Noise pollution levels in the pediatric intensive care unit.
Kramer, Bree; Joshi, Prashant; Heard, Christopher
2016-12-01
Patients and staff may experience adverse effects from exposure to noise. This study assessed noise levels in the pediatric intensive care unit and evaluated family and staff opinion of noise. Noise levels were recorded using a NoisePro DLX. The microphone was 1 m from the patient's head. The noise level was averaged each minute and levels above 70 and 80 dBA were recorded. The maximum, minimum, and average decibel levels were calculated and peak noise level great than 100 dBA was also recorded. A parent questionnaire concerning their evaluation of noisiness of the bedside was completed. The bedside nurse also completed a questionnaire. The average maximum dB for all patients was 82.2. The average minimum dB was 50.9. The average daily bedside noise level was 62.9 dBA. The average % time where the noise level was higher than 70 dBA was 2.2%. The average percent of time that the noise level was higher than 80 dBA was 0.1%. Patients experienced an average of 115 min/d where peak noise was greater than 100 dBA. The parents and staff identified the monitors as the major contribution to noise. Patients experienced levels of noise greater than 80 dBA. Patients experience peak noise levels in excess of 100 dB during their pediatric intensive care unit stay. Copyright © 2016 Elsevier Inc. All rights reserved.
Kim, Jaehwan; Lim, Changwoo; Hong, Jiyoung; Lee, Soogab
2010-02-01
An experimental study was performed to compare the annoyances from civil-aircraft noise, military-aircraft noise, railway noise, and road-traffic noise. Two-way within-subjects designs were applied in this research. Fifty-two subjects, who were naive listeners, were given various stimuli with varying levels through a headphone in an anechoic chamber. Regardless of the frequency weighting network, even under the same average energy level, civil-aircraft noise was the most annoying, followed by military-aircraft noise, railway noise, and road-traffic noise. In particular, penalties in the time-averaged, A-weighted sound level (TAL) of about 8, 5, and 5 dB, respectively, were found in the civil-aircraft, military-aircraft, and railway noises. The reason could be clarified through the high-frequency component and the variability in the level. When people were exposed to sounds with the same maximum A-weighted level, a railway bonus of about 3 dB was found. However, transportation noise has been evaluated by the time-averaged A-weighted level in most countries. Therefore, in the present situation, the railway bonus is not acceptable for railway vehicles with diesel-electric engines.
Kristiansen, Jesper; Lund, Søren Peter; Persson, Roger; Shibuya, Hitomi; Nielsen, Per Møberg; Scholz, Matthias
2014-11-01
The study investigated the noise exposure in a group of Danish school teachers. The aims were to investigate if noise posed a risk of impairment of hearing and to study the association between classroom acoustical conditions, noise exposure, vocal symptoms, and cognitive fatigue. Background noise levels, vocal load and speaking time were measured on 35 teachers during actual classroom teaching. The classrooms were characterized acoustically by measurements of reverberation time. Before and after the workday, the teachers answered a questionnaire on fatigue symptoms and carried out two cognitive test tasks sensitive to mental fatigue. The average noise level during the lessons was 72 dB(A), but during indoor sports activities the average noise level increased 6.6 dB(A). Room reverberation time (range 0.39-0.83 s) had no significant effect on the noise level. The teachers were talking with a raised voice in 61% of the time, and the vocal load increased 0.65 dB(A) per dB(A) increase in the average lesson noise level. An increase in voice symptoms during the workday correlated significantly with individual average noise exposure, and a decrease in performance in the two-back test correlated significantly with individual average vocal load. Noise exposure in general classrooms posed no risk of noise-induced hearing impairment in school teachers. However, the results provide evidence for an association between noise exposure and vocal load and development of vocal symptoms and cognitive fatigue after work.
Acoustical conditions for speech communication in active elementary school classrooms
NASA Astrophysics Data System (ADS)
Sato, Hiroshi; Bradley, John
2005-04-01
Detailed acoustical measurements were made in 34 active elementary school classrooms with typical rectangular room shape in schools near Ottawa, Canada. There was an average of 21 students in classrooms. The measurements were made to obtain accurate indications of the acoustical quality of conditions for speech communication during actual teaching activities. Mean speech and noise levels were determined from the distribution of recorded sound levels and the average speech-to-noise ratio was 11 dBA. Measured mid-frequency reverberation times (RT) during the same occupied conditions varied from 0.3 to 0.6 s, and were a little less than for the unoccupied rooms. RT values were not related to noise levels. Octave band speech and noise levels, useful-to-detrimental ratios, and Speech Transmission Index values were also determined. Key results included: (1) The average vocal effort of teachers corresponded to louder than Pearsons Raised voice level; (2) teachers increase their voice level to overcome ambient noise; (3) effective speech levels can be enhanced by up to 5 dB by early reflection energy; and (4) student activity is seen to be the dominant noise source, increasing average noise levels by up to 10 dBA during teaching activities. [Work supported by CLLRnet.
Noise levels in primary schools of medium sized city in Greece.
Sarantopoulos, George; Lykoudis, Spyros; Kassomenos, Pavlos
2014-06-01
This study presents and evaluates noise levels recorded at 15 school complexes in order to describe the indoor as well as the outdoor acoustic environment of schools and gain insight on controlling factors. Noise levels at the roadside in front of the school, the schoolyard, and 41 classrooms, both occupied and unoccupied, were simultaneously and continuously recorded through the course of a daily timetable (08:20-13:10). The average speech noise level of teachers was separately measured for 1min periods. Indoor noise levels, in all cases, were much higher than internationally recommended values: LAeq,5min averaged 69.0dB in occupied classrooms, and 47.1dB in unoccupied ones. Average speech-to-noise ratio (SNR) was estimated to be 12.0dB(A) during teaching, whereas both indoor and outdoor noise levels were significantly elevated during break time and outdoor physical-educational activities. Corresponding measurements of indoor and outdoor noise suggest that noise from the outside (road and schoolyard) affects the background noise level in the classrooms, however in varying degrees, depending on the specific layout and road traffic characteristics. Using double glazing diminishes this effect. © 2013.
24 CFR 51.103 - Criteria and standards.
Code of Federal Regulations, 2011 CFR
2011-04-01
...-night average sound level produced as the result of the accumulation of noise from all sources contributing to the external noise environment at the site. Day-night average sound level, abbreviated as DNL and symbolized as Ldn, is the 24-hour average sound level, in decibels, obtained after addition of 10...
Occupational Noise Reduction in CNC Striping Process
NASA Astrophysics Data System (ADS)
Mahmad Khairai, Kamarulzaman; Shamime Salleh, Nurul; Razlan Yusoff, Ahmad
2018-03-01
Occupational noise hearing loss with high level exposure is common occupational hazards. In CNC striping process, employee that exposed to high noise level for a long time as 8-hour contributes to hearing loss, create physical and psychological stress that reduce productivity. In this paper, CNC stripping process with high level noises are measured and reduced to the permissible noise exposure. First condition is all machines shutting down and second condition when all CNC machine under operations. For both conditions, noise exposures were measured to evaluate the noise problems and sources. After improvement made, the noise exposures were measured to evaluate the effectiveness of reduction. The initial average noise level at the first condition is 95.797 dB (A). After the pneumatic system with leakage was solved, the noise reduced to 55.517 dB (A). The average noise level at the second condition is 109.340 dB (A). After six machines were gathered at one area and cover that area with plastic curtain, the noise reduced to 95.209 dB (A). In conclusion, the noise level exposure in CNC striping machine is high and exceed the permissible noise exposure can be reduced to acceptable levels. The reduction of noise level in CNC striping processes enhanced productivity in the industry.
Noise pollution in intensive care units and emergency wards.
Khademi, Gholamreza; Roudi, Masoumeh; Shah Farhat, Ahmad; Shahabian, Masoud
2011-01-01
The improvement of technology has increased noise levels in hospital Wards to higher than international standard levels (35-45 dB). Higher noise levels than the maximum level result in patient's instability and dissatisfaction. Moreover, it will have serious negative effects on the staff's health and the quality of their services. The purpose of this survey is to analyze the level of noise in intensive care units and emergency wards of the Imam Reza Teaching Hospital, Mashhad. This research was carried out in November 2009 during morning shifts between 7:30 to 12:00. Noise levels were measured 10 times at 30-minute intervals in the nursing stations of 10 wards of the emergency, the intensive care units, and the Nephrology and Kidney Transplant Departments of Imam Reza University Hospital, Mashhad. The noise level in the nursing stations was tested for both the maximum level (Lmax) and the equalizing level (Leq). The research was based on the comparison of equalizing levels (Leq) because maximum levels were unstable. In our survey the average level (Leq) in all wards was much higher than the standard level. The maximum level (Lmax) in most wards was 85-86 dB and just in one measurement in the Internal ICU reached 94 dB. The average level of Leq in all wards was 60.2 dB. In emergency units, it was 62.2 dB, but it was not time related. The highest average level (Leq) was measured at 11:30 AM and the peak was measured in the Nephrology nursing station. The average levels of noise in intensive care units and also emergency wards were more than the standard levels and as it is known these wards have vital roles in treatment procedures, so more attention is needed in this area.
Pilot survey of subway and bus stop noise levels.
Gershon, Robyn R M; Neitzel, Richard; Barrera, Marissa A; Akram, Muhammad
2006-09-01
Excessive noise exposure is a serious global urban health problem, adversely affecting millions of people. One often cited source of urban noise is mass transit, particularly subway systems. As a first step in determining risk within this context, we recently conducted an environmental survey of noise levels of the New York City transit system. Over 90 noise measurements were made using a sound level meter. Average and maximum noise levels were measured on subway platforms, and maximum levels were measured inside subway cars and at several bus stops for comparison purposes. The average noise level measured on the subway platforms was 86 +/- 4 dBA (decibel-A weighting). Maximum levels of 106, 112, and 89 dBA were measured on subway platforms, inside subway cars, and at bus stops, respectively. These results indicate that noise levels in subway and bus stop environments have the potential to exceed recommended exposure guidelines from the World Health Organization (WHO) and U.S. Environmental Protection Agency (EPA), given sufficient exposure duration. Risk reduction strategies following the standard hierarchy of control measures should be applied, where feasible, to reduce subway noise exposure.
Analysis of impact noise induced by hitting of titanium head golf driver.
Kim, Young Ho; Kim, Young Chul; Lee, Jun Hee; An, Yong-Hwi; Park, Kyung Tae; Kang, Kyung Min; Kang, Yeon June
2014-11-01
The hitting of titanium head golf driver against golf ball creates a short duration, high frequency impact noise. We analyzed the spectra of these impact noises and evaluated the auditory hazards from exposure to the noises. Noises made by 10 titanium head golf drivers with five maximum hits were collected, and the spectra of the pure impact sounds were studied using a noise analysis program. The noise was measured at 1.7 m (position A) and 3.4 m (position B) from the hitting point in front of the hitter and at 3.4 m (position C) behind the hitting point. Average time duration was measured and auditory risk units (ARUs) at position A were calculated using the Auditory Hazard Assessment Algorithm for Humans. The average peak levels at position A were 119.9 dBA at the sound pressure level (SPL) peak and 100.0 dBA at the overall octave level. The average peak levels (SPL and overall octave level) at position B were 111.6 and 96.5 dBA, respectively, and at position C were 111.5 and 96.7 dBA, respectively. The average time duration and ARUs measured at position A were 120.6 ms and 194.9 units, respectively. Although impact noises made by titanium head golf drivers showed relatively low ARUs, individuals enjoying golf frequently may be susceptible to hearing loss due to the repeated exposure of this intense impact noise with short duration and high frequency. Unprotected exposure to impact noises should be limited to prevent cochleovestibular disorders.
[Equivalent continuous noise level in neonatal intensive care unit associated to burnout syndrome].
Garrido Galindo, A P; Camargo Caicedo, Y; Vélez-Pereira, A M
2015-01-01
Noise levels in neonatal intensive care units allow the appearance of symptoms associated with burnout such as stress, irritability, fatigue and emotional instability on health care personnel. The aim of this study was to evaluate the equivalent continuous noise levels in the neonatal intensive care unit and compare the results with noise levels associated with the occurrence of burnout syndrome on the care team. Continuous sampling was conducted for 20 days using a type I sound level meter on the unit. The maximum, the ninetieth percentile and the equivalent continuous noise level (Leq) values were recorded. Noise level is reported in the range of 51.4-77.6 decibels A (dBA) with an average of 64 dBA, 100.6 dBA maximum, and average background noise from 57.9 dBA. Noise levels exceed the standards suggested for neonatal intensive care units, are close to maximum values referred for noise exposure in the occupational standards and to noise levels associated with the onset of burnout; thus allowing to infer the probability of occurrence of high levels of noise present in the unit on the development of burnout in caregivers. Copyright © 2013 Elsevier España, S.L.U. y SEEIUC. All rights reserved.
The fallacy of using NII in analyzing aircraft operations. [Noise Impact Index
NASA Technical Reports Server (NTRS)
Melton, R. G.; Jacobson, I. D.
1984-01-01
Three measures of noise annoyance (Noise Impact Index, Level-Weighted Population, and Annoyed Population Number) are compared, regarding their utility in assessing noise reduction schemes for aircraft operations. While NII is intended to measure the average annoyance per person in a community, it is found that the method of averaging can lead to erroneous conclusions, particularly if the population does not have uniform spatial distribution. Level-Weighted Population and Annoyed Population Number are shown to be better indicators of noise annoyance when rating different strategies for noise reduction in a given community.
Spatial variation in environmental noise and air pollution in New York City.
Kheirbek, Iyad; Ito, Kazuhiko; Neitzel, Richard; Kim, Jung; Johnson, Sarah; Ross, Zev; Eisl, Holger; Matte, Thomas
2014-06-01
Exposure to environmental noise from traffic is common in urban areas and has been linked to increased risks of adverse health effects including cardiovascular disease. Because traffic sources also produce air pollutants that increase the risk of cardiovascular morbidity, associations between traffic exposures and health outcomes may involve confounding and/or synergisms between air pollution and noise. While prior studies have characterized intraurban spatial variation in air pollution in New York City (NYC), limited data exists on the levels and spatial variation in noise levels. We measured 1-week equivalent continuous sound pressure levels (Leq) at 56 sites during the fall of 2012 across NYC locations with varying traffic intensity and building density that are routinely monitored for combustion-related air pollutants. We evaluated correlations among several noise metrics used to characterize noise exposures, including Leq during different time periods (night, day, weekday, weekend), Ldn (day-night noise), and measures of intermittent noise defined as the ratio of peak levels to median and background levels. We also examined correlations between sound pressure levels and co-located simultaneous measures of nitric oxide (NO), nitrogen dioxide (NO2), fine particulate matter (PM2.5), and black carbon (BC) as well as estimates of traffic and building density around the monitoring sites. Noise levels varied widely across the 56 monitoring sites; 1-week Leq varied by 21.6 dBA (range 59.1-80.7 dBA) with the highest levels observed during the weekday, daytime hours. Indices of average noise were well correlated with each other (r > 0.83), while indices of intermittent noise were not well correlated with average noise levels (r < 0.41). One-week Leq correlated well with NO, NO2, and EC levels (r = 0.61 to 0.68) and less so with PM2.5 levels (r = 0.45). We observed associations between 1-week noise levels and traffic intensity within 100 m of the monitoring sites (r = 0.58). The high levels of noise observed in NYC often exceed recommended guidelines for outdoor and personal exposures, suggesting unhealthy levels in many locations. Associations between noise, traffic, and combustion air pollutants suggest the possibility for confounding and/or synergism in intraurban epidemiological studies of traffic-related health effects. The different spatial pattern of intermittent noise compared to average noise level may suggest different sources.
Pilot Survey of Subway and Bus Stop Noise Levels
Neitzel, Richard; Barrera, Marissa A.; Akram, Muhammad
2006-01-01
Excessive noise exposure is a serious global urban health problem, adversely affecting millions of people. One often cited source of urban noise is mass transit, particularly subway systems. As a first step in determining risk within this context, we recently conducted an environmental survey of noise levels of the New York City transit system. Over 90 noise measurements were made using a sound level meter. Average and maximum noise levels were measured on subway platforms, and maximum levels were measured inside subway cars and at several bus stops for comparison purposes. The average noise level measured on the subway platforms was 86 ± 4 dBA (decibel-A weighting). Maximum levels of 106, 112, and 89 dBA were measured on subway platforms, inside subway cars, and at bus stops, respectively. These results indicate that noise levels in subway and bus stop environments have the potential to exceed recommended exposure guidelines from the World Health Organization (WHO) and U.S. Environmental Protection Agency (EPA), given sufficient exposure duration. Risk reduction strategies following the standard hierarchy of control measures should be applied, where feasible, to reduce subway noise exposure. PMID:16802179
Noise adaptation in integrate-and fire neurons.
Rudd, M E; Brown, L G
1997-07-01
The statistical spiking response of an ensemble of identically prepared stochastic integrate-and-fire neurons to a rectangular input current plus gaussian white noise is analyzed. It is shown that, on average, integrate-and-fire neurons adapt to the root-mean-square noise level of their input. This phenomenon is referred to as noise adaptation. Noise adaptation is characterized by a decrease in the average neural firing rate and an accompanying decrease in the average value of the generator potential, both of which can be attributed to noise-induced resets of the generator potential mediated by the integrate-and-fire mechanism. A quantitative theory of noise adaptation in stochastic integrate-and-fire neurons is developed. It is shown that integrate-and-fire neurons, on average, produce transient spiking activity whenever there is an increase in the level of their input noise. This transient noise response is either reduced or eliminated over time, depending on the parameters of the model neuron. Analytical methods are used to prove that nonleaky integrate-and-fire neurons totally adapt to any constant input noise level, in the sense that their asymptotic spiking rates are independent of the magnitude of their input noise. For leaky integrate-and-fire neurons, the long-run noise adaptation is not total, but the response to noise is partially eliminated. Expressions for the probability density function of the generator potential and the first two moments of the potential distribution are derived for the particular case of a nonleaky neuron driven by gaussian white noise of mean zero and constant variance. The functional significance of noise adaptation for the performance of networks comprising integrate-and-fire neurons is discussed.
Ishida, Haruki; Kagawa, Keiichiro; Komuro, Takashi; Zhang, Bo; Seo, Min-Woong; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji
2018-01-01
A probabilistic method to remove the random telegraph signal (RTS) noise and to increase the signal level is proposed, and was verified by simulation based on measured real sensor noise. Although semi-photon-counting-level (SPCL) ultra-low noise complementary-metal-oxide-semiconductor (CMOS) image sensors (CISs) with high conversion gain pixels have emerged, they still suffer from huge RTS noise, which is inherent to the CISs. The proposed method utilizes a multi-aperture (MA) camera that is composed of multiple sets of an SPCL CIS and a moderately fast and compact imaging lens to emulate a very fast single lens. Due to the redundancy of the MA camera, the RTS noise is removed by the maximum likelihood estimation where noise characteristics are modeled by the probability density distribution. In the proposed method, the photon shot noise is also relatively reduced because of the averaging effect, where the pixel values of all the multiple apertures are considered. An extremely low-light condition that the maximum number of electrons per aperture was the only 2e− was simulated. PSNRs of a test image for simple averaging, selective averaging (our previous method), and the proposed method were 11.92 dB, 11.61 dB, and 13.14 dB, respectively. The selective averaging, which can remove RTS noise, was worse than the simple averaging because it ignores the pixels with RTS noise and photon shot noise was less improved. The simulation results showed that the proposed method provided the best noise reduction performance. PMID:29587424
Noise levels in a neonatal transport incubator in medically configured aircraft.
Sittig, Steven E; Nesbitt, Jeffrey C; Krageschmidt, Dale A; Sobczak, Steven C; Johnson, Robert V
2011-01-01
The purpose of this study was to evaluate exposure of neonates to noise during air medical transport as few commercially available hearing protective devices exist for premature newborns during air medical transport. Sound pressure levels in an infant incubator during actual flight conditions in four common medically configured aircraft were measured. Three noise dosimeters measured time-weighted average noise exposure during flight in each aircraft. One dosimeter was placed in the infant incubator, and the remaining dosimeters recorded noise levels in various parts of the aircraft cabin. The incubator provided a 6-dBA decrease in noise exposure from that in the crew cabin. The average noise level in the incubator in all aircraft was close to 80 dB, much higher than the proposed limits of 45 dB for neonatal intensive care unit noise exposure or 60 dB during transport. Exposure of neonates to elevated noise levels during transport may be harmful, and steps should be taken to protect the hearing of this patient population. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
En route noise levels from propfan test assessment airplane
NASA Technical Reports Server (NTRS)
Garber, Donald P.; Willshire, William L., Jr.
1994-01-01
The en route noise test was designed to characterize propagation of propfan noise from cruise altitudes to the ground. In-flight measurements of propfan source levels and directional patterns were made by a chase plane flying in formation with the propfan test assessment (PTA) airplane. Ground noise measurements were taken during repeated flights over a distributed microphone array. The microphone array on the ground was used to provide ensemble-averaged estimates of mean flyover noise levels, establish confidence limits for those means, and measure propagation-induced noise variability. Even for identical nominal cruise conditions, peak sound levels for individual overflights varied substantially about the average, particularly when overflights were performed on different days. Large day-to-day variations in peak level measurements appeared to be caused by large day-to-day differences in propagation conditions and tended to obscure small variations arising from operating conditions. A parametric evaluation of the sensitivity of this prediction method to weather measurement and source level uncertainties was also performed. In general, predictions showed good agreement with measurements. However, the method was unable to predict short-term variability of ensemble-averaged data within individual overflights. Although variations in absorption appear to be the dominant factor in variations of peak sound levels recorded on the ground, accurate predictions of those levels require that a complete description of operational conditions be taken into account. The comprehensive and integrated methods presented in this paper have adequately predicted ground-measured sound levels. On average, peak sound levels were predicted within 3 dB for each of the three different cruise conditions.
What do we know about noise in hospitals
NASA Astrophysics Data System (ADS)
West, James E.; Busch-Vishniac, Ilene
2005-09-01
Little is known about noise levels inside hospitals and its effect on healing, safety, staff, and doctors. Many independent studies of noise levels in a wide range of hospital venues in many countries have been reported in the literature authored mainly by physicians and nurses. The World Health Organization (WHO) has set guidelines for noise levels in hospitals, but none of the reported studies meet WHO guidelines. In most cases noise levels are more then 15 dB A-weighted higher then those specified by WHO guidelines. Since 1960 the average noise levels in hospitals has increased an average of 0.38 dB per year during daytime hours and 0.42 dB during the night. This talk reviews the state of the art on interior hospital noise control and the remaining challenging issues. Equivalent sound pressure levels as a function of location, frequency and time of day were measured in five different venues at the Johns Hopkins Hospital in Baltimore Maryland. Results of our measurements, which confirm the trends seen in prior studies, will be used to describe patterns of hospital interior noise and avenues ripe for further investigation.
Eze, Ikenna C.; Schaffner, Emmanuel; Vienneau, Danielle; Héritier, Harris; Endes, Simon; Rudzik, Franziska; Thiesse, Laurie; Pieren, Reto; Schindler, Christian; Schmidt-Trucksäss, Arno; Brink, Mark; Cajochen, Christian; Marc Wunderli, Jean; Röösli, Martin; Probst-Hensch, Nicole
2017-01-01
Background: The impact of different transportation noise sources and noise environments on arterial stiffness remains unknown. Objectives: We evaluated the association between residential outdoor exposure to annual average road, railway, and aircraft noise levels, total noise intermittency (IR), and total number of noise events (NE) and brachial-ankle pulse wave velocity (baPWV) following a cross-sectional design. Methods: We measured baPWV (meters/second) in 2,775 participants (49–81 y old) at the second follow-up (2010–2011) of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA). We assigned annual average road, railway, and aircraft noise levels (Ldensource), total day- and nighttime NEtime and IRtime (percent fluctuation=0%, none or constant noise; percent fluctuation=100%, high fluctuation) at the most exposed façade using 2011 Swiss noise models. We applied multivariable linear mixed regression models to analyze associations. Results: Medians [interquartile ranges (IQRs)] were baPWV=13.4 (3.1) m/s; Ldenair (57.6% exposed)=32.8 (8.0) dB; Ldenrail (44.6% exposed)=30.0 (8.1) dB; Ldenroad (99.7% exposed): 54.2 (10.6) dB; NEnight=123 (179); NEday=433 (870); IRnight=73% (27); and IRday=63.8% (40.3). We observed a 0.87% (95% CI: 0.31, 1.43%) increase in baPWV per IQR of Ldenrail, which was greater with IRnight>80% or with daytime sleepiness. We observed a nonsignificant positive association between Ldenroad and baPWV in urban areas and a negative tendency in rural areas. NEnight, but not NEday, was associated with baPWV. Associations were independent of the other noise sources and air pollution. Conclusions: Long-term exposure to railway noise, particularly in an intermittent nighttime noise environment, and to nighttime noise events, mainly related to road noise, may affect arterial stiffness, a major determinant of cardiovascular disease. Ascertaining noise exposure characteristics beyond average noise levels may be relevant to better understand noise-related health effects. https://doi.org/10.1289/EHP1136 PMID:28934719
Szabo Portela, Annika; Granqvist, Svante; Ternström, Sten; Södersten, Maria
2018-01-01
This study aimed to assess vocal behavior in women with voice-intensive occupations to investigate differences between patients and controls and between work and leisure conditions with environmental noise level as an experimental factor. Patients with work-related voice disorders, 10 with phonasthenia and 10 with vocal nodules, were matched regarding age, profession, and workplace with 20 vocally healthy colleagues. The sound pressure level of environmental noise and the speakers' voice, fundamental frequency, and phonation ratio were registered from morning to night during 1 week with a voice accumulator. Voice data were assessed in low (≤55 dBA), moderate, and high (>70 dBA) environmental noise levels. The average environmental noise level was significantly higher during the work condition for patients with vocal nodules (73.9 dBA) and their controls (73.0 dBA) compared with patients with phonasthenia (68.3 dBA) and their controls (67.1 dBA). The average voice level and the fundamental frequency were also significantly higher during work for the patients with vocal nodules and their controls. During the leisure condition, there were no significant differences in average noise and voice level nor fundamental frequency between the groups. The patients with vocal nodules and their controls spent significantly more time and used their voices significantly more in high-environmental noise levels. High noise levels during work and demands from the occupation impact vocal behavior. Thus, assessment of voice ergonomics should be part of the work environmental management. To reduce environmental noise levels is important to improve voice ergonomic conditions in communication-intensive and vocally demanding workplaces. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Firefighter noise exposure during training activities and general equipment use.
Root, Kyle S; Schwennker, Catherine; Autenrieth, Daniel; Sandfort, Delvin R; Lipsey, Tiffany; Brazile, William J
2013-01-01
Multiple noise measurements were taken on 6 types of fire station equipment and 15 types of emergency response vehicle-related equipment used by firefighters during routine and emergency operations at 10 fire stations. Five of the six types of fire station equipment, when measured at a distance of one meter and ear level, emitted noise equal to or greater than 85 dBA, including lawn maintenance equipment, snow blowers, compressors, and emergency alarms. Thirteen of 15 types of equipment located on the fire engines emitted noise levels equal to or greater than 85 dBA, including fans, saws, alarms, and extrication equipment. In addition, noise measurements were taken during fire engine operations, including the idling vehicle, vehicle sirens, and water pumps. Results indicated that idling fire-engine noise levels were below 85 dBA; however, during water pump and siren use, noise levels exceeded 85 dBA, in some instances, at different locations around the trucks where firefighters would be stationed during emergency operations. To determine if the duration and use of fire fighting equipment was sufficient to result in overexposures to noise during routine training activities, 93 firefighter personal noise dosimetry samples were taken during 10 firefighter training activities. Two training activities per sampling day were monitored during each sampling event, for a mean exposure time of 70 min per day. The noise dosimetry samples were grouped based on job description to compare noise exposures between the different categories of job tasks commonly associated with fire fighting. The three job categories were interior, exterior, and engineering. Mean personal dosimetry results indicated that the average noise exposure was 78 dBA during the training activities that lasted 70 min on average. There was no significant difference in noise exposure between each of the three job categories. Although firefighters routinely use equipment and emergency response vehicles that can produce hazardous levels of noise, this study showed that the average noise levels experienced by firefighters was below generally accepted guidelines.
Unusually loud ambient noise in tidewater glacier fjords: a signal of ice melt
Pettit, Erin C.; Lee, Kevin M.; Brann, Joel P.; Nystuen, Jeffrey A.; Wilson, Preston S.; O'Neel, Shad
2015-01-01
In glacierized fjords, the ice-ocean boundary is a physically and biologically dynamic environment that is sensitive to both glacier flow and ocean circulation. Ocean ambient noise offers insight into processes and change at the ice-ocean boundary. Here we characterize fjord ambient noise and show that the average noise levels are louder than nearly all measured natural oceanic environments (significantly louder than sea ice and non-glacierized fjords). Icy Bay, Alaska has an annual average sound pressure level of 120 dB (re 1 μPa) with a broad peak between 1000 and 3000 Hz. Bubble formation in the water column as glacier ice melts is the noise source, with variability driven by fjord circulation patterns. Measurements from two additional fjords, in Alaska and Antarctica, support that this unusually loud ambient noise in Icy Bay is representative of glacierized fjords. These high noise levels likely alter the behavior of marine mammals.
NASA Astrophysics Data System (ADS)
E Alekseev, A.; Tezadov, Ya A.; Potapov, V. T.
2017-05-01
In the present paper we perform, for the first time, the analysis of the average intensity noise power level at the output of a coherent phase-sensitive optical time-domain reflectometer (phase-OTDR) with a semiconductor laser source. The origin of the considered intensity noise lies in random phase fluctuations of a semiconductor laser source field. These phase fluctuations are converted to intensity noise in the process of interference of backscattered light. This intensity noise inevitably emerges in every phase-OTDR spatial channel and limits its sensitivity to external phase actions. The analysis of intensity noise in a phase-OTDR was based on the study of a fiber scattered-light interferometer (FSLI) which is treated as the constituent part of OTDR. When considered independently, FSLI has a broad intensity noise spectrum at its output; when FSLI is treated as a part of a phase-OTDR, due to aliasing effect, the wide FSLI noise spectrum is folded within the spectral band, determined by the probe pulse repetition frequency. In the analysis one of the conventional phase-OTDR schemes with rectangular dual-pulse probe signal was considered, the FSLI, which corresponds to this OTDR scheme, has two scattering fiber segments with additional time delay introduced between backscattered fields. The average intensity noise power and resulting noise spectrum at the output of this FSLI are determined by the degree of coherence of the semiconductor laser source, the length of the scattering fiber segments and by the additional time delay between the scattering segments. The average intensity noise characteristics at the output of the corresponding phase-OTDR are determined by the analogous parameters: the source coherence, the lengths of the parts constituting the dual-pulse and the time interval which separates the parts of the dual-pulse. In the paper the expression for the average noise power spectral density (NPSD) at the output of FSLI was theoretically derived and experimentally verified. Based on the found average NPSD of FSLI, a simple relation connecting the phase-OTDR parameters and the limiting level of full average intensity noise power at its output was derived. This relation was verified by experimental measurement of the average noise power at the output of phase-OTDR. The limiting noise level, considered in the paper, determines the fundamental noise floor for the phase-OTDR with given parameters of the source coherence, probe pulse length and time delay between two pulses constituting the dual-pulse.
Design of sidewall treatment of cabin noise control of a twin engine turboprop aircraft
NASA Technical Reports Server (NTRS)
Vaicaitis, R.; Slazak, M.
1983-01-01
An analytical procedure was used to predict the noise transmission into the cabin of a twin engine general aviation aircraft. This model was then used to optimize the interior A weighted noise levels to an average value of about 85 dBA. The surface pressure noise spectral levels were selected utilizing experimental flight data and empirical predictions. The add on treatments considered in this optimization study include aluminum honeycomb panels, constrained layer damping tape, porous acoustic blankets, acoustic foams, septum barriers and limp trim panels which are isolated from the vibration of the main sidewall structure. To reduce the average noise level in the cabin from about 102 kBA (baseline) to 85 dBA (optimized), the added weight of the noise control treatment is about 2% of the total gross takeoff weight of the aircraft.
Design of sidewall treatment of cabin noise control of a twin engine turboprop aircraft
NASA Astrophysics Data System (ADS)
Vaicaitis, R.; Slazak, M.
1983-12-01
An analytical procedure was used to predict the noise transmission into the cabin of a twin engine general aviation aircraft. This model was then used to optimize the interior A weighted noise levels to an average value of about 85 dBA. The surface pressure noise spectral levels were selected utilizing experimental flight data and empirical predictions. The add on treatments considered in this optimization study include aluminum honeycomb panels, constrained layer damping tape, porous acoustic blankets, acoustic foams, septum barriers and limp trim panels which are isolated from the vibration of the main sidewall structure. To reduce the average noise level in the cabin from about 102 kBA (baseline) to 85 dBA (optimized), the added weight of the noise control treatment is about 2% of the total gross takeoff weight of the aircraft.
Bilski, Bartosz
2013-06-01
The agricultural tractor is one of the most commonly used vehicles on farms and one of the most prominent sources of noise. This article presents an exemplary assessment of the audible and infrasonic noise levels in the cabins of selected modern wheeled agricultural tractors. Operator-perceived audible and infrasonic noise levels in the cabins were examined for 20 types of modern tractors during typical conditions of work. The tractors had been in use for no longer than 3 years, with rated power between 96 kW and 227 kW, designed and produced by world-renowned companies. Noise level measurements were performed in accordance with PN-EN ISO 9612:2011 (ISO 9612:2009). Audible noise levels (A-weighted) ranged from 62.1 to 87.4 dB-A (average: 68.2 to 83.8 dB-A) for different work tasks. The factors influencing noise levels include performed tasks, soil, weather conditions and the skills of individual drivers. In spectrum analysis, the highest noise levels occurred at frequencies 250 Hz, 1 and 2 kHz. Infrasound noise levels (G-weighted) ranged from 87.3 to 111.3 dB-G. The driver-experienced exposure to infrasound was found to increase significantly when the vehicle was in motion. Average audible noise levels have no potential to adversely affect the hearing organ during tasks performed inside the closed cabins of the analysed modern agricultural tractors. Due to the relatively low audible noise levels inside the cabins of modern agricultural tractors, non-auditory effects are the only adverse symptoms that can develop. Modern agricultural tractors emit considerable infrasonic noise levels. All tractors introduced into the market should be subjected to tests with regard to infrasonic noise levels.
Wang, Ven-Shing; Lo, Ei-Wen; Liang, Chih-Hsiang; Chao, Keh-Ping; Bao, Bo-Ying; Chang, Ta-Yuan
2016-12-01
Road traffic noise exposure has been associated with auditory and non-auditory health effects, but few studies report noise characteristics. This study determines 24-h noise levels and analyzes their frequency components to investigate associations between seasons, meteorology, land-use types, and traffic. We set up 50 monitoring stations covering ten different land-use types and conducted measurements at three times of the year to obtain 24-h-average A-weighted equivalent noise levels (L Aeq , 24h ) and frequency analyses from 2013 to 2014 in Taichung, Taiwan. Information on land-use types, road parameters, traffic flow rates, and meteorological variables was also collected for analysis with the annual averages of road traffic noise and its frequency components. The annual average L Aeq , 24h in Taichung was 66.4 ± 4.7 A-weighed decibels (dBA). Significant differences in L Aeq , 24h and frequency components were observed between land-use types (all p-values < 0.001), but not between seasons, with the highest two noise levels of 71.2 ± 1.0 dBA and 70.0 ± 2.6 dBA measured in stream-channel and commercial areas, with the highest component being 61.4 ± 5.3 dBA at 1000 Hz. Road width, traffic flow rates, and land-use types were significantly associated with annual average L Aeq , 24h (all p-values < 0.050). Noise levels at 125 Hz had the highest correlation with total traffic (Spearman's coefficient = 0.795) and the highest prediction in the multiple linear regression (R 2 = 0.803; adjusted R 2 = 0.765). These findings reveal the spatial variation in road traffic noise exposure in Taichung. The highest correlation and predictive capacity was observed between this variation and noise levels at 125 Hz. We recommend that governmental agencies should take actions to reduce noise levels from traffic vehicles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of Subway Interior Noise at Peak Commuter Time.
Lee, Donguk; Kim, Gibbeum; Han, Woojae
2017-07-01
Although mass transit systems are convenient and efficient for urban people, little attention has been paid to the potential hearing hazard from their noise. The purpose of the current study was to measure and analyze levels of subway interior noise at peak commuter times and to provide information about commuters' daily dose of noise exposure. To measure the subway interior noise, nine subway lines inside Seoul (i.e., lines 1-9) and six lines surrounding the capital city area (i.e., Central, Bundang, Sinbundang, Incheon, Gyeongui, and Gyeongchun) were chosen. The noise was measured and recorded by a sound level meter for two-hour periods in the morning and evening. 1) In the LZeq analysis, the average noise level of all 15 lines was 72.78 dB; the maximum and minimum noise levels were 78.34 and 62.46 dB, respectively. The average noise level of the nine lines inside Seoul was 73.45 dB, which was 1.68-dB louder than that of the six lines surrounding the capital city area. 2) Based on the LZeq analysis of 33 measured frequencies, 12.5 Hz was the highest frequency and 20,000 Hz was the lowest. 3) There was no remarkable difference in the level of subway interior noise between morning and evening peak commuter times. We concluded that the level of subway interior noise was not loud enough for commuters to incur noise-induced hearing loss. Regardless, environmental noise control efforts in the subway system might be needed for commuters who take a subway every day.
The Effects of Noise on Pupil Performance.
ERIC Educational Resources Information Center
Slater, Barbara Ruth
Effects of school noise conditions on student written task performance were studied. Three noise levels were examined--(1) irregular interval noise, 75-90 decibels, (2) average or normal noise, and (3) quiet condition, 45-55 decibels. An attempt was made to reproduce noise conditions typical of the school environment. A second controlled…
NASA Astrophysics Data System (ADS)
Messer, Sheila R.; Agzarian, John; Abbott, Derek
2001-05-01
Phonocardiograms (PCGs) have many advantages over traditional auscultation (listening to the heart) because they may be replayed, may be analyzed for spectral and frequency content, and frequencies inaudible to the human ear may be recorded. However, various sources of noise may pollute a PCG including lung sounds, environmental noise and noise generated from contact between the recording device and the skin. Because PCG signals are known to be nonlinear and it is often not possible to determine their noise content, traditional de-noising methods may not be effectively applied. However, other methods including wavelet de-noising, wavelet packet de-noising and averaging can be employed to de-noise the PCG. This study examines and compares these de-noising methods. This study answers such questions as to which de-noising method gives a better SNR, the magnitude of signal information that is lost as a result of the de-noising process, the appropriate uses of the different methods down to such specifics as to which wavelets and decomposition levels give best results in wavelet and wavelet packet de-noising. In general, the wavelet and wavelet packet de-noising performed roughly equally with optimal de-noising occurring at 3-5 levels of decomposition. Averaging also proved a highly useful de- noising technique; however, in some cases averaging is not appropriate. The Hilbert Transform is used to illustrate the results of the de-noising process and to extract instantaneous features including instantaneous amplitude, frequency, and phase.
Noise Pollution: Do We Need a Solution? An Analysis of Noise in a Cardiac Care Unit.
Ryan, Kevin M; Gagnon, Matthew; Hanna, Tyler; Mello, Brad; Fofana, Mustapha; Ciottone, Gregory; Molloy, Michael
2016-08-01
Introduction Hospitals are meant to be places for respite and healing; however, technological advances and reliance on monitoring alarms has led to the environment becoming increasingly noisy. The coronary care unit (CCU), like the emergency department, provides care to ill patients while being vulnerable to noise pollution. The World Health Organization (WHO; Geneva, Switzerland) recommends that for optimum rest and healing, sound levels should average approximately 30 decibels (dB) with maximum readings less than 40 dB. Problem The purpose of this study was to measure and analyze sound levels in three different locations in the CCU, and to review alarm reports in relation to sound levels. Over a one-month period, sound recorders (Extech SDL600; Extech Instruments; Nashua, New Hampshire USA) were placed in three separate locations in the CCU at the West Roxbury Veterans' Administration (VA) Hospital (Roxbury, Massachusetts USA). Sound samples were recorded once per second, stored in Comma Separated Values format for Excel (Microsoft Corporation; Redmond, Washington USA), and then exported to Microsoft Excel. Averages were determined, plotted per hour, and alarm histories were reviewed to determine alarm noise effect on total noise for each location, as well as common alarm occurrences. Patient Room 1 consistently had the lowest average recordings, though all averages were >40 dB, despite decreases between 10:00 pm and 7:00 am. During daytime hours, recordings maintained levels >50 dB. Overnight noise remained above recommended levels 55.25% of the period in Patient Room 1 and 99.61% of the same time period in Patient Room 7. The nurses' station remained the loudest location of all three. Alarms per hour ranged from 20-26 during the day. Alarms per day averaged: Patient Room 1-57.17, Patient Room 7-122.03, and the nurses' station - 562.26. Oxygen saturation alarms accounted for 33.59% of activity, and heart-related (including ST segment and pacemaker) accounted for 49.24% of alarms. The CCU cares for ill patients requiring constant monitoring. Despite advances in technology, measured noise levels for the hospital studied exceeded WHO standards of 40 dB and peaks of 45 dB, even during night hours when patients require rest. Further work is required to reduce noise levels and examine effects on patient satisfaction, clinical outcomes, and length of stay. Ryan KM , Gagnon M , Hanna T , Mello B , Fofana M , Ciottone G , Molloy M . Noise pollution: do we need a solution? An analysis of noise in a cardiac care unit. Prehosp Disaster Med. 2016;31(4):432-435.
Interior noise reduction in a large civil helicopter
NASA Technical Reports Server (NTRS)
Howlett, J. T.; Clevenson, S. A.; Rypf, J. A.; Snyder, W. J.
1977-01-01
The results of an evaluation of the effectiveness of current noise reduction technology in attaining acceptable levels of interior noise in a large (about 20,000 kg) passenger-carrying helicopter are presented. The helicopter studied is a modified CH-53A with a specially designed, acoustically treated passenger cabin. The acoustic treatment reduced the average A-weighted interior noise levels from 115 db to 87 db. The study suggests selected improvements in the acoustic treatment which could result in additional reduction in cabin noise levels. The resulting levels would be only slightly greater than the interior noise levels of current narrow-body jet transports.
NASA Technical Reports Server (NTRS)
Fields, J. M.; Walker, J. G.
1982-01-01
Annoyance expressed in a railway noise survey is compared with that from two road traffic and three aircraft surveys in order to determine whether responses to various types of environmental noise are source-specific. Railway noise is found to be less annoying than other noises at any given high noise level. Railway noise annoyance rises less rapidly with increasing noise level. At high levels, this gap in reactions averages about 10 dB; it ranges from 4 dB to more than 20 dB. The methods used for comparing the surveys are examined. It is found that methodological uncertainties lead to imprecise comparisons and that different annoyance scales yield different estimates of intersurvey differences.
Analysis of Subway Interior Noise at Peak Commuter Time
Lee, Donguk; Kim, Gibbeum; Han, Woojae
2017-01-01
Background and Objectives Although mass transit systems are convenient and efficient for urban people, little attention has been paid to the potential hearing hazard from their noise. The purpose of the current study was to measure and analyze levels of subway interior noise at peak commuter times and to provide information about commuters’ daily dose of noise exposure. Materials and Methods To measure the subway interior noise, nine subway lines inside Seoul (i.e., lines 1-9) and six lines surrounding the capital city area (i.e., Central, Bundang, Sinbundang, Incheon, Gyeongui, and Gyeongchun) were chosen. The noise was measured and recorded by a sound level meter for two-hour periods in the morning and evening. Results 1) In the LZeq analysis, the average noise level of all 15 lines was 72.78 dB; the maximum and minimum noise levels were 78.34 and 62.46 dB, respectively. The average noise level of the nine lines inside Seoul was 73.45 dB, which was 1.68-dB louder than that of the six lines surrounding the capital city area. 2) Based on the LZeq analysis of 33 measured frequencies, 12.5 Hz was the highest frequency and 20,000 Hz was the lowest. 3) There was no remarkable difference in the level of subway interior noise between morning and evening peak commuter times. Conclusions We concluded that the level of subway interior noise was not loud enough for commuters to incur noise-induced hearing loss. Regardless, environmental noise control efforts in the subway system might be needed for commuters who take a subway every day. PMID:28704890
Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method
NASA Astrophysics Data System (ADS)
Shi, Xiaohui; Huang, Xianwei; Nan, Suqin; Li, Hengxing; Bai, Yanfeng; Fu, Xiquan
2018-04-01
Detector noise has a significantly negative impact on ghost imaging at low light levels, especially for existing recovery algorithm. Based on the characteristics of the additive detector noise, a method named modified compressive sensing ghost imaging is proposed to reduce the background imposed by the randomly distributed detector noise at signal path. Experimental results show that, with an appropriate choice of threshold value, modified compressive sensing ghost imaging algorithm can dramatically enhance the contrast-to-noise ratio of the object reconstruction significantly compared with traditional ghost imaging and compressive sensing ghost imaging methods. The relationship between the contrast-to-noise ratio of the reconstruction image and the intensity ratio (namely, the average signal intensity to average noise intensity ratio) for the three reconstruction algorithms are also discussed. This noise suppression imaging technique will have great applications in remote-sensing and security areas.
Larsen, Jeffery B; Blair, James C
2008-10-01
The purpose of this study was to measure the signal-to-noise ratios in classrooms while class was in session and students were interacting with the teacher and each other. Measurements of noise and reverberation were collected for 5 different classrooms in 3 different schools while class was in session. Activities taking place during the measurements were recorded to compare with sound level measures. The use of infrared classroom amplification was compared with no amplification. The results revealed that when classroom amplification was used, students heard the teacher's voice at a level that was an average of 13 dB above the noise floor as compared to an average of +2 dB above the noise floor without amplification.
Noise, stress, and annoyance in a pediatric intensive care unit.
Morrison, Wynne E; Haas, Ellen C; Shaffner, Donald H; Garrett, Elizabeth S; Fackler, James C
2003-01-01
To measure and describe hospital noise and determine whether noise can be correlated with nursing stress measured by questionnaire, salivary amylase, and heart rate. Cohort observational study. Tertiary care center pediatric intensive care unit. Registered nurses working in the unit. None. Eleven nurse volunteers were recruited. An audiogram, questionnaire data, salivary amylase, and heart rate were collected in a quiet room. Each nurse was observed for a 3-hr period during patient care. Heart rate and sound level were recorded continuously; saliva samples and stress/annoyance ratings were collected every 30 mins. Variables assessed as potential confounders were years of nursing experience, caffeine intake, patients' Pediatric Risk of Mortality Score, shift assignment, and room assignment. Data were analyzed by random effects multiple linear regression using Stata 6.0. The average daytime sound level was 61 dB(A), nighttime 59 dB(A). Higher average sound levels significantly predicted higher heart rates (p =.014). Other significant predictors of tachycardia were higher caffeine intake, less nursing experience, and daytime shift. Ninety percent of the variability in heart rate was explained by the regression equation. Amylase measurements showed a large variability and were not significantly affected by noise levels. Higher average sound levels were also predictive of greater subjective stress (p =.021) and annoyance (p =.016). In this small study, noise was shown to correlate with several measures of stress including tachycardia and annoyance ratings. Further studies of interventions to reduce noise are essential.
Lasky, Robert E; Williams, Amber L
2009-02-01
The objectives of this study were to characterize noise and light levels for extremely low birth weight newborns throughout their stay in the NICU, evaluate factors influencing noise and light levels, and determine whether exposures meet recommendations from the American Academy of Pediatrics. Sound and light were measured inside the beds of extremely low birth weight newborns (n = 22) from birth to discharge. Measurements were recorded for 20 consecutive hours weekly from birth until 36 weeks' postmenstrual age, biweekly until 40 weeks, and every 4 weeks thereafter. Clinical variables including bed type and method of respiratory support were recorded at each session. Age-related changes in respiratory support and bed type explained the weekly increase of 0.22 dB in sound level and 3.67 lux in light level. Old incubators were the noisiest bed types, and new incubators were the quietest. Light levels were significantly higher in open beds than in incubators. The variations in noise and light levels over time were greatest for open beds. Noise and light levels were much less affected by respiratory support in incubators compared with open beds. A typical extremely low birth weight neonate was exposed to noise levels averaging 56.44 dB(A) and light levels averaging 70.56 lux during their stay from 26 to 42 weeks' postmenstrual age in the NICU. Noise levels were rarely within American Academy of Pediatrics recommendations (5.51% of the time), whereas light levels almost always met recommendations (99.37% of the time). Bed type and respiratory support explained differences in noise and light levels that extremely low birth weight newborns experience during their hospital stay. Noise levels exceeded recommendations, although evidence supporting those recommendations is lacking. Well-designed intervention studies are needed to determine the effects of noise reduction on the development of extremely low birth weight newborns.
Background noise spectra of global seismic stations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wada, M.M.; Claassen, J.P.
