysis of variance (MANOVA) was conducted to determine the p value, indicative of the significance of the relationships between each of these parameters with the wrist and finger flexions. Classification accuracy was also computed using the trained artificial neural network (ANN) classifier to decode the desired subtle movements. Results The results indicate that the p value for the proposed feature set consisting of FD and MFL of single channel sEMG was 0.0001 while that of various combinations of the five established features ranged between 0.009 - 0.0172. From the accuracy of classification by the ANN, the average accuracy in identifying the wrist and finger flexions using the proposed feature set of single channel sEMG was 90%, while the average accuracy when using a combination of other features ranged between 58% and 73%. Conclusions The results show that the MFL and FD of a single channel sEMG recorded from the forearm can be used to accurately identify a set of finger and wrist flexions even when the muscle activity is very weak. A comparison with other features demonstrates that this feature set offers a dramatic improvement in the accuracy of identification of the wrist and finger movements. It is proposed that such a system could be used to control a prosthetic hand or for a human computer interface. PMID:20964863
Hip and knee effects after implantation of a drop foot stimulator.
Yao, Daiwei; Lahner, Matthias; Jakubowitz, Eike; Thomann, Anna; Ettinger, Sarah; Noll, Yvonne; Stukenborg-Colsman, Christina; Daniilidis, Kiriakos
2017-01-01
An active ankle dorsiflexion is essential for a proper gait pattern. If there is a failure of the foot lifting, considerable impairments occur. The therapeutic effect of an implantable peroneus nerve stimulator (iPNS) for the ankle dorsiflexion is already approved by recent studies. However, possible affection for knee and hip motion after implantation of an iPNS is not well described. The objective of this retrospective study was to examine with a patient cohort whether the use of iPNS induces a lower-extremity flexion withdrawal response in the form of an increased knee and hip flexion during swing phase. Eighteen subjects (12 m/6 w) treated with an iPNS (ActiGait®, Otto Bock, Duderstadt, Germany) were examined in knee and hip motion by gait analysis with motion capture system (Vicon Motion System Ltd®, Oxford, UK) and Plug-in-Gait model after a mean follow up from 12.5 months. The data were evaluated and compared in activated and deactivated iPNS. Only little changes could be documented, as a slight average improvement in peak knee flexion during stand phase from 1.0° to 2.5° and peak hip flexion in stance from 3.1° to 2.1° In contrast, peak knee flexion during swing appeared similar (25.3° to 25.7°) same as peak hip flexion during swing. In comparison with the healthy extremity, a more symmetric course of the knee flexion during stand phase could be shown. No statistical significant improvements or changes in hip and knee joint could be shown in this study. Only a more symmetric knee flexion during stand phase and a less hip flexion during stand phase might be hints for a positive affection of iPNS for knee and hip joint. It seems that the positive effect of iPNS is only based on the improvement in ankle dorsiflexion according to the recent literature.
Rao, Anantheswar Y. N.
2015-01-01
Midline cleft of the lower lip and mandible is an extremely rare condition. Since 1819, when the first case was reported by Couronne, fewer than 80 cases have been described in the world literature so far. The cleft has also been described as facial cleft no. 30 by Paul Tessier. The condition varies in severity from a mild variety in which there is a submucous cleft and notching in the lower lip to a severe variety, involving the tongue, floor of the mouth, mandible, absent hyoid, atrophic neck muscles, and sternum. In this case report, a female child having complete midline cleft of the lower lip and mandible, with bifid tongue stuck to the floor of the mouth, absent hyoid bone and flexion contracture band extending from the confluence of the tip of the tongue, floor of the mouth, cleft mandible to the manubrium sterni is described, with special emphasis on surgical planning and management. PMID:26576245
Whiplash injuries: is there a role for imaging?
Van Geothem, J W; Biltjes, I G; van den Hauwe, L; Parizel, P M; De Schepper, A M
1996-03-01
Whiplash describes the manner in which a head is moved suddenly to produce a sprain in the neck and typically occurs after rear-end automobile collisions. It is one of the most common mechanisms of injury to the cervical spine. Although considered by some to be a form of compensation neurosis, evidence suggests that whiplash injuries are real and that they are a potential cause of significant impairment. Symptoms of cervical whiplash injury include neck pain and stiffness, interscapular pain, arm pain and/or occipital headache, and many whiplash patients have persistent complaints. Cervical roentgenography and conventional or computed tomography (CT) may show dislocations, subluxations and fractures in severely traumatized patients, but often fail to determine or visualize the cause for a whiplash syndrome. Magnetic resonance imaging (MRI), however, is able to assess different types of soft-tissue lesions related to whiplash injuries. Dynamic imaging may show functional disturbances. More widespread use of flexion/extension views, high-resolution static MRI and especially dynamic MRI should improve the correlation between imaging findings and patients' complaints.
Mladenović, Marko; Micić, Ivan; Andjelković, Zoran; Mladenović, Desimir; Stojiljković, Predrag
2015-12-01
Minimal bone changes in the acetabulum and/or proximal femur, through mechanism known as femoroacetabular impingement, during flexion, adduction and internal rotation lead to early contact between femoral head-neck junction and acetabular brim, in anterosuperior region. Each additional pathological substrate which further decreases specified clearance provokes earlier onset of femoroacetabular impingement symptoms. We presented a 20-year-old male patient with groin pain, limping, positive impingement test, radiological signs of mixed form of femoroacetabular impingement and unrecognized chronic hypertrophic synovitis with earlier development of clinical hip symptoms than it has been expected. Open surgery of the left hip was done. Two years after the surgery, patient was asymptomatic, painless, and free of motion, with stable x-rays. Hypertrophic synovial tissue further reduces the distance between the femoral head-neck junction and the acetabulum, leading to the earlier onset of femoroacetabular impingement symptoms. Surgical treatment is the method of choice.
Akınoğlu, Bihter; Kocahan, Tuğba
2017-02-01
The objective of this study was to reveal characteristics of muscle strength of upper extremities of wheelchair (WC) basketball players and to ensure more-specific training program preparation. Isokinetic muscle strength of 12 WC basketball players were assessed by ISOMED 2000 device. The assessment protocol was evaluated at 60°/sec velocity with 5 times repeated force and at 240°/sec with 15 times repeated force. This protocol was carried out individually for shoulder flexion-extension and wrist flexion-extension movements at the right and left extremities. The flexion/extension ratio was determined to be outside of the ratios accepted as normal for primarily shoulder joint and for wrist joint. The extension movement was stronger than flexion movement in the shoulders at both velocities and the flexion movement was stronger than ex-tension movement in the wrist. The repeat times where the peak torque occurred were 2-3 repeats at 60°/sec velocity during flexion and extension movements for the wrist and shoulders, and the peak torque occurred at an average of 5-6 repeats in the shoulders at 240°/sec velocity and it occurred at 3-4 repeats in the wrist. The angles where the peak torque of the shoulder flexion and extension occurred varied between 80°-115° at both velocities, and it varied between 5°-30° angles for the wrist. As this study revealed, determination of muscle strength characteristics of WC athletes and especially using objective isokinetic devices will guide the planning of the appropriate training and exercise programs and preventing sports injuries in long term.
Nakamura, Shinichiro; Sharma, Adrija; Kobayashi, Masahiko; Ito, Hiromu; Nakamura, Kenji; Zingde, Sumesh M; Nakamura, Takashi; Komistek, Richard D
2014-01-01
Kneeling position can serve as an important posture, providing stability and balance from a standing position to sitting on the floor or vice-versa. The purpose of the current study was to determine the kinematics during kneeling activities after subjects were implanted with a tri-condylar total knee arthroplasty. Kinematics was evaluated in 54 knees using fluoroscopy and a three-dimensional model fitting approach. The average knee flexion at before contact status, at complete contact and at maximum flexion was 98.1±9.0°, 107.2±6.7°, and 139.6±12.3°, respectively. On average, there was no gross anterior displacement from before contact status to complete contact. Only slight posterior rollback motion of both condyles from complete contact to maximum flexion was observed. Three of 39 (7.7%) knees experienced anterior movement of both condyles more than 2mm from before contact status to complete contact. Reverse rotation pattern from before contact status to complete contact and then normal rotation pattern from complete contact to maximum flexion were observed. Condylar lift-off greater than 1.0 mm was observed in 45 knees (83.3%). The presence of the ball-and-socket joint articulation provides sufficient antero-posterior stability in these designs to enable the patients to kneel safely without the incidence of any dislocation. This study suggests a safe implant design for kneeling. © 2013.
Changes of contact pressure and area in patellofemoral joint after different meniscectomies.
Bai, Bo; Shun, Hui; Yin, Zhi Xun; Liao, Zhuang-Wen; Chen, Ni
2012-05-01
We investigated the contact pressure and area of the patellofemoral joint both before and after different meniscectomies to provide a biomechanical basis for selecting meniscectomy and its clinical application for meniscus injuries. Six fresh cadaveric knees were used in the study. Using Staubli robots and an ultra-low-min-type pressure-sensitive tablet, changes in contact area and stress in the patellofemoral joint were measured at various flexion angles following different parts and degrees of meniscectomy. The patellofemoral contact area enlarged with the increase of knee flexion angle. From the values obtained from contact areas and average contact pressure of the patellofemoral joint, we found no significant difference between partial meniscectomy and intact knees, but a significant difference was found between total meniscectomy and intact knees. The contact area after lateral meniscectomy was statistically less than that of intact knees. The mean patellofemoral contact pressure after lateral meniscectomy was larger than in intact knees at each angle of flexion. No significant difference in contact area was observed between intact knees and medial meniscectomy. The average patellofemoral contact pressure after medial meniscectomy was larger than in intact knees from 0° ~ 30° of knee flexion, and no significant differences were found between intact knees and medial meniscectomy while knee bending from 60° to 90°. Different meniscectomies result in high contact pressure or disordered distribution of contact pressure, which may be the cause of postoperative patellofemoral degenerative arthrosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niitsu, Mamoru; Ikeda, Kotaroh; Fukubayashi, Tohru
Our goal was to assess the effect of joint position of semiflexed and extended knees in MR delineation of the anterior cruciate ligament (ACL). With a mobile knee brace and a flexible surface coil, the knee joint was either fully extended or bent to a semiflexed position (average 45{degrees} of flexion) within the magnet bore. Sets of oblique sagittal MR images were obtained for both extended and flexed knee positions. Thirty-two knees with intact ACLs and 43 knees with arthroscopically proven ACL tears were evaluated. Two observers compared paired MR images of both extended and flexed positions and rated themmore » by a relative three point scale. Anatomic correlation in MR images was obtained by a cadaveric knee with incremental flexion. The MR images of flexed knees were more useful than of extended knees in 53% of the case reviews of femoral attachments and 36% of reviews of midportions of normal ACLs. Compared with knee extensions, the MR images for knee flexion provided better clarity in 48% of reviews of disrupted sites and 52% of residual bundles of torn ACLs. Normal ACL appeared taut in the knee extension and lax in semiflexion. Compared with MR images of knees in extension, MR images of knees in flexion more clearly delineate the femoral side of the ligament with wider space under the intercondylar roof and with decreased volume-averaging artifacts, providing superior visualization of normal and torn ACLs. 13 refs., 7 figs., 1 tab.« less
Revisiting the anatomy and biomechanics of the anconeus muscle and its role in elbow stability.
Pereira, Barry P
2013-07-01
Recent studies have designated the anconeus muscle as an option for use as a pedicled flap for covering soft tissue defects about the elbow, with reported minimal risk of morbidity. This has raised the question as to the importance of the anconeus muscle and as to whether this is truly an accessory muscle that can be sacrificed, or whether the anconeus muscle significantly contributes to elbow and forearm stability? This study revisits the anatomy and biomechanics of the anconeus muscle and aims to investigate the neuromuscular compartments of the anconeus muscle and to determine the changes in the muscle length, fibre length and moment arm over a range of elbow flexion angles for each compartment. An anatomical study on 8 human cadavers (51-77 years of age) was done and a 2-dimensional kinematic elbow model developed to determine changes in the muscle length and moment arm of the muscle related to changes in elbow flexion angles. The muscle was modelled with two possible lines of action, one along the posterior and another on the anterior edge of the muscle as they had different muscle fibre lengths (posterior: average of 32 mm, anterior: average of 20 mm). The anterior edge also had an aponeurosis which was 70% of its length. From 0 to 120° elbow flexion, the length of the posterior and anterior edges increased with a maximum change recorded at 90° elbow flexion (31.7±1.0 mm and 65.3±1.4 mm, respectively). The moment arm is 14-mm at 0° flexion, but between the posterior and anterior edges it decreases at different rates with increasing elbow flexion angle. Beyond 80°, the anterior edge behaves as an elbow flexor, while the posterior edge remains an elbow extensor. The study demonstrates that the anconeus muscle has two neuromuscular compartments each with distinct intramuscular innervations and muscle fibre lengths. The posterior and deep aspect of the muscle functions as an elbow extensor decreasing in influence with increasing elbow flexion angle. The anterior superficial aspect which is adjacent and parallel to the lateral collateral ligaments, would most likely work in unison to provide constraint to the posterolateral stability of the elbow. Copyright © 2012. Published by Elsevier GmbH.
Davidson, E J; Martin, B B; Boston, R C; Parente, E J
2011-01-01
Although well documented in racehorses, there is paucity in the literature regarding the prevalence of dynamic upper airway abnormalities in nonracing performance horses. To describe upper airway function of nonracing performance horses with abnormal respiratory noise and/or poor performance via exercising upper airway videoendoscopy. Medical records of nonracing performance horses admitted for exercising evaluation with a chief complaint of abnormal respiratory noise and/or poor performance were reviewed. All horses had video recordings of resting and exercising upper airway endoscopy. Relationships between horse demographics, resting endoscopic findings, treadmill intensity and implementation of head and neck flexion during exercise with exercising endoscopic findings were examined. Dynamic upper airway obstructions were observed in 72% of examinations. Head and neck flexion was necessary to obtain a diagnosis in 21 horses. Pharyngeal wall collapse was the most prevalent upper airway abnormality, observed in 31% of the examinations. Complex abnormalities were noted in 27% of the examinations. Resting laryngeal dysfunction was significantly associated with dynamic arytenoid collapse and the odds of detecting intermittent dorsal displacement of the soft palate (DDSP) during exercise in horses with resting DDSP was only 7.7%. Exercising endoscopic observations were different from the resting observations in 54% of examinations. Dynamic upper airway obstructions were common in nonracing performance horses with respiratory noise and/or poor performance. Resting endoscopy was only helpful in determining exercising abnormalities with recurrent laryngeal neuropathy. This study emphasises the importance of exercising endoscopic evaluation in nonracing performance horses with abnormal respiratory noise and/or poor performance for accurate assessment of dynamic upper airway function. © 2010 EVJ Ltd.
The effectiveness of Kinesio Taping on pain and disability in cervical myofascial pain syndrome.
Ay, Saime; Konak, Hatice Ecem; Evcik, Deniz; Kibar, Sibel
The aim of this study was to investigate the effectiveness of Kinesio Taping and sham Kinesio Taping on pain, pressure pain threshold, cervical range of motion, and disability in cervical myofascial pain syndrome patients (MPS). This study was designed as a randomized, double-blind placebo controlled study. Sixty-one patients with MPS were randomly assigned into two groups. Group 1 (n=31) was treated with Kinesio Taping and group 2 (n=30) was treated sham taping five times by intervals of 3 days for 15 days. Additionally, all patients were given neck exercise program. Patients were evaluated according to pain, pressure pain threshold, cervical range of motion and disability. Pain was assessed by using Visual Analog Scale, pressure pain threshold was measured by using an algometer, and active cervical range of motion was measured by using goniometry. Disability was assessed with the neck pain disability index disability. Measurements were taken before and after the treatment. At the end of the therapy, there were statistically significant improvements on pain, pressure pain threshold, cervical range of motion, and disability (p<0.05) in both groups. Also there was a statistical difference between the groups regarding pain, pressure pain threshold, cervical flexion-extension (p<0.05); except cervical rotation, cervical lateral flexion and disability (p>0.05). This study shows that Kinesio Taping leads to improvements on pain, pressure pain threshold and cervical range of motion, but not disability in short time. Therefore, Kinesio Taping can be used as an alternative therapy method in the treatment of patients with MPS. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.
The cam impinging femur has multiple morphologic abnormalities.
Ellis, Andrew R; Noble, Philip C; Schroder, Steven J; Thompson, Matthew T; Stocks, Gregory W
2011-09-01
This study was performed to establish whether the "cam" impinging femur has a single deformity of the head-neck junction or multiple abnormalities. Average dimensions (anteversion angle, α angle of Notzli, β angle of Beaulé, normalized anterior head offset) were compared between normal and impinging femora. The results demonstrated that impinging femora had wider necks, larger heads, and decreased head-neck ratios. There was no difference in neck-shaft angle or anteversion angle. Forty-six percent of impinging femora had significant posterior head displacement (>2mm), which averaged 1.93 mm for the cam impinging group, and 0.78 mm for the normal group. In conclusion, surgical treatment limited to localized recontouring of the head-neck profile may fail to address significant components of the underlying abnormality. Copyright © 2011 Elsevier Inc. All rights reserved.
Hip capsular thickness correlates with range of motion limitations in femoroacetabular impingement.
Zhang, Kailai; de Sa, Darren; Yu, Hang; Choudur, Hema Nalini; Simunovic, Nicole; Ayeni, Olufemi Rolland
2018-03-24
Femoroacetabular impingement (FAI) is a clinical entity of the hip causing derangements in range of motion, pain, gait, and function. Computer-assisted modeling and clinical studies suggest that patients with FAI have increased capsular thickness compared to those without.A retrospective chart review was performed to assess relationships between capsular thickness, hip range of motion, and demographic factors in patients with FAI. Local Research Ethics Board approval was obtained to extract electronic medical records for 188 patients at a single institution who had undergone hip arthroscopy. Procedures were performed from 2009 to 2017 by a single, fellowship-trained, board-certified sports medicine orthopaedic surgeon. Inclusion criteria were preoperative hip range of motion testing, positive clinical impingement testing, and magnetic resonance imaging (MRI) of the affected hip. Patient demographics, hip range of motion, and time to surgery were recorded. MRIs were reviewed by a board-certified musculoskeletal radiologist blinded to clinical data. Maximum thickness of the anterior hip capsule was measured in axial, axial oblique, and sagittal oblique sequences. Anterior capsular thickness was also measured at the level of the femoral head-neck junction in axial sequences (axial midline). Axial midline capsular thickness was negatively correlated with hip flexion (r = - 0.196, p = 0.0042) and internal rotation (r = - 0.143, p = 0.0278). Significant differences were seen between genders in axial midline thickness (5.3 ± 1.4 mm males/4.8 ± 1.3 mm females, p = 0.0079), flexion (113° ± 18° males/120° ± 17° females, p = 0.0029), and internal rotation (23° ± 13° males/29° ± 12° females, p = 0.0155). Significant differences also existed between side affected in flexion (116° ± 17° right/119° ± 17° left, p = 0.0396) and internal rotation (26° ± 12° right/29° ± 13° left, p = 0.0029). Positive correlation was observed between axial oblique capsular thickness and flexion (r = 0.2345) (p = 0.0229). Increased anterior hip capsular thickness at the femoral head-neck correlates with limitations in hip range of motion in FAI. The strength of this relationship may be affected between pathologies, genders, and affected side. Pathologic thickening of the hip capsule may contribute to restricted hip mobility on clinical examination, and elucidation of this relationship may provide guidance into capsular management during hip arthroscopy. 4, retrospective case series.
Retest reliability of force-time variables of neck muscles under isometric conditions.
Almosnino, Sivan; Pelland, Lucie; Stevenson, Joan M
2010-01-01
Proper conditioning of the neck muscles may play a role in reducing the risk of neck injury and, possibly, concussions in contact sports. However, the ability to reliably measure the force-time-based variables that might be relevant for this purpose has not been addressed. To assess the between-days reliability of discrete force-time-based variables of neck muscles during maximal voluntary isometric contractions in 5 directions. Cohort study. University research center. Twenty-six highly physically active men (age = 21.6 ± 2.1 years, height = 1.85 ± 0.09 m, mass = 81.6 ± 9.9 kg, head circumference = 0.58 ± 0.01 m, neck circumference = 0.39 ± 0.02 m). We used a custom-built testing apparatus to measure maximal voluntary isometric contractions of the neck muscles in 5 directions (extension, flexion, protraction, left lateral bending, and right lateral bending) on 2 separate occasions separated by 7 to 8 days. Variables measured were peak force (PF), rate of force development (RFD), and time to 50% of PF (T(50)PF). Reliability indices calculated for each variable comprised the difference in scores between the testing sessions, with corresponding 95% confidence intervals, the coefficient of variation of the typical error of measurement (CV(TE)), and intraclass correlation coefficients (ICC [3,3]). No evidence of systematic bias was detected for the dependent measures across any movement direction; retest differences in measurements were between 1.8% and 2.7%, with corresponding 95% confidence interval ranges of less than 10% and overlapping zero. The CV(TE) was lowest for PF (range, 2.4%-6.3%) across all testing directions, followed by RFD (range, 4.8%-9.0%) and T(50)PF (range, 7.1%-9.3%). The ICC score range for all dependent measures was 0.90 to 0.99. Discrete variables representative of the force-generating capacity of neck muscles under isometric conditions can be measured with an acceptable degree of reliability. This finding has possible applications for investigating the role of neck muscle strength-training programs in reducing the risk of injuries in sport settings.
Tapentadol extended release for the management of chronic neck pain
Billeci, Domenico; Coluzzi, Flaminia
2017-01-01
Background The role of opioids in the management of chronic neck pain is still poorly investigated. No data are available on tapentadol extended release (ER). In this article, we present 54 patients with moderate-to-severe chronic neck pain treated with tapentadol ER. Patients and methods Patients received tapentadol ER 100 mg/day; dosage was then adjusted according to clinical needs. The following parameters were recorded: pain; Douleur Neuropathique 4 score; Neck Disability Index score; range of motion; pain-associated sleep interference; quality of life (Short Form [36] Health Survey); Patient Global Impression of Change (PGIC); Clinician GIC; opioid-related adverse effects; and need for other analgesics. Results A total of 44 of 54 patients completed the 12-week observation. Tapentadol ER daily doses increased from 100 mg/day to a mean (standard deviation) dosage of 204.5 (102.8) mg/day at the final evaluation. Mean pain intensity at movement significantly decreased from baseline (8.1 [1.1]) to all time points (P<0.01). At baseline, 70% of patients presented a positive neuropathic component. This percentage dropped to 23% after 12 weeks. Tapentadol improved Neck Disability Index scores from 55.6 (18.6) at baseline to 19.7 (20.9) at the final evaluation (P<0.01). Tapentadol significantly improved neck range of motion in all three planes of motion, particularly in lateral flexion. Quality of life significantly improved in all Short Form (36) Health Survey subscales (P<0.01) and in both physical and mental status (P<0.01). Based on PGIC results, approximately 90% of patients rated their overall condition as much/very much improved. Tapentadol was well tolerated: no patients discontinued due to side effects. The use of other analgesics was reduced during the observed period. Conclusion Our results suggest that tapentadol ER, started at 100 mg/day, is effective and well tolerated in patients with moderate-to-severe chronic neck pain, including opioid-naïve subjects. Patients can expect a decrease in pain, an improvement in neck function, and a decrease in neuropathic symptoms. PMID:28280384
Nitschke, J E; Nattrass, C L; Disler, P B; Chou, M J; Ooi, K T
1999-02-01
Repeated measures design for intra- and interrater reliability. To determine the intra- and interrater reliability of the lumbar spine range of motion measured with a dual inclinometer, and the thoracolumbar spine range of motion measured with a long-arm goniometer, as recommended in the American Medical Association Guides. The American Medical Association Guides (2nd and 4th editions) recommend using measurements of thoracolumbar and lumbar range of movement, respectively, to estimate the percentage of permanent impairment in patients with chronic low back pain. However, the reliability of this method of estimating impairment has not been determined. In all, 34 subjects participated in the study, 21 women with a mean age of 40.1 years (SD, +/- 11.1) and 13 men with a mean age of 47.7 years (SD, +/- 12.1). Measures of thoracolumbar flexion, extension, lateral flexion, and rotation were obtained with a long-arm goniometer. Lumbar flexion, extension, and lateral flexion were measured with a dual inclinometer. Measurements were taken by two examiners on one occasion and by one examiner on two occasions approximately 1 week apart. The results showed poor intra- and interrater reliability for all measurements taken with both instruments. Measurement error expressed in degrees showed that measurements taken by different raters exhibited systematic as well as random differences. As a result, subjects measured by two different examiners on the same day, with either instrument, could give impairment ratings ranging between 0% and 18% of the whole person (excluding rotation), in which percentage impairment is calculated using the average range of motion and the average systematic and random error in degrees for the group for each movement (flexion, extension, and lateral flexion). The poor reliability of the American Medical Association Guides' spinal range of motion model can result in marked variation in the percentage of whole-body impairment. These findings have implications for compensation bodies in Australia and other countries that use the American Medical Association Guides' procedure to estimate impairment in chronic low back pain patients.
Smith, Eric B; Shafi, Karim A; Greis, Ari C; Maltenfort, Mitchell G; Chen, Antonia F
2016-10-01
Flexion contracture after total knee arthroplasty (TKA) can cause significant dissatisfaction. Botulinum toxin A has shown improved extension in patients with spastic flexion contractures after TKA. The purpose of this study was to evaluate whether Botulinum toxin A improves knee extension for any patient with flexion contractures following TKA. A prospective, double-blinded, randomized controlled trial was conducted. Fourteen patients (15 knees), with a flexion contracture (≥10°) one month postoperatively, were randomized to receive either Botulinum toxin A or saline placebo to the affected hamstrings. The subject, surgeon, and administering physiatrist were blinded to the treatment group throughout the study. Subject range of motion (ROM) was evaluated at 1, 6, and 12 months following injection. Differences were tested using mixed-effects regression to control for multiple measurements. The initial post-operative flexion contracture averaged 19° ± 6° in the Botulinum toxin A group and 13° ± 3° in the saline group. Injections were performed 53 and 57 days after TKA in the Botulinum toxin A and saline groups, respectively. Post-injection extension improved to an average of 8, 5, and 1 degrees for BTX and 4, 2, and 1 degrees for SAL, at 1, 6, and 12 months, respectively, compared to pre-injection extension (p < 0.0001). Improvement in knee extension at 1 year improved 18° ± 7.5° for Botulinum toxin A and 12° ± 2° for saline (p = 0.04). No complications resulted from either injection. Patients who received Botulinum toxin A or placebo were able to achieve near full extension one year after surgery. There was a statistically significant improvement in the amount of extension achieved at 1 year with Botulinum toxin A, but this may be of little clinical significance. Since achieving full extension is important for patient function and satisfaction, novel techniques to address this issue deserve special attention. I.
Jung, Taeyou; Kim, Yumi; Lim, Hyosok; Vrongistinos, Konstantinos
2018-01-16
The purpose of this study was to investigate kinematic and spatiotemporal variables of aquatic treadmill walking at three different water depths. A total of 15 healthy individuals completed three two-minute walking trials at three different water depths. The aquatic treadmill walking was conducted at waist-depth, chest-depth and neck-depth, while a customised 3-D underwater motion analysis system captured their walking. Each participant's self-selected walking speed at the waist level was used as a reference speed, which was applied to the remaining two test conditions. A repeated measures ANOVA showed statistically significant differences among the three walking conditions in stride length, cadence, peak hip extension, hip range of motion (ROM), peak ankle plantar flexion and ankle ROM (All p values < 0.05). The participants walked with increased stride length and decreased cadence during neck level as compared to waist and chest level. They also showed increased ankle ROM and decreased hip ROM as the water depth rose from waist and chest to the neck level. However, our study found no significant difference between waist and chest level water in all variables. Hydrodynamics, such as buoyancy and drag force, in response to changes in water depths, can affect gait patterns during aquatic treadmill walking.
Qinghua, Zhao; Jipeng, Li; Yongxing, Zhang; He, Liang; Xuepeng, Wang; Peng, Yan; Xiaofeng, Wu
2015-04-07
To employ three-dimensional finite element modeling and biomechanical simulation for evaluating the stability and stress conduction of two postoperative internal fixed modeling-multilevel posterior instrumentation ( MPI) and MPI with anterior instrumentation (MPAI) with neck-thoracic vertebral tumor en bloc resection. Mimics software and computed tomography (CT) images were used to establish the three-dimensional (3D) model of vertebrae C5-T2 and simulated the C7 en bloc vertebral resection for MPI and MPAI modeling. Then the statistics and images were transmitted into the ANSYS finite element system and 20N distribution load (simulating body weight) and applied 1 N · m torque on neutral point for simulating vertebral displacement and stress conduction and distribution of motion mode, i. e. flexion, extension, bending and rotating. With a better stability, the displacement of two adjacent vertebral bodies of MPI and MPAI modeling was less than that of complete vertebral modeling. No significant differences existed between each other. But as for stress shielding effect reduction, MPI was slightly better than MPAI. From biomechanical point of view, two internal instrumentations with neck-thoracic tumor en bloc resection may achieve an excellent stability with no significant differences. But with better stress conduction, MPI is more advantageous in postoperative reconstruction.
Pearson, Isabelle; Reichert, Alison; De Serres, Sophie J; Dumas, Jean-Pierre; Côté, Julie N
2009-03-01
Controlled laboratory study using a cross-sectional, repeated-measures design. To quantify maximal voluntary isometric neck forces in healthy subjects and individuals with whiplash-associated disorder (WAD), using an objective measurement system to evaluate the test-retest properties of these strength measurements and to assess the links between neck strength, pain, kinesiophobia, and catastrophizing in patients with WAD. The prognosis of WAD is difficult to predict due to a lack of objective measurement methods and to our limited understanding of the role of psychological factors in the development of chronic WAD symptoms. Fourteen subjects with chronic WAD grade I or II and an age-matched, healthy group (n = 28) participated in this study. Cervical strength was measured with the Multi-Cervical Unit (MCU) in 6 directions, and pain was measured with a visual analog scale. Individuals in the WAD group completed the Neck Disability Index (NDI), the Tampa Scale for Kinesiophobia (TSK), and the Pain Catastrophizing Scale (PCS). Significant deficits in strength were observed for the individuals in the WAD group compared to the healthy group, particularly in extension, retraction, and left lateral flexion (P<.05). The MCU demonstrated good intratester reliability for the healthy group (ICC = 0.80-0.92) and the WAD group (ICC = 0.85-0.98), and small standard errors of measurement for both groups. No significant association was found between neck strength and NDI, TSK, and PCS. The MCU demonstrated good test-retest properties for healthy subjects and individuals with WAD. Cervical strength was lower in individuals with WAD; however, the strength deficits were not clearly linked with psychological factors.
Viper NHEXS Program: A Viper Pilot Neck Health & Conditioning Guide
2012-11-01
recommended in this manual. The Neck vs. Gs Problem At least one acute neck pain episode is reported to occur in an estimated 85% of all pilots flying...high-performance fighter type aircraft, with the yearly prevalence of neck-related pain for all pilots at 56% [1]. Vandebeek reported over 50% of...72% of fighter pilots experience neck pain in relation to flying, while 35% experience some low back pain . The reported average G level for acute
Estimated Probability of a Cervical Spine Injury During an ISS Mission
NASA Technical Reports Server (NTRS)
Brooker, John E.; Weaver, Aaron S.; Myers, Jerry G.
2013-01-01
Introduction: The Integrated Medical Model (IMM) utilizes historical data, cohort data, and external simulations as input factors to provide estimates of crew health, resource utilization and mission outcomes. The Cervical Spine Injury Module (CSIM) is an external simulation designed to provide the IMM with parameter estimates for 1) a probability distribution function (PDF) of the incidence rate, 2) the mean incidence rate, and 3) the standard deviation associated with the mean resulting from injury/trauma of the neck. Methods: An injury mechanism based on an idealized low-velocity blunt impact to the superior posterior thorax of an ISS crewmember was used as the simulated mission environment. As a result of this impact, the cervical spine is inertially loaded from the mass of the head producing an extension-flexion motion deforming the soft tissues of the neck. A multibody biomechanical model was developed to estimate the kinematic and dynamic response of the head-neck system from a prescribed acceleration profile. Logistic regression was performed on a dataset containing AIS1 soft tissue neck injuries from rear-end automobile collisions with published Neck Injury Criterion values producing an injury transfer function (ITF). An injury event scenario (IES) was constructed such that crew 1 is moving through a primary or standard translation path transferring large volume equipment impacting stationary crew 2. The incidence rate for this IES was estimated from in-flight data and used to calculate the probability of occurrence. The uncertainty in the model input factors were estimated from representative datasets and expressed in terms of probability distributions. A Monte Carlo Method utilizing simple random sampling was employed to propagate both aleatory and epistemic uncertain factors. Scatterplots and partial correlation coefficients (PCC) were generated to determine input factor sensitivity. CSIM was developed in the SimMechanics/Simulink environment with a Monte Carlo wrapper (MATLAB) used to integrate the components of the module. Results: The probability of generating an AIS1 soft tissue neck injury from the extension/flexion motion induced by a low-velocity blunt impact to the superior posterior thorax was fitted with a lognormal PDF with mean 0.26409, standard deviation 0.11353, standard error of mean 0.00114, and 95% confidence interval [0.26186, 0.26631]. Combining the probability of an AIS1 injury with the probability of IES occurrence was fitted with a Johnson SI PDF with mean 0.02772, standard deviation 0.02012, standard error of mean 0.00020, and 95% confidence interval [0.02733, 0.02812]. The input factor sensitivity analysis in descending order was IES incidence rate, ITF regression coefficient 1, impactor initial velocity, ITF regression coefficient 2, and all others (equipment mass, crew 1 body mass, crew 2 body mass) insignificant. Verification and Validation (V&V): The IMM V&V, based upon NASA STD 7009, was implemented which included an assessment of the data sets used to build CSIM. The documentation maintained includes source code comments and a technical report. The software code and documentation is under Subversion configuration management. Kinematic validation was performed by comparing the biomechanical model output to established corridors.
Veen, I; Killian, D; Vlaminck, L; Vernooij, J C M; Back, W
2018-03-08
Debate surrounds the use of high rein tension for obtaining different head and neck positions in the training of sport horses on account of possible welfare issues. To compare auxiliary rein tension in two methods (Draw Reins and Concord Leader) for obtaining a standardised head and neck position on a hard and a soft surface. Intervention study. Left and right rein tensions were measured in 11 base-level trained client-owned sport horses (mean age ± s.d.; 10 ± 3.2 years) exercised in-hand with, in a random order, conventional draw reins or the newly developed Concord Leader in a standardised head and neck position. Rein tension was measured using a calibrated device operating at 10 Hz during six runs of 15 s in a straight line for each training method on both a hard and a soft surface. A linear mixed model and grouped logistic regression analysis were applied to compare the two methods (P<0.05). The odds of a tension of 0 N were lower with draw reins than with the Concord Leader. The rein tension (mean sum of the force applied, in N) of the draw reins was 13.8 times higher than that of the Concord Leader. This study was performed on horses exercised in-hand; however, these auxiliary aids are normally used when lungeing. Possible redirection of rein tension towards the poll was not measured. We showed that when using the Concord Leader a similar head and neck position is achieved with a much lower rein tension than with the draw reins and, more importantly, with a much greater likelihood of 0 N. It is unnecessary to use high auxiliary rein tension to obtain a standard, flexed head and neck position. © 2018 The Authors. Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.
Continuous detection and decoding of dexterous finger flexions with implantable myoelectric sensors.
Baker, Justin J; Scheme, Erik; Englehart, Kevin; Hutchinson, Douglas T; Greger, Bradley
2010-08-01
A rhesus monkey was trained to perform individuated and combined finger flexions of the thumb, index, and middle finger. Nine implantable myoelectric sensors (IMES) were then surgically implanted into the finger muscles of the monkey's forearm, without any adverse effects over two years postimplantation. Using an inductive link, EMG was wirelessly recorded from the IMES as the monkey performed a finger flexion task. The EMG from the different IMES implants showed very little cross correlation. An offline parallel linear discriminant analysis (LDA) based algorithm was used to decode finger activity based on features extracted from continuously presented frames of recorded EMG. The offline parallel LDA was run on intraday sessions as well as on sessions where the algorithm was trained on one day and tested on following days. The performance of the algorithm was evaluated continuously by comparing classification output by the algorithm to the current state of the finger switches. The algorithm detected and classified seven different finger movements, including individual and combined finger flexions, and a no-movement state (chance performance = 12.5%) . When the algorithm was trained and tested on data collected the same day, the average performance was 43.8+/-3.6% n=10. When the training-testing separation period was five months, the average performance of the algorithm was 46.5+/-3.4% n=8. These results demonstrated that using EMG recorded and wirelessly transmitted by IMES offers a promising approach for providing intuitive, dexterous control of artificial limbs where human patients have sufficient, functional residual muscle following amputation.
White, Nicholas A; Moreno, Daniel P; Brown, Philip J; Gayzik, F Scott; Hsu, Wesley; Powers, Alexander K; Stitzel, Joel D
2014-09-01
Whereas arthrodesis is the most common surgical intervention for the treatment of symptomatic cervical degenerative disc disease, arthroplasty has become increasingly more popular over the past decade. Although literature exists comparing the effects of anterior cervical discectomy and fusion and cervical total disc replacement (CTDR) on neck kinematics and loading, the vast majority of these studies apply only quasi-static, noninjurious loading conditions to a segment of the cervical spine. The objective of this study was to investigate the effects of arthrodesis and arthroplasty on biomechanical neck response during a simulated frontal automobile collision with air bag deployment. This study used a full-body, 50th percentile seated male finite element (FE) model to evaluate neck response during a dynamic impact event. The cervical spine was modified to simulate either an arthrodesis or arthroplasty procedure at C5-C6. Five simulations of a belted driver, subjected to a 13.3 m/s ΔV frontal impact with air bag deployment, were run in LS-DYNA with the Global Human Body Models Consortium full-body FE model. The first simulation used the original model, with no modifications to the neck, whereas the remaining four were modified to represent either interbody arthrodesis or arthroplasty of C5-C6. Cross-sectional forces and moments at the C5 and C6 cervical levels of the neck, along with interbody and facet forces between C5 and C6, were reported. Adjacent-level, cross-sectional neck loading was maintained in all simulations without exceeding any established injury thresholds. Interbody compression was greatest for the CTDRs, and interbody tension occurred only in the fused and nonmodified spines. Some interbody separation occurred between the superior and inferior components of the CTDRs during flexion-induced tension of the cervical spine, increasing the facet loads. This study evaluated the effects of C5-C6 cervical arthrodesis and arthroplasty on neck response during a simulated frontal automobile impact. Although cervical arthrodesis and arthroplasty at C5-C6 did not appear to significantly alter the adjacent-level, cross-sectional neck responses during a simulated frontal automobile impact, key differences were noted in the interbody and facet loading. Copyright © 2014 Elsevier Inc. All rights reserved.
Functional outcome after the Hoffer procedure.
Murabit, Amera; Gnarra, Maria; O'Grady, Kathleen; Morhart, Michael; Olson, Jaret L
2013-06-01
Children with obstetrical brachial plexus injury often develop an internal rotation and adduction contracture about the shoulder as a secondary deformity, resulting in an inability to externally rotate and abduct the shoulder. The Hoffer procedure is evaluated for its potential benefit in improving shoulder abduction and external rotation and its impact on activities of daily living. This is a retrospective review of patients treated in brachial plexus injury clinic who underwent tendon transfer procedures about the shoulder. Preoperative and postoperative active movement and active range of motion were measured and recorded using the Mallet scale and the Active Movement Scale. Twenty patients were included in the study. Average age at time of surgery was 6.35 years. Thirteen patients had primary brachial plexus reconstructive surgery and four patients had concomitant wrist extension tendon transfer procedures. All patients had full passive range of motion preoperatively. The average follow-up period was 25.45 months. Average differences in pre-Hoffer and post-Hoffer Mallet scale scores are as follows: active abduction, 1.20; external rotation, 1.35; hand-to-neck, 1.25; hand-to-back, 0.75; hand-to-mouth, 0.65; and aggregate score, 5.20 (p<0.001 for all). Average differences in relevant pre-Hoffer and post-Hoffer Active Movement Scale scores are as follows: shoulder abduction, 2.10; shoulder external rotation, 4.25; and shoulder internal rotation, -0.80. All patients maintained full range of motion passively; thus, no functional loss was experienced. These results showed very high statistical significance (p<0.001 for all) and clinical significance. Younger patients (≤6 years) and those with better preoperative shoulder flexion and shoulder internal rotation yielded better postoperative results. The Hoffer procedure provides clinically and statistically significant improvement in external rotation and abduction while preserving functional internal rotation range in the child with obstetrical brachial plexus palsy and secondary shoulder deformity. Therapeutic, IV.
Markolf, K L; Kochan, A; Amstutz, H C
1984-02-01
Thirty-five patients with documented absence of the anterior cruciate ligament were tested on the University of California, Los Angeles, instrumented clinical knee-testing apparatus and we measured the response curves for the following testing modes: anterior-posterior force versus displacement at full extension and at 20 and 90 degrees of flexion; varus-valgus moment versus angulation at full extension and 20 degrees of flexion; and tibial torque versus rotation at 20 degrees of flexion. Absolute values of stiffness and laxity and right-left differences for these injured knees were compared with identical quantities measured previously for a control population of forty-nine normal subjects with no history of treatment for injury to the knee. For both the uninjured knees and the knees without an anterior cruciate ligament, at 20 and 90 degrees of flexion the anterior-posterior laxity was greatest at approximately 15 degrees of external rotation of the foot. The injured knees demonstrated significantly increased total anterior-posterior laxity and decreased anterior stiffness when compared with the uninjured knees in all tested positions of the foot and knee. The mean increase in paired anterior-posterior laxity for the injured knees in this group of patients at +/- 200 newtons of applied anterior-posterior force was 3.1 millimeters (+39 per cent) at full extension, 5.5 millimeters (+57 per cent) at 20 degrees of flexion, and 2.5 millimeters (+34 per cent) at 90 degrees of flexion. The mean reduction in anterior stiffness for injured knees was also greatest (-54 per cent) at 20 degrees of knee flexion. Only slight reduction in posterior stiffness (-16 per cent) was measured at 20 degrees of flexion, and this probably reflected the presence of associated capsular and meniscal injuries. In the group of anterior cruciate-deficient knees, the patients with an absent medial meniscus showed greater total anterior-posterior laxity in all three positions of knee flexion than did the patients with an intact or torn meniscus. Varus-valgus laxity at full extension increased an average of 1.7 degrees (+36 per cent) for the injured knees, while varus and valgus stiffness decreased 21 per cent and 24 per cent. Absence of the medial meniscus (in a knee with absence of the anterior cruciate ligament) increased varus-valgus laxity at zero and 20 degrees of flexion.(ABSTRACT TRUNCATED AT 400 WORDS)
Effect of ankle proprioceptive exercise on static and dynamic balance in normal adults.
Yong, Min-Sik; Lee, Yun-Seob
2017-02-01
[Purpose] The present study was conducted to investigate whether ankle proprioceptive exercise affects static and dynamic balance in normal adults. [Subjects and Methods] Twenty-eight normal adults were recruited to measure their static and dynamic balancing before and after the proprioceptive exercise. A subject stood with bare feet on the round supporting platform of the device for measuring balance, and the investigator entered the age and the height of the subjects and set his/her feet on the central point of the monitor screen. Training of ankle proprioceptive sense for the movements of plantar-flexion and dorsiflexion was performed. In the training of joint position sense in plantar-flexion and dorsiflexion, the plantar-flexion and the dorsiflexion were set as 15°, respectively. [Results] The static balancing did not show significant differences in average, while the dynamic balancing showed significant differences. [Conclusion] Ankle proprioceptive exercise can affect dynamic balance.
Yu, Yan; Mao, Haiqing; Li, Jing-Sheng; Tsai, Tsung-Yuan; Cheng, Liming; Wood, Kirkham B.; Li, Guoan; Cha, Thomas D.
2017-01-01
While abnormal loading is widely believed to cause cervical spine disc diseases, in vivo cervical disc deformation during dynamic neck motion has not been well delineated. This study investigated the range of cervical disc deformation during an in vivo functional flexion–extension of the neck. Ten asymptomatic human subjects were tested using a combined dual fluoroscopic imaging system (DFIS) and magnetic resonance imaging (MRI)-based three-dimensional (3D) modeling technique. Overall disc deformation was determined using the changes of the space geometry between upper and lower endplates of each intervertebral segment (C3/4, C4/5, C5/6, and C6/7). Five points (anterior, center, posterior, left, and right) of each disc were analyzed to examine the disc deformation distributions. The data indicated that between the functional maximum flexion and extension of the neck, the anterior points of the discs experienced large changes of distraction/compression deformation and shear deformation. The higher level discs experienced higher ranges of disc deformation. No significant difference was found in deformation ranges at posterior points of all the discs. The data indicated that the range of disc deformation is disc level dependent and the anterior region experienced larger changes of deformation than the center and posterior regions, except for the C6/7 disc. The data obtained from this study could serve as baseline knowledge for the understanding of the cervical spine disc biomechanics and for investigation of the biomechanical etiology of disc diseases. These data could also provide insights for development of motion preservation surgeries for cervical spine. PMID:28334358
Improving tinnitus with mechanical treatment of the cervical spine and jaw.