1996-08-01
Over an extended period of time station noise spectra were collected from various sources for use in estimating the detection and location performance of global networks of seismic stations. As the database of noise spectra enlarged and duplicate entries became available, an effort was mounted to more carefully select station noise spectra while discarding others. This report discusses the methodology and criteria by which the noise spectra were selected. It also identifies and illustrates the station noise spectra which survived the selection process and which currently contribute to the modeling efforts. The resulting catalog of noise statistics not only benefitsmore » those who model network performance but also those who wish to select stations on the basis of their noise level as may occur in designing networks or in selecting seismological data for analysis on the basis of station noise level. In view of the various ways by which station noise were estimated by the different contributors, it is advisable that future efforts which predict network performance have available station noise data and spectral estimation methods which are compatible with the statistics underlying seismic noise. This appropriately requires (1) averaging noise over seasonal and/or diurnal cycles, (2) averaging noise over time intervals comparable to those employed by actual detectors, and (3) using logarithmic measures of the noise.« less
In−Vitro and In−Vivo Noise Analysis for Optical Neural Recording
Foust, Amanda J.; Schei, Jennifer L.; Rojas, Manuel J.; Rector, David M.
2008-01-01
Laser diodes (LD) are commonly used for optical neural recordings in chronically recorded animals and humans, primarily due to their brightness and small size. However, noise introduced by LDs may counteract the benefits of brightness when compared to low−noise light emitting diodes (LEDs). To understand noise sources in optical recordings, we systematically compared instrument and physiological noise profiles in two recording paradigms. A better understanding of noise sources will help improve optical recordings and make them more practical with fewer averages. We stimulated lobster nerves and rat cortex, then compared the root mean square (RMS) noise and signal−to−noise ratios (SNRs) of data obtained with LED, superluminescent diode (SLD) and LD illumination for different numbers of averages. The LED data exhibited significantly higher SNRs in fewer averages than LD data in all recordings. In the absence of tissue, LED noise increased linearly with intensity, while LD noise increased sharply in the transition to lasing and settled to noise levels significantly higher than the LED’s, suggesting that speckle noise contributed to the LD’s higher noise and lower SNRs. Our data recommend low coherence and portable light sources for in−vivo chronic neural recording applications. PMID:19021365
Survey of Occupational Noise Exposure in CF Personnel in Selected High-Risk Trades
2003-11-01
peak, maximum level , minimum level , average sound level , time weighted average, dose, projected 8-hour dose, and upper limit time were measured for...10 4.4.2 Maximum Sound Level ...11 4.4.3 Minimum Sound Level
Salt-and-pepper noise removal using modified mean filter and total variation minimization
NASA Astrophysics Data System (ADS)
Aghajarian, Mickael; McInroy, John E.; Wright, Cameron H. G.
2018-01-01
The search for effective noise removal algorithms is still a real challenge in the field of image processing. An efficient image denoising method is proposed for images that are corrupted by salt-and-pepper noise. Salt-and-pepper noise takes either the minimum or maximum intensity, so the proposed method restores the image by processing the pixels whose values are either 0 or 255 (assuming an 8-bit/pixel image). For low levels of noise corruption (less than or equal to 50% noise density), the method employs the modified mean filter (MMF), while for heavy noise corruption, noisy pixels values are replaced by the weighted average of the MMF and the total variation of corrupted pixels, which is minimized using convex optimization. Two fuzzy systems are used to determine the weights for taking average. To evaluate the performance of the algorithm, several test images with different noise levels are restored, and the results are quantitatively measured by peak signal-to-noise ratio and mean absolute error. The results show that the proposed scheme gives considerable noise suppression up to a noise density of 90%, while almost completely maintaining edges and fine details of the original image.
33 CFR 86.05 - Sound signal intensity and range of audibility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... average background noise level at the listening posts (taken to be 68 dB in the octave band centered on... regarded as typical but under conditions of strong wind or high ambient noise level at the listening post...
Program CALIB. [for computing noise levels for helicopter version of S-191 filter wheel spectrometer
NASA Technical Reports Server (NTRS)
Mendlowitz, M. A.
1973-01-01
The program CALIB, which was written to compute noise levels and average signal levels of aperture radiance for the helicopter version of the S-191 filter wheel spectrometer is described. The program functions, and input description are included along with a compiled program listing.
Cycling exercise classes may be bad for your (hearing) health.
Sinha, Sumi; Kozin, Elliott D; Naunheim, Matthew R; Barber, Samuel R; Wong, Kevin; Katz, Leanna W; Otero, Tiffany M N; Stefanov-Wagner, Ishmael J M; Remenschneider, Aaron K
2017-08-01
1) Determine feasibility of smartphone-based mobile technology to measure noise exposure; and 2) measure noise exposure in exercise spin classes. Observational Study. The SoundMeter Pro app (Faber Acoustical, Salt Lake City, UT) was installed and calibrated on iPhone and iPod devices in an audiology chamber using an external sound level meter to within 2 dBA of accuracy. Recording devices were placed in the bike cupholders of participants attending spin classes in Boston, Massachusetts (n = 17) and used to measure sound level (A-weighted) and noise dosimetry during exercise according to National Institute for Occupational Safety and Health (NIOSH) guidelines. The average length of exposure was 48.9 ± 1.2 (standard error of the mean) minutes per class. Maximum sound recorded among 17 random classes was 116.7 dBA, which was below the NIOSH instantaneous exposure guideline of 140 dBA. An average of 31.6 ± 3.8 minutes were spent at >100 dBA. This exceeds NIOSH recommendations of 15 minutes of exposure or less at 100 dBA per day. Average noise exposure for one 45-minute class was 8.95 ± 1.2 times the recommended noise exposure dose for an 8-hour workday. Preliminary data shows that randomly sampled cycling classes may have high noise levels with a potential for noise-induced hearing loss. Mobile dosimetry technology may enable users to self-monitor risk to their hearing and actively engage in noise protection measures. NA Laryngoscope, 127:1873-1877, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
23 CFR 772.9 - Traffic noise prediction.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) Average pavement type shall be used in the FHWA TNM for future noise level prediction unless a highway agency substantiates the use of a different pavement type for approval by the FHWA. (c) Noise contour... impact for the design year shall be used. ...
23 CFR 772.9 - Traffic noise prediction.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) Average pavement type shall be used in the FHWA TNM for future noise level prediction unless a highway agency substantiates the use of a different pavement type for approval by the FHWA. (c) Noise contour... impact for the design year shall be used. ...
23 CFR 772.9 - Traffic noise prediction.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) Average pavement type shall be used in the FHWA TNM for future noise level prediction unless a highway agency substantiates the use of a different pavement type for approval by the FHWA. (c) Noise contour... impact for the design year shall be used. ...
Road Traffic Noise Pollution Analysis for Cernavoda City
NASA Astrophysics Data System (ADS)
Manea, L.; Manea, A.; Florea, D.; Tarulescu, S.
2017-10-01
In the present paper was studied the noise pollution in Cernavodă city. The noise measurements were made for nine intersections from different city areas. Noise measurements were taken for three chosen routes with high population density, heavy traffic, commercial and residential buildings. Average, maximum and minimum values were collected and compared with standards. The impact of road traffic noise on the community depends on various factors such as road location and design, land use planning measures, building design, traffic composition, driver behaviour and the relief. In the study area 9 locations are identified to measure noise level. By using sound level meter noise levels are measured at different peak sessions i.e. morning, afternoon and evening. The presented values were collected for evening rush hour.
Traffic Noise Assessment at Residential Areas in Skudai, Johor
NASA Astrophysics Data System (ADS)
Sulaiman, F. S.; Darus, N.; Mashros, N.; Haron, Z.; Yahya, K.
2018-03-01
Vehicles passing by on roadways in residential areas may produce unpleasant traffic noise that affects the residents. This paper presents the traffic noise assessment of three selected residential areas located in Skudai, Johor. The objectives of this study are to evaluate traffic characteristics at selected residential areas, determine related noise indices, and assess impact of traffic noise. Traffic characteristics such as daily traffic volume and vehicle speed were evaluated using automatic traffic counter (ATC). Meanwhile, noise indices like equivalent continuous sound pressure level (LAeq), noise level exceeded 10% (L10) and 90% (L90) of measurement time were determined using sound level meter (SLM). Besides that, traffic noise index (TNI) and noise pollution level (LNP) were calculated based on the measured noise indices. The results showed an increase in noise level of 60 to 70 dBA maximum due to increase in traffic volume. There was also a significant change in noise level of more than 70 dBA even though average vehicle speed did not vary significantly. Nevertheless, LAeq, TNI, and LNP values for all sites during daytime were lower than the maximum recommended levels. Thus, residents in the three studied areas were not affected in terms of quality of life and health.
Chicago transit authority train noise exposure.
Phan, Linh T; Jones, Rachael M
2017-06-01
To characterize noise exposure of riders on Chicago Transit Authority (CTA) trains, we measured noise levels twice on each segment of 7 of the 8 CTA train lines, which are named after colors, yielding 48 time-series measurements. We found the Blue Line has the highest noise levels compared to other train lines, with mean 76.9 dBA; and that the maximum noise level, 88.9 dBA occurred in the tunnel between the Chicago and Grand stations. Train segments involving travel through a tunnel had significantly higher noise levels than segments with travel on elevated and ground level tracks. While 8-hr doses inside the passenger cars were not estimated to exceed occupational exposure limits, train operators ride in a separate cab with operational windows and may therefore have higher noise exposures than riders. Despite the low risk of hearing loss for riders on CTA trains, in part because transit noise accounts for a small part of total daily noise exposure, 1-min average noise levels exceeded 85 dBA at times. This confirms anecdotal observations of discomfort due to noise levels, and indicates a need for noise management, particularly in tunnels.
Interannual variability and climatic noise in satellite-observed outgoing longwave radiation
NASA Technical Reports Server (NTRS)
Short, D. A.; Cahalan, R. F.
1983-01-01
Upwelling-IR observations of the North Pacific by polar orbiters NOAA 3, 4, 5, and 6 and TIROS-N from 1974 to 1981 are analyzed statistically in terms of interannual variability (IAV) in monthly averages and climatic noise due to short-term weather fluctuations. It is found that although the daily variance in the observations is the same in summer and winter months, and although IAV in winter is smaller than that in summer, the climatic noise in winter is so much smaller that a greater fraction of winter anomalies are statistically significant. The smaller winter climatic noise level is shown to be due to shorter autocorrelation times. It is demonstrated that increasing averaging area does not reduce the climatic noise level, suggesting that continuing collection of high-resolution satellite IR data on a global basis is necessary if better models of short-term variability are to be constructed.
Relationship between Aircraft Noise Contour Area and Noise Levels at Certification Points
NASA Technical Reports Server (NTRS)
Powell, Clemans A.
2003-01-01
The use of sound exposure level contour area reduction has been proposed as an alternative or supplemental metric of progress and success for the NASA Quiet Aircraft Technology program, which currently uses the average of predicted noise reductions at three community locations. As the program has expanded to include reductions in airframe noise as well as reduction due to optimization of operating procedures for lower noise, there is concern that the three-point methodology may not represent a fair measure of benefit to airport communities. This paper addresses several topics related to this proposal: (1) an analytical basis for a relationship between certification noise levels and noise contour areas for departure operations is developed, (2) the relationship between predicted noise contour area and the noise levels measured or predicted at the certification measurement points is examined for a wide range of commercial and business aircraft, and (3) reductions in contour area for low-noise approach scenarios are predicted and equivalent reductions in source noise are determined.
NASA Technical Reports Server (NTRS)
Lamure, C.; Bacelon, M.
1980-01-01
An inquiry was held among 400 people living near freeways in an attempt to determine the characteristics of traffic noise nuisance. A nuisance index was compiled, based on the answers to a questionnaire. Nuisance expressed in these terms was then compared with the noise level measured on the most exposed side of each building. Correlation between the nuisance indexes and the average noise levels is quite good for dwellings with facades parallel to the freeway. At equal noise levels on the most exposed side, the nuisance given for these latter dwellings is lower than for others.
Evaluation of noise level in architecture department building in University of Sumatera Utara
NASA Astrophysics Data System (ADS)
Amran, Novrial; Damanik, Novita Hillary Christy
2018-03-01
Noise is one the comfort factors that need to be noticed, particularly in an educational environment. Hearing a high noise in a period can affect students’ learning performance. The aims of this study were to know the noise level and get an appropriate design to reduce noise in Architecture Department building in the University of Sumatera Utara, considering that architecture students often spend most of their time inside the room. The measurement was conducted in four rooms for two days each from 09:00 – 12:00 and from 13:00 – 16:00 by using Sound Level Meter that placed near the noise source of the room. The result indicated that the average of noise level exceeded the 55 dB(A) so it still needs the appropriate design to reduce the noise that occurs in the building.
Restaurant noise, hearing loss, and hearing aids.
Lebo, C P; Smith, M F; Mosher, E R; Jelonek, S J; Schwind, D R; Decker, K E; Krusemark, H J; Kurz, P L
1994-01-01
Our multidisciplinary team obtained noise data in 27 San Francisco Bay Area restaurants. These data included typical minimum, peak, and average sound pressure levels; digital tape recordings; subjective noise ratings; and on-site unaided and aided speech discrimination tests. We report the details and implications of these noise measurements and provide basic information on selecting hearing aids and suggestions for coping with restaurant noise. Images PMID:7941506
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-31
... demonstrated noise benefit to noncompatible land uses exposed to noise levels in the yearly day/night average... provision of the Act to approve or disapprove the program within 180 days (other than the use of new or...-day period shall be deemed to be an approval of such program. The Noise Compatibility Program...
Bray, Adam; Szymański, Marcin; Mills, Robert
2004-02-01
Noise exposure, hearing loss and associated otological symptoms have been studied in a group of 23 disc jockeys using a questionnaire and pure tone audiometry. The level of noise exposure in the venues where they work has also been studied using Ametek Mk-3 audio dosimeters. Three members of the study group showed clear evidence of noise-induced hearing loss on audiometry, 70 per cent reported temporary threshold shift after sessions and 74 per cent reported tinnitus. Sound levels of up to 108 dB(A) were recorded in the nightclubs. The average level for a typical session was 96 dB(A) which is above the level at which the provision of ear protection is mandatory for employers in industry. It can be concluded that DJs are at substantial risk of developing noise-induced hearing loss and noise exposure in nightclubs frequently exceeds safe levels.
Noise level in a neonatal intensive care unit in Santa Marta - Colombia.
Garrido Galindo, Angélica Patricia; Camargo Caicedo, Yiniva; Velez-Pereira, Andres M
2017-09-30
The environment of neonatal intensive care units is influenced by numerous sources of noise emission, which contribute to raise the noise levels, and may cause hearing impairment and other physiological and psychological changes on the newborn, as well as problems with care staff. To evaluate the level and sources of noise in the neonatal intensive care unit. Sampled for 20 consecutive days every 60 seconds in A-weighting curves and fast mode with a Type I sound level meter. Recorded the average, maximum and minimum, and the 10th, 50th and 90th percentiles. The values are integrated into hours and work shift, and studied by analysis of variance. The sources were characterized in thirds of octaves. The average level was 64.00 ±3.62 dB(A), with maximum of 76.04 ±5.73 dB(A), minimum of 54.84 ±2.61dB(A), and background noise of 57.95 ±2.83 dB(A). We found four sources with levels between 16.8-63.3 dB(A). Statistical analysis showed significant differences between the hours and work shift, with higher values in the early hours of the day. The values presented exceed the standards suggested by several organizations. The sources identified and measured recorded high values in low frequencies.
Some insights into the relationship between urban air pollution and noise levels.
Kim, Ki-Hyun; Ho, Duy Xuan; Brown, Richard J C; Oh, J-M; Park, Chan Goo; Ryu, In Cheol
2012-05-01
The relationship between noise and air pollution was investigated in eight different districts across Seoul, Korea, between September and November 2010. The noise levels in each district were measured at both roadside and non-roadside locations. It was found that the maximum levels of noise were generally at frequencies of around 1000 Hz. The equivalent noise levels (L(eq)), over all districts, averaged 61.4 ± 7.36 dB which is slightly lower than the noise guidelines set by the World Health Organization (WHO) of 70 dB for industrial, commercial, traffic, and outdoor areas. Comparison of L(eq) levels in each district consistently indicates that noise levels are higher at roadside sites than non-roadside sites. In addition the relative dominance of noise during daytime as compared to nighttime was also apparent. Moreover, the results of an analysis relating sound levels with air pollutant levels indicate strongly that the correlation between these two parameters is the strongest at roadside sites (relative to non-roadside sites) and during nighttime (relative to daytime). The results of our data analysis point to a positive, but complex, correlation between noise levels and air pollution. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.
1996-01-01
This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.
NASA Glenn's Contributions to Aircraft Engine Noise Research
NASA Technical Reports Server (NTRS)
Huff, Dennis L.
2014-01-01
This presentation reviews engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASAs long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.
NASA Glenn's Contributions to Aircraft Engine Noise Research
NASA Technical Reports Server (NTRS)
Huff, Dennis L.
2013-01-01
This report reviews all engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASA's long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.
Urban noise functional stratification for estimating average annual sound level.
Rey Gozalo, Guillermo; Barrigón Morillas, Juan Miguel; Prieto Gajardo, Carlos
2015-06-01
Road traffic noise causes many health problems and the deterioration of the quality of urban life; thus, adequate spatial noise and temporal assessment methods are required. Different methods have been proposed for the spatial evaluation of noise in cities, including the categorization method. Until now, this method has only been applied for the study of spatial variability with measurements taken over a week. In this work, continuous measurements of 1 year carried out in 21 different locations in Madrid (Spain), which has more than three million inhabitants, were analyzed. The annual average sound levels and the temporal variability were studied in the proposed categories. The results show that the three proposed categories highlight the spatial noise stratification of the studied city in each period of the day (day, evening, and night) and in the overall indicators (L(And), L(Aden), and L(A24)). Also, significant differences between the diurnal and nocturnal sound levels show functional stratification in these categories. Therefore, this functional stratification offers advantages from both spatial and temporal perspectives by reducing the sampling points and the measurement time.
Wunderli, Jean Marc; Pieren, Reto; Habermacher, Manuel; Vienneau, Danielle; Cajochen, Christian; Probst-Hensch, Nicole; Röösli, Martin; Brink, Mark
2016-01-01
Most environmental epidemiology studies model health effects of noise by regressing on acoustic exposure metrics that are based on the concept of average energetic dose over longer time periods (i.e. the Leq and related measures). Regarding noise effects on health and wellbeing, average measures often cannot satisfactorily predict annoyance and somatic health effects of noise, particularly sleep disturbances. It has been hypothesized that effects of noise can be better explained when also considering the variation of the level over time and the frequency distribution of event-related acoustic measures, such as for example, the maximum sound pressure level. However, it is unclear how this is best parametrized in a metric that is not correlated with the Leq, but takes into account the frequency distribution of events and their emergence from background. In this paper, a calculation method is presented that produces a metric which reflects the intermittency of road, rail and aircraft noise exposure situations. The metric termed intermittency ratio (IR) expresses the proportion of the acoustical energy contribution in the total energetic dose that is created by individual noise events above a certain threshold. To calculate the metric, it is shown how to estimate the distribution of maximum pass-by levels from information on geometry (distance and angle), traffic flow (number and speed) and single-event pass-by levels per vehicle category. On the basis of noise maps that simultaneously visualize Leq, as well as IR, the differences of both metrics are discussed. PMID:26350982
Energy Measurement Studies for CO2 Measurement with a Coherent Doppler Lidar System
NASA Technical Reports Server (NTRS)
Beyon, Jeffrey Y.; Koch, Grady J.; Vanvalkenburg, Randal L.; Yu, Jirong; Singh, Upendra N.; Kavaya, Michael J.
2010-01-01
The accurate measurement of energy in the application of lidar system for CO2 measurement is critical. Different techniques of energy estimation in the online and offline pulses are investigated for post processing of lidar returns. The cornerstone of the techniques is the accurate estimation of the spectrum of lidar signal and background noise. Since the background noise is not the ideal white Gaussian noise, simple average level estimation of noise level is not well fit in the energy estimation of lidar signal and noise. A brief review of the methods is presented in this paper.
Laboratory studies of scales for measuring helicopter noise
NASA Technical Reports Server (NTRS)
Ollerhead, J. B.
1982-01-01
The adequacy of the effective perceived noise level (EPNL) procedure for rating helicopter noise annoyance was investigated. Recordings of 89 helicopters and 30 fixed wing aircraft (CTOL) flyover sounds were rated with respect to annoyance by groups of approximately 40 subjects. The average annoyance scores were transformed to annoyance levels defined as the equally annoying sound levels of a fixed reference sound. The sound levels of the test sounds were measured on various scales, with and without corrections for duration, tones, and impulsiveness. On average, the helicopter sounds were judged equally annoying to CTOL sounds when their duration corrected levels are approximately 2 dB higher. Multiple regression analysis indicated that, provided the helicopter/CTOL difference of about 2 dB is taken into account, the particular linear combination of level, duration, and tone corrections inherent in EPNL is close to optimum. The results reveal no general requirement for special EPNL correction terms to penalize helicopter sounds which are particularly impulsive; impulsiveness causes spectral and temporal changes which themselves adequately amplify conventionally measured sound levels.
Road traffic noise, air pollution and myocardial infarction: a prospective cohort study.
Bodin, Theo; Björk, Jonas; Mattisson, Kristoffer; Bottai, Matteo; Rittner, Ralf; Gustavsson, Per; Jakobsson, Kristina; Östergren, Per-Olof; Albin, Maria
2016-07-01
Both road traffic noise and air pollution have been linked to cardiovascular disease. However, there are few prospective epidemiological studies available where both road traffic noise and air pollution have been analyzed simultaneously. The aim of this study was to investigate the relation between road traffic noise, air pollution and incident myocardial infarction in both current (1-year average) and medium-term (3-year average) perspective. This study was based on a stratified random sample of persons aged 18-80 years who answered a public health survey in Skåne, Sweden, in 2000 (n = 13,512). The same individuals received a repeated survey in 2005 and 2010. Diagnoses of myocardial infarction (MI) were obtained from medical records for both inpatient and outpatient specialized care. The endpoint was first MI during 2000-2010. Participants with prior myocardial infarction were excluded at baseline. Yearly average levels of noise (L DEN) and air pollution (NO x ) were estimated using geographic information system for residential address every year until censoring. The mean exposure levels for road traffic noise and air pollution in 2005 were L DEN 51 dB(A) and NO x 11 µg/m(3), respectively. After adjustment for individual confounders (age, sex, body mass index, smoking, education, alcohol consumption, civil status, year, country of birth and physical activity), a 10-dB(A) increase in current noise exposure did not increase the incidence rate ratio (IRR) for MI, 0.99 (95 % CI 0.86-1.14). Neither did a 10-μg/m(3) increase in current NO x increase the risk of MI, 1.02 (95 % CI 0.86-1.21). The IRR for MI associated with combined exposure to road traffic noise >55 dB(A) and NO x >20 µg/m(3) was 1.21 (95 % CI 0.90-1.64) compared to <55 dB(A) and <20 µg/m(3). This study did not provide evidence for an increased risk of MI due to exposure to road traffic noise or air pollution at moderate average exposure levels.
Noise Levels Associated With New York City's Mass Transit Systems
Gershon, Robyn R. M.; Zeltser, Marina; Canton, Allison; Akram, Muhammad
2009-01-01
Objectives. We measured noise levels associated with various forms of mass transit and compared them to exposure guidelines designed to protect against noise-induced hearing loss. Methods. We used noise dosimetry to measure time-integrated noise levels in a representative sample of New York City mass transit systems (subways, buses, ferries, tramway, and commuter railways) aboard transit vehicles and at vehicle boarding platforms or terminals during June and July 2007. Results. Of the transit types evaluated, subway cars and platforms had the highest associated equivalent continuous average (Leq) and maximum noise levels. All transit types had Leq levels appreciably above 70 A-weighted decibels, the threshold at which noise-induced hearing loss is considered possible. Conclusions. Mass transit noise exposure has the potential to exceed limits recommended by the World Health Organization and the US Environmental Protection Agency and thus cause noise-induced hearing loss among riders of all forms of mass transit given sufficient exposure durations. Environmental noise–control efforts in mass transit and, in cases in which controls are infeasible, the use of personal hearing protection would benefit the ridership's hearing health. PMID:19542046
NASA Technical Reports Server (NTRS)
Grantham, W. D.; Smith, P. M.; Deal, P. L.
1980-01-01
Piloted-simulator studies were conducted to determine takeoff and landing operating procedures for a supersonic cruise research transport concept that result in predicted noise levels which meet current Federal Aviation Administration (FAA) certification standards. With the use of standard FAA noise certification test procedures, the subject simulated aircraft did not meet the FAA traded-noise-level standards during takeoff and landing. However, with the use of advanced procedures, this aircraft meets the traded-noise-level standards for flight crews with average skills. The advanced takeoff procedures developed involved violating some of the current Federal Aviation Regulations (FAR), but it was not necessary to violate any FAR noise-test conditions during landing approach. Noise contours were also determined for some of the simulated takeoffs and landings in order to indicate the noise-reduction advantages of using operational procedures other than standard.
Road traffic noise and children's inattention.
Weyde, Kjell Vegard; Krog, Norun Hjertager; Oftedal, Bente; Magnus, Per; Øverland, Simon; Stansfeld, Stephen; Nieuwenhuijsen, Mark J; Vrijheid, Martine; de Castro Pascual, Montserrat; Aasvang, Gunn Marit
2017-11-21
An increasing number of children are exposed to road traffic noise levels that may lead to adverse effects on health and daily functioning. Childhood is a period of intense growth and brain maturation, and children may therefore be especially vulnerable to road traffic noise. The objective of the present study was to examine whether road traffic noise was associated with reported inattention symptoms in children, and whether this association was mediated by sleep duration. This study was based on the Norwegian Mother and Child Cohort Study conducted by the Norwegian Institute of Public Health. Parental reports of children's inattention at age 8 were linked to modelled levels of residential road traffic noise. We investigated the association between inattention and noise exposure during pregnancy (n = 1934), noise exposure averaged over 5 years (age 3 to 8 years; n = 1384) and noise exposure at age 8 years (n = 1384), using fractional logit response models. The participants were children from Oslo, Norway. An association with inattention at age 8 years was found for road traffic noise exposure at age 8 years (coef = .0083, CI = [.0012, .0154]; 1.2% point increase in inattention score per 10 dB increase in noise level), road traffic noise exposure average for the last 5 years (coef = .0090, CI = [.0016, .0164]; 1.3% point increase/10 dB), and for pregnancy road traffic noise exposure for boys (coef = .0091, CI = [.0010, .0171]), but not girls (coef = -.0021, CI = [-.0094, .0053]). Criteria for doing mediation analyses were not fulfilled. Results indicate that road traffic noise has a negative impact on children's inattention. We found no mediation by sleep duration.
NASA Technical Reports Server (NTRS)
Chan, Jeffrey W.; Simpson, Carol A.
1990-01-01
Active Noise Reduction (ANR) is a new technology which can reduce the level of aircraft cockpit noise that reaches the pilot's ear while simultaneously improving the signal to noise ratio for voice communications and other information bearing sound signals in the cockpit. A miniature, ear-cup mounted ANR system was tested to determine whether speech intelligibility is better for helicopter pilots using ANR compared to a control condition of ANR turned off. Two signal to noise ratios (S/N), representative of actual cockpit conditions, were used for the ratio of the speech to cockpit noise sound pressure levels. Speech intelligibility was significantly better with ANR compared to no ANR for both S/N conditions. Variability of speech intelligibility among pilots was also significantly less with ANR. When the stock helmet was used with ANR turned off, the average PB Word speech intelligibility score was below the Normally Acceptable level. In comparison, it was above that level with ANR on in both S/N levels.
Hodgetts, William E; Rieger, Jana M; Szarko, Ryan A
2007-06-01
The main objective of this study was to determine the influence of listening environment and earphone style on the preferred-listening levels (PLLs) measured in users' ear canals with a commercially-available MP3 player. It was hypothesized that listeners would prefer higher levels with earbud headphones as opposed to over-the-ear headphones, and that the effects would depend on the environment in which the user was listening. A secondary objective was to use the measured PLLs to determine the permissible listening duration to reach 100% daily noise dose. There were two independent variables in this study. The first, headphone style, had three levels: earbud, over-the-ear, and over-the-ear with noise reduction (the same headphones with a noise reduction circuit). The second, environment, also had 3 levels: quiet, street noise and multi-talker babble. The dependent variable was ear canal A-weighted sound pressure level. A 3 x 3 within-subjects repeated-measures ANOVA was used to analyze the data. Thirty-eight normal hearing adults were recruited from the Faculty of Rehabilitation Medicine at the University of Alberta. Each subject listened to the same song and adjusted the level until it "sounded best" to them in each of the 9 conditions. Significant main effects were found for both the headphone style and environment factors. On average, listeners had higher preferred listening levels with the earbud headphones, than with the over-the-ear headphones. When the noise reduction circuit was used with the over-the-ear headphones, the average PLL was even lower. On average, listeners had higher PLLs in street noise than in multi-talker babble and both of these were higher than the PLL for the quiet condition. The interaction between headphone style and environment was also significant. Details of individual contrasts are explored. Overall, PLLs were quite conservative, which would theoretically allow for extended permissible listening durations. Finally, we investigated the maximum output level of the MP3 player in the ear canals of authors 1 and 3 of this paper. Levels were highest with the earbud style, followed by the over-the-ear with noise reduction. The over-the-ear headphone without noise reduction had the lowest maximum output. The majority of MP3 players are sold with the earbud style of headphones. Preferred listening levels are higher with this style of headphone compared to the over-the-ear style. Moreover, as the noise level in the environment increases, earbud users are even more susceptible to background noise and consequently increase the level of the music to overcome this. The result is an increased sound pressure level at the eardrum. However, the levels chosen by our subjects suggest that MP3 listening levels may not be as significant a concern as has been reported recently in the mainstream media.
Jet noise and performance comparison study of a Mach 2.55 supersonic cruise aircraft
NASA Technical Reports Server (NTRS)
Mascitti, V. R.; Maglieri, D. J.
1979-01-01
Data provided by the manufacturer relating to noise and performance of a Mach 2.55 supersonic cruise concept employing a post 1985 technology level, variable cycle engine was used to identify differences in noise levels and performance between the manfacturer and NASA associated with methodology and groundrules. In addition, economic and noise information is provided consistent with a previous study based on an advanced technology Mach 2.7 configuration. The results indicate that the difference between the NASA's and manfacturer's performance methodology is small. Resizing the aircraft to NASA groundrules also results in small changes in flyover, sideline and approach noise levels. For the power setting chosen, engine oversizing resulted in no reduction in traded noise. In terms of summated noise level, a 10 EPNdB reduction is realized for an 8 percent increase in total operating costs. This corresponds to an average noise reduction of 3.3 EPNdB at the three observer positions.
Chen, Jiang-Hong; Jin, Er-Hu; He, Wen; Zhao, Li-Qin
2014-01-01
Objective To reduce radiation dose while maintaining image quality in low-dose chest computed tomography (CT) by combining adaptive statistical iterative reconstruction (ASIR) and automatic tube current modulation (ATCM). Methods Patients undergoing cancer screening (n = 200) were subjected to 64-slice multidetector chest CT scanning with ASIR and ATCM. Patients were divided into groups 1, 2, 3, and 4 (n = 50 each), with a noise index (NI) of 15, 20, 30, and 40, respectively. Each image set was reconstructed with 4 ASIR levels (0% ASIR, 30% ASIR, 50% ASIR, and 80% ASIR) in each group. Two radiologists assessed subjective image noise, image artifacts, and visibility of the anatomical structures. Objective image noise and signal-to-noise ratio (SNR) were measured, and effective dose (ED) was recorded. Results Increased NI was associated with increased subjective and objective image noise results (P<0.001), and SNR decreased with increasing NI (P<0.001). These values improved with increased ASIR levels (P<0.001). Images from all 4 groups were clinically diagnosable. Images with NI = 30 and 50% ASIR had average subjective image noise scores and nearly average anatomical structure visibility scores, with a mean objective image noise of 23.42 HU. The EDs for groups 1, 2, 3 and 4 were 2.79±1.17, 1.69±0.59, 0.74±0.29, and 0.37±0.22 mSv, respectively. Compared to group 1 (NI = 15), the ED reductions were 39.43%, 73.48%, and 86.74% for groups 2, 3, and 4, respectively. Conclusions Using NI = 30 with 50% ASIR in the chest CT protocol, we obtained average or above-average image quality but a reduced ED. PMID:24691208
Chen, Jiang-Hong; Jin, Er-Hu; He, Wen; Zhao, Li-Qin
2014-01-01
To reduce radiation dose while maintaining image quality in low-dose chest computed tomography (CT) by combining adaptive statistical iterative reconstruction (ASIR) and automatic tube current modulation (ATCM). Patients undergoing cancer screening (n = 200) were subjected to 64-slice multidetector chest CT scanning with ASIR and ATCM. Patients were divided into groups 1, 2, 3, and 4 (n = 50 each), with a noise index (NI) of 15, 20, 30, and 40, respectively. Each image set was reconstructed with 4 ASIR levels (0% ASIR, 30% ASIR, 50% ASIR, and 80% ASIR) in each group. Two radiologists assessed subjective image noise, image artifacts, and visibility of the anatomical structures. Objective image noise and signal-to-noise ratio (SNR) were measured, and effective dose (ED) was recorded. Increased NI was associated with increased subjective and objective image noise results (P<0.001), and SNR decreased with increasing NI (P<0.001). These values improved with increased ASIR levels (P<0.001). Images from all 4 groups were clinically diagnosable. Images with NI = 30 and 50% ASIR had average subjective image noise scores and nearly average anatomical structure visibility scores, with a mean objective image noise of 23.42 HU. The EDs for groups 1, 2, 3 and 4 were 2.79 ± 1.17, 1.69 ± 0.59, 0.74 ± 0.29, and 0.37 ± 0.22 mSv, respectively. Compared to group 1 (NI = 15), the ED reductions were 39.43%, 73.48%, and 86.74% for groups 2, 3, and 4, respectively. Using NI = 30 with 50% ASIR in the chest CT protocol, we obtained average or above-average image quality but a reduced ED.
Prospective cohort study on noise levels in a pediatric cardiac intensive care unit.
Garcia Guerra, Gonzalo; Joffe, Ari R; Sheppard, Cathy; Pugh, Jodie; Moez, Elham Khodayari; Dinu, Irina A; Jou, Hsing; Hartling, Lisa; Vohra, Sunita
2018-04-01
To describe noise levels in a pediatric cardiac intensive care unit, and to determine the relationship between sound levels and patient sedation requirements. Prospective observational study at a pediatric cardiac intensive care unit (PCICU). Sound levels were measured continuously in slow A weighted decibels dB(A) with a sound level meter SoundEarPro® during a 4-week period. Sedation requirement was assessed using the number of intermittent (PRNs) doses given per hour. Analysis was conducted with autoregressive moving average models and the Granger test for causality. 39 children were included in the study. The average (SD) sound level in the open area was 59.4 (2.5) dB(A) with a statistically significant but clinically unimportant difference between day/night hours (60.1 vs. 58.6; p-value < 0.001). There was no significant difference between sound levels in the open area/single room (59.4 vs. 60.8, p-value = 0.108). Peak noise levels were > 90 dB. There was a significant association between average (p-value = 0.030) and peak sound levels (p-value = 0.006), and number of sedation PRNs. Sound levels were above the recommended values with no differences between day/night or open area/single room. High sound levels were significantly associated with sedation requirements. Copyright © 2017 Elsevier Inc. All rights reserved.
Street-level noise in an urban setting: assessment and contribution to personal exposure.
McAlexander, Tara P; Gershon, Robyn R M; Neitzel, Richard L
2015-02-28
The urban soundscape, which represents the totality of noise in the urban setting, is formed from a wide range of sources. One of the most ubiquitous and least studied of these is street-level (i.e., sidewalk) noise. Mainly associated with vehicular traffic, street level noise is hard to ignore and hard to escape. It is also potentially dangerous, as excessive noise from any source is an important risk factor for adverse health effects. This study was conducted to better characterize the urban soundscape and the role of street level noise on overall personal noise exposure in an urban setting. Street-level noise measures were obtained at 99 street sites located throughout New York City (NYC), along with data on time, location, and sources of environmental noise. The relationship between street-level noise measures and potential predictors of noise was analyzed using linear and logistic regression models, and geospatial modeling was used to evaluate spatial trends in noise. Daily durations of street-level activities (time spent standing, sitting, walking and running on streets) were estimated via survey from a sample of NYC community members recruited at NYC street fairs. Street-level noise measurements were then combined with daily exposure durations for each member of the sample to estimate exposure to street noise, as well as exposure to other sources of noise. The mean street noise level was 73.4 dBA, with substantial spatial variation (range 55.8-95.0 dBA). Density of vehicular (road) traffic was significantly associated with excessive street level noise levels. Exposure duration data for street-level noise and other common sources of noise were collected from 1894 NYC community members. Based on individual street-level exposure estimates, and in consideration of all other sources of noise exposure in an urban population, we estimated that street noise exposure contributes approximately 4% to an average individual's annual noise dose. Street-level noise exposure is a potentially important source of overall noise exposure, and the reduction of environmental sources of excessive street- level noise should be a priority for public health and urban planning.
Underwater, low-frequency noise in a coastal sea turtle habitat.
Samuel, Y; Morreale, S J; Clark, C W; Greene, C H; Richmond, M E
2005-03-01
Underwater sound was recorded in one of the major coastal foraging areas for juvenile sea turtles in the Peconic Bay Estuary system in Long Island, New York. The recording season of the underwater environment coincided with the sea turtle activity season in an inshore area where there is considerable boating and recreational activity, especially during the summer between Independence Day and Labor Day. Within the range of sea turtle hearing, average noise pressure reached 110 dB during periods of high human activity and diminished proportionally, down to 80 dB, with decreasing human presence. Therefore, during much of the season when sea turtles are actively foraging in New York waters, their coastal habitats are flooded with underwater noise. During the period of highest human activity, average noise pressures within the range of frequencies heard by sea turtles were greater by over two orders of magnitude (26 dB) than during the lowest period of human activity. Sea turtles undoubtedly are exposed to high levels of noise, most of which is anthropogenic. Results suggest that continued exposure to existing high levels of pervasive anthropogenic noise in vital sea turtle habitats and any increase in noise could affect sea turtle behavior and ecology.
Baloye, David O; Palamuleni, Lobina G
2015-09-29
Growth in the commercialization, mobility and urbanization of human settlements across the globe has greatly exposed world urban population to potentially harmful noise levels. The situation is more disturbing in developing countries like Nigeria, where there are no sacrosanct noise laws and regulations. This study characterized noise pollution levels in Ibadan and Ile-Ife, two urban areas of Southwestern Nigeria that have experienced significant increases in population and land use activities. Eight hundred noise measurements, taken at 20 different positions in the morning, afternoon, and evening of carefully selected weekdays, in each urban area, were used for this study. Findings put the average noise levels in the urban centers at between 53 dB(A) and 89 dB (A), a far cry from the World Health Organization (WHO) permissible limits in all the land use types, with highest noise pollution levels recorded for transportation, commercial, residential and educational land use types. The result of the one-way ANOVA test carried out on the dependent variable noise and fixed factor land use types reveals a statistically significant mean noise levels across the study area (F(3,34) = 15.13, p = 0.000). The study underscores noise pollution monitoring and the urgent need to control urban noise pollution with appropriate and effective policies.
A Comparative Land Use-Based Analysis of Noise Pollution Levels in Selected Urban Centers of Nigeria
Baloye, David O.; Palamuleni, Lobina G.
2015-01-01
Growth in the commercialization, mobility and urbanization of human settlements across the globe has greatly exposed world urban population to potentially harmful noise levels. The situation is more disturbing in developing countries like Nigeria, where there are no sacrosanct noise laws and regulations. This study characterized noise pollution levels in Ibadan and Ile-Ife, two urban areas of Southwestern Nigeria that have experienced significant increases in population and land use activities. Eight hundred noise measurements, taken at 20 different positions in the morning, afternoon, and evening of carefully selected weekdays, in each urban area, were used for this study. Findings put the average noise levels in the urban centers at between 53 dB(A) and 89 dB (A), a far cry from the World Health Organization (WHO) permissible limits in all the land use types, with highest noise pollution levels recorded for transportation, commercial, residential and educational land use types. The result of the one-way ANOVA test carried out on the dependent variable noise and fixed factor land use types reveals a statistically significant mean noise levels across the study area (F(3,34) = 15.13, p = 0.000). The study underscores noise pollution monitoring and the urgent need to control urban noise pollution with appropriate and effective policies. PMID:26426033
Noise level in a neonatal intensive care unit in Santa Marta - Colombia.
Garrido Galindo, Angélica Patricia; Velez-Pereira, Andres M
2017-01-01
Abstract Introduction: The environment of neonatal intensive care units is influenced by numerous sources of noise emission, which contribute to raise the noise levels, and may cause hearing impairment and other physiological and psychological changes on the newborn, as well as problems with care staff. Objective: To evaluate the level and sources of noise in the neonatal intensive care unit. Methods: Sampled for 20 consecutive days every 60 seconds in A-weighting curves and fast mode with a Type I sound level meter. Recorded the average, maximum and minimum, and the 10th, 50th and 90th percentiles. The values are integrated into hours and work shift, and studied by analysis of variance. The sources were characterized in thirds of octaves. Results: The average level was 64.00 ±3.62 dB(A), with maximum of 76.04 ±5.73 dB(A), minimum of 54.84 ±2.61dB(A), and background noise of 57.95 ±2.83 dB(A). We found four sources with levels between 16.8-63.3 dB(A). Statistical analysis showed significant differences between the hours and work shift, with higher values in the early hours of the day. Conclusion: The values presented exceed the standards suggested by several organizations. The sources identified and measured recorded high values in low frequencies. PMID:29213154
Guo, Bin; Huang, Jing; Guo, Xin-biao
2015-06-18
To evaluate the preventive effects of sound insulation windows on traffic noise. Indoor noise levels of the residential rooms (on both the North 4th ring road side and the campus side) with closed sound insulation windows were measured using the sound level meter, and comparisons with the simultaneously measured outdoor noise levels were made. In addition, differences of indoor noise levels between rooms with closed sound insulation windows and open sound insulation windows were also compared. The average outdoor noise levels of the North 4th ring road was higher than 70 dB(A), which exceeded the limitation stated in the "Environmental Quality Standard for Noise" (GB 3096-2008) in our country. However, with the sound insulation windows closed, the indoor noise levels reduced significantly to the level under 35 dB(A) (P<0.05), which complied with the indoor noise level standards in our country. The closed or open states of the sound insulation windows had significant influence on the indoor noise levels (P<0.05). Compared with the open state of the sound insulation window, when the sound insulation windows were closed, the indoor noise levels reduced 18.8 dB(A) and 8.3 dB(A) in residential rooms facing North 4th ring road side and campus side, respectively. The results indicated that installation of insulation windows had significant noise reduction effects on street residential buildings especially on the rooms facing major traffic roads. Installation of the sound insulation windows has significant preventive effects on indoor noise in the street residential building.
Handbook of aircraft noise metrics
NASA Technical Reports Server (NTRS)
Bennett, R. L.; Pearsons, K. S.
1981-01-01
Information is presented on 22 noise metrics that are associated with the measurement and prediction of the effects of aircraft noise. Some of the instantaneous frequency weighted sound level measures, such as A-weighted sound level, are used to provide multiple assessment of the aircraft noise level. Other multiple event metrics, such as day-night average sound level, were designed to relate sound levels measured over a period of time to subjective responses in an effort to determine compatible land uses and aid in community planning. The various measures are divided into: (1) instantaneous sound level metrics; (2) duration corrected single event metrics; (3) multiple event metrics; and (4) speech communication metrics. The scope of each measure is examined in terms of its: definition, purpose, background, relationship to other measures, calculation method, example, equipment, references, and standards.
Handbook of aircraft noise metrics
NASA Astrophysics Data System (ADS)
Bennett, R. L.; Pearsons, K. S.
1981-03-01
Information is presented on 22 noise metrics that are associated with the measurement and prediction of the effects of aircraft noise. Some of the instantaneous frequency weighted sound level measures, such as A-weighted sound level, are used to provide multiple assessment of the aircraft noise level. Other multiple event metrics, such as day-night average sound level, were designed to relate sound levels measured over a period of time to subjective responses in an effort to determine compatible land uses and aid in community planning. The various measures are divided into: (1) instantaneous sound level metrics; (2) duration corrected single event metrics; (3) multiple event metrics; and (4) speech communication metrics. The scope of each measure is examined in terms of its: definition, purpose, background, relationship to other measures, calculation method, example, equipment, references, and standards.
Lindstrom, Fredric; Waye, Kerstin Persson; Södersten, Maria; McAllister, Anita; Ternström, Sten
2011-03-01
Although the relationship between noise exposure and vocal behavior (the Lombard effect) is well established, actual vocal behavior in the workplace is still relatively unexamined. The first purpose of this study was to investigate correlations between noise level and both voice level and voice average fundamental frequency (F₀) for a population of preschool teachers in their normal workplace. The second purpose was to study the vocal behavior of each teacher to investigate whether individual vocal behaviors or certain patterns could be identified. Voice and noise data were obtained for female preschool teachers (n=13) in their workplace, using wearable measurement equipment. Correlations between noise level and voice level, and between voice level and F₀, were calculated for each participant and ranged from 0.07 to 0.87 for voice level and from 0.11 to 0.78 for F₀. The large spread of the correlation coefficients indicates that the teachers react individually to the noise exposure. For example, some teachers increase their voice-to-noise level ratio when the noise is reduced, whereas others do not. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Correia, Andrew W; Peters, Junenette L; Levy, Jonathan I; Melly, Steven; Dominici, Francesca
2013-10-08
To investigate whether exposure to aircraft noise increases the risk of hospitalization for cardiovascular diseases in older people (≥ 65 years) residing near airports. Multi-airport retrospective study of approximately 6 million older people residing near airports in the United States. We superimposed contours of aircraft noise levels (in decibels, dB) for 89 airports for 2009 provided by the US Federal Aviation Administration on census block resolution population data to construct two exposure metrics applicable to zip code resolution health insurance data: population weighted noise within each zip code, and 90th centile of noise among populated census blocks within each zip code. 2218 zip codes surrounding 89 airports in the contiguous states. 6 027 363 people eligible to participate in the national medical insurance (Medicare) program (aged ≥ 65 years) residing near airports in 2009. Percentage increase in the hospitalization admission rate for cardiovascular disease associated with a 10 dB increase in aircraft noise, for each airport and on average across airports adjusted by individual level characteristics (age, sex, race), zip code level socioeconomic status and demographics, zip code level air pollution (fine particulate matter and ozone), and roadway density. Averaged across all airports and using the 90th centile noise exposure metric, a zip code with 10 dB higher noise exposure had a 3.5% higher (95% confidence interval 0.2% to 7.0%) cardiovascular hospital admission rate, after controlling for covariates. Despite limitations related to potential misclassification of exposure, we found a statistically significant association between exposure to aircraft noise and risk of hospitalization for cardiovascular diseases among older people living near airports.
Correia, Andrew W; Peters, Junenette L; Levy, Jonathan I; Melly, Steven
2013-01-01
Objective To investigate whether exposure to aircraft noise increases the risk of hospitalization for cardiovascular diseases in older people (≥65 years) residing near airports. Design Multi-airport retrospective study of approximately 6 million older people residing near airports in the United States. We superimposed contours of aircraft noise levels (in decibels, dB) for 89 airports for 2009 provided by the US Federal Aviation Administration on census block resolution population data to construct two exposure metrics applicable to zip code resolution health insurance data: population weighted noise within each zip code, and 90th centile of noise among populated census blocks within each zip code. Setting 2218 zip codes surrounding 89 airports in the contiguous states. Participants 6 027 363 people eligible to participate in the national medical insurance (Medicare) program (aged ≥65 years) residing near airports in 2009. Main outcome measures Percentage increase in the hospitalization admission rate for cardiovascular disease associated with a 10 dB increase in aircraft noise, for each airport and on average across airports adjusted by individual level characteristics (age, sex, race), zip code level socioeconomic status and demographics, zip code level air pollution (fine particulate matter and ozone), and roadway density. Results Averaged across all airports and using the 90th centile noise exposure metric, a zip code with 10 dB higher noise exposure had a 3.5% higher (95% confidence interval 0.2% to 7.0%) cardiovascular hospital admission rate, after controlling for covariates. Conclusions Despite limitations related to potential misclassification of exposure, we found a statistically significant association between exposure to aircraft noise and risk of hospitalization for cardiovascular diseases among older people living near airports. PMID:24103538
Validation of Aircraft Noise Models at Lower Levels of Exposure
NASA Technical Reports Server (NTRS)
Page, Juliet A.; Plotkin, Kenneth J.; Carey, Jeffrey N.; Bradley, Kevin A.