Cherian, Kay; Cherian, Neil; Cook, Chad; Kaltenbach, James A
2013-01-01
Tinnitus affects approximately 30-50 million Americans. In approximately 0.5-1.0% of the population, tinnitus has a moderate to severe impact on their quality of life. Musculature and joint pathologies of the head and neck are frequently associated with tinnitus and have been hypothesized to play a contributing role in its etiology. However, specific physical therapy interventions to assist in improving tinnitus have not yet been reported. To describe the examination and treatment intervention of a patient with subjective tinnitus. The patient was a 42-yr-old male experiencing intermittent bilateral tinnitus, headaches, blurred vision, and neck tightness. His occupation required long-term positioning into neck protraction. Examination found limitations in cervical extension, bilateral rotation, and side bending. Asymmetry was also noted with temporomandibular joint (TMJ) movements. Upon initial evaluation the patient demonstrated functional, physical, and emotional deficits per neck, headache, and dizziness self-report scales and a score on the Tinnitus Handicap Inventory (THI) of 62. Resisted muscle contractions of the cervical spine in flexion, extension, and rotation increased his tinnitus. Treatment focused on normalizing cervical spine mobility through repetitive movements, joint mobilization, and soft tissue massage. At 2.5 mo, the patient demonstrated a complete reversal of his tinnitus after 10 physical therapy sessions as noted by his score of 0 on the THI upon discharge. He also demonstrated objective improvements in his cervical motion. This case reflected treatment targeted at cervical and TMJ impairments and notable improvements to tinnitus. Future studies should further explore the direct and indirect treatment of tinnitus by physical therapists through clinical trials. American Academy of Audiology.
The role of the deep medial collateral ligament in controlling rotational stability of the knee.
Cavaignac, Etienne; Carpentier, Karel; Pailhé, Regis; Luyckx, Thomas; Bellemans, Johan
2015-10-01
The tibial insertion of the deep medial collateral ligament (dMCL) is frequently sacrificed when the proximal tibial cut is performed during total knee arthroplasty. The role of the dMCL in controlling the knee's rotational stability is still controversial. The aim of this study was to quantify the rotational laxity induced by an isolated lesion of the dMCL as it occurs during tibial preparation for knee arthroplasty. An isolated resection of the deep MCL was performed in 10 fresh-frozen cadaver knees. Rotational laxity was measured during application of a standard 5.0 N.m rotational torque. Maximal tibial rotation was measured at different knee flexion angles using an image-guided navigation system (Medivision Surgetics system, Praxim, Grenoble, France) before and after dMCL resection. In all cases, internal and external tibial rotation increased after dMCL resection. Total rotational laxity increased significantly for all knee flexion angles, with an average difference of +7.8° (SD 5.7) with the knee in extension, +8.9° (SD 1.9) in 30° flexion, +7° (SD 2.9) in 60° flexion and +5.3° (SD 2.8) in 90° flexion. Sacrificing the tibial insertion of the deep MCL increases rotational laxity of the knee by 5°-9°, depending on the knee flexion angle. Based on our findings, new surgical techniques and implants that preserve the dMCL insertion such as tibial inlay components should be developed. Further clinical evaluations are necessary.
Oh, Jason Jaeseong; Asha, Stephen Edward
2016-04-01
Detecting the presence of injuries to the cervical spine is an important component of the initial assessment of patients sustaining blunt trauma. A small proportion of cervical spine injuries consists of ligamentous disruption. Accurate detection of ligamentous injury is essential as it may result in sequelae including radiculopathy, quadriplegia and death. Flexion-extension (FE) radiography has traditionally been utilised for the detection of ligamentous injury in patients who have been cleared of bony injury. There are controversies surrounding the use of FE for alert patients with neck pain. There are studies that call into question the diagnostic accuracy of FE, the high proportion of inadequate FE images due to muscle spasm and the adverse effects of prolonged cervical collar immobilisation while awaiting FE. Other literature indicates that FE provides no additional diagnostic information following a multi-detector helical computed tomography. This review evaluates the literature on the utility of FE for the detection of ligamentous injury and explores alternate strategies for clearing the cervical spine of ligamentous injury. © 2015 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
Xie, Yanfei; Szeto, Grace; Dai, Jie
2017-03-01
This systematic review aimed at evaluating the prevalence and risk factors for musculoskeletal complaints associated with mobile handheld device use. Pubmed, Medline, Web of Science, CINAHL and Embase were searched. The methodological quality of included studies was assessed. Strength of evidence for risk factors was determined based on study designs, methodological quality and consistency of results. Five high-quality, eight acceptable-quality and two low-quality peer-reviewed articles were included. This review demonstrates that the prevalence of musculoskeletal complaints among mobile device users ranges from 1.0% to 67.8% and neck complaints have the highest prevalence rates ranging from 17.3% to 67.8%. This study also finds some evidence for neck flexion, frequency of phone calls, texting and gaming in relation to musculoskeletal complaints among mobile device users. Inconclusive evidence is shown for other risk factors such as duration of use and human-device interaction techniques due to inconsistent results or a limited number of studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lhermitte's sign: Review with special emphasis in oncology practice.
Gemici, Cengiz
2010-05-01
Lhermitte's sign (LS) is characterized by electric shock like sensation, spreading along the spine in a cervico-caudal direction and also into both arms and legs, which is felt upon forward flexion of the neck. It is a myelopathy resulting from damage to sensory axons at the dorsal columns of the cervical or thoracic spinal cord and a well-known clinical sign in neurology practice. Patients with cancer may present with LS due to various causes either related to the tumor itself or to its treatment. Spinal cord tumors, radiotherapy and chemotherapy are possible causes of LS observed in oncology practice. While LS is observed with a frequency of 3.6-13% in large patient groups receiving radiotherapy for head and neck and thoracic malignancies, the true incidence of chemotherapy and spinal cord tumor induced LS is unknown with only few reported cases in the literature. In the present article, various pathologies causing Lhermitte's sign are reviewed with special emphasis on the implications of this sign in oncology practice. 2009 Elsevier Ireland Ltd. All rights reserved.
Endogenous-lesioned cervical disc herniation: a retrospective review of 9 cases.
Zhang, Zifeng; Bai, Yushu; Hou, Tiesheng
2011-01-01
The purpose of this study was to analyze the pathogenic mechanisms, clinical presentation, and surgical treatment of cervical disc herniation without external trauma. Between 2004 and 2008, 9 patients with cervical disc herniation and no antecedent history of trauma were diagnosed with cervical disc herniation and underwent surgical decompression. Pathogenic mechanisms, clinical presentation, surgical treatment, and prognosis were analyzed retrospectively. In 6 patients, herniation resulted from excessive neck motion rather than from external trauma. An injury from this source is termed an endogenous-lesioned injury. Patients exhibited neurologic symptoms of compression of the cervical spinal cord or nerve roots. In the other 3 patients, no clear cause for the herniation was recorded, but all patients had a desk job with long periods of head-down neck flexion posture. After surgery, all patients experienced a reduction in their symptoms and an uneventful recovery. Cervical disc herniation can occur in the absence of trauma. Surgical decompression is effective at reducing symptoms in these patients, similar to other patients with cervical disc herniation. Surgical treatment may be considered for this disorder when the herniation becomes symptomatic.
Vestibular rehabilitation in a patient with whiplash-associated disorders.
Tuo, Kwo-Shieng; Cheng, Yuan-Yang; Kao, Chung-Lan
2006-12-01
Whiplash-associated disorders are characterized by multiple physical complaints after a flexion-extension trauma to the neck. They are difficult to treat, and they often result in great impact on the patient's quality of life. In this paper, the comprehensive treatment of a patient with whiplash-associated disorders is presented. The purpose is to highlight the importance of accurate diagnosis and appropriate treatment plans to improve patients' quality of life. This 23-year-old woman experienced a traffic accident which caused severely painful neck disability, numbness over bilateral upper limbs, dizziness, double vision and loss of balance. Among these symptoms, dizziness was the problem that bothered the patient most. She received a comprehensive rehabilitation program including physical modalities, trigger point injections for relief of pain, as well as a vestibular rehabilitation program, which included exercises challenging and improving her balance function, head-eye coordination exercise, visual-ocular control exercise and sensory substitution-promoting exercises. She resumed her previous full-time work after 3 weeks of treatment. This successfully treated case illustrates the importance of correct diagnosis and appropriate treatment for patients who suffer from whiplash-associated disorders.
Furuno, Yuichi; Sasajima, Hiroyasu; Goto, Yukihiro; Taniyama, Ichita; Aita, Kazuyasu; Owada, Kei; Tatsuzawa, Kazunori; Mineura, Katsuyoshi
2014-02-01
The lateral positioning used for the lateral suboccipital surgical approach is associated with various pathophysiologic complications. Strategies to avoid complications including an excessive load on the cervical vertebra and countermeasures against pressure ulcer development are needed. We retrospectively investigated positioning-related complications in 71 patients with cerebellopontine angle lesions undergoing surgery in our department between January 2003 and December 2010 using the lateral suboccipital approach. One patient postoperatively developed rhabdomyolysis, and another presented with transient peroneal nerve palsy on the unaffected side. Stage I and II pressure ulcers were noted in 22 and 12 patients, respectively, although neither stage III nor more severe pressure ulcers occurred. No patients experienced cervical vertebra and spinal cord impairments, brachial plexus palsy, or ulnar nerve palsy associated with rotation and flexion of the neck. Strategies to prevent positioning-related complications, associated with lateral positioning for the lateral suboccipital surgical approach, include the following: atraumatic fixation of the neck focusing on jugular venous perfusion and airway pressure, trunk rotation, and sufficient relief of weightbearing and protection of nerves including the peripheral nerves of all four extremities.
Heikkilä, H V; Wenngren, B I
1998-09-01
To investigate cervicocephalic kinesthetic sensibility, active range of cervical motion, and oculomotor function in patients with whiplash injury. A 2-year review of consecutive patients admitted to the emergency unit after whiplash injury. An otorhinolaryngology department. Twenty-seven consecutive patients with diagnosed whiplash injury (14 men and 13 women, mean age, 33.8yrs [range, 18 to 66yrs]). The controls were healthy subjects without a history of whiplash injury. Oculomotor function was tested at 2 months and at 2 years after whiplash injury. The ability to appreciate both movement and head position was studied. Active range of cervical motion was measured. Subjective intensity of neck pain and major medical symptoms were recorded. Active head repositioning was significantly less precise in the whiplash subjects than in the control group. Failures in oculomotor functions were observed in 62% of subjects. Significant correlations occurred between smooth pursuit tests and active cervical range of motion. Correlations also were established between the oculomotor test and the kinesthetic sensibility test. The results suggest that restricted cervical movements and changes in the quality of proprioceptive information from the cervical spine region affect voluntary eye movements. A flexion/extension injury to the neck may result in dysfunction of the proprioceptive system. Oculomotor dysfunction after neck trauma might be related to cervical afferent input disturbances.
Hackney, James; Brummel, Sara; Newman, Mary; Scott, Shannon; Reinagel, Matthew; Smith, Jennifer
2015-09-01
We carried out a study to investigate how low stiffness flooring may help prevent overuse injuries of the lower extremity in dancers. It was hypothesized that performing a ballet jump (sauté) on a reduced stiffness dance floor would decrease maximum joint flexion angles and negative angular velocities at the hips, knees, or ankles compared to performing the same jump on a harder floor. The participants were 15 young adult female dancers (age range 18 to 28, mean = 20.89 ± 2.93 years) with at least 5 years of continuous ballet experience and without history of serious lower body injury, surgery, or recent pain. They performed sautés on a (low stiffness) Harlequin ® WoodSpring Floor and on a vinyl-covered hardwood on concrete floor. Maximum joint flexion angles and negative velocities at bilateral hips, knees, and ankles were measured with the "Ariel Performance Analysis System" (APAS). Paired one-tailed t-tests yielded significant decreases in maximum knee angle (average decrease = 3.4° ± 4.2°, p = 0.026) and angular negative velocity of the ankles (average decrease = 18.7°/sec ± 27.9°/sec, p = 0.009) with low stiffness flooring. If the knee angle is less acute, then the length of the external knee flexion moment arm will also be shorter and result in a smaller external knee flexion moment, given an equal landing force. Also, high velocities of eccentric muscle contraction, which are necessary to control negative angular velocity of the ankle joint, are associated with higher risk of musculotendinous injury. Hence, our findings indicate that reduced floor stiffness may indeed help decrease the likelihood of lower extremity injuries.
Viscoelastic Response of the Human Lower Back to Passive Flexion: The Effects of Age.
Shojaei, Iman; Allen-Bryant, Kacy; Bazrgari, Babak
2016-09-01
Low back pain is a leading cause of disability in the elderly. The potential role of spinal instability in increasing risk of low back pain with aging was indirectly investigated via assessment of age-related differences in viscoelastic response of lower back to passive deformation. The passive deformation tests were conducted in upright standing posture to account for the effects of gravity load and corresponding internal tissues responses on the lower back viscoelastic response. Average bending stiffness, viscoelastic relaxation, and dissipated energy were quantified to characterize viscoelastic response of the lower back. Larger average bending stiffness, viscoelastic relaxation and dissipated energy were observed among older vs. younger participants. Furthermore, average bending stiffness of the lower back was found to be the highest around the neutral standing posture and to decrease with increasing the lower back flexion angle. Larger bending stiffness of the lower back at flexion angles where passive contribution of lower back tissues to its bending stiffness was minimal (i.e., around neutral standing posture) highlighted the important role of active vs. passive contribution of tissues to lower back bending stiffness and spinal stability. As a whole our results suggested that a diminishing contribution of passive and volitional active subsystems to spinal stability may not be a reason for higher severity of low back pain in older population. The role of other contributing elements to spinal stability (e.g., active reflexive) as well as equilibrium-based parameters (e.g., compression and shear forces under various activities) in increasing severity of low back pain with aging should be investigated in future.
Imai, Kazuhiro; Minamiya, Yoshihiro; Saito, Hajime; Miyakoshi, Naohisa; Hongo, Michio; Kasukawa, Yuji; Ishikawa, Yoshinori; Motoyama, Satoru; Sato, Yusuke; Shimada, Yoichi; Ogawa, Jun-ichi
2013-07-01
We describe a novel technique of using halo-vest-enforced immobilization to relieve anastomotic tension after tracheal sleeve resection. Immediately after the tracheal sleeve resection, four halo titanium pins were inserted in the skulls of the patients to secure the halo-vest. All patients fitted with halo-vests were able to eat and drink and their clinical course was good. Bronchoscopy confirmed the absence of anastomotic leaks and stenoses, and there were no complications associated with the halo-vest. We believe that ensuring neck flexion using a halo-vest after tracheal sleeve resection is an excellent way of relieving anastomotic tension that would predispose the wound to dehiscence.
Wiley, Marcel R; Riccio, Anthony I; Felton, Kevin; Rodgers, Jennifer A; Wimberly, Robert L; Johnston, Charles E
Quengel casting was introduced in 1922 for nonsurgical treatment of knee flexion contractures (KFC) associated with hemophilic arthropathy. It consists of an extension-desubluxation hinge fixed to a cast allowing for gradual correction of a flexion deformity while preventing posterior tibial subluxation. The purpose of this study is to report 1 center's experience with this technique for the treatment of pediatric KFC. A retrospective review was conducted over a 26-year period. All patients with KFC treated with Quengel casting were included. Demographic data, associated medical conditions, adjunctive soft tissue releases, complications, and the need for late surgical intervention were recorded. Tibiofemoral angle measurements in maximal extension were recorded at initiation and termination of casting, 1-year follow-up, and final follow-up. Success was defined as no symptomatic recurrence of KFC or need for subsequent surgery. Eighteen patients (26 knees) were treated for KFC with Quengel casting. Average age at initiation of casting was 8.1 years with average follow-up of 59.9 months. Fifteen knees (58%) underwent soft tissue releases before casting. An average of 1.5 casts per knee were applied over an average of 23.9 days. Average KFC before casting was 50.6 degrees (range, 15 to 100 degrees) which improved to 5.96 degrees (0 to 40 degrees) at cast removal (P<0.00001). Sixteen patients (22 knees) had 1-year follow-up or failed casting before 1 year. Of these, 11 knees (50%) had a successful outcome. Residual KFC of those treated successfully was 6.8 degrees (range, 0 to 30 degrees) at 1 year and 8.2 degrees (range, 0 to 30 degrees) at final follow-up, averaging 71.4 months (P=0.81). Of the 11 knees deemed failures, all had recurrence of deformity within an average of 1 year from cast removal. Surgical release before Quengel casting did not improve the chances for success (P=0.09). Quengel casting can improve pediatric KFC an average of 44.2 degrees with minimal complications. Although 50% of treated patients will demonstrate significant recurrence or need later surgery, the majority of those treated successfully have durable results at intermediate term follow-up. Level IV-therapeutic study.
Hey, Hwee Weng Dennis; Lau, Eugene Tze-Chun; Lim, Joel-Louis; Choong, Denise Ai-Wen; Tan, Chuen-Seng; Liu, Gabriel Ka-Po; Wong, Hee-Kit
2017-03-01
Flexion radiographs have been used to identify cases of spinal instability. However, current methods are not standardized and are not sufficiently sensitive or specific to identify instability. This study aimed to introduce a new slump sitting method for performing lumbar spine flexion radiographs and comparison of the angular range of motions (ROMs) and displacements between the conventional method and this new method. This study used is a prospective study on radiological evaluation of the lumbar spine flexion ROMs and displacements using dynamic radiographs. Sixty patients were recruited from a single spine tertiary center. Angular and displacement measurements of lumbar spine flexion were carried out. Participants were randomly allocated into two groups: those who did the new method first, followed by the conventional method versus those who did the conventional method first, followed by the new method. A comparison of the angular and displacement measurements of lumbar spine flexion between the conventional method and the new method was performed and tested for superiority and non-inferiority. The measurements of global lumbar angular ROM were, on average, 17.3° larger (p<.0001) using the new slump sitting method compared with the conventional method. They were most significant at the levels of L3-L4, L4-L5, and L5-S1 (p<.0001, p<.0001 and p=.001, respectively). There was no significant difference between both methods when measuring lumbar displacements (p=.814). The new method of slump sitting dynamic radiograph was shown to be superior to the conventional method in measuring the angular ROM and non-inferior to the conventional method in the measurement of displacement. Copyright © 2016 Elsevier Inc. All rights reserved.
Magu, Narender Kumar; Singh, Roop; Sharma, Ashwini Kumar; Ummat, Vikas
2007-04-01
To evaluate the role of a modified Pauwels' intertrochanteric osteotomy (MPIO) in neglected femoral neck fractures in children. Prospective study with retrospective analysis. Tertiary care Postgraduate Institute of Medical Sciences. Ten children (8 males, 2 females) with an average age of 10.2 years with neglected femoral neck fractures were seen from 1990 to 1998. A femoral neck fracture was considered neglected when no proper medical treatment was instituted for at least 1 month following the fracture. Nonunion was accompanied by coxa vara and resorption of the femoral neck in 9 patients; a 10th patient had a neglected femoral neck fracture for 1 month without coxa vara. Three patients at time of presentation with Delbet Type II displaced fractures with associated nonunion and coxa vara (2 with Ratliff Type III and 1 with Type I) also had avascular necrosis using plain radiographic criteria of increased density. Modified Pauwels' intertrochanteric osteotomy. The children were immobilized in a hip spica for 6-10 weeks postoperatively and weightbearing was started after hip spica removal. Fracture healing, neck-shaft angle, avascular necrosis, and functional outcome. Patients were followed for an average of 8.2 years (range 5-12 years). All patients had union of their fracture within an average of 16.6 weeks (12-20 weeks) and of the osteotomy site within 8.2 weeks (7-9 weeks). Radiologic signs of avascular necrosis disappeared completely in the 3 patients who presented with avascular necrosis. In 1 patient with a preoperatively viable femoral head, radiologic signs of Ratliff Type I avascular necrosis appeared between 60 and 98 weeks. This radiologic finding became normal again, indicating viability of the femoral head somewhere between 98 to 205 weeks of follow-up. Postoperatively, an average of 135-degree neck-shaft angle was achieved (range 125-160 degrees). The average preoperative neck-shaft angle was 104.4 degrees (range 92-120 degrees) and on the normal hip side it was 127.7 degrees (range 124-132 degrees). Significant improvement in the neck-shaft angle was seen compared with the preoperative angle (P < 0.001) and normal hip angle (P < 0.05). Coxa vara and signs of chondrolysis were not observed in any of the patients. Premature proximal femoral epiphyseal closure resulting in a 1-cm and a 1.5-cm leg-length discrepancy was seen in 2 patients as compared with their normal side. A mild Trendelenburg gait was observed in 1 patient (10%). Using Ratliff's criteria, 9 patients (90%) were graded as a good result and 1 patient (10%) was graded as a fair result. The osteotomy plate was removed in 1 patient (10%). An MPIO creates a biomechanical environment conducive to healing of a neglected femoral neck nonunion in a child while simultaneously correcting an associated coxa vara. The procedure also seems to have a biological role in helping restore viability to a noncollapsed femoral head with avascular necrosis.
Patellar tendon rupture repair using Dall-Miles cable.
Shelbourne, K D; Darmelio, M P; Klootwyk, T E
2001-01-01
Ten patients underwent patellar tendon repair with end-to-end suture technique and medial and lateral retinacular repair, as well as reinforcement with a Dall-Miles cable through the patella and tibial tubercle. The cable was tensioned at 60 degrees of flexion to allow immediate range of motion to at least 100 degrees of flexion and to protect the repair from undue tension while healing. Accurate tendon length was obtained from a lateral radiograph of the noninvolved knee in 60 degrees of flexion. Patients were allowed to bear full weight as tolerated postoperatively. A knee immobilizer was worn for approximately 2 weeks when adequate muscular control of the leg was attained. The cable was removed 6-8 weeks postoperatively, at which time range of motion equal to the opposite extremity was sought. Full extension was obtained by 1 week postoperatively. Average postoperative knee flexion was 88 degrees at 2 weeks, 112 degrees at 1 month, 133 at 3 months, and 138 degrees at 6 months compared to flexion of 141 degrees in the noninvolved knee. Mean quadriceps muscle strength 1 year postoperatively was 72%+/-11% of the noninvolved leg. No patient had patella infera or rerupture after surgery. Repair of a patellar tendon rupture with end-to-end techniques reinforced with a Dall-Miles cable allows immediate rehabilitation without the need for prolonged immobilization. This technique allows restoration of full range of motion early postoperatively and enables patients to regain adequate quadriceps strength.
Minoda, Yukihide; Ikebuchi, Mitsuhiko; Mizokawa, Shigekazu; Ohta, Yoichi; Nakamura, Hiroaki
2016-11-01
Proper anteroposterior (AP) joint displacement is an important indicator of good clinical outcome following total knee arthroplasty (TKA). We hypothesized that a newly introduced mobile-bearing posterior stabilized (PS) prosthesis reduces the AP joint displacement. The aim of this study is to compare the AP joint displacement between a newly introduced mobile-bearing PS TKA in one knee and a conventional fixed-bearing PS TKA in other knee. 82 knees in 41 patients who had bilateral TKAs were investigated. All the patients received a conventional fixed-bearing PS prosthesis in one knee and a highly congruent mobile-bearing PS prosthesis in the other knee. AP joint displacement was measured using the KT-2000 arthrometer, at 30° and 75° in flexion, at average of 3.3 years after the operation. AP joint displacements at 30° in flexion were 6 ± 3 mm in the knees with the mobile-bearing PS prosthesis and 9 ± 4 mm in the knee with fixed-bearing PS prosthesis (p < 0.001). AP joint displacements at 75° in flexion were 4 ± 2 mm in the knees with the mobile-bearing PS prosthesis and 6 ± 3 mm in the knee with fixed-bearing PS prosthesis (p < 0.001). This study suggested that the design of the prosthesis can improve the AP joint stability in mid-flexion range.
Castro-Martín, Eduardo; Ortiz-Comino, Lucía; Gallart-Aragón, Tania; Esteban-Moreno, Bernabé; Arroyo-Morales, Manuel; Galiano-Castillo, Noelia
2017-05-01
To (1) investigate the immediate effects of myofascial induction (MI), with placebo electrotherapy as a control, on perceived pain, cervical/shoulder range of motion (ROM), and mood state in breast cancer survivors (BCSs) with shoulder/arm morbidity; and (2) examine the relationships between pain modifications and cervical/shoulder ROM on the side affected by breast cancer. Randomized, single-blind, placebo-controlled crossover study. Physical therapy laboratory. BCSs (N=21) who had a diagnosis of stage I-IIIA breast cancer and had completed adjuvant therapy (except hormonal treatment). During each session, the BCSs received either an MI (fascial unwinding) intervention focused on the upper limb area following the Pilat approach or placebo pulsed shortwave therapy (control group). Each session lasted 30 minutes, and an adequate washout period of 4 weeks between sessions was established. The visual analog scale (VAS) for pain and anxiety, shoulder-cervical goniometry for ROM, the Profile of Mood States for psychological distress, and the Attitudes Towards Massage Scale were used. An analysis of covariance (ANCOVA) revealed significant time × group interactions for VAS affected arm (P=.031) but not for VAS cervical (P=.332), VAS nonaffected arm (P=.698), or VAS anxiety (P=.266). The ANCOVA also revealed significant interactions for affected shoulder flexion (P<.001), abduction (P<.001), external rotation (P=.004), and internal rotation (P=.001). Significant interactions for affected cervical rotation (P=.022) and affected cervical lateral flexion (P=.038) were also found. A significant negative correlation was found between changes in VAS affected arm and shoulder/arm internal rotation ROM (r=-.46; P=.03). A single MI session decreases pain intensity and improves neck-shoulder ROM to a greater degree than placebo electrotherapy for BCSs experiencing pain. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
2013-01-01
Background Cervical facet block (FB) procedures are often used as a diagnostic precursor to radiofrequency neurotomies (RFN) in the management of chronic whiplash associated disorders (WAD). Some individuals will respond to the FB procedures and others will not respond. Such responders and non-responders provided a sample of convenience to question whether there were differences in their physical and psychological features. This information may inform future predictive studies and ultimately the clinical selection of patients for FB procedures. Methods This cross-sectional study involved 58 individuals with chronic WAD who responded to cervical FB procedures (WAD_R); 32 who did not respond (WAD_NR) and 30 Healthy Controls (HC)s. Measures included: quantitative sensory tests (pressure; thermal pain thresholds; brachial plexus provocation test); nociceptive flexion reflex (NFR); motor function (cervical range of movement (ROM); activity of the superficial neck flexors during the cranio-cervical flexion test (CCFT). Self-reported measures were gained from the following questionnaires: neuropathic pain (s-LANSS); psychological distress (General Health Questionnaire-28), post-traumatic stress (PDS) and pain catastrophization (PCS). Individuals with chronic whiplash attended the laboratory once the effects of the blocks had abated and symptoms had returned. Results Following FB procedures, both WAD groups demonstrated generalized hypersensitivity to all sensory tests, decreased neck ROM and increased superficial muscle activity with the CCFT compared to controls (p < 0.05). There were no significant differences between WAD groups (all p > 0.05). Both WAD groups demonstrated psychological distress (GHQ-28; p < 0.05), moderate post-traumatic stress symptoms and pain catastrophization. The WAD_NR group also demonstrated increased medication intake and elevated PCS scores compared to the WAD_R group (p < 0.05). Conclusions Chronic WAD responders and non-responders to FB procedures demonstrate a similar presentation of sensory disturbance, motor dysfunction and psychological distress. Higher levels of pain catastrophization and greater medication intake were the only factors found to differentiate these groups. PMID:24188899
[Muscle strength of the cervical and lumbar spine in triathletes].
Miltner, O; Siebert, C H; Müller-Rath, R; Kieffer, O
2010-12-01
The goal of this study was to analyse the muscle strength of the cervical and lumbar spine in ironman triathletes. The values were compared to the results obtained from a reference group. The test of the triathletes was carried out in an attempt to define a specific strength profile for these athletes. In this study, 20 long-distance triathletes (∅ 37.3 ± 7.6 years of age, ∅ 1.80 ± 0.1 m, ∅ 73.7 ± 6.0 kg) were evaluated with regard to their individual and sport-specific strengths of the cervical spine in 2 planes and of the trunk strengths in all 3 planes of motion. The trunk strength profile of the triathletes revealed good average results in the trunk extensors and the lateral flexors of the left trunk. The reference group is the data base of the company Proxomed®, Alzenau. It is based on results of 1045 untrained, symptom-free subjects of different ages. Lumbar extension: The extension of the force values shows no significant difference from the reference group. Lumbar flexion: The flexion tests show highly significantly lower force values (5.025 ± 0.81 N/kg vs. 6.67 ± 0.6 N/kg) than the reference group. Flexion/extension: In the sagittal plane values for the triathletes demonstrate an imbalance in muscle strength ratios. The abdominal muscles turn in relation to the back extensor muscles too weakly to be very significant. Lumbar rotation: The force values of the athletes in both directions (right: 6.185 ± 1.46 N/kg, left: 7.1 ± 1.57 N/kg vs. 10.05 ± 0.34 N/kg) are highly significantly (p ≤ 0.001) lower than the reference values. Ratio of rotation left/right: The ratio of left/right rotation in the reference group is set at 1 and thus shows an equally strong force level between the two sides. Lumbar lateral flexion: The triathletes do not show any significant differences between the force values. Compared to the reference group there is no significant difference to the left side flexion. In the lateral bending the athletes have significantly better values than the reference group. Ratio of lateral left/right: In the reference group the ratio is set at 1. For triathletes, it shows an average value of 0.93. This difference is not significant. Cervical extension: The extension of the force values (1.96 ± 0.59 N/kg vs. 3.03 ± 0.24 N/kg) shows a highly significant difference from the reference group. Cervical flexion: In flexion (1.3 ± 0.42 N/kg vs. 2.17 ± 0.22 N/kg) triathletes have highly significantly lower strength values than the reference group. Flexion/extension: The triathletes did not differ significantly from the reference values (0.69 ± 0.23 and 0.72 ± 0.08). Lateral cervical spine: In comparison to the reference group (left: 1.67 ± 0.48 N/kg, right: 1.55 ± 0.46 N/kg vs. 2.36 ± 0.15 N/kg) in which there is left/right lateral flexion, there is a highly significant difference. Right lateral flexion is weaker than the left. Ratio of lateral left/right: The triathletes have a significant imbalance in the lateral flexion of the cervical spine compared to the reference group (1.07 ± 0.15 to 1). In conclusion, in the triathlon there is a specific stress that is obviously not an adequate stimulus for the muscles of the cervical spine in order to achieve a balanced musculature and the athletes should be advised to practice a preventive approach with regard to these areas. © Georg Thieme Verlag KG Stuttgart · New York.
McGregor, CIndy; Boyles, Robert; Murahashi, Laura; Sena, Tanya; Yarnall, Robert
2014-11-01
Posterior-to-anterior (PA) vertebral mobilization to the thoracic spine has been studied as an intervention for neck pain. Our purpose was to explore effects of a different mobilization technique, transverse vertebral pressure, on cervical range of motion (ROM) and pain when applied to the thoracic spine among participants with neck pain. A single-blinded quasi-experimental study with a one-group pretest-posttest design. A transverse group consisted of 21 participants whose neck pain increased with active movements. A non-intervention group of 20 asymptomatic participants was included simply to ensure rater blinding. The treatment group received Grades IV to IV+ transverse mobilizations at T1 through T4 bilaterally. Measurements taken immediately after intervention included pre/post cervical ROM, distant pressure pain threshold (PPT), and a numerical pain rating scale (NPRS). Analysis utilized t-tests and ordinal counterparts. The transverse group demonstrated significant gains in extension and bilateral rotation (P≤0.005) but not flexion or side-bend. A total of 57% of mobilized participants reported clinically meaningful decreased pain (P<0.001). Seven participants exceeded the PPT MDC95 of 0.36 kg/cm(2). The non-intervention group had no significant changes in ROM or NPRS scores. After 8 minutes of transverse mobilization to the upper thoracic spine, significant gains in cervical extension and bilateral rotation, and decreased pain scores were found. There were no adverse effects. Unlike other mobilization studies, PPT changes at a remote site were statistically but not clinically meaningful. Findings suggest that transverse mobilization would be a productive topic for controlled clinical trials.
McGregor, CIndy; Boyles, Robert; Murahashi, Laura; Sena, Tanya; Yarnall, Robert
2014-01-01
Objective: Posterior-to-anterior (PA) vertebral mobilization to the thoracic spine has been studied as an intervention for neck pain. Our purpose was to explore effects of a different mobilization technique, transverse vertebral pressure, on cervical range of motion (ROM) and pain when applied to the thoracic spine among participants with neck pain. Methods: A single-blinded quasi-experimental study with a one-group pretest–posttest design. A transverse group consisted of 21 participants whose neck pain increased with active movements. A non-intervention group of 20 asymptomatic participants was included simply to ensure rater blinding. The treatment group received Grades IV to IV+ transverse mobilizations at T1 through T4 bilaterally. Measurements taken immediately after intervention included pre/post cervical ROM, distant pressure pain threshold (PPT), and a numerical pain rating scale (NPRS). Analysis utilized t-tests and ordinal counterparts. Results: The transverse group demonstrated significant gains in extension and bilateral rotation (P≤0.005) but not flexion or side-bend. A total of 57% of mobilized participants reported clinically meaningful decreased pain (P<0.001). Seven participants exceeded the PPT MDC95 of 0.36 kg/cm2. The non-intervention group had no significant changes in ROM or NPRS scores. Discussion: After 8 minutes of transverse mobilization to the upper thoracic spine, significant gains in cervical extension and bilateral rotation, and decreased pain scores were found. There were no adverse effects. Unlike other mobilization studies, PPT changes at a remote site were statistically but not clinically meaningful. Findings suggest that transverse mobilization would be a productive topic for controlled clinical trials. PMID:25395827
Suydam, Stephen M; Soulas, Elizabeth M; Elliott, Dawn M; Silbernagel, Karin Gravare; Buchanan, Thomas S; Cortes, Daniel H
2015-06-01
Changes in tendon viscoelastic properties are observed after injuries and during healing as a product of altered composition and structure. Continuous Shear Wave Elastography is a new technique measuring viscoelastic properties of soft tissues using external shear waves. Tendon has not been studied with this technique, therefore, the aims of this study were to establish the range of shear and viscosity moduli in healthy Achilles tendons, determine bilateral differences of these parameters and explore correlations of viscoelasticity to plantar flexion strength and tendon area. Continuous Shear Wave Elastography was performed over the free portion of both Achilles tendons from 29 subjects. Isometric plantar flexion strength and cross sectional area were measured. The average shear and viscous moduli was 83.2 kPa and 141.0 Pa-s, respectively. No correlations existed between the shear or viscous modulus and area or strength. This indicates that viscoelastic properties can be considered novel, independent biomarkers. The shear and viscosity moduli were bilaterally equivalent (p = 0.013, 0.017) which allows determining pathologies through side-to-side deviations. The average bilateral coefficient of variation was 7.2% and 9.4% for shear and viscosity modulus, respectively. The viscoelastic properties of the Achilles tendon may provide an unbiased, non-subjective rating system of tendon recovery and optimizing treatment strategies. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Suydam, Stephen M.; Soulas, Elizabeth M.; Elliott, Dawn M.; Silbernagel, Karin Gravare; Buchanan, Thomas S.; Cortes, Daniel H.
2015-01-01
Changes in tendon viscoelastic properties are observed after injuries and during healing as a product of altered composition and structure. Continuous Shear Wave Elastography is a new technique measuring viscoelastic properties of soft tissues using external shear waves. Tendon has not been studied with this technique, therefore, the aims of this study were to establish the range of shear and viscosity moduli in healthy Achilles tendons, determine bilateral differences of these parameters and explore correlations of viscoelasticity to plantar flexion strength and tendon area. Continuous Shear Wave Elastography was performed over the free portion of both Achilles tendons from 29 subjects. Isometric plantar flexion strength and cross sectional area were measured. The average shear and viscous moduli was 83.2kPa and 141.0Pa-s, respectively. No correlations existed between the shear or viscous modulus and area or strength. This indicates that viscoelastic properties can be considered novel, independent biomarkers. The shear and viscosity moduli were bilaterally equivalent (p=0.013,0.017) which allows determining pathologies through side-to-side deviations. The average bilateral coefficient of variation was 7.2% and 9.4% for shear and viscosity modulus, respectively. The viscoelastic properties of the Achilles tendon may provide an unbiased, non-subjective rating system of tendon recovery and optimizing treatment strategies. PMID:25882209
EMG and tibial shock upon the first attempt at barefoot running.
Olin, Evan D; Gutierrez, Gregory M
2013-04-01
As a potential means to decrease their risk of injury, many runners are transitioning into barefoot running. Habitually shod runners tend to heel-strike (SHS), landing on their heel first, while barefoot runners tend to mid-foot or toe-strike (BTS), landing flat-footed or on the ball of their foot before bringing down the rest of the foot including the heel. This study compared muscle activity, tibial shock, and knee flexion angle in subjects between shod and barefoot conditions. Eighteen habitually SHS recreational runners ran for 3 separate 7-minute trials, including SHS, barefoot heel-strike (BHS), and BTS conditions. EMG, tibial shock, and knee flexion angle were monitored using bipolar surface electrodes, an accelerometer, and an electrogoniometer, respectively. A one-way MANOVA for repeated measures was conducted and several significant changes were noted between SHS and BTS, including significant increases in average EMG of the medial gastrocnemius (p=.05), average and peak tibial shock (p<.01), and the minimum knee flexion angle (p<.01). Based on our data, the initial change in mechanics may have detrimental effects on the runner. While it has been argued that BTS running may ultimately be less injurious, these data indicate that habitually SHS runners who choose to transition into a BTS technique must undertake the process cautiously. Copyright © 2012 Elsevier B.V. All rights reserved.
Hamada, Yoshitaka; Kobayashi, Anna; Sairyo, Koichi; Sato, Ryosuke; Hibino, Naohito
2015-06-01
A hyperextension deformity in the advanced stages of carpometacarpal (CMC) arthritis of the thumb could affect the outcomes of thumb CMC joint arthroplasty. We introduce the interesting approach for treating severely collapsed thumb deformities with gradual distraction and coordinated correction of the MCP and CMC joints by means of external fixators. We divided 8 cases into 3 groups according to the angle of passive flexion of the hyperextended MCP joint: group 1, 10-20°, group 2a, 20-40°, and group 2b, >40°, retrospectively. We first performed CMC arthroplasty with trapezium excision. In group 1, we corrected the MCP hyperextension deformity by manual passive flexion and fixed the joint with an extension block Kirshner wire (K-wire) for 2 months. However, deformities recurred in 2 of 5 cases after removing the K-wire. These patients received corrective percutaneous osteotomy with external fixators at the metacarpal neck. In groups 2a and 2b, we performed CMC arthroplasty and set external fixators at the same time. All cases in groups 1 and 2a have been without recurrence for more than 2 years, while a deformity recurred in group 2b. The results of this small case series encouraged us to propose an interesting approach for collapsed zigzag thumb deformity. Good outcomes with excellent maintenance of active MCP movement and no recurrence are highly anticipated if the hyperextended thumb has no obvious degenerative changes and can be corrected by <40° of passive flexion. Our results also indicate a risk of recurrence associated with extension block by K-wire.
Intervertebral reaction force prediction using an enhanced assembly of OpenSim models.
Senteler, Marco; Weisse, Bernhard; Rothenfluh, Dominique A; Snedeker, Jess G
2016-01-01
OpenSim offers a valuable approach to investigating otherwise difficult to assess yet important biomechanical parameters such as joint reaction forces. Although the range of available models in the public repository is continually increasing, there currently exists no OpenSim model for the computation of intervertebral joint reactions during flexion and lifting tasks. The current work combines and improves elements of existing models to develop an enhanced model of the upper body and lumbar spine. Models of the upper body with extremities, neck and head were combined with an improved version of a lumbar spine from the model repository. Translational motion was enabled for each lumbar vertebrae with six controllable degrees of freedom. Motion segment stiffness was implemented at lumbar levels and mass properties were assigned throughout the model. Moreover, body coordinate frames of the spine were modified to allow straightforward variation of sagittal alignment and to simplify interpretation of results. Evaluation of model predictions for level L1-L2, L3-L4 and L4-L5 in various postures of forward flexion and moderate lifting (8 kg) revealed an agreement within 10% to experimental studies and model-based computational analyses. However, in an extended posture or during lifting of heavier loads (20 kg), computed joint reactions differed substantially from reported in vivo measures using instrumented implants. We conclude that agreement between the model and available experimental data was good in view of limitations of both the model and the validation datasets. The presented model is useful in that it permits computation of realistic lumbar spine joint reaction forces during flexion and moderate lifting tasks. The model and corresponding documentation are now available in the online OpenSim repository.
Educational Impact of Trainee-Facilitated Head and Neck Radiology-Pathology Correlation Conferences.
Ginat, Daniel Thomas; Cipriani, Nicole A; Christoforidis, Gregory
2018-05-17
The goal of this study was to evaluate the benefits of resident and fellow-facilitated radiology-pathology head and neck conferences. A total of seven resident-facilitated and six fellow-facilitated head and neck radiology-pathology cases were presented as part of the radiology department conference series. The radiology residents were surveyed regarding the perceived quality and effectiveness of the fellow-facilitated sessions. The number of publications yielded from all the cases presented was tracked. Overall, the residents assessed the quality of the fellow-facilitated conferences with an average score of 3.9 out of 5 and the overall helpfulness with an average of 3.5 out of 5. The overall average level of resident understanding among the residents for the topics presented to them by the fellows at baseline was 2.5 out of 5 and 3.4 out of 5 after the presentations, which was a significant increase (p-value < 0.01). There were three peer-reviewed publications generated from the resident presentations and four peer-reviewed publications generated from the fellow presentations, which represents a 54% publication rate collectively. Therefore, trainee-facilitated head and neck radiology-pathology conferences at our institution provide added learning and scholarly activity opportunities.
Specific tackling situations affect the biomechanical demands experienced by rugby union players.
Seminati, Elena; Cazzola, Dario; Preatoni, Ezio; Trewartha, Grant
2017-03-01
Tackling in Rugby Union is an open skill which can involve high-speed collisions and is the match event associated with the greatest proportion of injuries. This study aimed to analyse the biomechanics of rugby tackling under three conditions: from a stationary position, with dominant and non-dominant shoulder, and moving forward, with dominant shoulder. A specially devised contact simulator, a 50-kg punch bag instrumented with pressure sensors, was translated towards the tackler (n = 15) to evaluate the effect of laterality and tackling approach on the external loads absorbed by the tackler, on head and trunk motion, and on trunk muscle activities. Peak impact force was substantially higher in the stationary dominant (2.84 ± 0.74 kN) than in the stationary non-dominant condition (2.44 ± 0.64 kN), but lower than in the moving condition (3.40 ± 0.86 kN). Muscle activation started on average 300 ms before impact, with higher activation for impact-side trapezius and non-impact-side erector spinae and gluteus maximus muscles. Players' technique for non-dominant-side tackles was less compliant with current coaching recommendations in terms of cervical motion (more neck flexion and lateral bending in the stationary non-dominant condition) and players could benefit from specific coaching focus on non-dominant-side tackles.
Emerson, Roger H; Barrington, John W; Olugbode, Seun A; Alnachoukati, Omar K
2016-02-01
Frequently, a normal posterior-cruciate ligament (PCL) is removed at the surgeon's discretion, converting the normal 4-ligament knee to a 2-ligament knee, thus eliminating the need to balance all 4 ligaments. The development of modular tibial components has led to the availability of differing polyethylene inserts that permit adjustment to the flexion gap independent of the extension gap, permitting PCL balancing not previously available. The purpose of this study is to analyze a specific cruciate-retaining (CR) prosthesis which has 2 polyethylene inserts intended for CR knee use. Between February 2004 and February 2013, the senior author (R.H.E.) has performed 930 total knee arthroplasties using the CR flat insert and 424 knees using the CR lipped insert. The inserts were selected during surgery, based on the assessed tension and function of the PCL. The patients were followed up as part of a prospective total joint program with the Knee Society clinical scoring, range of motion, complications, revisions, preoperative coronal deformity, gender, body mass index, and status of the anterior-cruciate ligament intraoperatively. The average Knee Score was 92.4 for the flat group and 92.1 for the lipped group. Average knee flexion was 116.2° for the flat group and 114.4° for the lipped group (P=.2). Average knee extension (flexion deformity) was 2.1° for the flat group and 0.9° for the lipped group The results reported here show that clinical outcomes and survivorship were no different for either insert option, leading to indirect evidence that appropriate soft tissue balance had been achieved. Published by Elsevier Inc.