1996-01-01
Noise levels around airports and airbases in the United States arc computed via the FAA's Integrated Noise Model (INM) or the Air Force's NOISEMAP (NMAP) program. These models were originally developed for use in the vicinity of airports, at distances which encompass a day night average sound level in decibels (Ldn) of 65 dB or higher. There is increasing interest in aircraft noise at larger distances from the airport. including en-route noise. To evaluate the applicability of INM and NMAP at larger distances, a measurement program was conducted at a major air carrier airport with monitoring sites located in areas exposed to an Ldn of 55 dB and higher. Automated Radar Terminal System (ARTS) radar tracking data were obtained to provide actual flight parameters and positive identification of aircraft. Flight operations were grouped according to aircraft type. stage length, straight versus curved flight tracks, and arrival versus departure. Sound exposure levels (SEL) were computed at monitoring locations, using the INM, and compared with measured values. While individual overflight SEL data was characterized by a high variance, analysis performed on an energy-averaging basis indicates that INM and similar models can be applied to regions exposed to an Ldn of 55 dB with no loss of reliability.
Short-term acoustic forecasting via artificial neural networks for neonatal intensive care units.
Young, Jason; Macke, Christopher J; Tsoukalas, Lefteri H
2012-11-01
Noise levels in hospitals, especially neonatal intensive care units (NICUs), have become of great concern for hospital designers. This paper details an artificial neural network (ANN) approach to forecasting the sound loads in NICUs. The ANN is used to learn the relationship between past, present, and future noise levels. By training the ANN with data specific to the location and device used to measure the sound, the ANN is able to produce reasonable predictions of noise levels in the NICU. Best case results show average absolute errors of 5.06 ± 4.04% when used to predict the noise levels one hour ahead, which correspond to 2.53 dBA ± 2.02 dBA. The ANN has the tendency to overpredict during periods of stability and underpredict during large transients. This forecasting algorithm could be of use in any application where prediction and prevention of harmful noise levels are of the utmost concern.
NASA Technical Reports Server (NTRS)
Bhat, R. B.; Mixson, J. S.
1978-01-01
Interior noise in the fuselage of a twin-engine, propeller-driven aircraft with two propellers rotating in opposite directions is studied analytically. The fuselage was modeled as a stiffened cylindrical shell with simply supported ends, and the effects of stringers and frames were averaged over the shell surface. An approximate mathematical model of the propeller noise excitation was formulated which includes some of the propeller noise characteristics such as sweeping pressure waves around the sidewalls due to propeller rotation and the localized nature of the excitation with the highest levels near the propeller plane. Results are presented in the form of noise reduction, which is the difference between the levels of external and interior noise. The influence of propeller noise characteristics on the noise reduction was studied. The results indicate that the sweep velocity of the excitation around the fuselage sidewalls is critical to noise reduction.
Measuring radio-signal power accurately
NASA Technical Reports Server (NTRS)
Goldstein, R. M.; Newton, J. W.; Winkelstein, R. A.
1979-01-01
Absolute value of signal power in weak radio signals is determined by computer-aided measurements. Equipment operates by averaging received signal over several-minute period and comparing average value with noise level of receiver previously calibrated.
Ototoxic occupational exposures for a stock car racing team: I. Noise surveys.
Van Campen, Luann E; Morata, Thais; Kardous, Chucri A; Gwin, Kristin; Wallingford, Kenneth M; Dallaire, Jacques; Alvarez, Frank J
2005-08-01
The National Institute for Occupational Safety and Health (NIOSH) surveyed noise exposure for a professional stock car team at their race shop and during two races at one racetrack. At the team's shop, area sound pressure levels (SPLs) were measured for various work tasks. Equivalent levels (Leqs) ranged from 58 to 104 decibels, A-weighted (dBA). Personal noise dosimetry was conducted for at least one employee for each job description in race car assembly (n = 9). The Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) of 90 dBA for an 8-hour, 5-dB exchange rate time-weighted average (TWA) was never exceeded, but in two instances values exceeded OSHA's action level of 85 dBA for hearing conservation implementation. The NIOSH recommended exposure limit (REL) of 85 dBA for a 3-dB exchange rate Leq was exceeded for five of the measured jobs. During the races, SPLs averaged above 100 dBA in the pit area where cars undergo adjustments/refueling, both before and during the race. Peak levels reached 140 dB SPL. NIOSH REL was exceeded for every personal noise dosimetry measurement. Recommendations for hearing protection and communication are presented.
NASA Astrophysics Data System (ADS)
Hustim, M.; Arifin, Z.; Aly, S. H.; Ramli, M. I.; Zakaria, R.; Liputo, A.
2018-04-01
This research aimed to predict the noise produced by the traffic in the road network in Makassar City using ASJ-RTN Model 2008 by calculating the horn sound. Observations were taken at 37 survey points on road side. The observations were conducted at 06.00 - 18.00 and 06.00 - 21.00 which research objects were motorcycle (MC), light vehicle (LV) and heavy vehicle (HV). The observed data were traffic volume, vehicle speed, number of horn and traffic noise using Sound Level Meter Tenmars TM-103. The research result indicates that prediction noise model by calculating the horn sound produces the average noise level value of 78.5 dB having the Pearson’s correlation and RMSE of 0.95 and 0.87. Therefore, ASJ-RTN Model 2008 prediction model by calculating the horn sound is said to be sufficiently good for predicting noise level.
NASA Technical Reports Server (NTRS)
Borsky, P. N.
1977-01-01
Residents living in close, middle and distant areas from JFK Airport were included in a field interview and laboratory study. Judgments were made of simulated aircraft noise exposures of comparable community indoor noise levels and mixes of aircraft. Each group of subjects judged the levels of noise typical for its distance area. Four different numbers of flyovers were tested: less than average for each area, the approximate average, the peak number, or worst day, and above peak number. The major findings are: (1) the reported integrated field annoyance is best related to the annoyance reported for the simulated approximate worst day exposure in the laboratory; (2) annoyance is generally less when there are fewer aircraft flyovers, and the subject has less fear of crashes and more favorable attitudes toward airplanes; (3) beliefs in harmful health effects and misfeasance by operators of aircraft are also highly correlated with fear and noise annoyance; (4) in direct retrospective comparisons of number of flights, noise levels and annoyance, subjects more often said the worst day laboratory exposured more like their usual home environments; and (5) subjects do not expect an annoyance-free environment. Half of the subjects can accept an annoyance level of 5 to 6 from a possible annoyance range of 0 to 9, 28% can live with an annoyance intensity of 7, and only 5% can accept the top scores of 8 to 9.
Analysis of a Shock-Associated Noise Prediction Model Using Measured Jet Far-Field Noise Data
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Sharpe, Jacob A.
2014-01-01
A code for predicting supersonic jet broadband shock-associated noise was assessed using a database containing noise measurements of a jet issuing from a convergent nozzle. The jet was operated at 24 conditions covering six fully expanded Mach numbers with four total temperature ratios. To enable comparisons of the predicted shock-associated noise component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise component spectra. Comparisons between predicted and measured shock-associated noise component spectra were used to identify deficiencies in the prediction model. Proposed revisions to the model, based on a study of the overall sound pressure levels for the shock-associated noise component of the measured data, a sensitivity analysis of the model parameters with emphasis on the definition of the convection velocity parameter, and a least-squares fit of the predicted to the measured shock-associated noise component spectra, resulted in a new definition for the source strength spectrum in the model. An error analysis showed that the average error in the predicted spectra was reduced by as much as 3.5 dB for the revised model relative to the average error for the original model.
Risk assessment of aircraft noise on sleep in Montreal.
Tétreault, Louis-Francois; Plante, Céline; Perron, Stéphane; Goudreau, Sophie; King, Norman; Smargiassi, Audrey
2012-05-24
Estimate the number of awakenings additional to spontaneous awakenings, induced by the nighttime aircraft movements at an international airport in Montreal, in the population residing nearby in 2009. Maximum sound levels (LAS,max) were derived from aircraft movements using the Integrated Noise Model 7.0b, on a 28 x 28 km grid centred on the airport and with a 0.1 x 0.1 km resolution. Outdoor LAS,max were converted to indoor LAS,max by reducing noise levels by 15 dB(A) or 21 dB(A). For all grid points, LAS,max were transformed into probabilities of additional awakening using a function developed by Basner et al. (2006). The probabilities of additional awakening were linked to estimated numbers of exposed residents for each grid location to assess the number of aircraft-noise-induced awakenings in Montreal. Using a 15 dB(A) sound attenuation, 590 persons would, on average, have one or more additional awakenings per night for the year 2009. In the scenario using a 21 dB(A) sound attenuation, on average, no one would be subjected to one or more additional awakenings per night due to aircraft noise. Using the 2009 flight patterns, our data suggest that a small number of Montreal residents are exposed to noise levels that could induce one or more awakenings additional to spontaneous awakenings per night.
Codarin, Antonio; Picciulin, Marta
2015-12-30
In the marine environment, underwater noise is one of the most widespread input of man-made energy. Recently, the European Commission has stressed the necessity of establishing threshold levels as a target for the descriptor 11.2.1 "Continuous low frequency sounds" in the Marine Strategy Framework Directive (MSFD). In 2012, a monthly underwater noise monitoring programme was conducted in the Gulf of Trieste (Northern Adriatic Sea, Italy); the collected acoustic samples (frequency range: 10-20,000 Hz) were analysed in the 1/3 octave bands. The stations have been further clustered following the 63 and 125 Hz bands noise levels. Average SPL levels resulted similar to those previously computed for proximate areas, indicating that the Adriatic Sea sub-region experiences high noise pressure in the marine waters. In its turn this claims for a scientific and technical international cooperation, as requested by the EU programme. No seasonal variation in local noise levels has been found. Copyright © 2015 Elsevier Ltd. All rights reserved.
Transient Effect of the Noise of Passing Trucks on Sleep Eeg
NASA Astrophysics Data System (ADS)
Suzuki, S.; Kawada, T.; Kiryu, Y.; Sasazawa, Y.; Tamura, Y.
1997-08-01
Twelve subjects were exposed to the noise of passing trucks at peak levels of 45, 50, 55 and 60 dB(A) for 15 min intervals throughout the night each for seven to 12 nights. Effects of the noise were observed by sleep electroencephalography (EEG). Three EEG parameters were affected by the noise event during stage 2. The number of spindles per epoch was depressed on average from 1·78 to 1·02 spindles per epoch or to 57% by the noise event of 60 dB(A), which lasted for only one minute. The threshold level for inducing the decrease was 32 dB(A), as assessed by a regression equation. Time % delta wave was depressed for six minutes, with a threshold level of 41 dB(A). The integral EMG increased in response to the noise event for one minute, and the threshold level for the integral EMG was 34 dB(A).
NASA Technical Reports Server (NTRS)
Hardin, J. C.; Fratello, D. J.; Hayden, R. E.; Kadman, Y.; Africk, S.
1975-01-01
Methods of predicting airframe noise generated by aircraft in flight under nonpowered conditions are discussed. Approaches to predictions relying on flyover data and component theoretical analyses are developed. A nondimensional airframe noise spectrum of various aircraft is presented. The spectrum was obtained by smoothing all the measured spectra to remove any peculiarities due to airframe protrusions, normalizing each spectra by its overall sound pressure level and a characteristics frequency, and averaging the spectra together. A chart of airframe noise sources is included.
Fligor, Brian J; Levey, Sandra; Levey, Tania
2014-08-01
This study examined listening levels and duration of portable listening devices (PLDs) used by people with diversity of ethnicity, education, music genre, and PLD manufacturer. The goal was to estimate participants' PLD noise exposure and identify factors influencing user behavior. This study measured listening levels of 160 adults in 2 New York City locations: (a) a quiet college campus and (b) Union Square, a busy interchange. Participants completed a questionnaire regarding demographics and PLD use. Ordinary least squares regression was used to explore the significance of demographic and behavioral factors. Average listening level was 94.1 dBA, with 99 of 160 (61.9%) and 92 of 159 (57.5%) exceeding daily (L A8hn) and weekly (L Awkn) recommended exposure limit, respectively. African American participants listened at the highest average levels (99.8 dBA). A majority of PLD users exceeded recommended exposure levels. Factors significant for higher exposure were ethnicity and age; factors not significantly associated with exposure were gender, education, location, awareness of possible association between PLD use and noise-induced hearing loss, mode of transportation, device manufacturer, and music genre. Efforts to effect behavior changes to lessen noise-induced hearing loss risk from PLD use should be sensitive to the cultural differences within the targeted population.
Henry, Paula; Foots, Ashley
2012-03-01
Listening to music is one of the most common forms of recreational noise exposure. Previous investigators have demonstrated that maximum output levels from headphones can exceed safe levels. Although preferred listening levels (PLL) in quiet environments may be at acceptable levels, the addition of background noise will add to the overall noise exposure of a listener. Use of listening devices that block out some of the background noise would potentially allow listeners to select lower PLLs for their music. Although one solution is in-the-ear earphones, an alternative solution is the use of earmuffs in conjunction with earbuds. There were two objectives to this experiment. The first was to determine if an alternative to in-the-ear earphones for noise attenuation (the addition of earmuffs to earbuds) would allow for lower PLLs through a portable media player (PMP) than earbuds. The second was to determine if a surrounding background noise would yield different PLLs than a directional noise source. This was an experimental study. Twenty-four adults with normal hearing. PLLs were measured for three earphone configurations in three listening conditions. The earphone configurations included earbuds, canal earphones, and earbuds in combination with hearing protection devices (HPDs). The listening conditions included quiet, noise from one loudspeaker, and noise from four surrounding loudspeakers. Participants listened in each noise and earphone combination for as long as they needed to determine their PLL for that condition. Once the participant determined their PLL, investigators made a 5 sec recording of the music through a probe tube microphone. The average PLLs in each noise and earphone combination were used as the dependent variable. Ear canal level PLLs were converted to free-field equivalents to compare to noise exposure standards and previously published data. The average PLL as measured in the ear canal was 74 dBA in the quiet conditions and 84 dBA in the noise conditions. Paired comparisons of the PLL in the presence of background noise for each pair of earphone configurations indicated significant differences for each comparison. An inverse relationship was observed between attenuation and PLL whereby the greater the attenuation, the lower the PLL. A comparison of the single noise source condition versus the surrounding noise condition did not result in a significant effect. The present work suggests that earphones that take advantage of noise attenuation can reduce the level at which listeners set music in the presence of background noise. An alternative to in-the-ear earphones for noise attenuation is the addition of earmuffs to earbuds. American Academy of Audiology.
Tsujino, Kenji; Akiba, Makoto; Sasaki, Masahide
2007-03-01
The charge-integration readout circuit was fabricated to achieve an ultralow-noise preamplifier for photoelectrons generated in an avalanche photodiode with linear mode operation at 77 K. To reduce the various kinds of noise, the capacitive transimpedance amplifier was used and consisted of low-capacitance circuit elements that were cooled with liquid nitrogen. As a result, the readout noise is equal to 3.0 electrons averaged for a period of 40 ms. We discuss the requirements for avalanche photodiodes to achieve photon-number-resolving detectors below this noise level.
Sung, Joo Hyun; Lee, Jiho; Park, Sang Jin; Sim, Chang Sun
2016-01-01
Transportation noise is known to have negative impact on both public health and life quality. This study evaluated the relationship between transportation noise and annoyance levels, and also the difference of annoyance levels in two metropolitan cities based on epidemiologic surveys. Two thousand adult subjects living in Seoul and Ulsan were enrolled by stratified random sampling on the basis of noise maps from July 2015 to January 2016. Individual annoyance in accordance with transportation noise levels in two metropolitan cities were surveyed using an 11-point visual analog scale questionnaire. The results show that transportation noise level was significantly correlated with annoyance in both cities. Logistic regression analysis revealed that the risk of being ‘highly annoyed’ increased with noise level (Ldn, day-night average sound level) in both cities. After adjusting for age, residence period, sociodemographic factors (sex, education, marriage, income, alcohol, smoking, and exercise) and noise sensitivity, the risk of being ‘highly annoyed’ was increased with noise levels in both cities. In comparison to those of areas with noise levels below 55 dBA, the adjusted odds ratios of ‘highly annoyed’ for areas with 55–65 dBA and over 65 dBA were 2.056 (95% confidence interval [CI] 1.225–3.450), 3.519 (95% CI 1.982–6.246) in Seoul and 1.022 (95% CI 0.585–1.785), 1.704 (95% CI 1.005–2.889) in Ulsan, respectively. Based on the results of a population study, we showed that transportation noise levels were significantly associated with annoyance in adults. However, there were some differences between the two cities. In this study, there were differences in transportation noise between the two cities. Seoul has complex noise (traffic and aircraft), compared to single road traffic noise in Ulsan. Therefore, single and complex transportation noise may have different effects on annoyance levels. PMID:28005976
Football match spectator sound exposure and effect on hearing: a pretest-post-test study.
Swanepoel, De Wet; Hall, James W
2010-03-30
To determine (i) noise exposure levels of spectators at a FIFA 2010 designated training stadium during a premier soccer league match; and (ii) changes in auditory functioning after the match. This was a one-group pretest-post-test design of football spectators attending a premier soccer league match at a designated FIFA 2010 training stadium in Gauteng, South Africa. Individual spectator noise exposure for the duration of the football match and post-match changes in hearing thresholds were measured with pure-tone audiometry, and cochlear functioning was measured with distortion product oto-acoustic emissions (DPOAEs). The average sound exposure level during the match was 100.5 LAeq (dBA), with peak intensities averaging 140.4 dB(C). A significant (p=0.005) deterioration of post-match hearing thresholds was evident at 2 000 Hz, and post-match DPOAE amplitudes were significantly reduced at 1,266, 3,163 and 5,063 Hz (p=0.011, 0.019, 0.013, respectively). Exposure levels exceeded limits of permissible average and peak sound levels. Significant changes in post-match hearing thresholds and cochlear responsiveness highlight the possible risk for noise-induced hearing loss. Public awareness and personal hearing protection should be prioritized as preventive measures.
Saliva Cortisol and Exposure to Aircraft Noise in Six European Countries
Selander, Jenny; Bluhm, Gösta; Theorell, Töres; Pershagen, Göran; Babisch, Wolfgang; Seiffert, Ingeburg; Houthuijs, Danny; Breugelmans, Oscar; Vigna-Taglianti, Federica; Antoniotti, Maria Chiara; Velonakis, Emmanuel; Davou, Elli; Dudley, Marie-Louise; Järup, Lars
2009-01-01
Background Several studies show an association between exposure to aircraft or road traffic noise and cardiovascular effects, which may be mediated by a noise-induced release of stress hormones. Objective Our objective was to assess saliva cortisol concentration in relation to exposure to aircraft noise. Method A multicenter cross-sectional study, HYENA (Hypertension and Exposure to Noise near Airports), comprising 4,861 persons was carried out in six European countries. In a subgroup of 439 study participants, selected to enhance the contrast in exposure to aircraft noise, saliva cortisol was assessed three times (morning, lunch, and evening) during 1 day. Results We observed an elevation of 6.07 nmol/L [95% confidence interval (CI), 2.32–9.81 nmol/L] in morning saliva cortisol level in women exposed to aircraft noise at an average 24-hr sound level (LAeq,24h) > 60 dB, compared with women exposed to LAeq,24h ≤ 50 dB, corresponding to an increase of 34%. Employment status appeared to modify the response. We found no association between noise exposure and saliva cortisol levels in men. Conclusions Our results suggest that exposure to aircraft noise increases morning saliva cortisol levels in women, which could be of relevance for noise-related cardiovascular effects. PMID:20049122
A Comparative Study of Automated Infrasound Detectors - PMCC and AFD with Analyst Review.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Junghyun; Hayward, Chris; Zeiler, Cleat
Automated detections calculated by the progressive multi-channel correlation (PMCC) method (Cansi, 1995) and the adaptive F detector (AFD) (Arrowsmith et al., 2009) are compared to the signals identified by five independent analysts. Each detector was applied to a four-hour time sequence recorded by the Korean infrasound array CHNAR. This array was used because it is composed of both small (<100 m) and large (~1000 m) aperture element spacing. The four hour time sequence contained a number of easily identified signals under noise conditions that have average RMS amplitudes varied from 1.2 to 4.5 mPa (1 to 5 Hz), estimated withmore » running five-minute window. The effectiveness of the detectors was estimated for the small aperture, large aperture, small aperture combined with the large aperture, and full array. The full and combined arrays performed the best for AFD under all noise conditions while the large aperture array had the poorest performance for both detectors. PMCC produced similar results as AFD under the lower noise conditions, but did not produce as dramatic an increase in detections using the full and combined arrays. Both automated detectors and the analysts produced a decrease in detections under the higher noise conditions. Comparing the detection probabilities with Estimated Receiver Operating Characteristic (EROC) curves we found that the smaller value of consistency for PMCC and the larger p-value for AFD had the highest detection probability. These parameters produced greater changes in detection probability than estimates of the false alarm rate. The detection probability was impacted the most by noise level, with low noise (average RMS amplitude of 1.7 mPa) having an average detection probability of ~40% and high noise (average RMS amplitude of 2.9 mPa) average detection probability of ~23%.« less
Pujol, Sophie; Levain, Jean-Pierre; Houot, Hélène; Petit, Rémy; Berthillier, Marc; Defrance, Jérôme; Lardies, Joseph; Masselot, Cyril; Mauny, Frédéric
2014-04-01
Most of the studies investigating the effects of the external noise on children's school performance have concerned pupils in schools exposed to high levels due to aircraft or freeway traffic noise. However, little is known about the consequences of the chronic ambient noise exposure at a level commonly encountered in residential urban areas. This study aimed to assess the relationship between the school performance of 8- to 9-year-old-children living in an urban environment and their chronic ambient noise exposure at home and at school. The children's school performances on the national standardized assessment test in French and mathematics were compared with the environmental noise levels. Children's exposure to ambient noise was calculated in front of their bedrooms (Lden) and schools (LAeq,day) using noise prediction modeling. Questionnaires were distributed to the families to collect potential confounding factors. Among the 746 respondent children, 586 were included in multilevel analyses. On average, the LAeq,day at school was 51.5 dB (SD= 4.5 dB; range = 38-58 dB) and the outdoor Lden at home was 56.4 dB (SD= 4.4 dB; range = 44-69 dB). LAeq,day at school was associated with impaired mathematics score (p = 0.02) or impaired French score (p = 0.01). For a + 10 dB gap, the French and mathematics scores were on average lower by about 5.5 points. Lden at home was significantly associated with impaired French performance when considered alone (p < 10(-3)) and was borderline significant when the combined home-school exposure was considered (p = 0.06). The magnitude of the observed effect on school performance may appear modest, but should be considered in light of the number of people who are potentially chronically exposed to similar environmental noise levels.
Characterization of noise in different industrial workstations
NASA Astrophysics Data System (ADS)
Correia, Aldina; Lopes, Miguel; de Almeida, M. Fátima
2017-11-01
The damage caused by noise in workers' health is well known. The European Agency for Safety and Health at Work presented in 2005 a summary of main effects of workplace noise, defining the loss of hearing as the principal effect of noise exposure, however, it can also exacerbate stress and increase the risk of accidents. The problem to be addressed is this work is about noise analysis, performed under the PREVENIR program. The data was collected in industrial workplaces from 280 Portuguese industrial companies distributed by different sectors. The program was implemented between 2005 and 2011. The aim of this work is identify differences of intensity of noise exposure between these industrial sectors in different workplaces, using inference techniques. The existence of significance differences between average levels of Equivalent Sound Level (LAeq,TdB(A)) are verified using ANOVA.
Noise exposure in convertible automobiles.
Mikulec, A A; Lukens, S B; Jackson, L E; Deyoung, M N
2011-02-01
To quantify the noise exposure received while driving a convertible automobile with the top open, compared with the top closed. Five different convertible automobiles were driven, with the top both closed and open, and noise levels measured. The cars were tested at speeds of 88.5, 104.6 and 120.7 km/h. When driving with the convertible top open, the mean noise exposure ranged from 85.3 dB at 88.5 km/h to 89.9 dB at 120.7 km/h. At the tested speeds, noise exposure increased by an average of 12.4-14.6 dB after opening the convertible top. Driving convertible automobiles at speeds exceeding 88.5 km/h, with the top open, may result in noise exposure levels exceeding recommended limits, especially when driving with the convertible top open for prolonged periods.
[Assessment of acoustic environment and its effect on hearing in jet engine technical personnel].
Konopka, Wiesław; Pawlaczyk-Luszczyńska, Małgorzata; Straszyński, Piotr; Sliwińska-Kowalska, Mariola
2004-01-01
Noise produced by jet engines may be harmful to aircraft servicing personnel because of high levels of acoustic pressure. The aim of the study was to assess the acoustic environment of persons exposed to jet engine noise and its effect on hearing. Noise measurements were performed on three jet engines. During the target practice, the following parameters were measured: equivalent noise, pressure level A, maximum sound pressure level A, and peak sound pressure level C. The spectro-analysis covering the range from 0.1 to 20 kHz was conducted. Hearing was assessed in 50 noise-exposed men, aged 24-51 years (mean age, 35.5 years), using PTA, tympanometry and DPOAE. The control group consisted of 40 non-exposed persons with good hearing condition. Maximum levels of acoustic pressure exceeded Polish standards. Comparison between two groups showed that PTA was higher in the exposed persons by 6.3-6.8 dB on average and DPOAE was reduced in the group exposed to jet engine noise more than it could have been expected. Even during a single test, aircraft technical personnel was exposed to (audible) noise that significantly exceeded admissible values. The reduction in DPOAE values in persons exposed to noise of jet engines was incommensurably higher than changes in PTA.
Analysis of a Shock-Associated Noise Prediction Model Using Measured Jet Far-Field Noise Data
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Sharpe, Jacob A.
2014-01-01
A code for predicting supersonic jet broadband shock-associated noise was assessed us- ing a database containing noise measurements of a jet issuing from a convergent nozzle. The jet was operated at 24 conditions covering six fully expanded Mach numbers with four total temperature ratios. To enable comparisons of the predicted shock-associated noise component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise component spectra. Comparisons between predicted and measured shock-associated noise component spectra were used to identify de ciencies in the prediction model. Proposed revisions to the model, based on a study of the overall sound pressure levels for the shock-associated noise component of the mea- sured data, a sensitivity analysis of the model parameters with emphasis on the de nition of the convection velocity parameter, and a least-squares t of the predicted to the mea- sured shock-associated noise component spectra, resulted in a new de nition for the source strength spectrum in the model. An error analysis showed that the average error in the predicted spectra was reduced by as much as 3.5 dB for the revised model relative to the average error for the original model.
Vieira, Ana; Snellen, Mirjam; Simons, Dick G
2018-01-01
Reducing aircraft noise is a major issue to be dealt with by the aerospace industry. In addition to lowering noise emissions from the engine and airframe, also the shielding of engine noise by the aircraft is considered as a promising means for reducing the perceived noise on the ground. In literature, noise shielding predictions indicate significant reductions in received noise levels for blended wing body configurations, but also for conventional aircraft with the engines placed above the wings. Little work has been done in assessing these potential shielding effects for full aircraft under real operational conditions. Therefore, in this work, noise shielding for current aircraft is investigated using both measurements and model predictions. The predictions are based on the Kirchhoff integral theory and the Modified Theory of Physical Optics. For the comparison between the predictions and measurements, Twenty Fokker 70 flyovers are considered. The data analysis approach for the extraction of shielding levels for aircraft under these operational conditions is presented. Directly under the flight path, the simulations predict an engine noise shielding of 6 dB overall sound pressure level. This is confirmed by some of the flyover data. On average, the measurements show somewhat lower shielding levels.
Results of the noise measurement program on a standard and modified OH-6A helicopter
NASA Technical Reports Server (NTRS)
Henderson, H. R.; Peegg, R. J.; Hilton, D. A.
1973-01-01
A field noise measurement program has been conducted on a standard OH-6A helicopter and one that had been modified by reducing the rotor speed, altering rotor tip shape, and treating the engine exhaust and inlet to reduce the external noise levels. The modifications consisted of extensive aircraft design changes resulting in substantial noise reductions following state-of-art noise reduction techniques. The purpose of this study was to document the ground noise characteristics of each helicopter during flyover, hover, landing, and take-off operations. Based on an analysis of the measured results, the average of the overall on-track noise levels of the final modified helicopter was approximately 14 db lower than that for the standard helicopter. Narrow-band-spectra data of the hovering helicopter show a reduction in the overall noise due to the reductions achieved for the lifting main and antitorque tail rotor, engine exhaust, and gear box noise for the modified helicopter. The noise results of the test program are found to correlate generally with noise measurements made previously on this type of aircraft.
Long term sleep disturbance due to traffic noise
NASA Astrophysics Data System (ADS)
Vallet, M.; Gagneux, J.-M.; Blanchet, V.; Favre, B.; Labiale, G.
1983-09-01
This contribution to the evaluation of the effects of traffic noise on sleep disturbance is focused on the responses of people living near a main road. Experiments were carried out in the homes of subjects who had habitually been exposed to noise for periods of more than four years. The chronic changes in overall sleep patterns and the temporary sleep responses to particular noise events caused by traffic are demonstrated. Young people show mainly stage 3 and 4 deficits whilst older people show REM sleep deficits. The cardiac response to noise during sleep was also examined. These results highlight that both long term average and peak levels are important in assessing sleep disturbance. The threshold levels, measured inside the bedroom and above which sleep quality starts to become impaired, are 37 Leq(A) and 45 dB (A) Lp max , respectively. For the type of traffic studied these two levels are coherent and it is therefore possible that a single noise index, Leq(A), is sufficient to scale sleep disturbance.
Noise Exposure Assessment in a Dental School
Kaimook, Wandee; Tantisarasart, Ratchada; Sooksamear, Puwanai; Chayaphum, Satith; Kongkamol, Chanon; Srisintorn, Wisarut; Phakthongsuk, Pitchaya
2011-01-01
Objectives This cross-sectional study was performed in the Dental School of Prince of Songkla University to ascertain noise exposure of dentists, dental assistants, and laboratory technicians. A noise spectral analysis was taken to illustrate the spectra of dental devices. Methods A noise evaluation was performed to measure the noise level at dental clinics and one dental laboratory from May to December 2010. Noise spectral data of dental devices were taken during dental practices at the dental services clinic and at the dental laboratory. A noise dosimeter was set following the Occupational Safety and Health Administration criteria and then attached to the subjects' collar to record personal noise dose exposure during working periods. Results The peaks of the noise spectrum of dental instruments were at 1,000, 4,000, and 8,000 Hz which depended on the type of instrument. The differences in working areas and job positions had an influence on the level of noise exposure (p < 0.01). Noise measurement in the personal hearing zone found that the laboratory technicians were exposed to the highest impulsive noise levels (137.1 dBC). The dentists and dental assistants who worked at a pedodontic clinic had the highest percent noise dose (4.60 ± 3.59%). In the working areas, the 8-hour time-weighted average of noise levels ranged between 49.7-58.1 dBA while the noisiest working area was the dental laboratory. Conclusion Dental personnel are exposed to noise intensities lower than occupational exposure limits. Therefore, these dental personnel may not experience a noise-induced hearing loss. PMID:22953219
Noise exposure assessment in a dental school.
Choosong, Thitiworn; Kaimook, Wandee; Tantisarasart, Ratchada; Sooksamear, Puwanai; Chayaphum, Satith; Kongkamol, Chanon; Srisintorn, Wisarut; Phakthongsuk, Pitchaya
2011-12-01
This cross-sectional study was performed in the Dental School of Prince of Songkla University to ascertain noise exposure of dentists, dental assistants, and laboratory technicians. A noise spectral analysis was taken to illustrate the spectra of dental devices. A noise evaluation was performed to measure the noise level at dental clinics and one dental laboratory from May to December 2010. Noise spectral data of dental devices were taken during dental practices at the dental services clinic and at the dental laboratory. A noise dosimeter was set following the Occupational Safety and Health Administration criteria and then attached to the subjects' collar to record personal noise dose exposure during working periods. The peaks of the noise spectrum of dental instruments were at 1,000, 4,000, and 8,000 Hz which depended on the type of instrument. The differences in working areas and job positions had an influence on the level of noise exposure (p < 0.01). Noise measurement in the personal hearing zone found that the laboratory technicians were exposed to the highest impulsive noise levels (137.1 dBC). The dentists and dental assistants who worked at a pedodontic clinic had the highest percent noise dose (4.60 ± 3.59%). In the working areas, the 8-hour time-weighted average of noise levels ranged between 49.7-58.1 dBA while the noisiest working area was the dental laboratory. Dental personnel are exposed to noise intensities lower than occupational exposure limits. Therefore, these dental personnel may not experience a noise-induced hearing loss.
Operating room sound level hazards for patients and physicians.
Fritsch, Michael H; Chacko, Chris E; Patterson, Emily B
2010-07-01
Exposure to certain new surgical instruments and operating room devices during procedures could cause hearing damage to patients and personnel. Surgical instruments and related equipment generate significant sound levels during routine usage. Both patients and physicians are exposed to these levels during the operative cases, many of which can last for hours. The noise loads during cases are cumulative. Occupational Safety and Health Administration (OSHA) and National Institute for Occupational Safety and Health (NIOSH) standards are inconsistent in their appraisals of potential damage. Implications of the newer power instruments are not widely recognized. Bruel and Kjaer sound meter spectral recordings for 20 major instruments from 5 surgical specialties were obtained at the ear levels for the patient and the surgeon between 32 and 20 kHz. Routinely used instruments generated sound levels as high as 131 dB. Patient and operator exposures differed. There were unilateral dominant exposures. Many instruments had levels that became hazardous well within the length of an average surgical procedure. The OSHA and NIOSH systems gave contradicting results when applied to individual instruments and types of cases. Background noise, especially in its intermittent form, was also of significant nature. Some patients and personnel have additional predisposing physiologic factors. Instrument noise levels for average length surgical cases may exceed OSHA and NIOSH recommendations for hearing safety. Specialties such as Otolaryngology, Orthopedics, and Neurosurgery use instruments that regularly exceed limits. General operating room noise also contributes to overall personnel exposures. Innovative countermeasures are suggested.
Noise levels in fitness classes are still too high: evidence from 1997-1998 and 2009-2011.
Beach, Elizabeth Francis; Nie, Valerie
2014-01-01
Fitness instructors routinely use high music volumes that may be harmful to hearing. This study assessed noise levels during 35 low-intensity and 65 high-intensity fitness classes in 1997-1998 and 2009-2011. Questionnaires examined instructors' and clients' preferred music volumes and whether they found loud music "stressful" or "motivating." Noise levels in 1997-1998 and 2009-2011 were similar, frequently exceeding 90 dB(A). Although noise levels in low-intensity classes dropped from 88.9 to 85.6 dB(A), they remained high for high-intensity classes, averaging 93.1 dB(A). In 2009-2011, instructors preferred significantly higher volumes than clients for high-intensity classes. In both time periods, about 85% of instructors found loud music motivating, whereas about one fifth of clients found it stressful. The results suggest that noise exposure from fitness classes, particularly high-intensity classes, continues to pose a potential risk to hearing.
Assessment of Occupational Noise Exposure among Groundskeepers in North Carolina Public Universities
Balanay, Jo Anne G.; Kearney, Gregory D.; Mannarino, Adam J.
2016-01-01
Groundskeepers may have increased risk to noise-induced hearing loss due to the performance of excessively noisy tasks. This study assessed the exposure of groundskeepers to noise in multiple universities and determined the association between noise exposure and variables (ie, university, month, tool used). Personal noise exposures were monitored during the work shift using noise dosimetry. A sound level meter was used to measure the maximum sound pressure levels from groundskeeping equipment. The mean Occupational Safety and Health Administration (OSHA) and National Institute for Occupational Safety and Health (NIOSH) time-weighted average (TWA) noise exposures were 83.0 ± 9.6 and 88.0 ± 6.7 dBA, respectively. About 52% of the OSHA TWAs and 77% of the NIOSH TWAs exceeded 85 dBA. Riding mower use was associated with high TWA noise exposures and with having OSHA TWAs exceeding 85 and 90 dBA. The maximum sound pressure levels of equipment and tools measured ranged from 76 to 109 dBA, 82% of which were >85 dBA. These findings support that groundskeepers have excessive noise exposures, which may be effectively reduced through careful scheduling of the use of noisy equipment/tools. PMID:27330303
NASA Astrophysics Data System (ADS)
Khelifa, Sofiane
2016-12-01
The purpose of this paper is to compare the noise characteristics in DORIS station positions between the three solutions derived by IGN-JPL (named as IGN), INASAN (named as INA) and CNES-CLS (named as LCA) Analysis Centres for ITRF2014 contribution, and to evaluate the improvements of these reprocessed solutions in terms of noise level with the previous ITRF2008 solutions. To the weekly STCD (STation Coordinate Difference) residual position time series of 23 stations referred to ITRF2008 and expressed in the local frame (North, East and Up), we calculated the Allan variance to identify their noise type, and applied the wavelet transform to assess their annual and semi-annual signals, and their noise level. The results reveal that the three solutions are dominated by white noise in all three components. The noise level is the lowest in the LCA solution; the average noise level in respectively, North, East and Vertical components is around 5.9 mm, 9.3 mm and 6.6 mm for LCA, 9 mm, 11.6 mm and 9 mm for IGN, and 8.7 mm, 11.6 mm and 9.1 mm for INA. The results also show that the tropical (±23.5°) stations are more distorted than mid-latitude and high latitude stations. In terms of noise level, the reprocessed LCA solution (lca14wd40) and its previous solution (lca11wd02) converge to similar results, while the reprocessed IGN (ign14wd15) and INA (ina14wd08) solutions show improvements with respect to their previous solutions (ign11wd01) and (ina12wd01) respectively, especially in the East component. Furthermore, the possible origin of the estimated annual signal was also investigated by comparing it with hydrology and atmospheric loading displacements. The annual Vertical component for the three solutions is more correlated with the GLDAS/Noah hydrology model with an average correlation of about 0.35, and shows a strong correlation of about 0.76 with ECMWF-IB and ECMWF-MOG2D atmospheric models for the station Krasnoyarsk (KRBB) in Siberia.
Binary encoding of multiplexed images in mixed noise.
Lalush, David S
2008-09-01
Binary coding of multiplexed signals and images has been studied in the context of spectroscopy with models of either purely constant or purely proportional noise, and has been shown to result in improved noise performance under certain conditions. We consider the case of mixed noise in an imaging system consisting of multiple individually-controllable sources (X-ray or near-infrared, for example) shining on a single detector. We develop a mathematical model for the noise in such a system and show that the noise is dependent on the properties of the binary coding matrix and on the average number of sources used for each code. Each binary matrix has a characteristic linear relationship between the ratio of proportional-to-constant noise and the noise level in the decoded image. We introduce a criterion for noise level, which is minimized via a genetic algorithm search. The search procedure results in the discovery of matrices that outperform the Hadamard S-matrices at certain levels of mixed noise. Simulation of a seven-source radiography system demonstrates that the noise model predicts trends and rank order of performance in regions of nonuniform images and in a simple tomosynthesis reconstruction. We conclude that the model developed provides a simple framework for analysis, discovery, and optimization of binary coding patterns used in multiplexed imaging systems.
Environmental noise pollution in the United States: developing an effective public health response.
Hammer, Monica S; Swinburn, Tracy K; Neitzel, Richard L
2014-02-01
Tens of millions of Americans suffer from a range of adverse health outcomes due to noise exposure, including heart disease and hearing loss. Reducing environmental noise pollution is achievable and consistent with national prevention goals, yet there is no national plan to reduce environmental noise pollution. We aimed to describe some of the most serious health effects associated with noise, summarize exposures from several highly prevalent noise sources based on published estimates as well as extrapolations made using these estimates, and lay out proven mechanisms and strategies to reduce noise by incorporating scientific insight and technological innovations into existing public health infrastructure. We estimated that 104 million individuals had annual LEQ(24) levels > 70 dBA (equivalent to a continuous average exposure level of >70 dBA over 24 hr) in 2013 and were at risk of noise-induced hearing loss. Tens of millions more may be at risk of heart disease, and other noise-related health effects. Direct regulation, altering the informational environment, and altering the built environment are the least costly, most logistically feasible, and most effective noise reduction interventions. Significant public health benefit can be achieved by integrating interventions that reduce environmental noise levels and exposures into the federal public health agenda.
Results of the flight noise measurement program using a standard and modified SH-3A helicopter
NASA Technical Reports Server (NTRS)
Pegg, R. J.; Henderson, H. R.; Hilton, D. A.
1973-01-01
A field noise measurement program has been conducted using both a standard SH-3A helicopter and an SH-3A helicopter modified to reduce external noise levels. Modifications included reducing rotor speed, increasing the number of rotor blades, modifying the blade-tip shapes, and acoustically treating the engine air intakes and exhaust. The purpose of this study was to document the noise characteristics recorded on the ground of each helicopter during flyby, hover, landing, and take-off operations. Based on an analysis of the measured results, the average of the overhead, overall, ontrack noise levels was approximately 4 db lower for the modified helicopter than for the standard helicopter. The improved in-flight noise characteristics, and associated small footprint areas and time durations, were judged to be mainly due to tail-rotor noise reductions. The noise reductions were obtained at the expense of required power increases at airspeeds greater than 70 knots for the modified helicopter.
Sound levels and their effects on children in a German primary school.
Eysel-Gosepath, Katrin; Daut, Tobias; Pinger, Andreas; Lehmacher, Walter; Erren, Thomas
2012-12-01
Considerable sound levels are produced in primary schools by voices of children and resonance effects. As a consequence, hearing loss and mental impairment may occur. In a Cologne primary school, sound levels were measured in three different classrooms, each with 24 children, 8-10 years old, and one teacher. Sound dosimeters were positioned in the room and near the teacher's ear. Additional measurements were done in one classroom fully equipped with sound-absorbing materials. A questionnaire containing 12 questions about noise at school was distributed to 100 children, 8-10 years old. Measurements were repeated after children had been taught about noise damage and while "noise lights" were used. Mean sound levels of 5-h per day measuring period were 78 dB (A) near the teacher's ear and 70 dB (A) in the room. The average of all measured maximal sound levels for 1 s was 105 dB (A) for teachers, and 100 dB (A) for rooms. In the soundproofed classroom, Leq was 66 dB (A). The questionnaire revealed certain judgment of the children concerning situations with high sound levels and their ability to develop ideas for noise reduction. However, no clear sound level reduction was identified after noise education and using "noise lights" during lessons. Children and their teachers are equally exposed to high sound levels at school. Early sensitization to noise and the possible installation of sound-absorbing materials can be important means to prevent noise-associated hearing loss and mental impairment.
49 CFR 229.121 - Locomotive cab noise.
Code of Federal Regulations, 2010 CFR
2010-10-01
... noise in accordance with paragraph (a)(3) of this section, all locomotives of each design or model that... testing a representative sample of locomotives or an initial series of locomotives, provided that there... that locomotive design or model to exceed: (i) 82 dB(A) if the average sound level for a locomotive...
49 CFR 229.121 - Locomotive cab noise.
Code of Federal Regulations, 2014 CFR
2014-10-01
... noise in accordance with paragraph (a)(3) of this section, all locomotives of each design or model that... testing a representative sample of locomotives or an initial series of locomotives, provided that there... that locomotive design or model to exceed: (i) 82 dB(A) if the average sound level for a locomotive...
49 CFR 229.121 - Locomotive cab noise.
Code of Federal Regulations, 2013 CFR
2013-10-01
... noise in accordance with paragraph (a)(3) of this section, all locomotives of each design or model that... testing a representative sample of locomotives or an initial series of locomotives, provided that there... that locomotive design or model to exceed: (i) 82 dB(A) if the average sound level for a locomotive...
Noise-Induced Sleep Disturbance in Residences Near Two Civil Airports
NASA Technical Reports Server (NTRS)
Fidell, Sanford; Howe, Richard R.; Tabachnick, Barbara G.; Pearsons, Karl S.; Sneddon, Matthew D.
1995-01-01
A large-scale field study of noise-induced sleep disturbance was conducted in the vicinities of Stapleton International Airport (DEN) and Denver International Airport (DIA) in anticipation of the closure of the former and opening of the latter. Both indoor and outdoor measurements of aircraft and other nighttime noises were made during four time periods. Measurements were made in 57 homes located as close as feasible to the runway ends of the two airports. Sleep disturbance was measured by several indices of behaviorally confirmed awakening (button pushes upon awakening) and body movement (as measured with wrist-worn actimeters). A total of 2717 subject-nights of observations were made over the course of the study. Although average noise event levels measured outdoors decreased markedly at DEN after closure of the airport and increased slightly at DIA after its opening, indoor noise event levels varied much less in homes near both airports. No large differences were observed in noise-induced sleep disturbance at either airport. Indoor sound exposure levels of noise events were, however, closely related to and good predictors of actimetrically defined motility and arousal.
On the signal-to-noise ratio in IUE high-dispersion spectra
NASA Technical Reports Server (NTRS)
Leckrone, David S.; Adelman, Saul J.
1989-01-01
An observational and data reduction technique for fixed pattern noise (FPN) and random noise (RN) in fully extracted IUE high-dispersion spectra is described in detail, along with actual empirical values of signal-to-noise ratio (S/N) achieved. A co-addition procedure, involving SWP and LWR cameras observations of the same spectrum at different positions in the image format, provides a basis to disentangle FPN from RN, allowing each average amplitude, within a given wavelength interval, to be estimated as a function of average flux number. Empirical curves, derived with the noise algorithm, make it possible to estimate the S/N in individual spectra at the wavelengths investigated. The average S/N at the continuum level in well-exposed stellar spectra varies from 10 to 20, for the orders analyzed, depending on position in the spectral format. The co-addition procedure yields an improvement in S/N by factors ranging from 2.3 to 2.9. Direct measurements of S/N in narrow, line-free wavelength intervals of individual and co-added spectra for weak-lined stars yield comparable, or in some cases somewhat higher, S/N values and improvement factors.
Characteristics of Broadband Seismic Noise in Taiwan and Neighboring Islands
NASA Astrophysics Data System (ADS)
Chen, Ching-Wei; Rau, Ruey-Juin
2017-04-01
We used seismic waveform data from 115 broad-band stations of BATS (Institute of Earth Science, Academia Sinica) and Central Weather Bureau Seismic Network from 2012 to 2016 for noise-level mapping in Taiwan and neighboring islands. We computed Power Spectral Density (PSD) for each station and analyzed long-term variance of microseism energy and polarizations of noise for severe weather events. The island of Taiwan is surrounded by ocean and the Central Range which has the highest peak Jade Mountain at 3,952 meters height occupies more than 66% of the island and departs it into the east and west coasts. The geographic settings then result in the high population density in the western plain and northern Taiwan. The dominant noise source in the microseism band (periods from 4-20 seconds) is the coupling between the near-coast ocean and sea floor which produces the high noise of averaging -130 dB along the west coastal area. In the eastern volcanic-arc coastal areas, the noise level is about 7% smaller than the west coast due to its deeper offshore water depth. As for the shorter periods (0.1-0.25 seconds) band, the so-called culture noise, an anthropic activity variance with the highest -103 dB can be identified in the metropolitan areas, such as the Taipei city and the noise level in the Central Range area is averaging -138 dB. Moreover, the noise also shows a daily and temporal evolution mainly related to the traffic effect. Furthermore, we determined the noise level for the entire island of Taiwan during 26-28 September, 2016, when the typhoon Megi hit the island and retrieved the enhancement of secondary microseism energy for each stations. Typhoon Megi landed in eastern and central Taiwan and reached the maximum wind speed of 45m/s in the surrounded eyewall. The Central Range, as a barrier, decreased the wind speed in southern Taiwan making an enhancement less than 10 dB, while in northern Taiwan where the direction the typhoon headed to, can reach more than 35 dB.
Fan Noise Source Diagnostic Test: Vane Unsteady Pressure Results
NASA Technical Reports Server (NTRS)
Envia, Edmane
2002-01-01
To investigate the nature of fan outlet guide vane pressure fluctuations and their link to rotor-stator interaction noise, time histories of vane fluctuating pressures were digitally acquired as part of the Fan Noise Source Diagnostic Test. Vane unsteady pressures were measured at seven fan tip speeds for both a radial and a swept vane configuration. Using time-domain averaging and spectral analysis, the blade passing frequency (BPF) harmonic and broadband contents of the vane pressures were individually analyzed. Significant Sound Pressure Level (SPL) reductions were observed for the swept vane relative to the radial vane for the BPF harmonics of vane pressure, but vane broadband reductions due to sweep turned out to be much smaller especially on an average basis. Cross-correlation analysis was used to establish the level of spatial coherence of broadband pressures between different locations on the vane and integral length scales of pressure fluctuations were estimated from these correlations. Two main results of this work are: (1) the average broadband level on the vane (in dB) increases linearly with the fan tip speed for both the radial and swept vanes, and (2) the broadband pressure distribution on the vane is nearly homogeneous and its integral length scale is a monotonically decreasing function of fan tip speed.