Muscle strength and knee range of motion after femoral lengthening.
Bhave, Anil; Shabtai, Lior; Woelber, Erik; Apelyan, Arman; Paley, Dror; Herzenberg, John E
2017-04-01
Background and purpose - Femoral lengthening may result in decrease in knee range of motion (ROM) and quadriceps and hamstring muscle weakness. We evaluated preoperative and postoperative knee ROM, hamstring muscle strength, and quadriceps muscle strength in a diverse group of patients undergoing femoral lengthening. We hypothesized that lengthening would not result in a significant change in knee ROM or muscle strength. Patients and methods - This prospective study of 48 patients (mean age 27 (9-60) years) compared ROM and muscle strength before and after femoral lengthening. Patient age, amount of lengthening, percent lengthening, level of osteotomy, fixation time, and method of lengthening were also evaluated regarding knee ROM and strength. The average length of follow-up was 2.9 (2.0-4.7) years. Results - Mean amount of lengthening was 5.2 (2.4-11.0) cm. The difference between preoperative and final knee flexion ROM was 2° for the overall group. Congenital shortening cases lost an average of 5% or 6° of terminal knee flexion, developmental cases lost an average of 3% or 4°, and posttraumatic cases regained all motion. The difference in quadriceps strength at 45° preoperatively and after lengthening was not statistically or clinically significant (2.7 Nm; p = 0.06). Age, amount of lengthening, percent lengthening, osteotomy level, fixation time, and lengthening method had no statistically significant influence on knee ROM or quadriceps strength at final follow-up. Interpretation - Most variables had no effect on ROM or strength, and higher age did not appear to be a limiting factor for femoral lengthening. Patients with congenital causes were most affected in terms of knee flexion.
Compressive and shear hip joint contact forces are affected by pediatric obesity during walking
Lerner, Zachary F.; Browning, Raymond C.
2016-01-01
Obese children exhibit altered gait mechanics compared to healthy-weight children and have an increased prevalence of hip pain and pathology. This study sought to determine the relationships between body mass and compressive and shear hip joint contact forces during walking. Kinematic and kinetic data were collected during treadmill walking at 1 m•s−1 in 10 obese and 10 healthy-weight 8–12 year-olds. We estimated body composition, segment masses, lower-extremity alignment, and femoral neck angle via radiographic images, created personalized musculoskeletal models in OpenSim, and computed muscle forces and hip joint contact forces. Hip extension at mid-stance was 9° less, on average, in the obese children (p<0.001). Hip abduction, knee flexion, and body-weight normalized peak hip moments were similar between groups. Normalized to body-weight, peak contact forces were similar at the first peak and slightly lower at the second peak between the obese and healthy-weight participants. Total body mass explained a greater proportion of contact force variance compared to lean body mass in the compressive (r2=0.89) and vertical shear (perpendicular to the physis acting superior-to-inferior) (r2=0.84) directions; lean body mass explained a greater proportion in the posterior shear direction (r2=0.54). Stance-average contact forces in the compressive and vertical shear directions increased by 41 N and 48 N, respectively, for every kilogram of body mass. Age explained less than 27% of the hip loading variance. No effect of sex was found. The proportionality between hip loads and body-weight may be implicated in an obese child’s increased risk of hip pain and pathology. PMID:27040390
Compressive and shear hip joint contact forces are affected by pediatric obesity during walking.
Lerner, Zachary F; Browning, Raymond C
2016-06-14
Obese children exhibit altered gait mechanics compared to healthy-weight children and have an increased prevalence of hip pain and pathology. This study sought to determine the relationships between body mass and compressive and shear hip joint contact forces during walking. Kinematic and kinetic data were collected during treadmill walking at 1ms(-1) in 10 obese and 10 healthy-weight 8-12 year-olds. We estimated body composition, segment masses, lower-extremity alignment, and femoral neck angle via radiographic images, created personalized musculoskeletal models in OpenSim, and computed muscle forces and hip joint contact forces. Hip extension at mid-stance was 9° less, on average, in the obese children (p<0.001). Hip abduction, knee flexion, and body-weight normalized peak hip moments were similar between groups. Normalized to body-weight, peak contact forces were similar at the first peak and slightly lower at the second peak between the obese and healthy-weight participants. Total body mass explained a greater proportion of contact force variance compared to lean body mass in the compressive (r(2)=0.89) and vertical shear (perpendicular to the physis acting superior-to-inferior) (r(2)=0.84) directions; lean body mass explained a greater proportion in the posterior shear direction (r(2)=0.54). Stance-average contact forces in the compressive and vertical shear directions increased by 41N and 48N, respectively, for every kilogram of body mass. Age explained less than 27% of the hip loading variance. No effect of sex was found. The proportionality between hip loads and body-weight may be implicated in an obese child׳s increased risk of hip pain and pathology. Published by Elsevier Ltd.
Thuile, Ch; Walzl, M
2002-01-01
Back pain and the whiplash syndrome are very common diseases involving tremendous costs and extensive medical effort. A quick and effective reduction of symptoms, especially pain, is required. In two prospective randomized studies, patients with either lumbar radiculopathy in the segments L5/S1 or the whiplash syndrome were investigated. Inclusion criteria were as follows: either clinically verified painful lumbar radiculopathy in the segments L5/S1 and a Laségue's sign of 30 degrees (or more), or typical signs of the whiplash syndrome such as painful restriction of rotation and flexion/extension. Exclusion criteria were prolapsed intervertebral discs, systemic neurological diseases, epilepsy, and pregnancy. A total of 100 patients with lumbar radiculopathy and 92 with the whiplash syndrome were selected and entered in the study following a 1:1 ratio. Both groups (magnetic field treatment and controls) received standard medication consisting of diclofenac and tizanidine, while the magnetic field was only applied in group 1, twice a day, for a period of two weeks. In patients suffering from radiculopathy, the average time until pain relief and painless walking was 8.2 +/- 0.5 days in the magnetic field group, and 11.7 +/- 0.5 days in controls p < 0.04). In patients with the whiplash syndrome, pain was measured on a ten-point scale. Pain in the head was on average 4.6 before and 2.1 after treatment in those receiving magnetic field treatment, and 4.2/3.5 in controls. Neck pain was on average 6.3/1.9 as opposed to 5.3/4.6, and pain in the shoulder/arm was 2.4/0.8 as opposed to 2.8/2.2 (p < 0.03 for all regions). Hence, magnetic fields appear to have a considerable and statistically significant potential for reducing pain in cases of lumbar radiculopathy and the whiplash syndrome.
Thuresson, Marcus; Ang, Björn; Linder, Jan; Harms-Ringdahl, Karin
2005-06-01
The aim was to evaluate the reliability of a method of measuring neck muscle fatigue among helicopter pilots. Surface EMG from three areas in the neck region, bilaterally, was recorded among 10 male helicopter pilots while they were performing isometric contractions in flexion and extension for 45 s, sustaining a force representing 75% of maximum strength in a seated position. Perceived fatigue was rated using the Borg CR-10 scale. The test was repeated twice the first day and then two additional times with one-week intervals. Variables analyzed were the slope of the median frequency change, the normalized slope, and the ratings after 15, 30 and 45 s; and also the initial median frequency (IMDF). The intra-class correlation (ICC) and the measurement error (S(w)), intra- and inter-day were calculated statistically. The best reliability for the slope was found for the 45 s intra-day analysis taking all measurements into account (ICC 0.65-0.83). The reliability after 30 s was poorer but still acceptable (ICC 0.52-0.71). For the subjective ratings, the highest reliability was found after 30 s inter-day (ICC 0.86-0.88). IMDF showed generally high reliability for the intra-day analyses (ICC 0.63-0.80). The method is reliable for use in further research. Since performing a contraction of 75% of maximum was quite strenuous, we recommend that the protocol be shortened to 30 s.
Zhong, Guibin; Buser, Zorica; Lao, Lifeng; Yin, Ruofeng; Wang, Jeffrey C
2015-10-01
Bulging of ligamentum flavum can happen with the aging process and can lead to compression of the spinal cord and nerves. However, the distribution and the risk factors associated with a missed ligamentum flavum bulge (LFB) are unknown. The aim was to evaluate the distribution and risk factors associated with missed LFB in the cervical spine. This was a retrospective analysis of kinematic magnetic resonance images (kMRI). Patients diagnosed with symptomatic neck pain or radiculopathy between March 2011 and October 2012 were included. The outcome measures were missed LFB and degenerative factors. A total of 200 patients (1,000 cervical segments) underwent upright kMRI in neutral, flexion, and extension postures. The LFB, sagittal cervical angles, disc herniation, disc degeneration, disc height, angular motion, translational motion, age, and gender were recorded. After excluding segments with LFB in neutral and flexion position, Pearson and Spearman correlation coefficients were used to evaluate the relation between the risk factors and missed LFB in the extension position. The average depth of LFB was 0.24±0.71 mm at C2-C3, 1.02±1.42 mm at C3-C4, 1.65±1.48 mm at C4-C5, 2.13±1.37 mm at C5-C6, and 1.05±1.54 mm at C6-C7. The distribution of LFB was the most frequent at C5-C6 level (76.58%) followed by C4-C5 (63.06%). Disc herniation, disc degeneration, angular variation, and translational motion were significantly correlated with missed LFB at C4-C5 andC5-C6. Disc degeneration was the only factor significantly correlated with missed LFB at all cervical segments. Occurrence and depth of missed LFB was the highest at C4-C5 and C5-C6 compared with other cervical levels. Disc degeneration, disc herniation, angular variation, and translational motion could play a role in the development of LFB at C4-C5 andC5-C6. Copyright © 2015 Elsevier Inc. All rights reserved.
Safety analysis of patient transfers and handling tasks.
Vieira, Er; Kumar, S
2009-10-01
Low-back disorders are related to biomechanical demands, and nurses are among the professionals with the highest rates. Quantification of risk factors is important for safety assessment and reduction of low-back disorders. This study aimed to quantify physical demands of frequent nursing tasks and provide evidence-based recommendations to increase low-back safety. Thirty-six volunteer female nurses participated in a cross-sectional study of nine nursing tasks. Lumbar range of motion (ROM) and motion during nursing tasks were measured. Compression and shear forces at L5/S1, ligament strain and percentage of population without sufficient torso strength to perform 14 phases of nine nursing tasks were estimated. Peak flexions during trolley-to-bed, bed-to-chair and chair-to-bed transfers reached the maximum flexion ROM of the nurses. Average lumbar flexion during trolley-to-bed transfers was >50% of flexion ROM, being higher than during all other tasks. Mean (SD) compression at L5/S1 (4754 N (437 N)) and population without sufficient torso strength (37% (9%)) were highest during the pushing phase of bed-to-trolley transfers. Shear force (487 N (40 N)) and ligament strain (14% (5%)) were highest during the pulling phase of trolley-to-bed transfers. Nursing tasks impose high biomechanical demands on the lumbar spine. Excessive lumbar flexion and forces are critical aspects of manual transfers requiring most of the nurses' capabilities. Evidence-based recommendations to improve low-back safety in common nursing tasks were provided. Fitness to work, job modifications and training programs can now be designed and assessed based on the results.
Rosalie, Simon M; Malone, James M
2018-06-07
The Fédération Internationale de l'Automobile recently mandated the use of the halo frontal cockpit protection system to mitigate the risk of impact to the driver's head. Here we describe the effect of a halo-type structure on the neck muscle activity of one of the authors, who is a national-level amateur racing driver, during a full qualifying session. We found that the workload of sternocleidomastoid increased and the workload of cervical erector spinae decreased with the halo fitted which is indicative of a forward head position. Left sternocleidomastoid and right cervical erector spinae fatigued more rapidly; whereas, left cervical erector spinae fatigued more slowly. There was no change in the rate of fatigue of right sternocleidomastoid. In combination with a forward head position, this suggests an increase in lateral flexion during head rotation which may affect accuracy of navigation. Thus, drivers may need to be trained to adapt to the halo to mitigate the effects on head position and movement. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Review of the role of sentinel node biopsy in cutaneous head and neck melanoma.
Roy, Jennifer M; Whitfield, Robert J; Gill, P Grantley
2016-05-01
Sentinel node biopsy (SNB) is recommended for selected melanoma patients in many parts of the world. This review examines the evidence surrounding the accuracy and prognostic value of SNB and completion neck dissection in head and neck melanoma. Sentinel nodes were identified in an average of 94.7% of head and neck cases compared with 95.3-100% in all melanoma cases. More false-negative sentinel nodes were found in head and neck cases. A positive sentinel node was associated with both lower disease-free survival (53.4 versus 83.2%) and overall survival (40 versus 84%). We conclude that SNB should be offered to all patients with intermediate and high-risk melanomas in the head and neck area. To date, evidence does not exist to demonstrate the safety of avoiding completion lymph node dissection in sentinel node-positive patients with head and neck melanoma. © 2015 Royal Australasian College of Surgeons.
Neck injury tolerance under inertial loads in side impacts.
McIntosh, Andrew S; Kallieris, Dimitrios; Frechede, Bertrand
2007-03-01
Neck injury remains a major issue in road safety. Current side impact dummies and side impact crashworthiness assessments do not assess the risk of neck injury. These assessments are limited by biofidelity and knowledge regarding neck injury criteria and tolerance levels in side impacts. Side impact tests with PMHS were performed at the Heidelberg University in the 1980s and 1990s to improve primarily the understanding of trunk dynamics, injury mechanisms and criteria. In order to contribute to the definition of human tolerances at neck level, this study presents an analysis of the head/neck biomechanical parameters that were measured in these tests and their relationship to neck injury severity. Data from 15 impact tests were analysed. Head accelerations, and neck forces and moments were calculated from 9-accelerometer array head data, X-rays and anthropometric data. Statistically significant relationships were observed between resultant head acceleration and neck force and neck injury severity. The average resultant head acceleration for AIS 2 neck injuries was 112 g, while resultant neck force was 4925 N and moment 241 Nm. The data compared well to other test data on cadavers and volunteers. It is hoped that the paper will assist in the understanding of neck injuries and the development of tolerance criteria.
Frank, A O; De Souza, L H; Frank, C A
2005-02-01
This hospital-based cross-sectional cohort study examines the clinical and demographic features of neck pain, disability (using the Northwick Park neck pain questionnaire) and relationships to handicap in employment. Of 173 consecutive referrals to a rheumatology clinic with neck pain, 70% had neck/arm pain without neurological involvement, 13% other conditions, 11% nerve involvement and 5% other spinal pain. 141 patients (mean age 50 years) had mechanical or degenerative neck pain, of which 13% was probably work-related and 13% was trauma-related. 44 had taken sickness absence for an average of 30 weeks. Comorbidities were frequent (lumbar pain 51%). Those in work were significantly less disabled than those not working (p = 0.001) and those off sick (p < 0.01). Those reporting sleep disturbance, tearfulness and crying were significantly more disabled (p = 0.0001) than those who did not. Neck pain in secondary care is complicated by physical and emotional comorbidities. Comprehensive management requires a biopsychosocial model of care.
Knee flexion contracture treated with botulinum toxin type A in patients with haemophilia (PWH).
Daffunchio, C; Caviglia, H; Nassif, J; Morettil, N; Galatro, G
2016-01-01
Knee flexion contracture (KFC) remains a common complication of haemoarthrosis in children and young adults with haemophilia. If the KFC is not treated properly it produces disability, postural and gait abnormalities. Evaluate the effectiveness of conservative treatment of KFC with Botulinum toxin type A (BTX-A) in PWH. Seventeen patients were treated, with 21 affected knees. Mean age was 26 years. The mean follow up was 12 months. We evaluated flexion and KFC pretreatment BTX-A and up to 12 months posttreatment. BTX-A application was in hamstring and calf muscles. To evaluate the function, a questionnaire about different activities was made, and it was checked 3, 6 and 12 months after BTX-A. According to the degree of KFC, knees were divided into 3 groups: Group 1: -10° to -30° (n = 10), Group 2: -31° to -45° (n = 6) Group 3: -46° or more (n = 5). The average KFC improved from -38° to -24°. The improvement was 14° (P < 0.001). The average KFC improvement was 9° in group 1, 17° in group 2, and 23° in group 3. There was a high correlation between the improvement in KFC and the total score of the questionnaire R = 0.77. Treatment of KFC with BTX-A improves knee-related functional activities, with the advantage of being a low-cost procedure and easy to apply. © 2015 John Wiley & Sons Ltd.
Simulated Radioscapholunate Fusion Alters Carpal Kinematics While Preserving Dart-Thrower's Motion
Calfee, Ryan P.; Leventhal, Evan L.; Wilkerson, Jim; Moore, Douglas C.; Akelman, Edward; Crisco, Joseph J.
2014-01-01
Purpose Midcarpal degeneration is well documented after radioscapholunate fusion. This study tested the hypothesis that radioscapholunate fusion alters the kinematic behavior of the remaining lunotriquetral and midcarpal joints, with specific focus on the dart-thrower's motion. Methods Simulated radioscapholunate fusions were performed on 6 cadaveric wrists in an anatomically neutral posture. Two 0.060-in. carbon fiber pins were placed from proximal to distal across the radiolunate and radioscaphoid joints, respectively. The wrists were passively positioned in a custom jig toward a full range of motion along the orthogonal axes as well as oblique motions, with additional intermediate positions along the dart-thrower's path. Using a computed tomography– based markerless bone registration technique, each carpal bone's three-dimensional rotation was defined as a function of wrist flexion/extension from the pinned neutral position. Kinematic data was analyzed against data collected on the same wrist prior to fixation using hierarchical linear regression analysis and paired Student's t-tests. Results After simulated fusion, wrist motion was restricted to an average flexion-extension arc of 48°, reduced from 77°, and radial-ulnar deviation arc of 19°, reduced from 33°. The remaining motion was maximally preserved along the dart-thrower's path from radial-extension toward ulnar-flexion. The simulated fusion significantly increased rotation through the scaphotrapezial joint, scaphocapitate joint, triquetrohamate joint, and lunotriquetral joint. For example, in the pinned wrist, the rotation of the hamate relative to the triquetrum increased 85%. Therefore, during every 10° of total wrist motion, the hamate rotated an average of nearly 8° relative to the triquetrum after pinning versus 4° in the normal state. Conclusions Simulated radioscapholunate fusion altered midcarpal and lunotriquetral kinematics. The increased rotations across these remaining joints provide one potential explanation for midcarpal degeneration after radioscapholunate fusion. Additionally, this fusion model confirms the dart-thrower's hypothesis, as wrist motion after simulated radioscapholunate fusion was primarily preserved from radial-extension toward ulnar-flexion. PMID:18406953
El, Okki S. El Hadef; El Groud, R.; Kenana, H.; Quessy, S.
2005-01-01
The neck, shoulder, flank, and thigh of 36 bovine and 30 ovine carcasses were swabbed for bacteriological analyses. The greatest microbial load was found on the neck. The site averages for the flora analyzed indicated that the levels of contamination were greater than those in similar studies in France, Morocco, and Tunisia. PMID:16152721
Rubenson, Jonas; Lloyd, David G; Besier, Thor F; Heliams, Denham B; Fournier, Paul A
2007-07-01
Although locomotor kinematics in walking and running birds have been examined in studies exploring many biological aspects of bipedalism, these studies have been largely limited to two-dimensional analyses. Incorporating a five-segment, 17 degree-of-freedom (d.f.) kinematic model of the ostrich hind limb developed from anatomical specimens, we quantified the three-dimensional (3-D) joint axis alignment and joint kinematics during running (at approximately 3.3 m s(-1)) in the largest avian biped, the ostrich. Our analysis revealed that the majority of the segment motion during running in the ostrich occurs in flexion/extension. Importantly, however, the alignment of the average flexion/extension helical axes of the knee and ankle are rotated externally to the direction of travel (37 degrees and 21 degrees , respectively) so that pure flexion and extension at the knee will act to adduct and adbuct the tibiotarsus relative to the plane of movement, and pure flexion and extension at the ankle will act to abduct and adduct the tarsometatarsus relative to the plane of movement. This feature of the limb anatomy appears to provide the major lateral (non-sagittal) displacement of the lower limb necessary for steering the swinging limb clear of the stance limb and replaces what would otherwise require greater adduction/abduction and/or internal/external rotation, allowing for less complex joints, musculoskeletal geometry and neuromuscular control. Significant rotation about the joints' non-flexion/extension axes nevertheless occurs over the running stride. In particular, hip abduction and knee internal/external and varus/valgus motion may further facilitate limb clearance during the swing phase, and substantial non-flexion/extension movement at the knee is also observed during stance. Measurement of 3-D segment and joint motion in birds will be aided by the use of functionally determined axes of rotation rather than assumed axes, proving important when interpreting the biomechanics and motor control of avian bipedalism.
Dargel, Jens; Koebke, Jürgen; Brüggemann, Gert-Peter; Pennig, Dietmar; Schmidt-Wiethoff, Rüdiger
2009-10-01
This study investigates the influence of various femoral anterior cruciate ligament graft fixation methods on the amount of tension degradation and the initial fixation strength after cyclic flexion-extension loading in a porcine knee model. One hundred twenty porcine digital extensor tendons, used as 4-stranded free tendon grafts, were fixated within porcine femoral bone tunnels by use of extracortical button, cross-pin, or interference screw fixation. One hundred twenty porcine patellar tendon-bone grafts were fixated by use of cross-pin, interference screw, or press-fit fixation. Each femur-graft complex was submitted to cyclic flexion-extension loading for 1,000 cycles throughout different loading ranges, and the total loss of tension was determined. After cyclic testing, the grafts were loaded to failure, and the data were compared with a pullout series without cyclic loading. Tension degradation after 1,000 cycles of flexion-extension loading averaged 62.6% +/- 10.0% in free tendon grafts and 48.9% +/- 13.35% in patellar tendon-bone grafts. There was no influence of the loading range on the total amount of tension degradation. The total amount of tension degradation was the highest with interference screw fixation of free tendon and patellar tendon-bone grafts. Despite excessive loss of tension, the initial fixation strength of the femur-graft complex was not reduced. The method of femoral graft fixation significantly influenced tension degradation during dynamic flexion-extension loading. Femoral graft fixation methods that secure the graft close to the tunnel entrance and that displace the graft substance from the center of the bone tunnel show the largest amount of tension degradation during cyclic flexion-extension loading. The graft substance, not the fixation site, was the weakest link of the graft complex within this investigation. We believe that the graft fixation method should be considered when aiming to improve the precision of femoral graft placement in anterior cruciate ligament reconstruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofeng; Yoshida, Emi; Cassidy, Richard J.
Purpose: To investigate the feasibility of ultrasound Nakagami imaging to quantitatively assess radiation-induced neck fibrosis, a common sequela of radiation therapy (RT) to the head and neck. Methods and Materials: In a pilot study, 40 study participants were enrolled and classified into 3 subgroups: (1) a control group of 12 healthy volunteers; (2) an asymptomatic group of 11 patients who had received intensity modulated RT for head and neck cancer and had experienced no neck fibrosis; and (3) a symptomatic group of 17 post-RT patients with neck fibrosis. Each study participant underwent 1 ultrasound study in which scans were performedmore » in the longitudinal orientation of the bilateral neck. Three Nakagami parameters were calculated to quantify radiation-induced tissue injury: Nakagami probability distribution function, shape, and scaling parameters. Physician-based assessments of the neck fibrosis were performed according to the Radiation Therapy Oncology Group late morbidity scoring scheme, and patient-based fibrosis assessments were rated based on symptoms such as pain and stiffness. Results: Major discrepancies existed between physician-based and patient-based assessments of radiation-induced fibrosis. Significant differences in all Nakagami parameters were observed between the control group and 2 post-RT groups. Moreover, significant differences in Nakagami shape and scaling parameters were observed among asymptomatic and symptomatic groups. Compared with the control group, the average Nakagami shape parameter value increased by 32.1% (P<.001), and the average Nakagami scaling parameter increased by 55.7% (P<.001) for the asymptomatic group, whereas the Nakagami shape parameter increased by 74.1% (P<.001) and the Nakagami scaling parameter increased by 83.5% (P<.001) for the symptomatic group. Conclusions: Ultrasonic Nakagami imaging is a potential quantitative tool to characterize radiation-induced asymptomatic and symptomatic neck fibrosis.« less
Premature greying of the hair is not associated with low bone mineral density.
Beardsworth, S A; Kearney, C E; Steel, S A; Newman, J; Purdie, D W
1999-01-01
In two recent case-control studies premature greying of the hair was associated with a lowering of bone mineral density (BMD) and osteopenia, suggesting that this might be a clinically useful risk marker for osteoporosis. We report a further re-examination of this proposal in 52 prematurely grey-haired women from East Yorkshire who responded to an advertisement inviting them for bone densitometry. Thirty-five had no clinical or drug history that could influence bone density. All were Caucasian with a mean age of 52.8 years. In the group as a whole the mean BMD values at the lumbar spine and femoral neck were no different from those of a young adult, but there was a trend toward a greater than average BMD than that of the local age-matched population (p = 0.097 and 0.218, respectively). Twenty women were premenopausal, with an average age of 45.3 years. Mean BMD values at the lumbar spine and femoral neck in this group were no different from those of young adults. There was, however, a trend toward a BMD greater than that of the local age-matched population at the femoral neck (p = 0.117). Fifteen women were postmenopausal with an average age of 62.9 years and an average age at menopause of 51.1 years. Mean BMD values at both the lumbar spine and femoral neck in this group were lower than those of young adults, but no different from those of the local age-matched population. In conclusion, our group of prematurely grey-haired women had average BMD for their age, and we are therefore unable to support the proposed clinical usefulness of premature greying as a risk marker for osteoporosis.
Smith, Brandon W; Chulski, Nicholas J; Little, Ann A; Chang, Kate W C; Yang, Lynda J S
2018-06-01
OBJECTIVE Neonatal brachial plexus palsy (NBPP) continues to be a problematic occurrence impacting approximately 1.5 per 1000 live births in the United States, with 10%-40% of these infants experiencing permanent disability. These children lose elbow flexion, and one surgical option for recovering it is the Oberlin transfer. Published data support the use of the ulnar nerve fascicle that innervates the flexor carpi ulnaris as the donor nerve in adults, but no analogous published data exist for infants. This study investigated the association of ulnar nerve fascicle choice with functional elbow flexion outcome in NBPP. METHODS The authors conducted a retrospective study of 13 cases in which infants underwent ulnar to musculocutaneous nerve transfer for NBPP at a single institution. They collected data on patient demographics, clinical characteristics, active range of motion (AROM), and intraoperative neuromonitoring (IONM) (using 4 ulnar nerve index muscles). Standard statistical analysis compared pre- and postoperative motor function improvement between specific fascicle transfer (1-2 muscles for either wrist flexion or hand intrinsics) and nonspecific fascicle transfer (> 2 muscles for wrist flexion and hand intrinsics) groups. RESULTS The patients' average age at initial clinic visit was 2.9 months, and their average age at surgical intervention was 7.4 months. All NBPPs were unilateral; the majority of patients were female (61%), were Caucasian (69%), had right-sided NBPP (61%), and had Narakas grade I or II injuries (54%). IONM recordings for the fascicular dissection revealed a donor fascicle with nonspecific innervation in 6 (46%) infants and specific innervation in the remaining 7 (54%) patients. At 6-month follow-up, the AROM improvement in elbow flexion in adduction was 38° in the specific fascicle transfer group versus 36° in the nonspecific fascicle transfer group, with no statistically significant difference (p = 0.93). CONCLUSIONS Both specific and nonspecific fascicle transfers led to functional recovery, but that the composition of the donor fascicle had no impact on early outcomes. In young infants, ulnar nerve fascicular dissection places the ulnar nerve at risk for iatrogenic damage. The data from this study suggest that the use of any motor fascicle, specific or nonspecific, produces similar results and that the Oberlin transfer can be performed with less intrafascicular dissection, less time of surgical exposure, and less potential for donor site morbidity.
Albano, Luigi
2017-01-01
Objective The purpose of this study is to introduce the application of Cox flexion distraction decompression as an innovative approach to treating knee pain and osteoarthritis. Methods Six months of clinical files from one chiropractic practice were retrospectively screened for patients who had been treated for knee pain. Twenty-five patients met the criteria for inclusion. The treatment provided was Cox flexion distraction decompression. Pre-treatment and post-treatment visual analog pain scales (VAS) were used to measure the results. In total, eight patients presented with acute knee pain (less than three months’ duration) and 18 patients presented with chronic knee pain (greater than three months) including two patients with continued knee pain after prosthetic replacement surgery. Results For all 25 patients, a change was observed in the mean VAS scores from 7.7 to 1.8. The mean number of treatments was 5.3 over an average of 3.0 weeks. Acute patient mean VAS scores dropped from 8.1 to 1.1 within 4.8 treatments over 2.4 weeks. Chronic patient mean VAS scores dropped from 7.5 to 2.2 within 5.4 treatments over 3.3 weeks. No adverse events were reported. Conclusion This study showed clinical improvement in patients with knee pain who were managed with Cox flexion distraction decompression applied to the knee. PMID:28928498
THE TREATMENT OF IRRADIATION FRACTURE OF THE FEMORAL NECK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leabhart, J.W.; Bonfiglio, M.
1961-10-01
Treatment of 44 patients with 56 postirradiation fractures of the femoral neck is reported. Of 2612 patients who received pelvic irradiation for carcinoma of the uterine cervix, 40 developed fractures of the femoral neck, an incidence of 1.5%. Sixteen of the 40 patients had bilateral fractures. The average age of the patients was 58.5 yr at the time of irradiation. The average irradiation dose was approximates 3600 r (parametrial dose), the largest dose being 4235 r. The average interval from irradiation to the onset of pain in the hip was 36.6 months (3 to 240 months) and from the onsetmore » of pain to diagnosis, 3 months. Forty-six surgical procedures were performed: 36 as primary treatment and 9 because of failure or complications of the first procedure. The average follow-up time of these patients was 6.9 yr. The presenting complaint was usually spontaneous onset of pain in the groin and medial portion of the thigh. Initially the physical examination often revealed only restriction of internal rotation of the affected hip, and the roentgenograms appeared normal in some instances. Subsequently, a change in bone density was noted at the inferior aspect of the femoral neck, denoting an adduction type of fracture. The displaced fractures resembled the traumatic adduction fractures of the femoral neck seen in patients who had not received irradiation. Acetabular changes were also noted, characterized by marked osteoporosis and occasionally fracture of the acetabulum. Seven methods of primary therapy were used to treat these patients: no treatment, nonsurgical measures (crutches or bedrest), internal fixation, bone- grafting (with and without additional fixation), osteotomy, arthroplasty, and the insertion of a prosthesis. Early in situ internal fixation or internal fixation with bone grafts was the procedure of choice in fractures of the femorai neck secondary to irradiation. Reconstructive procedures, such as cup arthroplasty or insertion of a prosthesis, were effective treatment in selected cases. Osteotomy was not applicable for primary treatment of this type of fracture. (H.H.D.)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilas Boas, P. P.; Castro-Afonso, L. H. de; Monsignore, L. M.
PurposeAcute hemorrhage associated with cancers of the head and neck is a life-threatening condition that requires immediate action. The aim of this study was to assess the safety and efficacy of endovascular embolization for acute hemorrhage in patients with head and neck cancers.Materials and MethodsData were retrospectively collected from patients with head and neck cancers who underwent endovascular embolization to treat acute hemorrhage. The primary endpoint was the rate of immediate control of hemorrhage during the first 24 h after embolization. The secondary endpoints were technical or clinical complications, rate of re-hemorrhage 24 h after the procedure, time from embolization to re-hemorrhage,more » hospitalization time, mortality rate, and time from embolization to death.ResultsFifty-one patients underwent endovascular embolization. The primary endpoint was achieved in 94% of patients. The rate of technical complications was 5.8%, and no clinical complication was observed. Twelve patients (23.5%) had hemorrhage recurrence after an average time of 127.5 days. The average hospitalization time was 7.4 days, the mortality rate during the follow-up period was 66.6%, and the average time from embolization to death was 132.5 days.ConclusionEndovascular embolization to treat acute hemorrhage in patients with head and neck cancers is a safe and effective method for the immediate control of hemorrhage and results in a high rate of hemorrhage control. Larger studies are necessary to determine which treatment strategy is best for improving patient outcomes.« less
Ginat, Daniel Thomas; Anthony, Gregory J; Christoforidis, Gregory; Oto, Aytekin; Dalag, Leonard; Sammet, Steffen
2018-02-01
The purpose of this study is to compare the image quality of magnetic resonance (MR) treatment planning images and proton resonance frequency (PRF) shift thermography images and inform coil selection for MR-guided laser ablation of tumors in the head and neck region. Laser ablation was performed on an agar phantom and monitored via MR PRF shift thermography on a 3-T scanner, following acquisition of T1-weighted (T1W) planning images. PRF shift thermography images and T2-weighted (T2W) planning images were also performed in the neck region of five normal human volunteers. Signal-to-noise ratios (SNR) and temperature uncertainty were calculated and compared between scans acquired with the quadrature mode body integrated coil and a head and neck neurovascular coil. T1W planning images of the agar phantom produced SNRs of 4.0 and 12.2 for the quadrature mode body integrated coil and head and neck neurovascular coil, respectively. The SNR of the phantom MR thermography magnitude images obtained using the quadrature mode body integrated coil was 14.4 versus 59.6 using the head and neck coil. The average temperature uncertainty for MR thermography performed on the phantom with the quadrature mode body integrated coil was 1.1 versus 0.3 °C with the head and neck coil. T2W planning images of the neck in five human volunteers produced SNRs of 28.3 and 91.0 for the quadrature mode body integrated coil and head and neck coil, respectively. MR thermography magnitude images of the neck in the volunteers obtained using the quadrature mode body integrated coil had a signal-to-noise ratio of 8.3, while the SNR using the head and neck coil was 16.1. The average temperature uncertainty for MR thermography performed on the volunteers with the body coil was 2.5 versus 1.6 °C with the head and neck neurovascular coil. The quadrature mode body integrated coil provides inferior image quality for both basic treatment planning sequences and MR PRF shift thermography compared with a neurovascular coil, but may nevertheless be adequate for clinical purposes.
Lee, Seung-Yup; Bae, Ji-Hoon; Suh, Dong-Won; Kim, Han-Ju; Lim, Hong-Chul
2017-02-01
This mediolateral excursion of the bearing during knee motion is supposed to be caused by external rotation of the tibia during knee extension. However, to our knowledge, there is no published clinical evidence supporting these hypotheses. The current study aimed to evaluate the mediolateral excursion of the bearing during flexion-extension motion of the knee after medial unicompartmental knee arthroplasty (UKA). In 52 knees, varus/valgus (F-VarVal) or rotational position (F-Rot) of the femoral component and relative location of the bearing were measured with the standing anteroposterior and modified axial view, respectively. We adopted the modified axial radiographs that are simple to assess the bearing position in the flexed knee. The modified axial view showed excellent inter- and intraobserver agreements. F-Rot in the modified axial view and CT showed a high agreement in terms of validity (r = 0.98; p < 0.0001). On average, the bearing showed more medial position in extension than flexion of the knee. No correlation was found between the femoral component positions (F-VarVal and F-Rot) and mediolateral bearing excursion ( p = 0.68 and 0.80, respectively). In conclusion, coronal location of bearing according to flexion-extension of the knee is not influenced by the coronal and axial alignment of the femoral component. With simple radiographic method, more medial position of the bearing according to flexion-extension of the knee. Our method could be used to assess axial rotation of the femoral component and spin-out phenomenon of the bearing following the medial UKA. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Anaesthesia for dwarfs and other patients of pathological small stature.
Walts, L F; Finerman, G; Wyatt, G M
1975-11-01
Sixty-nine anaesthetics were administered to 29 patients of pathological proportionate and disproportionate small stature. The anaesthetic course in most cases was uncomplicated. The few complications noted were similar in type and severity to those found in normal size patients undergoing similar anaesthesia and operative procedures. Achondroplastic dwarfs often develop neurological problems due to their bony deformities. General anaesthesia should be given preferential consideration in these patients. Non-achondroplastic dwarfs may have an associated odontoid dysplasia and if the neck is placed in flexion there is a potential risk of spinal cord damage. Tube size for proportionately small children is best estimated from body weight. No definite recommendations concerning proper tybe size in dwarfs can be given on the basis of the findings in the study.
Choi, Jong Woo; Lee, Min Young; Oh, Tae Suk
2013-11-01
The oropharynx has a variety of functions, such as mastication, deglutition, articulation, taste, and airway protection. Because of its many roles, recent goals in head and neck reconstruction have focused on anatomic and functional reconstructions to minimize functional deficits. Since chemoradiation has earned a good reputation in the management of head and neck cancer, the manifestation of oropharyngeal defects has changed. Although we could not control the anatomic defects that were known to be related to the oropharyngeal functions, we hypothesized that optimizing the flap designs would be helpful for minimizing the functional deficits.Two hundred fifty cases of the head and neck reconstruction using free flaps were carried out between March 2006 and December 2010, where modified flap designs were applied. Among these, 37 tongue and 15 tonsillar reconstructions were analyzed for functional outcomes. The patients were of Asian ethnic background, and the average age was 52 years, including 38 males and 17 females. The average follow-up period was 20.5 months. Based on previous studies, the flap designs were categorized into type I, unilobe; type II, bilobe; type III, trilobe; type IV, quadrilobe; type V, additional lobe for lateral and posterior pharyngeal wall; and type VI, additional lobe for tongue base. The functional outcomes of both tongue and tonsillar reconstructions were investigated.To quantify the outcome in terms of swallowing and pronunciation, we analyzed the patients' function based on the 7-scale parameter. In terms of swallowing, the tongue reconstruction group scored 5.70 on average, whereas the tonsillar reconstruction group showed an average score of 4.53. With regard to speech intelligibility, the tongue reconstruction group revealed an average score of 5.67, whereas the tonsillar reconstruction group scored 5.46 on average.Our findings indicate that specification of the flap designs is helpful for minimizing the functional deficits in head and neck reconstructions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tung, Chuan-Jong; Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; Yu, Pei-Chieh
2010-01-01
During radiotherapy treatments, quality assurance/control is essential, particularly dose delivery to patients. This study was designed to verify midline doses with diode in vivo dosimetry. Dosimetry was studied for 6-MV bilateral fields in head and neck cancer treatments and 10-MV bilateral and anteroposterior/posteroanterior (AP/PA) fields in pelvic cancer treatments. Calibrations with corrections of diodes were performed using plastic water phantoms; 190 and 100 portals were studied for head and neck and pelvis treatments, respectively. Calculations of midline doses were made using the midline transmission, arithmetic mean, and geometric mean algorithms. These midline doses were compared with the treatment planning systemmore » target doses for lateral or AP (PA) portals and paired opposed portals. For head and neck treatments, all 3 algorithms were satisfactory, although the geometric mean algorithm was less accurate and more uncertain. For pelvis treatments, the arithmetic mean algorithm seemed unacceptable, whereas the other algorithms were satisfactory. The random error was reduced by using averaged midline doses of paired opposed portals because the asymmetric effect was averaged out. Considering the simplicity of in vivo dosimetry, the arithmetic mean and geometric mean algorithm should be adopted for head/neck and pelvis treatments, respectively.« less
Somri, Mostafa; Vaida, Sonia; Garcia Fornari, Gustavo; Mendoza, Gabriela Renee; Charco-Mora, Pedro; Hawash, Naser; Matter, Ibrahim; Swaid, Forat; Gaitini, Luis
2016-10-06
The Laryngeal Tube Suction Disposable (LTS-D) and the Supreme Laryngeal Mask Airway (SLMA) are second generation supraglottic airway devices (SADs) with an added channel to allow gastric drainage. We studied the efficacy of these devices when using pressure controlled mechanical ventilation during general anesthesia for short and medium duration surgical procedures and compared the oropharyngeal seal pressure in different head and-neck positions. Eighty patients in each group had either LTS-D or SLMA for airway management. The patients were recruited in two different institutions. Primary outcome variables were the oropharyngeal seal pressures in neutral, flexion, extension, right and left head-neck position. Secondary outcome variables were time to achieve an effective airway, ease of insertion, number of attempts, maneuvers necessary during insertion, ventilatory parameters, success of gastric tube insertion and incidence of complications. The oropharyngeal seal pressure achieved with the LTS-D was higher than the SLMA in, (extension (p=0.0150) and right position (p=0.0268 at 60 cm H 2 O intracuff pressures and nearly significant in neutral position (p = 0.0571). The oropharyngeal seal pressure was significantly higher with the LTS-D during neck extension as compared to SLMA (p= 0.015). Similar oropharyngeal seal pressures were detected in all other positions with each device. The secondary outcomes were comparable between both groups. Patients ventilated with LTS-D had higher incidence of sore throat (p = 0.527). No major complications occurred. Better oropharyngeal seal pressure was achieved with the LTS-D in head-neck right and extension positions , although it did not appear to have significance in alteration of management using pressure control mechanical ventilation in neutral position. The fiberoptic view was better with the SLMA. The post-operative sore throat incidence was higher in the LTS-D. ClinicalTrials.gov ID: NCT02856672 , Unique Protocol ID:BnaiZionMC-16-LG-001, Registered: August 2016.
Femoral head-neck junction deformity is related to osteoarthritis of the hip.
Barros, Hilton José Melo; Camanho, Gilberto Luis; Bernabé, Antônio Carlos; Rodrigues, Marcelo Bordalo; Leme, Luiz Eugênio Garcez
2010-07-01
Primary or idiopathic osteoarthritis (OA) of the hip has increasingly been attributed to the presence of presumably minor femoral or acetabular deformities that are not routinely identified. The alpha angle reflects one such deformity of the femoral neck and reflects a risk for femoroacetabular impingement, which in turn reportedly is associated with OA. If impingement is in fact associated with OA, then one might expect the mean alpha angle to be greater in patients with presumed idiopathic hip OA. We therefore compared the alpha angle among a group of elderly patients with idiopathic OA with that in a control group of elderly individuals without OA. We measured the alpha angles in 50 individuals (72 hips) with a mean age of 70 years (range, 60-84 years) with apparently idiopathic OA and compared their angles with those from a control group of 56 individuals without OA. The alpha angle was measured by means of radiographs of their hips using the Dunn view at 45 degrees flexion. The patients with OA had a greater percentage with abnormal alpha angles than did the normal subjects: 82% versus 30%, respectively. The mean alpha angle in the group with OA was larger than in the control subjects: 66.4 masculine (range, 28 degrees -108 degrees ) versus 48.1 masculine (range, 34 degrees -68 degrees ). Hips with presumably idiopathic OA had more abnormalities at the femoral head-neck junction than did the control hips without OA and may relate to the risk of OA developing. Level II, prognostic study. See Guidelines for Authors for a complete description of levels of evidence.
Reduced surround inhibition in musicians.
Shin, Hae-Won; Kang, Suk Y; Hallett, Mark; Sohn, Young H
2012-06-01
To investigate whether surround inhibition (SI) in the motor system is altered in professional musicians, we performed a transcranial magnetic stimulation (TMS) study in 10 professional musicians and 15 age-matched healthy non-musicians. TMS was set to be triggered by self-initiated flexion of the index finger at different intervals ranging from 3 to 1,000 ms. Average motor evoked potential (MEP) amplitudes obtained from self-triggered TMS were normalized to average MEPs of the control TMS at rest and expressed as a percentage. Normalized MEP amplitudes of the abductor digiti minimi (ADM) muscles were compared between the musicians and non-musicians with the primary analysis being the intervals between 3 and 80 ms (during the movement). A mixed-design ANOVA revealed a significant difference in normalized ADM MEPs during the index finger flexion between groups, with less SI in the musicians. This study demonstrated that the functional operation of SI is less strong in musicians than non-musicians, perhaps due to practice of movement synergies involving both muscles. Reduced SI, however, could lead susceptible musicians to be prone to develop task-specific dystonia.
Changes in Contact Area in Meniscus Horizontal Cleavage Tears Subjected to Repair and Resection.
Beamer, Brandon S; Walley, Kempland C; Okajima, Stephen; Manoukian, Ohan S; Perez-Viloria, Miguel; DeAngelis, Joseph P; Ramappa, Arun J; Nazarian, Ara
2017-03-01
To assess the changes in tibiofemoral contact pressure and contact area in human knees with a horizontal cleavage tear before and after treatment. Ten human cadaveric knees were tested. Pressure sensors were placed under the medial meniscus and the knees were loaded at twice the body weight for 20 cycles at 0°, 10°, and 20° of flexion. Contact area and pressure were recorded for the intact meniscus, the meniscus with a horizontal cleavage tear, after meniscal repair, after partial meniscectomy (single leaflet), and after subtotal meniscectomy (double leaflet). The presence of a horizontal cleavage tear significantly increased average peak contact pressure and reduced effective average tibiofemoral contact area at all flexion angles tested compared with the intact state (P < .03). There was approximately a 70% increase in contact pressure after creation of the horizontal cleavage tear. Repairing the horizontal cleavage tear restored peak contact pressures and areas to within 15% of baseline, statistically similar to the intact state at all angles tested (P < .05). Partial meniscectomy and subtotal meniscectomy significantly increased average peak contact pressure and reduced average contact area at all degrees of flexion compared with the intact state (P < .05). The presence of a horizontal cleavage tear in the medial meniscus causes a significant reduction in contact area and a significant elevation in contact pressure. These changes may accelerate joint degeneration. A suture-based repair of these horizontal cleavage tears returns the contact area and contact pressure to nearly normal, whereas both partial and subtotal meniscectomy lead to significant reductions in contact area and significant elevations in contact pressure within the knee. Repairing horizontal cleavage tears may lead to improved clinical outcomes by preserving meniscal tissue and the meniscal function. Understanding contact area and peak contact pressure resulting from differing strategies for treating horizontal cleavage tears will allow the surgeon to evaluate the best strategy for treating his or her patients who present with this meniscal pathology. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Electro-tactile stimulation of the posterior neck induces body anteropulsion during upright stance.
De Nunzio, A M; Yavuz, U S; Martinez-Valdes, E; Farina, D; Falla, D
2018-05-01
Sensory information conveyed along afferent fibers from muscle and joint proprioceptors play an important role in the control of posture and gait in humans. In particular, proprioceptive information from the neck is fundamental in supplying the central nervous system with information about the orientation and movement of the head relative to the rest of the body. The previous studies have confirmed that proprioceptive afferences originating from the neck region, evoked via muscle vibration, lead to strong body-orienting effects during static conditions (e.g., leaning of the body forwards or backwards, depending on location of vibration). However, it is not yet certain in humans, whether the somatosensory receptors located in the deep skin (cutaneous mechanoreceptors) have a substantive contribution to postural control, as vibratory stimulation encompasses the receptive field of all the somatosensory receptors from the skin to the muscles. The aim of this study was to investigate the postural effect of cutaneous mechanoreceptor afferences using electro-tactile stimulation applied to the neck. Ten healthy volunteers (8M, 2F) were evaluated. The average position of their centre of foot pressure (CoP) was acquired before, during, and after a subtle electro-tactile stimulation over their posterior neck (mean ± SD = 5.1 ± 2.3 mA at 100 Hz-140% of the perception threshold) during upright stance with their eyes closed. The electro-tactile stimulation led to a body-orienting effect with the subjects consistently leaning forward. An average shift of the CoP of 12.1 ± 11.9 mm (mean ± SD) was reported, which significantly (p < 0.05) differed from its average position under a control condition (no stimulation). These results indicate that cutaneous mechanoreceptive inflow from the neck is integrated to control stance. The findings are relevant for the exploitation of electro-tactile stimulation for rehabilitation interventions where induced anteropulsion of the body is desired.
Fatal head and neck injuries in military underbody blast casualties.
Stewart, Sarah K; Pearce, A P; Clasper, Jon C
2018-04-21
Death as a consequence of underbody blast (UBB) can most commonly be attributed to central nervous system injury. UBB may be considered a form of tertiary blast injury but is at a higher rate and somewhat more predictable than injury caused by more classical forms of tertiary injury. Recent studies have focused on the transmission of axial load through the cervical spine with clinically relevant injury caused by resultant compression and flexion. This paper seeks to clarify the pattern of head and neck injuries in fatal UBB incidents using a pragmatic anatomical classification. This retrospective study investigated fatal UBB incidents in UK triservice members during recent operations in Afghanistan and Iraq. Head and neck injuries were classified by anatomical site into: skull vault fractures, parenchymal brain injuries, base of skull fractures, brain stem injuries and cervical spine fractures. Incidence of all injuries and of each injury type in isolation was compared. 129 fatalities as a consequence of UBB were identified of whom 94 sustained head or neck injuries. 87 casualties had injuries amenable to analysis. Parenchymal brain injuries (75%) occurred most commonly followed by skull vault (55%) and base of skull fractures (32%). Cervical spine fractures occurred in only 18% of casualties. 62% of casualties had multiple sites of injury with only one casualty sustaining an isolated cervical spine fracture. Improvement of UBB survivability requires the understanding of fatal injury mechanisms. Although previous biomechanical studies have concentrated on the effect of axial load transmission and resultant injury to the cervical spine, our work demonstrates that cervical spine injuries are of limited clinical relevance for UBB survivability and that research should focus on severe brain injury secondary to direct head impact. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Azatcam, Gokmen; Atalay, Nilgun Simsir; Akkaya, Nuray; Sahin, Fusun; Aksoy, Sibel; Zincir, Ozge; Topuz, Oya
2017-01-01
Although there are several studies of Transcutaneous Electrical Nerve Stimulation (TENS) and exercise in myofascial pain syndrome, there are no studies comparing the effectiveness of Kinesio Taping (KT) and TENS in myofascial pain syndrome patients. To compare the early and late effects of TENS and KT on pain, disability and range of motion in myofascial pain syndrome patients. Sixty-nine patients were divided into three groups randomly as TENS+Exercise, KT+Exercise and exercise groups. Visual Analogue Scale (VAS), pain threshold, Neck Disability Index and cervical contralateral lateral flexion were employed in the evaluation of the patients performed before treatment, after treatment and 3rd month after treatment. The VAS, pain threshold, Neck Disability Index and contralateral lateral flexion values were improved in all groups both in after treatment and 3rd month after treatment (p< 0.01). In the comparison of after treatment vs. before treatment evaluations, VAS score was decreased in KT group compared to the TENS and control group (p= 0.001), in the TENS group compared to control group (p= 0.011). In the comparison of 3rd month and before treatment evaluations, VAS score was decreased in the TENS group compared to control group (p= 0.001) and in the KT group compared to the control group (p= 0.001). There was no significant difference between TENS and KT groups. All other parameters did not differ between the groups. TENS and KT added exercises can decrease pain severity and increase pain threshold, function and cervical range of motion in myofascial pain syndrome patients. Addition of TENS or KT to the exercise therapy resulted in more significant improvement compared to exercise therapy alone with a more pronounced improvement in KT group compared to the TENS group in the early period. Because KT was found to be more effective in decreasing the pain and had the advantage of being used in every 3 days, it seems to be beneficial in acute painful periods in myofascial pain syndrome patients.
Whiplash syndrome: kinematic factors influencing pain patterns.
Cusick, J F; Pintar, F A; Yoganandan, N
2001-06-01
The overall, local, and segmental kinematic responses of intact human cadaver head-neck complexes undergoing an inertia-type rear-end impact were quantified. High-speed, high-resolution digital video data of individual facet joint motions during the event were statistically evaluated. To deduce the potential for various vertebral column components to be exposed to adverse strains that could result in their participation as pain generators, and to evaluate the abnormal motions that occur during this traumatic event. The vertebral column is known to incur a nonphysiologic curvature during the application of an inertial-type rear-end impact. No previous studies, however, have quantified the local component motions (facet joint compression and sliding) that occur as a result of rear-impact loading. Intact human cadaver head-neck complexes underwent inertia-type rear-end impact with predominant moments in the sagittal plane. High-resolution digital video was used to track the motions of individual facet joints during the event. Localized angular motion changes at each vertebral segment were analyzed to quantify the abnormal curvature changes. Facet joint motions were analyzed statistically to obtain differences between anterior and posterior strains. The spine initially assumed an S-curve, with the upper spinal levels in flexion and the lower spinal levels in extension. The upper C-spine flexion occurred early in the event (approximately 60 ms) during the time the head maintained its static inertia. The lower cervical spine facet joints demonstrated statistically greater compressive motions in the dorsal aspect than in the ventral aspect, whereas the sliding anteroposterior motions were the same. The nonphysiologic kinematic responses during a whiplash impact may induce stresses in certain upper cervical neural structures or lower facet joints, resulting in possible compromise sufficient to elicit either neuropathic or nociceptive pain. These dynamic alterations of the upper level (occiput to C2) could impart potentially adverse forces to related neural structures, with subsequent development of a neuropathic pain process. The pinching of the lower facet joints may lead to potential for local tissue injury and nociceptive pain.
Cook, Chad; Learman, Ken; Houghton, Steve; Showalter, Christopher; O'Halloran, Bryan
2014-02-01
Shoulder impingement syndrome (SIS) is a complex, multi-factorial problem that is treated with a variety of different conservative options. One conservative option that has shown effectiveness is manual therapy to the thoracic spine. Another option, manual therapy to the cervical spine, has been studied only once with good results, evaluating short-term outcomes, in a small sample size. The purpose of this study was to investigate the benefit of neck manual therapy for patients with SIS. The study was a randomised, single blinded, clinical trial where both groups received pragmatic, evidence-based treatment to the shoulder and one group received neck manual therapy. Subjects with neck pain were excluded from the study. Comparative pain, disability, rate of recovery and patient acceptable symptom state (PASS) measures were analyzed on the 68 subjects seen over an average of 56.1 days (standard deviation (SD)=55.4). Eighty-six percent of the sample reported an acceptable change on the PASS at discharge. There were no between-groups differences in those who did or did not receive neck manual therapy; however, both groups demonstrated significant within-groups improvements. On average both groups improved 59.7% (SD=25.1) for pain and 53.5% (SD=40.2) for the Quick Disabilities of the Shoulder and Hand Questionnaire (QuickDASH) from baseline. This study found no value when neck manual therapy was added to the treatment of SIS. Reasons may include the lack of therapeutic dosage provided for the manual therapy approach or the lack of benefit to treating the neck in subjects with SIS who do not have concomitant neck problems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Xu, Jiajie; Chen, Chao; Zheng, Chuanming; Wang, Kejing; Shang, Jinbiao; Fang, Xianhua; Ge, Minghua; Tan, Zhuo
2016-04-01
The present study aimed to discuss the advantage of the application of a cervical low incision for functional neck dissection in patients with thyroid papillary carcinoma. The study was a retrospective analysis of 87 thyroid papillary carcinoma patients; cervical low incision in the functional neck dissection was applied for 47 cases and the classic 'L' incision was applied for 40 cases. The different integrity, surgical time, blood loss and the aesthetic property of the incision were compared between the cervical low incision and the classic 'L' incision for lateral neck dissection of thyroid cancer. The postoperative pathological diagnosis was that the average total amount and the region II lymph nodes of the unilateral neck dissection were 33 and 10 for the cervical low incision group, and 32 and 11 for the classic 'L' incision group, respectively (P>0.05). The average unilateral neck dissection times were 87 and 58 min for the cervical low incision group and the classic 'L' incision group, respectively (P<0.05). The blood loss of the cervical low incision group was 67 ml, while the loss for the classic 'L' incision group was 61 ml (P>0.05). The postoperative incision of the cervical low incision group was smaller and more concealing. Additionally, the cosmetic deformities were milder for an inconspicuous cervical scar, and the sensation was improved for the patients in comparison with the classic 'L' incision group. These results suggest that the application of cervical low incision for functional neck dissection in thyroid papillary carcinoma patients aids in reducing postoperative complications, without increasing recurrence rates. Therefore, the classic 'L' incision can be replaced by the cervical low incision.
Tessler, Oren; Gilardino, Mirko S; Bartow, Matthew J; St Hilaire, Hugo; Womac, Daniel; Dionisopoulos, Tassos; Lessard, Lucie
2017-03-01
Many head and neck reconstructions occur in patients with extensive history of surgery or radiation treatment. This leads to complicated free flap reconstructions, especially in choosing recipient vessels in a "frozen neck." The transverse cervical artery is an optimal second-line recipient artery in head and neck reconstruction. Seventy-two neck sides in 36 cadavers were dissected, looking for the transverse cervical artery and transverse cervical vein. Anatomical location of these vessels, their diameter, and length were documented. A retrospective analysis on 19 patients who had head and neck reconstruction using the transverse cervical artery as a recipient artery was undertaken as well with regard to outcome of procedures, reason for surgery, previous operations, and use of vein grafts during surgery. The transverse cervical artery was present in 72 of 72 of cadaveric specimens, and was infraclavicular in two of 72 specimens. Transverse cervical artery length ranged from 4.0 to 7.0 cm, and the mean diameter was 2.65 mm. The transverse cervical vein was present in 61 of 72 cadaveric specimens, the length ranged from 4.0 to 7.0 cm, and the mean diameter was 2.90 mm. The transverse cervical artery averaged 33 mm from midline, and branched off the thyrocervical trunk at an average 17 mm superior to the clavicle. Transverse cervical artery stenosis was markedly less in comparison with external carotid artery stenosis. In a 20-year clinical follow-up study, the transverse cervical artery was the recipient artery in 19 patients. A vein graft was used in one patient, and no flap loss occurred in any of the 19 patients. The transverse cervical artery is a reliable and robust option as a recipient artery in free flap head and neck reconstruction.
XU, JIAJIE; CHEN, CHAO; ZHENG, CHUANMING; WANG, KEJING; SHANG, JINBIAO; FANG, XIANHUA; GE, MINGHUA; TAN, ZHUO
2016-01-01
The present study aimed to discuss the advantage of the application of a cervical low incision for functional neck dissection in patients with thyroid papillary carcinoma. The study was a retrospective analysis of 87 thyroid papillary carcinoma patients; cervical low incision in the functional neck dissection was applied for 47 cases and the classic ‘L’ incision was applied for 40 cases. The different integrity, surgical time, blood loss and the aesthetic property of the incision were compared between the cervical low incision and the classic ‘L’ incision for lateral neck dissection of thyroid cancer. The postoperative pathological diagnosis was that the average total amount and the region II lymph nodes of the unilateral neck dissection were 33 and 10 for the cervical low incision group, and 32 and 11 for the classic ‘L’ incision group, respectively (P>0.05). The average unilateral neck dissection times were 87 and 58 min for the cervical low incision group and the classic ‘L’ incision group, respectively (P<0.05). The blood loss of the cervical low incision group was 67 ml, while the loss for the classic ‘L’ incision group was 61 ml (P>0.05). The postoperative incision of the cervical low incision group was smaller and more concealing. Additionally, the cosmetic deformities were milder for an inconspicuous cervical scar, and the sensation was improved for the patients in comparison with the classic ‘L’ incision group. These results suggest that the application of cervical low incision for functional neck dissection in thyroid papillary carcinoma patients aids in reducing postoperative complications, without increasing recurrence rates. Therefore, the classic ‘L’ incision can be replaced by the cervical low incision. PMID:27073645
de Souza, João Batista Freire; de Arruda, Alex Martins Varela; Domingos, Hérica Girlane Tertulino; de Macedo Costa, Leonardo Lelis
2013-05-01
The aim of this study was to evaluate the regional differences in the surface temperature of Naked Neck hens that were subjected to different temperatures in a semi-arid environment. The surface temperature was measured in four body regions (face, neck, legs and feathered area) of 60 Naked Neck hens. The following environmental variables were measured at the center of the shed: the black globe temperature (T G ), air temperature (T A ), wind speed (U) and relative humidity (R H ). The T A was divided into three classes: 1 (24.0-26.0 °C), 2 (26.1-28.9 °C) and 3 (29.0-31.0 °C). An analysis of variance was performed by the least squares method and a comparison of the means by the Tukey-Kramer test. The results showed a significant effect of T A class, the body region and the interaction between these two effects on the surface temperature. There was no significant difference between the T A classes for the face and neck. The legs and feathered area showed significant differences between the T A classes. Regarding the effect of body regions within each T A class, there was a significant difference among all regions in the three T A classes. In all T A classes the neck had the highest average followed by the face and legs. The feathered area showed the lowest average of the different T A classes. In conclusion, this study showed that there are regional differences in the surface temperature of Naked Neck hens, with the legs acting as thermal windows.
29 CFR 1910.1003 - 13 Carcinogens (4-Nitrobiphenyl, etc.).
Code of Federal Regulations, 2012 CFR
2012-07-01
... the top and bottom, designed and maintained so as to draw air inward at an average linear face... to wash hands, forearms, face, and neck upon each exit from the regulated areas, close to the point..., face, and neck on each exit from the regulated area, close to the point of exit, and before engaging in...
29 CFR 1910.1003 - 13 Carcinogens (4-Nitrobiphenyl, etc.).
Code of Federal Regulations, 2013 CFR
2013-07-01
... the top and bottom, designed and maintained so as to draw air inward at an average linear face... to wash hands, forearms, face, and neck upon each exit from the regulated areas, close to the point..., face, and neck on each exit from the regulated area, close to the point of exit, and before engaging in...
29 CFR 1910.1003 - 13 Carcinogens (4-Nitrobiphenyl, etc.).
Code of Federal Regulations, 2014 CFR
2014-07-01
... the top and bottom, designed and maintained so as to draw air inward at an average linear face... to wash hands, forearms, face, and neck upon each exit from the regulated areas, close to the point..., face, and neck on each exit from the regulated area, close to the point of exit, and before engaging in...
Causse, Julien; Wang, Xuguang; Denninger, Lisa
2012-01-01
This study aimed at experimentally investigating the influence of roof height and sill width on car ingress/egress movements. The first uncomfortable (Ht1) and the lowest acceptable (Ht2) roof heights were obtained from 26 participants of three different stature groups thanks to a multi-adjustable vehicle mock-up. Both Ht1 and Ht2 were affected neither by stature nor by vehicle type. Only a difference of 45 mm between Ht1 and Ht2 was observed. Tall volunteers more flexed the trunk and neck than short persons thanks to a larger space available around the seat when the head passing under the roof. The vehicle type had almost no effect on upper body posture. The roof height only affected neck flexion. The sill width mainly imposed a lateral translation. Results demonstrated that an appropriate roof height should be determined carefully. A small change of 45 mm in roof height may lead to an unacceptable situation. The present study experimentally investigated the effects of roof height and sill width on car ingress and egress movements. Short females required almost the same roof height as tall males due to smaller space around the seat. The results would help to optimise car dimensions for improving car accessibility.
Elsdon, Dale S; Spanswick, Selina; Zaslawski, Chris; Meier, Peter C
2017-01-01
A protocol for a prospective single-blind parallel four-arm randomized placebo-controlled trial with repeated measures was designed to test the effects of various acupuncture methods compared with sham. Eighty self-selected participants with myofascial pain in the upper trapezius muscle were randomized into four groups. Group 1 received acupuncture to a myofascial trigger point (MTrP) in the upper trapezius. Group 2 received acupuncture to the MTrP in addition to relevant distal points. Group 3 received acupuncture to the relevant distal points only. Group 4 received a sham treatment to both the MTrP and distal points using a deactivated acupuncture laser device. Treatment was applied four times within 2 weeks with outcomes measured throughout the trial and at 2 weeks and 4 weeks posttreatment. Outcome measurements were a 100-mm visual analog pain scale, SF-36, pressure pain threshold, Neck Disability Index, the Upper Extremity Functional Index, lateral flexion in the neck, McGill Pain Questionnaire, Massachusetts General Hospital Acupuncture Sensation Scale, Working Alliance Inventory (short form), and the Credibility Expectance Questionnaire. Two-way analysis of variance (ANOVA) with repeated measures were used to assess the differences between groups. Copyright © 2017 Medical Association of Pharmacopuncture Institute. Published by Elsevier B.V. All rights reserved.
Armijo-Olivo, Susan; Warren, Sharon; Fuentes, Jorge; Magee, David J
2011-12-01
Statistical significance has been used extensively to evaluate the results of research studies. Nevertheless, it offers only limited information to clinicians. The assessment of clinical relevance can facilitate the interpretation of the research results into clinical practice. The objective of this study was to explore different methods to evaluate the clinical relevance of the results using a cross-sectional study as an example comparing different neck outcomes between subjects with temporomandibular disorders and healthy controls. Subjects were compared for head and cervical posture, maximal cervical muscle strength, endurance of the cervical flexor and extensor muscles, and electromyographic activity of the cervical flexor muscles during the CranioCervical Flexion Test (CCFT). The evaluation of clinical relevance of the results was performed based on the effect size (ES), minimal important difference (MID), and clinical judgement. The results of this study show that it is possible to have statistical significance without having clinical relevance, to have both statistical significance and clinical relevance, to have clinical relevance without having statistical significance, or to have neither statistical significance nor clinical relevance. The evaluation of clinical relevance in clinical research is crucial to simplify the transfer of knowledge from research into practice. Clinical researchers should present the clinical relevance of their results. Copyright © 2011 Elsevier Ltd. All rights reserved.
Strength of the cervical spine in compression and bending.
Przybyla, Andrzej S; Skrzypiec, Daniel; Pollintine, Phillip; Dolan, Patricia; Adams, Michael A
2007-07-01
Cadaveric motion segment experiment. To compare the strength in bending and compression of the human cervical spine and to investigate which structures resist bending the most. The strength of the cervical spine when subjected to physiologically reasonable complex loading is unknown, as is the role of individual structures in resisting bending. A total of 22 human cervical motion segments, 64 to 89 years of age, were subjected to complex loading in bending and compression. Resistance to flexion and to extension was measured in consecutive tests. Sagittal-plane movements were recorded at 50 Hz using an optical two-dimensional "MacReflex" system. Experiments were repeated 1) after surgical removal of the spinous process, 2) after removal of both apophyseal joints, and 3) after the disc-vertebral body unit had been compressed to failure. Results were analyzed using t tests, analysis of variance, and linear regression. Results were compared with published data for the lumbar spine. The elastic limit in flexion was reached at 8.5 degrees (SD, 1.7 degrees ) with a bending moment of 6.7 Nm (SD, 1.7 Nm). In extension, values were 9.5 degrees (SD, 1.6 degrees ) and 8.4 Nm (3.5 Nm), respectively. Spinous processes (and associated ligaments) provided 48% (SD, 17%) of the resistance to flexion. Apophyseal joints provided 47% (SD, 16%) of the resistance to extension. In compression, the disc-vertebral body units reached the elastic limit at 1.23 kN (SD, 0.46 Nm) and their ultimate compressive strength was 2.40 kN (SD, 0.96 kN). Strength was greater in male specimens, depended on spinal level and tended to decrease with age. The cervical spine has approximately 20% of the bending strength of the lumbar spine but 45% of its compressive strength. This suggests that the neck is relatively vulnerable in bending.
Aartun, Ellen; Degerfalk, Anna; Kentsdotter, Linn; Hestbaek, Lise
2014-02-10
Evidence on the reliability of clinical tests used for the spinal screening of children and adolescents is currently lacking. The aim of this study was to determine the inter- and intra-rater reliability and measurement error of clinical tests commonly used when screening young spines. Two experienced chiropractors independently assessed 111 adolescents aged 12-14 years who were recruited from a primary school in Denmark. A standardised examination protocol was used to test inter-rater reliability including tests for scoliosis, hypermobility, general mobility, inter-segmental mobility and end range pain in the spine. Seventy-five of the 111 subjects were re-examined after one to four hours to test intra-rater reliability. Percentage agreement and Cohen's Kappa were calculated for binary variables, and interclass correlation (ICC) and Bland-Altman plots with Limits of Agreement (LoA) were calculated for continuous measures. Inter-rater percentage agreement for binary data ranged from 59.5% to 100%. Kappa ranged from 0.06-1.00. Kappa ≥ 0.40 was seen for elbow, thumb, fifth finger and trunk/hip flexion hypermobility, pain response in inter-segmental mobility and end range pain in lumbar flexion and extension. For continuous data, ICCs ranged from 0.40-0.95. Only forward flexion as measured by finger-to-floor distance reached an acceptable ICC(≥ 0.75). Overall, results for intra-rater reliability were better than for inter-rater reliability but for both components, the LoA were quite wide compared with the range of assessments. Some clinical tests showed good, and some tests poor, reliability when applied in a spinal screening of adolescents. The results could probably be improved by additional training and further test standardization. This is the first step in evaluating the value of these tests for the spinal screening of adolescents. Future research should determine the association between these tests and current and/or future neck and back pain.
Song, Young Dong; Jain, Nimash; Kang, Yeon Gwi; Kim, Tae Yune; Kim, Tae Kyun
2016-06-01
Correlations between maximum flexion and functional outcomes in total knee arthroplasty (TKA) patients are reportedly weak. We investigated whether there are differences between passive maximum flexion in nonweight bearing and other types of maximum flexion and whether the type of maximum flexion correlates with functional outcomes. A total of 210 patients (359 knees) underwent preoperative evaluation and postoperative follow-up evaluations (6, 12, and 24 months) for the assessment of clinical outcomes including maximum knee flexion. Maximum flexion was measured under five conditions: passive nonweight bearing, passive weight bearing, active nonweight bearing, and active weight bearing with or without arm support. Data were analyzed for relationships between passive maximum flexion in nonweight bearing by Pearson correlation analyses, and a variance comparison between measurement techniques via paired t test. We observed substantial differences between passive maximum flexion in nonweight bearing and the other four maximum flexion types. At all time points, passive maximum flexion in nonweight bearing correlated poorly with active maximum flexion in weight bearing with or without arm support. Active maximum flexion in weight bearing better correlated with functional outcomes than the other maximum flexion types. Our study suggests active maximum flexion in weight bearing should be reported together with passive maximum flexion in nonweight bearing in research on the knee motion arc after TKA.
Song, Young Dong; Jain, Nimash; Kang, Yeon Gwi; Kim, Tae Yune
2016-01-01
Purpose Correlations between maximum flexion and functional outcomes in total knee arthroplasty (TKA) patients are reportedly weak. We investigated whether there are differences between passive maximum flexion in nonweight bearing and other types of maximum flexion and whether the type of maximum flexion correlates with functional outcomes. Materials and Methods A total of 210 patients (359 knees) underwent preoperative evaluation and postoperative follow-up evaluations (6, 12, and 24 months) for the assessment of clinical outcomes including maximum knee flexion. Maximum flexion was measured under five conditions: passive nonweight bearing, passive weight bearing, active nonweight bearing, and active weight bearing with or without arm support. Data were analyzed for relationships between passive maximum flexion in nonweight bearing by Pearson correlation analyses, and a variance comparison between measurement techniques via paired t test. Results We observed substantial differences between passive maximum flexion in nonweight bearing and the other four maximum flexion types. At all time points, passive maximum flexion in nonweight bearing correlated poorly with active maximum flexion in weight bearing with or without arm support. Active maximum flexion in weight bearing better correlated with functional outcomes than the other maximum flexion types. Conclusions Our study suggests active maximum flexion in weight bearing should be reported together with passive maximum flexion in nonweight bearing in research on the knee motion arc after TKA. PMID:27274468
Shields, Edward; Kates, Stephen L
2014-12-01
This study compares re-operation rates and financial burden following the treatment of femoral neck fractures treated with hemiarthroplasty compared to non-displaced femoral neck fractures treated with cannulated screws. Data was retrospectively analyzed from a prospective database at a university hospital setting on patients undergoing hemiarthroplasty after femoral neck fractures and those with non-displaced femoral neck fractures treated with cannulated screws over a 7-year period. Re-operation rates were determined and financial data was analyzed. Charges refer to amounts billed by the hospital to insurance carriers, while costs refer to financial burden carried by the hospital during treatment. There were 491 femoral neck fractures (475 patients) that underwent hemiarthroplasty (HA) and 120 non-displaced fractures (119 patients) treated with cannulated screw (CannS) fixation. Both groups had similar age, sex, Charlson co-morbidity scores, pre-operative Parker mobility scores, and 12-month mortality. There were 29 (5.9 %) reoperations in the HA group and 16 (13.3 %) in the CannS group (P = 0.007). The majority of re-operations occurred within 12 months for both groups [21/29 (72 %) HA group; 15/16 (94 %) CannS group; P = 0.13]. Average hospital charges per patient for the index procedure were higher in the HA group ($17,880 ± 745) compared to the CannS group ($14,104 ± 5,047; P < 0.001). After accounting for additional procedures related to their initial surgical fixation, average hospital charges and costs remained higher in the HA group. Patients treated with hemiarthroplasty for femoral neck fractures have lower re-operation rates than patients treated with cannulated screws for non-displaced femoral neck fractures, with 80 % of re-operations occurring in the first 12 months. Hospital charges and costs to the hospital for treating patients undergoing hemiarthroplasty were higher than patients treated with cannulated screws for the index procedure alone, and after accounting for re-operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, K; Wong, P; Tung, S
Purpose: To quantify the dosimetric impact of interfractional shoulder motion on targets in the low neck for head and neck patients treated with volume modulated arc therapy (VMAT). Methods: Three patients with head and neck cancer were selected. All three required treatment to nodal regions in the low neck in addition to the primary tumor. The patients were immobilized during simulation and treatment with a custom thermoplastic mask covering the head and shoulders. One VMAT plan was created for each patient utilizing two full 360° arcs. A second plan was created consisting of two superior VMAT arcs matched to anmore » inferior static AP supraclavicular field. A CT-on-rails alignment verification was performed weekly during each patient's treatment course. The weekly CT images were registered to the simulation CT and the target contours were deformed and applied to the weekly CT. The two VMAT plans were copied to the weekly CT datasets and recalculated to obtain the dose to the low neck contours. Results: The average observed shoulder position shift in any single dimension relative to simulation was 2.5 mm. The maximum shoulder shift observed in a single dimension was 25.7 mm. Low neck target mean doses, normalized to simulation and averaged across all weekly recalculations were 0.996, 0.991, and 1.033 (Full VMAT plan) and 0.986, 0.995, and 0.990 (Half-Beam VMAT plan) for the three patients, respectively. The maximum observed deviation in target mean dose for any individual weekly recalculation was 6.5%, occurring with the Full VMAT plan for Patient 3. Conclusion: Interfractional variation in dose to low neck nodal regions was quantified for three head and neck patients treated with VMAT. Mean dose was 3.3% higher than planned for one patient using a Full VMAT plan. A Half-Beam technique is likely a safer choice when treating the supraclavicular region with VMAT.« less
Kim, Si-hyun; Kwon, Oh-yun; Yi, Chung-hwi; Cynn, Heon-seock; Ha, Sung-min; Park, Kyue-nam
2014-01-01
Limited hip flexion may lead to a poor lumbopelvic motion during seated active hip flexion in people with low-back pain (LBP). The purpose of this study was to compare lumbopelvic motion during seated hip flexion between subjects with and without LBP accompanying limited hip flexion. Fifteen patients with LBP accompanying limited hip flexion and 16 healthy subjects were recruited. The subjects performed seated hip flexion with the dominant leg three times. A three-dimensional motion-analysis system was used to measure lumbopelvic motion during seated hip flexion. During seated active hip flexion, the angle of hip flexion was significantly lower in patients with LBP accompanying limited hip flexion (17.4 ± 4.4 in the LBP group, 20.8 ± 2.6 in the healthy group; t = 2.63, p = 0.014). The angle of the lumbar flexion (4.8 ± 2.2 in the LBP group, 2.6 ± 2.0 in the healthy group; t = -2.96, p = 0.006) and posterior pelvic tilting (5.0 ± 2.6 in the LBP group, 2.9 ± 2.0 in the healthy group; t = 2.48 p = 0.019), however, were significantly greater in patients with this condition. The results of this study suggest that limited hip flexion in LBP can contribute to excessive lumbar flexion and posterior pelvic tilting during hip flexion in the sitting position. Further studies are required to confirm whether improving the hip flexion range of motion can reduce excessive lumbar flexion in patients with LBP accompanying limited hip flexion.
Measurement of segmental lumbar spine flexion and extension using ultrasound imaging.
Chleboun, Gary S; Amway, Matthew J; Hill, Jesse G; Root, Kara J; Murray, Hugh C; Sergeev, Alexander V
2012-10-01
Clinical measurement, technical note. To describe a technique to measure interspinous process distance using ultrasound (US) imaging, to assess the reliability of the technique, and to compare the US imaging measurements to magnetic resonance imaging (MRI) measurements in 3 different positions of the lumbar spine. Segmental spinal motion has been assessed using various imaging techniques, as well as surgically inserted pins. However, some imaging techniques are costly (MRI) and some require ionizing radiation (radiographs and fluoroscopy), and surgical procedures have limited use because of the invasive nature of the technique. Therefore, it is important to have an easily accessible and inexpensive technique for measuring lumbar segmental motion to more fully understand spine motion in vivo, to evaluate the changes that occur with various interventions, and to be able to accurately relate the changes in symptoms to changes in motion of individual vertebral segments. Six asymptomatic subjects participated. The distance between spinous processes at each lumbar segment (L1-2, L2-3, L3-4, L4-5) was measured digitally using MRI and US imaging. The interspinous distance was measured with subjects supine and the lumbar spine in 3 different positions (resting, lumbar flexion, and lumbar extension) for both MRI and US imaging. The differences in distance from neutral to extension, neutral to flexion, and extension to flexion were calculated. The measurement methods had excellent reliability for US imaging (intraclass correlation coefficient [ICC3,3] = 0.94; 95% confidence interval: 0.85, 0.97) and MRI (ICC3,3 = 0.98; 95% confidence interval: 0.95, 0.99). The distance measured was similar between US imaging and MRI (P>.05), except at L3-4 flexion-extension (P = .003). On average, the MRI measurements were 1.3 mm greater than the US imaging measurements. This study describes a new method for the measurement of lumbar spine segmental flexion and extension motion using US imaging. The US method may offer an alternative to other imaging techniques to monitor clinical outcomes because of its ease of use and the consistency of measurements compared to MRI.
Erfanian, Parham; Tenzif, Siamak; Guerriero, Rocco C
2004-01-01
Objective To determine the effects of a semi-customized experimental cervical pillow on symptomatic adults with chronic neck pain (with and without headache) during a four week study. Design A randomized controlled trial. Sample size Thirty-six adults were recruited for the trial, and randomly assigned to experimental or non-experimental groups of 17 and 19 participants respectively. Subjects Adults with chronic biomechanical neck pain who were recruited from the Canadian Memorial Chiropractic College (CMCC) Walk-in Clinic. Outcome measures Subjective findings were assessed using a mail-in self-report daily pain diary, and the CMCC Neck Disability Index (NDI). Statistical analysis Using repeated measure analysis of variance weekly NDI scores, average weekly AM and PM pain scores between the experimental and non-experimental groups were compared throughout the study. Results The experimental group had statistically significant lower NDI scores (p < 0.05) than the non-experimental group. The average weekly AM scores were lower and statistically significant (p < 0.05) in the experimental group. The PM scores in the experimental group were lower but not statistically significant than the other group. Conclusions The study results show that compared to conventional pillows, this experimental semi-customized cervical pillow was effective in reducing low-level neck pain intensity, especially in the morning following its use in a 4 week long study. PMID:17549216
Liang, Ming-Tai; Chen, Clayton Chi-Chang; Wang, Ching-Ping; Wang, Chen-Chi; Lin, Whe-Dar; Liu, Shih-An
2009-06-01
The aim of this study was to determine if volume of cervical lymph node measured via computed tomography (CT) could differentiate metastatic from benign lesions in head and neck cancer patients. We conducted a retrospective review of chart and images in a tertiary referring center in Taiwan. Patients with head and neck cancers underwent radical, modified radical or functional neck dissection were enrolled. The CT images before operation were reassessed by a radiologist and were compared with the results of pathological examination. A total of 102 patients were included for final analyses. Most patients were male (n = 96, 94%) and average age was 50.1 years. Although the average nodal volume in patients with cervical metastases was higher than those of patients without cervical metastases, it was not an independent factor associated with cervical metastasis after controlling for other variables; however, central nodal necrosis on enhanced CT image [odds ratio (OR) 18.95, P = 0.008) and minimal axial diameter >7.5 mm (OR 6.868, P = 0.001) were independent factors correlated with cervical metastasis. Therefore, the volume of cervical lymph node measured from CT images cannot predict cervical metastases in head and neck cancer patients. Measurement of minimal axial diameter of the largest lymph node is a simple and more accurate way to predict cervical metastasis instead.
Cancer of the head and neck region in solid organ transplant recipients.
Rabinovics, Naomi; Mizrachi, Aviram; Hadar, Tuvia; Ad-El, Dean; Feinmesser, Raphael; Guttman, Dan; Shpitzer, Thomas; Bachar, Gideon
2014-02-01
Solid organ recipients are at an increased risk of developing various malignancies. We investigated the incidence, clinical features, and outcome of patients diagnosed with head and neck cancer after organ transplantation. A retrospective analysis was undertaken of patients who underwent solid organ transplantation (kidney, liver, lung, heart) treated at our institution from 1992 to 2010. Of 2817 organ recipients, 175 patients (6.1%) developed 391 head and neck malignancies. Cutaneous malignancies were the most common (93%): squamous cell carcinoma (SCC; 51%) and basal cell carcinoma (BCC; 42%). The average interval from transplantation to diagnosis of head and neck malignancy was 7.3 years, with liver recipients diagnosed earlier. Eighteen percent of patients presented with an aggressive pattern of head and neck cancer, including 24% of patients with cutaneous SCC. Organ transplantation recipients are at a higher risk to develop head and neck cancer with an aggressive behavior characterized by multiple recurrences and decreased survival. Copyright © 2013 Wiley Periodicals, Inc.
Life-threatening macroglossia after posterior fossa surgery: a surgical positioning problem?
Vermeersch, G; Menovsky, T; De Ridder, D; De Bodt, M; Saldien, V; Van de Heyning, P
2014-01-01
A 55-year-old woman was operated in the lateral park bench position with significant neck flexion and oral packing. Macroglossia was noticed immediately postoperatively after endotracheal extubation. The patient was reintubated for 13 days and subsequently required a tracheostoma. After the placement of the tracheostoma and the removal of the endotracheal tube, the congestion of the tongue decreased markedly within 24 hours. Macroglossia is a rare complication following posterior fossa procedures with few cases reported so far. It can cause airway obstruction, which could be a life-threatening complication, and it therefore requires prompt treatment. The aetiology of postoperative macroglossia remains uncertain and has been attributed to arterial, venous and lymphatic compression, mechanical compression, or neurogenic causes. This article describes new insights into aetiology and also describes preventive measures and possible treatment.
Cam and Pincer Type of Femoroacetabular Impingement.
Ersoy, Hale; Trane, R Nicholas; Pomeranz, Stephen J
Femoroacetabular impingement (FAI) has gained considerable attention for the past 20 years and has been accepted as a predisposing factor for early osteoarthritis in young patients, particularly in the population participating in sports. Patients with FAI typically present with deep, intermittent groin discomfort during or after activities involving repetitive or persistent hip flexion. Symptomatic improvement can be achieved from arthroscopic debridement of unstable cartilage flaps, shaving of cartilage irregularities, and surgical correction of deformity of the femoral head\\endash neck junction. Early and correct diagnosis of FAI has paramount importance for appropriate and timely management of the disorder before the development of osteoarthritis. Magnetic resonance (MR) imaging offers a noninvasive means of assessing the degree of damage to cartilage and adjacent labrum and bone and also evaluating the effectiveness of treatment. This article describes the morphologic types of FAI with emphasis on MR findings.
Kaur, Mandeep; Ribeiro, Daniel Cury; Theis, Jean-Claude; Webster, Kate E; Sole, Gisela
2016-12-01
Altered gait patterns follow ing anterior cruciate ligament reconstruction (ACLR) may be associated with long-term impairments and post-traumatic osteoarthritis. This systematic review and meta-analysis compared lower limb kinematics and kinetics of the ACL reconstructed knee with (1) the contralateral limb and (2) healthy age-matched participants during walking, stair climbing, and running. The secondary aim was to describe the differences over time following ACLR for these biomechanical variables. Database searches were conducted from inception to July 2014 and updated in August 2015 for studies exploring peak knee angles and moments following ACLR during walking, stair negotiation, and running. Risk of bias was assessed with a modified Downs and Black quality index for all included studies, and meta-analyses were performed. Forest plots were explored qualitatively for recovery of gait variables over time after surgery. A total of 40 studies were included in the review; 26 of these were rated as low risk and 14 as high risk of bias. The meta-analysis included 27 studies. Strong to moderate evidence indicated no significant difference in peak flexion angles between ACLR and control groups during walking and stair ascent. Strong evidence was found for lower peak flexion moments in participants with ACLR compared with control groups and contralateral limb during walking and stair activities. Strong to moderate evidence was found for lower peak adduction moment in ACLR participants for the injured compared with the contralateral limbs during walking and stair descent. The qualitative assessment for recovery over time indicated a pattern towards restoration of peak knee flexion angle with increasing time from post-surgery. Peak knee adduction moments were lower within the first year following surgery and higher than controls during later phases (5 years). Joint kinematics are restored, on average, 6 years following reconstruction, while knee external flexion moments remain lower than controls. Knee adduction moments are lower during early phases following reconstruction, but are higher than controls, on average, 5 years post-surgery. Findings indicate that knee function is not fully restored following reconstruction, and long-term maintenance programs may be needed.
Tyser, Andrew R; Tsai, Michael A; Parks, Brent G; Means, Kenneth R
2015-02-01
To compare stability and range of motion after hemi-hamate reconstruction versus volar plate arthroplasty in a biomechanical proximal interphalangeal (PIP) joint fracture-dislocation model. Eighteen digits from 6 cadaver hands were tested. We created defects of 40%, 60%, and 80% in the palmar base of each digit's middle phalanx, simulating an acute PIP joint fracture-dislocation. Each defect scenario was reconstructed with a hemi-hamate arthroplasty followed by a volar plate arthroplasty. A computer-controlled mechanism was used to bring each digit's PIP joint from full extension to full flexion via the digital tendons in each testing state, and in the intact state. During each testing scenario we collected PIP joint cinedata in a true lateral projection using mini-fluoroscopy. A digital radiography program was used to measure the amount of middle phalanx dorsal translation (subluxation) in full PIP joint extension. We recorded the angle at which subluxation, if present, occurred during each testing scenario. Average dorsal displacement of the middle phalanx in relation to the proximal phalanx was 0.01 mm for the hemi-hamate reconstructed joints and -0.03 mm for the volar plate arthroplasty, compared with the intact state. Flexion contractures were noted in each of the specimens reconstructed with volar plate arthroplasty. Degree of contracture was directly correlated with defect size, averaging 20° for 40% defects, 35° for 60% defects, and 60° for 80% defects. We observed no flexion contractures in the hemi-hamate reconstructions. Surgeons can use both hemi-hamate and volar plate arthroplasty to restore PIP joint stability following a fracture dislocation with a large middle phalanx palmar base defect. Use of volar plate arthroplasty led to an increasing flexion contracture as the middle phalanx palmar base defect increased. Clinicians can use the information from this study to help with surgical decision-making and patient education. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Bone mineral density of the femoral neck in resurfacing hip arthroplasty
Ovesen, Ole; Brixen, Kim; Varmarken, Jens-Erik; Overgaard, SØren
2010-01-01
Background and purpose Resurfacing total hip arthroplasty (RTHA) may preserve the femoral neck bone stock postoperatively. Bone mineral density (BMD) may be affected by the hip position, which might bias longitudinal studies. We investigated the dependency of BMD precision on type of ROI and hip position. Method We DXA-scanned the femoral neck of 15 resurfacing patients twice with the hip in 3 different rotations: 15° internal, neutral, and 15° external. For each position, BMD was analyzed with 3 surface area models. One model measured BMD in the total femoral neck, the second model divided the neck in two, and the third model had 6 divisions. Results When all hip positions were pooled, average coefficients of variation (CVs) of 3.1%, 3.6%, and 4.6% were found in the 1-, 2-, and 6-region models, respectively. The externally rotated hip position was less reproducible. When rotating in increments of 15° or 30°, the average CVs rose to 7.2%, 7.3%, and 12% in the 3 models. Rotation affected the precision most in the model that divided the neck in 6 subregions, predominantly in the lateral and distal regions. For larger-region models, some rotation could be allowed without compromising the precision. Interpretation If hip rotation is strictly controlled, DXA can reliably provide detailed topographical information about the BMD changes around an RTHA. As rotation strongly affects the precision of the BMD measurements in small regions, we suggest that a less detailed model should be used for analysis in studies where the leg position has not been firmly controlled. PMID:20367420
Spatial mapping of humeral head bone density.