McDonald, Mark A; Hildebrand, John A; Wiggins, Sean M
2006-08-01
Recent measurement at a previously studied location illustrates the magnitude of increases in ocean ambient noise in the Northeast Pacific over the past four decades. Continuous measurements west of San Nicolas Island, California, over 138 days, spanning 2003-2004 are compared to measurements made during the 1960s at the same site. Ambient noise levels at 30-50 Hz were 10-12 dB higher (95% CI = 2.6 dB) in 2003-2004 than in 1964-1966, suggesting an average noise increase rate of 2.5-3 dB per decade. Above 50 Hz the noise level differences between recording periods gradually diminished to only 1-3 dB at 100-300 Hz. Above 300 Hz the 1964-1966 ambient noise levels were higher than in 2003-2004, owing to a diel component which was absent in the more recent data. Low frequency (10-50 Hz) ocean ambient noise levels are closely related to shipping vessel traffic. The number of commercial vessels plying the world's oceans approximately doubled between 1965 and 2003 and the gross tonnage quadrupled, with a corresponding increase in horsepower. Increases in commercial shipping are believed to account for the observed low-frequency ambient noise increase.
NASA Astrophysics Data System (ADS)
Yamanaka, K.; Nakagawa, T.; Kobayashi, F.; Kanada, S.; Tanahashi, M.; Muramatsu, T.; Yamada, S.
1982-10-01
A survey of 1187 housewives living in 18 areas along the Shinkansen Super Express (bullet train) railway was conducted by means of a self-administered health questionnaire (modified Cornell Medical Index). In addition, geographically corresponding measurements of noise level and vibration intensity were taken. The relationship of noise and vibration to positive responses (health complaints) related to bodily symptoms, illness and emotional disturbances was analyzed. The factors which correlated with an increase in the average number of positive responses included noise, vibration, age and health status. Such factors as marital status, educational level, part time work, duration of inhabitancy and occupation of the head of the houshold correlated poorly with the number of positive responses. Unhealthy respondents compared to healthy respondents are more frequently affected by noise and vibration. The rate of positive responses in the visual, respiratory, cardiovascular, digestive and nervous systems, sleep disturbances and emotional disturbances increased accordingly as noise and vibration increased. Combined effects of noise and vibration stimuli on the total number of positive responses (an indicator of general health) were found. This study has produced results indicating that the maximum permissible noise level should not exceed 70 dB(A) in the residential areas along the Shinkansen railway.
Brink, LuAnn L; Talbott, Evelyn O; Burks, J Alton; Palmer, Catherine V
2002-01-01
Noise induced hearing loss (NIHL) is among the 10 leading occupational diseases, afflicting between 7.4 and 10.2 million people who work in noise above 85 dBA. Although mandatory hearing conservation programs (HCPs) have been in effect since 1972, this problem persists, as hearing protectors are not consistently used by workers, or may not attenuate to manufacturer's estimates in real world conditions. In this study, information from noise and hearing protection use measurements taken at an automobile assembly plant were used to construct average lifetime noise exposure and hearing protection compliance estimates for use in modeling to predict both total hearing loss and onset of two accepted definitions of hearing loss. There were 301 males and females in this cohort; their mean age was 42.6 (7.2) years, and mean tenure was 14.3 (3.5) years. Average length of follow-up was 14.0 years. There were 16 members of this cohort who had hearing loss at the speech frequencies (defined as an average hearing level > or = 25 dB at 500, 1000, and 2000 Hz). In cross-sectional multivariate analyses, years of employment, male gender, and proportion of time wearing hearing protection were the factors most associated with hearing loss at the average of 2000, 3000, and 4000 Hz (p < 0.0001) controlling for age, transfer status (as a surrogate for previous noise exposure), race, and lifetime average noise exposure. The most consistent predictor of hearing loss in both univariate and multivariate analyses was percentage of time having used hearing protection during the workers' tenure.
de Carvalho, Laura Maria Araújo; Gonsalez, Elisiane Crestani de Miranda; Iorio, Maria Cecília Martineli
The difficulty the elderly experience in understanding speech may be related to several factors including cognitive and perceptual performance. To evaluate the influence of cognitive performance, depressive symptoms, and education on speech perception in noise of elderly hearing aids users. The sample consisted of 25 elderly hearing aids users in bilateral adaptation, both sexes, mean age 69.7 years. Subjects underwent cognitive assessment using the Mini-Mental State Examination and the Alzheimer's Disease Assessment Scale-cognitive and depressive symptoms evaluation using the Geriatric Depression Scale. The assessment of speech perception in noise (S/N ratio) was performed in free field using the Portuguese Sentence List test. Statistical analysis included the Spearman correlation calculation and multiple linear regression model, with 95% confidence level and 0.05 significance level. In the study of speech perception in noise (S/N ratio), there was statistically significant correlation between education scores (p=0.018), as well as with the Mini-Mental State Examination (p=0.002), Alzheimer's Disease Assessment Scale-cognitive (p=0.003), and Geriatric Depression Scale (p=0.022) scores. We found that for a one-unit increase in Alzheimer's Disease Assessment Scale-cognitive score, the S/N ratio increased on average 0.15dB, and for an increase of one year in education, the S/N ratio decreased on average 0.40dB. Level of education, cognitive performance, and depressive symptoms influence the speech perception in noise of elderly hearing aids users. The better the cognitive level and the higher the education, the better is the elderly communicative performance in noise. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, W; Niu, T; Xing, L
2015-06-15
Purpose: To significantly improve dual energy CT (DECT) imaging by establishing a new theoretical framework of image-domain material decomposition with incorporation of edge-preserving techniques. Methods: The proposed algorithm, HYPR-NLM, combines the edge-preserving non-local mean filter (NLM) with the HYPR-LR (Local HighlY constrained backPRojection Reconstruction) framework. Image denoising using HYPR-LR framework depends on the noise level of the composite image which is the average of the different energy images. For DECT, the composite image is the average of high- and low-energy images. To further reduce noise, one may want to increase the window size of the filter of the HYPR-LR, leadingmore » resolution degradation. By incorporating the NLM filtering and the HYPR-LR framework, HYPR-NLM reduces the boost material decomposition noise using energy information redundancies as well as the non-local mean. We demonstrate the noise reduction and resolution preservation of the algorithm with both iodine concentration numerical phantom and clinical patient data by comparing the HYPR-NLM algorithm to the direct matrix inversion, HYPR-LR and iterative image-domain material decomposition (Iter-DECT). Results: The results show iterative material decomposition method reduces noise to the lowest level and provides improved DECT images. HYPR-NLM significantly reduces noise while preserving the accuracy of quantitative measurement and resolution. For the iodine concentration numerical phantom, the averaged noise levels are about 2.0, 0.7, 0.2 and 0.4 for direct inversion, HYPR-LR, Iter- DECT and HYPR-NLM, respectively. For the patient data, the noise levels of the water images are about 0.36, 0.16, 0.12 and 0.13 for direct inversion, HYPR-LR, Iter-DECT and HYPR-NLM, respectively. Difference images of both HYPR-LR and Iter-DECT show edge effect, while no significant edge effect is shown for HYPR-NLM, suggesting spatial resolution is well preserved for HYPR-NLM. Conclusion: HYPR-NLM provides an effective way to reduce the generic magnified image noise of dual–energy material decomposition while preserving resolution. This work is supported in part by NIH grants 7R01HL111141 and 1R01-EB016777. This work is also supported by the Natural Science Foundation of China (NSFC Grant No. 81201091), Fundamental Research Funds for the Central Universities in China, and Fund Project for Excellent Abroad Scholar Personnel in Science and Technology.« less
Underwater temporary threshold shift induced by octave-band noise in three species of pinniped.
Kastak, D; Schusterman, R J; Southall, B L; Reichmuth, C J
1999-08-01
Pure-tone sound detection thresholds were obtained in water for one harbor seal (Phoca vitulina), two California sea lions (Zalophus californianus), and one northern elephant seal (Mirounga angustirostris) before and immediately following exposure to octave-band noise. Additional thresholds were obtained following a 24-h recovery period. Test frequencies ranged from 100 Hz to 2000 Hz and octave-band exposure levels were approximately 60-75 dB SL (sensation level at center frequency). Each subject was trained to dive into a noise field and remain stationed underwater during a noise-exposure period that lasted a total of 20-22 min. Following exposure, three of the subjects showed threshold shifts averaging 4.8 dB (Phoca), 4.9 dB (Zalophus), and 4.6 dB (Mirounga). Recovery to baseline threshold levels was observed in test sessions conducted within 24 h of noise exposure. Control sessions in which the subjects completed a simulated noise exposure produced shifts that were significantly smaller than those observed following noise exposure. These results indicate that noise of moderate intensity and duration is sufficient to induce TTS under water in these pinniped species.
NASA Technical Reports Server (NTRS)
Splettstoesser, W. R.; Schultz, K. J.; Boxwell, D. A.; Schmitz, F. H.
1984-01-01
Acoustic data taken in the anechoic Deutsch-Niederlaendischer Windkanal (DNW) have documented the blade vortex interaction (BVI) impulsive noise radiated from a 1/7-scale model main rotor of the AH-1 series helicopter. Averaged model scale data were compared with averaged full scale, inflight acoustic data under similar nondimensional test conditions. At low advance ratios (mu = 0.164 to 0.194), the data scale remarkable well in level and waveform shape, and also duplicate the directivity pattern of BVI impulsive noise. At moderate advance ratios (mu = 0.224 to 0.270), the scaling deteriorates, suggesting that the model scale rotor is not adequately simulating the full scale BVI noise; presently, no proved explanation of this discrepancy exists. Carefully performed parametric variations over a complete matrix of testing conditions have shown that all of the four governing nondimensional parameters - tip Mach number at hover, advance ratio, local inflow ratio, and thrust coefficient - are highly sensitive to BVI noise radiation.
Thunderstorms observed by radio astronomy Explorer 1 over regions of low man made noise
NASA Technical Reports Server (NTRS)
Caruso, J. A.; Herman, J. R.
1974-01-01
Radio Astronomy Explorer (RAE) I observations of thunderstorms over regions of low man-made noise levels are analyzed to assess the satellite's capability for noise source differentiation. The investigation of storms over Australia indicates that RAE can resolve noise generation due to thunderstorms from the general noise background over areas of low man-made noise activity. Noise temperatures observed by RAE over stormy regions are on the average 10DB higher than noise temperatures over the same regions in the absence of thunderstorms. In order to determine the extent of noise contamination due to distant transmitters comprehensive three dimensional computer ray tracings were generated. The results indicate that generally, distant transmitters contribute negligibly to the total noise power, being 30DB or more below contributions arriving from an area immediately below the satellite.
Noise and economic characteristics of an advanced blended supersonic transport concept
NASA Technical Reports Server (NTRS)
Molloy, J. K.; Grantham, W. D.; Neubauer, M. J., Jr.
1982-01-01
Noise and economic characteristics were obtained for an advanced supersonic transport concept that utilized wing body blending, a double bypass variable cycle engine, superplastically formed and diffusion bonded titanium in both the primary and secondary structures, and an alternative interior arrangement that provides increased seating capacity. The configuration has a cruise Mach number of 2.62, provisions for 290 passengers, a mission range of 8.19 Mm (4423 n.mi.), and an average operating cruise lift drag ratio of 9.23. Advanced operating procedures, which have the potential to reduce airport community noise, were explored by using a simulator. Traded jet noise levels of 105.7 and 103.4 EPNdB were obtained by using standard and advanced takeoff operational procedures, respectively. A new method for predicting lateral attenuation was utilized in obtaining these jet noise levels.
Optimal wavelet denoising for smart biomonitor systems
NASA Astrophysics Data System (ADS)
Messer, Sheila R.; Agzarian, John; Abbott, Derek
2001-03-01
Future smart-systems promise many benefits for biomedical diagnostics. The ideal is for simple portable systems that display and interpret information from smart integrated probes or MEMS-based devices. In this paper, we will discuss a step towards this vision with a heart bio-monitor case study. An electronic stethoscope is used to record heart sounds and the problem of extracting noise from the signal is addressed via the use of wavelets and averaging. In our example of heartbeat analysis, phonocardiograms (PCGs) have many advantages in that they may be replayed and analysed for spectral and frequency information. Many sources of noise may pollute a PCG including foetal breath sounds if the subject is pregnant, lung and breath sounds, environmental noise and noise from contact between the recording device and the skin. Wavelets can be employed to denoise the PCG. The signal is decomposed by a discrete wavelet transform. Due to the efficient decomposition of heart signals, their wavelet coefficients tend to be much larger than those due to noise. Thus, coefficients below a certain level are regarded as noise and are thresholded out. The signal can then be reconstructed without significant loss of information in the signal. The questions that this study attempts to answer are which wavelet families, levels of decomposition, and thresholding techniques best remove the noise in a PCG. The use of averaging in combination with wavelet denoising is also addressed. Possible applications of the Hilbert Transform to heart sound analysis are discussed.
What can 35 years and over 700,000 measurements tell us about noise exposure in the mining industry?
Roberts, Benjamin; Sun, Kan; Neitzel, Richard L.
2017-01-01
Objective To analyze over 700,000 cross-sectional measurements from the Mine Safety and Health Administration (MHSA) and develop statistical models to predict noise exposure for a worker. Design Descriptive statistics were used to summarize the data. Two linear regression models were used to predict noise exposure based on MSHA permissible exposure limit (PEL) and action level (AL) respectively. Two-fold cross validation was used to compare the exposure estimates from the models to actual measurements in the hold out data. The mean difference and t-statistic was calculated for each job title to determine if the model exposure predictions were significantly different from the actual data. Study Sample Measurements were acquired from MSHA through a Freedom of Information Act request. Results From 1979 to 2014 the average noise measurement has decreased. Measurements taken before the implementation of MSHA’s revised noise regulation in 2000 were on average 4.5 dBA higher than after the law came in to effect. Both models produced mean exposure predictions that were less than 1 dBA different compared to the holdout data. Conclusion Overall noise levels in mines have been decreasing. However, this decrease has not been uniform across all mining sectors. The exposure predictions from the model will be useful to help predict hearing loss in workers from the mining industry. PMID:27871188
Technologies for Aircraft Noise Reduction
NASA Technical Reports Server (NTRS)
Huff, Dennis L.
2006-01-01
Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.
The relationship between vessel traffic and noise levels received by killer whales (Orcinus orca)
Houghton, Juliana; Holt, Marla M.; Giles, Deborah A.; Hanson, M. Bradley; Emmons, Candice K.; Hogan, Jeffrey T.; Branch, Trevor A.; VanBlaricom, Glenn R.
2015-01-01
Whale watching has become increasingly popular as an ecotourism activity around the globe and is beneficial for environmental education and local economies. Southern Resident killer whales (Orcinus orca) comprise an endangered population that is frequently observed by a large whale watching fleet in the inland waters of Washington state and British Columbia. One of the factors identified as a risk to recovery for the population is the effect of vessels and associated noise. An examination of the effects of vessels and associated noise on whale behavior utilized novel equipment to address limitations of previous studies. Digital acoustic recording tags (DTAGs) measured the noise levels the tagged whales received while laser positioning systems allowed collection of geo-referenced data for tagged whales and all vessels within 1000 m of the tagged whale. The objective of the current study was to compare vessel data and DTAG recordings to relate vessel traffic to the ambient noise received by tagged whales. Two analyses were conducted, one including all recording intervals, and one that excluded intervals when only the research vessel was present. For all data, significant predictors of noise levels were length (inverse relationship), number of propellers, and vessel speed, but only 15% of the variation in noise was explained by this model. When research-vessel-only intervals were excluded, vessel speed was the only significant predictor of noise levels, and explained 42% of the variation. Simple linear regressions (ignoring covariates) found that average vessel speed and number of propellers were the only significant correlates with noise levels. We conclude that vessel speed is the most important predictor of noise levels received by whales in this study. Thus, measures that reduce vessel speed in the vicinity of killer whales would reduce noise exposure in this population.
The Relationship between Vessel Traffic and Noise Levels Received by Killer Whales (Orcinus orca)
Houghton, Juliana; Holt, Marla M.; Giles, Deborah A.; Hanson, M. Bradley; Emmons, Candice K.; Hogan, Jeffrey T.; Branch, Trevor A.; VanBlaricom, Glenn R.
2015-01-01
Whale watching has become increasingly popular as an ecotourism activity around the globe and is beneficial for environmental education and local economies. Southern Resident killer whales (Orcinus orca) comprise an endangered population that is frequently observed by a large whale watching fleet in the inland waters of Washington state and British Columbia. One of the factors identified as a risk to recovery for the population is the effect of vessels and associated noise. An examination of the effects of vessels and associated noise on whale behavior utilized novel equipment to address limitations of previous studies. Digital acoustic recording tags (DTAGs) measured the noise levels the tagged whales received while laser positioning systems allowed collection of geo-referenced data for tagged whales and all vessels within 1000 m of the tagged whale. The objective of the current study was to compare vessel data and DTAG recordings to relate vessel traffic to the ambient noise received by tagged whales. Two analyses were conducted, one including all recording intervals, and one that excluded intervals when only the research vessel was present. For all data, significant predictors of noise levels were length (inverse relationship), number of propellers, and vessel speed, but only 15% of the variation in noise was explained by this model. When research-vessel-only intervals were excluded, vessel speed was the only significant predictor of noise levels, and explained 42% of the variation. Simple linear regressions (ignoring covariates) found that average vessel speed and number of propellers were the only significant correlates with noise levels. We conclude that vessel speed is the most important predictor of noise levels received by whales in this study. Thus, measures that reduce vessel speed in the vicinity of killer whales would reduce noise exposure in this population. PMID:26629916
The Relationship between Vessel Traffic and Noise Levels Received by Killer Whales (Orcinus orca).
Houghton, Juliana; Holt, Marla M; Giles, Deborah A; Hanson, M Bradley; Emmons, Candice K; Hogan, Jeffrey T; Branch, Trevor A; VanBlaricom, Glenn R
2015-01-01
Whale watching has become increasingly popular as an ecotourism activity around the globe and is beneficial for environmental education and local economies. Southern Resident killer whales (Orcinus orca) comprise an endangered population that is frequently observed by a large whale watching fleet in the inland waters of Washington state and British Columbia. One of the factors identified as a risk to recovery for the population is the effect of vessels and associated noise. An examination of the effects of vessels and associated noise on whale behavior utilized novel equipment to address limitations of previous studies. Digital acoustic recording tags (DTAGs) measured the noise levels the tagged whales received while laser positioning systems allowed collection of geo-referenced data for tagged whales and all vessels within 1000 m of the tagged whale. The objective of the current study was to compare vessel data and DTAG recordings to relate vessel traffic to the ambient noise received by tagged whales. Two analyses were conducted, one including all recording intervals, and one that excluded intervals when only the research vessel was present. For all data, significant predictors of noise levels were length (inverse relationship), number of propellers, and vessel speed, but only 15% of the variation in noise was explained by this model. When research-vessel-only intervals were excluded, vessel speed was the only significant predictor of noise levels, and explained 42% of the variation. Simple linear regressions (ignoring covariates) found that average vessel speed and number of propellers were the only significant correlates with noise levels. We conclude that vessel speed is the most important predictor of noise levels received by whales in this study. Thus, measures that reduce vessel speed in the vicinity of killer whales would reduce noise exposure in this population.
Large Civil Tiltrotor (LCTR2) Interior Noise Predictions due to Turbulent Boundary Layer Excitation
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.
2013-01-01
The Large Civil Tiltrotor (LCTR2) is a conceptual vehicle that has a design goal to transport 90 passengers over a distance of 1800 km at a speed of 556 km/hr. In this study noise predictions were made in the notional LCTR2 cabin due to Cockburn/Robertson and Efimtsov turbulent boundary layer (TBL) excitation models. A narrowband hybrid Finite Element (FE) analysis was performed for the low frequencies (6-141 Hz) and a Statistical Energy Analysis (SEA) was conducted for the high frequency one-third octave bands (125- 8000 Hz). It is shown that the interior sound pressure level distribution in the low frequencies is governed by interactions between individual structural and acoustic modes. The spatially averaged predicted interior sound pressure levels for the low frequency hybrid FE and the high frequency SEA analyses, due to the Efimtsov turbulent boundary layer excitation, were within 1 dB in the common 125 Hz one-third octave band. The averaged interior noise levels for the LCTR2 cabin were predicted lower than the levels in a comparable Bombardier Q400 aircraft cabin during cruise flight due to the higher cruise altitude and lower Mach number of the LCTR2. LCTR2 cabin noise due to TBL excitation during cruise flight was found not unacceptable for crew or passengers when predictions were compared to an acoustic survey on a Q400 aircraft.
Recent and long-term occupational noise exposure and salivary cortisol level.
Stokholm, Zara Ann; Hansen, Åse Marie; Grynderup, Matias Brødsgaard; Bonde, Jens Peter; Christensen, Kent Lodberg; Frederiksen, Thomas Winther; Lund, Søren Peter; Vestergaard, Jesper Medom; Kolstad, Henrik Albert
2014-01-01
Environmental and occupational noise exposure have been related to increased risk of cardiovascular disease, hypothetically mediated by stress-activation of the hypothalamic-pituitary-adrenal (HPA) axis. The objective of this study was to investigate the relation between recent and long-term occupational noise exposure and cortisol level measured off work to assess a possible sustained HPA-axis effect. We included 501 industrial, finance, and service workers who were followed for 24h during work, leisure, and sleep. Ambient occupational noise exposure levels were recorded every 5s by personal dosimeters and we calculated the full-shift LAEq value and estimated duration and cumulative exposure based on their work histories since 1980. For 332 workers who kept a log-book on the use of hearing protection devices (HPD), we subtracted 10 dB from every noise recording obtained during HPD use and estimated the noise level at the ear. Salivary cortisol concentration was measured at 20.00 h, the following day at awakening, and 30 min after awakening on average 5, 14 and 14.5h after finishing work. The mean ambient noise exposure level was 79.9 dB(A) [range: 55.0-98.9] and the mean estimated level at the ear 77.7 dB(A) [range: 55.0-94.2]. In linear and mixed regression models that adjusted for age, sex, current smoking, heavy alcohol consumption, personal income, BMI, leisure-time noise exposure level, time since occupational noise exposure ceased, awakening time, and time of saliva sampling, we observed no statistically significant exposure response relation between recent, or long-term ambient occupational noise exposure level and any cortisol parameter off work. This was neither the case for recent noise level at the ear. To conclude, neither recent nor long-term occupational noise exposure levels were associated with increased cortisol level off work. Thus, our results do not indicate that a sustained activation of the HPA axis, as measured by cortisol, is involved in the causal pathway between occupational noise exposure and cardiovascular disease. Copyright © 2013 Elsevier Ltd. All rights reserved.
Health impact assessment of traffic noise in Madrid (Spain).
Tobías, Aurelio; Recio, Alberto; Díaz, Julio; Linares, Cristina
2015-02-01
The relationship between environmental noise and health has been examined in depth. In view of the sheer number of persons exposed, attention should be focused on road traffic noise. The city of Madrid (Spain) is a densely populated metropolitan area in which 80% of all environmental noise exposure is attributed to traffic. The aim of this study was to quantify avoidable deaths resulting from reducing the impact of equivalent diurnal noise levels (LeqD) on daily cardiovascular and respiratory mortality among people aged ≥65 years in Madrid. A health impact assessment of (average 24h) LeqD and PM2.5 levels was conducted by using previously reported risk estimates of mortality rates for the period 2003-2005: For cardiovascular causes: LeqD 1.048 (1.005, 1.092) and PM2.5 1.041(1.020, 1.062) and for respiratory causes: LeqD 1.060 (1.000, 1.123) and PM2.5 1.030 (1.000, 1.062). The association found between LeqD exposure and mortality for both causes suggests an important health effect. A reduction of 1dB(A) in LeqD implies an avoidable annual mortality of 284 (31, 523) cardiovascular- and 184 (0, 190) respiratory-related deaths in the study population. The magnitude of the health impact is similar to reducing average PM2.5 levels by 10µg/m(3). Regardless of air pollution, exposure to traffic noise should be considered an important environmental factor having a significant impact on health. Copyright © 2014 Elsevier Inc. All rights reserved.
Loud speech over noise: some spectral attributes, with gender differences.
Ternström, Sten; Bohman, Mikael; Södersten, Maria
2006-03-01
In seeking an acoustic description of overloaded voice, simulated environmental noise was used to elicit loud speech. A total of 23 adults, 12 females and 11 males, read six passages of 90 s duration, over realistic noise presented over loudspeakers. The noise was canceled out, exposing the speech signal to analysis. Spectrum balance (SB) was defined as the level of the 2-6 kHz band relative to the 0.1-1 kHz band. SB averaged across many similar vowel segments became less negative with increasing sound pressure level (SPL), as described in the literature, but only at moderate SPL. At high SPL, SB exhibited a personal "saturation" point, above which the high-band level no longer increased faster than the overall SPL, or even stopped increasing altogether, on average at 90.3 dB (@30 cm) for females and 95.5 dB for males. Saturation occurred 6-8 dB below the personal maximum SPL, regardless of gender. The loudest productions were often characterized by a relative increase in low-frequency energy, apparently in a sharpened first formant. This suggests a change of vocal strategy when the high spectrum can rise no further. The progression of SB with SPL was characteristically different for individual subjects.
Impulse Noise Cancellation of Medical Images Using Wavelet Networks and Median Filters
Sadri, Amir Reza; Zekri, Maryam; Sadri, Saeid; Gheissari, Niloofar
2012-01-01
This paper presents a new two-stage approach to impulse noise removal for medical images based on wavelet network (WN). The first step is noise detection, in which the so-called gray-level difference and average background difference are considered as the inputs of a WN. Wavelet Network is used as a preprocessing for the second stage. The second step is removing impulse noise with a median filter. The wavelet network presented here is a fixed one without learning. Experimental results show that our method acts on impulse noise effectively, and at the same time preserves chromaticity and image details very well. PMID:23493998
Current conserving theory at the operator level
NASA Astrophysics Data System (ADS)
Yuan, Jiangtao; Wang, Yin; Wang, Jian
The basic assumption of quantum transport in mesoscopic systems is that the total charge inside the scattering region is zero. This means that the potential deep inside reservoirs is effectively screened and therefore the electric field at interface of scattering region is zero. Thus the current conservation condition can be satisfied automatically which is an important condition in mesoscopic transport. So far the current conserving ac theory is well developed by considering the displacement current which is due to Coulomb interaction if we just focus on the average current. However, the frequency dependent shot noise does not satisfy the conservation condition since we do not consider the current conservation at the operator level. In this work, we formulate a generalized current conserving theory at the operator level using non-equilibrium Green's function theory which could be applied to both average current and frequency dependent shot noise. A displacement operator is derived for the first time so that the frequency dependent correlation of displacement currents could be investigated. Moreover, the equilibrium shot noise is investigated and a generalized fluctuation-dissipation relationship is presented.
MP3 player listening sound pressure levels among 10 to 17 year old students.
Keith, Stephen E; Michaud, David S; Feder, Katya; Haider, Ifaz; Marro, Leonora; Thompson, Emma; Marcoux, Andre M
2011-11-01
Using a manikin, equivalent free-field sound pressure level measurements were made from the portable digital audio players of 219 subjects, aged 10 to 17 years (93 males) at their typical and "worst-case" volume levels. Measurements were made in different classrooms with background sound pressure levels between 40 and 52 dBA. After correction for the transfer function of the ear, the median equivalent free field sound pressure levels and interquartile ranges (IQR) at typical and worst-case volume settings were 68 dBA (IQR = 15) and 76 dBA (IQR = 19), respectively. Self-reported mean daily use ranged from 0.014 to 12 h. When typical sound pressure levels were considered in combination with the average daily duration of use, the median noise exposure level, Lex, was 56 dBA (IQR = 18) and 3.2% of subjects were estimated to exceed the most protective occupational noise exposure level limit in Canada, i.e., 85 dBA Lex. Under worst-case listening conditions, 77.6% of the sample was estimated to listen to their device at combinations of sound pressure levels and average daily durations for which there is no known risk of permanent noise-induced hearing loss, i.e., ≤ 75 dBA Lex. Sources and magnitudes of measurement uncertainties are also discussed.
NASA Astrophysics Data System (ADS)
Mohammad, Yasir K.; Pavlova, Olga N.; Pavlov, Alexey N.
2016-04-01
We discuss the problem of quantifying chaotic dynamics at the input of the "integrate-and-fire" (IF) model from the output sequences of interspike intervals (ISIs) for the case when the fluctuating threshold level leads to the appearance of noise in ISI series. We propose a way to detect an ability of computing dynamical characteristics of the input dynamics and the level of noise in the output point processes. The proposed approach is based on the dependence of the largest Lyapunov exponent from the maximal orientation error used at the estimation of the averaged rate of divergence of nearby phase trajectories.
Traffic Noise Ground Attenuation Algorithm Evaluation
NASA Astrophysics Data System (ADS)
Herman, Lloyd Allen
The Federal Highway Administration traffic noise prediction program, STAMINA 2.0, was evaluated for its accuracy. In addition, the ground attenuation algorithm used in the Ontario ORNAMENT method was evaluated to determine its potential to improve these predictions. Field measurements of sound levels were made at 41 sites on I-440 in Nashville, Tennessee in order to both study noise barrier effectiveness and to evaluate STAMINA 2.0 and the performance of the ORNAMENT ground attenuation algorithm. The measurement sites, which contain large variations in terrain, included several cross sections. Further, all sites contain some type of barrier, natural or constructed, which could more fully expose the strength and weaknesses of the ground attenuation algorithms. The noise barrier evaluation was accomplished in accordance with American National Standard Methods for Determination of Insertion Loss of Outdoor Noise Barriers which resulted in an evaluation of this standard. The entire 7.2 mile length of I-440 was modeled using STAMINA 2.0. A multiple run procedure was developed to emulate the results that would be obtained if the ORNAMENT algorithm was incorporated into STAMINA 2.0. Finally, the predicted noise levels based on STAMINA 2.0 and STAMINA with the ORNAMENT ground attenuation algorithm were compared with each other and with the field measurements. It was found that STAMINA 2.0 overpredicted noise levels by an average of over 2 dB for the receivers on I-440, whereas, the STAMINA with ORNAMENT ground attenuation algorithm overpredicted noise levels by an average of less than 0.5 dB. The mean errors for the two predictions were found to be statistically different from each other, and the mean error for the prediction with the ORNAMENT ground attenuation algorithm was not found to be statistically different from zero. The STAMINA 2.0 program predicts little, if any, ground attenuation for receivers at typical first-row distances from highways where noise barriers are used. The ORNAMENT ground attenuation algorithm, which recognizes and better compensates for the presence of obstacles in the propagation path of a sound wave, predicted significant amounts of ground attenuation for most sites.
An experimental study on the noise correlation properties of CBCT projection data
NASA Astrophysics Data System (ADS)
Zhang, Hua; Ouyang, Luo; Ma, Jianhua; Huang, Jing; Chen, Wufan; Wang, Jing
2014-03-01
In this study, we systematically investigated the noise correlation properties among detector bins of CBCT projection data by analyzing repeated projection measurements. The measurements were performed on a TrueBeam on-board CBCT imaging system with a 4030CB flat panel detector. An anthropomorphic male pelvis phantom was used to acquire 500 repeated projection data at six different dose levels from 0.1 mAs to 1.6 mAs per projection at three fixed angles. To minimize the influence of the lag effect, lag correction was performed on the consecutively acquired projection data. The noise correlation coefficient between detector bin pairs was calculated from the corrected projection data. The noise correlation among CBCT projection data was then incorporated into the covariance matrix of the penalized weighted least-squares (PWLS) criterion for noise reduction of low-dose CBCT. The analyses of the repeated measurements show that noise correlation coefficients are non-zero between the nearest neighboring bins of CBCT projection data. The average noise correlation coefficients for the first- and second- order neighbors are 0.20 and 0.06, respectively. The noise correlation coefficients are independent of the dose level. Reconstruction of the pelvis phantom shows that the PWLS criterion with consideration of noise correlation results in a lower noise level as compared to the PWLS criterion without considering the noise correlation at the matched resolution.
Noise level measurement, a new method to evaluate effectiveness of sedation in pediatric dentistry.
Sabouri, A Sassan; Firoozabadi, Farshid; Carlin, Drew; Creighton, Paul; Raczka, Michelle; Joshi, Prashant; Heard, Christopher
2014-12-01
Pediatric dentists perform moderate sedation frequently to facilitate dental treatment in uncooperative children. Assessing the depth and quality of sedation is an important factor in the clinical utilization of moderate sedation. We aimed to determine if the level of noise, created by the children who are undergoing moderate sedation during dental procedures, could be used as a nonsubjective measurement of the depth of sedation and compare it to the Ohio State Behavior Rating Score (OSBRS). Following Institutional Review Board approval and after receiving informed consent, we studied 51 children with a mean age of 4.2 years and average weight of 18.5 kg, who were undergoing restorative or extractive dental procedures, requiring moderate sedation. Sedation efficacy was assessed using OSBRS at several stages of the procedure. The noise level was measured by using a NoisePRO logging device to record the noise level at a rate of every second throughout the procedure. The depth of sedation assessed by OSBRS during the operative procedure was significantly correlated with noise level. The act of administering the local anesthesia and the operative procedure itself were two phases of the encounter that were significantly associated with higher OSBRS as well as noise levels. Measurement of noise level can be used as an effective guide to quantify the depth of sedation at different stages of the dental procedure. It is a nonsubjective and continuous measurement, which could be useful in clinical practice for the administration of moderate sedation during dental procedures. By using noise level analysis we are able to determine successful, poor, and failed sedation outcome. Copyright © 2014. Published by Elsevier B.V.
Synchronous neural networks of nonlinear threshold elements with hysteresis.
Wang, L; Ross, J
1990-02-01
We use Hoffmann's suggestion [Hoffmann, G. W. (1986) J. Theor. Biol. 122, 33-67] of hysteresis in a single neuron level and determine its consequences in a synchronous network made of such neurons. We show that the overall retrieval ability in the presence of noise and the memory capacity of the network in the present model are better than in conventional models without such hysteresis. Second-order interaction further improves the retrieval ability of the network and causes hysteresis in the retrieval-noise curve for any arbitrary width of the bistable region. The convergence rate is increased by the hysteresis at high noise levels but is reduced by the hysteresis at low noise levels. Explicit formulae are given for calculations of average final convergence and noise threshold as functions of the width of the bistable region. There is neurophysiological evidence for hysteresis in single neurons, and we propose optical implementations of the present model by using ZnSe interference filters to test the predictions of the theory.
Jiao, J; Gu, G Z; Chen, G S; Li, Y H; Zhang, H L; Yang, Q Y; Xu, X R; Zhou, W H; Wu, H; He, L H; Zheng, Y X; Yu, S F
2017-01-06
Objective: To explore the relationship between mitochondrial 12 S rRNA gene variation, tRNA gene variation and cytochrome oxidase Ⅱ gene point mutations and the risk of noise-induced hearing loss (NIHL). Methods: A nested case-control study was performed that followed a cohort of 7 445 noise-exposed workers in a steel factory in Henan province, China, from January 1, 2006 to December 31, 2015. Subjects whose average hearing threshold was more than 40 dB(A) in high frequency were defined as the case group, and subjects whose average hearing threshold was less than 35 dB(A) in high frequency and less than 25 dB (A) in speech frequency were defined as the control group. Subjects was recruited into the case group ( n =286) and the control group ( n= 286) according to gender, age, job category and time of exposure to noise, and a 1∶1 case-control study was carried out. We genotyped eight single nucleotide polymorphisms in the mitochondrial 12 S rRNA gene, the mitochondrial tRNA gene and the mitochondrial cytochrome oxidase Ⅱ gene using SNPscan high-throughput genotyping technology from the recruited subjects. The relationship between polymorphic sites and NIHL, adjusted for covariates, was analyzed using conditional logistic regression analysis, as were the subgroup data. Results: The average age of the recruited subjects was (40.3±8.1) years and the length of service exposure to noise was (18.6±8.9) years. The range of noise exposed levels and cumulative noise exposure (CNE) was 80.1- 93.4 dB (A) and 86.8- 107.9 dB (A) · year, respectively. For workers exposed to noise at a CNE level<98 dB (A) · year, smokers showed an increased risk of NIHL of 1.88 (1.16-3.05) compared with non-smokers; for workers exposed to noise at a CNE level ≥98 dB(A) · year, smokers showed an increased risk of NIHL of 2.53 (1.49- 4.30) compared with non-smokers. For workers exposed to noise at a CNE level<98 dB (A) · year, the results of univariate analysis and multifactor analysis, adjusted by smoking and CNE, suggested that the risk of NIHL in workers exposed to noise carrying the GG genotype (G827A) was lower than that of NIHL workers exposed to noise carrying the AA genotype (G827A) [ OR (95% CI ) were 0.18 (0.04- 0.82) and 0.19 (0.04- 0.88), respectively]. Conclusion: Smoking increased the risk of NIHL in the present study. For workers subjected to a CNE<98 dB(A)·year, the mitochondrial genetic variant G827A was found to be significantly associated with the risk of NIHL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nedic, Vladimir, E-mail: vnedic@kg.ac.rs; Despotovic, Danijela, E-mail: ddespotovic@kg.ac.rs; Cvetanovic, Slobodan, E-mail: slobodan.cvetanovic@eknfak.ni.ac.rs
2014-11-15
Traffic is the main source of noise in urban environments and significantly affects human mental and physical health and labor productivity. Therefore it is very important to model the noise produced by various vehicles. Techniques for traffic noise prediction are mainly based on regression analysis, which generally is not good enough to describe the trends of noise. In this paper the application of artificial neural networks (ANNs) for the prediction of traffic noise is presented. As input variables of the neural network, the proposed structure of the traffic flow and the average speed of the traffic flow are chosen. Themore » output variable of the network is the equivalent noise level in the given time period L{sub eq}. Based on these parameters, the network is modeled, trained and tested through a comparative analysis of the calculated values and measured levels of traffic noise using the originally developed user friendly software package. It is shown that the artificial neural networks can be a useful tool for the prediction of noise with sufficient accuracy. In addition, the measured values were also used to calculate equivalent noise level by means of classical methods, and comparative analysis is given. The results clearly show that ANN approach is superior in traffic noise level prediction to any other statistical method. - Highlights: • We proposed an ANN model for prediction of traffic noise. • We developed originally designed user friendly software package. • The results are compared with classical statistical methods. • The results are much better predictive capabilities of ANN model.« less
Correlated errors in geodetic time series: Implications for time-dependent deformation
Langbein, J.; Johnson, H.
1997-01-01
Analysis of frequent trilateration observations from the two-color electronic distance measuring networks in California demonstrate that the noise power spectra are dominated by white noise at higher frequencies and power law behavior at lower frequencies. In contrast, Earth scientists typically have assumed that only white noise is present in a geodetic time series, since a combination of infrequent measurements and low precision usually preclude identifying the time-correlated signature in such data. After removing a linear trend from the two-color data, it becomes evident that there are primarily two recognizable types of time-correlated noise present in the residuals. The first type is a seasonal variation in displacement which is probably a result of measuring to shallow surface monuments installed in clayey soil which responds to seasonally occurring rainfall; this noise is significant only for a small fraction of the sites analyzed. The second type of correlated noise becomes evident only after spectral analysis of line length changes and shows a functional relation at long periods between power and frequency of and where f is frequency and ?? ??? 2. With ?? = 2, this type of correlated noise is termed random-walk noise, and its source is mainly thought to be small random motions of geodetic monuments with respect to the Earth's crust, though other sources are possible. Because the line length changes in the two-color networks are measured at irregular intervals, power spectral techniques cannot reliably estimate the level of I//" noise. Rather, we also use here a maximum likelihood estimation technique which assumes that there are only two sources of noise in the residual time series (white noise and randomwalk noise) and estimates the amount of each. From this analysis we find that the random-walk noise level averages about 1.3 mm/Vyr and that our estimates of the white noise component confirm theoretical limitations of the measurement technique. In addition, the seasonal noise can be as large as 3 mm in amplitude but typically is less than 0.5 mm. Because of the presence of random-walk noise in these time series, modeling and interpretation of the geodetic data must account for this source of error. By way of example we show that estimating the time-varying strain tensor (a form of spatial averaging) from geodetic data having both random-walk and white noise error components results in seemingly significant variations in the rate of strain accumulation; spatial averaging does reduce the size of both noise components but not their relative influence on the resulting strain accumulation model. Copyright 1997 by the American Geophysical Union.
The influence of jet engine noise on hearing of technical staff.
Konopka, Wiesław; Pawlaczyk-Luszczyńska, Małgorzata; Śliwińska-Kowalska, Mariola
2014-01-01
Due to high sound pressure levels (SPLs), noise produced by jet planes may be harmful to hearing of people working in their proximity. The aim of this study was to assess the effects of exposure to jet engine noise on technical staff hearing. The study comprised 60 men, aged 24-50 years, employed in army as technical staff and exposed to jet engine noise for 6-20 years. The control group were 50 non-noise exposed males, aged 25-51 years. Exposure to noise emitted by jet engines was evaluated. Pure-tone audiometry (PTA) and distortion product otoacoustic emissions (DPOAE) were recorded in both groups. Jet engines emitted broadband noise with spectrum dominated by components in the frequency range 315-6300 Hz (1/3-octave bands). Maximum A-weighted SPL during tests reached values of approx. 120-130 dB. Consequently, engine-servicing personnel (even in the case of a single engine test) was exposed to noise (at A-weighted daily noise exposure level above 95 dB) exceeding permissible levels. Averaged audiometric hearing threshold levels of technical staff were higher (≤ 17 dB HL, p < 0.001) than in the control group. Similarly, the DPOAE amplitude was lower (≤ 17 dB SPL, p < 0.01) in the noise-exposed subjects compared to the non-exposed ones. Significant reduction of DPOAE levels was mainly noted for high frequencies (3-6 kHz). Despite the usage of hearing protection devices, both PTA and DPOAE consistently showed poorer hearing in engine-servicing personnel vs. control group.
Green, Allyson; Jones, Andrew D.; Sun, Kan; Neitzel, Richard L.
2015-01-01
We performed a cross-sectional pilot study on salivary cortisol, heart rate, and personal noise exposures in a small-scale gold mining village in northeastern Ghana in 2013. Cortisol level changes between morning and evening among participants showed a relatively low decline in cortisol through the day (−1.44 ± 4.27 nmol/L, n = 18), a pattern consistent with chronic stress. A multiple linear regression, adjusting for age, sex, smoking status, and time between samples indicated a significant increase of 0.25 nmol/L cortisol from afternoon to evening per 1 dBA increase in equivalent continuous noise exposure (Leq) over that period (95% CI: 0.08–0.42, Adj R2 = 0.502, n = 17). A mixed effect linear regression model adjusting for age and sex indicated a significant increase of 0.29 heart beats per minute (BPM) for every 1 dB increase in Leq. Using standard deviations (SDs) as measures of variation, and adjusting for age and sex over the sampling period, we found that a 1 dBA increase in noise variation over time (Leq SD) was associated with a 0.5 BPM increase in heart rate SD (95% CI: 0.04–−0.9, Adj. R2 = 0.229, n = 16). Noise levels were consistently high, with 24-hour average Leq exposures ranging from 56.9 to 92.0 dBA, with a mean daily Leq of 82.2 ± 7.3 dBA (mean monitoring duration 22.1 ± 1.9 hours, n = 22). Ninety-five percent of participants had 24-hour average Leq noise levels over the 70 dBA World health Organization (WHO) guideline level for prevention of hearing loss. These findings suggest that small-scale mining communities may face multiple, potentially additive health risks that are not yet well documented, including hearing loss and cardiovascular effects of stress and noise. PMID:26308019
Green, Allyson; Jones, Andrew D; Sun, Kan; Neitzel, Richard L
2015-08-21
We performed a cross-sectional pilot study on salivary cortisol, heart rate, and personal noise exposures in a small-scale gold mining village in northeastern Ghana in 2013. Cortisol level changes between morning and evening among participants showed a relatively low decline in cortisol through the day (-1.44 ± 4.27 nmol/L, n = 18), a pattern consistent with chronic stress. A multiple linear regression, adjusting for age, sex, smoking status, and time between samples indicated a significant increase of 0.25 nmol/L cortisol from afternoon to evening per 1 dBA increase in equivalent continuous noise exposure (Leq) over that period (95% CI: 0.08-0.42, Adj R(2) = 0.502, n = 17). A mixed effect linear regression model adjusting for age and sex indicated a significant increase of 0.29 heart beats per minute (BPM) for every 1 dB increase in Leq. Using standard deviations (SDs) as measures of variation, and adjusting for age and sex over the sampling period, we found that a 1 dBA increase in noise variation over time (Leq SD) was associated with a 0.5 BPM increase in heart rate SD (95% CI: 0.04--0.9, Adj. R(2) = 0.229, n = 16). Noise levels were consistently high, with 24-hour average Leq exposures ranging from 56.9 to 92.0 dBA, with a mean daily Leq of 82.2 ± 7.3 dBA (mean monitoring duration 22.1 ± 1.9 hours, n = 22). Ninety-five percent of participants had 24-hour average Leq noise levels over the 70 dBA World health Organization (WHO) guideline level for prevention of hearing loss. These findings suggest that small-scale mining communities may face multiple, potentially additive health risks that are not yet well documented, including hearing loss and cardiovascular effects of stress and noise.
Mapping underwater sound noise and assessing its sources by using a self-organizing maps method.
Rako, Nikolina; Vilibić, Ivica; Mihanović, Hrvoje
2013-03-01
This study aims to provide an objective mapping of the underwater noise and its sources over an Adriatic coastal marine habitat by applying the self-organizing maps (SOM) method. Systematic sampling of sea ambient noise (SAN) was carried out at ten predefined acoustic stations between 2007 and 2009. Analyses of noise levels were performed for 1/3 octave band standard centered frequencies in terms of instantaneous sound pressure levels averaged over 300 s to calculate the equivalent continuous sound pressure levels. Data on vessels' presence, type, and distance from the monitoring stations were also collected at each acoustic station during the acoustic sampling. Altogether 69 noise surveys were introduced to the SOM predefined 2 × 2 array. The overall results of the analysis distinguished two dominant underwater soundscapes, associating them mainly to the seasonal changes in the nautical tourism and fishing activities within the study area and to the wind and wave action. The analysis identified recreational vessels as the dominant anthropogenic source of underwater noise, particularly during the tourist season. The method demonstrated to be an efficient tool in predicting the SAN levels based on the vessel distribution, indicating also the possibility of its wider implication for marine conservation.
NASA Astrophysics Data System (ADS)
He, Dianning; Zamora, Marta; Oto, Aytekin; Karczmar, Gregory S.; Fan, Xiaobing
2017-09-01
Differences between region-of-interest (ROI) and pixel-by-pixel analysis of dynamic contrast enhanced (DCE) MRI data were investigated in this study with computer simulations and pre-clinical experiments. ROIs were simulated with 10, 50, 100, 200, 400, and 800 different pixels. For each pixel, a contrast agent concentration as a function of time, C(t), was calculated using the Tofts DCE-MRI model with randomly generated physiological parameters (K trans and v e) and the Parker population arterial input function. The average C(t) for each ROI was calculated and then K trans and v e for the ROI was extracted. The simulations were run 100 times for each ROI with new K trans and v e generated. In addition, white Gaussian noise was added to C(t) with 3, 6, and 12 dB signal-to-noise ratios to each C(t). For pre-clinical experiments, Copenhagen rats (n = 6) with implanted prostate tumors in the hind limb were used in this study. The DCE-MRI data were acquired with a temporal resolution of ~5 s in a 4.7 T animal scanner, before, during, and after a bolus injection (<5 s) of Gd-DTPA for a total imaging duration of ~10 min. K trans and v e were calculated in two ways: (i) by fitting C(t) for each pixel, and then averaging the pixel values over the entire ROI, and (ii) by averaging C(t) over the entire ROI, and then fitting averaged C(t) to extract K trans and v e. The simulation results showed that in heterogeneous ROIs, the pixel-by-pixel averaged K trans was ~25% to ~50% larger (p < 0.01) than the ROI-averaged K trans. At higher noise levels, the pixel-averaged K trans was greater than the ‘true’ K trans, but the ROI-averaged K trans was lower than the ‘true’ K trans. The ROI-averaged K trans was closer to the true K trans than pixel-averaged K trans for high noise levels. In pre-clinical experiments, the pixel-by-pixel averaged K trans was ~15% larger than the ROI-averaged K trans. Overall, with the Tofts model, the extracted physiological parameters from the pixel-by-pixel averages were larger than the ROI averages. These differences were dependent on the heterogeneity of the ROI.
Sea-Level Trend Uncertainty With Pacific Climatic Variability and Temporally-Correlated Noise
NASA Astrophysics Data System (ADS)
Royston, Sam; Watson, Christopher S.; Legrésy, Benoît; King, Matt A.; Church, John A.; Bos, Machiel S.
2018-03-01
Recent studies have identified climatic drivers of the east-west see-saw of Pacific Ocean satellite altimetry era sea level trends and a number of sea-level trend and acceleration assessments attempt to account for this. We investigate the effect of Pacific climate variability, together with temporally-correlated noise, on linear trend error estimates and determine new time-of-emergence (ToE) estimates across the Indian and Pacific Oceans. Sea-level trend studies often advocate the use of auto-regressive (AR) noise models to adequately assess formal uncertainties, yet sea level often exhibits colored but non-AR(1) noise. Standard error estimates are over- or under-estimated by an AR(1) model for much of the Indo-Pacific sea level. Allowing for PDO and ENSO variability in the trend estimate only reduces standard errors across the tropics and we find noise characteristics are largely unaffected. Of importance for trend and acceleration detection studies, formal error estimates remain on average up to 1.6 times those from an AR(1) model for long-duration tide gauge data. There is an even chance that the observed trend from the satellite altimetry era exceeds the noise in patches of the tropical Pacific and Indian Oceans and the south-west and north-east Pacific gyres. By including climate indices in the trend analysis, the time it takes for the observed linear sea-level trend to emerge from the noise reduces by up to 2 decades.
Increased prevalence of hypertension in a population exposed to aircraft noise
Rosenlund, M; Berglind, N; Pershagen, G; Jarup, L; Bluhm, G
2001-01-01
OBJECTIVES—To investigate whether there is a relation between residential exposure to aircraft noise and hypertension. METHODS—The study population comprised two random samples of subjects aged 19-80 years, one including 266 residents in the vicinity of Stockholm Arlanda airport, and another comprising 2693 inhabitants in other parts of Stockholm county. The subjects were classified according to the time weighted equal energy and maximum aircraft noise levels at their residence. A questionnaire provided information on individual characteristics including history of hypertension. RESULTS—The prevalence odds ratio for hypertension adjusted for age, sex, smoking, and education was 1.6 (95% confidence interval (95% CI) 1.0 to 2.5) among those with energy averaged aircraft noise levels exceeding 55 dBA, and 1.8 (95% CI 1.1 to 2.8) among those with maximum aircraft noise levels exceeding 72 dBA. An exposure-response relation was suggested for both exposure measures. The exposure to aircraft noise seemed particularly important for older subjects and for those not reporting impaired hearing ability. CONCLUSIONS—Community exposure to aircraft noise may be associated with hypertension. PMID:11706142
A digital boxcar integrator for IMS spectra
NASA Technical Reports Server (NTRS)
Cohen, Martin J.; Stimac, Robert M.; Wernlund, Roger F.; Parker, Donald C.
1995-01-01
When trying to detect or quantify a signal at or near the limit of detectability, it is invariably embeded in the noise. This statement is true for nearly all detectors of any physical phenomena and the limit of detectability, hopefully, occurs at very low signal-to-noise levels. This is particularly true of IMS (Ion Mobility Spectrometers) spectra due to the low vapor pressure of several chemical compounds of great interest and the small currents associated with the ionic detection process. Gated Integrators and Boxcar Integrators or Averagers are designed to recover fast, repetitive analog signals. In a typical application, a time 'Gate' or 'Window' is generated, characterized by a set delay from a trigger or gate pulse and a certain width. A Gated Integrator amplifies and integrates the signal that is present during the time the gate is open, ignoring noise and interference that may be present at other times. Boxcar Integration refers to the practice of averaging the output of the Gated Integrator over many sweeps of the detector. Since any signal present during the gate will add linearly, while noise will add in a 'random walk' fashion as the square root of the number of sweeps, averaging N sweeps will improve the 'Signal-to-Noise Ratio' by a factor of the square root of N.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
..., as part of its continuing effort to reduce paperwork and respondent (i.e., employer) burden, conducts... (the OSH Act) (29 U.S.C. 651 et seq.) authorizes information collection by employers as necessary or... scale (dBA) for an 8-hour time-weighted average (TWA) (action level); take action to reduce noise...
14 CFR Appendix H to Part 36 - Noise Requirements For Helicopters Under Subpart H
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Gross dimensions of aircraft and location of engines. (iii) Aircraft gross weight for each test run. (iv... arithmetic average of the corrected noise measurements for all valid test runs at the takeoff, level flyovers... limit for all valid test runs under section H36.111(d) of this appendix applies separately to the EPNdB...
14 CFR Appendix H to Part 36 - Noise Requirements For Helicopters Under Subpart H
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Gross dimensions of aircraft and location of engines. (iii) Aircraft gross weight for each test run. (iv... arithmetic average of the corrected noise measurements for all valid test runs at the takeoff, level flyovers... limit for all valid test runs under section H36.111(d) of this appendix applies separately to the EPNdB...
14 CFR Appendix H to Part 36 - Noise Requirements For Helicopters Under Subpart H
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Gross dimensions of aircraft and location of engines. (iii) Aircraft gross weight for each test run. (iv... arithmetic average of the corrected noise measurements for all valid test runs at the takeoff, level flyovers... limit for all valid test runs under section H36.111(d) of this appendix applies separately to the EPNdB...
14 CFR Appendix H to Part 36 - Noise Requirements For Helicopters Under Subpart H
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Gross dimensions of aircraft and location of engines. (iii) Aircraft gross weight for each test run. (iv... arithmetic average of the corrected noise measurements for all valid test runs at the takeoff, level flyovers... limit for all valid test runs under section H36.111(d) of this appendix applies separately to the EPNdB...
Bodin, Theo; Björk, Jonas; Ardö, Jonas; Albin, Maria
2015-01-01
Background: Access to a quiet side in one’s dwelling is thought to compensate for higher noise levels at the most exposed façade. It has also been indicated that noise from combined traffic sources causes more noise annoyance than equal average levels from either road traffic or railway noise separately. Methods: 2612 persons in Malmö, Sweden, answered to a residential environment survey including questions on outdoor environment, noise sensitivity, noise annoyance, sleep quality and concentration problems. Road traffic and railway noise was modeled using Geographic Information System. Results: Access to a quiet side, i.e., at least one window facing yard, water or green space, was associated with reduced risk of annoyance OR (95%CI) 0.47 (0.38–0.59), and concentration problems 0.76 (0.61–0.95). Bedroom window facing the same environment was associated to reduced risk of reporting of poor sleep quality 0.78 (0.64–1.00). Railway noise was associated with reduced risk of annoyance below 55 dB(A) but not at higher levels of exposure. Conclusions: Having a window facing a yard, water or green space was associated to a substantially reduced risk of noise annoyance and concentration problems. If this window was the bedroom window, sleeping problems were less likely. PMID:25642690
Cortical processing of dynamic sound envelope transitions.
Zhou, Yi; Wang, Xiaoqin
2010-12-08
Slow envelope fluctuations in the range of 2-20 Hz provide important segmental cues for processing communication sounds. For a successful segmentation, a neural processor must capture envelope features associated with the rise and fall of signal energy, a process that is often challenged by the interference of background noise. This study investigated the neural representations of slowly varying envelopes in quiet and in background noise in the primary auditory cortex (A1) of awake marmoset monkeys. We characterized envelope features based on the local average and rate of change of sound level in envelope waveforms and identified envelope features to which neurons were selective by reverse correlation. Our results showed that envelope feature selectivity of A1 neurons was correlated with the degree of nonmonotonicity in their static rate-level functions. Nonmonotonic neurons exhibited greater feature selectivity than monotonic neurons in quiet and in background noise. The diverse envelope feature selectivity decreased spike-timing correlation among A1 neurons in response to the same envelope waveforms. As a result, the variability, but not the average, of the ensemble responses of A1 neurons represented more faithfully the dynamic transitions in low-frequency sound envelopes both in quiet and in background noise.
Environmental Noise Pollution in the United States: Developing an Effective Public Health Response
Hammer, Monica S.; Swinburn, Tracy K.
2013-01-01
Background: Tens of millions of Americans suffer from a range of adverse health outcomes due to noise exposure, including heart disease and hearing loss. Reducing environmental noise pollution is achievable and consistent with national prevention goals, yet there is no national plan to reduce environmental noise pollution. Objectives: We aimed to describe some of the most serious health effects associated with noise, summarize exposures from several highly prevalent noise sources based on published estimates as well as extrapolations made using these estimates, and lay out proven mechanisms and strategies to reduce noise by incorporating scientific insight and technological innovations into existing public health infrastructure. Discussion: We estimated that 104 million individuals had annual LEQ(24) levels > 70 dBA (equivalent to a continuous average exposure level of >70 dBA over 24 hr) in 2013 and were at risk of noise-induced hearing loss. Tens of millions more may be at risk of heart disease, and other noise-related health effects. Direct regulation, altering the informational environment, and altering the built environment are the least costly, most logistically feasible, and most effective noise reduction interventions. Conclusion: Significant public health benefit can be achieved by integrating interventions that reduce environmental noise levels and exposures into the federal public health agenda. Citation: Hammer MS, Swinburn TK, Neitzel RL. 2014. Environmental noise pollution in the United States: developing an effective public health response. Environ Health Perspect 122:115–119; http://dx.doi.org/10.1289/ehp.1307272 PMID:24311120
Exposure of highway maintenance workers to fine particulate matter and noise.
Meier, Reto; Cascio, Wayne E; Danuser, Brigitta; Riediker, Michael
2013-10-01
In this study, we assessed the mixed exposure of highway maintenance workers to airborne particles, noise, and gaseous co-pollutants. The aim was to provide a better understanding of the workers' exposure to facilitate the evaluation of short-term effects on cardiovascular health endpoints. To quantify the workers' exposure, we monitored 18 subjects during 50 non-consecutive work shifts. Exposure assessment was based on personal and work site measurements and included fine particulate matter (PM2.5), particle number concentration (PNC), noise (Leq), and the gaseous co-pollutants: carbon monoxide, nitrogen dioxide, and ozone. Mean work shift PM2.5 concentrations (gravimetric measurements) ranged from 20.3 to 321 μg m(-3) (mean 62 μg m(-3)) and PNC were between 1.6×10(4) and 4.1×10(5) particles cm(-3) (8.9×10(4) particles cm(-3)). Noise levels were generally high with Leq over work shifts from 73.3 to 96.0 dB(A); the averaged Leq over all work shifts was 87.2 dB(A). The highest exposure to fine and ultrafine particles was measured during grass mowing and lumbering when motorized brush cutters and chain saws were used. Highest noise levels, caused by pneumatic hammers, were measured during paving and guardrail repair. We found moderate Spearman correlations between PNC and PM2.5 (r = 0.56); PNC, PM2.5, and CO (r = 0.60 and r = 0.50) as well as PNC and noise (r = 0.50). Variability and correlation of parameters were influenced by work activities that included equipment causing combined air pollutant and noise emissions (e.g. brush cutters and chain saws). We conclude that highway maintenance workers are frequently exposed to elevated airborne particle and noise levels compared with the average population. This elevated exposure is a consequence of the permanent proximity to highway traffic with additional peak exposures caused by emissions of the work-related equipment.
Calcutta metro: is it safe from noise pollution hazards?
Bhattacharya, S K; Bandyopadhyay, P; Kashyap, S K
1996-01-01
A modest assessment of noise was made in Calcutta Metro, India's first ever underground tube rail system, to examine if the range of noise levels present could endanger the hearing sensitivity of workers for the Metro. Sound measuring instruments of a sound level meter, an octave band analyzer, and a sound level calibrator were used for measuring the sound pressure levels in platforms of three stations: Esplanade, Kalighat and Tollygunge. The results indicated that the averaged A-weighted SPLs in these stations were in the range of 84-87 dBA. In the coaches of the moving train the Leq values ranged 92-99 dBA and LNP 105-117 dBA, all exceeding the safe limit of day time noise exposure of 55 dBA and 85 dBA of ACGIH. The SPLs at 4,000 Hz in the coaches were also in excess of safe exposure limit of 79 dB. The findings thus posed a potential threat to the workers.
Noise-induced hearing loss in workers exposed to urban stressors.
Caciari, Tiziana; Rosati, Maria Valeria; Casale, Teodorico; Loreti, Beatrice; Sancini, Angela; Riservato, Roberto; Nieto, Hector A; Frati, Paola; Tomei, Francesco; Tomei, Gianfranco
2013-10-01
The technological and industrial progress together with the intensification of vehicular traffic and the adoption of new social habits are the cause of an increasing noise pollution with possible negative effects on the auditory system. This study aims to assess the noise exposure levels and the effects on the hearing threshold in outdoor and indoor male workers of a big Italian city. The study was carried out on 357 outdoor male workers, exposed to urban noise and on a control group of 357 unexposed indoor workers. Noise levels were measured in 30 outdoor and indoor areas. The subjects underwent tonal liminal audiometry in order to determine the value of their hearing threshold. During their working activity, outdoor and indoor workers are exposed to different noise levels LEX<80 dB(A). At mid-low frequencies (250-2000 Hz), the results show significant differences in the average values of hearing threshold between the two groups in both ears and for all age classes; there are no significant differences between the two groups at higher frequencies. The outdoor noise levels measured are not usually ototoxic and the hearing loss at mid-low frequencies is not characteristic of the exposure to industrial noise. For these reasons the Authors hypothesize that the results may be due to the combined effect of the exposure to noise and to ototoxic air pollutants. The impairment of speech frequencies is disabling and involves the risk of missed forensic recognition. Copyright © 2013 Elsevier B.V. All rights reserved.
[Association between serum magnesium ion level and risk of noise-induced hearing loss].
Jiao, J; Gu, G Z; Chen, G S; Zheng, Y X; Zhang, H L; Geng, Q; Cheng, Y B; Yu, S F
2016-12-20
Objective: To investigate the association between serum magnesium ion level and risk of noise-induced hearing loss (NIHL) . Methods: Acohort study was performed for 7 445 workers exposed to noise in the steelmaking and steel rolling workshops of an iron and steel enterprise in Henan Province, China. The follow-up time was from January 1, 2006 to December 31, 2015. The workers with a binaural average high-frequency hearing threshold of ≥40 dB (HL) were enrolled as case group, and those with a binaural average high-frequency hearing threshold of <35 dB (HL) and a binaural average speech frequency of ≤25 dB (HL) were enrolled as control group. After being matched for age, working years of noise exposure, sex, and type of work at a ratio of 1∶1, 187 workers each were enrolled in the case group and the control group. Flame atomic absorption spectrometry was used to measure the serum magnesium ionlevel. Aconditional logistic regression analysis was performed to investigate the association of serum magnesium ion level, body mass index, cumulative noise exposure (CNE) , smoking, drinking, hypertension, and physical exercise with NIHL, as well as the association between serum magnesium ion level and risk of NIHL after the adjustment for covariants. Results: There was no significant difference in the serum magnesium ion level between the case group and the control group (24.63±7.92 mg/m(3) vs 24.91±7.33 mg/m(3), P >0.05) . Smoking ( OR =1.687, 95% CI 1.090-2.613) was a risk factor for NIHL, and physical exercise ( OR =0.509, 95% CI 0.325-0.796) reduced the risk of NIHL. In the workers with CNE>98 dB (A) ·year, the risk of NIHL in the workers with higher CNE was 1.305 times (95% CI 1.051-1.620) that in those with lower CNE. After the adjustment for CNE, smoking, and physical exercise, there was no significant difference in the influence of serum magnesium ion level on the risk of NIHL between the two groups ( P >0.05) . Conclusion: Serum magnesium ion level may not be associated with NIHL. Increased CNE and smoking may increase the risk of NIHL and physical exercise may reduce the risk of NIHL.
Do ambient noise exposure levels predict hearing loss in a modern industrial cohort?
Rabinowitz, P M; Galusha, D; Dixon‐Ernst, C; Slade, M D; Cullen, M R
2007-01-01
Background Much of what is known about the exposure–response relationship between occupational noise exposures and hearing loss comes from cross‐sectional studies conducted before the widespread implementation of workplace hearing conservation programmes. Little is known about the current relationship of ambient noise exposure measurements to hearing loss risk. Aim To examine the relationship between rates of high frequency hearing loss and measured levels of noise exposure in a modern industrial workforce. Methods Ten‐year hearing loss rates were determined for 6217 employees of an aluminium manufacturing company. Industrial hygiene and human resources records allowed for reconstruction of individual noise exposures. Hearing loss rates were compared to ANSI 3.44 predictions based on age and noise exposure. Associations between hearing loss, noise exposure, and covariate risk factors were assessed using multivariate regression. Results Workers in higher ambient noise jobs tended to experience less high frequency hearing loss than co‐workers exposed at lower noise levels. This trend was also seen in stratified analyses of white males and non‐hunters. At higher noise exposure levels, the magnitude of hearing loss was less than predicted by ANSI 3.44 formulae. There was no indication that a healthy worker effect could explain these findings. The majority of 10 dB standard threshold shifts (STS) occurred in workers whose calculated ambient noise exposures were less than or equal to 85 dBA. Conclusions In this modern industrial cohort, hearing conservation efforts appear to be reducing hearing loss rates, especially at higher ambient noise levels. This could be related to differential use of hearing protection. The greatest burden of preventable occupational hearing loss was found in workers whose noise exposure averaged 85 dBA or less. To further reduce rates of occupational hearing loss, hearing conservation programmes may require innovative approaches targeting workers with noise exposures close to 85 dBA. PMID:16973736
Noise correlation in CBCT projection data and its application for noise reduction in low-dose CBCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hua; Ouyang, Luo; Wang, Jing, E-mail: jhma@smu.edu.cn, E-mail: jing.wang@utsouthwestern.edu
2014-03-15
Purpose: To study the noise correlation properties of cone-beam CT (CBCT) projection data and to incorporate the noise correlation information to a statistics-based projection restoration algorithm for noise reduction in low-dose CBCT. Methods: In this study, the authors systematically investigated the noise correlation properties among detector bins of CBCT projection data by analyzing repeated projection measurements. The measurements were performed on a TrueBeam onboard CBCT imaging system with a 4030CB flat panel detector. An anthropomorphic male pelvis phantom was used to acquire 500 repeated projection data at six different dose levels from 0.1 to 1.6 mAs per projection at threemore » fixed angles. To minimize the influence of the lag effect, lag correction was performed on the consecutively acquired projection data. The noise correlation coefficient between detector bin pairs was calculated from the corrected projection data. The noise correlation among CBCT projection data was then incorporated into the covariance matrix of the penalized weighted least-squares (PWLS) criterion for noise reduction of low-dose CBCT. Results: The analyses of the repeated measurements show that noise correlation coefficients are nonzero between the nearest neighboring bins of CBCT projection data. The average noise correlation coefficients for the first- and second-order neighbors are 0.20 and 0.06, respectively. The noise correlation coefficients are independent of the dose level. Reconstruction of the pelvis phantom shows that the PWLS criterion with consideration of noise correlation (PWLS-Cor) results in a lower noise level as compared to the PWLS criterion without considering the noise correlation (PWLS-Dia) at the matched resolution. At the 2.0 mm resolution level in the axial-plane noise resolution tradeoff analysis, the noise level of the PWLS-Cor reconstruction is 6.3% lower than that of the PWLS-Dia reconstruction. Conclusions: Noise is correlated among nearest neighboring detector bins of CBCT projection data. An accurate noise model of CBCT projection data can improve the performance of the statistics-based projection restoration algorithm for low-dose CBCT.« less
Contrast-enhanced spectral mammography with a photon-counting detector.
Fredenberg, Erik; Hemmendorff, Magnus; Cederström, Björn; Aslund, Magnus; Danielsson, Mats
2010-05-01
Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. The authors have investigated a photon-counting spectral imaging system with two energy bins for contrast-enhanced mammography. System optimization and the potential benefit compared to conventional non-energy-resolved absorption imaging was studied. A framework for system characterization was set up that included quantum and anatomical noise and a theoretical model of the system was benchmarked to phantom measurements. Optimal combination of the energy-resolved images corresponded approximately to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging in the phantom study. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, yielded only a minute improvement. In a simulation of a clinically more realistic case, spectral imaging was predicted to perform approximately 30% better than absorption imaging for an average glandularity breast with an average level of anatomical noise. For dense breast tissue and a high level of anatomical noise, however, a rise in detectability by a factor of 6 was predicted. Another approximately 70%-90% improvement was found to be within reach for an optimized system. Contrast-enhanced spectral mammography is feasible and beneficial with the current system, and there is room for additional improvements. Inclusion of anatomical noise is essential for optimizing spectral imaging systems.
Averaging of phase noise in PSK signals by an opto-electrical feed-forward circuit
NASA Astrophysics Data System (ADS)
Inoue, K.; Ohta, M.
2013-10-01
This paper proposes an opto-electrical feed-forward circuit that reduces phase noise in binary PSK signals by averaging the noise. Random and independent phase noise is averaged over several bit slots by externally modulating a phase-fluctuating PSK signal with feed-forward signal obtained from signal processing of the outputs of delay interferometers. The simulation results demonstrate a reduction in the phase noise.
Kligerman, Seth; Mehta, Dhruv; Farnadesh, Mahmmoudreza; Jeudy, Jean; Olsen, Kathryn; White, Charles
2013-01-01
To determine whether an iterative reconstruction (IR) technique (iDose, Philips Healthcare) can reduce image noise and improve image quality in obese patients undergoing computed tomographic pulmonary angiography (CTPA). The study was Health Insurance Portability and Accountability Act compliant and approved by our institutional review board. A total of 33 obese patients (average body mass index: 42.7) underwent CTPA studies following standard departmental protocols. The data were reconstructed with filtered back projection (FBP) and 3 iDose strengths (iDoseL1, iDoseL3, and iDoseL5) for a total of 132 studies. FBP data were collected from 33 controls (average body mass index: 22) undergoing CTPA. Regions of interest were drawn at 6 identical levels in the pulmonary artery (PA), from the main PA to a subsegmental branch, in both the control group and study groups using each algorithm. Noise and attenuation were measured at all PA levels. Three thoracic radiologists graded each study on a scale of 1 (very poor) to 5 (ideal) by 4 categories: image quality, noise, PA enhancement, and "plastic" appearance. Statistical analysis was performed using an unpaired t test, 1-way analysis of variance, and linear weighted κ. Compared with the control group, there was significantly higher noise with FBP, iDoseL1, and iDoseL3 algorithms (P<0.001) in the study group. There was no significant difference between the noise in the control group and iDoseL5 algorithm in the study group. Analysis within the study group showed a significant and progressive decrease in noise and increase in the contrast-to-noise ratio as the level of IR was increased (P<0.001). Compared with FBP, readers graded overall image quality as being higher using iDoseL1 (P=0.0018), iDoseL3 (P<0.001), and iDoseL5 (P<0.001). Compared with FBP, there was subjective improvement in image noise and PA enhancement with increasing levels of iDose. The use of an IR technique leads to qualitative and quantitative improvements in image noise and image quality in obese patients undergoing CTPA.
Paracrine communication maximizes cellular response fidelity in wound signaling
Handly, L Naomi; Pilko, Anna; Wollman, Roy
2015-01-01
Population averaging due to paracrine communication can arbitrarily reduce cellular response variability. Yet, variability is ubiquitously observed, suggesting limits to paracrine averaging. It remains unclear whether and how biological systems may be affected by such limits of paracrine signaling. To address this question, we quantify the signal and noise of Ca2+ and ERK spatial gradients in response to an in vitro wound within a novel microfluidics-based device. We find that while paracrine communication reduces gradient noise, it also reduces the gradient magnitude. Accordingly we predict the existence of a maximum gradient signal to noise ratio. Direct in vitro measurement of paracrine communication verifies these predictions and reveals that cells utilize optimal levels of paracrine signaling to maximize the accuracy of gradient-based positional information. Our results demonstrate the limits of population averaging and show the inherent tradeoff in utilizing paracrine communication to regulate cellular response fidelity. DOI: http://dx.doi.org/10.7554/eLife.09652.001 PMID:26448485
WE-FG-207B-04: Noise Suppression for Energy-Resolved CT Via Variance Weighted Non-Local Filtration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harms, J; Zhu, L
Purpose: The photon starvation problem is exacerbated in energy-resolved CT, since the detected photons are shared by multiple energy channels. Using pixel similarity-based non-local filtration, we aim to produce accurate and high-resolution energy-resolved CT images with significantly reduced noise. Methods: Averaging CT images reconstructed from different energy channels reduces noise at the price of losing spectral information, while conventional denoising techniques inevitably degrade image resolution. Inspired by the fact that CT images of the same object at different energies share the same structures, we aim to reduce noise of energy-resolved CT by averaging only pixels of similar materials - amore » non-local filtration technique. For each CT image, an empirical exponential model is used to calculate the material similarity between two pixels based on their CT values and the similarity values are organized in a matrix form. A final similarity matrix is generated by averaging these similarity matrices, with weights inversely proportional to the estimated total noise variance in the sinogram of different energy channels. Noise suppression is achieved for each energy channel via multiplying the image vector by the similarity matrix. Results: Multiple scans on a tabletop CT system are used to simulate 6-channel energy-resolved CT, with energies ranging from 75 to 125 kVp. On a low-dose acquisition at 15 mA of the Catphan©600 phantom, our method achieves the same image spatial resolution as a high-dose scan at 80 mA with a noise standard deviation (STD) lower by a factor of >2. Compared with another non-local noise suppression algorithm (ndiNLM), the proposed algorithms obtains images with substantially improved resolution at the same level of noise reduction. Conclusion: We propose a noise-suppression method for energy-resolved CT. Our method takes full advantage of the additional structural information provided by energy-resolved CT and preserves image values at each energy level. Research reported in this publication was supported by the National Institute Of Biomedical Imaging And Bioengineering of the National Institutes of Health under Award Number R21EB019597. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.« less
Estimating occupant satisfaction of HVAC system noise using quality assessment index.
Forouharmajd, Farhad; Nassiri, Parvin; Monazzam, Mohammad R; Yazdchi, Mohammadreza
2012-01-01
Noise may be defined as any unwanted sound. Sound becomes noise when it is too loud, unexpected, uncontrolled, happens at the wrong time, contains unwanted pure tones or unpleasant. In addition to being annoying, loud noise can cause hearing loss, and, depending on other factors, can affect stress level, sleep patterns and heart rate. The primary object for determining subjective estimations of loudness is to present sounds to a sample of listeners under controlled conditions. In heating, ventilation and air conditioning (HVAC) systems only the ventilation fan industry (e.g., bathroom exhaust and sidewall propeller fans) uses loudness ratings. In order to find satisfaction, percent of exposure to noise is the valuable issue for the personnel who are working in these areas. The room criterion (RC) method has been defined by ANSI standard S12.2, which is based on measured levels of in HVAC systems noise in spaces and is used primarily as a diagnostic tool. The RC method consists of a family of criteria curves and a rating procedure. RC measures background noise in the building over the frequency range of 16-4000 Hz. This rating system requires determination of the mid-frequency average level and determining the perceived balance between high-frequency (HF) sound and low-frequency (LF) sound. The arithmetic average of the sound levels in the 500, 1000 and 2000 Hz octave bands is 44.6 dB; therefore, the RC 45 curve is selected as the reference for spectrum quality evaluation. The spectral deviation factors in the LF, medium-frequency sound and HF regions are 2.9, 7.5 and -2.3, respectively, giving a Quality Assessment Index (QAI) of 9.8. This concludes the QAI is useful in estimating an occupant's probable reaction when the system design does not produce optimum sound quality. Thus, a QAI between 5 and 10 dB represents a marginal situation in which acceptance by an occupant is questionable. However, when sound pressure levels in the 16 or 31.5 Hz octave bands exceed 65 dB, vibration in lightweight office construction is possible.
Detection time for global and regional sea level trends and accelerations
NASA Astrophysics Data System (ADS)
Jordà, G.
2014-10-01
Many studies analyze trends on sea level data with the underlying purpose of finding indications of a long-term change that could be interpreted as the signature of anthropogenic climate change. The identification of a long-term trend is a signal-to-noise problem where the natural variability (the "noise") can mask the long-term trend (the "signal"). The signal-to-noise ratio depends on the magnitude of the long-term trend, on the magnitude of the natural variability, and on the length of the record, as the climate noise is larger when averaged over short time scales and becomes smaller over longer averaging periods. In this paper, we evaluate the time required to detect centennial sea level linear trends and accelerations at global and regional scales. Using model results and tide gauge observations, we find that the averaged detection time for a centennial linear trend is 87.9, 76.0, 59.3, 40.3, and 25.2 years for trends of 0.5, 1.0, 2.0, 5.0, and 10.0 mm/yr, respectively. However, in regions with large decadal variations like the Gulf Stream or the Circumpolar current, these values can increase up to a 50%. The spatial pattern of the detection time for sea level accelerations is almost identical. The main difference is that the length of the records has to be about 40-60 years longer to detect an acceleration than to detect a linear trend leading to an equivalent change after 100 years. Finally, we have used a new sea level reconstruction, which provides a more accurate representation of interannual variability for the last century in order to estimate the detection time for global mean sea level trends and accelerations. Our results suggest that the signature of natural variability in a 30 year global mean sea level record would be less than 1 mm/yr. Therefore, at least 2.2 mm/yr of the recent sea level trend estimated by altimetry cannot be attributed to natural multidecadal variability. This article was corrected on 19 NOV 2014. See the end of the full text for details.
Preliminary Observations of Noise Spectra at the SRO and ASRO Stations
Peterson, Jon
1980-01-01
Introduction The seismic noise spectra presented in this report were derived from SRO and ASRO station data for the purpose of evaluating the performance of the seismic instruments. They are also useful for constructing a spectral estimate of earth noise at a quiet site based on noise samples obtained from a network of globally distributed sites. It is hoped that the spectra will be usefull for other purposes as well. The term 'noise' is used here to describe the ambient signals recorded during a quiet period when earthquake signals have not been detected by visual inspectino of the analog seismogram. The total recorded noise is the sum of instrumental noise, environmental noise (such as effects of temperature, pressure, wind), earth background noise from both natural and cultural sources, and very possibly low-level signals from earthquakes that cannot be visually identified. It is not possible to separate and quantify the signals generated by these independent noise sources using a single sample of station data, although instrumental problems may be indicated by gross changes of noise levels, if the changes are not in the microseismic bands. Since seismic data at the SRO and ASRO stations are recorded in a digital format, spectral computations can be automated so that station noise levels can be monitored as part of data-review procedures. The noise spectra presented in this study are intended to serve as an initial baseline against which relative changes in noise levels can be measured. Total noise power was computed separately for the short- and long-period bands, which are recorded separately at the stations. Power spectral densities were derived by averaging the spectral estimates of a number of contiguous dat segments. The mean value and slope were removed from each segment, cosine-tapered windows were applied, and the estimates were obtained using a fast Fourier transform. In the short-period analyses 16 segments were used, each segment being 1024 samples in length. Because the sampling interval is .05 seconds, the total record length is nearly 13.7 minutes. Normally, the short-period SRO and ASRO data are recorded in an event-only mode. However, several days of continuous short-period data were acquired from most stations for the purpose of this study. Where there was appreciable diurnal variation in short-period noise, spectral data were computed for both day and night intervals. In most cases the long-period spectral densities were obtained by averagin the estimates from 16 data segments, each segment having a length of 2048 samples. Since the long-period sampling interval in 1 second, the total record length used was nearly 9.1 hours. In a few instances, a smaller number of segments was averaged. Spectral data were computed from the vertical-component short-period signals and all three components of long-period signals. All of the spectral plots have been corrected for known instrument response and presented in units of earth displacement. With a few exceptions, the samples of noise data used were acquired during the early months of 1980, winter at some of the stations and summer at others. The starting times for the intervals analyzed are listed in Table 1. A seasonal variation of noise levels in microseismic bands is to be expected. However, none of the stations were experiencing a noticeably high level of microseisms during the intervals analyzed. Weltman and others (1979) have studied and reported daily and seasonal RMS (root-mean-square) noise trends at the SRO and ASRO stations.
Noise-enhanced convolutional neural networks.
Audhkhasi, Kartik; Osoba, Osonde; Kosko, Bart
2016-06-01
Injecting carefully chosen noise can speed convergence in the backpropagation training of a convolutional neural network (CNN). The Noisy CNN algorithm speeds training on average because the backpropagation algorithm is a special case of the generalized expectation-maximization (EM) algorithm and because such carefully chosen noise always speeds up the EM algorithm on average. The CNN framework gives a practical way to learn and recognize images because backpropagation scales with training data. It has only linear time complexity in the number of training samples. The Noisy CNN algorithm finds a special separating hyperplane in the network's noise space. The hyperplane arises from the likelihood-based positivity condition that noise-boosts the EM algorithm. The hyperplane cuts through a uniform-noise hypercube or Gaussian ball in the noise space depending on the type of noise used. Noise chosen from above the hyperplane speeds training on average. Noise chosen from below slows it on average. The algorithm can inject noise anywhere in the multilayered network. Adding noise to the output neurons reduced the average per-iteration training-set cross entropy by 39% on a standard MNIST image test set of handwritten digits. It also reduced the average per-iteration training-set classification error by 47%. Adding noise to the hidden layers can also reduce these performance measures. The noise benefit is most pronounced for smaller data sets because the largest EM hill-climbing gains tend to occur in the first few iterations. This noise effect can assist random sampling from large data sets because it allows a smaller random sample to give the same or better performance than a noiseless sample gives. Copyright © 2015 Elsevier Ltd. All rights reserved.
Research on the effect of noise at different times of day: Models, methods and findings
NASA Technical Reports Server (NTRS)
Fields, J. M.
1985-01-01
Social surveys of residents' responses to noise at different times of day are reviewed. Some of the discrepancies in published reports about the importance of noise at different times of day are reduced when the research findings are classified according to the type of time of day reaction model, the type of time of day weight calculated and the method which is used to estimate the weight. When the estimates of nighttime weights from 12 studies are normalized, it is found that they still disagree, but do not support stronger nighttime weights than those used in existing noise indices. Challenges to common assumptions in nighttime response models are evaluated. Two of these challenges receive enough support to warrant further investigation: the impact of changes in numbers of noise events may be less at night than in the day and nighttime annoyance may be affected by noise levels in other periods. All existing social survey results in which averages of nighttime responses were plotted by nighttime noise levels are reproduced.
Aircraft noise and speech intelligibility in an outdoor living space.
Alvarsson, Jesper J; Nordström, Henrik; Lundén, Peter; Nilsson, Mats E
2014-06-01
Studies of effects on speech intelligibility from aircraft noise in outdoor places are currently lacking. To explore these effects, first-order ambisonic recordings of aircraft noise were reproduced outdoors in a pergola. The average background level was 47 dB LA eq. Lists of phonetically balanced words (LAS max,word = 54 dB) were reproduced simultaneously with aircraft passage noise (LAS max,noise = 72-84 dB). Twenty individually tested listeners wrote down each presented word while seated in the pergola. The main results were (i) aircraft noise negatively affects speech intelligibility at sound pressure levels that exceed those of the speech sound (signal-to-noise ratio, S/N < 0), and (ii) the simple A-weighted S/N ratio was nearly as good an indicator of speech intelligibility as were two more advanced models, the Speech Intelligibility Index and Glasberg and Moore's [J. Audio Eng. Soc. 53, 906-918 (2005)] partial loudness model. This suggests that any of these indicators is applicable for predicting effects of aircraft noise on speech intelligibility outdoors.
Awareness and attitudes to noise and its hazards in motor parks in a sub-urban Nigerian town.
Sogebi, O A; Amoran, O E; Iyaniwura, C A; Oyewole, E A
2014-03-01
The study assessed awareness and attitudes of people working in the environment (users) of the motor parks (but not travelers), in a sub-urban town to environmental noise and its hazards. Regular users of major motor parks in Sagamu were administered with pretested structured questionnaire to obtain information on their awareness and attitudes concerning noise and NIHL at the parks. Descriptive and comparative analysis of the data obtained was performed by using SPSS version 15.0. Data from 387 subjects were analysed; 61.2% were males, mean age was 35.5 11.4 years, 56.8% had secondary school education, and 50.6% were vehicle drivers or conductors. 51.2% ascribed vehicular traffic the major source of noise generation at the parks, while average noise level was 84.1 ± 6.0 dBA. Among the subjects, 61.2% approved motor park was noisy, 47.8% (185/387) were aware of NIHL. Awareness did not change with age and sex, but increased significantly with level of education. 51.9% were concerned about the noisy environment, 12.7% (49/387) protected themselves from the effect of the noise, 6.1% used ear plugs. Attitudes of the users did not change with age, sex, and level of education. Noise level at the motor parks were marginally high, awareness of the users to noise and its hazards was relatively high but attitudes concerning protection from noise hazards was poor. Health education for the users and noise regulation at the parks were recommended.
Examination of the Lateral Attenuation of Aircraft Noise
NASA Technical Reports Server (NTRS)
Plotkin, Kenneth J.; Hobbs, Christopher M.; Bradley, Kevin A.; Shepherd, Kevin P. (Technical Monitor)
2000-01-01
Measurements of the lateral attenuation of noise from aircraft operations at Denver International Airport were made at distances up to 2000 feet and elevation angles up to 27 degrees. Attenuation Calculated from modem ground impedance theory agrees well with average measured attenuation. The large variability between measured and predicted levels observed at small elevation angles is demonstrated to be due to refraction by wind and temperature gradients.
HEaDS-UP Phase IV Assessment: Headgear Effects on Auditory Perception
2015-02-01
8 Fig. 6 Average attenuation measured for the CIPHER and INTERCPT helmets as a function of noise level, mandible/ eyewear ...impulsive noise consistent with the US Occupational Safety and Health Administration (OSHA 1981), the National Institute for Occupational Safety and... eyewear , or HPDs) (Fig. 5) show that the CIPHER and INTERCPT compared favorably with the currently fielded advanced combat helmet (ACH). Figure 6
Wothge, Jördis; Belke, Christin; Möhler, Ulrich; Guski, Rainer; Schreckenberg, Dirk
2017-08-02
The Noise Related Annoyance Cognition and Health (NORAH) research initiative is one of the most extensive studies on the physiological and psychological long-term effects of transportation noise in Europe. It includes research on the quality of life and annoyance as well as cardiovascular effects, sleep disturbance, breast cancer, blood pressure, depression and the cognitive development of children. Within the realm of the annoyance module of the study approximately 10,000 residents of the Rhine-Main district were surveyed on the combined effects of transportation noise. This included combined noise from aircraft and road traffic noise ( N = 4905), or aircraft and railway noise ( N = 4777). Results show that judgment of the total noise annoyance of participants was strongly determined by the sound source which was judged as more annoying (in this case aircraft noise). To a lesser extent, the average sound pressure level of the two present sources was also of relevance.
Wothge, Jördis; Belke, Christin; Möhler, Ulrich; Guski, Rainer; Schreckenberg, Dirk
2017-01-01
The Noise Related Annoyance Cognition and Health (NORAH) research initiative is one of the most extensive studies on the physiological and psychological long-term effects of transportation noise in Europe. It includes research on the quality of life and annoyance as well as cardiovascular effects, sleep disturbance, breast cancer, blood pressure, depression and the cognitive development of children. Within the realm of the annoyance module of the study approximately 10,000 residents of the Rhine-Main district were surveyed on the combined effects of transportation noise. This included combined noise from aircraft and road traffic noise (N = 4905), or aircraft and railway noise (N = 4777). Results show that judgment of the total noise annoyance of participants was strongly determined by the sound source which was judged as more annoying (in this case aircraft noise). To a lesser extent, the average sound pressure level of the two present sources was also of relevance. PMID:28767095
Occupational noise exposure of nightclub bar employees in Ireland.
Kelly, Aoife C; Boyd, Sara M; Henehan, Gary T M; Chambers, Gordon
2012-01-01
Due to the transposition of the EU Directive 2003/10/EC into Irish Law, the entertainment sector was obligated to comply with the requirements of the Safety, Health and Welfare at Work (General Application) Regulations 2007, Chapter 1 Part 5: Control of Noise at Work since February 2008. Compliance with the Noise Regulations was examined in 9 nightclubs in Ireland. The typical daily noise exposure of 19 bar employees was measured using 2 logging dosimeters and a Type 1 fixed position sound level meter. Physical site inspections identified nightclub noise control measures. Interviews and questionnaires were used to assess the managers and employees awareness of the noise legislation. The average bar employee daily noise exposure (L(EX, 8h)) was 92 dBA, almost 4 times more than the accepted legal limit. None of the venues examined were fully compliant with the requirements of the 2007 Noise Regulations, and awareness of this legislation was limited.
Relative contributions of specific frequency bands to the loudness of broadband sounds.
Jesteadt, Walt; Walker, Sara M; Ogun, Oluwaseye A; Ohlrich, Brenda; Brunette, Katyarina E; Wróblewski, Marcin; Schmid, Kendra K
2017-09-01
Listeners with normal hearing (NH) and sensorineural hearing loss (SNHL) were asked to compare pairs of noise stimuli and choose the louder noise in each pair. Each noise was made up of 15, two-ERB N (equivalent rectangular bandwidth) wide frequency bands that varied independently over a 12-dB range from one presentation to the next. Mean levels of the bands followed the long-term average speech spectrum (LTASS) or were set to 43, 51, or 59 dB sound pressure level (SPL). The relative contribution of each band to the total loudness of the noise was determined by computing the correlation between the difference in levels for a given band on every trial and the listener's decision on that trial. Weights for SNHL listeners were governed by audibility and the spectrum of the noise stimuli, with bands near the spectral peak of the LTASS noise receiving greatest weight. NH listeners assigned greater weight to the lowest and highest bands, an effect that increased with overall level, but did not assign greater weight to bands near the LTASS peak. Additional loudness-matching and paired-comparison studies using stimuli missing one of the 15 bands showed a significant contribution by the highest band, but properties other than loudness may have contributed to the decisions.
Pilot study of methods and equipment for in-home noise level measurements.
Neitzel, Richard L; Heikkinen, Maire S A; Williams, Christopher C; Viet, Susan Marie; Dellarco, Michael
2015-01-15
Knowledge of the auditory and non-auditory effects of noise has increased dramatically over the past decade, but indoor noise exposure measurement methods have not advanced appreciably, despite the introduction of applicable new technologies. This study evaluated various conventional and smart devices for exposure assessment in the National Children's Study. Three devices were tested: a sound level meter (SLM), a dosimeter, and a smart device with a noise measurement application installed. Instrument performance was evaluated in a series of semi-controlled tests in office environments over 96-hour periods, followed by measurements made continuously in two rooms (a child's bedroom and a most used room) in nine participating homes over a 7-day period with subsequent computation of a range of noise metrics. The SLMs and dosimeters yielded similar A-weighted average noise levels. Levels measured by the smart devices often differed substantially (showing both positive and negative bias, depending on the metric) from those measured via SLM and dosimeter, and demonstrated attenuation in some frequency bands in spectral analysis compared to SLM results. Virtually all measurements exceeded the Environmental Protection Agency's 45 dBA day-night limit for indoor residential exposures. The measurement protocol developed here can be employed in homes, demonstrates the possibility of measuring long-term noise exposures in homes with technologies beyond traditional SLMs, and highlights potential pitfalls associated with measurements made by smart devices.
Eze, Ikenna C; Foraster, Maria; Schaffner, Emmanuel; Vienneau, Danielle; Héritier, Harris; Rudzik, Franziska; Thiesse, Laurie; Pieren, Reto; Imboden, Medea; von Eckardstein, Arnold; Schindler, Christian; Brink, Mark; Cajochen, Christian; Wunderli, Jean-Marc; Röösli, Martin; Probst-Hensch, Nicole
2017-01-01
Abstract Background Epidemiological studies have inconsistently linked transportation noise and air pollution (AP) with diabetes risk. Most studies have considered single noise sources and/or AP, but none has investigated their mutually independent contributions to diabetes risk. Methods We investigated 2631 participants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA), without diabetes in 2002 and without change of residence between 2002 and 2011. Using questionnaire and biomarker data, incident diabetes cases were identified in 2011. Noise and AP exposures in 2001 were assigned to participants’ residences (annual average road, railway or aircraft noise level during day-evening-night (Lden), total night number of noise events, intermittency ratio (temporal variation as proportion of event-based noise level over total noise level) and nitrogen dioxide (NO2) levels. We applied mixed Poisson regression to estimate the relative risk (RR) of diabetes and their 95% confidence intervals (CI) in mutually-adjusted models. Results Diabetes incidence was 4.2%. Median [interquartile range (IQR)] road, railway, aircraft noise and NO2 were 54 (10) dB, 32 (11) dB, 30 (12) dB and 21 (15) μg/m3, respectively. Lden road and aircraft were associated with incident diabetes (respective RR: 1.35; 95% CI: 1.02–1.78 and 1.86; 95% CI: 0.96–3.59 per IQR) independently of Lden railway and NO2 (which were not associated with diabetes risk) in mutually adjusted models. We observed stronger effects of Lden road among participants reporting poor sleep quality or sleeping with open windows. Conclusions Transportation noise may be more relevant than AP in the development of diabetes, potentially acting through noise-induced sleep disturbances. PMID:28338949
Eze, Ikenna C; Foraster, Maria; Schaffner, Emmanuel; Vienneau, Danielle; Héritier, Harris; Rudzik, Franziska; Thiesse, Laurie; Pieren, Reto; Imboden, Medea; von Eckardstein, Arnold; Schindler, Christian; Brink, Mark; Cajochen, Christian; Wunderli, Jean-Marc; Röösli, Martin; Probst-Hensch, Nicole
2017-08-01
Epidemiological studies have inconsistently linked transportation noise and air pollution (AP) with diabetes risk. Most studies have considered single noise sources and/or AP, but none has investigated their mutually independent contributions to diabetes risk. We investigated 2631 participants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA), without diabetes in 2002 and without change of residence between 2002 and 2011. Using questionnaire and biomarker data, incident diabetes cases were identified in 2011. Noise and AP exposures in 2001 were assigned to participants' residences (annual average road, railway or aircraft noise level during day-evening-night (Lden), total night number of noise events, intermittency ratio (temporal variation as proportion of event-based noise level over total noise level) and nitrogen dioxide (NO2) levels. We applied mixed Poisson regression to estimate the relative risk (RR) of diabetes and their 95% confidence intervals (CI) in mutually-adjusted models. Diabetes incidence was 4.2%. Median [interquartile range (IQR)] road, railway, aircraft noise and NO2 were 54 (10) dB, 32 (11) dB, 30 (12) dB and 21 (15) μg/m3, respectively. Lden road and aircraft were associated with incident diabetes (respective RR: 1.35; 95% CI: 1.02-1.78 and 1.86; 95% CI: 0.96-3.59 per IQR) independently of Lden railway and NO2 (which were not associated with diabetes risk) in mutually adjusted models. We observed stronger effects of Lden road among participants reporting poor sleep quality or sleeping with open windows. Transportation noise may be more relevant than AP in the development of diabetes, potentially acting through noise-induced sleep disturbances. © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association
Tram Squealing Noise and Its Impact on Human Health
Panulinová, Eva; Harabinová, Slávka; Argalášová, Lubica
2016-01-01
Introduction: Tramway has become a serious urban noise source in densely populated areas. The disturbance from squealing noise is significant. Curve squeal is the very loud, tonal noise emitted by tram operation in tight radius curves. Studies had reported a relationship between noise levels and health effects, such as annoyance, sleep disturbance, and elevated systolic and diastolic blood pressure. Materials and Methods: This study aimed to analyze the wheel squeal noise along the tramway line in Košice, Slovakia, review the effects on human health, and discuss its inclusion in the design method. To observe the influence of a track curve on noise emission, several measurement points were selected, and the noise emission was measured both in the curve and in the straight lines employing the same type of permanent way. Results: The results in the sections with the radius below 50 m were greatly affected by the presence of a squeal noise, while the resulting noise level in the sections with the radius above 50 m depended on their radius. The difference between the average values of LAeq with and without the squeal in the measurement points with the radius below 50 m was 9 dB. The difference between the measurements in the curve sections with the radius below 50 m and those in the straight line was 2.7 dB. Conclusion: The resulting noise level in general was influenced by the car velocity and the technical shape of the permanent way. These results can be used in noise prognoses and in the health effect predictions. PMID:27991464
Using dark current data to estimate AVIRIS noise covariance and improve spectral analyses
NASA Technical Reports Server (NTRS)
Boardman, Joseph W.
1995-01-01
Starting in 1994, all AVIRIS data distributions include a new product useful for quantification and modeling of the noise in the reported radiance data. The 'postcal' file contains approximately 100 lines of dark current data collected at the end of each data acquisition run. In essence this is a regular spectral-image cube, with 614 samples, 100 lines and 224 channels, collected with a closed shutter. Since there is no incident radiance signal, the recorded DN measure only the DC signal level and the noise in the system. Similar dark current measurements, made at the end of each line are used, with a 100 line moving average, to remove the DC signal offset. Therefore, the pixel-by-pixel fluctuations about the mean of this dark current image provide an excellent model for the additive noise that is present in AVIRIS reported radiance data. The 61,400 dark current spectra can be used to calculate the noise levels in each channel and the noise covariance matrix. Both of these noise parameters should be used to improve spectral processing techniques. Some processing techniques, such as spectral curve fitting, will benefit from a robust estimate of the channel-dependent noise levels. Other techniques, such as automated unmixing and classification, will be improved by the stable and scene-independence noise covariance estimate. Future imaging spectrometry systems should have a similar ability to record dark current data, permitting this noise characterization and modeling.
Huang, Jing; Deng, Furong; Wu, Shaowei; Lu, Henry; Hao, Yu; Guo, Xinbiao
2013-01-01
Traffic-related air pollution and noise are associated with cardiovascular diseases, and alternation of heart rate variability (HRV), which reflects cardiac autonomic function, is one of the mechanisms. However, few studies considered the impacts of noise when exploring associations between air pollution and HRV. We explored whether noise modifies associations between short-term exposure to traffic-related air pollution and HRV in young healthy adults. In this randomized, crossover study, 40 young healthy adults stayed for 2 h in a traffic center and, on a separate occasion, in a park. Personal exposure to traffic-related air pollutants and noise were measured and ambulatory electrocardiogram was performed. Effects were estimated using mixed-effects regression models. Traffic-related air pollution and noise were both associated with HRV, and effects of air pollutants were amplified at high noise level (>65.6 A-weighted decibels (dB[A])) compared with low noise level (≤ 65.6 dB[A]). High frequency (HF) decreased by -4.61% (95% confidence interval, -6.75% to-2.42%) per 10 μg/m(3) increment in fine particle (PM2.5) at 5-min moving average, but effects became insignificant at low noise level (P>0.05). Similar effects modification was observed for black carbon (BC) and carbon monoxide (CO). We conclude that noise is an important factor influencing the effects of air pollution on HRV.