Alidousti, Hamidreza; Giles, Joshua W; Emery, Roger J H; Jeffers, Jonathan
2017-09-01
Short-stem humeral replacements achieve fixation by anchoring to the metaphyseal trabecular bone. Fixing the implant in high-density bone can provide strong fixation and reduce the risk of loosening. However, there is a lack of data mapping the bone density distribution in the proximal humerus. The aim of the study was to investigate the bone density in proximal humerus. Eight computed tomography scans of healthy cadaveric humeri were used to map bone density distribution in the humeral head. The proximal humeral head was divided into 12 slices parallel to the humeral anatomic neck. Each slice was then divided into 4 concentric circles. The slices below the anatomic neck, where short-stem implants have their fixation features, were further divided into radial sectors. The average bone density for each of these regions was calculated, and regions of interest were compared using a repeated-measures analysis of variance with significance set at P < .05. Average apparent bone density was found to decrease from proximal to distal regions, with the majority of higher bone density proximal to the anatomic neck of the humerus (P < .05). Below the anatomic neck, bone density increases from central to peripheral regions, where cortical bone eventually occupies the space (P < .05). In distal slices below the anatomic neck, a higher bone density distribution in the medial calcar region was also observed. This study indicates that it is advantageous with respect to implant fixation to preserve some bone above the anatomic neck and epiphyseal plate and to use the denser bone at the periphery. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Fujimaki, Yoshimasa; Thorhauer, Eric; Sasaki, Yusuke; Smolinski, Patrick; Tashman, Scott; Fu, Freddie H
2016-01-01
Quantification of the cross-sectional area (CSA) of the anterior cruciate ligament (ACL) in different loading conditions is important for understanding the native anatomy and thus achieving anatomic reconstruction. The ACL insertion sites are larger than the ACL midsubstance, and the isthmus (region of the smallest CSA) location may vary with the load or flexion angle. To (1) quantify the CSA along the entire ACL, (2) describe the location of the ACL isthmus, (3) explore the relationship between ACL length and CSA, and (4) validate magnetic resonance imaging (MRI) for assessing the CSA of the midsubstance ACL. Descriptive laboratory study. Eight cadaveric knees were dissected to expose the ACL and its attachments. Knees were positioned using a robotic loading system through a range of flexion angles in 3 loading states: (1) unloaded, (2) anterior tibial translation, and (3) combined rotational load of valgus and internal torque. Laser scanning quantified the shape of the ACL and its insertion site boundaries. The CSA of the ACL was measured, and the location of the isthmus was determined; the CSA of the ACL was also estimated from MRI and compared with the laser-scanned data. The CSA of the ACL varied along the ligament, and the isthmus existed at an average (±SD) of 53.8% ± 5.5% of the distance from the tibial insertion center to the femoral insertion center. The average CSA at the isthmus was smallest in extension (39.9 ± 13.7 mm(2)) and increased with flexion (43.9 ± 12.1 mm(2) at 90°). The ACL length was shortest at 90° of flexion and increased by 18.8% ± 10.1% in unloaded extension. Application of an anterior load increased the ACL length by 5.0% ± 3.3% in extension, and application of a combined rotational load increased its length by 4.1% ± 3.0% in extension. The ACL isthmus is located almost half of the distance between the insertion sites. The CSA of the ACL at the isthmus is largest with the knee unloaded and at 90° of flexion, and the area decreases with extension and applied loads. The CSA at the isthmus represents less than half the area of the insertion sites. These results may aid surgical planning, specifically for choosing a graft size and fixation angle that most closely matches the native anatomy and function across the entire range of knee motion. © 2015 The Author(s).
Cervical vertebral realignment when voluntarily adopting a protective neck posture.
Newell, Robyn S; Siegmund, Gunter P; Blouin, Jean-Sébastien; Street, John; Cripton, Peter A
2014-07-01
In vivo human volunteer study of the intervertebral postural changes and muscle activity levels while tensing the neck muscles. To determine if actively tensing the neck muscles changes the posture of the cervical spine and, because axial impact neck injury often occurs while inverted, whether these changes exist both upright and upside down. Rollover accidents are dynamic and complex events in which head contacts with the vehicle interior can cause catastrophic neck injuries. Computational modeling has suggested that active neck muscles may increase the risk of cervical spine fracture in a rollover crash. Cadaver testing has also demonstrated that overall neck alignment and curvature are key to understanding and preventing catastrophic neck injuries. Although muscle activity and neck posture affects the resulting injury, there are currently no in vivo data describing how tensing the neck muscles influences intervertebral posture. Eleven human subjects (6 females, 5 males) actively tensed their neck muscles while seated upright and inverted. Vertebral alignment was measured using fluoroscopy and muscle activity was recorded using surface and indwelling electrodes in 8 neck muscles. On average, tensed muscles increased cervical spine curvature and anterior motion of the cervical vertebrae relative to the torso. These changes, which were magnified by inversion, indicate that cervical intervertebral posture differs considerably between the relaxed and tensed states. Active muscle contraction can change the vertebral alignment in upright and inverted postures. This change in posture may alter the load path and injury mechanics during an axial head impact and may help explain the disparity between the neck injuries observed in real-world rollover accidents and ex vivo cadaver experiments. N/A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penoncello, Gregory P.; Ding, George X., E-mail: george.ding@vanderbilt.edu
The purpose of this study was (1) to evaluate dose to skin between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques for target sites in the head and neck, pelvis, and brain and (2) to determine if the treatment dose and fractionation regimen affect the skin dose between traditional sequential boost and integrated boost regimens for patients with head and neck cancer. A total of 19 patients and 48 plans were evaluated. The Eclipse (v11) treatment planning system was used to plan therapy in 9 patients with head and neck cancer, 5 patients with prostate cancer, andmore » 5 patients with brain cancer with VMAT and static-field IMRT. The mean skin dose and the maximum dose to a contiguous volume of 2 cm{sup 3} for head and neck plans and brain plans and a contiguous volume of 5 cm{sup 3} for pelvis plans were compared for each treatment technique. Of the 9 patients with head and neck cancer, 3 underwent an integrated boost regimen. One integrated boost plan was replanned with IMRT and VMAT using a traditional boost regimen. For target sites located in the head and neck, VMAT reduced the mean dose and contiguous hot spot most noticeably in the shoulder region by 5.6% and 5.4%, respectively. When using an integrated boost regimen, the contiguous hot spot skin dose in the shoulder was larger on average than a traditional boost pattern by 26.5% and the mean skin dose was larger by 1.7%. VMAT techniques largely decrease the contiguous hot spot in the skin in the pelvis by an average of 36% compared with IMRT. For the same target coverage, VMAT can reduce the skin dose in all the regions of the body, but more noticeably in the shoulders in patients with head and neck and pelvis cancer. We also found that using integrated boost regimens in patients with head and neck cancer leads to higher shoulder skin doses compared with traditional boost regimens.« less
Riley, Jeremy; Roth, Joshua D; Howell, Stephen M; Hull, Maury L
2018-01-29
The purposes of this study were to quantify the increase in tibial force imbalance (i.e. magnitude of difference between medial and lateral tibial forces) and changes in laxities caused by 2° and 4° of varus-valgus (V-V) malalignment of the femoral component in kinematically aligned total knee arthroplasty (TKA) and use the results to detemine sensitivities to errors in making the distal femoral resections. Because V-V malalignment would introduce the greatest changes in the alignment of the articular surfaces at 0° flexion, the hypotheses were that the greatest increases in tibial force imbalance would occur at 0° flexion, that primarily V-V laxity would significantly change at this flexion angle, and that the tibial force imbalance would increase and laxities would change in proportion to the degree of V-V malalignment. Kinematically aligned TKA was performed on ten human cadaveric knee specimens using disposable manual instruments without soft tissue release. One 3D-printed reference femoral component, with unmodified geometry, was aligned to restore the native distal and posterior femoral joint lines. Four 3D-printed femoral components, with modified geometry, introduced V-V malalignments of 2° and 4° from the reference component. Medial and lateral tibial forces were measured during passive knee flexion-extension between 0° to 120° using a custom tibial force sensor. Eight laxities were measured from 0° to 120° flexion using a six degree-of-freedom load application system. With the tibial component kinematically aligned, the increase in the tibial force imbalance from that of the reference component at 0° of flexion was sensitive to the degree of V-V malalignment of the femoral component. Sensitivities were 54 N/deg (medial tibial force increasing > lateral tibial force) (p < 0.0024) and 44 N/deg (lateral tibial force increasing > medial tibial force) (p < 0.0077) for varus and valgus malalignments, respectively. Varus-valgus malalignment did not significantly change varus, internal-external rotation, anterior-posterior, and compression-distraction laxities from 0° to 120° flexion. At only 30° of flexion, 4° of varus malalignment increased valgus laxity 1° (p = 0.0014). At 0° flexion, V-V malalignment of the femoral component caused the tibial force imbalance to increase significantly, whereas the laxities were relatively unaffected. Because tibial force imbalance has the potential to adversely affect patient-reported outcomes and satisfaction, surgeons should strive to limit errors in resecting the distal femoral condyles to within ± 0.5 mm which in turn limits the average increase in tibial force imbalance to 68 N. Because laxities were generally unaffected, instability resulting from large increases in laxity is not a clinical concern within the ± 4° range tested. Therapeutic, Level II.
Clinical Presentation of Patients with Symptomatic Anterior Hip Impingement
Knaus, Evan R.; Hunt, Devyani M.; Lesher, John M.; Harris-Hayes, Marcie; Prather, Heidi
2009-01-01
Femoroacetabular impingement (FAI) is considered a cause of labrochondral disease and secondary osteoarthritis. Nevertheless, the clinical syndrome associated with FAI is not fully characterized. We determined the clinical history, functional status, activity status, and physical examination findings that characterize FAI. We prospectively evaluated 51 patients (52 hips) with symptomatic FAI. Evaluation of the clinical history, physical exam, and previous treatments was performed. Patients completed demographic and validated hip questionnaires (Baecke et al., SF-12, Modified Harris hip, and UCLA activity score). The average patient age was 35 years and 57% were male. Symptom onset was commonly insidious (65%) and activity-related. Pain occurred predominantly in the groin (83%). The mean time from symptom onset to definitive diagnosis was 3.1 years. Patients were evaluated by an average 4.2 healthcare providers prior to diagnosis and inaccurate diagnoses were common. Thirteen percent had unsuccessful surgery at another anatomic site. On exam, 88% of the hips were painful with the anterior impingement test. Hip flexion and internal rotation in flexion were limited to an average 97° and 9°, respectively. The patients were relatively active, yet demonstrated restrictions of function and overall health. These data may facilitate diagnosis of this disorder. Level of Evidence: Level II, diagnostic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:19130160
Computer users' postures and associations with workstation characteristics.
Gerr, F; Marcus, M; Ortiz, D; White, B; Jones, W; Cohen, S; Gentry, E; Edwards, A; Bauer, E
2000-01-01
This investigation tested the hypotheses that (1) physical workstation dimensions are important determinants of operator posture, (2) specific workstation characteristics systematically affect worker posture, and (3) computer operators assume "neutral" upper limb postures while keying. Operator head, neck, and upper extremity posture and selected workstation dimensions and characteristics were measured among 379 computer users. Operator postures were measured with manual goniometers, workstation characteristics were evaluated by observation, and workstation dimensions by direct measurement. Considerably greater variability in all postures was observed than was expected from application of basic geometric principles to measured workstation dimensions. Few strong correlations were observed between worker posture and workstation physical dimensions; findings suggest that preference is given to keyboard placement with respect to the eyes (r = 0.60 for association between keyboard height and seated elbow height) compared with monitor placement with respect to the eyes (r = 0.18 for association between monitor height and seated eye height). Wrist extension was weakly correlated with keyboard height (r = -0.24) and virtually not at all with keyboard thickness (r = 0.07). Use of a wrist rest was associated with decreased wrist flexion (21.9 versus 25.1 degrees, p < 0.01). Participants who had easily adjustable chairs had essentially the same neck and upper limb postures as did those with nonadjustable chairs. Sixty-one percent of computer operators were observed in nonneutral shoulder postures and 41% in nonneutral wrist postures. Findings suggest that (1) workstation dimensions are not strong determinants of at least several neck and upper extremity postures among computer operators, (2) only some workstation characteristics affect posture, and (3) contrary to common recommendations, a large proportion of computer users do not work in so-called neutral postures.
[Effects of an hydrotherapy program in the treatment of cervical dystonia. A pilot study].
Useros-Olmo, Ana Isabel; Collado-Vázquez, Susana
2010-12-01
Cervical dystonia may also cause limitation in articulation mobility and alteration of the balance, both accompanied with pain. AIM. To evaluate if hydrotherapy produces decrease of pain, increase in mobility and balance in patients diagnosed with cervical dystonia. A pre-post treatment pilot study was carried out without group control, with a sample of 16 patients (13 female and 3 male) diagnosed with cervical dystonia. The patients received an hydrotherapy treatment consisted of three individual sessions and three grupal sessions of aquatic exercises. In the pre-treatment phase the disability, severity and pain were evaluated by means of the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS); the balance was evaluated by means of the Get up and Go and Tinetti tests. In addition, the range of active mobility of the neck was measured with tape. The test were measured pre and post-treatment. The Student t showed a significant difference (p < 0, 01) in all the values. The range of active mobility of the neck improved in all movements: flexion (1.3 ± 1.0 cm), right lateralization (3.4 ± 1.7 cm) and left (4.0 ± 3.0 cm) and right rotation (1.6 ± 2.5 cm) and left (2.2 ± 1.5 cm). At the same time, all test improved too: Tinetti (3.0 ± 2.2), Get up and Go (2.3 ± 1.6) and TWSTRS (8.4 ± 5.4). The outcomes of this pilot study show that hydrotherapy can be related a positive influence in cervical dystonia, producing neck mobility and balance improvements and pain decrease. Future studies are necessary.
Cheng, Joseph S; Liu, Fei; Komistek, Richard D; Mahfouz, Mohamed R; Sharma, Adrija; Glaser, Diana
2007-11-01
In this cervical spine kinematics study the authors evaluate the motions and forces in the normal, degenerative, and fused states to assess how alteration in the cervical motion segment affects adjacent segment degeneration and spondylosis. Fluoroscopic images obtained in 30 individuals (10 in each group with disease at C5-6) undergoing flexion/extension motions were collected. Kinematic data were obtained from the fluoroscopic images and analyzed with an inverse dynamic mathematical model of the cervical spine that was developed for this analysis. During 20 degrees flexion to 15 degrees extension, average relative angles at the adjacent levels of C6-7 and C4-5 in the fused patients were 13.4 degrees and 8.8 degrees versus 3.7 degrees and 4.8 degrees in the healthy individuals. Differences at C3-4 averaged only about 1 degrees. Maximum transverse forces in the fused spines were two times the skull weight at C6-7 and one times the skull weight at C4-5, compared with 0.2 times the skull weight and 0.3 times the skull weight in the healthy individuals. Vertical forces ranged from 1.6 to 2.6 times the skull weight at C6-7 and from 1.2 to 2.5 times the skull weight at C4-5 in the patients who had undergone fusion, and from 1.4 to 3.1 times the skull weight and from 0.9 to 3.3 times the skull weight, respectively, in the volunteers. Adjacent-segment degeneration may occur in patients with fusion due to increased motions and forces at both adjacent levels when compared with healthy individuals in a comparable flexion and extension range.
Elhassan, Bassem T; Wagner, Eric R; Werthel, Jean-David
2016-08-01
Management of massive irreparable posterior-superior rotator cuff tear can be very challenging. This study reports the outcome of the lower trapezius transfer to reconstruct massive irreparable posterior-superior rotator cuff tear. Included were 33 patients with an average age of 53 years (range, 31-66 years). All patients had symptomatic massive irreparable rotator cuff tear that failed conservative or prior surgical treatment and underwent reconstruction with lower trapezius transfer prolonged by Achilles tendon allograft. The tear was considered irreparable based on the magnetic resonance imaging finding of ≥2 full-thickness rotator cuff tears associated with shortening and retraction of the tendon to the level of the glenoid and a high grade of fatty infiltration of the muscles. This was confirmed at the time of the surgery. At an average follow-up of 47 months, 32 patients had significant improvement in pain, subjective shoulder value, and Disabilities of the Arm, Shoulder and Hand score and shoulder range of motion, including flexion, 120°; abduction, 90°; and external rotation 50°. One patient, with a body mass index of 36 kg/m(2), required débridement for an infection and then later underwent shoulder fusion. Patients with >60° of preoperative flexion had more significant gains in their range of motion. Shoulder external rotation improved in all patients regardless of the extent of the preoperative loss of motion. Transfer of the lower trapezius prolonged with Achilles tendon allograft to reconstruct massive irreparable posterior-superior rotator cuff tear may lead to good outcome in most patients, specifically for those who have preoperative flexion of >60°. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Technical note: estimating absorbed doses to the thyroid in CT.
Huda, Walter; Magill, Dennise; Spampinato, Maria V
2011-06-01
To describe a method for estimating absorbed doses to the thyroid in patients undergoing neck CT examinations. Thyroid doses in anthropomorphic phantoms were obtained for all 23 scanner dosimetry data sets in the ImPACT CT patient dosimetry calculator. Values of relative thyroid dose [R(thy)(L)], defined as the thyroid dose for a given scan length (L) divided by the corresponding thyroid dose for a whole body scan, were determined for neck CT scans. Ratios of the maximum thyroid dose to the corresponding CTDI(vol) and [D'(thy)], were obtained for two phantom diameters. The mass-equivalent water cylinder of any patient can be derived from the neck cross-sectional area and the corresponding average Hounsfield Unit, and compared to the 16.5-cm diameter water cylinder that models the ImPACT anthropomorphic phantom neck. Published values of relative doses in water cylinders of varying diameter were used to adjust thyroid doses in the anthropomorphic phantom to those of any sized patient. Relative thyroid doses R(thy)(L) increase to unity with increasing scan length and with very small difference between scanners. A 10-cm scan centered on the thyroid would result in a dose that is, nearly 90% of the thyroid dose from a whole body scan when performed using the constant radiographic techniques. At 120 kV, the average value of D'(thy) for the 16-cm diameter was 1.17 +/- 0.05 and was independent of CT vendor and year of CT scanner, and choice of x-ray tube voltage. The corresponding average value of D'(thy) in the 32-cm diameter phantom was 2.28 +/- 0.22 and showed marked variations depending on vendor, year of introduction into clinical practice as well as x-ray tube voltage. At 120 kV, a neck equivalent to a 10-cm diameter cylinder of water would have thyroid doses 36% higher than those in the ImPACT phantom, whereas a neck equivalent to a 25-cm cylinder diameter would have thyroid doses 35% lower. Patient thyroid doses can be estimated by taking into account the amount of radiation used to perform the CT examination (CTDI(vol)) and accounting for scan length and patient anatomy (i.e., neck diameter) at the thyroid location.
Kapp, K S; Stuecklschweiger, G F; Kapp, D S; Hackl, A G
1992-07-01
A total of 720 192Ir high-dose-rate (HDR) applications in 331 patients with gynecological tumors were analyzed to evaluate the dose to normal tissues from brachytherapy. Based on the calculations of bladder base, bladder neck, and rectal doses derived from orthogonal films the planned tumor dose or fractionation was altered in 20.4% of intracavitary placements (ICP) for cervix carcinoma and 9.2% of ICP for treatment of the vaginal vault. In 13.8% of intracervical and 8.1% of intravaginal treatments calculated doses to both the bladder and rectum were greater than or equal to 140% of the initially planned dose fraction. Doses at the bladder base were significantly higher than at the bladder neck (p less than 0.001). In 17.5% of ICP the dose to the bladder base was at least twice as high as to the bladder neck. The ratio of bladder base dose to the bladder neck was 1.5 (+/- 1.19 SD) for intracervical and 1.46 (+/- 1.14 SD) for intravaginal applications. The comparison of calculated doses from orthogonal films with in-vivo readings showed a good correlation of rectal doses with a correlation coefficient factor of 0.9556. CT-assisted dosimetry, however, revealed that the maximum doses to bladder and rectum were generally higher than those obtained from films with ratios of 1-1.7 (average: 1.44) for the bladder neck, 1-5.4 (average: 2.42) for the bladder base, and 1.1-2.7 (average: 1.37) for the rectum. When doses to the specified reference points of bladder neck and rectum from orthogonal film dosimetry were compared with the corresponding points on CT scans, similar values were obtained for both methods with a maximum deviation of +/- 10%. Despite the determination of multiple reference points our study revealed that this information was inadequate to predict doses to the entire rectum and bladder. If conventional methods are used for dosimetry it is recommended that doses to the bladder base should be routinely calculated, since single point measurements at the bladder neck seriously underestimate the dose to the bladder. Also the rectal dose should be determined at several points over the length of the implant due to the wide range of anatomic variations possible.
Göpfert, Caroline; Holmberg, Hans-Christer; Stöggl, Thomas; Müller, Erich; Lindinger, Stefan Josef
2013-06-01
Recent developments in cross-country ski racing should promote the use of kick double poling. This technique, however, has not been the focus in athletes' training and has barely been investigated. The aims of the present study were to develop a function-based phase definition and to analyse speed adaptation mechanisms for kick double poling in elite cross-country skiers. Joint kinematics and pole/plantar forces were recorded in 10 athletes while performing kick double poling at three submaximal roller skiing speeds. A speed increase was associated with increases in cycle length and rate, while absolute poling and leg push-off durations shortened. Despite maintained impulses of force, the peak and average pole/leg forces increased. During double poling and leg push-off, ranges of motion of elbow flexion and extension increased (p < 0.05) and were maintained for hip/knee flexion and extension. Cycle length increase was correlated to increases in average poling force (r = 0.71) and arm swing time (r = 0.88; both p < 0.05). The main speed adaptation was achieved by changes in double poling technique; however, leg push-off showed high variability among elite skiers, thus illustrating important aspects for technique training.
NASA Astrophysics Data System (ADS)
Straton, Alexandru; Gidu, Diana Victoria; Micu, Alexandru
2015-02-01
Poor lateral flexor muscle strength can be an important source of lumbar/thoracic back pain in women. The purpose of this study was to evaluate pelvic stabilization (PS) and no pelvic stabilization (NoPS) lateral flexion strength exercise training on the development of isolated right and left lateral flexion strength. Isometric torque of the isolated right and left lateral flexion muscles was measured at two positions (0° and 30° opposed angle range of motion) on 42 healthy women before and after 8 weeks of PS and NoPS lateral flexion strength exercise training. Subjects were assigned in three groups, the first (n=14) trained 3 times/week with PS lateral flexion strength exercise, the second (n=14) trained 3 times/week with NoPS lateral flexion strength exercise and the third (control, n=14) did not train. Post training isometric strength values describing PS and NoPS lateral flexion strength improved in greater extent for the PS lateral flexion strength exercise group and in lesser extent for the NoPS lateral flexion strength exercise group, in both angles (p<0.05) relative to controls. These data indicate that the most effective way of training the spine lateral flexion muscles is PS lateral flexion strength exercises; NoPS lateral flexion strength exercises can be an effective way of training for the spine lateral flexion muscles, if there is no access to PS lateral flexion strength training machines.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-17
... outerwear garments in sizes 2T to 12 or the equivalent that have neck or hood drawstrings, and in sizes 2T to 16 or the equivalent that have waist or bottom drawstrings that do not meet specified criteria... percent. The corresponding reduction in the annual average number of reported non-fatal entrapments is 91...
The short-term effectiveness of balance taping on acute nonspecific low-back pain: A case report.
Lee, Jung-Hoon
2017-12-01
Low back pain has a significant socioeconomic impact. Repetitive lifting, with combined twisting and flexion motions of the lumbar spine, increases the risk for low-back pain and injury to the supporting tissues. A 60-year-old male who presented with acute low-back pain, with a pain intensity of 6/10 on the visual analog scale (VAS) and an Oswestry disability index (ODI) score of 70%. The range of motion (ROM) of the lumbar spine on initial examination, relative to the normal peak ROM, was as follows: extension, 12°/30°; flexion, 15°/80°; left rotation, 15°/45°; and right rotation, 25°/45°. He was diagnosed as acute nonspecific low-back pain sustained with repetitive lifting, combining motions of flexion and twisting. The balance taping was applied for 16 h/day, on average, for 3 consecutive days was used as the primary treatment to manage the patient's low-back pain. The application of balance taping increased the range of motion of the lumbar spine as follows: flexion, from 15° to 77°; extension, from 12° to 27°; right rotation, from 25° to 45°; and left rotation, from 15° to 45°. The ODI score decreased from 70% to 0%, and the VAS score from 6/10 to 0. We propose that balance taping using kinesiology tape could serve as a complementary approach to other treatments for the treatment of acute nonspecific low-back pain. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Mehta, Saurabh; Rigney, Andrew; Webb, Kyle; Wesney, Jacob; Stratford, Paul W; Shuler, Franklin D; Oliashirazi, Ali
2018-06-13
Retrospective analysis of routinely collected clinical data. This study modeled the recovery in knee flexion and extension range of motion (ROM) over 1 year after total knee replacement (TKR). Recovery after TKR has been characterized for self-reported pain and functional status. Literature describing target knee ROM at different follow-up periods after TKR is scarce. Data were extracted for patients who had undergone TKR at a tertiary care hospital at 2, 8, 12, 26, and 52 weeks after TKR. A linear mixed-effects growth model was constructed that investigated the following covariates age, sex, pre-TKR range, body mass index, duration of symptoms, and their interaction with weeks post TKR. Of the 559 patients included (age 64.8 ± 8.5 years), 370 were women and 189 were men. Knee ROM showed the greatest change during the first 12 weeks after TKR, plateauing by 26 weeks. For an average patient, knee flexion increased from approximately 100º 2 weeks post TKR to 117º 52 weeks post TKR. Knee extension increased from approximately 3º knee flexion 2 weeks post TKR to 1º flexion 52 weeks post TKR. The results showed that the maximum gains in knee ROM should be expected within the first 12 weeks with small changes occurring up to 26 weeks after TKR. In addition, age and presurgery knee ROM are associated with the gains in knee ROM and should be factored into the estimation of expected knee ROM at a given follow-up interval after TKR.
Gade, Venkata; Allen, Jerome; Cole, Jeffrey L; Barrance, Peter J
2016-07-01
To characterize the ability of patients with symptomatic knee osteoarthritis (OA) to perform a weight-bearing activity compatible with upright magnetic resonance imaging (MRI) scanning and how this ability is affected by knee pain symptoms and flexion angles. Cross-sectional observational study assessing effects of knee flexion angle, pain level, and study sequence on accuracy and duration of performing a task used in weight-bearing MRI evaluation. Visual feedback of knee position from an MRI compatible sensor was provided. Pain levels were self-reported on a standardized scale. Simulated MRI setup in a research laboratory. Convenience sample of individuals (N=14; 9 women, 5 men; mean, 69±14y) with symptomatic knee OA. Not applicable. Averaged absolute and signed angle error from target knee flexion for each minute of trial and duration tolerance (the duration that subjects maintained position within a prescribed error threshold). Absolute targeting error increased at longer trial durations (P<.001). Duration tolerance decreased with increasing pain (mean ± SE, no pain: 3min 19s±11s; severe pain: 1min 49s±23s; P=.008). Study sequence affected duration tolerance (first knee: 3min 5s±9.1s; second knee: 2min 19s±9.7s; P=.015). The study provided evidence that weight-bearing MRI evaluations based on imaging protocols in the range of 2 to 3 minutes are compatible with patients reporting mild to moderate knee OA-related pain. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
A Biomechanical Comparison of Distal Fixation for Bridge Plating in a Distal Radius Fracture Model.
Alluri, Ram K; Bougioukli, Sofia; Stevanovic, Milan; Ghiassi, Alidad
2017-09-01
To compare the biomechanical properties of second versus third metacarpal distal fixation when using a radiocarpal spanning distraction plate in an unstable distal radius fracture model. Biomechanical evaluation of the radiocarpal spanning distraction plate comparing second versus third metacarpal distal fixation was performed using a standardized model of an unstable wrist fracture in 10 matched-pair cadaveric specimens. Each fixation construct underwent a controlled cyclic loading protocol in flexion and extension. The resultant displacement and stiffness were calculated at the fracture site. After cyclic loading, each specimen was loaded to failure. The stiffness, maximum displacement, and load to failure were compared between the 2 groups. Cyclic loading in flexion demonstrated that distal fixation to the third metacarpal resulted in greater stiffness compared with the second metacarpal. There was no significant difference between the 2 groups with regards to maximum displacement at the fracture site in flexion. Cyclic loading in extension demonstrated no significant difference in stiffness or maximum displacement between the 2 groups. The average load to failure was similar for both groups. Fixation to the third metacarpal resulted in greater stiffness in flexion. All other biomechanical parameters were similar when comparing distal fixation to the second or third metacarpal in distal radius fractures stabilized with a spanning internal distraction plate. The treating surgeon should choose distal metacarpal fixation primarily based on fracture pattern, alignment, and soft tissue integrity. If a stiffer construct is desired, placement of the radiocarpal spanning plate at the third metacarpal is preferred. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Screw-blade fixation systems in Pauwels three femoral neck fractures: a biomechanical evaluation.
Knobe, Matthias; Altgassen, Simon; Maier, Klaus-Jürgen; Gradl-Dietsch, Gertraud; Kaczmarek, Chris; Nebelung, Sven; Klos, Kajetan; Kim, Bong-Sung; Gueorguiev, Boyko; Horst, Klemens; Buecking, Benjamin
2018-02-01
To reduce mechanical complications after osteosynthesis of femoral neck fractures, improved fixation techniques have been developed including blade or screw-anchor devices. This biomechanical study compares different fixation systems used for treatment of unstable femoral neck fractures with evaluation of failure mode, load to failure, stiffness, femoral head rotation, femoral neck shortening and femoral head migration. Standardized Pauwels type 3 fractures (AO/OTA 31-B2) with comminution were created in 18 biomechanical sawbones using a custom-made sawguide. Fractures were stabilized using either SHS-Screw, SHS-Blade or Rotationally Stable Screw-Anchor (RoSA). Femurs were positioned in 25 degrees adduction and ten degrees posterior flexion and were cyclically loaded with an axial sinusoidal loading pattern of 0.5 Hz, starting with 300 N, with an increase by 300 N every 2000 cycles until bone-implant failure occurred. Mean failure load for the Screw-Anchor fixation (RoSA) was 5100 N (IQR 750 N), 3900 N (IQR 75 N) for SHS-Blade and 3000 N (IQR 675 N; p = 0.002) for SHS-Screw. For SHS-Screw and SHS-Blade we observed fracture displacement with consecutive fracture collapse as the main reason for failure, whereas RoSA mainly showed a cut-out under high loadings. Mean stiffness at 1800 N was 826 (IQR 431) N/mm for SHS-Screw, 1328 (IQR 441) N/mm for SHS-Blade and 1953 (IQR 617) N/mm for RoSA (p = 0.003). With a load of 1800 N (SHS-Screw 12° vs. SHS-Blade 7° vs. RoSA 2°; p = 0.003) and with 2700 N (24° vs. 15° vs. 3°; p = 0.002) the RoSA implants demonstrated a higher rotational stability and had the lowest femoral neck shortening (p = 0.002), compared with the SHS groups. At the 2700 N load point, RoSA systems showed a lower axial (p = 0.019) and cranial (p = 0.031) femoral head migration compared to the SHS-Screw. In our study, the new Screw-Anchor fixation (RoSA) was superior to the comparable SHS implants regarding rotational stability and femoral neck shortening. Failure load, stiffness, femoral head migration, and resistance to fracture displacement were in RoSA implants higher than in SHS-Screws, but without significance in comparison to SHS-Blades.
Assessment of musculoskeletal impairment in head and neck cancer patients.
Ghiam, Michael K; Mannion, Kyle; Dietrich, Mary S; Stevens, Kristen L; Gilbert, Jill; Murphy, Barbara A
2017-07-01
This study aims to describe the types of musculoskeletal impairment in head and neck cancer survivors and to evaluate objective and subjective measures of musculoskeletal impairment and identify areas of need in future studies. This is a cross-sectional pilot study of 29 head and neck cancer patients who were treated with resection and reconstruction. Subjective measures of musculoskeletal impairment (Neck Disability Index, Shoulder Pain and Disability Index, Vanderbilt Head and Neck Symptom Survey, General Symptom Survey) were collected and compared to objective measures (Cervical Range of Motion Device, Inter-incisal Distance). Digital photography was used to assess the severity of postural abnormalities. Findings were summarized using descriptive statistical and graphical methods. The majority of patients in this cohort suffered from neck disability (69%). Thirty-five percent of patients had shoulder pain and disability. Cervical range of motion deficits were observed in all directions. Inter-incisal distance averaged 33.4 mm and inversely correlated with self-reported jaw and trismus symptoms. Digital photography identified shoulder misalignment in 93% of subjects, head tilt in 89% of subjects, and postural deviation in 68% of subjects. Musculoskeletal impairment is a significant side effect in head and neck cancer survivors that results in chronic neck pain, shoulder disability, trismus, and postural deficits. Tools to describe postural deficits are needed.
Musculotendon and fascicle strains in anterior and posterior neck muscles during whiplash injury.
Vasavada, Anita N; Brault, John R; Siegmund, Gunter P
2007-04-01
A biomechanical neck model combined with subject-specific kinematic and electromyographic data were used to calculate neck muscle strains during whiplash. To calculate the musculotendon and fascicle strains during whiplash and to compare these strains to published muscle injury thresholds. Previous work has shown potentially injurious musculotendon strains in sternocleidomastoid (SCM) during whiplash, but neither the musculotendon strains in posterior cervical muscles nor the fascicle strains in either muscle group have been examined. Experimental human subject data from rear-end automobile impacts were integrated with a biomechanical model of the neck musculoskeletal system. Subject-specific head kinematic data were imposed on the model, and neck musculotendon and fascicle strains and strain rates were computed. Electromyographic data from the sternocleidomastoid and the posterior cervical muscles were compared with strain data to determine which muscles were being eccentrically contracted. SCM experienced lengthening during the retraction phase of head/neck kinematics, whereas the posterior muscles (splenius capitis [SPL], semispinalis capitis [SEMI], and trapezius [TRAP]) lengthened during the rebound phase. Peak SCM fascicle lengthening strains averaged (+/-SD) 4% (+/-3%) for the subvolumes attached to the mastoid process and 7% (+/-5%) for the subvolume attached to the occiput. Posteriorly, peak fascicle strains were 21% (+/-14%) for SPL, 18% (+/-16%) for SEMI, and 5% (+/-4%) for TRAP, with SPL strains significantly greater than calculated in SCM or TRAP. Fascicle strains were, on average, 1.2 to 2.3 times greater than musculotendon strains. SCM and posterior muscle activity occurred during intervals of muscle fascicle lengthening. The cervical muscle strains induced during a rear-end impact exceed the previously-reported injury threshold for a single stretch of active muscle. Further, the larger strains experienced by extensor muscles are consistent with clinical reports of pain primarily in the posterior cervical region following rear-end impacts.
Bozzetto Ambrosi, Patricia; Sivan-Hoffmann, Rotem; Riva, Roberto; Signorelli, Francesco; Labeyrie, Paul-Emile; Eldesouky, Islam; Sadeh-Gonike, Udi; Armoiry, Xavier; Turjman, Francis
2015-01-01
Background The WEB device is a recent intrasaccular flow disruption technique developed for the treatment of wide-necked intracranial aneurysms. To date, a single report on the WEB Single-Layer (SL) treatment of intracranial aneurysms has been published with 1-months' safety results. The aim of this study is to report our experience and 6-month clinical and angiographic follow-up of endovascular treatment of wide-neck aneurysm with the WEB SL. Methods Ten patients with 10 unruptured wide-necked aneurysms were prospectively enrolled in this study. Feasibility, intraoperative and postoperative complications, and outcomes were recorded. Immediate and 6-month clinical and angiographic results were evaluated. Results Failure of WEB SL placement occurred in two cases. Eight aneurysms were successfully treated using one WEB SL without additional treatment. Three middle cerebral artery, four anterior communicating artery, and one basilar artery aneurysms were treated. Average dome width was 7.5 mm (range 5.4–10.7 mm), and average neck size was 4.9 mm (range 2.6–6.5 mm). No periprocedural complication was observed, and morbi-mortality at discharge and 6 months was 0.0%. Angiographic follow-up at 6 months demonstrated complete aneurysm occlusion in 2/8 aneurysms, neck remnant in 5/8 aneurysms, and aneurysm remnant in 1/8 aneurysm. Conclusions From this preliminary study, treatment of bifurcation intracranial aneurysms using WEB SL is feasible. WEB SL treatment seems safe at 6 months; however, the rate of neck remnants is not negligible due to compression of the WEB SL. Further technical improvements may be needed in order to ameliorate the occlusion in the WEB SL treatment. PMID:26111987
Neck pain in children: a retrospective case series.
Cox, Jocelyn; Davidian, Christine; Mior, Silvano
2016-09-01
Spinal pain in the paediatric population is a significant health issue, with an increasing prevalence as they age. Paediatric patients attend for chiropractor care for spinal pain, yet, there is a paucity of quality evidence to guide the practitioner with respect to appropriate care planning. A retrospective chart review was used to describe chiropractic management of paediatric neck pain. Two researchers abstracted data from 50 clinical files that met inclusion criteria from a general practice chiropractic office in the Greater Toronto Area, Canada. Data were entered into SPSS 15 and descriptively analyzed. Fifty paediatric neck pain patient files were analysed. Patients' age ranged between 6 and 18 years (mean 13 years). Most (98%) were diagnosed with Grade I-II mechanical neck pain. Treatment frequency averaged 5 visits over 19 days; with spinal manipulative therapy used in 96% of patients. Significant improvement was recorded in 96% of the files. No adverse events were documented. Paediatric mechanical neck pain appears to be successfully managed by chiropractic care. Spinal manipulative therapy appears to benefit paediatric mechanical neck pain resulting from day-today activities with no reported serious adverse events. Results can be used to inform clinical trials assessing effectiveness of manual therapy in managing paediatric mechanical neck pain.
Versteegen, G J; Kingma, J; Meijler, W J; ten Duis, H J
1998-01-01
During the 25-year period 1970-1994 694 patients were diagnosed with neck sprain resulting from a car accident at the Emergency Room of the University Hospital Groningen. The purpose of the present study was to analyse the prevalence, groups at risk and trends in these patients, taking into account changes in the number of cars per inhabitant and the average number of kilometres driven. We defined the population as car accident victims diagnosed with neck sprain. Binominal tests were used to obtain measures of statistical significance. Over the 25-year period a steady increase in the number of these patients was observed, from 10 in 1970 to 122 in 1994. The highest prevalence was found for the age group 25- to 29-year olds (28.3 per 100,000), followed by 40- to 44-year-olds (27.9 per 100,000). Across the life span, the male: female ratio was 1: 0.98. Eight percent of the victims were treated as inpatients. The increase in the number of car accident victims with neck sprain appears not to be an isolated phenomenon, because a parallel rise in the number of cars per inhabitant and in the average number of kilometres driven was found. No direct relation was observed between seat belt legislation and the increase in neck sprain injuries. The effect of the media on awareness of the consequences of car accidents is discussed.
Wong, Kevin; Levi, Jessica R
2017-01-01
Objective Previous studies have shown that patient education materials published by the American Academy of Otolaryngology-Head and Neck Surgery Foundation may be too difficult for the average reader to understand. The purpose of this study was to determine if current educational materials show improvements in readability. Study Design Cross-sectional analysis. Setting The Patient Health Information section of the American Academy of Otolaryngology-Head and Neck Surgery Foundation website. Subjects and Methods All patient education articles were extracted in plain text. Webpage navigation, references, author information, appointment information, acknowledgments, and disclaimers were removed. Follow-up editing was also performed to remove paragraph breaks, colons, semicolons, numbers, percentages, and bullets. Readability grade was calculated with the Flesch-Kincaid Grade Level, Flesch Reading Ease, Gunning-Fog Index, Coleman-Liau Index, Automated Readability Index, and Simple Measure of Gobbledygook. Intra- and interobserver reliability were assessed. Results A total of 126 articles from 7 topics were analyzed. Readability levels across all 6 tools showed that the difficulty of patient education materials exceeded the abilities of an average American. As compared with previous studies, current educational materials by the American Academy of Otolaryngology-Head and Neck Surgery Foundation have shown a decrease in difficulty. Intra- and interobserver reliability were both excellent, with intraclass coefficients of 0.99 and 0.96, respectively. Conclusion Improvements in readability is an encouraging finding and one that is consistent with recent trends toward improved health literacy. Nevertheless, online patient educational material is still too difficult for the average reader. Revisions may be necessary for current materials to benefit a larger readership.
Adjacent-level arthroplasty following cervical fusion.
Rajakumar, Deshpande V; Hari, Akshay; Krishna, Murali; Konar, Subhas; Sharma, Ankit
2017-02-01
OBJECTIVE Adjacent-level disc degeneration following cervical fusion has been well reported. This condition poses a major treatment dilemma when it becomes symptomatic. The potential application of cervical arthroplasty to preserve motion in the affected segment is not well documented, with few studies in the literature. The authors present their initial experience of analyzing clinical and radiological results in such patients who were treated with arthroplasty for new or persistent arm and/or neck symptoms related to neural compression due to adjacent-segment disease after anterior cervical discectomy and fusion (ACDF). METHODS During a 5-year period, 11 patients who had undergone ACDF anterior cervical discectomy and fusion (ACDF) and subsequently developed recurrent neck or arm pain related to adjacent-level cervical disc disease were treated with cervical arthroplasty at the authors' institution. A total of 15 devices were implanted (range of treated levels per patient: 1-3). Clinical evaluation was performed both before and after surgery, using a visual analog scale (VAS) for pain and the Neck Disability Index (NDI). Radiological outcomes were analyzed using pre- and postoperative flexion/extension lateral radiographs measuring Cobb angle (overall C2-7 sagittal alignment), functional spinal unit (FSU) angle, and range of motion (ROM). RESULTS There were no major perioperative complications or device-related failures. Statistically significant results, obtained in all cases, were reflected by an improvement in VAS scores for neck/arm pain and NDI scores for neck pain. Radiologically, statistically significant increases in the overall lordosis (as measured by Cobb angle) and ROM at the treated disc level were observed. Three patients were lost to follow-up within the first year after arthroplasty. In the remaining 8 cases, the duration of follow-up ranged from 1 to 3 years. None of these 8 patients required surgery for the same vertebral level during the follow-up period. CONCLUSIONS Artificial cervical disc replacement in patients who have previously undergone cervical fusion surgery appears to be safe, with encouraging early clinical results based on this small case series, but more data from larger numbers of patients with long-term follow-up are needed. Arthroplasty may provide an additional tool for the management of post-fusion adjacent-level cervical disc disease in carefully selected patients.
Tacani, Pascale Mutti; Franceschini, Juliana Pereira; Tacani, Rogério Eduardo; Machado, Aline Fernanda Perez; Montezello, Débora; Góes, João Carlos Guedes Sampaio; Marx, Angela
2016-02-01
Secondary lymphedema after head and neck cancer treatment is a serious complication and its management can be a challenge. The purpose of this study was to verify which physical therapy modalities were applied in the treatment of head and neck lymphedema through a retrospective analysis. A retrospective study was developed, based on the analysis of medical records of 32 patients treated in the physiotherapy outpatient department of the Brazilian Institute of Cancer Control (IBCC). The physiotherapy included manual lymphatic drainage, massage, exercises, patient education, and compression therapy with an average of 23.9 ± 14.8 sessions. Measurement results showed a significant reduction of face and neck lymphedema (p < .05) and pain (from 7.8 ± 2.2 to 3.6 ± 1.6; p < .001). The physical therapy modalities based on strategic manual lymphatic drainage, shoulder girdle massage, facial, tongue and neck exercises, compressive therapy at home, and patient education showed reduction of the lymphedema and pain, both of them secondary to head and neck cancer treatment. © 2014 Wiley Periodicals, Inc.
Fisher, Harry; Stephenson, Mitchell L; Graves, Kyle K; Hinshaw, Taylour J; Smith, Derek T; Zhu, Qin; Wilson, Margaret A; Dai, Boyi
2016-06-01
Decreased knee flexion angles during landing are associated with increased anterior cruciate ligament loading. The underlying mechanisms associated with decreased self-selected knee flexion angles during landing are still unclear. The purpose of this study was to establish the relationship between the peak force production at various knee flexion angles (35, 55, 70, and 90°) during isometric squats and the actual knee flexion angles that occur during landing in both men and women. A total of 18 men and 18 women recreational/collegiate athletes performed 4 isometric squats at various knee flexion angles while vertical ground reaction forces were recorded. Participants also performed a jump-landing-jump task while lower extremity kinematics were collected. For women, significant correlations were found between the peak force production at 55 and 70° of knee flexion during isometric squats and the knee flexion angle at initial contact of landing. There were also significant correlations between the peak force production at 55, 70, and 90° of knee flexion during isometric squats and the peak knee flexion angle during landing. These correlations tended to be stronger during isometric squats at greater knee flexion compared with smaller knee flexion. No significant correlations were found for men. Posture-specific strength may play an important role in determining self-selected knee flexion angles during landing for women.
Shoulder internal rotation elbow flexion test for diagnosing cubital tunnel syndrome.