Lahav, Amir
2015-01-01
Recent research raises concerns about the adverse effects of noise exposure on the developing preterm infant. However, current guidelines for NICU noise remain focused on loudness levels, leaving the problem of exposure to potentially harmful sound frequencies largely overlooked. This study examined the frequency spectra present in a level-II NICU. Noise measurements were taken in two level-II open-bay nurseries. Measurements were taken over 5 days for a period of 24 h each. Spectral analysis was focused on comparing sound frequencies in the range of human speech during daytime (7 AM-7 PM) vs. night-time (7 PM-7 AM). On average, daytime noise levels (Leq = 60.05 dBA) were higher than night-time (Leq = 58.67 dBA). Spectral analysis of frequency bands (>50 dB) revealed that infants were exposed to frequencies <500 Hz 100% of the time and to frequencies >500 Hz 57% of the time. During daytime, infants were exposed to nearly 20% more sounds within the speech frequency range compared with night-time (p = 0.018). Measuring the frequency spectra of NICU sounds is necessary to attain a thorough understanding of both the noise levels and the type of sounds that preterm infants are exposed to throughout their hospital stay. The risk of high-frequency noise exposure in the preterm population is still unclear and warrants further investigation. © 2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Methods for evaluating temporal trends in noise exposure
Neitzel, RL; Galusha, D; Dixon-Ernst, C; Rabinowitz, PM
2014-01-01
Objective Hearing conservation programs have been mandatory in many US industries since 1983. Since then, three program elements (audiometric testing, hearing protection, and training) have been the focus of much research. By comparison, little has been done on noise exposure evaluation. Design and study sample Utilizing a large dataset (>10,000 measurements over 20 years) from eight facilities operated by a multinational aluminum manufacturing company, we evaluated several approaches to assessing temporal trends in Time Weighted Average (TWA) exposures and the fraction of measurements exceeding 85 dBA by facility, by exposure group within facility, and by individual worker within facility. Results Overall, exposures declined across locations over the study period. Several facilities demonstrated substantial reductions in exposure, and the results of mean noise levels and exceedance fractions generally showed good agreement. The results of analyses at the individual level diverged with analyses by facility and exposure group within facility, suggesting that individual-level analyses, while challenging, may provide important information not available from coarser levels of analysis. Conclusions Validated metrics are needed to allow for assessment of temporal trends in noise exposure. Such metrics will improve our ability to characterize, in a standardized manner, efforts to reduce noise-induced hearing loss. PMID:24564696
The relationship between traffic noise and insomnia among adult Japanese women
NASA Astrophysics Data System (ADS)
Sasazawa, Y.; Kawada, T.; Kiryu, Y.; Suzuki, S.
2004-10-01
To clarify the relationship between traffic noise and insomnia, the authors conducted a survey and measured the actual sound level of noise in an urban area. Questionnaires were distributed to adult women who lived within 150 m from two major roads and were completed by 648 of the 1286 subjects (50.4%). The area was divided into three zones according to distance from the road (more than 50, 20-50 and 0-19.9 m). Fifty-seven subjects (8.8%) were classified as having insomnia. Average values of sound level at distances of 20, 50, and 100 m from the major road were Leq 64.7, 57.1, and 51.8 dBA, respectively. Overall, there were no significant differences among the three zones in the prevalence of insomnia and no association between distance from the road and insomnia. However, the result from a sub-data set of the subjects who lived in the areas that showed decreasing noise level as the distance from the main road increased showed that distance from the road was associated with insomnia. This study suggests that researchers should consider the actual traffic situation and its sound level in epidemiological studies about the effects of traffic noise on insomnia.
Methods for evaluating temporal trends in noise exposure.
Neitzel, R L; Galusha, D; Dixon-Ernst, C; Rabinowitz, P M
2014-03-01
Hearing conservation programs have been mandatory in many US industries since 1983. Since then, three program elements (audiometric testing, hearing protection, and training) have been the focus of much research. By comparison, little has been done on noise exposure evaluation. Temporal trends in time weighted average (TWA) exposures and the fraction of measurements exceeding 85 dBA were evaluated by facility, by exposure group within facility, and by individual worker within facility. A large dataset (> 10 000 measurements over 20 years) from eight facilities operated by a multinational aluminum manufacturing company was studied. Overall, exposures declined across locations over the study period. Several facilities demonstrated substantial reductions in exposure, and the results of mean noise levels and exceedance fractions generally showed good agreement. The results of analyses at the individual level diverged with analyses by facility and exposure group within facility, suggesting that individual-level analyses, while challenging, may provide important information not available from coarser levels of analysis. Validated metrics are needed to allow for assessment of temporal trends in noise exposure. Such metrics will improve our ability to characterize, in a standardized manner, efforts to reduce noise-induced hearing loss.
Noise levels associated with urban land use.
King, Gavin; Roland-Mieszkowski, Marek; Jason, Timothy; Rainham, Daniel G
2012-12-01
Recent trends towards the intensification of urban development to increase urban densities and avoid sprawl should be accompanied by research into the potential for related health impacts from environmental exposure. The objective of the current study was to examine the effect of the built environment and land use on levels of environmental noise. Two different study areas were selected using a combination of small area census geography, land use information, air photography, and ground-truthing. The first study area represented residential land use and consisted of two- to three-story single-family homes. The second study area was characteristic of mixed-use urban planning with apartment buildings as well as commercial and institutional development. Study areas were subdivided into six grids, and a location was randomly selected within each grid for noise monitoring. Each location was sampled four times over a 24-h day, resulting in a total of 24 samples for each of the two areas. Results showed significant variability in noise within study areas and significantly higher levels of environmental noise in the mixed-use area. Both study areas exceeded recommended noise limits when evaluated against World Health Organization guidelines and yielded average noise events values in the moderate to serious annoyance range with the potential to obscure normal conversation and cause sleep disturbance.
Wang, Zhi; Liang, Jiabin; Rong, Xing; Zhou, Hao; Duan, Chuanwei; Du, Weijia; Liu, Yimin
2015-12-01
To investigate noise hazard and its influence on hearing loss in workers in the automotive component manufacturing industry. Noise level in the workplace of automotive component manufacturing enterprises was measured and hearing examination was performed for workers to analyze the features and exposure levels of noise in each process, as well as the influence on hearing loss in workers. In the manufacturing processes for different products in this industry, the manufacturing processes of automobile hub and suspension and steering systems had the highest degrees of noise hazard, with over-standard rates of 79.8% and 57.1%, respectively. In the different technical processes for automotive component manufacturing, punching and casting had the highest degrees of noise hazard, with over-standard rates of 65.0% and 50%, respectively. The workers engaged in the automotive air conditioning system had the highest rate of abnormal hearing ability (up to 3.1%). In the automotive component manufacturing industry, noise hazard exceeds the standard seriously. Although the rate of abnormal hearing is lower than the average value of the automobile manufacturing industry in China, this rate tends to increase gradually. Enough emphasis should be placed on the noise hazard in this industry.
NASA Astrophysics Data System (ADS)
Wade, Alex Robert; Fitzke, Frederick W.
1998-08-01
We describe an image processing system which we have developed to align autofluorescence and high-magnification images taken with a laser scanning ophthalmoscope. The low signal to noise ratio of these images makes pattern recognition a non-trivial task. However, once n images are aligned and averaged, the noise levels drop by a factor of n and the image quality is improved. We include examples of autofluorescence images and images of the cone photoreceptor mosaic obtained using this system.
Alsina-Pagès, Rosa Ma; Hernandez-Jayo, Unai; Alías, Francesc; Angulo, Ignacio
2016-12-29
One of the main priorities of smart cities is improving the quality of life of their inhabitants. Traffic noise is one of the pollutant sources that causes a negative impact on the quality of life of citizens, which is gaining attention among authorities. The European Commission has promoted the Environmental Noise Directive 2002/49/EC (END) to inform citizens and to prevent the harmful effects of noise exposure. The measure of acoustic levels using noise maps is a strategic issue in the END action plan. Noise maps are typically calculated by computing the average noise during one year and updated every five years. Hence, the implementation of dynamic noise mapping systems could lead to short-term plan actions, besides helping to better understand the evolution of noise levels along time. Recently, some projects have started the monitoring of noise levels in urban areas by means of acoustic sensor networks settled in strategic locations across the city, while others have taken advantage of collaborative citizen sensing mobile applications. In this paper, we describe the design of an acoustic low-cost sensor network installed on public buses to measure the traffic noise in the city in real time. Moreover, the challenges that a ubiquitous bus acoustic measurement system entails are enumerated and discussed. Specifically, the analysis takes into account the feature extraction of the audio signal, the identification and separation of the road traffic noise from urban traffic noise, the hardware platform to measure and process the acoustic signal, the connectivity between the several nodes of the acoustic sensor network to store the data and, finally, the noise maps' generation process. The implementation and evaluation of the proposal in a real-life scenario is left for future work.
Alsina-Pagès, Rosa Ma; Hernandez-Jayo, Unai; Alías, Francesc; Angulo, Ignacio
2016-01-01
One of the main priorities of smart cities is improving the quality of life of their inhabitants. Traffic noise is one of the pollutant sources that causes a negative impact on the quality of life of citizens, which is gaining attention among authorities. The European Commission has promoted the Environmental Noise Directive 2002/49/EC (END) to inform citizens and to prevent the harmful effects of noise exposure. The measure of acoustic levels using noise maps is a strategic issue in the END action plan. Noise maps are typically calculated by computing the average noise during one year and updated every five years. Hence, the implementation of dynamic noise mapping systems could lead to short-term plan actions, besides helping to better understand the evolution of noise levels along time. Recently, some projects have started the monitoring of noise levels in urban areas by means of acoustic sensor networks settled in strategic locations across the city, while others have taken advantage of collaborative citizen sensing mobile applications. In this paper, we describe the design of an acoustic low-cost sensor network installed on public buses to measure the traffic noise in the city in real time. Moreover, the challenges that a ubiquitous bus acoustic measurement system entails are enumerated and discussed. Specifically, the analysis takes into account the feature extraction of the audio signal, the identification and separation of the road traffic noise from urban traffic noise, the hardware platform to measure and process the acoustic signal, the connectivity between the several nodes of the acoustic sensor network to store the data and, finally, the noise maps’ generation process. The implementation and evaluation of the proposal in a real-life scenario is left for future work. PMID:28036065
Aircraft noise and cardiovascular disease near Heathrow airport in London: small area study.
Hansell, Anna L; Blangiardo, Marta; Fortunato, Lea; Floud, Sarah; de Hoogh, Kees; Fecht, Daniela; Ghosh, Rebecca E; Laszlo, Helga E; Pearson, Clare; Beale, Linda; Beevers, Sean; Gulliver, John; Best, Nicky; Richardson, Sylvia; Elliott, Paul
2013-10-08
To investigate the association of aircraft noise with risk of stroke, coronary heart disease, and cardiovascular disease in the general population. Small area study. 12 London boroughs and nine districts west of London exposed to aircraft noise related to Heathrow airport in London. About 3.6 million residents living near Heathrow airport. Risks for hospital admissions were assessed in 12 110 census output areas (average population about 300 inhabitants) and risks for mortality in 2378 super output areas (about 1500 inhabitants). Risk of hospital admissions for, and mortality from, stroke, coronary heart disease, and cardiovascular disease, 2001-05. Hospital admissions showed statistically significant linear trends (P<0.001 to P<0.05) of increasing risk with higher levels of both daytime (average A weighted equivalent noise 7 am to 11 pm, L(Aeq),16 h) and night time (11 pm to 7 am, Lnight) aircraft noise. When areas experiencing the highest levels of daytime aircraft noise were compared with those experiencing the lowest levels (>63 dB v ≤ 51 dB), the relative risk of hospital admissions for stroke was 1.24 (95% confidence interval 1.08 to 1.43), for coronary heart disease was 1.21 (1.12 to 1.31), and for cardiovascular disease was 1.14 (1.08 to 1.20) adjusted for age, sex, ethnicity, deprivation, and a smoking proxy (lung cancer mortality) using a Poisson regression model including a random effect term to account for residual heterogeneity. Corresponding relative risks for mortality were of similar magnitude, although with wider confidence limits. Admissions for coronary heart disease and cardiovascular disease were particularly affected by adjustment for South Asian ethnicity, which needs to be considered in interpretation. All results were robust to adjustment for particulate matter (PM10) air pollution, and road traffic noise, possible for London boroughs (population about 2.6 million). We could not distinguish between the effects of daytime or night time noise as these measures were highly correlated. High levels of aircraft noise were associated with increased risks of stroke, coronary heart disease, and cardiovascular disease for both hospital admissions and mortality in areas near Heathrow airport in London. As well as the possibility of causal associations, alternative explanations such as residual confounding and potential for ecological bias should be considered.
An analysis of collegiate band directors' exposure to sound pressure levels
NASA Astrophysics Data System (ADS)
Roebuck, Nikole Moore
Noise-induced hearing loss (NIHL) is a significant but unfortunate common occupational hazard. The purpose of the current study was to measure the magnitude of sound pressure levels generated within a collegiate band room and determine if those sound pressure levels are of a magnitude that exceeds the policy standards and recommendations of the Occupational Safety and Health Administration (OSHA), and the National Institute of Occupational Safety and Health (NIOSH). In addition, reverberation times were measured and analyzed in order to determine the appropriateness of acoustical conditions for the band rehearsal environment. Sound pressure measurements were taken from the rehearsal of seven collegiate marching bands. Single sample t test were conducted to compare the sound pressure levels of all bands to the noise exposure standards of OSHA and NIOSH. Multiple regression analysis were conducted and analyzed in order to determine the effect of the band room's conditions on the sound pressure levels and reverberation times. Time weighted averages (TWA), noise percentage doses, and peak levels were also collected. The mean Leq for all band directors was 90.5 dBA. The total accumulated noise percentage dose for all band directors was 77.6% of the maximum allowable daily noise dose under the OSHA standard. The total calculated TWA for all band directors was 88.2% of the maximum allowable daily noise dose under the OSHA standard. The total accumulated noise percentage dose for all band directors was 152.1% of the maximum allowable daily noise dose under the NIOSH standards, and the total calculated TWA for all band directors was 93dBA of the maximum allowable daily noise dose under the NIOSH standard. Multiple regression analysis revealed that the room volume, the level of acoustical treatment and the mean room reverberation time predicted 80% of the variance in sound pressure levels in this study.
Hatch, Leila T; Clark, Christopher W; Van Parijs, Sofie M; Frankel, Adam S; Ponirakis, Dimitri W
2012-12-01
The effects of chronic exposure to increasing levels of human-induced underwater noise on marine animal populations reliant on sound for communication are poorly understood. We sought to further develop methods of quantifying the effects of communication masking associated with human-induced sound on contact-calling North Atlantic right whales (Eubalaena glacialis) in an ecologically relevant area (~10,000 km(2) ) and time period (peak feeding time). We used an array of temporary, bottom-mounted, autonomous acoustic recorders in the Stellwagen Bank National Marine Sanctuary to monitor ambient noise levels, measure levels of sound associated with vessels, and detect and locate calling whales. We related wind speed, as recorded by regional oceanographic buoys, to ambient noise levels. We used vessel-tracking data from the Automatic Identification System to quantify acoustic signatures of large commercial vessels. On the basis of these integrated sound fields, median signal excess (the difference between the signal-to-noise ratio and the assumed recognition differential) for contact-calling right whales was negative (-1 dB) under current ambient noise levels and was further reduced (-2 dB) by the addition of noise from ships. Compared with potential communication space available under historically lower noise conditions, calling right whales may have lost, on average, 63-67% of their communication space. One or more of the 89 calling whales in the study area was exposed to noise levels ≥120 dB re 1 μPa by ships for 20% of the month, and a maximum of 11 whales were exposed to noise at or above this level during a single 10-min period. These results highlight the limitations of exposure-threshold (i.e., dose-response) metrics for assessing chronic anthropogenic noise effects on communication opportunities. Our methods can be used to integrate chronic and wide-ranging noise effects in emerging ocean-planning forums that seek to improve management of cumulative effects of noise on marine species and their habitats. ©2012 Society for Conservation Biology.
Chamber-core structures for fairing acoustic mitigation
NASA Astrophysics Data System (ADS)
Ardelean, Emil; Williams, Andrew; Korshin, Nicholas; Henderson, Kyle; Lane, Steven; Richard, Robert
2005-05-01
Extreme noise and vibration levels at lift-off and during ascent can damage sensitive payload components. Recently, the Air Force Research Laboratory, Space Vehicles Directorate has investigated a composite structure fabrication approach, called chamber-core, for building payload fairings. Chamber-core offers a strong, lightweight structure with inherent noise attenuation characteristics. It uses one-inch square axial tubes that are sandwiched between inner and outer face-sheets to form a cylindrical fairing structure. These hollow tubes can be used as acoustic dampers to attenuate the amplitude response of low frequency acoustic resonances within the fairing"s volume. A cylindrical, graphite-epoxy chamber-core structure was built to study noise transmission characteristics and to quantify the achievable performance improvement. The cylinder was tested in a semi-reverberant acoustics laboratory using bandlimited random noise at sound pressure levels up to 110 dB. The performance was measured using external and internal microphones. The noise reduction was computed as the ratio of the spatially averaged external response to the spatially averaged interior response. The noise reduction provided by the chamber-core cylinder was measured over three bandwidths, 20 Hz to 500 Hz, 20 Hz to 2000 Hz, and 20 Hz to 5000 Hz. For the bare cylinder with no acoustic resonators, the structure provided approximately 13 dB of attenuation over the 20 Hz to 500 Hz bandwidth. With the axial tubes acting as acoustic resonators at various frequencies over the bandwidth, the noise reduction provided by the cylinder increased to 18.2 dB, an overall increase of 4.8 dB over the bandwidth. Narrow-band reductions greater than 10 dB were observed at specific low frequency acoustic resonances. This was accomplished with virtually no added mass to the composite cylinder.
Graph state generation with noisy mirror-inverting spin chains
NASA Astrophysics Data System (ADS)
Clark, Stephen R.; Klein, Alexander; Bruderer, Martin; Jaksch, Dieter
2007-06-01
We investigate the influence of noise on a graph state generation scheme which exploits a mirror inverting spin chain. Within this scheme the spin chain is used repeatedly as an entanglement bus (EB) to create multi-partite entanglement. The noise model we consider comprises of each spin of this EB being exposed to independent local noise which degrades the capabilities of the EB. Here we concentrate on quantifying its performance as a single-qubit channel and as a mediator of a two-qubit entangling gate, since these are basic operations necessary for graph state generation using the EB. In particular, for the single-qubit case we numerically calculate the average channel fidelity and whether the channel becomes entanglement breaking, i.e. expunges any entanglement the transferred qubit may have with other external qubits. We find that neither local decay nor dephasing noise cause entanglement breaking. This is in contrast to local thermal and depolarizing noise where we determine a critical length and critical noise coupling, respectively, at which entanglement breaking occurs. The critical noise coupling for local depolarizing noise is found to exhibit a power-law dependence on the chain length. For two-qubits we similarly compute the average gate fidelity and whether the ability for this gate to create entanglement is maintained. The concatenation of these noisy gates for the construction of a five-qubit linear cluster state and a Greenberger Horne Zeilinger state indicates that the level of noise that can be tolerated for graph state generation is tightly constrained.
Could driving safety be compromised by noise exposure at work and noise-induced hearing loss?
Picard, Michel; Girard, Serge André; Courteau, Marilène; Leroux, Tony; Larocque, Richard; Turcotte, Fernand; Lavoie, Michel; Simard, Marc
2008-10-01
A study was conducted to verify if there is an association between occupational noise exposure, noise-induced hearing loss and driving safety expanding on previous findings by Picard, et al. (2008) that the two factors did increase accident risk in the workplace. This study was made possible when driving records of all Quebec drivers were made available by the Societe de l'assurance automobile du Quebec (SAAQ is the state monopoly responsible for the provision of motor vehicle insurance and the compensation of victims of traffic accidents). These records were linked with personal records maintained by the Quebec National Institute of Public Health as part of its mission to prevent noise induced hearing loss in the workplace. Individualized information on occupational noise exposure and hearing sensitivity was available for 46,030 male workers employed in noisy industries who also held a valid driver's permit. The observation period is of five years duration, starting with the most recent audiometric examination. The associations between occupational noise exposure levels, hearing status, and personal driving record were examined by log-binomial regression on data adjusted for age and duration of exposure. Daily noise exposures and bilateral average hearing threshold levels at 3, 4, and 6 kHz were used as independent variables while the dependent variables were 1) the number of motor vehicle accidents experienced by participants during the study period and 2) participants' records of registered traffic violations of the highway safety code. The findings are reported as prevalence ratios (PRs) with their 95% confidence intervals (CIs). Attributable numbers of events were computed with the relevant PRs, lesser-noise, exposed workers and those with normal hearing levels making the group of reference. Adjusting for age confirmed that experienced workers had fewer traffic accidents. The data show that occupational noise exposure and hearing loss have the same effect on driving safety record than that reported on the risk of accident in noisy industrial settings. Specifically, the risk of traffic accident (PR = 1.07 (CI 95% [1.01; 1.15]) is significantly associated with the daily occupational noise exposures >or= 100 dBA. For participants having a bilateral average hearing loss ranging from 16 to 30 dB, the PR of traffic accident is 1.06 (CI 95% [1.01; 1.11]) and reaches 1.31 (CI 95% [1.2; 1.42]) when the hearing loss exceeds of 50 dB. A reduction in the number of speeding violations occurred among workers occupationally exposed to noise levels >or= 90 dBA and those with noise-induced hearing loss >or=16 dB. By contrast, the same individuals had an increase in other violations of the Highway safety code. This suggests that noise-exposed workers might be less vigilant to other traffic hazards. Daily occupational noise exposures >or= 100 dBA and noise-induced hearing losses-even when just barely noticeable-may interfere with the safe operation of motor vehicles.
Modal content of noise generated by a coaxial jet in a pipe
NASA Technical Reports Server (NTRS)
Kerschen, E. J.; Johnston, J. P.
1978-01-01
Noise generated by air flow through a coaxial obstruction in a long, straight pipe was investigated with concentration on the modal characteristics of the noise field inside the pipe and downstream of the restriction. Two measurement techniques were developed for separation of the noise into the acoustic duct modes. The instantaneous mode separation technique uses four microphones, equally spaced in the circumferential direction, at the same axial location. The time-averaged mode separation technique uses three microphones mounted at the same axial location. A matrix operation on time-averaged data produces the modal pressure levels. This technique requires the restrictive assumption that the acoustic modes are uncorrelated with each other. The measured modal pressure spectra were converted to modal power spectra and integrated over the frequency range 200-6000 Hz. The acoustic efficiency levels (acoustic power normalized by jet kinetic energy flow), when plotted vs. jet Mach number, showed a strong dependence on the ratio of restriction diameter to pipe diameter. The acoustic energy flow analyses based on the thermodynamic energy equation and on the results of Mohring both resulted in orthogonality properties for the eigenfunctions of the radial mode shape equation. These orthogonality relationships involve the eigenvalues and derivatives of the radial mode shape functions.
Population density effect on radio frequencies interference (RFI) in radio astronomy
NASA Astrophysics Data System (ADS)
Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin; Hassan, Mohd Saiful Rizal; Rosli, Zulfazli; Hamidi, Zety Shahrizat
2012-06-01
Radio astronomical observation is infected by wide range of Radio Frequency Interference (RFI). We will also use information gathered from on-site RFI level measurements on selected 'good' areas generated by this study. After investigating a few suitable sites we will commence to the site and construct the RFI observation. Eventually, the best area we will be deciding from the observations soon. The result of this experiment will support our planning to build the first radio telescope in Malaysia. Radio observatories normally are located in remote area, in order to combat RFI from active spectrum users and radio noise produced in industrial or residential areas. The other solution for this problem is regulating the use of radio frequencies in the country (spectrum management). Measurement of RFI level on potential radio astronomical site can be done to measure the RFI levels at sites. Seven sites are chosen divide by three group, which is A, B and C. In this paper, we report the initial testing RFI survey for overall spectrum (0-2GHz) for those sites. The averaged RFI level above noise level at the three group sites are 19.0 (+/-1.79) dBm, 19.5 (+/-3.71) dBm and 17.0 (+/-3.71) dBm and the averaged RFI level above noise level for without main peaks are 20.1 (+/-1.77) dBm, 19.6 (+/-3.65) dBm and 17.2 (+/-1.43) dBm respectively.
Noise exposure levels for musicians during rehearsal and performance times.
McIlvaine, Devon; Stewart, Michael; Anderson, Robert
2012-03-01
The purpose of this study was to determine daily noise doses and 8-hour time weighted averages for rock band musicians, crew members, and spectators during a typical rehearsal and performance using both Occupational Safety and Health Administration (OSHA) and National Institute of Occupational Safety and Health (NIOSH) measurement criteria. Personal noise dosimetry was completed on five members of a rock band during one 2-hr rehearsal and one 4-hr performance. Time-weighted averages (TWA) and daily dose values were calculated using both OSHA and NIOSH criteria and compared to industry guidelines for enrollment in hearing conservation programs and the use of hearing protection devices. TWA values ranged from 84.3 to 90.4 dBA (OSHA) and from 90.0 to 96.4 dBA (NIOSH) during the rehearsal. The same values ranged from 91.0 to 99.7 dBA (OSHA) and 94.0 to 102.8 dBA (NIOSH) for the performance. During the rehearsal, daily noise doses ranged from 45.54% to 106.7% (OSHA) and from 317.74% to 1396.07% (NIOSH). During the performance, doses ranged from 114.66% to 382.49% (OSHA) and from 793.31% to 5970.15% (NIOSH). The musicians in this study were exposed to dangerously high levels of noise and should be enrolled in a hearing conservation programs. Hearing protection devices should be worn, especially during performances. The OSHA measurement criteria yielded values significantly more conservative than those produced by NIOSH criteria. Audiologists should counsel musician-patients about the hazards of excessive noise (music) exposure and how to protect their hearing.
SU-E-QI-17: Dependence of 3D/4D PET Quantitative Image Features On Noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, J; Budzevich, M; Zhang, G
2014-06-15
Purpose: Quantitative imaging is a fast evolving discipline where a large number of features are extracted from images; i.e., radiomics. Some features have been shown to have diagnostic, prognostic and predictive value. However, they are sensitive to acquisition and processing factors; e.g., noise. In this study noise was added to positron emission tomography (PET) images to determine how features were affected by noise. Methods: Three levels of Gaussian noise were added to 8 lung cancer patients PET images acquired in 3D mode (static) and using respiratory tracking (4D); for the latter images from one of 10 phases were used. Amore » total of 62 features: 14 shape, 19 intensity (1stO), 18 GLCM textures (2ndO; from grey level co-occurrence matrices) and 11 RLM textures (2ndO; from run-length matrices) features were extracted from segmented tumors. Dimensions of GLCM were 256×256, calculated using 3D images with a step size of 1 voxel in 13 directions. Grey levels were binned into 256 levels for RLM and features were calculated in all 13 directions. Results: Feature variation generally increased with noise. Shape features were the most stable while RLM were the most unstable. Intensity and GLCM features performed well; the latter being more robust. The most stable 1stO features were compactness, maximum and minimum length, standard deviation, root-mean-squared, I30, V10-V90, and entropy. The most stable 2ndO features were entropy, sum-average, sum-entropy, difference-average, difference-variance, difference-entropy, information-correlation-2, short-run-emphasis, long-run-emphasis, and run-percentage. In general, features computed from images from one of the phases of 4D scans were more stable than from 3D scans. Conclusion: This study shows the need to characterize image features carefully before they are used in research and medical applications. It also shows that the performance of features, and thereby feature selection, may be assessed in part by noise analysis.« less
Patrol Officer Daily Noise Exposure.
Gilbertson, Lynn R; Vosburgh, Donna J H
2015-01-01
Previous research shows that police officers are at a higher risk for noise induced hearing loss (NIHL). Little data exists on the occupational tasks, outside of the firing range, that might lead to the increased risk of NIHL. The current study collected noise dosimetry from patrol officers in a smaller department and a larger department in southern Wisconsin, United States. The noise dosimeters simultaneously measured noise in three virtual dosimeters that had different thresholds, criterion levels, and exchange rates. The virtual dosimeters were set to: the Occupational Safety and Health Administration (OSHA) hearing conservation criteria (OSHA-HC), the OSHA permissible exposure level criteria (OSHA-PEL), and the American Conference of Governmental Industrial Hygienists (ACGIH). In addition to wearing a noise dosimeter during their respective work days, officers completed a log form documenting the type of task performed, the duration of that task, if the task involved the use of a siren, and officer characteristics that may have influenced their noise exposure, such as the type of dispatch radio unit worn. Analysis revealed that the normalized 8-hour time weighted averages (TWA) for all officers fell below the recommended OSHA and ACGIH exposure limits. The tasks involving the use of the siren had significantly higher levels than the tasks without (p = 0.005). The highest noise exposure levels were encountered when patrol officers were assisting other public safety agencies such as a fire department or emergency medical services (79 dBA). Canine officers had higher normalized 8-hr TWA noise exposure than regular patrol officers (p = 0.002). Officers with an evening work schedule had significantly higher noise exposure than the officers with a day or night work schedule (p = 0.023). There were no significant differences in exposure levels between the two departments (p = 0.22). Results suggest that this study population is unlikely to experience NIHL as established by the OSHA or ACGIH occupational exposure levels from the daily occupational tasks that were monitored.
Communication system with adaptive noise suppression
NASA Technical Reports Server (NTRS)
Kozel, David (Inventor); Devault, James A. (Inventor); Birr, Richard B. (Inventor)
2007-01-01
A signal-to-noise ratio dependent adaptive spectral subtraction process eliminates noise from noise-corrupted speech signals. The process first pre-emphasizes the frequency components of the input sound signal which contain the consonant information in human speech. Next, a signal-to-noise ratio is determined and a spectral subtraction proportion adjusted appropriately. After spectral subtraction, low amplitude signals can be squelched. A single microphone is used to obtain both the noise-corrupted speech and the average noise estimate. This is done by determining if the frame of data being sampled is a voiced or unvoiced frame. During unvoiced frames an estimate of the noise is obtained. A running average of the noise is used to approximate the expected value of the noise. Spectral subtraction may be performed on a composite noise-corrupted signal, or upon individual sub-bands of the noise-corrupted signal. Pre-averaging of the input signal's magnitude spectrum over multiple time frames may be performed to reduce musical noise.
Auditory Exposure in the Neonatal Intensive Care Unit: Room Type and Other Predictors.
Pineda, Roberta; Durant, Polly; Mathur, Amit; Inder, Terrie; Wallendorf, Michael; Schlaggar, Bradley L
2017-04-01
To quantify early auditory exposures in the neonatal intensive care unit (NICU) and evaluate how these are related to medical and environmental factors. We hypothesized that there would be less auditory exposure in the NICU private room, compared with the open ward. Preterm infants born at ≤ 28 weeks gestation (33 in the open ward, 25 in private rooms) had auditory exposure quantified at birth, 30 and 34 weeks postmenstrual age (PMA), and term equivalent age using the Language Environmental Acquisition device. Meaningful language (P < .0001), the number of adult words (P < .0001), and electronic noise (P < .0001) increased across PMA. Silence increased (P = .0007) and noise decreased (P < .0001) across PMA. There was more silence in the private room (P = .02) than the open ward, with an average of 1.9 hours more silence in a 16-hour period. There was an interaction between PMA and room type for distant words (P = .01) and average decibels (P = .04), indicating that changes in auditory exposure across PMA were different for infants in private rooms compared with infants in the open ward. Medical interventions were related to more noise in the environment, although parent presence (P = .009) and engagement (P = .002) were related to greater language exposure. Average sound levels in the NICU were 58.9 ± 3.6 decibels, with an average peak level of 86.9 ± 1.4 decibels. Understanding the NICU auditory environment paves the way for interventions that reduce high levels of adverse sound and enhance positive forms of auditory exposure, such as language. Copyright © 2016 Elsevier Inc. All rights reserved.
Nuclear spin noise in NMR revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrand, Guillaume; Luong, Michel; Huber, Gaspard
2015-09-07
The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a “bump” or as a “dip” superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurementsmore » validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.« less
Psychoacoustic Analysis of Synthesized Jet Noise
NASA Technical Reports Server (NTRS)
Okcu, Selen; Rathsam, Jonathan; Rizzi, Stephen A.
2013-01-01
An aircraft noise synthesis capability is being developed so the annoyance caused by proposed aircraft can be assessed during the design stage. To make synthesized signals as realistic as possible, high fidelity simulation is required for source (e.g., engine noise, airframe noise), propagation and receiver effects. This psychoacoustic study tests whether the jet noise component of synthesized aircraft engine noise can be made more realistic using a low frequency oscillator (LFO) technique to simulate fluctuations in level observed in recordings. Jet noise predictions are commonly made in the frequency domain based on models of time-averaged empirical data. The synthesis process involves conversion of the frequency domain prediction into an audible pressure time history. However, because the predictions are time-invariant, the synthesized sound lacks fluctuations observed in recordings. Such fluctuations are hypothesized to be perceptually important. To introduce time-varying characteristics into jet noise synthesis, a method has been developed that modulates measured or predicted 1/3-octave band levels with a (<20Hz) LFO. The LFO characteristics are determined through analysis of laboratory jet noise recordings. For the aft emission angle, results indicate that signals synthesized using a generic LFO are perceived as more similar to recordings than those using no LFO, and signals synthesized with an angle-specific LFO are more similar to recordings than those synthesized with a generic LFO.
Ross, Zev; Kheirbek, Iyad; Clougherty, Jane E; Ito, Kazuhiko; Matte, Thomas; Markowitz, Steven; Eisl, Holger
2011-11-01
Epidemiological studies have linked both noise and air pollution to common adverse health outcomes such as increased blood pressure and myocardial infarction. In urban settings, noise and air pollution share important sources, notably traffic, and several recent studies have shown spatial correlations between noise and air pollution. The temporal association between these exposures, however, has yet to be thoroughly investigated despite the importance of time series studies in air pollution epidemiology and the potential that correlations between these exposures could at least partly confound statistical associations identified in these studies. An aethelometer, for continuous elemental carbon measurement, was co-located with a continuous noise monitor near a major urban highway in New York City for six days in August 2009. Hourly elemental carbon measurements and hourly data on overall noise levels and low, medium and high frequency noise levels were collected. Hourly average concentrations of fine particles and nitrogen oxides, wind speed and direction and car, truck and bus traffic were obtained from nearby regulatory monitors. Overall temporal patterns, as well as day-night and weekday-weekend patterns, were characterized and compared for all variables. Noise levels were correlated with car, truck, and bus traffic and with air pollutants. We observed strong day-night and weekday-weekend variation in noise and air pollutants and correlations between pollutants varied by noise frequency. Medium and high frequency noise were generally more strongly correlated with traffic and traffic-related pollutants than low frequency noise and the correlation with medium and high frequency noise was generally stronger at night. Correlations with nighttime high frequency noise were particularly high for car traffic (Spearman rho=0.84), nitric oxide (0.73) and nitrogen dioxide (0.83). Wind speed and direction mediated relationships between pollutants and noise. Noise levels are temporally correlated with traffic and combustion pollutants and correlations are modified by the time of day, noise frequency and wind. Our results underscore the potential importance of assessing temporal variation in co-exposures to noise and air pollution in studies of the health effects of these urban pollutants. Copyright © 2011 Elsevier Inc. All rights reserved.
Magnusson, P; Olsson, L E
2000-08-01
Magnetic response image plane nonuniformity and stochastic noise are properties that greatly influence the outcome of quantitative magnetic resonance imaging (MRI) evaluations such as gel dosimetry measurements using MRI. To study these properties, robust and accurate image analysis methods are required. New nonuniformity level assessment methods were designed, since previous methods were found to be insufficiently robust and accurate. The new and previously reported nonuniformity level assessment methods were analyzed with respect to, for example, insensitivity to stochastic noise; and previously reported stochastic noise level assessment methods with respect to insensitivity to nonuniformity. Using the same image data, different methods were found to assess significantly different levels of nonuniformity. Nonuniformity levels obtained using methods that count pixels in an intensity interval, and obtained using methods that use only intensity values, were found not to be comparable. The latter were found preferable, since they assess the quantity intrinsically sought. A new method which calculates a deviation image, with every pixel representing the deviation from a reference intensity, was least sensitive to stochastic noise. Furthermore, unlike any other analyzed method, it includes all intensity variations across the phantom area and allows for studies of nonuniformity shapes. This new method was designed for accurate studies of nonuniformities in gel dosimetry measurements, but could also be used with benefit in quality assurance and acceptance testing of MRI, scintillation camera, and computer tomography systems. The stochastic noise level was found to be greatly method dependent. Two methods were found to be insensitive to nonuniformity and also simple to use in practice. One method assesses the stochastic noise level as the average of the levels at five different positions within the phantom area, and the other assesses the stochastic noise in a region outside the phantom area.
Babisch, Wolfgang; Wolf, Kathrin; Petz, Markus; Heinrich, Joachim; Cyrys, Josef; Peters, Annette
2014-05-01
Studies on the association between traffic noise and cardiovascular diseases have rarely considered air pollution as a covariate in the analyses. Isolated systolic hypertension has not yet been in the focus of epidemiological noise research. The association between traffic noise (road and rail) and the prevalence of hypertension was assessed in two study populations with a total of 4,166 participants 25-74 years of age. Traffic noise (weighted day-night average noise level; LDN) at the facade of the dwellings was derived from noise maps. Annual average PM2.5 mass concentrations at residential addresses were estimated by land-use regression. Hypertension was assessed by blood pressure readings, self-reported doctor-diagnosed hypertension, and antihypertensive drug intake. In the Greater Augsburg, Germany, study population, traffic noise and air pollution were not associated with hypertension. In the City of Augsburg population (n = 1,893), where the exposure assessment was more detailed, the adjusted odds ratio (OR) for a 10-dB(A) increase in noise was 1.16 (95% CI: 1.00, 1.35), and 1.11 (95% CI: 0.94, 1.30) after additional adjustment for PM2.5. The adjusted OR for a 1-μg/m3 increase in PM2.5 was 1.15 (95% CI: 1.02, 1.30), and 1.11 (95% CI: 0.98, 1.27) after additional adjustment for noise. For isolated systolic hypertension, the fully adjusted OR for noise was 1.43 (95% CI: 1.10, 1.86) and for PM2.5 was 1.08 (95% CI: 0.87, 1.34). Traffic noise and PM2.5 were both associated with a higher prevalence of hypertension. Mutually adjusted associations with hypertension were positive but no longer statistically significant.
Directivity and trends of noise generated by a propeller in a wake
NASA Technical Reports Server (NTRS)
Block, P. J. W.; Gentry, C. L., Jr.
1986-01-01
An experimental study of the effects on far-field propeller noise of a pylon wake interaction was conducted with a scale model of a single-rotation propeller in a low-speed anechoic wind tunnel. A detailed mapping of the noise directivity was obtained at 10 test conditions covering a wide range of propeller power landings at several subsonic tip speeds. Two types of noise penalties were investigated-pulser and spacing. The pusher noise penalty is the difference in the average overall sound pressure level, OASPL, for pusher and tractor installations. (In a pusher installation, the propeller disk is downstream of a pylon or another aerodynamic surface.) The spacing noise penalty is the difference in the average OASPL for different distances between the pylon trailing edge and the propeller. The variations of these noise penalties with axial, or flyover, angle theta and circumferential angle phi are presented, and the trends in these noise penalties with tip Mach number and power loading are given for selected values of theta and phi. The circumferential directivity of the noise from a pusher installation showed that the addition noise due to the interaction of the pylon wake with the propeller had a broad peak over a wide range of circumferential angles approximately perpendicular to the pylon with a sharp minimum 90 deg. to the pylon for the majority of cases tested. The variation of the pusher noise penalty with theta had a minimum occurring near the propeller plane and maximum values of as much as 20 dB occurring toward the propeller axes. The magnitude of the pusher noise penalty generally decreased as propeller tip Mach number or power loading was increased.
Sutbas, Aziz; Yetiser, Sertac; Satar, Bulent; Akcam, Timur; Karahatay, Serdar; Saglam, Kenan
2007-01-01
The aim of our study was to outline the prevalence of hyperlipidemia in patients who had high-frequency hearing loss and tinnitus due to noise exposure. We investigated the role of a low-cholesterol diet and antihyperlipidemic therapy to alleviate the severity of tinnitus and possibly promote hearing gain after therapy in patients with acoustic trauma. Forty-two hyperlipidemic patients with subjective tinnitus and hearing loss due to noise exposure were enrolled for the study. We placed patients on a low-cholesterol diet or antihyperlipidemic therapy and followed them for up to 24 months; then we designated two groups as either "unresponsive" (n = 22; no response to either of the therapies and still experiencing hyperlipidemia) or "responsive" (n = 20; lower cholesterol or triglyceride levels). We then compared tinnitus scores and hearing levels in the two groups. The difference between tinnitus scores in the unresponsive and responsive groups and the change in tinnitus scores before and after therapy in the responsive group were significant. When we compared self-rated tinnitus severity results in two groups after therapy, we found the difference was significant (p < .05). The difference between average air-conduction thresholds at high frequencies after the treatment in the two groups was also significant. The incidence of hyperlipidemia is high among patients with noise-induced hearing loss, and significant improvement by way of lowered tinnitus intensity and higher frequencies in average hearing thresholds can be achieved after lowering the serum lipid level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ZHANG, H; Huang, J; Ma, J
2014-06-15
Purpose: To study the noise correlation properties of cone-beam CT (CBCT) projection data and to incorporate the noise correlation information to a statistics-based projection restoration algorithm for noise reduction in low-dose CBCT. Methods: In this study, we systematically investigated the noise correlation properties among detector bins of CBCT projection data by analyzing repeated projection measurements. The measurements were performed on a TrueBeam on-board CBCT imaging system with a 4030CB flat panel detector. An anthropomorphic male pelvis phantom was used to acquire 500 repeated projection data at six different dose levels from 0.1 mAs to 1.6 mAs per projection at threemore » fixed angles. To minimize the influence of the lag effect, lag correction was performed on the consecutively acquired projection data. The noise correlation coefficient between detector bin pairs was calculated from the corrected projection data. The noise correlation among CBCT projection data was then incorporated into the covariance matrix of the penalized weighted least-squares (PWLS) criterion for noise reduction of low-dose CBCT. Results: The analyses of the repeated measurements show that noise correlation coefficients are non-zero between the nearest neighboring bins of CBCT projection data. The average noise correlation coefficients for the first- and second- order neighbors are about 0.20 and 0.06, respectively. The noise correlation coefficients are independent of the dose level. Reconstruction of the pelvis phantom shows that the PWLS criterion with consideration of noise correlation (PWLS-Cor) results in a lower noise level as compared to the PWLS criterion without considering the noise correlation (PWLS-Dia) at the matched resolution. Conclusion: Noise is correlated among nearest neighboring detector bins of CBCT projection data. An accurate noise model of CBCT projection data can improve the performance of the statistics-based projection restoration algorithm for low-dose CBCT.« less
Data Quality Control Tools Applied to Seismo-Acoustic Arrays in Korea
NASA Astrophysics Data System (ADS)
Park, J.; Hayward, C.; Stump, B. W.
2017-12-01
We assess data quality (data gap, seismometer orientation, timing error, noise level and coherence between co-located sensors) for seismic and infrasound data in South Korea using six seismo-acoustic arrays, BRDAR, CHNAR, KSGAR, KMPAR, TJIAR, and YPDAR, cooperatively operated by Southern Methodist University and Korea Institute for Geosciences and Mineral Resources. Timing errors associated with seismometers can be found based on estimated changes in instrument orientation calculated from RMS errors between the reference array and each array seismometer using waveforms filtered from 0.1 to 0.35 Hz. Noise levels of seismic and infrasound data are analyzed to investigate local environmental effects and seasonal noise variation. In order to examine the spectral properties of the noise, the waveform are analyzed using Welch's method (Welch, 1967) that produces a single power spectral estimate from an average of spectra taken at regular intervals over a specific time period. This analysis quantifies the range of noise conditions found at each of the arrays over the given time period. We take an advantage of the fact that infrasound sensors are co-located or closely located to one another, which allows for a direct comparison of sensors, following the method by Ringler et al. (2010). The power level differences between two sensors at the same array in the frequency band of interest are used to monitor temporal changes in data quality and instrument conditions. A data quality factor is assigned to stations based on the average values of temporal changes estimated in the frequency and time domains. These monitoring tools enable us to automatically assess technical issue related to the instruments and data quality at each seismo-acoustic array as well as to investigate local environmental effects and seasonal variations in both seismic and infrasound data.
Internal curvature signal and noise in low- and high-level vision
Grabowecky, Marcia; Kim, Yee Joon; Suzuki, Satoru
2011-01-01
How does internal processing contribute to visual pattern perception? By modeling visual search performance, we estimated internal signal and noise relevant to perception of curvature, a basic feature important for encoding of three-dimensional surfaces and objects. We used isolated, sparse, crowded, and face contexts to determine how internal curvature signal and noise depended on image crowding, lateral feature interactions, and level of pattern processing. Observers reported the curvature of a briefly flashed segment, which was presented alone (without lateral interaction) or among multiple straight segments (with lateral interaction). Each segment was presented with no context (engaging low-to-intermediate-level curvature processing), embedded within a face context as the mouth (engaging high-level face processing), or embedded within an inverted-scrambled-face context as a control for crowding. Using a simple, biologically plausible model of curvature perception, we estimated internal curvature signal and noise as the mean and standard deviation, respectively, of the Gaussian-distributed population activity of local curvature-tuned channels that best simulated behavioral curvature responses. Internal noise was increased by crowding but not by face context (irrespective of lateral interactions), suggesting prevention of noise accumulation in high-level pattern processing. In contrast, internal curvature signal was unaffected by crowding but modulated by lateral interactions. Lateral interactions (with straight segments) increased curvature signal when no contextual elements were added, but equivalent interactions reduced curvature signal when each segment was presented within a face. These opposing effects of lateral interactions are consistent with the phenomena of local-feature contrast in low-level processing and global-feature averaging in high-level processing. PMID:21209356
Dose — response relationship between noise exposure and the risk of occupational injury
Yoon, Jin-Ha; Hong, Jeong-Suk; Roh, Jaehoon; Kim, Chi-Nyon; Won, Jong-Uk
2015-01-01
Many workers worldwide experience fatality and disability caused by occupational injuries. This study examined the relationship between noise exposure and occupational injuries at factories in Korea. A total of 1790 factories located in northern Gyeonggi Province, Korea was evaluated. The time-weighted average levels of dust and noise exposure were taken from Workplace Exposure Assessment data. Apart occupational injuries, sports events, traffic accidents, and other accidents occurring outside workplaces were excluded. The incidences of occupational injury in each factory were calculated by data from the Korea Workers’ Compensation and Welfare Services. Workplaces were classified according to the incidence of any occupational injuries (incident or nonincident workplaces, respectively). Workplace dust exposure was classified as <1 or ≥1 mg/m3, and noise exposure as <80, 80-89, or >90 dB. Workplaces with high noise exposure were significantly associated with being incident workplaces, whereas workplaces with high dust exposure were not. The odds ratios (95% confidence intervals) derived from a logistic regression model were 1.68 (1.27-2.24) and 3.42 (2.26-5.17) at 80-89 dB and ≥90 dB versus <80 dB. These associations remained significant when in a separate analysis according to high or low dust exposure level. Noise exposure increases the risk of occupational injury in the workplace. Furthermore, the risk of occupational injury increases with noise exposure level in a dose-response relationship. Therefore, strategies for reducing noise exposure level are required to decrease the risk of occupational injury. PMID:25599757
Perceptual learning improves visual performance in juvenile amblyopia.
Li, Roger W; Young, Karen G; Hoenig, Pia; Levi, Dennis M
2005-09-01
To determine whether practicing a position-discrimination task improves visual performance in children with amblyopia and to determine the mechanism(s) of improvement. Five children (age range, 7-10 years) with amblyopia practiced a positional acuity task in which they had to judge which of three pairs of lines was misaligned. Positional noise was produced by distributing the individual patches of each line segment according to a Gaussian probability function. Observers were trained at three noise levels (including 0), with each observer performing between 3000 and 4000 responses in 7 to 10 sessions. Trial-by-trial feedback was provided. Four of the five observers showed significant improvement in positional acuity. In those four observers, on average, positional acuity with no noise improved by approximately 32% and with high noise by approximately 26%. A position-averaging model was used to parse the improvement into an increase in efficiency or a decrease in equivalent input noise. Two observers showed increased efficiency (51% and 117% improvements) with no significant change in equivalent input noise across sessions. The other two observers showed both a decrease in equivalent input noise (18% and 29%) and an increase in efficiency (17% and 71%). All five observers showed substantial improvement in Snellen acuity (approximately 26%) after practice. Perceptual learning can improve visual performance in amblyopic children. The improvement can be parsed into two important factors: decreased equivalent input noise and increased efficiency. Perceptual learning techniques may add an effective new method to the armamentarium of amblyopia treatments.
Akbar-Khanzadeh, Farhang; Ames, April L; Milz, Sheryl A; Akbar-Khanzadeh, Mahboubeh
2013-01-01
Noise exposure is a distinct hazard during hand-held concrete grinding activities, and its assessment is challenging because of the many variables involved. Noise dosimeters were used to examine the extent of personal noise exposure while concrete grinding was performed with a variety of grinder sizes, types, accessories, and available dust control methods. Noise monitoring was conducted in an enclosed area covering 52 task-specific grinding sessions lasting from 6 to 72 minutes. Noise levels, either in minute average noise level (Lavg, dBA) or in minute peak (dBC), during concrete grinding were significantly (P < 0.01) correlated with general ventilation (GV: on, off), dust control methods (uncontrolled, wet, Shop-Vac, HEPA, HEPA-Cyclone), grinding cup wheel (blade) sizes of 4-inch (100 mm), 5-inch (125 mm) and 6-inch (150 mm), and surface orientation (horizontal, inclined). Overall, minute Lavg during grinding was 97.0 ± 3.3 (mean ± SD), ranging from 87.9 to 113. The levels of minute Lavg during uncontrolled grinding (98.9 ± 5.2) or wet-grinding (98.5 ± 2.7) were significantly higher than those during local exhaust ventilation (LEV) grinding (96.2 ± 2.8). A 6-inch grinding cup wheel generated significantly higher noise levels (98.7 ± 2.8) than 5-inch (96.3 ± 3.2) or 4-inch (95.3 ± 3.5) cup wheels. The minute peak noise levels (dBC) during grinding was 113 ± 5.2 ranging from 104 to 153. The minute peak noise levels during uncontrolled grinding (119 ± 10.2) were significantly higher than those during wet-grinding (115 ± 4.5) and LEV-grinding (112 ± 3.4). A 6-inch grinding cup wheel generated significantly higher minute peak noise levels (115 ± 5.3) than 5-inch (112 ± 4.5) or 4-inch (111 ± 5.4) cup wheels. Assuming an 8-hour work shift, the results indicated that noise exposure levels during concrete grinding in enclosed areas exceeded the recommended permissible exposure limits and workers should be protected by engineering control methods, safe work practices, and/or personal protective devices.
Influence of traffic-related noise and air pollution on self-reported fatigue.
Jazani, Reza Khani; Saremi, Mahnaz; Rezapour, Tara; Kavousi, Amir; Shirzad, Hadi
2015-01-01
A growing body of evidence suggests that exposure to environmental pollutions is related to health problems. It is, however, questionable whether this condition affects working performance in occupational settings. The aim of this study is to determine the predictive value of age as well as traffic related air and noise pollutions for fatigue. 246 traffic officers participated in this study. Air pollution data were obtained from the local Air Quality Control Company. A sound level meter was used for measuring ambient noise. Fatigue was evaluated by the MFI-20 questionnaire. The general and physical scales showed the highest, while the reduced activity scale showed the lowest level of fatigue. Age had an independent direct effect on reduced activity and physical fatigue. The average of daytime equivalent noise level was between 71.63 and 88.51 dB(A). In the case of high noise exposure, older officers feel more fatigue than younger ones. Exposure to PM10 and O3 resulted in general and physical fatigue. Complex Interactions between SO2, CO and NO2 were found. Exposure to noise and some components of air pollution, especially O3 and PM10, increases fatigue. The authorities should adopt and rigorously implement environmental protection policies in order to protect people.
Sieber, Chloé; Ragettli, Martina S; Brink, Mark; Toyib, Olaniyan; Baatjies, Roslyn; Saucy, Apolline; Probst-Hensch, Nicole; Dalvie, Mohamed Aqiel; Röösli, Martin
2017-10-20
In low- and middle-income countries, noise exposure and its negative health effects have been little explored. The present study aimed to assess the noise exposure situation in adults living in informal settings in the Western Cape Province, South Africa. We conducted continuous one-week outdoor noise measurements at 134 homes in four different areas. These data were used to develop a land use regression (LUR) model to predict A-weighted day-evening-night equivalent sound levels (L den ) from geographic information system (GIS) variables. Mean noise exposure during day (6:00-18:00) was 60.0 A-weighted decibels (dB(A)) (interquartile range 56.9-62.9 dB(A)), during night (22:00-6:00) 52.9 dB(A) (49.3-55.8 dB(A)) and average L den was 63.0 dB(A) (60.1-66.5 dB(A)). Main predictors of the LUR model were related to road traffic and household density. Model performance was low (adjusted R 2 = 0.130) suggesting that other influences than those represented in the geographic predictors are relevant for noise exposure. This is one of the few studies on the noise exposure situation in low- and middle-income countries. It demonstrates that noise exposure levels are high in these settings.
Characterization of electrical noise limits in ultra-stable laser systems.
Zhang, J; Shi, X H; Zeng, X Y; Lü, X L; Deng, K; Lu, Z H
2016-12-01
We demonstrate thermal noise limited and shot noise limited performance of ultra-stable diode laser systems. The measured heterodyne beat linewidth between such two independent diode lasers reaches 0.74 Hz. The frequency instability of one single laser approaches 1.0 × 10 -15 for averaging time between 0.3 s and 10 s, which is close to the thermal noise limit of the reference cavity. Taking advantage of these two ultra-stable laser systems, we systematically investigate the ultimate electrical noise contributions, and derive expressions for the closed-loop spectral density of laser frequency noise. The measured power spectral density of the beat frequency is compared with the theoretically calculated closed-loop spectral density of the laser frequency noise, and they agree very well. It illustrates the power and generality of the derived closed-loop spectral density formula of the laser frequency noise. Our result demonstrates that a 10 -17 level locking in a wide frequency range is feasible with careful design.
Characterizing noise and perceived work environment in a neurological intensive care unit.
Ryherd, Erica E; Waye, Kerstin Persson; Ljungkvist, Linda
2008-02-01
The hospital sound environment is complex. Alarms, medical equipment, activities, and ventilation generate noise that may present occupational problems as well as hinder recovery among patients. In this study, sound measurements and occupant evaluations were conducted in a neurological intensive care unit. Staff completed questionnaires regarding psychological and physiological reactions to the sound environment. A-weighted equivalent, minimum, and maximum (L(Aeq),L(AFMin),L(AFMax)) and C-weighted peak (L(CPeak)) sound pressure levels were measured over five days at patient and staff locations. Acoustical descriptors that may be explored further were investigated, including level distributions, restorative periods, and spectral content. Measurements near the patients showed average L(Aeq) values of 53-58 dB. The mean length of restorative periods (L(Aeq) below 50 dB for more than 5 min) was 9 and 13 min for day and night, respectively. Ninety percent of the time, the L(AFMax) levels exceeded 50 dB and L(CPeak) exceeded 70 dB. Dosimeters worn by the staff revealed higher noise levels. Personnel perceived the noise as contributing to stress symptoms. Compared to the majority of previous studies, this study provides a more thorough description of intensive care noise and aids in understanding how the sound environment may be disruptive to occupants.
Prieve, Kurt; Rice, Amanda; Raynor, Peter C
2017-08-01
The aims of this study were to evaluate sound levels produced by compressed air guns in research and development (R&D) environments, replace conventional air gun models with advanced noise-reducing air nozzles, and measure changes in sound levels to assess the effectiveness of the advanced nozzles as engineering controls for noise. Ten different R&D manufacturing areas that used compressed air guns were identified and included in the study. A-weighted sound level and Z-weighted octave band measurements were taken simultaneously using a single instrument. In each area, three sets of measurements, each lasting for 20 sec, were taken 1 m away and perpendicular to the air stream of the conventional air gun while a worker simulated typical air gun work use. Two different advanced noise-reducing air nozzles were then installed. Sound level and octave band data were collected for each of these nozzles using the same methods as for the original air guns. Both of the advanced nozzles provided sound level reductions of about 7 dBA, on average. The highest noise reductions measured were 17.2 dBA for one model and 17.7 dBA for the other. In two areas, the advanced nozzles yielded no sound level reduction, or they produced small increases in sound level. The octave band data showed strong similarities in sound level among all air gun nozzles within the 10-1,000 Hz frequency range. However, the advanced air nozzles generally had lower noise contributions in the 1,000-20,000 Hz range. The observed decreases at these higher frequencies caused the overall sound level reductions that were measured. Installing new advanced noise-reducing air nozzles can provide large sound level reductions in comparison to existing conventional nozzles, which has direct benefit for hearing conservation efforts.
Development of an Empirical Methods for Predicting Jet Mixing Noise of Cold Flow Rectangular Jets
NASA Technical Reports Server (NTRS)
Russell, James W.
1999-01-01
This report presents an empirical method for predicting the jet mixing noise levels of cold flow rectangular jets. The report presents a detailed analysis of the methodology used in development of the prediction method. The empirical correlations used are based on narrow band acoustic data for cold flow rectangular model nozzle tests conducted in the NASA Langley Jet Noise Laboratory. There were 20 separate nozzle test operating conditions. For each operating condition 60 Hz bandwidth microphone measurements were made over a frequency range from 0 to 60,000 Hz. Measurements were performed at 16 polar directivity angles ranging from 45 degrees to 157.5 degrees. At each polar directivity angle, measurements were made at 9 azimuth directivity angles. The report shows the methods employed to remove screech tones and shock noise from the data in order to obtain the jet mixing noise component. The jet mixing noise was defined in terms of one third octave band spectral content, polar and azimuth directivity, and overall power level. Empirical correlations were performed over the range of test conditions to define each of these jet mixing noise parameters as a function of aspect ratio, jet velocity, and polar and azimuth directivity angles. The report presents the method for predicting the overall power level, the average polar directivity, the azimuth directivity and the location and shape of the spectra for jet mixing noise of cold flow rectangular jets.
Evidence for a dose-response relationship between occupational noise and blood pressure.
Talbott, E O; Gibson, L B; Burks, A; Engberg, R; McHugh, K P
1999-01-01
In this study, we investigated the role of occupational noise exposure and blood pressure among workers at 2 plants. A noise-exposed plant (plant 1, > or = 89 dBA) and a less-noise-exposed plant (plant 2, < or = 83 dBA) were chosen. Exposure was based on department-wide average noise measures; on the basis of job location and adjusting for layoffs during their employment at the plant, a cumulative time-weighted average noise level was calculated for each worker. The study population comprised 329 males in plant 1 and 314 males in plant 2. Their ages ranged from 40 to 63 y (mean ages = 49.6 and 48.7, respectively), and they had worked at least 15 y at the plant. The clinical examination was administered prior to the workday and measured height, weight, pulse, and blood pressure. In addition, we noted medical and personal-habits histories, including alcohol intake and cigarette smoking patterns. We used a questionnaire to determine in-depth occupation, military history, noisy hobbies, and family history of hypertension. When individuals who took blood-pressure medication were removed from the analysis, t tests for differences in average blood pressure between plants showed a mean systolic blood pressure of 123.3 mm Hg in plant 1 versus 120.8 mm Hg in plant 2 (p = .06) and a mean diastolic blood pressure of 80.3 mm Hg versus 77.8 mm Hg in Plant 1 and 2, respectively (p = .014). On the basis of data from the combined plants, multivariate analysis revealed that age, body mass index, cumulative noise exposure, current use of blood pressure medications, and alcohol intake were significant predictors for systolic blood pressure. Cumulative noise exposure was a significant predictor of diastolic blood pressure in plant 1 but not in plant 2, possibly reflecting a threshold effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, J; Budzevich, M; Moros, E
Purpose: To investigate the relationship between quantitative image features (i.e. radiomics) and statistical fluctuations (i.e. electronic noise) in clinical Computed Tomography (CT) using the standardized American College of Radiology (ACR) CT accreditation phantom and patient images. Methods: Three levels of uncorrelated Gaussian noise were added to CT images of phantom and patients (20) acquired in static mode and respiratory tracking mode. We calculated the noise-power spectrum (NPS) of the original CT images of the phantom, and of the phantom images with added Gaussian noise with means of 50, 80, and 120 HU. Concurrently, on patient images (original and noise-added images),more » image features were calculated: 14 shape, 19 intensity (1st order statistics from intensity volume histograms), 18 GLCM features (2nd order statistics from grey level co-occurrence matrices) and 11 RLM features (2nd order statistics from run-length matrices). These features provide the underlying structural information of the images. GLCM (size 128x128) was calculated with a step size of 1 voxel in 13 directions and averaged. RLM feature calculation was performed in 13 directions with grey levels binning into 128 levels. Results: Adding the electronic noise to the images modified the quality of the NPS, shifting the noise from mostly correlated to mostly uncorrelated voxels. The dramatic increase in noise texture did not affect image structure/contours significantly for patient images. However, it did affect the image features and textures significantly as demonstrated by GLCM differences. Conclusion: Image features are sensitive to acquisition factors (simulated by adding uncorrelated Gaussian noise). We speculate that image features will be more difficult to detect in the presence of electronic noise (an uncorrelated noise contributor) or, for that matter, any other highly correlated image noise. This work focuses on the effect of electronic, uncorrelated, noise and future work shall examine the influence of changes in quantum noise on the features. J. Oliver was supported by NSF FGLSAMP BD award HRD #1139850 and the McKnight Doctoral Fellowship.« less
Use of scan overlap redundancy to enhance multispectral aircraft scanner data
NASA Technical Reports Server (NTRS)
Lindenlaub, J. C.; Keat, J.
1973-01-01
Two criteria were suggested for optimizing the resolution error versus signal-to-noise-ratio tradeoff. The first criterion uses equal weighting coefficients and chooses n, the number of lines averaged, so as to make the average resolution error equal to the noise error. The second criterion adjusts both the number and relative sizes of the weighting coefficients so as to minimize the total error (resolution error plus noise error). The optimum set of coefficients depends upon the geometry of the resolution element, the number of redundant scan lines, the scan line increment, and the original signal-to-noise ratio of the channel. Programs were developed to find the optimum number and relative weights of the averaging coefficients. A working definition of signal-to-noise ratio was given and used to try line averaging on a typical set of data. Line averaging was evaluated only with respect to its effect on classification accuracy.
Are high flow nasal cannulae noisier than bubble CPAP for preterm infants?
Roberts, C T; Dawson, J A; Alquoka, E; Carew, P J; Donath, S M; Davis, P G; Manley, B J
2014-07-01
Noise exposure in the neonatal intensive care unit is believed to be a risk factor for hearing loss in preterm neonates. Continuous positive airway pressure (CPAP) devices exceed recommended noise levels. High flow nasal cannulae (HFNC) are an increasingly popular alternative to CPAP for treating preterm infants, but there are no in vivo studies assessing noise production by HFNC. To study whether HFNC are noisier than bubble CPAP (BCPAP) for preterm infants. An observational study of preterm infants receiving HFNC or BCPAP. Noise levels within the external auditory meatus (EAM) were measured using a microphone probe tube connected to a calibrated digital dosimeter. Noise was measured across a range of frequencies and reported as decibels A-weighted (dBA). A total of 21 HFNC and 13 BCPAP noise measurements were performed in 21 infants. HFNC gas flows were 2-5 L/min, and BCPAP gas flows were 6-10 L/min with set pressures of 5-7 cm of water. There was no evidence of a difference in average noise levels measured at the EAM: mean difference (95% CI) of -1.6 (-4.0 to 0.9) dBA for HFNC compared to BCPAP. At low frequency (500 Hz), HFNC was mean (95% CI) 3.0 (0.3 to 5.7) dBA quieter than BCPAP. Noise increased with increasing BCPAP gas flow (p=0.007), but not with increasing set pressure. There was a trend to noise increasing with increasing HFNC gas flows. At the gas flows studied, HFNC are not noisier than BCPAP for preterm infants.
Aquarius Instrument Science Calibration During the Risk Reduction Phase
NASA Technical Reports Server (NTRS)
Ruf, Christopher S.
2004-01-01
This final report presents the results of work performed under NASA Grant NAG512726 during the period 15 January 2003 through 30 June 2004. An analysis was performed of a possible vicarious calibration method for use by Aquarius to monitor and stabilize the absolute and relative calibration of its microwave radiometer. Stationary statistical properties of the brightness temperature (T(sub B)) measured by a low Earth orbiting radiometer operating at 1.4135 GHz are considered as a means of validating its absolute calibration. The global minimum, maximum, and average T(sub B) are considered, together with a vicarious cold reference method that detects the presence of a sharp lower bound on naturally occurring values for T(sub B). Of particular interest is the reliability with which these statistics can be extracted from a realistic distribution of T(sub B) measurements that would be observed by a typical sensor. Simulations of measurements are performed that include the effects of instrument noise and variable environmental factors such as the global water vapor and ocean surface temperature, salinity and wind distributions. Global minima can vary widely due to instrument noise and are not a reliable calibration reference. Global maxima are strongly influenced by several environmental factors as well as instrument noise and are even less stationary. Global averages are largely insensitive to instrument noise and, in most cases, to environmental conditions as well. The global average T(sub B) varies at only the 0.1 K RMS level except in cases of anomalously high winds, when it can increase considerably more. The vicarious cold reference is similarly insensitive to instrument effects and most environmental factors. It is not significantly affected by high wind conditions. The stability of the vicarious reference is, however, found to be somewhat sensitive (at the several tenths of Kelvins level) to variations in the background cold space brightness, T(sub c). The global average is much less sensitive to this parameter and so using two approaches together can be mutually beneficial.
Helicopter rotor noise investigation during ice accretion
NASA Astrophysics Data System (ADS)
Cheng, Baofeng
An investigation of helicopter rotor noise during ice accretion is conducted using experimental, theoretical, and numerical methods. This research is the acoustic part of a joint helicopter rotor icing physics, modeling, and detection project at The Pennsylvania State University Vertical Lift Research Center of Excellence (VLRCOE). The current research aims to provide acoustic insight and understanding of the rotor icing physics and investigate the feasibility of detecting rotor icing through noise measurements, especially at the early stage of ice accretion. All helicopter main rotor noise source mechanisms and their change during ice accretion are discussed. Changes of the thickness noise, steady loading noise, and especially the turbulent boundary layer - trailing edge (TBL-TE) noise due to ice accretion are identified and studied. The change of the discrete frequency noise (thickness noise and steady loading noise) due to ice accretion is calculated by using PSU-WOPWOP, an advanced rotorcraft acoustic prediction code. The change is noticeable, but too small to be used in icing detection. The small thickness noise change is due to the small volume of the accreted ice compared to that of the entire blade, although a large iced airfoil shape is used. For the loading noise calculation, two simplified methods are used to generate the loading on the rotor blades, which is the input for the loading noise calculation: 1) compact loading from blade element momentum theory, icing effects are considered by increasing the drag coefficient; and 2) pressure loading from the 2-D CFD simulation, icing effects are considered by using the iced airfoil shape. Comprehensive rotor broadband noise measurements are carried out on rotor blades with different roughness sizes and rotation speeds in two facilities: the Adverse Environment Rotor Test Stand (AERTS) facility at The Pennsylvania State University, and The University of Maryland Acoustic Chamber (UMAC). In both facilities the measured high-frequency broadband noise increases significantly with increasing surface roughness heights, which indicates that it is feasible to quantify helicopter rotor ice-induced surface roughness through acoustic measurements. Comprehensive broadband noise measurements based on different accreted ice roughness at AERTS are then used to form the data base from which a correlation between the ice-induced surface roughness and the broadband noise level is developed. Two parameters, the arithmetic average roughness height, Ra, and the averaged roughness height, based on the integrated ice thickness at the blade tip, are introduced to describe the ice-induced surface roughness at the early stage of the ice accretion. The ice roughness measurements are correlated to the measured broadband noise level. Strong correlations (absolute mean deviations of 9.3% and 11.2% for correlation using Ra and the averaged roughness height respectively) between the ice roughness and the broadband noise level are obtained, which can be used as a tool to determine the accreted ice roughness in the AERTS facility through acoustic measurement. It might be possible to use a similar approach to develop an early ice accretion detection tool for helicopters, as well as to quantify the ice-induced roughness at the early stage of rotor ice accretion. Rotor broadband noise source identification is conducted and the broadband noise related to ice accretion is argued to be turbulent boundary layer - trailing edge (TBL-TE) noise. Theory suggests TBL-TE noise scales with Mach number to the fifth power, which is also observed in the experimental data. The trailing edge noise theories developed by Ffowcs Williams and Hall, and Howe both identify two important parameters: boundary layer thickness and turbulence intensity. Numerical studies of 2-D airfoils with different ice-induced surface roughness heights are conducted to investigate the extent that surface roughness impacts the boundary layer thickness and turbulence intensity (and ultimately the TBL-TE noise). The results show that boundary layer thickness and turbulence intensity at the trailing edge increase with the increased roughness height. Using Howe's trailing edge noise model, the increased sound pressure level (SPL) of the trailing edge noise due to the increased displacement thickness and normalized integrated turbulence intensity are 6.2 dB and 1.6 dB for large and small accreted ice roughness heights, respectively. The estimated increased SPL values agree well with the experimental results, which are 5.8 dB and 2.6 dB for large and small roughness height, respectively. Finally a detailed broadband noise spectral scaling for all measured broadband noise in both AERTS and UMAC facilities is conducted. The magnitude and the frequency spectrum of the measured broadband noise are scaled on characteristic velocity and length. The peak of the laminar boundary layer - vortex shedding (LBL-VS) noise coalesces well on the Strouhal scaling in those cases. For the measured broadband noise from a rotor with relatively large roughness heights, no contribution of the LBL-VS noise is observed. The velocity scaling shows that the TBL-TE noise, which is the dominant source mechanism, scales with Mach number to the fifth power based on the absolute frequency. The length scaling shows that the TBL-TE noise scales well on the absolute roughness height based on Howe's TE noise theory.
Noise shaping in populations of coupled model neurons.
Mar, D J; Chow, C C; Gerstner, W; Adams, R W; Collins, J J
1999-08-31
Biological information-processing systems, such as populations of sensory and motor neurons, may use correlations between the firings of individual elements to obtain lower noise levels and a systemwide performance improvement in the dynamic range or the signal-to-noise ratio. Here, we implement such correlations in networks of coupled integrate-and-fire neurons using inhibitory coupling and demonstrate that this can improve the system dynamic range and the signal-to-noise ratio in a population rate code. The improvement can surpass that expected for simple averaging of uncorrelated elements. A theory that predicts the resulting power spectrum is developed in terms of a stochastic point-process model in which the instantaneous population firing rate is modulated by the coupling between elements.
Image fidelity improvement in digital holographic microscopy using optical phase conjugation
NASA Astrophysics Data System (ADS)
Chan, Huang-Tian; Chew, Yang-Kun; Shiu, Min-Tzung; Chang, Chi-Ching
2018-01-01
With respect to digital holography, techniques in suppressing noises derived from reference arm are maturely developed. However, techniques for the object counterpart are not being well developed. Optical phase conjugation technique was believed to be a promising method for this interest. A 0°-cut BaTiO3 photorefractive crystal was involved in self-pumped phase conjugation scheme, and was employed to in-line digital holographic microscopy, in both transmission-type and reflection-type configuration. On pure physical compensation basis, results revealed that the image fidelity was improved substantially with 2.9096 times decrease in noise level and 3.5486 times increase in the ability to discriminate noise on average, by suppressing the scattering noise prior to recording stage.
Adaptive nonlinear L2 and L3 filters for speckled image processing
NASA Astrophysics Data System (ADS)
Lukin, Vladimir V.; Melnik, Vladimir P.; Chemerovsky, Victor I.; Astola, Jaakko T.
1997-04-01
Here we propose adaptive nonlinear filters based on calculation and analysis of two or three order statistics in a scanning window. They are designed for processing images corrupted by severe speckle noise with non-symmetrical. (Rayleigh or one-side exponential) distribution laws; impulsive noise can be also present. The proposed filtering algorithms provide trade-off between impulsive noise can be also present. The proposed filtering algorithms provide trade-off between efficient speckle noise suppression, robustness, good edge/detail preservation, low computational complexity, preservation of average level for homogeneous regions of images. Quantitative evaluations of the characteristics of the proposed filter are presented as well as the results of the application to real synthetic aperture radar and ultrasound medical images.
Energy diffusion controlled reaction rate of reacting particle driven by broad-band noise
NASA Astrophysics Data System (ADS)
Deng, M. L.; Zhu, W. Q.
2007-10-01
The energy diffusion controlled reaction rate of a reacting particle with linear weak damping and broad-band noise excitation is studied by using the stochastic averaging method. First, the stochastic averaging method for strongly nonlinear oscillators under broad-band noise excitation using generalized harmonic functions is briefly introduced. Then, the reaction rate of the classical Kramers' reacting model with linear weak damping and broad-band noise excitation is investigated by using the stochastic averaging method. The averaged Itô stochastic differential equation describing the energy diffusion and the Pontryagin equation governing the mean first-passage time (MFPT) are established. The energy diffusion controlled reaction rate is obtained as the inverse of the MFPT by solving the Pontryagin equation. The results of two special cases of broad-band noises, i.e. the harmonic noise and the exponentially corrected noise, are discussed in details. It is demonstrated that the general expression of reaction rate derived by the authors can be reduced to the classical ones via linear approximation and high potential barrier approximation. The good agreement with the results of the Monte Carlo simulation verifies that the reaction rate can be well predicted using the stochastic averaging method.
Prevalence of Tinnitus and Noise-induced Hearing Loss in Dentists
Myers, Jamie; John, Andrew B.; Kimball, Suzanne; Fruits, Terry
2016-01-01
Introduction: The purpose of this study was to evaluate noise levels in dental offices and to estimate the risk and prevalence of tinnitus and noise-induced hearing loss (NIHL) in practicing dentists. Materials and Methods: First, measures were collected of sound pressure levels produced by dental handpieces and dental suction in the University of Oklahoma Health Sciences Center (OUHSC) College of Dentistry. Second, a survey was distributed to members of the Oklahoma Dental Association (ODA). Results: Measurements made in the dental operatory revealed dangerous levels when high-volume suction was in use alone and in conjunction with a dental handpiece. Questionnaire results suggested that practicing dentists report sensorineural hearing loss at a rate broadly in line with national averages. However, dentists reported a higher prevalence of tinnitus symptoms than would be expected based on sample demographics. Conclusion: Results from sound level measurements and questionnaire responses indicate that dentists are a population that could be placing their hearing health at risk in a typical daily work environment. PMID:27991466
Severity of killer whale behavioral responses to ship noise: a dose-response study.
Williams, Rob; Erbe, Christine; Ashe, Erin; Beerman, Amber; Smith, Jodi
2014-02-15
Critical habitats of at-risk populations of northeast Pacific "resident" killer whales can be heavily trafficked by large ships, with transits occurring on average once every hour in busy shipping lanes. We modeled behavioral responses of killer whales to ship transits during 35 "natural experiments" as a dose-response function of estimated received noise levels in both broadband and audiogram-weighted terms. Interpreting effects is contingent on a subjective and seemingly arbitrary decision about severity threshold indicating a response. Subtle responses were observed around broadband received levels of 130 dB re 1 μPa (rms); more severe responses are hypothesized to occur at received levels beyond 150 dB re 1 μPa, where our study lacked data. Avoidance responses are expected to carry minor energetic costs in terms of increased energy expenditure, but future research must assess the potential for reduced prey acquisition, and potential population consequences, under these noise levels. Copyright © 2013 Elsevier Ltd. All rights reserved.
Aeroacoustic Simulations of a Nose Landing Gear Using FUN3D on Pointwise Unstructured Grids
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Khorrami, Mehdi R.; Rhoads, John; Lockard, David P.
2015-01-01
Numerical simulations have been performed for a partially-dressed, cavity-closed (PDCC) nose landing gear configuration that was tested in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D is used to compute the unsteady flow field for this configuration. Mixed-element grids generated using the Pointwise(TradeMark) grid generation software are used for these simulations. Particular care is taken to ensure quality cells and proper resolution in critical areas of interest in an effort to minimize errors introduced by numerical artifacts. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these simulations. Solutions are also presented for a wall function model coupled to the standard turbulence model. Time-averaged and instantaneous solutions obtained on these Pointwise grids are compared with the measured data and previous numerical solutions. The resulting CFD solutions are used as input to a Ffowcs Williams-Hawkings noise propagation code to compute the farfield noise levels in the flyover and sideline directions. The computed noise levels compare well with previous CFD solutions and experimental data.
Effect of daily noise exposure monitoring on annual rates of hearing loss in industrial workers
Rabinowitz, Peter M; Galusha, Deron; Kirsche, Sharon R; Cullen, Mark R; Slade, Martin D; Dixon-Ernst, Christine
2013-01-01
Objectives Occupational noise-induced hearing loss (NIHL) is prevalent, yet evidence on the effectiveness of preventive interventions is lacking. The effectiveness of a new technology allowing workers to monitor daily at-ear noise exposure was analysed. Methods Workers in the hearing conservation program of an aluminium smelter were recruited because of accelerated rates of hearing loss. The intervention consisted of daily monitoring of at-ear noise exposure and regular feedback on exposures from supervisors. The annual rate of change in high frequency hearing average at 2, 3 and 4 KHz before intervention (2000–2004) and 4 years after intervention (2006–2009) was determined. Annual rates of loss were compared between 78 intervention subjects and 234 controls in other company smelters matched for age, gender and high frequency hearing threshold level in 2005. Results Individuals monitoring daily noise exposure experienced on average no further worsening of high frequency hearing (average rate of hearing change at 2, 3 and 4 KHz=–0.5 dB/year). Matched controls also showed decelerating hearing loss, the difference in rates between the two groups being significant (p<0.0001). Analysis of a subset of intervention subjects matched to controls for initial rate of hearing loss showed a similar trend but the difference was not statistically significant (p=0.06). Conclusion Monitoring daily occupational noise exposure inside hearing protection with ongoing administrative feedback apparently reduces the risk of occupational NIHL in industrial workers. Longer follow-up of these workers will help determine the significance of the intervention effect. Intervention studies for the prevention of NIHL need to include appropriate control groups. PMID:21193566
Schmidt, Frank P; Basner, Mathias; Kröger, Gunnar; Weck, Stefanie; Schnorbus, Boris; Muttray, Axel; Sariyar, Murat; Binder, Harald; Gori, Tommaso; Warnholtz, Ascan; Münzel, Thomas
2013-12-01
Aircraft noise disturbs sleep, and long-term exposure has been shown to be associated with increases in the prevalence of hypertension and an overall increased risk for myocardial infarction. The exact mechanisms responsible for these cardiovascular effects remain unclear. We performed a blinded field study in 75 healthy volunteers (mean age 26 years), who were exposed at home, in random order, to one control pattern (no noise) and two different noise scenarios [30 or 60 aircraft noise events per night with an average maximum sound pressure level (SPL) of 60 dB(A)] for one night each. We performed polygraphy during each study night. Noise caused a worsening in sleep quality (P < 0.0001). Noise60, corresponding to equivalent continuous SPLs of 46.3 dB (Leq) and representing environmental noise levels associated with increased cardiovascular events, caused a blunting in FMD (P = 0.016). As well, although a direct comparison among the FMD values in the noise groups (control: 10.4 ± 3.8%; Noise30: 9.7 ± 4.1%; Noise60: 9.5 ± 4.3%, P = 0.052) did not reach significance, a monotone dose-dependent effect of noise level on FMD was shown (P = 0.020). Finally, there was a priming effect of noise, i.e. the blunting in FMD was particularly evident when subjects were exposed first to 30 and then to 60 noise events (P = 0.006). Noise-induced endothelial dysfunction (ED) was reversed by the administration of Vitamin C (P = 0.0171). Morning adrenaline concentration increased from 28.3 ± 10.9 to 33.2 ± 16.6 and 34.1 ± 19.3 ng/L (P = 0.0099). Pulse transit time, reflecting arterial stiffness, was also shorter after exposure to noise (P = 0.003). In healthy adults, acute nighttime aircraft noise exposure dose-dependently impairs endothelial function and stimulates adrenaline release. Noise-induced ED may be in part due to increased production in reactive oxygen species and may thus be one mechanism contributing to the observed association of chronic noise exposure with cardiovascular disease.
Schmidt, Frank P.; Basner, Mathias; Kröger, Gunnar; Weck, Stefanie; Schnorbus, Boris; Muttray, Axel; Sariyar, Murat; Binder, Harald; Gori, Tommaso; Warnholtz, Ascan; Münzel, Thomas
2013-01-01
Aims Aircraft noise disturbs sleep, and long-term exposure has been shown to be associated with increases in the prevalence of hypertension and an overall increased risk for myocardial infarction. The exact mechanisms responsible for these cardiovascular effects remain unclear. Methods and results We performed a blinded field study in 75 healthy volunteers (mean age 26 years), who were exposed at home, in random order, to one control pattern (no noise) and two different noise scenarios [30 or 60 aircraft noise events per night with an average maximum sound pressure level (SPL) of 60 dB(A)] for one night each. We performed polygraphy during each study night. Noise caused a worsening in sleep quality (P < 0.0001). Noise60, corresponding to equivalent continuous SPLs of 46.3 dB (Leq) and representing environmental noise levels associated with increased cardiovascular events, caused a blunting in FMD (P = 0.016). As well, although a direct comparison among the FMD values in the noise groups (control: 10.4 ± 3.8%; Noise30: 9.7 ± 4.1%; Noise60: 9.5 ± 4.3%, P = 0.052) did not reach significance, a monotone dose-dependent effect of noise level on FMD was shown (P = 0.020). Finally, there was a priming effect of noise, i.e. the blunting in FMD was particularly evident when subjects were exposed first to 30 and then to 60 noise events (P = 0.006). Noise-induced endothelial dysfunction (ED) was reversed by the administration of Vitamin C (P = 0.0171). Morning adrenaline concentration increased from 28.3 ± 10.9 to 33.2 ± 16.6 and 34.1 ± 19.3 ng/L (P = 0.0099). Pulse transit time, reflecting arterial stiffness, was also shorter after exposure to noise (P = 0.003). Conclusion In healthy adults, acute nighttime aircraft noise exposure dose-dependently impairs endothelial function and stimulates adrenaline release. Noise-induced ED may be in part due to increased production in reactive oxygen species and may thus be one mechanism contributing to the observed association of chronic noise exposure with cardiovascular disease. PMID:23821397
Assessment of averaging spatially correlated noise for 3-D radial imaging.
Stobbe, Robert W; Beaulieu, Christian
2011-07-01
Any measurement of signal intensity obtained from an image will be corrupted by noise. If the measurement is from one voxel, an error bound associated with noise can be assigned if the standard deviation of noise in the image is known. If voxels are averaged together within a region of interest (ROI) and the image noise is uncorrelated, the error bound associated with noise will be reduced in proportion to the square root of the number of voxels in the ROI. However, when 3-D-radial images are created the image noise will be spatially correlated. In this paper, an equation is derived and verified with simulated noise for the computation of noise averaging when image noise is correlated, facilitating the assessment of noise characteristics for different 3-D-radial imaging methodologies. It is already known that if the radial evolution of projections are altered such that constant sampling density is produced in k-space, the signal-to-noise ratio (SNR) inefficiency of standard radial imaging (SR) can effectively be eliminated (assuming a uniform transfer function is desired). However, it is shown in this paper that the low-frequency noise power reduction of SR will produce beneficial (anti-) correlation of noise and enhanced noise averaging characteristics. If an ROI contains only one voxel a radial evolution altered uniform k-space sampling technique such as twisted projection imaging (TPI) will produce an error bound ~35% less with respect to noise than SR, however, for an ROI containing 16 voxels the SR methodology will facilitate an error bound ~20% less than TPI. If a filtering transfer function is desired, it is shown that designing sampling density to create the filter shape has both SNR and noise correlation advantages over sampling k-space uniformly. In this context SR is also beneficial. Two sets of 48 images produced from a saline phantom with sodium MRI at 4.7T are used to experimentally measure noise averaging characteristics of radial imaging and good agreement with theory is obtained.
Xu, X R; Yang, Q Y; Jiao, J; Zheng, Y X; He, L H; Yu, S F; Gu, G Z; Chen, G S; Zhou, W H; Wu, H; Li, Y H; Zhang, H L; Zhang, Z R
2017-01-06
Objective: The aim of this study was to investigate whether genetic variability in the protocadherin 15 (PCDH15) gene may correspond with increased susceptibility to noise-induced hearing loss (NIHL) in a Chinese population. Methods: A nested case-control study was performed that followed a cohort of 7 445 noise-exposed workers in a steel factory of Henan province in China from January 1, 2006 to December 31, 2015. In this study, 394 cases who had an average hearing threshold of more than 40 dB (A) in high frequency were defined as the case group, and 721 controls who had an average hearing threshold of less than 35 dB (A) in high frequency and less than 25 dB (A) in speech frequency were defined as the control group. A questionnaire was completed by participants and a physical test was also conducted. SNP genotyping was performed using the SNPscan TM Kit. Multivariate unconditional logistic regression additive models were used to analyze the genotypes in different groups, and the association with NIHL. Unconditional logistic regression models were used to assess the associations between the genotypes and NIHL. Results: The average age of study participants was (40.5±8.3) years and the median number of noise-exposed working years M ( P 25 , P 75 ) was 21.1 (9.1, 27.3). The range of noise exposed levels and the levels of cumulative noise exposure (CNE) were 80.1- 98.8 dB(A) and 86.6- 111.2 dB(A), respectively. Only the distribution of the genotypes (TT/CC/CT) of rs11004085 in the PCDH15 gene showed a significant difference between the case and control groups ( P= 0.049). In the case group, the distribution was 370 (93.9%), 24 (6.1%) and 0; in the control group, the distribution was 694 (96.3%), 23 (3.2%) and 1 (0.1% ). After smoking, drinking, hypertension, height and CNE adjustment, compared with the TT genotype individuals with the CC/CT genotype had a 1.90-fold increased risk of NIHL (95% CI: 1.06- 3.40). After stratified these data by the noise exposure level or CNE when the noise exposure level was>85 dB (A), compared with cases with the AA genotype of rs10825113, individuals with the GA/GG genotype had a 2.63-fold increased risk of NIHL (95% CI: 1.12- 6.14). When the CNE was ≤ 98 dB(A), compared with cases with the TT genotype of rs11004085, individuals with the CC/CT genotype had a 2.96-fold increased risk of NIHL (95% CI: 1.33- 6.56). However, these differences were not significant after Bonferroni correction had been applied. Conclusions: The results confirmed that genetic variation within the PCDH15 gene may affect the susceptibility to NIHL.
Adaptive Noise Suppression Using Digital Signal Processing
NASA Technical Reports Server (NTRS)
Kozel, David; Nelson, Richard
1996-01-01
A signal to noise ratio dependent adaptive spectral subtraction algorithm is developed to eliminate noise from noise corrupted speech signals. The algorithm determines the signal to noise ratio and adjusts the spectral subtraction proportion appropriately. After spectra subtraction low amplitude signals are squelched. A single microphone is used to obtain both eh noise corrupted speech and the average noise estimate. This is done by determining if the frame of data being sampled is a voiced or unvoiced frame. During unvoice frames an estimate of the noise is obtained. A running average of the noise is used to approximate the expected value of the noise. Applications include the emergency egress vehicle and the crawler transporter.
Propeller aircraft interior noise model: User's manual for computer program
NASA Technical Reports Server (NTRS)
Wilby, E. G.; Pope, L. D.
1985-01-01
A computer program entitled PAIN (Propeller Aircraft Interior Noise) has been developed to permit calculation of the sound levels in the cabin of a propeller-driven airplane. The fuselage is modeled as a cylinder with a structurally integral floor, the cabin sidewall and floor being stiffened by ring frames, stringers and floor beams of arbitrary configurations. The cabin interior is covered with acoustic treatment and trim. The propeller noise consists of a series of tones at harmonics of the blade passage frequency. Input data required by the program include the mechanical and acoustical properties of the fuselage structure and sidewall trim. Also, the precise propeller noise signature must be defined on a grid that lies in the fuselage skin. The propeller data are generated with a propeller noise prediction program such as the NASA Langley ANOPP program. The program PAIN permits the calculation of the space-average interior sound levels for the first ten harmonics of a propeller rotating alongside the fuselage. User instructions for PAIN are given in the report. Development of the analytical model is presented in NASA CR 3813.
NASA Astrophysics Data System (ADS)
Ikhwansyah; Mulia; Gunawan, S.; Lubis, R. D. W.
2018-02-01
The objective is to get the characteristics of noise reduction, noise reduction level, variety of measurement spaces, and knowing the process in making acoustic material of natural fiber becomes noise reduction on a car hood. The process of making noise reduction material used casting method and pressed by using molded press. The composition of noise reduction material consist of 50% roystonea regia by 32 mesh and 50% combined by gypsum and polyurethane. The result shows that the average result of noise reduction at X1- side is 5,7% and X2- side is 3,9%, X1+ side is 0,9% and X2+ side is 6,2%, Z1- side is 8,9% and Z2- side is 10,1%, Z1+ side is 9,7% and Z2+ side is 10,01%. The main conclusion of the study shows that a noise reduction which made of roystonea regia with 32 mesh mixed by matrix of polyurethane and gypsum is appropriate for noise reduction on car hood.
Speech intelligibility in noise using throat and acoustic microphones.
Acker-Mills, Barbara E; Houtsma, Adrianus J M; Ahroon, William A
2006-01-01
Helicopter cockpits are very noisy and this noise must be reduced for effective communication. The standard U.S. Army aviation helmet is equipped with a noise-canceling acoustic microphone, but some ambient noise still is transmitted. Throat microphones are not sensitive to air molecule vibrations and thus, transmittal of ambient noise is reduced. It is possible that throat microphones could enhance speech communication in helicopters, but speech intelligibility with the devices must first be assessed. In the current study, speech intelligibility of signals generated by an acoustic microphone, a throat microphone, and by the combined output of the two microphones was assessed using the Modified Rhyme Test (MRT). Stimulus words were recorded in a reverberant chamber with ambient broadband noise intensity at 90 and 106 dBA. Listeners completed the MRT task in the same settings, thus simulating the typical environment of a rotary-wing aircraft. Results show that speech intelligibility is significantly worse for the throat microphone (average percent correct = 55.97) than for the acoustic microphone (average percent correct = 69.70), particularly for the higher noise level. In addition, no benefit is gained by simultaneously using both microphones. A follow-up experiment evaluated different consonants using the Diagnostic Rhyme Test and replicated the MRT results. The current results show that intelligibility using throat microphones is poorer than with the use of boom microphones in noisy and in quiet environments. Therefore, throat microphones are not recommended for use in any situation where fast and accurate speech intelligibility is essential.
Prevalence of tinnitus in workers exposed to noise and organophosphates
Delecrode, Camila Ribas; de Freitas, Thais Domingues; Frizzo, Ana Claúdia Figueiredo; Cardoso, Ana Claúdia Vieira
2012-01-01
Summary Introduction: Research on the workplace has emphasized the effects of noise exposure on workers' hearing, but has not considered the effects of agrochemicals. Aim: To evaluate and correlate the hearing level and tinnitus of workers exposed simultaneously to noise and organophosphates in their workplace and to measure tinnitus distress on their quality of life. Method: A retrospective clinical study. We evaluated 82 organophosphate sprinklers from the São Paulo State Regional Superintendence who were active in the fight against dengue and who were exposed to noise and organophosphates. We performed pure tone audiometry and applied the translated THI (Tinnitus Handicap Inventory) questionnaire. Results: Of the sample, 28.05% reported current tinnitus or had presented tinnitus, and the workers with tinnitus had an increased incidence of abnormal audiometry. The average hearing threshold for the 4–8-kHz frequency range of the workers with current tinnitus was higher than that of the others, and was most affected at the 4-kHz frequency. The THI score ranged 0–84, with an average score of 13.1. Twelve (52.17%) workers had THI scores consistent with discrete handicap. Conclusion: There is an increased incidence of abnormal pure tone audiometry in workers with tinnitus, and its impact on the workers' quality of life was discrete. The correlation between average hearing threshold and tinnitus distress was weak. PMID:25991953
NASA Astrophysics Data System (ADS)
Matetic, Rudy J.
Over-exposure to noise remains a widespread and serious health hazard in the U.S. mining industries despite 25 years of regulation. Every day, 80% of the nation's miners go to work in an environment where the time weighted average (TWA) noise level exceeds 85 dBA and more than 25% of the miners are exposed to a TWA noise level that exceeds 90 dBA, the permissible exposure limit (PEL). Additionally, MSHA coal noise sample data collected from 2000 to 2002 show that 65% of the equipment whose operators exceeded 100% noise dosage comprise only seven different types of machines; auger miners, bulldozers, continuous miners, front end loaders, roof bolters, shuttle cars (electric), and trucks. In addition, the MSHA data indicate that the roof bolter is third among all the equipment and second among equipment in underground coal whose operators exceed 100% dosage. A research program was implemented to: (1) determine, characterize and to measure sound power levels radiated by a roof bolting machine during differing drilling configurations (thrust, rotational speed, penetration rate, etc.) and utilizing differing types of drilling methods in high compressive strength rock media (>20,000 psi). The research approach characterized the sound power level results from laboratory testing and provided the mining industry with empirical data relative to utilizing differing noise control technologies (drilling configurations and types of drilling methods) in reducing sound power level emissions on a roof bolting machine; (2) distinguish and correlate the empirical data into one, statistically valid, equation, in which, provided the mining industry with a tool to predict overall sound power levels of a roof bolting machine given any type of drilling configuration and drilling method utilized in industry; (3) provided the mining industry with several approaches to predict or determine sound pressure levels in an underground coal mine utilizing laboratory test results from a roof bolting machine and (4) described a method for determining an operators' noise dosage of a roof bolting machine utilizing predicted or determined sound pressure levels.
Lee, Gary Jek Chong; Lim, Ming Yann; Kuan, Angeline Yi Wei; Teo, Joshua Han Wei; Tan, Hui Guang; Low, Wong Kein
2014-02-01
Noise-induced hearing loss (NIHL) is a preventable condition, and much has been done to protect workers from it. However, thus far, little attention has been given to leisure NIHL. The purpose of this study is to determine the possible music listening preferences and habits among young people in Singapore that may put them at risk of developing leisure NIHL. In our study, the proportion of participants exposed to > 85 dBA for eight hours a day (time-weighted average) was calculated by taking into account the daily number of hours spent listening to music and by determining the average sound pressure level at which music was listened to. A total of 1,928 students were recruited from Temasek Polytechnic, Singapore. Of which, 16.4% of participants listened to portable music players with a time-weighted average of > 85 dBA for 8 hours. On average, we found that male students were more likely to listen to music at louder volumes than female students (p < 0.001). We also found that the Malay students in our study listened to louder music than the Chinese students (p < 0.001). We found that up to one in six young persons in Singapore is at risk of developing leisure NIHL from music delivered via earphones. As additional risks due to exposure to leisure noise from other sources was not taken into account, the extent of the problem of leisure NIHL may be even greater. There is a compelling need for an effective leisure noise prevention program among young people in Singapore.
Wardenga, Nina; Batsoulis, Cornelia; Wagener, Kirsten C; Brand, Thomas; Lenarz, Thomas; Maier, Hannes
2015-01-01
The aim of this study was to determine the relationship between hearing loss and speech reception threshold (SRT) in a fixed noise condition using the German Oldenburg sentence test (OLSA). After training with two easily-audible lists of the OLSA, SRTs were determined monaurally with headphones at a fixed noise level of 65 dB SPL using a standard adaptive procedure, converging to 50% speech intelligibility. Data was obtained from 315 ears of 177 subjects with hearing losses ranging from -5 to 90 dB HL pure-tone average (PTA, 0.5, 1, 2, 3 kHz). Two domains were identified with a linear dependence of SRT on PTA. The SRT increased with a slope of 0.094 ± 0.006 dB SNR/dB HL (standard deviation (SD) of residuals = 1.17 dB) for PTAs < 47 dB HL and with a slope of 0.811 ± 0.049 dB SNR/dB HL (SD of residuals = 5.54 dB) for higher PTAs. The OLSA can be applied to subjects with a wide range of hearing losses. With 65 dB SPL fixed noise presentation level the SRT is determined by listening in noise for PTAs < ∼47 dB HL, and above it is determined by listening in quiet.
Development and Validation of Shipboard Noise Exposure Data Acquisition Procedures.