Ochi, Kensuke; Horiuchi, Yukio; Tanabe, Aya; Waseda, Makoto; Kaneko, Yasuhito; Koyanagi, Takahiro
2012-06-01
Shoulder internal rotation enhances symptom provocation attributed to cubital tunnel syndrome. We present a modified elbow flexion test--the shoulder internal rotation elbow flexion test--for diagnosing cubital tunnel syndrome. Fifty-five ulnar nerves in cubital tunnel syndrome patients and 123 ulnar nerves in controls were examined with 5 seconds each of elbow flexion, shoulder internal rotation, and shoulder internal rotation elbow flexion tests before and after treatment (surgery in 18; conservative in others). For the shoulder internal rotation elbow flexion test position, 90° abduction, maximum internal rotation, and 10° flexion of the shoulder were combined with the elbow flexion test position. The test was considered positive if any symptom for cubital tunnel syndrome developed <5 seconds. Influence of the shoulder internal rotation elbow flexion test was evaluated by nerve conduction studies in 10 cubital tunnel syndrome nerves and 7 control nerves. The sensitivities/specificities of the 5-second elbow flexion, shoulder internal rotation, and shoulder internal rotation elbow flexion tests were 25%/100%, 58%/100%, and 87%/98%, respectively. Sensitivity differences between the shoulder internal rotation elbow flexion test and the other two tests were significant. Shoulder internal rotation elbow flexion test results and cubital tunnel syndrome symptoms were significantly correlated. Influence of the shoulder internal rotation elbow flexion test on the ulnar nerve was seen in 8 of 10 cubital tunnel syndrome nerves but not in controls. The 5-second shoulder internal rotation elbow flexion test is specific, easy and quick provocative test for diagnosing cubital tunnel syndrome. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Nakano, Naoki; Matsumoto, Tomoyuki; Muratsu, Hirotsugu; Takayama, Koji; Kuroda, Ryosuke; Kurosaka, Masahiro
2016-02-01
Although many studies have reported that postoperative knee flexion is influenced by preoperative conditions, the factors which affect postoperative knee flexion have not been fully elucidated. We tried to investigate the influence of intraoperative soft tissue balance on postoperative knee flexion angle after cruciate-retaining (CR) total knee arthroplasty (TKA) using a navigation and an offset-type tensor. We retrospectively analyzed 55 patients with osteoarthritis who underwent TKA using e.motion-CR (B. Braun Aesculap, Germany) whose knee flexion angle could be measured at 2 years after operation. The exclusion criteria included valgus deformity, severe bony defect, infection, and bilateral TKA. Intraoperative varus ligament balance and joint component gap were measured with the navigation (Orthopilot 4.2; B. Braun Aesculap) while applying 40-lb joint distraction force at 0° to 120° of knee flexion using an offset-type tensor. Correlations between the soft tissue parameters and postoperative knee flexion angle were analyzed using simple linear regression models. Varus ligament balance at 90° of flexion (R = 0.56; P < .001) and lateral compartment gap at 90° of flexion (R = 0.51; P < .001) were positively correlated with postoperative knee flexion angle. In addition, as with past studies, joint component gap at 90° of flexion (R = 0.30; P < .05) and preoperative knee flexion angle (R = 0.63; P < .001) were correlated with postoperative knee flexion angle. Lateral laxity as well as joint component gap at 90° of flexion is one of the most important factors affecting postoperative knee flexion angle in CR-TKA. Copyright © 2016 Elsevier Inc. All rights reserved.
External stent for repair of secondary tracheomalacia.
Johnston, M R; Loeber, N; Hillyer, P; Stephenson, L W; Edmunds, L H
1980-09-01
Tracheomalacia was created in anesthetized piglets by submucosal resection of 3 to 5 tracheal cartilages. Measurements of airway pressure and flow showed that expiratory airway resistance is maximal at low lung volumes and is significantly increased by creation of the malacic segment. Cervical flexion increases expiratory airway resistance, whereas hyperextension of the neck reduces resistance toward normal. External stenting of the malacic segment reduces expiratory airway resistance, and the combination of external stenting and hyperextension restores airway resistance to normal except at low lung volume. Two patients with secondary tracheomalacia required tracheostomy and could not be decannulated after the indication for the tracheostomy was corrected. Both were successfully decannulated after external stenting of the malacic segment with rib grafts. Postoperative measurements of expiratory pulmonary resistance show a marked decrease from preoperative measurements. External stenting of symptomatic tracheomalacia reduces expiratory airway resistance by supporting and stretching the malacic segment and is preferable to prolonged internal stenting or tracheal resection.
Effects of a two-school-year multifactorial back education program in elementary schoolchildren.
Geldhof, Elisabeth; Cardon, Greet; De Bourdeaudhuij, Ilse; De Clercq, Dirk
2006-08-01
A quasi-experimental pre/post design. To investigate effects of a 2-school-year multifactorial back education program on back posture knowledge and postural behavior in elementary schoolchildren. Additionally, self-reported back or neck pain and fear-avoidance beliefs were evaluated. Epidemiologic studies report mounting nonspecific back pain prevalence among youngsters, characterized by multifactorial risk factors. Study findings of school-based interventions are promising. Furthermore, biomechanical discomfort is found in the school environment. The study sample included 193 intervention children and 172 controls (baseline, 9-to-11-year-olds). The multifactorial intervention consisted of a back education program and the stimulation of postural dynamism in the class through support and environmental changes. Evaluation consisted of a questionnaire, an observation of postural behavior in the classroom, and an observation of material handling during a movement session. The intervention resulted in increased back posture knowledge (P < 0.001), improved postural behavior during material handling (P < 0.001), and decreased duration of trunk flexion (P < 0.05) and neck torsion (P < 0.05) during lesson time. The intervention did not change fear-avoidance beliefs. There was a trend for decreased pain reports in boys of the intervention group (P < 0.09). The intervention resulted in improved postural aspects related to spinal loading. The long-term effect of improved postural behavior at young age on back pain prevalence later in life is of interest for future research.
Cantarero-Villanueva, I; Fernández-Lao, C; Fernández-DE-Las-Peñas, C; Díaz-Rodríguez, L; Sanchez-Cantalejo, E; Arroyo-Morales, M
2011-09-01
The aim of the current study was to investigate the relationship between pressure pain thresholds, shoulder movement, mood state, pain perception, muscle endurance, quality of life and fatigue in breast cancer survivors (BCS). Fifty-nine BCS reporting fatigue were examined at 6 months post-treatment. Women completed the Piper Fatigue Scale, the Breast Cancer-Specific Quality of Life Questionnaire, the Profile of Mood State, and neck-shoulder visual analogue scale. Additionally, shoulder flexion range of motion, the McQuade test (trunk flexor endurance) and pressure pain thresholds over the C5-C6 joint, the deltoid muscle, the second metacarpal and tibialis anterior muscle were assessed. Fatigue was greater in those patients with higher depression (r= 0.45, P < 0.05), higher shoulder pain (r= 0.39, P < 0.05), higher neck pain (r= 0.46, P < 0.01), lower body image (r=-0.34, P < 0.05) and reduced shoulder movement (r=-0.32, P < 0.05). Regression analyses demonstrated that depression, cervical pain intensity, body image and shoulder mobility were associated with fatigue (r= 0.55, P < 0.001). A psychological state characterised with higher depression and reduced body image and a physical impairment with higher cervical pain intensity and reduced shoulder mobility confirm multidimensional character of fatigue in BCS. © 2011 Blackwell Publishing Ltd.
Nonoperative Management of Craniocervical Ligamentous Distraction Injury: Literature Review.
Kaplan, Nathan B; Molinari, Christine; Molinari, Robert W
2015-12-01
Study Design Literature review and case report. Objective Review the existing literature and report the successful nonoperative management of a two-level craniocervical ligamentous distraction injury. Methods A PubMed and Medline review revealed only three limited reports involving the nonoperative management of patients with craniocervical distraction injury. This article reviews the existing literature and reports the case of a 27-year-old man who was involved in a motorcycle accident and sustained multiple systemic injuries and ligamentous distraction injuries to both occipitocervical joints and both C1-C2 joints. The patient's traumatic brain injury and bilateral pulmonary contusions precluded safe operative management of the two-level craniocervical distraction injury. Therefore, the patient was placed in a halo immobilization device. Results The literature remains unclear as to the specific indications for nonoperative management of ligamentous craniocervical injuries. Nonoperative management was associated with poor outcomes in the majority of reported patients. We report a patient who was managed for 6 months in a halo device. Posttreatment computed tomography and flexion-extension radiographs demonstrated stable occipitocervical and C1-C2 joints bilaterally. The patient reported minimal neck pain and had excellent functional outcome with a Neck Disability Index score of 2 points at 41 months postoperatively. He returned to preinjury level of employment without restriction. Conclusions Further study is needed to determine which craniocervical injuries may be managed successfully with nonoperative measures.
Barton, Blair M; Riley, Charles A; Pou, Jason D; Hasney, Christian P; Moore, Brian A
2018-01-01
The submental island flap (SIF) is a pedicled flap based upon the submental artery and vein. Its utility in reconstruction following ablative head and neck procedures has been applied to various subsites including skin, lip, buccal mucosa, retromolar trigone, parotidectomy defects, and tongue. We review our experience using the SIF for reconstruction following tumor ablation. This prospective case series with medical record review includes consecutive patients undergoing SIF reconstruction following ablative surgery for malignancy at a single tertiary care facility between November 2014 and November 2016. We examined preoperative variables, surgical procedures, and postoperative outcomes. Thirty-seven patients met inclusion criteria. Twenty-nine were male; the average age was 64.3 (±12.4) years. Seventeen cancers involved the oral cavity, 11 involved the skin, 8 were in the oropharynx, and 1 was in the paranasal sinus. The average size of the SIF was 38.8 cm 2 (±17.6 cm 2 ). Four partial flap losses occurred; none required revision surgery. The average length of stay for these patients was 7.2 (±6.1) days. The SIF is a robust flap that can be reliably used for a variety of head and neck defects following tumor ablation with an acceptable rate of donor- and flap-related complications.
Mourad, Moustafa; Saman, Masoud; Ducic, Yadranko
2015-11-01
The goal of the study was to determine the role of internal jugular vein (IJV) to external jugular vein (EJV) bypass grafting in the setting of bilateral radical neck dissection with IJV sacrifice. The study group consisted of eight patients who underwent bilateral radical neck dissection with IJV sacrifice. Demographic and oncologic parameters were defined for each patient, including age, gender, and pathology. Patients were monitored and evaluated for potential effects of increased intracranial pressure (ICP). Doppler ultrasonic evaluation was performed to assess patency of the site of anastamoses. In all, six patients underwent unilateral bypass grafting, whereas two patients underwent bilateral bypass grafts. Average age at time of surgery was 68.2 (range 56-71). Postoperatively, no sequelae of increased ICP were noted. Follow-up ultrasonic evaluation revealed patent vessels in all patients. We presently report on the use of EJV-to-IJV bypass grafting for all patients undergoing bilateral radical neck dissection for extensive neck disease. 4. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Penoncello, Gregory P; Ding, George X
2016-01-01
The purpose of this study was (1) to evaluate dose to skin between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques for target sites in the head and neck, pelvis, and brain and (2) to determine if the treatment dose and fractionation regimen affect the skin dose between traditional sequential boost and integrated boost regimens for patients with head and neck cancer. A total of 19 patients and 48 plans were evaluated. The Eclipse (v11) treatment planning system was used to plan therapy in 9 patients with head and neck cancer, 5 patients with prostate cancer, and 5 patients with brain cancer with VMAT and static-field IMRT. The mean skin dose and the maximum dose to a contiguous volume of 2cm(3) for head and neck plans and brain plans and a contiguous volume of 5cm(3) for pelvis plans were compared for each treatment technique. Of the 9 patients with head and neck cancer, 3 underwent an integrated boost regimen. One integrated boost plan was replanned with IMRT and VMAT using a traditional boost regimen. For target sites located in the head and neck, VMAT reduced the mean dose and contiguous hot spot most noticeably in the shoulder region by 5.6% and 5.4%, respectively. When using an integrated boost regimen, the contiguous hot spot skin dose in the shoulder was larger on average than a traditional boost pattern by 26.5% and the mean skin dose was larger by 1.7%. VMAT techniques largely decrease the contiguous hot spot in the skin in the pelvis by an average of 36% compared with IMRT. For the same target coverage, VMAT can reduce the skin dose in all the regions of the body, but more noticeably in the shoulders in patients with head and neck and pelvis cancer. We also found that using integrated boost regimens in patients with head and neck cancer leads to higher shoulder skin doses compared with traditional boost regimens. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Kim, Min-Hee; Yoo, Won-Gyu
2013-05-01
[Purpose] The purpose of this study was to compare the hamstring muscle (HAM) activities and flexion-relaxation ratios of an asymptomatic group and a computer work-related low back pain (LBP) group. [Subjects] For this study, we recruited 10 asymptomatic computer workers and 10 computer workers with work-related LBP. [Methods] We measured the RMS activity of each phase (flexion, full-flexion, and re-extension phase) of trunk flexion and calculated the flexion-relaxation (FR) ratio of the muscle activities of the flexion and full-flexion phases. [Results] In the computer work-related LBP group, the HAM muscle activity increased during the full-flexion phase compared to the asymptomatic group, and the FR ration was also significantly higher. [Conclusion] We thought that prolonged sitting of computer workers might cause the change in their HAM muscle activity pattern.
Hosseini, Ali; Qi, Wei; Tsai, Tsung-Yuan; Liu, Yujie; Rubash, Harry; Li, Guoan
2014-01-01
Purpose The knowledge of the function of the collateral ligaments – i.e., superficial medial collateral ligament (sMCL), deep medial collateral ligament (dMCL) and lateral collateral ligament (LCL) – in the entire range of knee flexion is important for soft tissue balance during total knee arthroplasty. The objective of this study was to investigate the length changes of different portions (anterior, middle and posterior) of the sMCL, dMCL and LCL during in vivo weightbearing flexion from full extension to maximal knee flexion. Methods Using a dual fluoroscopic imaging system eight healthy knees were imaged while performing a lunge from full extension to maximal flexion. The length changes of each portion of the collateral ligaments were measured along the flexion path of the knee. Results All anterior portions of the collateral ligaments were shown to have increasing length with flexion except that of the sMCL which showed a reduction in length at high flexion. The middle portions showed minimal change in lengths except that of the sMCL which showed a consistent reduction in length with flexion. All posterior portions showed reduction in lengths with flexion. Conclusions These data indicated that every portion of the ligaments may play important roles in knee stability at different knee flexion range. The soft tissue releasing during TKA may need to consider the function of the ligament portions along the entire flexion path including maximum flexion. PMID:25239504
Yoon, Ji-yeon; Kim, Ji-won; Kang, Min-hyeok; An, Duk-hyun; Oh, Jae-seop
2015-01-01
Forward bending is frequently performed in daily activities. However, excessive lumbar flexion during forward bending has been reported as a risk factor for low back pain. Therefore, we examined the effects of an exercise strategy using a stick on the angular displacement and movement onset of lumbar and hip flexion during forward-bending exercises in patients with lumbar flexion syndrome. Eighteen volunteers with lumbar flexion syndrome were recruited in this study. Subjects performed forward-bending exercises with and without a straight stick in standing. The angular displacement and movement onset of lumbar and hip flexion during forward-bending exercises were measured by using a three dimensional motion analysis system. The significances of differences between the two conditions (with stick vs. without stick) was assessed using a one-way repeated analysis of variance. When using a stick during a forward-bending exercise, the peak angular displacement of lumbar flexion decreased significantly, and those of right and left-hip flexion increased significantly compared with those without a stick. The movement onset of lumbar flexion occurred significantly later, and the onset of right-hip flexion occurred significantly earlier with than without a stick. Based on these findings, a stick exercise was an effective method to prevent excessive lumbar flexion and more helpful in developing hip flexion during a forward-bending exercise. These findings will be useful for clinicians to teach self-exercise during forward bending in patients with lumbar flexion syndrome.
Delayed surgical treatment for neglected or mal-reduced talar fractures.
Huang, Peng-Ju; Cheng, Yuh-Min
2005-10-01
From 1993 to 2002, we treated nine patients for neglected or mal-reduced talar fractures. Average patient age was 39 (20-64) years and average follow-up 53 months. The time interval between injury and index operation ranged from 4 weeks to 4 years. Surgical procedures included open reduction with or without bone grafting in six cases, open reduction combined with ankle fusion in one case, talar neck osteotomy in one case, and talar neck osteotomy combined with subtalar fusion in one case. All cases had solid bone union. One patient developed avascular necrosis of the talus needing subsequent ankle arthrodesis. In six patients, adjacent hindfoot arthrosis occurred. The overall AOFAS ankle-hindfoot score was in average 77.4. We conclude that in neglected and mal-reduced talar fractures, surgical treatment can lead to a favourable outcome if the hindfoot joints are not arthritic.
Predictors of Persistent Axial Neck Pain After Cervical Laminoplasty.
Kimura, Atsushi; Shiraishi, Yasuyuki; Inoue, Hirokazu; Endo, Teruaki; Takeshita, Katsushi
2018-01-01
Retrospective analysis of prospective data. The aim of this study was to reveal baseline predictors of persistent postlaminoplasty neck pain. Axial neck pain is one of the most common complications after cervical laminoplasty; however, baseline predictors of persistent postlaminoplasty neck pain are unclear. We analyzed data from 156 patients who completed a 2-year follow-up after double-door laminoplasty for degenerative cervical myelopathy. Patients rated the average intensity of axial neck pain in the last month using an 11-point numerical rating scale preoperatively and at the 2-year follow-up. The dependent variable was the presence of moderate-to-severe neck pain (numerical rating scale ≥4) at the 2-year follow-up. The independent variables included patient characteristics, baseline radiological parameters, surgical variables, baseline axial neck pain intensity, and baseline functions, which were measured by the Japanese Orthopaedic Association score and the Short Form-36 survey (SF-36). Logistic regression analysis was performed to identify independent predictors of moderate-to-severe neck pain after laminoplasty. At the 2-year follow-up, 51 patients (32%) had moderate-to-severe neck pain, and 106 patients (68%) had no or mild pain. Univariate analysis revealed that the ratio of cervical anterolisthesis, ratio of current smoking, baseline neck pain intensity, and baseline SF-36 Mental Component Summary differed significantly between the groups. Multivariate logistic regression analysis showed that independent predictors of moderate-to-severe neck pain at the 2-year follow-up include the presence of anterolisthesis, current smoking, moderate-to-severe baseline neck pain, and lower SF-36 Mental Component Summary. The presence of anterolisthesis and moderate-to-severe baseline neck pain were also associated with significantly poorer physical function after surgery. The presence of anterolisthesis was associated not only with the highest odds ratio of persistent neck pain but also with significantly poorer functional outcomes. Indications for cervical laminoplasty should be carefully determined in patients with cervical anterolisthesis. 4.
Effect of halo-vest components on stabilizing the injured cervical spine.
Ivancic, Paul C; Beauchman, Naseem N; Tweardy, Lisa
2009-01-15
An in vitro biomechanical study. The objectives were to develop a new biofidelic skull-neck-thorax model capable of quantifying motion patterns of the cervical spine in the presence of a halo-vest; to investigate the effects of vest loosening, superstructure loosening, and removal of the posterior uprights; and to evaluate the ability of the halo-vest to stabilize the neck within physiological motion limits. Previous clinical and biomechanical studies have investigated neck motion with the halo-vest only in the sagittal plane or only at the injured spinal level. No previous studies have quantified three-dimensional intervertebral motion patterns throughout the injured cervical spine stabilized with the halo-vest or studied the effect of halo-vest components on these motions. The halo-vest was applied to the skull-neck-thorax model. Six osteoligamentous whole cervical spine specimens (occiput through T1 vertebra) were used that had sustained multiplanar ligamentous injuries at C3/4 through C7-T1 during a previous protocol. Flexibility tests were performed with normal halo-vest application, loose vest, loose superstructure, and following removal of the posterior uprights. Average total range of motion for each experimental condition was statistically compared (P < 0.05) with the physiologic rotation limit for each spinal level. Cervical spine snaking was observed in both the sagittal and frontal planes. The halo-vest, applied normally, generally limited average spinal motions to within average physiological limits. No significant increases in average spinal motions above physiologic were observed due to loose vest, loose superstructure, or removal of the posterior uprights. However, a trend toward increased motion at C6/7 in lateral bending was observed due to loose superstructure. The halo-vest, applied normally, effectively immobilized the cervical spine. Sagittal or frontal plane snaking of the cervical spine due to the halo-vest may reduce its immobilization capability at the upper cervical spine and cervicothoracic junction.
[Establishment and validation of normal human L1-L5 lumbar three-dimensional finite element model].
Zhu, Zhenqi; Liu, Chenjun; Wang, Jiefu; Wang, Kaifeng; Huang, Zhixin; Wang, Weida; Liu, Haiying
2014-10-14
To create and validate a L1-L5 lumbar three-dimensional finite element model. The L1-L5 lumbar spines of a male healthy volunteer were scanned with computed tomography (CT). And a L1-L5 lumbar three-dimensional finite element model was created with the aid of software packages of Mimics, Geomagic and Ansys. Then border conditions were set, unit type was determined, finite element mesh was divided and a model was established for loading and calculating. Average model stiffness under the conditions of flexion, extension, lateral bending and axial rotation was calculated and compared with the outcomes of former articles for validation. A normal human L1-L5 lumbar three-dimensional finite element model was established to include 459 340 elements and 661 938 nodes. After constraining the inferior endplate of L5 vertebral body, 500 kg × m × s⁻² compressive loading was imposed averagely on the superior endplate of L1 vertebral body. Then 10 kg × m² × s⁻² moment simulating flexion, extension, lateral bending and axial rotation were imposed on the superior endplate of L1 vertebral body. Eventually the average stiffness of all directions was calculated and it was similar to the outcomes of former articles. The L1-L5 lumbar three-dimensional finite element model is validated so that it may used with biomechanical simulation and analysis of normal or surgical models.
Zumsteg, Zachary; DeMarco, John; Lee, Steve P; Steinberg, Michael L; Lin, Chun Shu; McBride, William; Lin, Kevin; Wang, Pin-Chieh; Kupelian, Patrick; Lee, Percy
2012-06-01
On-board cone-beam computed tomography (CBCT) is currently available for alignment of patients with head-and-neck cancer before radiotherapy. However, daily CBCT is time intensive and increases the overall radiation dose. We assessed the feasibility of using the average couch shifts from the first several CBCTs to estimate and correct for the presumed systematic setup error. 56 patients with head-and-neck cancer who received daily CBCT before intensity-modulated radiation therapy had recorded shift values in the medial-lateral, superior-inferior, and anterior-posterior dimensions. The average displacements in each direction were calculated for each patient based on the first five or 10 CBCT shifts and were presumed to represent the systematic setup error. The residual error after this correction was determined by subtracting the calculated shifts from the shifts obtained using daily CBCT. The magnitude of the average daily residual three-dimensional (3D) error was 4.8 ± 1.4 mm, 3.9 ± 1.3 mm, and 3.7 ± 1.1 mm for uncorrected, five CBCT corrected, and 10 CBCT corrected protocols, respectively. With no image guidance, 40.8% of fractions would have been >5 mm off target. Using the first five CBCT shifts to correct subsequent fractions, this percentage decreased to 19.0% of all fractions delivered and decreased the percentage of patients with average daily 3D errors >5 mm from 35.7% to 14.3% vs. no image guidance. Using an average of the first 10 CBCT shifts did not significantly improve this outcome. Using the first five CBCT shift measurements as an estimation of the systematic setup error improves daily setup accuracy for a subset of patients with head-and-neck cancer receiving intensity-modulated radiation therapy and primarily benefited those with large 3D correction vectors (>5 mm). Daily CBCT is still necessary until methods are developed that more accurately determine which patients may benefit from alternative imaging strategies. Copyright © 2012 Elsevier Inc. All rights reserved.
Sonographic measurements of the ulnar nerve at the elbow with different degrees of elbow flexion.
Patel, Prutha; Norbury, John W; Fang, Xiangming
2014-05-01
To determine whether there were differences in the cross-sectional area (CSA) and the flattening ratio of the normative ulnar nerve as it passes between the medial epicondyle and the olecranon at 30° of elbow flexion versus 90° of elbow flexion. Bilateral upper extremities of normal healthy adult volunteers were evaluated with ultrasound. The CSA and the flattening ratio of the ulnar nerve at the elbow as it passes between the medial epicondyle and the olecranon were measured, with the elbow flexed at 30° and at 90°, by 2 operators with varying ultrasound scanning experience by using ellipse and direct tracing methods. The results from the 2 different angles of elbow flexion were compared for each individual operator. Finally, intraclass correlations for absolute agreement and consistency between the 2 raters were calculated. An outpatient clinic room at a regional rehabilitation center. Twenty-five normal healthy adult volunteers. The mean CSA and the mean flattening ratio of the ulnar nerve at 30° of elbow flexion and at 90° of elbow flexion. First, for the ellipse method, the mean CSA of the ulnar nerve at 90° (9.93 mm(2)) was slightly larger than at 30° (9.77 mm(2)) for rater 1. However, for rater 2, the mean CSA of the ulnar nerve at 90° (6.80 mm(2)) was slightly smaller than at 30° (7.08 mm(2)). This was found to be statistically insignificant when using a matched pairs t test and the Wilcoxon signed-rank test, with a significance level of .05. Similarly, the difference between the right side and the left side was not statistically significant. The intraclass correlations for absolute agreement between the 2 raters were not very high due to different measurement locations, but the intraclass correlations for consistency were high. Second, for the direct tracing method, the mean CSA at 90° (7.26 mm(2)) was slightly lower than at 30° (7.48 mm(2)). This was found to be statistically nonsignificant when using the matched pairs t test and the Wilcoxon signed-rank test with a significance level of .05. There was no significant difference in the average flattening ratio between the 2 angles for the left arm (0.54 at 30° vs 0.56 at 90°; P = .619 for the matched pairs t test and .274 for the Wilcoxon signed-rank test). However, for the right arm, the flattening ratio at 90° was significantly higher than that at 30° (0.58 at 90° vs 0.50 at 30°; P = .007 for both the matched pairs t test and the Wilcoxon signed-rank test). The mean CSA of the ulnar nerve at the elbow at 30° was not significantly different than at 90°. However, the average flattening ratio at 90° was found to be significantly higher than at 30° for the right arm. Copyright © 2014 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Maher, Nigel Gordon; Hoffman, Gary Russell
2014-03-01
Neck dissections that include sublevel IIb increase the risk of postoperative shoulder dysfunction. The purpose of this investigation was to document the incidence of level IIb metastatic lymphatic spread in a group of patients undergoing neck dissection as part of the surgical management of cutaneous squamous cell carcinoma of the head and neck. A retrospective review of the pathology records taken from 1 surgeon from June 2006 through June 2013 was carried out. The predictor variable was the primary tumor site. The outcome variable was the metastatic nodal involvement according to neck level and sublevel. Secondary variables included T stage, pathologist, tumor depth, and the presence of perineural, perilymphatic, and perivascular invasion. Data analyses were by descriptive statistics. Thirty-six patients with a total of 40 neck dissections met the inclusion criteria. The average primary site tumor depth was 14.7 mm, and there were 16 cases of poorly differentiated squamous cell carcinoma. Sublevel IIb was involved in 7.5% of cases, all of which occurred from lateralized primary sites of the head and neck. Cutaneous squamous cell carcinoma arising from the auricle and neck sites adjacent to sublevel IIb may have increased risk of metastatic involvement of sublevel IIb nodes. Further studies with larger numbers are required to determine the risk of metastasis to sublevel IIb from midline sites of the face. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Computer mouse use predicts acute pain but not prolonged or chronic pain in the neck and shoulder.
Andersen, J H; Harhoff, M; Grimstrup, S; Vilstrup, I; Lassen, C F; Brandt, L P A; Kryger, A I; Overgaard, E; Hansen, K D; Mikkelsen, S
2008-02-01
Computer use may have an adverse effect on musculoskeletal outcomes. This study assessed the risk of neck and shoulder pain associated with objectively recorded professional computer use. A computer programme was used to collect data on mouse and keyboard usage and weekly reports of neck and shoulder pain among 2146 technical assistants. Questionnaires were also completed at baseline and at 12 months. The three outcome measures were: (1) acute pain (measured as weekly pain); (2) prolonged pain (no or minor pain in the neck and shoulder region over four consecutive weeks followed by three consecutive weeks with a high pain score); and (3) chronic pain (reported pain or discomfort lasting more than 30 days and "quite a lot of trouble" during the past 12 months). Risk for acute neck pain and shoulder pain increased linearly by 4% and 10%, respectively, for each quartile increase in weekly mouse usage time. Mouse and keyboard usage time did not predict the onset of prolonged or chronic pain in the neck or shoulder. Women had higher risks for neck and shoulder pain. Number of keystrokes and mouse clicks, length of the average activity period, and micro-pauses did not influence reports of acute or prolonged pain. A few psychosocial factors predicted the risk of prolonged pain. Most computer workers have no or minor neck and shoulder pain, few experience prolonged pain, and even fewer, chronic neck and shoulder pain. Moreover, there seems to be no relationship between computer use and prolonged and chronic neck and shoulder pain.
Vanichkachorn, Jed; Peppers, Timothy; Bullard, Dennis; Stanley, Scott K; Linovitz, Raymond J; Ryaby, James T
2016-07-01
This multicenter clinical study was performed to assess the safety and effectiveness of Trinity Evolution(®) (TE), a viable cellular bone allograft, in combination with a PEEK interbody spacer and supplemental anterior fixation in patients undergoing anterior cervical discectomy and fusion (ACDF). In a prospective, multi-center study, 31 patients that presented with symptomatic cervical degeneration at one vertebral level underwent ACDF with a PEEK interbody spacer (Orthofix, Inc., Lewisville, TX, USA) and supplemental anterior fixation. In addition all patients had the bone graft substitute, Trinity Evolution (Musculoskeletal Transplant Foundation, Edison, NJ, USA), placed within the interbody spacer. At 6 and 12 months, radiographic fusion was evaluated as determined by independent radiographic review of angular motion (≤4°) from flexion/extension X-rays combined with presence of bridging bone across the adjacent endplates on thin cut CT scans. In addition other metrics were measured including function as assessed by the Neck Disability Index (NDI), and neck and arm pain as assessed by individual Visual Analog Scales (VAS). The fusion rate for patients using a PEEK interbody spacer in combination with TE was 78.6 % at 6 months and 93.5 % at 12 months. When considering high risk factors, 6-month fusion rates for patients that were current or former smokers, diabetic, overweight or obese/extremely obese were 70 % (7/10), 100 % (1/1), 70 % (7/10), and 82 % (9/11), respectively. At 12 months, the fusion rates were 100 % (12/12), 100 % (2/2), 100 % (11/11) and 85 % (11/13), respectively. Neck function, and neck/arm pain were found to significantly improve at both time points. No serious allograft related adverse events occurred and none of the 31 patients had subsequent additional cervical surgeries. Patients undergoing single-level ACDF with TE in combination with a PEEK interbody spacer and supplemental anterior fixation had a high rate of fusion success without serious allograft-related adverse events.
Wu, Yuangang; Yang, Timin; Zeng, Yi; Si, Haibo; Li, Canfeng; Shen, Bin
2017-01-01
Postoperative limb positioning has been reported to be an efficient and simple way to reduce blood loss and improve range of motion following total knee arthroplasty (TKA). This meta-analysis was designed to compare the effectiveness of two different limb positions in primary TKA. A meta-analysis of the PubMed, CENTRAL, Web of Science, EMBASE and Google Search Engine electronic databases was performed. In this meta-analysis, two postoperative limb positions were considered: mild-flexion (flexion less than 60°) and high-flexion (flexion at 60° or more). The subgroups were analysed using RevMan 5.3. Nine RCTs were included with a total sample size of 913 patients. The mild- and high-flexion positions significantly reduced postoperative total blood loss (P = 0.04 and P = 0.01; respectively). Subgroup analysis indicated that knee flexion significantly reduced hidden blood loss when the knee was fixed in mild-flexion (P = 0.0004) and significantly reduced transfusion requirements (P = 0.03) and improved range of motion (ROM) (P < 0.00001) when the knee was fixed in high-flexion. However, the rates of wound-related infection, deep venous thrombosis (DVT) and pulmonary embolism (PE) did not significantly differ between the two flexion groups. This meta-analysis suggests that mild- and high-flexion positions have similar efficacy in reducing total blood loss. In addition, subgroup analysis indicates that the mild-flexion position is superior in decreasing hidden blood loss compared with high-flexion; the high-flexion position is superior to mild-flexion in reducing transfusion requirements and improving postoperative ROM. Thus, the use of the high-flexion position is a viable option to reduce blood loss in patients following primary TKA without increasing the risk of wound-related infection, DVT or PE. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
Manipulation under anaesthesia post total knee replacement: long term follow up.
Yeoh, David; Nicolaou, Nick; Goddard, Richard; Willmott, Henry; Miles, Kim; East, Debra; Hinves, Barry; Shepperd, John; Butler-Manuel, Adrian
2012-08-01
A reduced range of motion post total knee replacement (TKR) is a recognised problem. Manipulation under anaesthesia (MUA) is commonly performed in the stiff post-operative TKR. Long-term results are variable in the literature. We retrospectively reviewed, prospectively collected data on 48 patients followed up since 1996 from one centre, over an average of 7.5 years, (range 1 to 10 years) and report on the long-term results. During the study period 2.3% of TKRs underwent MUA. The mean time to MUA post TKR was 12.3 weeks (range 3 to 48). Pre MUA, the mean flexion was 53°. The mean immediate passive flexion post MUA was 97°, an improvement of 44° (Range 10° to 90°, p<0.05). By 1year, the mean flexion was 87°, an improvement of 34°, (range -15° to 70°, p<0.05). At 10 years the mean flexion was 86°, (range 55° to 100°, p<0.05). We found no difference in the gain in range of motion (ROM) between knees manipulated before or after 12 weeks. Additionally, the gain was no different in stiff knees with a pre TKR ROM <90°, compared to a pre TKR ROM >90°. There were no complications as a result of MUA. However, one patient was eventually revised at 2 years secondary to low grade infection. Our findings show that MUA is a safe and effective method at improving the ROM in a stiff post-operative TKR. The improvement is maintained in the long term irrespective of time to MUA and range of motion pre TKR. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Weakening iliopsoas muscle in healthy adults may induce stiff knee pattern.
Akalan, N Ekin; Kuchimov, Shavkat; Apti, Adnan; Temelli, Yener; Nene, Anand
2016-12-01
The goal of the present study was to investigate the relationship between iliopsoas muscle group weakness and related hip joint velocity reduction and stiff-knee gait (SKG) during walking in healthy individuals. A load of 5% of each individual's body weight was placed on non-dominant thigh of 15 neurologically intact, able-bodied participants (average age: 22.4 ± 0.81 years). For 33 min (135 s × 13 repetitions × 5 s rest), a passive stretch (PS) was applied with the load in place until hip flexor muscle strength dropped from 5/5 to 3+/5 according to manual muscle test. All participants underwent gait analysis before and after PS to compare sagittal plane hip, knee, and ankle kinematics and kinetics and temporo-spatial parameters. Paired t-test was used to compare pre- and post-stretch findings and Pearson correlation coefficient (r) was calculated to determine strength of correlation between SKG parameters and gait parameters of interest (p < 0.05). Reduced hip flexion velocity (mean: 21.5%; p = 0.005) was a contributor to SKG, decreasing peak knee flexion (PKF) (-20%; p = 0.0008), total knee range (-18.9%; p = 0.003), and range of knee flexion between toe-off and PKF (-26.7%; p = 0.001), and shortening duration between toe-off to PKF (-16.3%; p = 0.0005). These findings verify that any treatment protocol that slows hip flexion during gait by weakening iliopsoas muscle may have great potential to produce SKG pattern combined with reduced gait velocity. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.
Hsu, Hsiu-Hao; Chou, You-Li; Lou, Shu-Zon; Huang, Ming-Jer; Chou, Paul Pei-Hsi
2011-03-01
Falling onto the outstretched hand is the most common cause of upper extremity injury. This study develops an experimental model for evaluating the shoulder load during a simulated forward fall onto one hand with three different forearm axially rotated postures, and examines the shoulder abduction angle and shoulder flexion angle in each case. Fifteen healthy young male subjects with an average age of 23.7 years performed a series of one-armed arrests from a height of 5 cm onto a force plate. The kinematics and kinetics of the upper extremity were analyzed for three different forearm postures, namely 45° externally rotated, non-rotated, and 45° internally rotated. The shoulder joint load and shoulder abduction/flexion angles were significantly dependent on the rotational posture of the forearm. The shoulder medio-lateral shear forces in the externally rotated group were found to be 1.61 and 2.94 times higher than those in the non-rotated and internally rotated groups, respectively. The shoulder flexion angles in the externally rotated, non-rotated and internally rotated groups were 0.6°, 8.0° and 19.2°, respectively, while the corresponding shoulder abduction angles were 6.1°, 34.1° and 46.3°, respectively. In falls onto the outstretched hand, an externally rotated forearm posture should be avoided in order to reduce the medio-lateral shear force acting on the shoulder joint. In falls of this type, a 45° internally rotated forearm posture represents the most effective fall strategy in terms of minimizing the risk of upper extremity injuries. Copyright © 2010 Elsevier Ltd. All rights reserved.
Neck Circumference and Vocal Parameters in Women Before and After Bariatric Surgery.
de Souza, Lourdes Bernadete Rocha; Pernambuco, Leandro de Araújo; dos Santos, Marquiony Marques; Pereira, Rayane Medeiros
2016-03-01
Morbidly obese patients may suffer from vocal disorders, as vocal production is directly related to the volume of the vocal tract, and the large-scale accumulation of fat in this region may interfere with voice production. The aim of this study was to analyze the neck circumference, fundamental frequency, and maximum phonation time of a group of morbidly obese women before and after bariatric surgery. An observational, longitudinal, and descriptive study was performed with patients of the Obesity and Related Diseases Surgery Unit of a university hospital. A total of 21 morbidly obese women aged 28-68 years, with a mean age of 41.33 years, participated in the study. Neck circumference was measured using a tape measure. To obtain fundamental frequency values, the patient was asked to produce the vowel [a] at normal intensity and pitch for an average period of 3 s. After recording, the participants were asked to produce the sustained vowels [a], [i], and [u] at normal intensity and pitch, with a stopwatch used to measure maximum phonation time. Eight months after surgery, patients were reassessed using the same data collecting procedures as were carried out prior to surgery. After surgery, there was an increase in the average value of fundamental frequency and maximum phonation time for all the vowels and a reduction in neck circumference. The differences were statistically significant. Weight reduction and a consequent decrease in neck circumference affected the changes in maximum phonation time and fundamental frequency values in the voices of these patients, after weight loss.
Dog bites of the head and neck: an evaluation of a common pediatric trauma and associated treatment
O'Brien, Daniel C.; Andre, Tyler B; Robinson, Aaron D.; Squires, Lane D.
2014-01-01
Purpose To identify which patients and canines are involved in dog bites of the head and neck, and how they impact health systems. Materials and Methods This is a single center, retrospective cohort study conducted from January 2012 to June 2013 from an academic, tertiary care center situated between multiple suburban and urban communities. Patients were identified by queried search for all bite-related diagnoses codes. Results 334 unique dog bites were identified, of which 101 involved the head and neck. The mean patient age was 15.1 years ± 18.1. Of the more than 8 different breeds identified, one-third were caused by pit bull terriers and resulted in the highest rate of consultation (94%) and had 5 times the relative rate of surgical intervention. Unlike all other breeds, pit bull terriers were relatively more likely to attack an unknown individual (+31%), and without provocation (+48%). Injuries of the head and neck had an average follow-up of 1.26 ± 2.4 visits, and average specialty follow-up of 3.1 ± 3.5 visits. Conclusions The patients most likely to suffer dog bite injuries of the head and neck are children. Although a number of dog breeds were identified, the largest group were pit bull terriers, whose resultant injuries were more severe and resulted from unprovoked, unknown dogs. More severe injuries required a greater number of interventions, a greater number of inpatient physicians, and more outpatient follow-up encounters. Healthcare utilization and costs associated with dog bites warrant further investigation. PMID:25311183
Sukkarieh, T; Harmon, J; Penna, F; Parra, R
2007-01-01
In laparoscopic prostatectomies, vesicourethral anastomotic leaks may result in significant morbidity because of the chemical and metabolic derangements created by urine within the peritoneal cavity. To date, minimal data are available on this problem. Herein we present our experience with urine leaks after RALP. Over a period of 24 months, 135 men underwent RALP. Any drainage creatinine greater than two times the serum creatinine was considered as an anastomotic leak. According to our criteria, 20% of the first 110 patients developed an anastomotic leak. The patients were analyzed in two groups, those with and without leaks. In the two groups, there was no statistically significant difference in age, height, weight, prostate volume and pre-op hemoglobin. The patients with leaks did have higher rate of prior abdominal surgery (50 vs. 36%), higher average pre-operative PSA values (7.6 vs. 6.1), higher rates of multiple biopsies (27 vs. 17%) and a higher average BMI (29.6 vs. 27.8). Intraoperative differences included an average of 30 min longer operative time and 66 cm(3) higher average EBL in patients with leaks. The transfusion rate was higher in the leak group at 18 vs. 1% in the no leak group. Recovery tended to be longer in patients with leaks, with hospital stays of an average of 3.6 days longer. The most common indication for prolonged hospitalization was ileus, which 55% of patients with leaks developed. Management included placing the catheter on mild traction, continuous antibiotics and taking the drain-off suction with caution to monitor the signs of a worsening ileus. In the last 25 patients, we revised our anastomotic technique. We now include posterior tailoring of the bladder neck prior to the vesicourethral anastomosis when the bladder neck is enlarged. This facilitates a water-tight anastomosis. Using this technique, we have yet to see the anastomotic leak. In RALPs, anastomotic leaks can lead to ileus formation and longer hospital stays. These leaks are associated with a higher average blood loss and transfusion rate. Management should focus on prevention. Since we have incorporated posterior bladder neck tailoring with the anastomosis, the problem has been markedly reduced.
Neck ligament strength is decreased following whiplash trauma
Tominaga, Yasuhiro; Ndu, Anthony B; Coe, Marcus P; Valenson, Arnold J; Ivancic, Paul C; Ito, Shigeki; Rubin, Wolfgang; Panjabi, Manohar M
2006-01-01
Background Previous clinical studies have documented successful neck pain relief in whiplash patients using nerve block and radiofrequency ablation of facet joint afferents, including capsular ligament nerves. No previous study has documented injuries to the neck ligaments as determined by altered dynamic mechanical properties due to whiplash. The goal of the present study was to determine the dynamic mechanical properties of whiplash-exposed human cervical spine ligaments. Additionally, the present data were compared to previously reported control data. The ligaments included the anterior and posterior longitudinal, capsular, and interspinous and supraspinous ligaments, middle-third disc, and ligamentum flavum. Methods A total of 98 bone-ligament-bone specimens (C2–C3 to C7-T1) were prepared from six cervical spines following 3.5, 5, 6.5, and 8 g rear impacts and pre- and post-impact flexibility testing. The specimens were elongated to failure at a peak rate of 725 (SD 95) mm/s. Failure force, elongation, and energy absorbed, as well as stiffness were determined. The mechanical properties were statistically compared among ligaments, and to the control data (significance level: P < 0.05; trend: P < 0.1). The average physiological ligament elongation was determined using a mathematical model. Results For all whiplash-exposed ligaments, the average failure elongation exceeded the average physiological elongation. The highest average failure force of 204.6 N was observed in the ligamentum flavum, significantly greater than in middle-third disc and interspinous and supraspinous ligaments. The highest average failure elongation of 4.9 mm was observed in the interspinous and supraspinous ligaments, significantly greater than in the anterior longitudinal ligament, middle-third disc, and ligamentum flavum. The average energy absorbed ranged from 0.04 J by the middle-third disc to 0.44 J by the capsular ligament. The ligamentum flavum was the stiffest ligament, while the interspinous and supraspinous ligaments were most flexible. The whiplash-exposed ligaments had significantly lower (P = 0.036) failure force, 149.4 vs. 186.0 N, and a trend (P = 0.078) towards less energy absorption capacity, 308.6 vs. 397.0 J, as compared to the control data. Conclusion The present decreases in neck ligament strength due to whiplash provide support for the ligament-injury hypothesis of whiplash syndrome. PMID:17184536
Biomechanics of Thoracolumbar Burst and Chance-Type Fractures during Fall from Height
Ivancic, Paul C.
2014-01-01
Study Design In vitro biomechanical study. Objective To investigate the biomechanics of thoracolumbar burst and Chance-type fractures during fall from height. Methods Our model consisted of a three-vertebra human thoracolumbar specimen (n = 4) stabilized with muscle force replication and mounted within an impact dummy. Each specimen was subjected to a single fall from an average height of 2.1 m with average velocity at impact of 6.4 m/s. Biomechanical responses were determined using impact load data combined with high-speed movie analyses. Injuries to the middle vertebra of each spinal segment were evaluated using imaging and dissection. Results Average peak compressive forces occurred within 10 milliseconds of impact and reached 40.3 kN at the ground, 7.1 kN at the lower vertebra, and 3.6 kN at the upper vertebra. Subsequently, average peak flexion (55.0 degrees) and tensile forces (0.7 kN upper vertebra, 0.3 kN lower vertebra) occurred between 43.0 and 60.0 milliseconds. The middle vertebra of all specimens sustained pedicle and endplate fractures with comminution, bursting, and reduced height of its vertebral body. Chance-type fractures were observed consisting of a horizontal split fracture through the laminae and pedicles extending anteriorly through the vertebral body. Conclusions We hypothesize that the compression fractures of the pedicles and vertebral body together with burst fracture occurred at the time of peak spinal compression, 10 milliseconds. Subsequently, the onset of Chance-type fracture occurred at 20 milliseconds through the already fractured and weakened pedicles and vertebral body due to flexion-distraction and a forward shifting spinal axis of rotation. PMID:25083357
Conservative Treatment of Distal Radius Fractures: A Prospective Descriptive Study.
Aparicio, Pilar; Izquierdo, Óscar; Castellanos, Juan
2017-06-01
Disability of the upper limb is one of the consequences of distal radius fracture (DRF). The outcome of DRF treatment is based on objective clinical variables, as strength or range of movement (ROM); sometimes these variables do not correlate with the functional level of the patient. The principal objective of our study was to assess the repercussion of conservative treatment of DRF on upper limb disability. This is a retrospective review of prospectively collected data. We collected data of 61 nonconsecutive DRFs treated conservatively from July 2007 to August 2008. Average Disabilities of the Arm, Shoulder and Hand (DASH) score before fracture was 20.8 points; average DASH score after the fracture was 42.6. There was a significant increase in the upper limb disability after 1 year of follow-up in the patients treated conservatively ( P < .001; size effect, 1.06). Average radial inclination, radial tilt, and radial length were 18.18°, 3.35°, and 5.76 mm, respectively. Average ROM for flexion-extension was 100.6° and for pronation-supination 144.0°. ROM for flexion-extension of the unaffected wrist was 128.2° and for pronation-supination 172.4°. We did not find any significant statistical correlation between the increase in disability and the decrease in the ROM ( P > .05). We did not find any significant statistical correlation between the increase in the disability and the worsening in the radiological parameters ( P > .05). Our results confirm the hypothesis that the conservative treatment of DRF produced an increase in the upper limb disability after 1 year of follow-up. Our study does not show a correlation between the increase in upper limb disability and the decrease in wrist ROM. Our study did not find a correlation between radiological measures and DASH scores.
Knee arthrodesis using an intramedullary nail.
Crockarell, John R; Mihalko, Marc J
2005-09-01
Fifteen knee arthrodeses using an intramedullary nail were performed in 15 patients. Indications included 11 failed total knee arthroplasties (10 of 11 septic). A retrospective review revealed 100% fusion rate. Complications included 4 cases of painful hardware, 1 trochanteric bursitis, and 1 deep infection. Ten patients were available for assessment at 7 years follow-up. Average leg length discrepancy was 3.7 cm. Anatomic axis averaged 1.3 degrees valgus. Flexion angle averaged 3.5 degrees . Compared with age-matched controls, our patients fared significantly worse in physical functioning, physical role, bodily pain, vitality, and social functioning. Arthrodesis of the knee with an intramedullary nail provides a reliable means of fusion with reasonable alignment. These patients have high rates of pain and diminished functional status.
[Restricted motion after total knee arthroplasty].
Kucera, T; Urban, K; Karpas, K; Sponer, P
2007-10-01
The aim of the study was to ascertain what proportion of patients undergoing total knee arthroplasty (TKA) complain of restricted knee joint motion, and to investigate options for improvement of this situation. Our evaluation included a group of 796 patients treated with TKA at our department in the period from January 1, 1990, to December 31, 2004. In all cases, a condylar implant with preservation of the posterior cruciate ligaments was used. In addition to medical history, the range of motion, knee joint malalignment and radiological findings were assessed before surgery. After THA, the type of implant and complications, if any, were recorded, and improvement in joint motion was followed up. Based on the results of Kim et al., flexion contracture equal to or higher than 15 degrees and/or flexion less than 75 degrees were made the criteria of stiffness after THA. Patients with restricted THA motion who had aseptic or septic implant loosening were not included. Of the 796 evaluated patients, 32 (4.14 %) showed restricted motion after total knee arthroplasty, as assessed by the established criteria. In 16 patients, stiffness defined by these criteria had existed before surgery, and three patients showed an excessive production of adhesions and heterotopic ossifications. In three patients, the implantation procedure resulted in an elevated level of the original joint line and subsequent development of patella infera and increased tension of the posterior cruciate ligament. Four patients declined physical therapy and, in six, the main cause of stiffness could not be found. Seventeen patients did not require surgical therapy for restricted motion; TKA provided significant pain relief and they considered the range of motion achieved to be sufficient. One patient underwent redress 3 months after surgery, but with no success. Repeated releases of adhesions, replacement of a polyethylene liner and revision surgery of the extensor knee structures were performed in 15 patients. In these, the average value of knee flexion increased by 17 degrees only and, in the patients suffering from excessive adhesion production, this value remained almost unchanged. Revision TKA was carried out in four patients, in whom knee joint flexion increased on average by 35 degrees to achieve an average flexion of 83 degrees. Restricted motion after TKA has been reported to range from 1.3 % to 12.0 %, but consistent criteria have not been set up. In our study it was 4.14 %. In agreement with the literature data, one of the reasons was pre-operative restricted motion, which was recorded in 16 of 32 patients. Similarly, also in our patients, biological predisposition to excessive production of fibrocartilage associated with adhesions in all knee joint compartments was the major therapeutic problem. Intra-operative fractures, ligament tears requiring post-operative fixation and unremoved dorsal osteophytes lead to the restriction of knee joint motion. By inadequate resection of articular surface, the original joint line may be at a higher level; this results in an increased tension of the posterior cruciate ligament and patella infera development, both influencing knee flexion. In our study, three patients were affected. Knee joint stiffness can also develop in patients declining physical therapy or in whom this is not correctly performed, often for insufficient analgesia. In contrast to the data reported in the literature, 17 of 32 patients in this study had no need for surgical treatment of restricted knee joint motion. Redress under general anesthesia was not effective. For markedly restricted motion of the knee joint, reimplantation can be recommended or, in less severe cases, an intervention on adjacent soft tissues. Restricted motion of the knee joint after TKA is difficult to treat and, therefore, prevention is recommended. This should include thorough conservative treatment of gonarthrosis, early indication for surgery, prevention of elevation in the joint line and consistent rehabilitation with appropriate analgesia. For severe stiffness of the knee joint, as evaluated by the criteria of Kim et al., revision arthroplasty can be recommended.
Shi, Kenrin; Hayashida, Kenji; Umeda, Naoya; Yamamoto, Kengo; Kawai, Hideo
2008-02-01
Femoral component rollback and tibial rotation were evaluated using lateral radiographs taken during passive knee flexion under fluoroscopy in NexGen Legacy Posterior Stabilized Flex (Zimmer, Warsaw, Ind) total knee arthroplasties (TKAs; 30 with mobile insert and 26 with fixed insert). Measured maximal flexion angle demonstrated no significant differences. Femoral component rollback was observed predominantly in TKAs with fixed insert in more than 45 degrees flexion and correlated with maximal flexion angle in each group. Tibial internal rotation was more significant in TKAs with mobile insert in maximal flexion. However, tibial internal rotation from 90 degrees to maximal flexion, which demonstrated correlation with maximal flexion angle in each group, did not show significant difference. The kinematic differences between 2 inserts seemed to have little relevance to the maximal flexion angle.
Ishida, Kazunari; Shibanuma, Nao; Matsumoto, Tomoyuki; Sasaki, Hiroshi; Takayama, Koji; Matsuzaki, Tokio; Tei, Katsumasa; Kuroda, Ryosuke; Kurosaka, Masahiro
2016-01-01
To investigate whether intraoperative kinematics obtained by navigation systems can be divided into several kinematic patterns and to assess the correlation between the intraoperative kinematics with maximum flexion angles before and after total knee arthroplasty (TKA). Fifty-four posterior-stabilised (PS) TKA implanted using an image-free navigation system were evaluated. At registration and after implantation, tibial internal rotation angles at maximum extension, 30°, 45°, 60°, 90°, and maximum flexion were collected. The rotational patterns were divided into four groups and were examined the correlation with maximum flexion before and after operation. Tibial internal rotation from 90° of flexion to maximum flexion at registration was correlated with maximum flexion angles pre- and postoperatively. The four groups showed statistically different kinematic patterns. The group with tibial external rotation up to 90° of flexion, following tibial internal rotation at registration, achieved better flexion angles, compared to those of another groups (126.7° ± 12.0°, p < 0.05). The group with tibial external rotation showed the worst flexion angles (80.0° ± 40.4°, p < 0.05). Furthermore, the group with limited extension showed worse flexion angles (111.6° ± 8.9°, p < 0.05). Navigation-based kinematic patterns found at registration predict postoperative maximum flexion angle in PS TKA. Navigation-based kinematics can be useful information during TKA surgery. Diagnostic studies, development of diagnostic criteria in a consecutive series of patients and a universally applied "gold" standard, Level II.
Kubota, So; Inaba, Yutaka; Kobayashi, Naomi; Choe, Hyonmin; Tezuka, Taro; Saito, Tomoyuki
2017-10-16
While cam resection is essential to achieve a good clinical result with respect to femoroacetabular impingement (FAI), it is unclear whether it should also be performed in cases of borderline developmental dysplasia of the hip (DDH) with a cam deformity. The aim of this study was to evaluate improvements in range of motion (ROM) in cases of cam-type FAI and borderline DDH after virtual osteochondroplasty using a computer impingement simulation. Thirty-eight symptomatic hips in 31 patients (11male and 20 female) diagnosed with cam-type FAI or borderline DDH were analyzed. There were divided into a cam-type FAI group (cam-FAI group: 15 hips), borderline DDH without cam group (DDH W/O cam group: 12 hips), and borderline DDH with cam group (DDH W/ cam group: 11 hips). The bony impingement point on the femoral head-neck junction at 90° flexion and maximum internal rotation of the hip joint was identified using ZedHip® software. Virtual osteochondroplasty of the impingement point was then performed in all cases. The maximum flexion angle and maximum internal rotation angle at 90° flexion were measured before and after virtual osteochondroplasty at two resection ranges (i.e., slight and sufficient). The mean improvement in the internal rotation angle in the DDH W/ cam group after slight resection was significantly greater than that in the DDH W/O cam group (P = 0.046). Furthermore, the mean improvement in the internal rotation angle in the DDH W/ cam and cam-FAI groups after sufficient resection was significantly greater than that in the DDH W/O cam group (DDH W/ cam vs DDH W/O cam: P = 0.002, cam-FAI vs DDH W/O cam: P = 0.043). Virtual osteochondroplasty resulted in a significant improvement in internal rotation angle in DDH W/ cam group but not in DDH W/O cam group. Thus, borderline DDH cases with cam deformity may be better to consider performing osteochondroplasty.
Flexion relaxation of the hamstring muscles during lumbar-pelvic rhythm.
Sihvonen, T
1997-05-01
This study investigated the simultaneous activity of back muscles and hamstring muscles during sagittal forward body flexion and extension in healthy persons. The study was cross-sectional. A descriptive study of paraspinal and hamstring muscle activity in normal persons during lumbar-pelvic rhythm. A university hospital. Forty healthy volunteers (21 men, 19 women, ages 17 to 48 years), all without back pain or other pain syndromes. Surface electromyography (EMG) was used to follow activities in the back and the hamstring muscles. With movement sensors, real lumbar flexion was separated from simultaneous pelvic motion by monitoring the components of motion with a two-inclinometer method continuously from the initial upright posture into full flexion. All signals were sampled during real-time monitoring for off-line analyses. Back muscle activity ceased (ie, flexion relaxation [FR] occurred) at lumbar flexion with a mean of 79 degrees. Hamstring activity lasted longer and EMG activity ceased in the hamstrings when nearly full lumbar flexion (97%) was reached. After this point total flexion and pelvic flexion continued further, so that the last part of lumbar flexion and the last part of pelvic flexion happened without back muscle activity or hamstring bracing, respectively. FR of the back muscles during body flexion has been well established and its clinical significance in low back pain has been confirmed. In this study, it was shown for the first time that the hip extensors (ie, hamstring muscles) relax during forward flexion but with different timing. FR in hamstrings is not dependent on or coupled firmly with back muscle behavior in spinal disorders and the lumbar pelvic rhythm can be locally and only partially disturbed.
Park, Kwan Kyu; Hosseini, Ali; Tsai, Tsung-Yuan; Kwon, Young-Min; Li, Guoan
2015-02-05
The mechanisms that affect knee flexion after total knee arthroplasty (TKA) are still debatable. This study investigated the elongation of the superficial medial (sMCL) and lateral collateral ligaments (LCL) before and after a posterior cruciate retaining (CR) TKA. We hypothesized that overstretching of the collateral ligaments in high flexion after TKA could reduce maximal flexion of the knee. Three-dimensional models of 11 osteoarthritic knees of 11 patients including the insertions of the collateral ligaments were created using MR images. Each ligament was divided into three equal portions: anterior, middle and posterior portions. The shortest 3D wrapping length of each ligament portion was determined before and after the TKA surgery along a weight-bearing, single leg flexion path. The relationship between the changes of ligament elongation and the changes of the maximal knee flexion after TKAs was quantitatively analyzed. The sMCL showed significant increases in length only at low flexion after TKA; the LCL showed decreases in length at full extension, but increases with further flexion after TKA. The amount of increases of the maximum flexion angle after TKA was negatively correlated with the increases of the elongations of the anterior portion (p=0.010, r=0.733) and middle portion (p=0.049, r=0.604) of the sMCL as well as the anterior portion (p=0.010, r=0.733) of the LCL at maximal flexion of the knee. The results indicated that the increases of the length of the collateral ligaments at maximal flexion after TKA were associated with the decreases of the maximal flexion of the knee. Our data suggest that collateral ligament management should also be evaluated at higher knee flexion angles in order to optimize maximal flexion of the knee after TKAs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Anthropometry. A Bibliography with Abstracts
1975-08-01
nces fro signific e shirt- (Author) o US per ach ions wea ed. angu obta m t ant slee AF pilots sonal p en velone : d) s ring com...side measured bility. s of the human neck which may influence a person’s • whiplash ’ injury during lateral impact have oeen mal subjects. Subjects...group of lb subjects Deing n average stature close to the both ptrcentile tor data include: measures of head , neck and body anding and normal
McLaughlin, Eamon J; Miller, Lauren; Shin, Thuzar M; Sobanko, Joseph F; Cannady, Steven B; Miller, Christopher J; Newman, Jason G
Immunosuppressed solid organ transplant recipients (SOTRs) have an increased risk of developing cutaneous squamous cell carcinomas (cSCCs) with metastatic potential. This study sought to determine the rate of regional lymph node involvement in a large cohort of solid organ transplant patients with cutaneous head and neck squamous cell carcinoma. A retrospective chart review was performed on solid organ transplant patients with head and neck cutaneous squamous cell carcinoma treated at a tertiary academic medical center from 2005 to 2015. 130 solid organ transplant patients underwent resection of 383 head and neck cutaneous squamous cell carcinomas. The average age of the patient was 63. Seven patients (5%) developed regional lymph node metastases (3 parotid, 4 cervical lymph nodes). The mean time from primary tumor resection to diagnosis of regional lymphatic disease was 6.7months. Six of these patients underwent definitive surgical resection followed by adjuvant radiation; one patient underwent definitive chemoradiation. 6 of the 7 patients died of disease progression with a mean survival of 15months. The average follow up time was 3years (minimum 6months). Solid organ transplant recipients with cutaneous squamous cell carcinoma of the head and neck develop regional lymph node metastasis at a rate of 5%. Regional lymph node metastasis in this population has a poor prognosis and requires aggressive management and surveillance. Copyright © 2017 Elsevier Inc. All rights reserved.
Emergency removal of football equipment: a cadaveric cervical spine injury model.
Gastel, J A; Palumbo, M A; Hulstyn, M J; Fadale, P D; Lucas, P
1998-10-01
To determine the influence of football helmet and shoulder pads, alone or in combination, on alignment of the unstable cervical spine. The alignment of the intact cervical spine in 8 cadavers was assessed radiographically under 4 different football equipment conditions: (1) no equipment, (2) helmet only, (3) helmet and shoulder pads, and (4) shoulder pads only. Each specimen was then surgically destabilized at C5-C6 to simulate a flexion-distraction injury. Repeat radiographs were obtained under the same 4 equipment conditions, and alignment of the unstable segment was analyzed. Before the destabilization, neutral alignment was maintained when both helmet and shoulder pads were in place. The "helmet only" condition caused a significant decrease in lordosis (mean, 9.6 +/- 4.7 degrees), whereas the "shoulder pads only" condition caused increased lordosis (13.6 +/- 6.3 degrees). After destabilization, the "helmet-only" condition demonstrated significant mean increases in C5-C6 forward angulation (16.5 +/- 8.6 degrees), posterior disc space height (3.8 +/- 2.3 mm), and dorsal element distraction (8.3 +/- 5.4 mm). Our flexion-distraction model demonstrated that immobilization of the neck-injured football player with only the helmet in place violates the principle of splinting the cervical spine in neutral alignment. By extrapolation to an extension-type injury, immobilization with only the shoulder pads left in place similarly violates this principle. In order to maintain a neutral position and minimize secondary injury to the cervical neural elements, the helmet and shoulder pads should be either both left on or both removed in the emergency setting.
von Piekartz, Harry; Pudelko, Ani; Danzeisen, Mira; Hall, Toby; Ballenberger, Nikolaus
2016-12-01
There is preliminary evidence of cervical musculoskeletal impairment in some temporomandibular disorder (TMD) pain states. To determine whether people with TMD, classified as either mild or moderate/severe TMD, have more cervical signs of dysfunction than healthy subjects. Cross-sectional survey. Based on the Conti Amnestic Questionnaire and examination of the temporomandibular joint (Axis I classification of the Research Diagnostic Criteria for TMD), of 144 people examined 59 were classified to a mild TMD group, 40 to a moderate/severe TMD group and 45 to an asymptomatic control group without TMD. Subjects were evaluated for signs of cervical musculoskeletal impairment and disability including the Neck Disability Index, active cervical range of motion, the Flexion-Rotation Test, mechanical pain threshold of the upper trapezius and obliquus capitis inferior muscles, Cranio-Cervical Flexion test and passive accessory movements of the upper 3 cervical vertebrae. According to cervical musculoskeletal dysfunction, the control group without TMD were consistently the least impaired and the group with moderate/severe TMD were the most impaired. These results suggest, that the more dysfunction and pain is identified in the temporomandibular region, the greater levels of dysfunction is observable on a number of cervical musculoskeletal function tests. The pattern of cervical musculoskeletal dysfunction is distinct to other cervical referred pain phenomenon such as cervicogenic headache. These findings provide evidence that TMD in an acute/subacute pain state is strongly related with certain cervical spine musculoskeletal impairments which suggests the cervical spine should be examined in patients with TMD as a potential contributing factor. Copyright © 2016 Elsevier Ltd. All rights reserved.
Heesterbeek, P J C; Haffner, N; Wymenga, A B; Stifter, J; Ritschl, P
2017-09-01
How much force is needed to pre-tension the ligaments during total knee arthroplasty? The goal of this study was to determine this force for extension and flexion, and for both compartments, and to identify predicting patient-related factors. Eighty patients [55 females, mean age 71 (SD 9.7)] were recruited and had a navigated cruciate-retaining total knee arthroplasty. Distraction of the medial and lateral compartments of the extension and flexion gap (90°) with an instrumented bi-compartmental double-spring tensioner took place after finishing the bone cuts. Applied forces and resulting gap distances were recorded by the navigation system, resulting in a force-elongation curve. Lines were fitted with the intersection defined as the stiffness transition point. The slopes (N/mm) represented the stiffness of the ligamentous complex. Linear multiple regression analysis was performed to identify predicting factors. The amount of force at the stiffness transition point was on average 52.3 (CI 95 50.7-53.9), 54.5 (CI 95 52.7-56.3), 48.3 (CI 95 46.2-50.2), and 59.3 (CI 95 57.0-61.6) N for the medial and lateral extension and flexion gap, respectively, and varied considerably between patients. The force at the stiffness transition point was significantly different between extension and flexion and both compartments (P < 0.05). Stiffness of the ligaments statistically significantly helped to predict the amount of force at the stiffness transition point, as well as body mass index, gender, and varus-valgus alignment. The amount of force at the stiffness transition point varies between 48 and 59 N, depending on flexion/extension and compartment. Patient-related factors influence the stiffness transition point and can help predict the stiffness transition point. When forces higher than 60 N are used for gap distraction, the ligamentous sleeve of the knee might be over-tensioned. Prognostic study, Level I-high-quality prospective cohort study with >80 % follow-up, and all patients enrolled at same time point in disease.
The influence of muscles on knee flexion during the swing phase of gait.
Piazza, S J; Delp, S L
1996-06-01
Although the movement of the leg during swing phase is often compared to the unforced motion of a compound pendulum, the muscles of the leg are active during swing and presumably influence its motion. To examine the roles of muscles in determining swing phase knee flexion, we developed a muscle-actuated forward dynamic simulation of the swing phase of normal gait. Joint angles and angular velocities at toe-off were derived from experimental measurements, as were pelvis motions and muscle excitations. Joint angles and joint moments resulting from the simulation corresponded to experimental measurements made during normal gait. Muscular joint moments and initial joint angular velocities were altered to determine the effects of each upon peak knee flexion in swing phase. As expected, the simulation demonstrated that either increasing knee extension moment or decreasing toe-off knee flexion velocity decreased peak knee flexion. Decreasing hip flexion moment or increasing toe-off hip flexion velocity also caused substantial decreases in peak knee flexion. The rectus femoris muscle played an important role in regulating knee flexion; removal of the rectus femoris actuator from the model resulted in hyperflexion of the knee, whereas an increase in the excitation input to the rectus femoris actuator reduced knee flexion. These findings confirm that reduced knee flexion during the swing phase (stiff-knee gait) may be caused by overactivity of the rectus femoris. The simulations also suggest that weakened hip flexors and stance phase factors that determine the angular velocities of the knee and hip at toe-off may be responsible for decreased knee flexion during swing phase.
Myers, Casey A.; Torry, Michael R.; Peterson, Daniel S.; Shelburne, Kevin B.; Giphart, J. Erik; Krong, Jacob P.; Woo, Savio L-Y.; Steadman, J. Richard
2014-01-01
Background Previous laboratory studies of landing have defined landing techniques in terms of soft or stiff landings according to the degree of maximal knee flexion angle attained during the landing phase and the relative magnitude of the ground-reaction force. Current anterior cruciate ligament injury prevention programs are instructing athletes to land softly to avoid excessive strain on the anterior cruciate ligament. Purpose This study was undertaken to measure, describe, and compare tibiofemoral rotations and translations of soft and stiff landings in healthy individuals using biplane fluoroscopy. Study Design Controlled laboratory study. Methods The in vivo, lower extremity, 3-dimensional knee kinematics of 16 healthy adults (6 male and 10 female) instructed to land softly and stiffly in different trials were collected in biplane fluoroscopy as they performed the landing from a height of 40 cm. Results Average and maximum relative anterior tibial translation (average, 2.8 ± 1.2 mm vs 3.0 ± 1.4 mm; maximum, 4.7 ± 1.6 mm vs 4.4 ± 0.8 mm), internal/external rotation (average, 3.7° ± 5.1° vs 2.7° ± 4.3°; maximum, 5.6° ± 5.5° vs 4.9° ± 4.7°), and varus/valgus (average, 0.2° ± 1.2° vs 0.2° ± 1.0°; maximum, 1.7° ± 1.2° vs 1.6° ± 0.9°) were all similar between soft and stiff landings, respectively. The peak vertical ground-reaction force was significantly larger for stiff landings than for soft landings (2.60 ± 1.32 body weight vs 1.63 ± 0.73; P < .001). The knee flexion angle total range of motion from the minimum angle at contact to the maximum angle at peak knee flexion was significantly greater for soft landings than for stiff (55.4° ± 8.8° vs 36.8° ± 11.1°; P < .01). Conclusion Stiff landings, as defined by significantly lower knee flexion angles and significantly greater peak ground-reaction forces, do not result in larger amounts of anterior tibial translation or knee rotation in either varus/valgus or internal/external rotation in healthy individuals. Clinical Relevance In healthy knees, the musculature and soft tissues of the knee are able to maintain translations and rotations within a small, safe range during controlled landing tasks of differing demand. The knee kinematics of this healthy population will serve as a comparison for injured knees in future studies. It should be stressed that because the authors did not compare how the loads were distributed over the soft tissues of the knee between the 2 landing styles, the larger ground-reaction forces and more extended knee position observed during stiff landings should still be considered dangerous to the anterior cruciate ligament and other structures of the lower extremities, particularly in competitive settings where movements are often unanticipated. PMID:21602566
Iselin, C E; Webster, G D
1999-08-01
As a result of pelvic fracture urethral distraction defects, urinary continence relies predominantly on intact bladder neck function. Hence, when cystoscopy and/or cystography reveals an open bladder neck before urethroplasty, the probability of postoperative urinary incontinence may be significant. Unresolved issues are the necessity, the timing and the type of bladder neck repair. We report the outcome of various therapeutic options in patients with pelvic fracture urethral distraction defects and open bladder neck. We also attempt to identify prognostic factors of incontinence before urethroplasty. We retrospectively reviewed the records of 15 patients with a mean age of 30 years in whom an open bladder neck was identified before posterior urethroplasty between January 1981 and October 1997. Of the 15 patients 6 were continent and 8 were incontinent postoperatively. One patient underwent artificial urethral sphincter implantation simultaneously with pelvic fracture urethral distraction defect repair and was dry postoperatively without sphincter activation. Average bladder neck and prostatic urethral opening on the cystourethrogram before urethroplasty was significantly longer in incontinent (1.68 cm.) than in continent (0.9 cm.) patients. Of the 8 patients who were incontinent 6 underwent bladder neck reconstruction, 1 artificial urinary sphincter and 1 periurethral collagen implant. Five patients with bladder neck reconstruction are totally continent and 1 requires 1 pad daily. The patient who underwent collagen implant requires 2 pads daily and the patient who received an artificial urethral sphincter has minor urge leakage. Open bladder neck before urethroplasty may herald postoperative incontinence which may be predicted by radiographic and cystoscopic features. Evaluation of the risk of postoperative incontinence may be valuable, and eventually guide the necessity and timing of anti-incontinence surgery, although our preference remains to manage the pelvic fracture urethral distraction defects and bladder neck problem sequentially. Bladder neck reconstruction provides good postoperative continence rates and is our technique of choice.
Lauche, Romy; Stumpe, Christoph; Fehr, Johannes; Cramer, Holger; Cheng, Ying Wu; Wayne, Peter M; Rampp, Thomas; Langhorst, Jost; Dobos, Gustav
2016-09-01
This study aimed to test the efficacy of Tai Chi for treating chronic neck pain. Subjects with chronic nonspecific neck pain were randomly assigned to 12 weeks of group Tai Chi or conventional neck exercises with weekly sessions of 75 to 90 minutes, or a wait-list control. The primary outcome measure was pain intensity (visual analogue scale). Secondary outcomes included pain on movement, functional disability, quality of life, well-being and perceived stress, postural and interoceptive awareness, satisfaction, and safety. Altogether, 114 participants were included (91 women, 49.4 ± 11.7 years of age). After 12 weeks Tai Chi participants reported significantly less pain compared with the wait list group (average difference in mm on the visual analogue scale: -10.5; 95% confidence interval, -20.3 to -.9; P = .033). Group differences were also found for pain on movement, functional disability, and quality of life compared with the wait list group. No differences were found for Tai Chi compared with neck exercises. Patients' satisfaction with both exercise interventions was high, and only minor side effects were observed. Tai Chi was more effective than no treatment in improving pain in subjects with chronic nonspecific neck pain. Because Tai Chi is probably as effective as neck exercises it may be considered a suitable alternative to conventional exercises for those with a preference toward Tai Chi. This article presents results of a randomized controlled trial comparing Tai Chi, conventional neck exercises, and no treatment for chronic nonspecific neck pain. Results indicate that Tai Chi exercises and conventional neck exercises are equally effective in improving pain and quality of life therefore representing beneficial interventions for neck pain. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.
SU-G-IeP2-10: Lens Dose Reduction by Patient Position Modification During Neck CT Exams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, E; Lee, C; Butman, J
Purpose: Irradiation of the lens during a neck CT may increase a patient’s risk of developing cataracts later in life. Radiologists and technologists at the National Institutes of Health Clinical Center (NIHCC) have developed new CT imaging protocols that include a reduction in scan range and modifying neck positioning using a head tilt. This study will evaluate the efficacy of this protocol in the reduction of lens dose. Methods: We retrieved CT images of five male patients who had two sets of CT images: before and after the implementation of the new protocol. The lens doses before the new protocolmore » were calculated using an in-house CT dose calculator, National Cancer Institute dosimetry system for CT (NCICT), where computational human phantoms with no head tilt are included. We also calculated the lens dose for the patient CT conducted after the new protocol by using an adult male computational phantom with the neck position deformed to match the angle of the head tilt. We also calculated the doses to other radiosensitive organs including the globes of the eye, brain, pituitary gland and salivary glands before and after head tilt. Results: Our dose calculations demonstrated that modifying neck position reduced dose to the lens by 89% on average (range: 86–96%). Globe, brain, pituitary and salivary gland doses also decreased by an average of 65% (51–95%), 38% (−8–66%), 34% (−43–84%) and 14% (13–14%), respectively. The new protocol resulted in a nearly ten-fold decrease in lens dose. Conclusion: The use of a head tilt and scan range reduction is an easy and effective method to reduce radiation exposure to the lens and other radiosensitive organs, while still allowing for the inclusion of critical neck structures in the CT image. We are expanding our study to a total of 10 males and 10 females.« less
Changes in female veterans' neck pain following chiropractic care at a hospital for veterans.
Corcoran, Kelsey L; Dunn, Andrew S; Green, Bart N; Formolo, Lance R; Beehler, Gregory P
2018-02-01
To determine if U.S. female veterans had demonstrable improvements in neck pain after chiropractic management at a Veterans Affairs (VA) hospital. This was a retrospective cross-sectional study of medical records from female veterans attending a VA chiropractic clinic for neck pain from 2009 to 2015. Paired t-tests were used to compare baseline and discharge numeric rating scale (NRS) and Neck Bournemouth Questionnaire (NBQ) scores with a minimum clinically important difference (MCID) set at a 30% change from baseline. Thirty-four veterans met the inclusion criteria and received a mean of 8.8 chiropractic treatments. For NRS, the mean score improvement was 2.7 (95%CI, 1.9-3.5, p < .001). For the NBQ, the mean score improvement was 13.7 (95%CI, 9.9-17.5, p < .001). For the MCID, the average percent improvement was 45% for the NRS and 38% for the NBQ. Female veterans with neck pain experienced a statistically and clinically significant reduction in NRS and NBQ scores. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cost-effectiveness of simultaneous versus sequential surgery in head and neck reconstruction.
Wong, Kevin K; Enepekides, Danny J; Higgins, Kevin M
2011-02-01
To determine whether simultaneous (ablation and reconstruction overlaps by two teams) head and neck reconstruction is cost effective compared to sequentially (ablation followed by reconstruction) performed surgery. Case-controlled study. Tertiary care hospital. Oncology patients undergoing free flap reconstruction of the head and neck. A match paired comparison study was performed with a retrospective chart review examining the total time of surgery for sequential and simultaneous surgery. Nine patients were selected for both the sequential and simultaneous groups. Sequential head and neck reconstruction patients were pair matched with patients who had undergone similar oncologic ablative or reconstructive procedures performed in a simultaneous fashion. A detailed cost analysis using the microcosting method was then undertaken looking at the direct costs of the surgeons, anesthesiologist, operating room, and nursing. On average, simultaneous surgery required 3 hours 15 minutes less operating time, leading to a cost savings of approximately $1200/case when compared to sequential surgery. This represents approximately a 15% reduction in the cost of the entire operation. Simultaneous head and neck reconstruction is more cost effective when compared to sequential surgery.
Cramer, Joel T; Jenkins, Nathaniel D M; Mustad, Vikkie A; Weir, Joseph P
2017-06-01
This study quantified systematic and intraindividual variability among three repetitions of concentric isokinetic knee extension and flexion tests to determine velocity-related differences in peak torque (PT) and mean power (MP) in healthy elderly (HE) versus sarcopenic and malnourished elderly (SME). In total, 107 HE ( n = 54 men, n = 53 women) and 261 SME ( n = 101 men, n = 160 women) performed three maximal concentric isokinetic knee extension and flexion repetitions at 60°·s -1 and 180°·s -1 . PT for Repetition 3 was lower than Repetitions 1 and 2, while MP for Repetition 1 was lower than Repetitions 2 and 3 in SME. Intraindividual variability among repetitions was correlated with strength, but not age, and was greater in SME, during knee flexion, and at 180°·s -1 . Velocity-related decreases in PT from 60°·s -1 to 180°·s -1 were more pronounced in SME. In summary, (a) the repetition with the highest PT value may be the best indicator of maximal strength, while the average may indicate strength maintenance in SME; (b) intraindividual variability among repetitions reflects functional decrements from HE to SME; and (c) decreases in PT from 60°·s to 180°·s may reflect greater losses of fast-twitch (type II) fiber function.
Function of the medial meniscus in force transmission and stability.
Walker, Peter S; Arno, Sally; Bell, Christopher; Salvadore, Gaia; Borukhov, Ilya; Oh, Cheongeun
2015-06-01
We studied the combined role of the medial meniscus in distributing load and providing stability. Ten normal knees were loaded in combinations of compressive and shear loading as the knee was flexed over a full range. A digital camera tracked the motion, from which femoral-tibial contacts were determined by computer modelling. Load transmission was determined from the Tekscan for the anterior horn, central body, posterior horn, and the uncovered cartilage in the centre of the meniscus. For the three types of loading; compression only, compression and anterior shear, compression and posterior shear; between 40% and 80% of the total load was transmitted through the meniscus. The overall average was 58%, the remaining 42% being transmitted through the uncovered cartilage. The anterior horn was loaded only up to 30 degrees flexion, but played a role in controlling anterior femoral displacement. The central body was loaded 10-20% which would provide some restraint to medial femoral subluxation. Overall the posterior horn carried the highest percentage of the shear load, especially after 30 degrees flexion when a posterior shear force was applied, where the meniscus was estimated to carry 50% of the shear force. This study added new insights into meniscal function during weight bearing conditions, particularly its role in early flexion, and in transmitting shear forces. Copyright © 2015 Elsevier Ltd. All rights reserved.
DiFabio, Melissa; Slater, Lindsay V; Norte, Grant; Goetschius, John; Hart, Joseph M; Hertel, Jay
2018-03-01
After ACL reconstruction (ACLR), deficits are often assessed using a variety of functional tests, which can be time consuming. It is unknown whether these tests provide redundant or unique information. To explore relationships between components of a battery of functional tests, the Lower Extremity Assessment Protocol (LEAP) was created to aid in developing the most informative, concise battery of tests for evaluating ACLR patients. Descriptive, cross-sectional. Laboratory. 76 ACLR patients (6.86±3.07 months postoperative) and 54 healthy participants. Isokinetic knee flexion and extension at 90 and 180 degrees/second, maximal voluntary isometric contraction for knee extension and flexion, single leg balance, 4 hopping tasks (single, triple, crossover, and 6-meter timed hop), and a bilateral drop vertical jump that was scored with the Landing Error Scoring System (LESS). Peak torque, average torque, average power, total work, fatigue indices, center of pressure area and velocity, hop distance and time, and LESS score. A series of factor analyses were conducted to assess grouping of functional tests on the LEAP for each limb in the ACLR and healthy groups and limb symmetry indices (LSI) for both groups. Correlations were run between measures that loaded on retained factors. Isokinetic and isometric strength tests for knee flexion and extension, hopping, balance, and fatigue index were identified as unique factors for all limbs. The LESS score loaded with various factors across the different limbs. The healthy group LSI analysis produced more factors than the ACLR LSI analysis. Individual measures within each factor had moderate to strong correlations. Isokinetic and isometric strength, hopping, balance, and fatigue index provided unique information. Within each category of measures, not all tests may need to be included for a comprehensive functional assessment of ACLR patients due to the high amount of shared variance between them.
2014-01-01
Background Clinicians commonly examine posture and movement in people with the belief that correcting dysfunctional movement may reduce pain. If dysfunctional movement is to be accurately identified, clinicians should know what constitutes normal movement and how this differs in people with low back pain (LBP). This systematic review examined studies that compared biomechanical aspects of lumbo-pelvic movement in people with and without LBP. Methods MEDLINE, Cochrane Central, EMBASE, AMI, CINAHL, Scopus, AMED, ISI Web of Science were searched from inception until January 2014 for relevant studies. Studies had to compare adults with and without LBP using skin surface measurement techniques to measure lumbo-pelvic posture or movement. Two reviewers independently applied inclusion and exclusion criteria, and identified and extracted data. Standardised mean differences and 95% confidence intervals were estimated for group differences between people with and without LBP, and where possible, meta-analyses were performed. Within-group variability in all measurements was also compared. Results The search identified 43 eligible studies. Compared to people without LBP, on average, people with LBP display: (i) no difference in lordosis angle (8 studies), (ii) reduced lumbar ROM (19 studies), (iii) no difference in lumbar relative to hip contribution to end-range flexion (4 studies), (iv) no difference in standing pelvic tilt angle (3 studies), (v) slower movement (8 studies), and (vi) reduced proprioception (17 studies). Movement variability appeared greater for people with LBP for flexion, lateral flexion and rotation ROM, and movement speed, but not for other movement characteristics. Considerable heterogeneity exists between studies, including a lack of detail or standardization between studies on the criteria used to define participants as people with LBP (cases) or without LBP (controls). Conclusions On average, people with LBP have reduced lumbar ROM and proprioception, and move more slowly compared to people without LBP. Whether these deficits exist prior to LBP onset is unknown. PMID:25012528
Desensitizing the posterior interosseous nerve alters wrist proprioceptive reflexes.
Hagert, Elisabet; Persson, Jonas K E
2010-07-01
The presence of wrist proprioceptive reflexes after stimulation of the dorsal scapholunate interosseous ligament has previously been described. Because this ligament is primarily innervated by the posterior interosseous nerve (PIN) we hypothesized altered ligamento-muscular reflex patterns following desensitization of the PIN. Eight volunteers (3 women, 5 men; mean age, 26 y; range 21-28 y) participated in the study. In the first study on wrist proprioceptive reflexes (study 1), the scapholunate interosseous ligament was stimulated through a fine-wire electrode with 4 1-ms bipolar pulses at 200 Hz, 30 times consecutively, while EMG activity was recorded from the extensor carpi radialis brevis, extensor carpi ulnaris, flexor carpi radialis, and flexor carpi ulnaris, with the wrist in extension, flexion, radial deviation, and ulnar deviation. After completion of study 1, the PIN was anesthetized in the radial aspect of the fourth extensor compartment using 2-mL lidocaine (10 mg/mL) infiltration anesthesia. Ten minutes after desensitization, the experiment was repeated as in study 1. The average EMG results from the 30 consecutive stimulations were rectified and analyzed using Student's t-test. Statistically significant changes in EMG amplitude were plotted along time lines so that the results of study 1 and 2 could be compared. Dramatic alterations in reflex patterns were observed in wrist flexion, radial deviation, and ulnar deviation following desensitization of the PIN, with an average of 72% reduction in excitatory reactions. In ulnar deviation, the inhibitory reactions of the extensor carpi ulnaris were entirely eliminated. In wrist extension, no differences in the reflex patterns were observed. Wrist proprioception through the scapholunate ligament in flexion, radial deviation, and ulnar deviation depends on an intact PIN function. The unchanged reflex patterns in wrist extension suggest an alternate proprioceptive pathway for this position. Routine excision of the PIN during wrist surgical procedures should be avoided, as it alters the proprioceptive function of the wrist. Therapeutic IV. Copyright 2010 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Klous, Miriam; Mikulic, Pavle; Latash, Mark L
2011-05-01
We used the framework of the uncontrolled manifold hypothesis to explore the relations between anticipatory synergy adjustments (ASAs) and anticipatory postural adjustments (APAs) during feedforward control of vertical posture. ASAs represent a drop in the index of a multimuscle-mode synergy stabilizing the coordinate of the center of pressure in preparation to an action. ASAs reflect early changes of an index of covariation among variables reflecting muscle activation, whereas APAs reflect early changes in muscle activation levels averaged across trials. The assumed purpose of ASAs is to modify stability of performance variables, whereas the purpose of APAs is to change magnitudes of those variables. We hypothesized that ASAs would be seen before APAs and that this finding would be consistent with regard to the muscle-mode composition defined on the basis of different tasks and phases of action. Subjects performed a voluntary body sway task and a quick, bilateral shoulder flexion task under self-paced and reaction time conditions. Surface muscle activity of 12 leg and trunk muscles was analyzed to identify sets of 4 muscle modes for each task and for different phases within the shoulder flexion task. Variance components in the muscle-mode space and indexes of multimuscle-mode synergy stabilizing shift of the center of pressure were computed. ASAs were seen ∼ 100-150 ms prior to the task initiation, before APAs. The results were consistent with respect to different sets of muscle modes defined over the two tasks and different shoulder flexion phases. We conclude that the preparation for a self-triggered postural perturbation is associated with two types of anticipatory adjustments, ASAs and APAs. They reflect different feedforward processes within the hypothetical hierarchical control scheme, resulting in changes in patterns of covariation of elemental variables and in their patterns averaged across trials, respectively. The results show that synergies quantified using dissimilar sets of muscle modes show similar feedforward changes in preparation to action.
New QCT analysis approach shows the importance of fall orientation on femoral neck strength.
Carpenter, R Dana; Beaupré, Gary S; Lang, Thomas F; Orwoll, Eric S; Carter, Dennis R
2005-09-01
The influence of fall orientation on femur strength has important implications for understanding hip fracture risk. A new image analysis technique showed that the strength of the femoral neck in 37 males varied significantly along the neck axis and that bending strength varied by a factor of up to 2.8 for different loading directions. Osteoporosis is associated with decreased BMD and increased hip fracture risk, but it is unclear whether specific osteoporotic changes in the proximal femur lead to a more vulnerable overall structure. Nonhomogeneous beam theory, which is used to determine the mechanical response of composite structures to applied loads, can be used along with QCT to estimate the resistance of the femoral neck to axial forces and bending moments. The bending moment [My(theta)] sufficient to induce yielding within femoral neck sections was estimated for a range of bending orientations (theta) using in vivo QCT images of 37 male (mean age, 73 years; range, 65-87 years) femora. Volumetric BMD, axial stiffness, average moment at yield (M(y,avg)), maximum and minimum moment at yield (M(y,max) and M(y,min)), bone strength index (BSI), stress-strain index (SSI), and density-weighted moments of resistance (Rx and Ry) were also computed. Differences among the proximal, mid-, and distal neck regions were detected using ANOVA. My(theta) was found to vary by as much as a factor of 2.8 for different bending directions. Axial stiffness, M(y,avg), M(y,max), M(y,min), BSI, and Rx differed significantly between all femoral neck regions, with an overall trend of increasing axial stiffness and bending strength when moving from the proximal neck to the distal neck. Mean axial stiffness increased 62% between the proximal and distal neck, and mean M(y,avg) increased 53% between the proximal and distal neck. The results of this study show that femoral neck strength strongly depends on both fall orientation and location along the neck axis. Compressive yielding in the superior portion of the femoral neck is expected to initiate fracture in a fall to the side.
Huang, Peng; Tang, Peifu; Yao, Qi
2007-11-01
To evaluate the treatment results of LCP and locked intramedullary nailing for tibial diaphysis fractures. From October 2003 to April 2006, 55 patients with tibial diaphysis fractures (58 fractures) were treated. Of them there were 39 males and 16 females with an average of 39 years years ( 14 to 62 years). The fractures were on the left side in 27 patients and on the right side in 31 patients (3 patients had bilateral involvement). Thirty-four fractures were treated by intramedullary nailing (intramedullary nailing group) and 24 fractures by LCP fixation (LCP group). The average disease course was 3 days (intramedullary nailing group) and 3.1 days (LCP group). The operation time, the range of motion of knee and ankle joints, fracture healing time, and complications were evaluated. The patients were followed up 8-26 months (13 months on average). The operation time was 84.0+/-9.2 min (intramedullary nailing group) and 69.0+/-8.4 min (LCP group); the average cost in hospital was yen 19,297.78 in the intramedullary nailing group and yen 14,116.55 in the LCP group respectively, showing significant differences (P < 0.05). The flexion and extension of knee joint was 139.0 +/- 3.7 degrees and 4.0 +/- 0.7 degrees in intramedullary nailing group and 149.0+/-4.2 degrees and 0+/-0.4 degrees in LCP group, showing no significant difference (P>0.05). The doral flexion and plantar flexion of ankle joint were 13.0+/-1.7 degrees and 41.0+/-2.6 degrees in intramedullary nailing group, and 10.0+/-1.4 degrees and 44.0+/-2.3 degrees in LCP group, showing no significant differences (P>0.05). The mean healing time was 3.3 months in intramedullary nailing group, and 3. 1 months in LCP group. Length discrepancy occurred in 1 case (2.5 cm), delayed union in 1 case and nailing end trouble in 3 cases in intramedullary nailing group; moreover rotation deformity occurred 1 case and anterior knee pain occurred in 6 cases (17.1%). One angulation and open fracture developed osteomyelitis in 1 case 1 week postoperatively and angulation deformity occurred in 1 case of distal-third tibial fractures in LCP group. LCP and locked intramedullary nailing can achieve satisfactory results in treating tibial diaphysis fracture LCP has advantages in less complication, operation time and cost in hospital.
Pain after discharge following head and neck surgery in children.
Wilson, Caroline A; Sommerfield, David; Drake-Brockman, Thomas F E; von Bieberstein, Lita; Ramgolam, Anoop; von Ungern-Sternberg, Britta S
2016-10-01
It is well established that children experience significant pain for a considerable period following adenotonsillectomy. Less is known, however, about pain following other common head and neck operations. The aim of this study was to describe the severity and duration of postoperative pain experienced by children undergoing elective head and neck procedures (primary outcomes). Behavioral disturbance, nausea and vomiting, parental satisfaction, and medical reattendance rates were also measured (secondary outcomes). Parents of children (0-18 years) undergoing common head and neck operations were invited to participate. Pain scores on the day of surgery and each day post discharge were collected via multiple telephone interviews. Data collected included pain levels, analgesia prescribed and given, behavioral disturbance rates, and nausea and vomiting scores. Follow-up was continued until pain resolved. Two hundred and fifty-one patients were analyzed (50 adenoidectomy, 51 adenotonsillectomy, 19 myringoplasty, 52 myringotomy, 43 strabismus, and 36 tongue tie divisions). On the day of surgery myringoplasty, strabismus surgery, and adenotonsillectomy patients on average had moderate pain, whereas adenoidectomy, tongue tie, and myringotomy patients had mild pain. Adenotonsillectomy patients continued to have moderate pain for several days with pain lasting on average 9 days. From day 1 postoperatively mild pain was experienced in the other surgical groups with the average duration of pain varying from 1 to 3 days depending on the surgery performed. Frequency of behavioral issues closely followed pain scores for each group. Analgesic prescribing and regimes at home varied widely, both within and between the different surgical groups. Rates of nausea and vomiting following discharge were low in all groups. The overall unplanned medical reattendance rate was 16%. Adenotonsillectomy patients represent the biggest challenge in postoperative pain management of the head and neck surgeries evaluated. The low rates of pain, nausea, and vomiting reported in the days following surgery for the other procedures suggests that children can be cared for at home with simple analgesia. Discharge information and analgesia prescribing on discharge should be tailored to the operation performed. © 2016 John Wiley & Sons Ltd.
Han, Hyuk-Soo; Kang, Seung-Baik
2013-05-01
The long-term survivorship of TKA in Asian countries is comparable to that in Western countries. High-flexion TKA designs were introduced to improve flexion after TKA. However, several studies suggest high-flexion designs are at greater risk of femoral component loosening compared with conventional TKA designs. We previously reported a revision rate of 21% at 11 to 45 months; this report is intended as a followup to that study. Do implant survival and function decrease with time and do high-flexion activities increase the risk of premature failure? We prospectively followed 72 Nexgen LPS-flex fixed TKAs in 47 patients implanted by a single surgeon between March 2003 and September 2004. We determined the probability of survival using revision as an end point and compared survival between those who could and those who could not perform high-flexion activities. Minimum followup was 0.9 years (median, 6.5 years; range, 0.9-8.6 years). Twenty-five patients (33 knees) underwent revision for aseptic loosening of the femoral component at a mean of 4 years (range, 1-8 years). The probability of revision-free survival for aseptic loosening was 67% and 52% at 5 and 8 years, respectively. Eight-year cumulative survivorship was lower in patients capable of squatting, kneeling, or sitting crosslegged (31% compared with 78%). There were no differences in the pre- and postoperative mean Hospital for Special Surgery scores and maximum knee flexion degrees whether or not high-flexion activities could be achieved. Overall midterm high-flexion TKA survival in our Asian cohort was lower than that of conventional and other high-flexion designs. This unusually high rate of femoral component loosening was associated with postoperative high-flexion activities.
Hurwitz, Eric L; Li, Dongmei; Guillen, Jenni; Schneider, Michael J; Stevans, Joel M; Phillips, Reed B; Phelan, Shawn P; Lewis, Eugene A; Armstrong, Richard C; Vassilaki, Maria
2016-05-01
The purpose of the study was to compare utilization and charges generated by medical doctors (MD), doctors of chiropractic (DC) and physical therapists (PT) by provider patterns of care for the treatment of neck pain in North Carolina. This was an analysis of neck-pain-related closed claim data from the North Carolina State Health Plan for Teachers and State Employees (NCSHP) from 2000 to 2009. Data were extracted from Blue Cross Blue Shield of North Carolina for the NCSHP using ICD-9 diagnostic codes for uncomplicated neck pain (UNP) and complicated neck pain (CNP). Care patterns with single-provider types and no referrals incurred the least average charges for both UNP and CNP. When care did not include referral providers or services, for either UNP or CNP, MD care with PT was generally less expensive than MD care with DC care. However, when care involved referral providers or services, MD and PT care was on average more expensive than MD and DC care for either UNP or CNP. Risk-adjusted charges for patients in the middle quintile of risk (available 2006-2009) were lower for chiropractic patients with or without medical care or referral care to other providers. Chiropractic care alone or DC with MD care incurred appreciably fewer charges for UNP or CNP compared to MD care with or without PT care, when care included referral providers or services. This finding was reversed when care did not include referral providers or services. Risk-adjusted charges for UNP and CNP patients were lower for DC care patterns. Copyright © 2016 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.
Radiation Dose Reduction by Indication-Directed Focused z-Direction Coverage for Neck CT.
Parikh, A K; Shah, C C
2016-06-01
The American College of Radiology-American Society of Neuroradiology-Society for Pediatric Radiology Practice Parameter for a neck CT suggests that coverage should be from the sella to the aortic arch. It also recommends using CT scans judiciously to achieve the clinical objective. Our purpose was to analyze the potential dose reduction by decreasing the scan length of a neck CT and to assess for any clinically relevant information that might be missed from this modified approach. This retrospective study included 126 children who underwent a neck CT between August 1, 2013, and September 30, 2014. Alteration of the scan length for the modified CT was suggested on the topographic image on the basis of the indication of the study, with the reader blinded to the images and the report. The CT dose index volume of the original scan was multiplied by the new scan length to calculate the dose-length product of the modified study. The effective dose was calculated for the original and modified studies by using age-based conversion factors from the American Association of Physicists in Medicine Report No. 96. Decreasing the scan length resulted in an average estimated dose reduction of 47%. The average reduction in scan length was 10.4 cm, decreasing the overall coverage by 48%. The change in scan length did not result in any missed findings that altered management. Of the 27 abscesses in this study, none extended to the mediastinum. All of the lesions in question were completely covered. Decreasing the scan length of a neck CT according to the indication provides a significant savings in radiation dose, while not altering diagnostic ability or management. © 2016 by American Journal of Neuroradiology.
Verma, Nikhil; Singh, M P; Ul-Haq, Rehan; Rajnish, Rajesh K; Anshuman, Rahul
2017-08-01
The aim of present study is to evaluate the outcome of bone marrow instillation at the fracture site in fracture of intracapsular neck femur treated by head preserving surgery. This study included 32 patients of age group 18-50 years with closed fracture of intracapsular neck femur. Patients were randomized into two groups as per the plan generated via www.randomization.com. The two groups were Group A (control), in which the fracture of intracapsular neck femur was treated by closed reduction and cannulated cancellous screw fixation, and Group B (intervention), in which additional percutaneous autologous bone marrow aspirate instillation at fracture site was done along with cannulated cancellous screw fixation. Postoperatively the union at fracture site and avascular necrosis of the femoral head were assessed on serial plain radiographs at final follow-up. Functional outcome was evaluated by Harris hip score. The average follow-up was 19.6 months. Twelve patients in each group had union and 4 patients had signs of nonunion. One patient from each group had avascular necrosis of the femoral head. The average Harris hip score at final follow-up in Group A was 80.50 and in Group B was 75.73, which was found to be not significant. There is no significant role of adding on bone marrow aspirate instillation at the fracture site in cases of fresh fracture of intracapsular neck femur treated by head preserving surgery in terms of accelerating the bone healing and reducing the incidence of femoral head necrosis. Copyright © 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.
FRACTURES OF THE FEMUR NECK RESULTING FROM RADIATION DAMAGE (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koschitz-Kosic, H.
Fractures of the neck of the femur following radiation therapy may involve three interrelated factors: age of the patient, archetectonic phylogenesis of the femur neck, and onset of radionecrosis. Up to now approximates 144 cases of femur neck fracture have been reported in the literature. Of the 10 cases reported here there was no clear relation between the time of irradiation and the fracture. One fracture followed 35 months after 17,400 r, and another 15 months after 4000 r of x ray, but both of these patients had also received Ra therapy. The average time span between irradiation and fracturemore » was 21 months. Only x ray had been given to five patients, but five had received combined x-ray and Ra treatment. One of the patients with a medial femur neck fracture became ambulatory after three weeks bed rest. The other nine fractures were nailed without any fatality. Subsequently, two cases were practically free of difficulties 12 and 18 months later, three cases exhibited slight fatigue 2, 5, and 63 months later, and five cases limped and required a cane 1, 3, 14, 17, and 76 months later. So far none of the nails have been removed. In no case was there complete recalcification of the fracture, and the ability of the ambulatory patients to walk depended on a combination of callus formation and the support of the nail. The fractures never gave any contraindication for use of the nails. Their use reduced the time for bed rest needed to an average of approximates 5 weeks. Treatment of this type of patient should also include appropriate geriatric and physical therapy measures. (BBB)« less
Liu, Ping; Wang, Jianquan; Xu, Yan; Ao, Yingfang
2015-04-01
The aim of this study was to determine the in situ forces and length patterns of the fibular collateral ligament (FCL) and kinematics of the knee under various loading conditions. Six fresh-frozen cadaveric knees were used (mean age 46 ± 14.4 years; range 20-58). In situ forces and length patterns of FCL and kinematics of the knee were determined under the following loading conditions using a robotic/universal force-moment sensor testing system: no rotation, varus (10 Nm), external rotation (5 Nm), and internal rotation (5 Nm) at 0°, 15°, 30°, 60º, 90°, and 120° of flexion, respectively. Under no rotation loading, the distances between the centres of the FCL attachments decreased as the knee flexed. Under varus loading, the force in FCL peaked at 15° of flexion and decreased with further knee flexion, while distances remained nearly constant and the varus rotation increased with knee flexion. Using external rotation, the force in the FCL also peaked at 15° flexion and decreased with further knee flexion, the distances decreased with flexion, and external rotation increased with knee flexion. Using internal rotation load, the force in the FCL was relatively small across all knee flexion angles, and the distances decreased with flexion; the amount of internal rotation was fairly constant. FCL has a primary role in preventing varus and external rotation at 15° of flexion. The FCL does not perform isometrically following knee flexion during neutral rotation, and tibia rotation has significant effects on the kinematics of the FCL. Varus and external rotation laxity increased following knee flexion. By providing more realistic data about the function and length patterns of the FCL and the kinematics of the intact knee, improved reconstruction and rehabilitation protocols can be developed.
Lee, Sang-Ho; Lee, Ho-Yeon; Baek, Oon Ki; Bae, Jun Seok; Yoo, Seung-Hwa; Lee, June-Ho
2015-03-15
Retrospective clinical study. To evaluate the effect of the limitation of flexion rotation clinically and radiologically after interspinous soft stabilization using a tension band system in grade 1 degenerative spondylolisthesis. Although several studies have been published on the clinical effects of limiting rotatory motion using tension band systems, which mainly targets the limitation of flexion rather than that of extension, they were confined to the category of pedicle screw-based systems, revealing inconsistent long-term outcomes. Sixty-one patients with a mean age of 60.6 years (range, 28-76 yr) who underwent interspinous soft stabilization after decompression for grade 1 degenerative spondylolisthesis with stenosis between 2002 and 2004 were analyzed. At follow-up, the patients were divided into 2 groups on the basis of their achievement or failure to achieve flexion limitation. The clinical and radiological findings were analyzed. A multiple linear regression analysis was performed to determine the prognostic factors for surgical outcomes. At a mean follow-up duration of 72.5 months (range, 61-82 mo), 51 patients were classified into the flexion-limited group and 10 into the flexion-unlimited group. Statistically significant improvements were noted only in the flexion-limited group in all clinical scores. In the flexion-unlimited group, there were significant deteriorations in flexion angle (P = 0.009), axial thickness of the ligamentum flavum (P = 0.013), and the foraminal cross-sectional area (P = 0.011), resulting in significant intergroup differences. The preoperative extension angle was identified as the most influential variable for the flexion limitation and the clinical outcomes. The effects of the limitation of flexion rotation achieved through interspinous soft stabilization using a tension band system after decompression were related to the prevention of late recurrent stenosis and resultant radicular pain caused by flexion instability. The extension potential at the index level was recognized as a major prognostic factor that can predict the flexion limitation and the clinical results. 4.
Relative sensitivity of depth discrimination for ankle inversion and plantar flexion movements.
Black, Georgia; Waddington, Gordon; Adams, Roger
2014-02-01
25 participants (20 women, 5 men) were tested for sensitivity in discrimination between sets of six movements centered on 8 degrees, 11 degrees, and 14 degrees, and separated by 0.3 degrees. Both inversion and plantar flexion movements were tested. Discrimination of the extent of inversion movement was observed to decline linearly with increasing depth; however, for plantar flexion, the discrimination function for movement extent was found to be non-linear. The relatively better discrimination of plantar flexion movements than inversion movements at around 11 degrees from horizontal is interpreted as an effect arising from differential amounts of practice through use, because this position is associated with the plantar flexion movement made in normal walking. The fact that plantar flexion movements are discriminated better than inversion at one region but not others argues against accounts of superior proprioceptive sensitivity for plantar flexion compared to inversion that are based on general properties of plantar flexion such as the number of muscle fibres on stretch.
Wu, Quan-Zhou; Huang, Shu-Ming; Cai, Qi-Xun; Chu, Xu-Feng
2017-01-25
To compare the complications and clinical outcome of titanium elastic nail(TEN) versus K-wire fixation(KW) for the treatment of displaced radial neck fractures in children. From January 2009 to December 2014, 56 children with displaced radial neck fractures were studied retrospectively according to the inclusion criteria. Based on the different methods of internal fixation, patients were divided into two groups: titanium elastic nail (TEN group) and K-wire fixation (KW group). Among 25 patients(15 males and 11 females, aged from 3 to 12 years old with an average of 8.6±2.1) treated with TEN, 16 patients had type III fractures, 19 patients had type IV fractures according to Metaizeau-Judet modified classification; 20 patients were treated with closed reduction and 5 patients were treated with open reduction; the time from injury to treatment ranged from 1 to 8 days with an average of (3.6±1.7) days. Among 31 patients (20 males and 11 females, aged from 3 to 11 years old with an average of 9.1±1.9 years old) treated with KW, 19 patients had type III fractures, 12 patients had type IV fractures; 22 patients were treated with closed reduction, and 9 patients were treated with open reduction; the time from injury to treatment ranged from 2 to 7 days with an average of (3.7±1.5) days. No significant differences between two groups were found in general data. Operative time, hospitalization time, healing time of fracture, internal fixation time, postoperative complications and function recovery of the two groups were compared and evaluated. The average follow-up period of the patients was 22.1 months in TEN group(ranged, 16 to 48 months), and 21.9 months in KW group(ranged, 13 to 48 months). There were no significant differences between these 2 groups in follow-up duration, average hospitalization time and fracture healing time. The operation time, hospital costs and internal fixation time in TEN group were (56.6±11.8) min, (18 000±3 000) Yuan(RMB), (9.1±2.5) weeks respectively; and in KW group were(45.5±10.3) min, (8 000±1 000) Yuan(RMB), (4.8±1.6) weeks respectively, there were significant differences between two groups( P <0.05). Outcome scores according to Metaizeau and Tibone-Stoltz had no significant differences between two groups( P >0.05). There is no significant difference of therapeutic effects between TEN and KW for children with displaced radial neck fractures. Because the removal of TEN fixation requires the secondary anesthesia, and the TEN costs significantly more than KW, TEN still can't replace the traditional KW for the treatment of radial neck fracture in children.
Flexion Reflex Can Interrupt and Reset the Swimming Rhythm.
Elson, Matthew S; Berkowitz, Ari
2016-03-02
The spinal cord can generate the hip flexor nerve activity underlying leg withdrawal (flexion reflex) and the rhythmic, alternating hip flexor and extensor activities underlying locomotion and scratching, even in the absence of brain inputs and movement-related sensory feedback. It has been hypothesized that a common set of spinal interneurons mediates flexion reflex and the flexion components of locomotion and scratching. Leg cutaneous stimuli that evoke flexion reflex can alter the timing of (i.e., reset) cat walking and turtle scratching rhythms; in addition, reflex responses to leg cutaneous stimuli can be modified during cat and human walking and turtle scratching. Both of these effects depend on the phase (flexion or extension) of the rhythm in which the stimuli occur. However, similar interactions between leg flexion reflex and swimming have not been reported. We show here that a tap to the foot interrupted and reset the rhythm of forward swimming in spinal, immobilized turtles if the tap occurred during the swim hip extensor phase. In addition, the hip flexor nerve response to an electrical foot stimulus was reduced or eliminated during the swim hip extensor phase. These two phase-dependent effects of flexion reflex on the swim rhythm and vice versa together demonstrate that the flexion reflex spinal circuit shares key components with or has strong interactions with the swimming spinal network, as has been shown previously for cat walking and turtle scratching. Therefore, leg flexion reflex circuits likely share key spinal interneurons with locomotion and scratching networks across limbed vertebrates generally. The spinal cord can generate leg withdrawal (flexion reflex), locomotion, and scratching in limbed vertebrates. It has been hypothesized that there is a common set of spinal cord neurons that produce hip flexion during flexion reflex, locomotion, and scratching based on evidence from studies of cat and human walking and turtle scratching. We show here that flexion reflex and swimming also share key spinal cord components based on evidence from turtles. Foot stimulation can reset the timing of the swimming rhythm and the response to each foot stimulation can itself be altered by the swim rhythm. Collectively, these studies suggest that spinal cord neuronal networks underlying flexion reflex, multiple forms of locomotion, and scratching share key components. Copyright © 2016 the authors 0270-6474/16/362819-08$15.00/0.
Overuse Injury Assessment Model
2005-03-01
superficialis Hip (Pelvis) Flexion Iliopsoas complex, rectus femoris, tensor fasciae latae, sartorius, pectineus Extension Semitendinosus, semimembranosus...Plantar flexion Gastrocnemius, soleus, tibialis posterior, peroneous muscles, Foot flexor muscles Spine Flexion Rectus abdominis, oblique muscles Extension...digitorum superficialis Hip Flexion Iliopsoas complex, rectus femoris, tensor fasciae latae, sartorius, pectineus, adductor magnus, adductor longus
Tsukada, Sachiyuki; Fujii, Tomoko; Wakui, Motohiro
2017-08-01
This study was performed to assess the impact of soft tissue imbalance on the knee flexion angle 2 years after posterior stabilized total knee arthroplasty (TKA). A total of 329 consecutive varus knees were included to assess the association of knee flexion angle 2 years after TKA with preoperative, intraoperative, and postoperative variables. All intraoperative soft tissue measurements were performed by a single surgeon under spinal anesthesia in a standardized manner including the subvastus approach, reduced patella, and without use of a pneumonic tourniquet. Multiple linear regression analysis showed no significant correlations in terms of intraoperative valgus imbalance at 90-degree flexion or the difference in soft tissue tension between 90-degree flexion and 0-degree extension (β = -0.039; 95% confidence interval [CI], -0.88 to 0.80; P = .93 and β = 0.015; 95% CI, -0.29 to 0.32; P = .92, respectively). Preoperative flexion angle was significantly correlated with knee flexion angle 2 years after TKA (β = 0.42; 95% CI, 0.33 to 0.51; P < .0001). Avoiding valgus imbalance at 90-degree flexion and aiming for strictly equal soft tissue tension between 90-degree flexion and 0-degree extension had little practical value with regard to knee flexion angle 2 years after posterior stabilized TKA. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Mullaji, Arun; Sharma, Amit; Marawar, Satyajit; Kanna, Raj
2009-08-01
A novel sequence of posteromedial release consistent with surgical technique of total knee arthroplasty was performed in 15 cadaveric knees. Medial and lateral flexion and extension gaps were measured after each step of the release using a computed tomography-free computer navigation system. A spring-loaded distractor and a manual distractor were used to distract the joint. Posterior cruciate ligament release increased flexion more than extension gap; deep medial collateral ligament release had a negligible effect; semimembranosus release increased the flexion gap medially; reduction osteotomy increased medial flexion and extension gaps; superficial medial collateral ligament release increased medial joint gap more in flexion and caused severe instability. This sequence of release led to incremental and differential effects on flexion-extension gaps and has implications in correcting varus deformity.
Evaluating the neck joint position sense error with a standard computer and a webcam.
Basteris, Angelo; Pedler, Ashley; Sterling, Michele
2016-12-01
Joint Position Sense Error (JPSE) is a measure of cervical spine proprioception, and a simple method for measuring the JPSE could help in monitoring and evaluating the outcomes of rehabilitation of people with neck pain. In this study we demonstrate preliminary results of a method for measuring JPSE that does not require the participant to wear any equipment. Based on free publicly available head tracking software, compatible with any webcam, we developed a webpage which instructs the participant in performing a self-administered version of the test. The aim of this proof-of-concept study was to demonstrate the viability of this system. We compared our absolute error values (3.68 ± 1.2° after extension, 3.46 ± 1.66° after flexion, 3.89 ± 2.34° after rotation to the left and 4.02 ± 1.82°after rotation to the right) to values from literature, finding that our results do not differ from those of 6 out of 11 studies (which used more complex and expensive setups). The results indicate that our system allows assessment of the JPSE with a standard computer. Being based on a website, the system has potential for telemedicine use. Further research is required to validate the system before it can be recommended for use in clinical practice. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fractures of the scapula: long-term results after conservative treatment.
Schofer, Markus D; Sehrt, Axel C; Timmesfeld, Nina; Störmer, Sabine; Kortmann, Horst R
2009-11-01
The aim of this study was to determine the long-term prognoses for conservatively treated fractures of the scapula. Ascertainment of functional long-term results in 50 patients treated for a total of 51 scapular fractures in a retrospective cohort study with an average follow-up period of 65 months. The breakdown of these scapular fractures was as follows: simple (22%) and fragmented (51%) fractures of the scapular body, fractures through the scapular neck (41%), fractures of the coracoid process, spine and acromion of the scapula (10%) and glenoid fractures (8%). In 17 of these cases of scapular fracture two or more types were present. At the follow-up examination a restricted range of movement was found in all directions. In abduction, flexion and external rotation the range of motion on the affected as against the unaffected side was significantly restricted, but the observed restriction did not substantially affect the functional results. The Constant score on the affected side was 79 points, with 23% very good, 51% good, 20% satisfactory and 6% poor results. Isokinetic testing carried out on both sides for comparison revealed lower peak torque values and lower mean power output in all planes of movement, and lower speeds on the affected side. There was a correlation between extent of restriction on movement and diminution of isokinetic muscular strength. Determination of the external rotation is recommended as a clinical test value, as it highlights significant deficits both in restriction of range of motion and in isokinetic test measurements. The outcome of treatment was not influenced by fracture type, associated injuries or handedness. After conservative treatment, scapular fractures heal with a good functional result despite measurable restrictions.
Rodríguez, Laura; Carretero, José Miguel; García-González, Rebeca; Lorenzo, Carlos; Gómez-Olivencia, Asier; Quam, Rolf; Martínez, Ignacio; Gracia-Téllez, Ana; Arsuaga, Juan Luis
2016-01-01
Complete radii in the fossil record preceding recent humans and Neandertals are very scarce. Here we introduce the radial remains recovered from the Sima de los Huesos (SH) site in the Sierra de Atapuerca between 1976 and 2011 and which have been dated in excess of 430 ky (thousands of years) ago. The sample comprises 89 specimens, 49 of which are attributed to adults representing a minimum of seven individuals. All elements are described anatomically and metrically, and compared with other fossil hominins and recent humans in order to examine the phylogenetic polarity of certain radial features. Radial remains from SH have some traits that differentiate them from those of recent humans and make them more similar to Neandertals, including strongly curved shafts, anteroposterior expanded radial heads and both absolutely and relatively long necks. In contrast, the SH sample differs from Neandertals in showing a high overall gracility as well as a high frequency (80%) of an anteriorly oriented radial tuberosity. Thus, like the cranial and dental remains from the SH site, characteristic Neandertal radial morphology is not present fully in the SH radii. We also analyzed the cross-sectional properties of the SH radial sample at two different levels: mid-shaft and at the midpoint of the neck length. When standardized by shaft length, no difference in the mid-shaft cross-sectional properties were found between the SH hominins, Neandertals and recent humans. Nevertheless, due to their long neck length, the SH hominins show a higher lever efficiency than either Neandertals or recent humans. Functionally, the SH radial morphology is consistent with more efficient pronation-supination and flexion-extension movements. The particular trait composition in the SH sample and Neandertals resembles more closely morphology evident in recent human males. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modeling length-tension properties of RCPm muscles during voluntary retraction of the head.
Hallgren, Richard C
2014-08-01
Head retraction exercises are one of several commonly used clinical tools that are used to assess and treat patients with head and neck pain and to aid in restoration of a normal neutral head posture. Retraction of the head results in flexion of the occipitoatlantal (OA) joint and stretching of rectus capitis posterior minor (RCPm) muscles. The role that retraction of the head might have in treating head and neck pain patients is currently unknown. RCPm muscles arise from the posterior tubercle of the posterior arch of C1 and insert into the occipital bone inferior to the inferior nuchal line and lateral to the midline. RCPm muscles are the only muscles that attach to the posterior arch of C1. The functional role of RCPm muscles has not been clearly defined. The goal of this project was to develop a three-dimensional, computer-based biomechanical model of the posterior aspect of the OA joint. This model should help clarify why voluntary head retraction exercises seem to contribute to the resolution of head and neck pain and restoration of a normal head posture in some patients. The model documents that length-tension properties of RCPm muscles are significantly affected by variations in the physical properties of the musculotendonous unit. The model suggests that variations in the cross sectional area of RCPm muscles due to pathologies that weaken the muscle, such as muscle atrophy, may reduce the ability of these muscles to generate levels of force that are necessary for the performance of normal, daily activities. The model suggests that the main benefit of the initial phase of head retraction exercises may be to strengthen RCPm muscles through eccentric contractions, and that the main benefit of the final phase of retraction may be to stretch the muscles as the final position is held. Copyright © 2014 Elsevier Ltd. All rights reserved.
Frykman, Philip K; Freedman, Andrew L; Kane, Timothy D; Cheng, Zhi; Petrosyan, Mikael; Catchpole, Kenneth
2017-02-01
We studied operating team acceptability of Video Telescopic Monitor (VITOM ® ) exoscope by exploring the ease of use of the device in two centers. We also assessed factors affecting surgeon musculoskeletal discomfort. We focused on how the operating team interacted with the VITOM system with surrogate measures of usefulness, image quality, ease of use, workload, and setup time. Multivariable linear regression was used to model the relationships between team role, experience, and setup time. Relationships between localized musculoskeletal discomfort and use of VITOM alone, and with loupes, were also analyzed. Four surgeons, 7 surgical techs, 7 circulating nurses, and 13 surgical residents performed 70 pediatric surgical and urological operations. We found that subjective views of each team member were consistently positive with 69%-74% agreed or strongly agreed that VITOM enhanced their ability to perform their job and improved the surgical process. Unexpectedly, the scrub techs and nurses perceived more value and utility of VITOM, presumably because it provides them a view of the operative field that would otherwise be unavailable to them. Team members rated perceptions of image quality highly and workload generally satisfactory. Not surprisingly, setup time decreased with team experience and multivariable modeling showed significant correlations with surgeon and surgical tech experience, but not circulating nurse. An important finding was that surgeon neck discomfort was reduced with use of VITOM alone for magnification, compared with use of loupes and VITOM. The most likely explanation for these findings is improved posture with the neck at a neutral position when viewing the VITOM images, compared with neck flexion with loupes, and thus, a less favorable ergonomic position. This study suggests that there may be small drawbacks associated with VITOM use initially, but these reduce with increased experience and benefit both the surgeon and the rest of the team.
Christensen, H; Pedersen, M B; Sjøgaard, G
1995-04-01
Musculoskeletal disorders constitute a major problem in the wood and furniture industry and identification of risk factors is needed urgently. Therefore, exposures to different work tasks and variation in the job were recorded based on an observation survey in combination with an interview among 281 employees working in wood working and painting departments. A questionnaire survey confirmed high frequencies of symptoms from the musculoskeletal system: The one-year prevalence of symptoms from the low back was 42% and symptoms from the neck/shoulder was 40%. The exposure was evaluated based on: (1) classification of work tasks, (2) work cycle time, (3) manual materials handling, (4) working postures, and (5) variation in the job. Among the employees 47% performed feeding or clearing of machines, 35% performed wood working or painting materials, and 18% performed various other operations. Among the employees 20% had no variation in their job while 44% had little variation. Manual materials handling of 375 different burdens was observed, which most often occurred during feeding or clearing of machines. The weight of burdens lifted was 0.5-87.0 kg, where 2% had a weight of more than 50 kg. Among the lifting conditions 30% were evaluated as implying a risk of injury. An additional risk factor was the high total tonnage lifted per day, which was estimated to range from 132 kg to 58,800 kg. Working postures implied a risk of injury due to prolonged forward and lateral flexions of the neck, which was seen most frequently during wood working or painting materials. These data substantiate the finding that work tasks mainly during feeding or clearing of machines imply a risk of injury to the low back and a risk of injury to the neck and shoulder area mainly during wood working or painting materials. Optimal strategies for job redesign may be worked out by using these data in order to prevent occupational musculoskeletal disorders.
Krøll, Lotte Skytte; Hammarlund, Catharina Sjödahl; Westergaard, Maria Lurenda; Nielsen, Trine; Sloth, Louise Bönsdorff; Jensen, Rigmor Højland; Gard, Gunvor
2017-12-01
The prevalence of migraine with co-existing tension-type headache and neck pain is high in the general population. However, there is very little literature on the characteristics of these combined conditions. The aim of this study was to investigate a) the prevalence of migraine with co-existing tension-type headache and neck pain in a clinic-based sample, b) the level of physical activity, psychological well-being, perceived stress and self-rated health in persons with migraine and co-existing tension-type headache and neck pain compared to healthy controls, c) the perceived ability of persons with migraine and co-existing tension-type headache and neck pain to perform physical activity, and d) which among the three conditions (migraine, tension-type headache or neck pain) is rated as the most burdensome condition. The study was conducted at a tertiary referral specialised headache centre where questionnaires on physical activity, psychological well-being, perceived stress and self-rated health were completed by 148 persons with migraine and 100 healthy controls matched by sex and average age. Semi-structured interviews were conducted to assess characteristics of migraine, tension-type headache and neck pain. Out of 148 persons with migraine, 100 (67%) suffered from co-existing tension-type headache and neck pain. Only 11% suffered from migraine only. Persons with migraine and co-existing tension-type headache and neck pain had lower level of physical activity and psychological well-being, higher level of perceived stress and poorer self-rated health compared to healthy controls. They reported reduced ability to perform physical activity owing to migraine (high degree), tension-type headache (moderate degree) and neck pain (low degree). The most burdensome condition was migraine, followed by tension-type headache and neck pain. Migraine with co-existing tension-type headache and neck pain was highly prevalent in a clinic-based sample. Persons with migraine and co-existing tension-type headache and neck pain may require more individually tailored interventions to increase the level of physical activity, and to improve psychological well-being, perceived stress and self-rated health.
Gallagher, Kaitlin M; Callaghan, Jack P
2016-09-01
While alternating standing position on a sloped surface has proven successful at reducing low back pain during standing, the purpose of this study was to evaluate standing solely on a declining surface to isolate the influence of the postural change. Seventeen participants performed two 75-min prolonged standing occupational simulations- level ground and declining surface. Fifty-three percent of participants (9/17) were categorized as pain developers during the level ground standing condition. For these same pain developers, their average maximum pain scores were 58% lower during sloped standing. All participants showed greater hip flexion, trunk-to-thigh angle flexion, and posterior translation of the trunk center of gravity when standing on the sloped surface. These postural changes could cause the muscles crossing the hip posteriorly to increase passive stiffness and assist with stabilizing the pelvis. This study stresses the importance of hip kinematics, not just lumbar spine posture, in reducing prolonged standing induced low back pain. Copyright © 2016 Elsevier Ltd. All rights reserved.
Paramedics on the job: dynamic trunk motion assessment at the workplace.
Prairie, Jérôme; Corbeil, Philippe
2014-07-01
Many paramedics' work accidents are related to physical aspects of the job, and the most affected body part is the low back. This study documents the trunk motion exposure of paramedics on the job. Nine paramedics were observed over 12 shifts (120 h). Trunk postures were recorded with the computer-assisted CUELA measurement system worn on the back like a knapsack. Average duration of an emergency call was 23.5 min. Sagittal trunk flexion of >40° and twisting rotation of >24° were observed in 21% and 17% of time-sampled postures. Medical care on the scene (44% of total time) involved prolonged flexed and twisted postures (∼ 10s). The highest extreme sagittal trunk flexion (63°) and twisting rotation (40°) were observed during lifting activities, which lasted 2% of the total time. Paramedics adopted trunk motions that may significantly increase the risk of low back disorders during medical care and patient-handling activities. Copyright © 2013. Published by Elsevier Ltd.
Rodríguez-Romero, Beatriz; Pérez-Valiño, Coral; Ageitos-Alonso, Beatriz; Pértega-Díaz, Sonia
2016-12-01
To assess the prevalence of and factors associated with musculoskeletal pain (MSP) and neck and upper limb disability among music conservatory students. An observational study in two Spanish conservatories, investigating a total of 206 students, administered the Nordic Musculoskeletal Questionnaire, visual analog scale for pain intensity, Neck Disability Index, DASH, and SF-36. Demographic and lifestyle characteristics and musical performance variables were recorded. Regression models were performed to identify variables associated with MSP for the four most affected anatomical regions and with neck and upper limb disability. The locations with the highest prevalence of MSP were the neck, upper back, shoulders, and lower back. Mild disability affected 47% of participants in the neck and 31% in the upper limbs. Mental health (SF-36) was below the average for the general population (45.5±10.2). Women were more likely to suffer neck pain (odds ratio [OR] 1.1-5.2), lower back pain (OR 1.7-8.7), and neck disability (B 0.6-7.8). The risk for shoulder pain was higher in those who played for more hours (OR 1.7-24.7) and lower among those who performed physical activity (OR 0.23-1.00). Disability in the neck (B -0.3) and upper limbs (B -0.4) was associated with poorer mental health (SF-36). MSP is highly prevalent in music students. Neck and upper limb disability were slight to moderate and both were associated with poorer mental health. The main factors associated with MSP were being female, hours spent practicing, and physical activity. Physical and psychological factors should be taken into account in the prevention of MSP in student-musicians.
Xue, Youdi; Zhang, Hui; Pei, Fuxing; Tu, Chongqi; Song, Yueming; Fang, Yue; Liu, Lei
2014-01-01
Treatment of talar neck fractures is challenging. Various surgical approaches and fixation methods have been documented. Clinical outcomes are often dissatisfying due to inadequate reduction and fixation with high rates of complications. Obtaining satisfactory clinical outcomes with minimum complications remains a hard task for orthopaedic surgeons. In the period from May 2007 to September 2010, a total of 31 cases with closed displaced talar neck fractures were treated surgically in our department. Injuries were classified according to the Hawkins classification modified by Canale and Kelly. Under general anaesthesia with sufficient muscle relaxation, urgent closed reduction was initiated once the patients were admitted; if the procedure failed, open reduction and provisional stabilisation with Kirschner wires through an anteromedial approach with tibiometatarsal external fixation were performed. When the soft tissue had recovered, definitive fixation was performed with plate and screws through dual approaches. The final follow-up examination included radiological analysis, clinical evaluation and functional outcomes which were carried out according to the Ankle-Hindfoot Scale of the American Orthopaedic Foot and Ankle Society (AOFAS), patient satisfaction and SF-36. Twenty-eight patients were followed up for an average of 25 months (range 18-50 months) after the injury. Only two patients had soft tissue complications, and recovery was satisfactory with conservative treatment. All of the fractures healed anatomically without malunion and nonunion, and the average union time was 14 weeks (range 12-24 weeks). Post-traumatic arthritis developed in ten cases, while six patients suffered from avascular necrosis of the talus. Secondary procedures included three cases of subtalar arthrodesis, one case of ankle arthrodesis and one case of total ankle replacement. The mean AOFAS hindfoot score was 78 (range 65-91). According to the SF-36, the average score of the physical component summary was 68 (range 59-81), and the average score of the mental component summary was 74 (range 63-85). Talar neck fractures are associated with a high incidence of long-term disability and complications. Urgent reduction of the fracture-dislocation and delayed plate fixation through a dual approach when the soft tissue has recovered may minimise the complications and provide good clinical outcomes.
[Research progress of larger flexion gap than extension gap in total knee arthroplasty].
Zhang, Weisong; Hao, Dingjun
2017-05-01
To summarize the progress of larger flexion gap than extension gap in total knee arthro-plasty (TKA). The domestic and foreign related literature about larger flexion gap than extension gap in TKA, and its impact factors, biomechanical and kinematic features, and clinical results were summarized. During TKA, to adjust the relations of flexion gap and extension gap is one of the key factors of successful operation. The biomechanical, kinematic, and clinical researches show that properly larger flexion gap than extension gap can improve both the postoperative knee range of motion and the satisfaction of patients, but does not affect the stability of the knee joint. However, there are also contrary findings. So adjustment of flexion gap and extension gap during TKA is still in dispute. Larger flexion gap than extension gap in TKA is a new joint space theory, and long-term clinical efficacy, operation skills, and related complications still need further study.
Berkhout, Anna Lindblad; Hendriksson-Larsén, Karin; Bongers, Paulien
2004-03-01
The objective of this study was to assess the effect of using a laptopstation and a laptop PC and how this difference in work set-up affected the mechanical load on the neck (C7-Th1 segment), the subjective evaluation of strain on the neck and productivity. Ten healthy male students at Umeå University, Sweden with an average of 10 years of PC work experience and an average of 18 months of laptop PC work experience participated in the study. For each research subject measurements were divided into two parts; sitting working at the ErgoQ laptopstation in test situation A, and sitting working at a conventional laptop PC, test situation B. Each part took 4h and was scheduled on two consecutive days. Photography and biomechanical analysis was used to calculate the torque at the neck. To examine perceived strain the Borg Scale was used and to assess performance a productivity score was calculated. The results in the study demonstrated a significant (p<0.05) difference with the use of the laptopstation resulting in decreased torque at the C7-Th1 segment, less perceived strain at the neck and a higher productivity score. In conclusion, the results of the study confirm the importance of adjustable work tools that recognize anthropometric differences and biomechanics to meet the needs of individual customers during continuous visual display terminal work.
Torrens, Carlos; Corrales, Monica; Gonzalez, Gemma; Solano, Alberto; Cáceres, Enrique
2008-01-01
Purpose The purpose of this study is to analyze the morphology of the scapula with reference to the glenoid component implantation in reversed shoulder prosthesis, in order to improve primary fixation of the component. Methods Seventy-three 3-dimensional computed tomography of the scapula and 108 scapular dry specimens were analyzed to determine the anterior and posterior length of the glenoid neck, the angle between the glenoid surface and the upper posterior column of the scapula and the angle between the major craneo-caudal glenoid axis and the base of the coracoid process and the upper posterior column. Results The anterior and posterior length of glenoid neck was classified into two groups named "short-neck" and "long-neck" with significant differences between them. The angle between the glenoid surface and the upper posterior column of the scapula was also classified into two different types: type I (mean 50°–52°) and type II (mean 62,50°–64°), with significant differences between them (p < 0,001). The angle between the major craneo-caudal glenoid axis and the base of the coracoid process averaged 18,25° while the angle with the upper posterior column of the scapula averaged 8°. Conclusion Scapular morphological variability advices for individual adjustments of glenoid component implantation in reversed total shoulder prosthesis. Three-dimensional computed tomography of the scapula constitutes an important tool when planning reversed prostheses implantation. PMID:18847487
Torrens, Carlos; Corrales, Monica; Gonzalez, Gemma; Solano, Alberto; Cáceres, Enrique
2008-10-10
The purpose of this study is to analyze the morphology of the scapula with reference to the glenoid component implantation in reversed shoulder prosthesis, in order to improve primary fixation of the component. Seventy-three 3-dimensional computed tomography of the scapula and 108 scapular dry specimens were analyzed to determine the anterior and posterior length of the glenoid neck, the angle between the glenoid surface and the upper posterior column of the scapula and the angle between the major craneo-caudal glenoid axis and the base of the coracoid process and the upper posterior column. The anterior and posterior length of glenoid neck was classified into two groups named "short-neck" and "long-neck" with significant differences between them. The angle between the glenoid surface and the upper posterior column of the scapula was also classified into two different types: type I (mean 50 degrees-52 degrees ) and type II (mean 62.50 degrees-64 degrees ), with significant differences between them (p < 0.001). The angle between the major craneo-caudal glenoid axis and the base of the coracoid process averaged 18,25 degrees while the angle with the upper posterior column of the scapula averaged 8 degrees . Scapular morphological variability advices for individual adjustments of glenoid component implantation in reversed total shoulder prosthesis. Three-dimensional computed tomography of the scapula constitutes an important tool when planning reversed prostheses implantation.
Is ExacTrac x-ray system an alternative to CBCT for positioning patients with head and neck cancers?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemente, Stefania; Chiumento, Costanza; Fiorentino, Alba
Purpose: To evaluate the usefulness of a six-degrees-of freedom (6D) correction using ExacTrac robotics system in patients with head-and-neck (HN) cancer receiving radiation therapy.Methods: Local setup accuracy was analyzed for 12 patients undergoing intensity-modulated radiation therapy (IMRT). Patient position was imaged daily upon two different protocols, cone-beam computed tomography (CBCT), and ExacTrac (ET) images correction. Setup data from either approach were compared in terms of both residual errors after correction and punctual displacement of selected regions of interest (Mandible, C2, and C6 vertebral bodies).Results: On average, both protocols achieved reasonably low residual errors after initial correction. The observed differences inmore » shift vectors between the two protocols showed that CBCT tends to weight more C2 and C6 at the expense of the mandible, while ET tends to average more differences among the different ROIs.Conclusions: CBCT, even without 6D correction capabilities, seems preferable to ET for better consistent alignment and the capability to see soft tissues. Therefore, in our experience, CBCT represents a benchmark for positioning head and neck cancer patients.« less
Nicoletti, Corinne; Spengler, Christina M; Läubli, Thomas
2014-05-01
The purpose of this study was to compare physical workload, electromyography (EMG) of the trapezius muscle, neck pain and mental well-being at work between night and day shifts in twenty Swiss nurses. Work pulse (average increase of heart rate over resting heart rate) was lower during night (27 bpm) compared to day shifts (34 bpm; p < 0.01). Relative arm acceleration also indicated less physical activity during night (82% of average) compared to day shifts (110%; p < 0.01). Rest periods were significantly longer during night shifts. Trapezius muscle rest time was longer during night (13% of shift duration) than day shifts (7%; p < 0.01) and the 50th percentile of EMG activity was smaller (p = 0.02), indicating more opportunities for muscle relaxation during night shifts. Neck pain and mental well-being at work were similar between shifts. Subjective perception of burden was similar between shifts despite less physical burden at night, suggesting there are other contributing factors. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.