1981-11-05
EL6 EL2B __EL7 EL3 _ EL4 - EL5 __ _ __ _ _ __ _ _ ___ _ _ IE 5 PERSONNEL ASSIGNMENT DATA LOC. MEAS.4) BILLET RATEG WEAR1 WATCHO HRS.JDAY AT LOC...Inc. Table 11-9 Sub-Areas used for Noise Level Averages Sub-Area Locations Included . - ELT-Eng. Room, Lower Level ELIB, EL2B, EL3, EL4 , EL5, EL6...Area Locations Included ERT-Engine Room ELIB, EL2B, EL3, EL4 , EL5, EL6, EL7, EUIW, EU2B, EU3, EU4, EU5, EU6, EU7, EU8, ESIW ES2, ES3, ES4, ELT, EUT
NASA Technical Reports Server (NTRS)
1975-01-01
The NASA Refan Program included full-scale performance and noise ground tests of both a current production (JT8D-15) and a refanned (JT8D-115) engine. A description of the two ground tests including detailed propulsion, noise, and structural test results is presented. The primary objectives of the total test program were comparison of JT8D-15 and JT8D-115 overall propulsion system performance and noise characteristics and determination of incremental component noise levels. Other objectives of the test program included: (1) determination of acoustic treatment effectiveness; (2) measurement of internal sound pressure levels; (3) measurement of inlet and exhaust hardware performance; (4) determination of center-engine surge margin; and (5) evaluation of certain structural characteristics associated with the 727 refan center-engine inlet duct and JT8D refan engine exhaust system. The JT8D-15 and -115 tests were conducted during September 1974 and January to March 1975, respectively. Analyses of the test data indicated that the JT8D-115, as compared to the JT8D-15, demonstrates a 12.5 percent to 13.2 percent reduction in static specific fuel consumption, and a reduction of 6 to 7 PNdB in a weighted average value of static tone corrected perceived noise level. Separated into noise components, a significant reduction was shown for the inlet fan, aft fan, exhaust duct flow, turbine, and jet noises. However, core noise was increased. Photographs of test stands and test equipment are shown.
Sieber, Chloé; Ragettli, Martina S.; Toyib, Olaniyan; Baatjies, Roslyn; Saucy, Apolline; Probst-Hensch, Nicole; Dalvie, Mohamed Aqiel; Röösli, Martin
2017-01-01
In low- and middle-income countries, noise exposure and its negative health effects have been little explored. The present study aimed to assess the noise exposure situation in adults living in informal settings in the Western Cape Province, South Africa. We conducted continuous one-week outdoor noise measurements at 134 homes in four different areas. These data were used to develop a land use regression (LUR) model to predict A-weighted day-evening-night equivalent sound levels (Lden) from geographic information system (GIS) variables. Mean noise exposure during day (6:00–18:00) was 60.0 A-weighted decibels (dB(A)) (interquartile range 56.9–62.9 dB(A)), during night (22:00–6:00) 52.9 dB(A) (49.3–55.8 dB(A)) and average Lden was 63.0 dB(A) (60.1–66.5 dB(A)). Main predictors of the LUR model were related to road traffic and household density. Model performance was low (adjusted R2 = 0.130) suggesting that other influences than those represented in the geographic predictors are relevant for noise exposure. This is one of the few studies on the noise exposure situation in low- and middle-income countries. It demonstrates that noise exposure levels are high in these settings. PMID:29053590
A study of riders' noise exposure on Bay Area Rapid Transit trains.
Dinno, Alexis; Powell, Cynthia; King, Margaret Mary
2011-02-01
Excessive noise exposure may present a hazard to hearing, cardiovascular, and psychosomatic health. Mass transit systems, such as the Bay Area Rapid Transit (BART) system, are potential sources of excessive noise. The purpose of this study was to characterize transit noise and riders' exposure to noise on the BART system using three dosimetry metrics. We made 268 dosimetry measurements on a convenience sample of 51 line segments. Dosimetry measures were modeled using linear and nonlinear multiple regression as functions of average velocity, tunnel enclosure, flooring, and wet weather conditions and presented visually on a map of the BART system. This study provides evidence of levels of hazardous levels of noise exposure in all three dosimetry metrics. L(eq) and L(max) measures indicate exposures well above ranges associated with increased cardiovascular and psychosomatic health risks in the published literature. L(peak) indicate acute exposures hazardous to adult hearing on about 1% of line segment rides and acute exposures hazardous to child hearing on about 2% of such rides. The noise to which passengers are exposed may be due to train-specific conditions (velocity and flooring), but also to rail conditions (velocity and tunnels). These findings may point at possible remediation (revised speed limits on longer segments and those segments enclosed by tunnels). The findings also suggest that specific rail segments could be improved for noise.
Low stimulus environments: reducing noise levels in continuing care.
Brown, Juliette; Fawzi, Waleed; Shah, Amar; Joyce, Margaret; Holt, Genevieve; McCarthy, Cathy; Stevenson, Carmel; Marange, Rosca; Shakes, Joy; Solomon-Ayeh, Kwesi
2016-01-01
In the low stimulus environment project, we aimed to reduce the levels of intrusive background noise on an older adult mental health ward, combining a very straightforward measure on decibel levels with a downstream measure of reduced distress and agitation as expressed in incidents of violence. This project on reducing background noise levels on older adult wards stemmed from work the team had done on reducing levels of violence and aggression. We approached the problem using quality improvement methods. Reducing harm to patients and staff is a strategic aim of our Trust and in our efforts we were supported by the Trust's extensive programme of quality improvement, including training and support provided by the Institute for Healthcare Improvement and the trust's own Quality Improvement team. Prior to the project we were running a weekly multi-disciplinary quality improvement group on the ward. We established from this a sub-group to address the specific problem of noise levels and invited carers of people with dementia on our ward to the group. The project was led by nursing staff. We used a noise meter app readily downloadable from the internet to monitor background noise levels on the ward and establish a baseline measure. As a group we used a driver diagram to identify an overall aim and a clear understanding of the major factors that would drive improvements. We also used a staff and carer survey to identify further areas to work on. Change ideas that came from staff and carers included the use of the noise meter to track and report back on noise levels, the use of posters to remind staff about noise levels, the introduction of a visual indication of current noise levels (the Yacker Tracker), the addition of relaxing background music, and adaptations to furniture and environment. We tested many of these over the course of nine months in 2015, using the iterative learning gained from multiple PDSA cycles. The specific aim was a decrease from above 60dB to below 50dB in background noise on the wards. Following our interventions, we have managed to decrease noise levels on the ward to 53dB on average. The success of this project to date has relied on the involvement of ward staff and carers - those most affected by the problem - in generating workable local solutions. As many of the change ideas amounted to harm free interventions it was easier for us to make a case to test them out in the real-life setting. Nevertheless we were surprised at how effective such seemingly simple ideas have been in improving the environment on the ward. We have incorporated the change ideas into routine practice and are advising other wards on similar projects.
Garrett, J K; Blondel, Ph; Godley, B J; Pikesley, S K; Witt, M J; Johanning, L
2016-09-15
Chronic low-frequency anthropogenic sound, such as shipping noise, may be negatively affecting marine life. The EU's Marine Strategy Framework Directive (MSFD) includes a specific indicator focused on this noise. This indicator is the yearly average sound level in third-octave bands with centre frequencies at 63Hz and 125Hz. These levels are described for Falmouth Bay, UK, an active port at the entrance to the English Channel. Underwater sound was recorded for 30min h(-1) over the period June 2012 to November 2013 for a total of 435days. Mean third-octave levels were louder in the 125-Hz band (annual mean level of 96.0dB re 1μPa) than in the 63-Hz band (92.6dB re 1 μPa). These levels and variations are assessed as a function of seasons, shipping activity and wave height, providing comparison points for future monitoring activities, including the MSFD and emerging international regulation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Xie, Huijuan; Gong, Yubing; Wang, Baoying
In this paper, we numerically study the effect of channel noise on synchronization transitions induced by time delay in adaptive scale-free Hodgkin-Huxley neuronal networks with spike-timing-dependent plasticity (STDP). It is found that synchronization transitions by time delay vary as channel noise intensity is changed and become most pronounced when channel noise intensity is optimal. This phenomenon depends on STDP and network average degree, and it can be either enhanced or suppressed as network average degree increases depending on channel noise intensity. These results show that there are optimal channel noise and network average degree that can enhance the synchronization transitions by time delay in the adaptive neuronal networks. These findings could be helpful for better understanding of the regulation effect of channel noise on synchronization of neuronal networks. They could find potential implications for information transmission in neural systems.
EVALUATION OF THE ENVIRONMENTAL NOISE LEVELS IN ABUJA MUNICIPALITY USING MOBILE PHONES
Ibekwe, T.; Folorunso, D.; Ebuta, A.; Amodu, J.; Nwegbu, M.; Mairami, Z.; Liman, I.; Okebaram, C.; Chimdi, C.; Durogbola, B.; Suleiman, H.; Mamven, H.; Baamlong, N.; Dahilo, E.; Gbujie, I.; Ibekwe, P.; Nwaorgu, O.
2016-01-01
Background: Noise remains a nuisance which impacts negatively on the physical, social and psychological wellbeing of man. It aggravates chronic illnesses like hypertension and other cardiopulmonary diseases. Unfortunately, increased activities from industrialization and technological transfers/drifts have tumultuously led to increased noise pollution in most of our fast growing cities today and hence the need for concerted efforts in monitoring and regulating our environmental noise. Objective: To assess the equivalent noise level (Leq) in Abuja municipality and promote a simple method for regular assessment of Leq within our environment. Method: This is a cross-sectional community based study of the environmental Leq of Abuja municipality conducted between January 2014 and January 2016. The city was divided into 12 segments including residential, business and market areas via the Abuja Geographic Information System. The major markets were captured separately on a different scale. Measurements were taken with the mobile phone softwares having validated this with Extech 407730 digital sound level meter, serial no Z310135. Leq(A) were measured at different points and hours of the day and night. The average Leq(A) were classified according to localities and compared with WHO standard safety levels. Results: LeqD ranged 71-92dB(A); 42-79dB(A) and 69-90dB(A) in business/ parks, residential and market places respectively. The Night measurements were similar 18dB(A)-56dB(A) and the day-night Leq(A)=77.2dB(A) and 90.4dB(A) for residential and business zones. Conclusion: The night noise levels are satisfactory but the day and day-night levels are above the recommended tolerable values by WHO and therefore urgently call for awareness and legislative regulations. PMID:28337089
EVALUATION OF THE ENVIRONMENTAL NOISE LEVELS IN ABUJA MUNICIPALITY USING MOBILE PHONES.
Ibekwe, T; Folorunso, D; Ebuta, A; Amodu, J; Nwegbu, M; Mairami, Z; Liman, I; Okebaram, C; Chimdi, C; Durogbola, B; Suleiman, H; Mamven, H; Baamlong, N; Dahilo, E; Gbujie, I; Ibekwe, P; Nwaorgu, O
2016-12-01
Noise remains a nuisance which impacts negatively on the physical, social and psychological wellbeing of man. It aggravates chronic illnesses like hypertension and other cardiopulmonary diseases. Unfortunately, increased activities from industrialization and technological transfers/drifts have tumultuously led to increased noise pollution in most of our fast growing cities today and hence the need for concerted efforts in monitoring and regulating our environmental noise. To assess the equivalent noise level (Leq) in Abuja municipality and promote a simple method for regular assessment of Leq within our environment. This is a cross-sectional community based study of the environmental Leq of Abuja municipality conducted between January 2014 and January 2016. The city was divided into 12 segments including residential, business and market areas via the Abuja Geographic Information System. The major markets were captured separately on a different scale. Measurements were taken with the mobile phone softwares having validated this with Extech 407730 digital sound level meter, serial no Z310135 . Leq(A) were measured at different points and hours of the day and night. The average Leq(A) were classified according to localities and compared with WHO standard safety levels. LeqD ranged 71-92dB(A); 42-79dB(A) and 69-90dB(A) in business/ parks, residential and market places respectively. The Night measurements were similar 18dB(A)-56dB(A) and the day-night Leq(A)=77.2dB(A) and 90.4dB(A) for residential and business zones. The night noise levels are satisfactory but the day and day-night levels are above the recommended tolerable values by WHO and therefore urgently call for awareness and legislative regulations.
Geometric validation of MV topograms for patient localization on TomoTherapy
NASA Astrophysics Data System (ADS)
Blanco Kiely, Janid P.; White, Benjamin M.; Low, Daniel A.; Qi, Sharon X.
2016-01-01
Our goal was to geometrically validate the use of mega-voltage orthogonal scout images (MV topograms) as a fast and low-dose alternative to mega-voltage computed tomography (MVCT) for daily patient localization on the TomoTherapy system. To achieve this, anthropomorphic head and pelvis phantoms were imaged on a 16-slice kilo-voltage computed tomography (kVCT) scanner to synthesize kilo-voltage digitally reconstructed topograms (kV-DRT) in the Tomotherapy detector geometry. MV topograms were generated for couch speeds of 1-4 cm s-1 in 1 cm s-1 increments with static gantry angles in the anterior-posterior and left-lateral directions. Phantoms were rigidly translated in the anterior-posterior (AP), superior-inferior (SI), and lateral (LAT) directions to simulate potential setup errors. Image quality improvement was demonstrated by estimating the noise level in the unenhanced and enhanced MV topograms using a principle component analysis-based noise level estimation algorithm. Average noise levels for the head phantom were reduced by 2.53 HU (AP) and 0.18 HU (LAT). The pelvis phantom exhibited average noise level reduction of 1.98 HU (AP) and 0.48 HU (LAT). Mattes Mutual Information rigid registration was used to register enhanced MV topograms with corresponding kV-DRT. Registration results were compared to the known rigid displacements, which assessed the MV topogram localization’s sensitivity to daily positioning errors. Reduced noise levels in the MV topograms enhanced the registration results so that registration errors were <1 mm. The unenhanced head MV topograms had discrepancies <2.1 mm and the pelvis topograms had discrepancies <2.7 mm. Result were found to be consistent regardless of couch speed. In total, 64.7% of the head phantom MV topograms and 60.0% of the pelvis phantom MV topograms exactly measured the phantom offsets. These consistencies demonstrated the potential for daily patient positioning using MV topogram pairs in the context bony-anatomy based procedures such as total marrow irradiation, total body irradiation, and cranial spinal irradiation.
A first-principles model for estimating the prevalence of annoyance with aircraft noise exposure.
Fidell, Sanford; Mestre, Vincent; Schomer, Paul; Berry, Bernard; Gjestland, Truls; Vallet, Michel; Reid, Timothy
2011-08-01
Numerous relationships between noise exposure and transportation noise-induced annoyance have been inferred by curve-fitting methods. The present paper develops a different approach. It derives a systematic relationship by applying an a priori, first-principles model to the findings of forty three studies of the annoyance of aviation noise. The rate of change of annoyance with day-night average sound level (DNL) due to aircraft noise exposure was found to closely resemble the rate of change of loudness with sound level. The agreement of model predictions with the findings of recent curve-fitting exercises (cf. Miedma and Vos, 1998) is noteworthy, considering that other analyses have relied on different analytic methods and disparate data sets. Even though annoyance prevalence rates within individual communities consistently grow in proportion to duration-adjusted loudness, variability in annoyance prevalence rates across communities remains great. The present analyses demonstrate that 1) community-specific differences in annoyance prevalence rates can be plausibly attributed to the joint effect of acoustic and non-DNL related factors and (2) a simple model can account for the aggregate influences of non-DNL related factors on annoyance prevalence rates in different communities in terms of a single parameter expressed in DNL units-a "community tolerance level."
NASA Astrophysics Data System (ADS)
Dekoninck, Luc; Botteldooren, Dick; Int Panis, Luc
2013-11-01
Several studies have shown that a significant amount of daily air pollution exposure, in particular Black Carbon (BC), is inhaled during trips. Assessing this contribution to exposure remains difficult because on the one hand local air pollution maps lack spatio-temporal resolution, at the other hand direct measurement of particulate matter concentration remains expensive. This paper proposes to use in-traffic noise measurements in combination with geographical and meteorological information for predicting BC exposure during commuting trips. Mobile noise measurements are cheaper and easier to perform than mobile air pollution measurements and can easily be used in participatory sensing campaigns. The uniqueness of the proposed model lies in the choice of noise indicators that goes beyond the traditional overall A-weighted noise level used in previous work. Noise and BC exposures are both related to the traffic intensity but also to traffic speed and traffic dynamics. Inspired by theoretical knowledge on the emission of noise and BC, the low frequency engine related noise and the difference between high frequency and low frequency noise that indicates the traffic speed, are introduced in the model. In addition, it is shown that splitting BC in a local and a background component significantly improves the model. The coefficients of the proposed model are extracted from 200 commuter bicycle trips. The predicted average exposure over a single trip correlates with measurements with a Pearson coefficient of 0.78 using only four parameters: the low frequency noise level, wind speed, the difference between high and low frequency noise and a street canyon index expressing local air pollution dispersion properties.
NASA Astrophysics Data System (ADS)
Puthanmadam Subramaniyam, Narayan; Hyttinen, Jari
2014-10-01
In this letter, we study the influence of observational noise on recurrence network (RN) measures, the global clustering coefficient (C) and average path length (L) using the Rössler system and propose the application of RN measures to analyze the structural properties of electroencephalographic (EEG) data. We find that for an appropriate recurrence rate (RR>0.02) the influence of noise on C can be minimized while L is independent of RR for increasing levels of noise. Indications of structural complexity were found for healthy EEG, but to a lesser extent than epileptic EEG. Furthermore, C performed better than L in case of epileptic EEG. Our results show that RN measures can provide insights into the structural properties of EEG in normal and pathological states.
The Dose Response Relationship between In Ear Occupational Noise Exposure and Hearing Loss
Rabinowitz, Peter M.; Galusha, Deron; Dixon-Ernst, Christine; Clougherty, Jane E.; Neitzel, Richard L.
2014-01-01
Objectives Current understanding of the dose-response relationship between occupational noise and hearing loss is based on cross-sectional studies prior to the widespread use hearing protection and with limited data regarding noise exposures below 85dBA. We report on the hearing loss experience of a unique cohort of industrial workers with daily monitoring of noise inside of hearing protection devices. Methods At an industrial facility, workers exhibiting accelerated hearing loss were enrolled in a mandatory program to monitor daily noise exposures inside of hearing protection. We compared these noise measurements (as time-weighted LAVG) to interval rates of high frequency hearing loss over a six year period using a mixed effects model, adjusting for potential confounders. Results Workers’ high frequency hearing levels at study inception averaged more than 40 dB hearing threshold level (HTL). Most noise exposures were less than 85dBA (mean LAVG 76 dBA, interquartile range 74 to 80 dBA). We found no statistical relationship between LAvg and high frequency hearing loss (p = 0.53). Using a metric for monthly maximum noise exposure did not improve model fit. Conclusion At-ear noise exposures below 85dBA did not show an association with risk of high frequency hearing loss among workers with substantial past noise exposure and hearing loss at baseline. Therefore, effective noise control to below 85dBA may lead to significant reduction in occupational hearing loss risk in such individuals. Further research is needed on the dose response relationship of noise and hearing loss in individuals with normal hearing and little prior noise exposure. PMID:23825197
Analysis of de-noising methods to improve the precision of the ILSF BPM electronic readout system
NASA Astrophysics Data System (ADS)
Shafiee, M.; Feghhi, S. A. H.; Rahighi, J.
2016-12-01
In order to have optimum operation and precise control system at particle accelerators, it is required to measure the beam position with the precision of sub-μm. We developed a BPM electronic readout system at Iranian Light Source Facility and it has been experimentally tested at ALBA accelerator facility. The results show the precision of 0.54 μm in beam position measurements. To improve the precision of this beam position monitoring system to sub-μm level, we have studied different de-noising methods such as principal component analysis, wavelet transforms, filtering by FIR, and direct averaging method. An evaluation of the noise reduction was given to testify the ability of these methods. The results show that the noise reduction based on Daubechies wavelet transform is better than other algorithms, and the method is suitable for signal noise reduction in beam position monitoring system.
NASA Technical Reports Server (NTRS)
Morris, S. J., Jr.; Foss, W. E., Jr.; Neubauer, M. J., Jr.
1980-01-01
An advanced supersonic technology configuration concept designated the AST-107, using a low bypass ratio turbofan engine, is described and analyzed. The aircraft had provisions for 273 passengers arranged five abreast. The cruise Mach number was 2.62. The mission range for the AST-107 was 8.48 Mm (4576 n.mi.) and an average lift drag ratio of 9.15 during cruise was achieved. The available lateral control was not sufficient for the required 15.4 m/s (30 kt) crosswind landing condition, and a crosswind landing gear or a significant reduction in dihedral effect would be necessary to meet this requirement. The lowest computed noise levels, including a mechanical suppressor noise reduction of 3 EPNdB at the flyover and sideline monitoring stations, were 110.3 EPNdB (sideline noise), 113.1 EPNdB (centerline noise) and 110.5 EPNdB (approach noise).
An evaluation of Space Shuttle STS-2 payload bay acoustic data and comparison with predictions
NASA Technical Reports Server (NTRS)
Wilby, J. F.; Piersol, A. G.; Wilby, E. G.
1982-01-01
Space average sound pressure levels computed from measurements at 18 locations in the payload bay of the Space Shuttle orbiter vehicle during the STS-2 launch were compared with predicted levels obtained using the PACES computer program. The comparisons were performed over the frequency range 12.5 Hz to 1000 Hz, since the test data at higher frequencies are contaminated by instrumentation background noise. In general the PACES computer program tends to overpredict the space average sound levels in the payload bay, although the magnitude of the discrepancy is usually small. Furthermore the discrepancy depends to some extent on the manner in which the payload is modeled analytically, and the method used to determine the "measured' space average sound pressure levels. Thus the difference between predicted and measured sound levels, averaged over the 20 one third octave bands from 12.5 Hz to 1000 Hz, varies from 1 dB to 3.5 dB.
An aircraft noise study in Norway
NASA Technical Reports Server (NTRS)
Gjestland, Truls T.; Liasjo, Kare H.; Bohn, Hans Einar
1990-01-01
An extensive study of aircraft noise is currently being conducted in Oslo, Norway. The traffic at Oslo Airport Fornebu that includes both national and international flights, totals approximately 350 movements per day: 250 of these are regular scheduled flights with intermediate and large size aircraft, the bulk being DC9 and Boeing 737. The total traffic during the summer of 1989 was expected to resemble the maximum level to which the regular traffic will increase before the new airport can be put into operation. The situation therefore represented a possibility to study the noise impact on the communities around Fornebu. A comprehensive social survey was designed, including questions on both aircraft and road traffic noise. A random sample of 1650 respondents in 15 study areas were contacted for an interview. These areas represent different noise levels and different locations relative to the flight paths. The interviews were conducted in a 2 week period just prior to the transfer of charter traffic from Gardemoen to Fornebu. In the same period the aircraft noise was monitored in all 15 areas. In addition the airport is equipped with a permanent flight track and noise monitoring system. The noise situation both in the study period and on an average basis can therefore be accurately described. In August a group of 1800 new respondents were subjected to identical interviews in the same 15 areas, and the noise measurement program was repeated. Results of the study are discussed.
Wavelet denoising of multiframe optical coherence tomography data
Mayer, Markus A.; Borsdorf, Anja; Wagner, Martin; Hornegger, Joachim; Mardin, Christian Y.; Tornow, Ralf P.
2012-01-01
We introduce a novel speckle noise reduction algorithm for OCT images. Contrary to present approaches, the algorithm does not rely on simple averaging of multiple image frames or denoising on the final averaged image. Instead it uses wavelet decompositions of the single frames for a local noise and structure estimation. Based on this analysis, the wavelet detail coefficients are weighted, averaged and reconstructed. At a signal-to-noise gain at about 100% we observe only a minor sharpness decrease, as measured by a full-width-half-maximum reduction of 10.5%. While a similar signal-to-noise gain would require averaging of 29 frames, we achieve this result using only 8 frames as input to the algorithm. A possible application of the proposed algorithm is preprocessing in retinal structure segmentation algorithms, to allow a better differentiation between real tissue information and unwanted speckle noise. PMID:22435103
Wavelet denoising of multiframe optical coherence tomography data.
Mayer, Markus A; Borsdorf, Anja; Wagner, Martin; Hornegger, Joachim; Mardin, Christian Y; Tornow, Ralf P
2012-03-01
We introduce a novel speckle noise reduction algorithm for OCT images. Contrary to present approaches, the algorithm does not rely on simple averaging of multiple image frames or denoising on the final averaged image. Instead it uses wavelet decompositions of the single frames for a local noise and structure estimation. Based on this analysis, the wavelet detail coefficients are weighted, averaged and reconstructed. At a signal-to-noise gain at about 100% we observe only a minor sharpness decrease, as measured by a full-width-half-maximum reduction of 10.5%. While a similar signal-to-noise gain would require averaging of 29 frames, we achieve this result using only 8 frames as input to the algorithm. A possible application of the proposed algorithm is preprocessing in retinal structure segmentation algorithms, to allow a better differentiation between real tissue information and unwanted speckle noise.
A pilot study to assess residential noise exposure near natural gas compressor stations.
Boyle, Meleah D; Soneja, Sutyajeet; Quirós-Alcalá, Lesliam; Dalemarre, Laura; Sapkota, Amy R; Sangaramoorthy, Thurka; Wilson, Sacoby; Milton, Donald; Sapkota, Amir
2017-01-01
U.S. natural gas production increased 40% from 2000 to 2015. This growth is largely related to technological advances in horizontal drilling and high-volume hydraulic fracturing. Environmental exposures upon impacted communities are a significant public health concern. Noise associated with natural gas compressor stations has been identified as a major concern for nearby residents, though limited studies exist. We conducted a pilot study to characterize noise levels in 11 homes located in Doddridge County, West Virginia, and determined whether these levels differed based on time of day, indoors vs. outdoors, and proximity of homes to natural gas compressor stations. We also compared noise levels at increasing distances from compressor stations to available noise guidelines, and evaluated low frequency noise presence. We collected indoor and outdoor 24-hour measurements (Leq, 24hr) in eight homes located within 750 meters (m) of the nearest compressor station and three control homes located >1000m. We then evaluated how A-weighted decibel (dBA) exposure levels differed based on factors outlined above. The geometric mean (GM) for 24-hour outdoor noise levels at homes located <300m (Leq,24hr: 60.3 dBA; geometric standard deviation (GSD): 1.0) from the nearest compressor station was nearly 9 dBA higher than control homes (Leq,24hr: 51.6 dBA; GSD: 1.1). GM for 24 hour indoor noise for homes <300m (Leq,24hr: 53.4 dBA; GSD: 1.2) from the nearest compressor station was 11.2 dBA higher than control homes (Leq,24hr: 42.2 dBA; GSD: 1.1). Indoor average daytime noise for homes <300m of the nearest compressor stations were 13.1 dBA higher than control homes, while indoor nighttime readings were 9.4 dBA higher. Findings indicate that living near a natural gas compressor station could potentially result in high environmental noise exposures. Larger studies are needed to confirm these findings and evaluate potential health impacts and protection measures.
A pilot study to assess residential noise exposure near natural gas compressor stations
Boyle, Meleah D.; Quirós-Alcalá, Lesliam; Dalemarre, Laura; Sapkota, Amy R.; Sangaramoorthy, Thurka; Wilson, Sacoby; Milton, Donald; Sapkota, Amir
2017-01-01
Background U.S. natural gas production increased 40% from 2000 to 2015. This growth is largely related to technological advances in horizontal drilling and high-volume hydraulic fracturing. Environmental exposures upon impacted communities are a significant public health concern. Noise associated with natural gas compressor stations has been identified as a major concern for nearby residents, though limited studies exist. Objectives We conducted a pilot study to characterize noise levels in 11 homes located in Doddridge County, West Virginia, and determined whether these levels differed based on time of day, indoors vs. outdoors, and proximity of homes to natural gas compressor stations. We also compared noise levels at increasing distances from compressor stations to available noise guidelines, and evaluated low frequency noise presence. Methods We collected indoor and outdoor 24-hour measurements (Leq, 24hr) in eight homes located within 750 meters (m) of the nearest compressor station and three control homes located >1000m. We then evaluated how A-weighted decibel (dBA) exposure levels differed based on factors outlined above. Results The geometric mean (GM) for 24-hour outdoor noise levels at homes located <300m (Leq,24hr: 60.3 dBA; geometric standard deviation (GSD): 1.0) from the nearest compressor station was nearly 9 dBA higher than control homes (Leq,24hr: 51.6 dBA; GSD: 1.1). GM for 24 hour indoor noise for homes <300m (Leq,24hr: 53.4 dBA; GSD: 1.2) from the nearest compressor station was 11.2 dBA higher than control homes (Leq,24hr: 42.2 dBA; GSD: 1.1). Indoor average daytime noise for homes <300m of the nearest compressor stations were 13.1 dBA higher than control homes, while indoor nighttime readings were 9.4 dBA higher. Conclusions Findings indicate that living near a natural gas compressor station could potentially result in high environmental noise exposures. Larger studies are needed to confirm these findings and evaluate potential health impacts and protection measures. PMID:28369113
Automatic microseismic event picking via unsupervised machine learning
NASA Astrophysics Data System (ADS)
Chen, Yangkang
2018-01-01
Effective and efficient arrival picking plays an important role in microseismic and earthquake data processing and imaging. Widely used short-term-average long-term-average ratio (STA/LTA) based arrival picking algorithms suffer from the sensitivity to moderate-to-strong random ambient noise. To make the state-of-the-art arrival picking approaches effective, microseismic data need to be first pre-processed, for example, removing sufficient amount of noise, and second analysed by arrival pickers. To conquer the noise issue in arrival picking for weak microseismic or earthquake event, I leverage the machine learning techniques to help recognizing seismic waveforms in microseismic or earthquake data. Because of the dependency of supervised machine learning algorithm on large volume of well-designed training data, I utilize an unsupervised machine learning algorithm to help cluster the time samples into two groups, that is, waveform points and non-waveform points. The fuzzy clustering algorithm has been demonstrated to be effective for such purpose. A group of synthetic, real microseismic and earthquake data sets with different levels of complexity show that the proposed method is much more robust than the state-of-the-art STA/LTA method in picking microseismic events, even in the case of moderately strong background noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bochkareva, N. I.; Ivanov, A. M.; Klochkov, A. V.
2015-06-15
It is shown that the emission efficiency and the 1/f noise level in light-emitting diodes with InGaN/GaN quantum wells correlate with how the differential resistance of a diode varies with increasing current. Analysis of the results shows that hopping transport via defect states across the n-type part of the space-charge region results in limitation of the current by the tunneling resistance at intermediate currents and shunting of the n-type barrier at high currents. The increase in the average number of tunneling electrons suppresses the 1/f current noise at intermediate currents. The strong growth in the density of current noise atmore » high currents, S{sub J} ∝ J{sup 3}, is attributed to a decrease in the average number of tunneling electrons as the n-type barrier decreases in height and width with increasing forward bias. The tunneling-recombination leakage current along extended defects grows faster than the tunneling injection current, which leads to emission efficiency droop.« less
Programmable noise bandwidth reduction by means of digital averaging
NASA Technical Reports Server (NTRS)
Poklemba, John J. (Inventor)
1993-01-01
Predetection noise bandwidth reduction is effected by a pre-averager capable of digitally averaging the samples of an input data signal over two or more symbols, the averaging interval being defined by the input sampling rate divided by the output sampling rate. As the averaged sample is clocked to a suitable detector at a much slower rate than the input signal sampling rate the noise bandwidth at the input to the detector is reduced, the input to the detector having an improved signal to noise ratio as a result of the averaging process, and the rate at which such subsequent processing must operate is correspondingly reduced. The pre-averager forms a data filter having an output sampling rate of one sample per symbol of received data. More specifically, selected ones of a plurality of samples accumulated over two or more symbol intervals are output in response to clock signals at a rate of one sample per symbol interval. The pre-averager includes circuitry for weighting digitized signal samples using stored finite impulse response (FIR) filter coefficients. A method according to the present invention is also disclosed.
HF DBD plasma actuators for reduction of cylinder noise in flow
NASA Astrophysics Data System (ADS)
Kopiev, V. F.; Kazansky, P. N.; Kopiev, V. A.; Moralev, I. A.; Zaytsev, M. Yu
2017-11-01
Surface high frequency dielectric barrier discharge (HF DBD) was used to reduce flow-induced noise, radiated by circular cylinder in cross flow. Effect of HF DBD actuators is studied for flow velocity up to 80 m s-1 (Reynolds numbers up to 2.18 · 105), corresponding to the typical aircraft landing approach speed. Noise measurements were performed by microphone array in anechoic chamber; averaged flow parameters were studied by particle image velocimetry (PIV). Actuator was powered by high-frequency voltage in hundreds kHz range in steady or modulated mode with the modulation frequency of 0.3-20 kHz (Strouhal number St of 0.4 to 20). It is demonstrated that upstream directed plasma actuators are able to reduce the vortex noise of a cylinder by 10 dB. Noise reduction is accompanied by significant reorganization of the wake behind a cylinder, decreasing both wake width and turbulence level. The physical mechanism related to broadband noise control by HF DBD actuator is also discussed.
Mirro, Amy E.; Brady, Samuel L.; Kaufman, Robert. A.
2016-01-01
Purpose To implement the maximum level of statistical iterative reconstruction that can be used to establish dose-reduced head CT protocols in a primarily pediatric population. Methods Select head examinations (brain, orbits, sinus, maxilla and temporal bones) were investigated. Dose-reduced head protocols using an adaptive statistical iterative reconstruction (ASiR) were compared for image quality with the original filtered back projection (FBP) reconstructed protocols in phantom using the following metrics: image noise frequency (change in perceived appearance of noise texture), image noise magnitude, contrast-to-noise ratio (CNR), and spatial resolution. Dose reduction estimates were based on computed tomography dose index (CTDIvol) values. Patient CTDIvol and image noise magnitude were assessed in 737 pre and post dose reduced examinations. Results Image noise texture was acceptable up to 60% ASiR for Soft reconstruction kernel (at both 100 and 120 kVp), and up to 40% ASiR for Standard reconstruction kernel. Implementation of 40% and 60% ASiR led to an average reduction in CTDIvol of 43% for brain, 41% for orbits, 30% maxilla, 43% for sinus, and 42% for temporal bone protocols for patients between 1 month and 26 years, while maintaining an average noise magnitude difference of 0.1% (range: −3% to 5%), improving CNR of low contrast soft tissue targets, and improving spatial resolution of high contrast bony anatomy, as compared to FBP. Conclusion The methodology in this study demonstrates a methodology for maximizing patient dose reduction and maintaining image quality using statistical iterative reconstruction for a primarily pediatric population undergoing head CT examination. PMID:27056425
Kalantary, Saba; Dehghani, Ali; Yekaninejad, Mir Saeed; Omidi, Leila; Rahimzadeh, Mitra
2015-01-01
BACKGROUND One of the most important impacts of industrial noise is physiological and psychological effects. The increases in workers’ blood pressure and heart rate were detected during and after exposure to high levels of noise. The objectives of this research were to determine whether the noise exposures have any effects on blood pressure and heart rate of workers in the automotive parts industry. METHODS This case study was done in 2011 at different units of an automotive parts manufacturing in Tehran. Sound pressure level was measured at different units of the factory with a calibrated instrument. Demographic features of workers were gathered with an appropriate questionnaire. Heart rate and blood pressure were measured twice in a day in the start time of work day (before exposure to noise) and middle shift hours (during exposure to noise) in the occupational physician office. For analyzing data, chi-square, independent sample t-test, paired t-test, and analysis of covariance (ANCOVA) were used. P < 0.050 was considered statistically significant. RESULTS The average age of workers in the case and control groups was 35.71 ± 8.10 and 33.40 ± 10.41 years, respectively. There was no difference between the average age of case and control groups (P = 0.436). The results of ANCOVA revealed the significant differences between the mean changes of heart rate F (1, 37) = 26.68, P < 0.001, systolic blood pressure F (1, 37) = 21.70, P < 0.001, and diastolic blood pressure F (1, 37) = 26.20, P < 0.001 of workers in the case and control groups. CONCLUSION Exposure to industrial noise may increase the heart rate of workers. Although rises in heart rate, systolic, and diastolic blood pressure of workers in the case group were observed after exposure to noise, the values of heart rate, systolic, and diastolic blood pressure were in the normal range. Further experimental investigations are needed to determine the relationships between these variables. PMID:26478728
Aeroacoustic Simulation of a Nose Landing Gear in an Open Jet Facility Using FUN3D
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Lockard, David P.; Khorrami, Mehdi R.; Carlson, Jan-Renee
2012-01-01
Numerical simulations have been performed for a partially-dressed, cavity-closed nose landing gear configuration that was tested in NASA Langley s closed-wall Basic Aerodynamic Research Tunnel (BART) and in the University of Florida s open-jet acoustic facility known as UFAFF. The unstructured-grid flow solver, FUN3D, developed at NASA Langley Research center is used to compute the unsteady flow field for this configuration. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these computations. Time-averaged and instantaneous solutions compare favorably with the measured data. Unsteady flowfield data obtained from the FUN3D code are used as input to a Ffowcs Williams-Hawkings noise propagation code to compute the sound pressure levels at microphones placed in the farfield. Significant improvement in predicted noise levels is obtained when the flowfield data from the open jet UFAFF simulations is used as compared to the case using flowfield data from the closed-wall BART configuration.
Evaluation of the risk of noise-induced hearing loss among unscreened male industrial workers.
Prince, Mary M; Gilbert, Stephen J; Smith, Randall J; Stayner, Leslie T
2003-02-01
Variability in background risk and distribution of various risk factors for hearing loss may explain some of the diversity in excess risk of noise-induced hearing loss (NIHL). This paper examines the impact of various risk factors on excess risk estimates of NIHL using data from the 1968-1972 NIOSH Occupational Noise and Hearing Survey (ONHS). Previous analyses of a subset of these data focused on 1172 highly "screened" workers. In the current analysis, an additional 894 white males (609 noise-exposed and 285 controls), who were excluded for various reasons (i.e., nonoccupational noise exposure, otologic or medical conditions affecting hearing, prior occupational noise exposure) have been added 2066) to assess excess risk of noise-induced material impairment in an unscreened population. Data are analyzed by age, duration of exposure, and sound level (8-h TWA) for four different definitions of noise-induced hearing impairment, defined as the binaural pure-tone average (PTA) hearing threshold level greater than 25 dB for the following frequencies: (a) 1-4 kHz (PTA1234), (b) 1-3 kHz (PTA123), (c) 0.5, 1, and 2 kHz (PTA512), and (d) 3, 4, and 6 kHz (PTA346). Results indicate that populations with higher background risks of hearing loss may show lower excess risks attributable to noise relative to highly screened populations. Estimates of lifetime excess risk of hearing impairment were found to be significantly different between screened and unscreened population for noise levels greater than 90 dBA. Predicted age-related risk of material hearing impairment in the ONHS unscreened population was similar to that predicted from Annex B and C of ANSI S3.44 for ages less than 60 years. Results underscore the importance of understanding differential risk patterns for hearing loss and the use of appropriate reference (control) populations when evaluating risk of noise-induced hearing impairment among contemporary industrial populations.
Ultra-stable high average power femtosecond laser system tunable from 1.33 to 20 μm.
Steinle, Tobias; Mörz, Florian; Steinmann, Andy; Giessen, Harald
2016-11-01
A highly stable 350 fs laser system with a gap-free tunability from 1.33 to 2.0 μm and 2.13 to 20 μm is demonstrated. Nanojoule-level pulse energy is achieved in the mid-infrared at a 43 MHz repetition rate. The system utilizes a post-amplified fiber-feedback optical parametric oscillator followed by difference frequency generation between the signal and idler. No locking or synchronization electronics are required to achieve outstanding free-running output power and spectral stability of the whole system. Ultra-low intensity noise, close to the pump laser's noise figure, enables shot-noise limited measurements.
NASA Astrophysics Data System (ADS)
Lenoir, Guillaume; Crucifix, Michel
2018-03-01
We develop a general framework for the frequency analysis of irregularly sampled time series. It is based on the Lomb-Scargle periodogram, but extended to algebraic operators accounting for the presence of a polynomial trend in the model for the data, in addition to a periodic component and a background noise. Special care is devoted to the correlation between the trend and the periodic component. This new periodogram is then cast into the Welch overlapping segment averaging (WOSA) method in order to reduce its variance. We also design a test of significance for the WOSA periodogram, against the background noise. The model for the background noise is a stationary Gaussian continuous autoregressive-moving-average (CARMA) process, more general than the classical Gaussian white or red noise processes. CARMA parameters are estimated following a Bayesian framework. We provide algorithms that compute the confidence levels for the WOSA periodogram and fully take into account the uncertainty in the CARMA noise parameters. Alternatively, a theory using point estimates of CARMA parameters provides analytical confidence levels for the WOSA periodogram, which are more accurate than Markov chain Monte Carlo (MCMC) confidence levels and, below some threshold for the number of data points, less costly in computing time. We then estimate the amplitude of the periodic component with least-squares methods, and derive an approximate proportionality between the squared amplitude and the periodogram. This proportionality leads to a new extension for the periodogram: the weighted WOSA periodogram, which we recommend for most frequency analyses with irregularly sampled data. The estimated signal amplitude also permits filtering in a frequency band. Our results generalise and unify methods developed in the fields of geosciences, engineering, astronomy and astrophysics. They also constitute the starting point for an extension to the continuous wavelet transform developed in a companion article (Lenoir and Crucifix, 2018). All the methods presented in this paper are available to the reader in the Python package WAVEPAL.
Dehghan, Habibollah; Bastami, Mohamad Taghi; Mahaki, Behzad
2017-01-01
Exposure to noise and heat causes individuals to experience some changes in the function of cardiovascular system in workplaces. This study aimed to find the combined effect of heat and noise on systolic and diastolic types of blood pressure in experimentally controlled conditions. This quasi-experimental study was performed with 12 male students in a climatic chamber in 2014. Blood pressure including systolic and diastolic was measured in the following conditions: 15 min after rest in exposure to heat (40°C, relative humidity [RH]: 30%), exposure to noise with 75, 85, and 95 dB rates in thermal comfort condition (22.1 ± 0.9 wet-bulb globe temperature), and combined exposure to heat (40°C, RH: 30%) and noise with 75, 85, and 95 dB. Friedman test was used to analyze the data. The mean change of systolic blood pressure was different significantly before and after exposure to heat and noise levels including 75, 85, and 95 dB ( P = 0.015, P = 0.001, P > 0.001, P = 0.027, respectively). Although systolic and diastolic blood pressures changed drastically, it was not significantly different in simultaneous exposure to heat and noise. Both systolic and diastolic blood pressures decreased in exposure to heat, while exposure to different levels of noise elevates systolic and diastolic blood pressures. However, when exposed to a combination of heat and noise, subtle changes of blood pressure were traced, which can be characterized as average, considering heat-only and noise-only tension situations.
Identifying Modeled Ship Noise Hotspots for Marine Mammals of Canada's Pacific Region
Erbe, Christine; Williams, Rob; Sandilands, Doug; Ashe, Erin
2014-01-01
The inshore, continental shelf waters of British Columbia (BC), Canada are busy with ship traffic. South coast waters are heavily trafficked by ships using the ports of Vancouver and Seattle. North coast waters are less busy, but expected to get busier based on proposals for container port and liquefied natural gas development and expansion. Abundance estimates and density surface maps are available for 10 commonly seen marine mammals, including northern resident killer whales, fin whales, humpback whales, and other species with at-risk status under Canadian legislation. Ship noise is the dominant anthropogenic contributor to the marine soundscape of BC, and it is chronic. Underwater noise is now being considered in habitat quality assessments in some countries and in marine spatial planning. We modeled the propagation of underwater noise from ships and weighted the received levels by species-specific audiograms. We overlaid the audiogram-weighted maps of ship audibility with animal density maps. The result is a series of so-called “hotspot” maps of ship noise for all 10 marine mammal species, based on cumulative ship noise energy and average distribution in the boreal summer. South coast waters (Juan de Fuca and Haro Straits) are hotspots for all species that use the area, irrespective of their hearing sensitivity, simply due to ubiquitous ship traffic. Secondary hotspots were found on the central and north coasts (Johnstone Strait and the region around Prince Rupert). These maps can identify where anthropogenic noise is predicted to have above-average impact on species-specific habitat, and where mitigation measures may be most effective. This approach can guide effective mitigation without requiring fleet-wide modification in sites where no animals are present or where the area is used by species that are relatively insensitive to ship noise. PMID:24598866
On the structure of the master equation for a two-level system coupled to a thermal bath
NASA Astrophysics Data System (ADS)
de Vega, Inés
2015-04-01
We derive a master equation from the exact stochastic Liouville-von-Neumann (SLN) equation (Stockburger and Grabert 2002 Phys. Rev. Lett. 88 170407). The latter depends on two correlated noises and describes exactly the dynamics of an oscillator (which can be either harmonic or present an anharmonicity) coupled to an environment at thermal equilibrium. The newly derived master equation is obtained by performing analytically the average over different noise trajectories. It is found to have a complex hierarchical structure that might be helpful to explain the convergence problems occurring when performing numerically the stochastic average of trajectories given by the SLN equation (Koch et al 2008 Phys. Rev. Lett. 100 230402, Koch 2010 PhD thesis Fakultät Mathematik und Naturwissenschaften der Technischen Universitat Dresden).
Tsoumpas, C; Polycarpou, I; Thielemans, K; Buerger, C; King, A P; Schaeffter, T; Marsden, P K
2013-03-21
Following continuous improvement in PET spatial resolution, respiratory motion correction has become an important task. Two of the most common approaches that utilize all detected PET events to motion-correct PET data are the reconstruct-transform-average method (RTA) and motion-compensated image reconstruction (MCIR). In RTA, separate images are reconstructed for each respiratory frame, subsequently transformed to one reference frame and finally averaged to produce a motion-corrected image. In MCIR, the projection data from all frames are reconstructed by including motion information in the system matrix so that a motion-corrected image is reconstructed directly. Previous theoretical analyses have explained why MCIR is expected to outperform RTA. It has been suggested that MCIR creates less noise than RTA because the images for each separate respiratory frame will be severely affected by noise. However, recent investigations have shown that in the unregularized case RTA images can have fewer noise artefacts, while MCIR images are more quantitatively accurate but have the common salt-and-pepper noise. In this paper, we perform a realistic numerical 4D simulation study to compare the advantages gained by including regularization within reconstruction for RTA and MCIR, in particular using the median-root-prior incorporated in the ordered subsets maximum a posteriori one-step-late algorithm. In this investigation we have demonstrated that MCIR with proper regularization parameters reconstructs lesions with less bias and root mean square error and similar CNR and standard deviation to regularized RTA. This finding is reproducible for a variety of noise levels (25, 50, 100 million counts), lesion sizes (8 mm, 14 mm diameter) and iterations. Nevertheless, regularized RTA can also be a practical solution for motion compensation as a proper level of regularization reduces both bias and mean square error.
High-power noise-like pulse generation using a 1.56-µm all-fiber laser system.
Lin, Shih-Shian; Hwang, Sheng-Kwang; Liu, Jia-Ming
2015-07-13
We demonstrated an all-fiber, high-power noise-like pulse laser system at the 1.56-µm wavelength. A low-power noise-like pulse train generated by a ring oscillator was amplified using a two-stage amplifier, where the performance of the second-stage amplifier determined the final output power level. The optical intensity in the second-stage amplifier was managed well to avoid not only the excessive spectral broadening induced by nonlinearities but also any damage to the device. On the other hand, the power conversion efficiency of the amplifier was optimized through proper control of its pump wavelength. The pump wavelength determines the pump absorption and therefore the power conversion efficiency of the gain fiber. Through this approach, the average power of the noise-like pulse train was amplified considerably to an output of 13.1 W, resulting in a power conversion efficiency of 36.1% and a pulse energy of 0.85 µJ. To the best of our knowledge, these amplified pulses have the highest average power and pulse energy for noise-like pulses in the 1.56-µm wavelength region. As a result, the net gain in the cascaded amplifier reached 30 dB. With peak and pedestal widths of 168 fs and 61.3 ps, respectively, for the amplified pulses, the pedestal-to-peak intensity ratio of the autocorrelation trace remains at the value of 0.5 required for truly noise-like pulses.
CASH--an innovative approach to sustainable OSH improvement at workplace.
Pingle, S; Shanbhag, S
2006-01-01
Occupational health department of a large private enterprise located in India launched Project CASH--Change Agents for Safety and Health, at manufacturing units of the enterprise to bring about a positive change in work environment and improvement in work practices to reduce occupational health risk. Multidisciplinary teams of change agents were constituted and were given intensive training inputs. Reduction in exposure to noise, dust and heat stress were identified as specific objectives after a baseline survey of the work environment. Occupational safety and health knowledge and training was imparted to all field personnel to improve their work practices and attitudes. The focus of the actions was on engineering control measures and process engineering changes necessary for workplace improvement. Noise levels were reduced by an average of more than 9dBA in most of the top ten high noise locations. Out of two locations identified for dust exposure, one was fully eliminated and dust levels at other location were significantly reduced. Heat stress was reduced in all three identified locations with an average reduction of more than 3 degrees C in WBGT levels. Thus, final evaluation of workplace environments revealed significant reduction in exposure to all identified agents, viz noise, dust and heat fulfilling the project objectives. Educating and empowering the team led to reduction of occupational health risks in the work environment. There was positive attitudinal and behavioural change in safety and occupational health awareness & practices among employees. The monetary savings resulting from improvements far outweighed the investments. Success of this pilot project was followed up with further similar projects and their number has grown in geometric proportion for the last three years indicating the sustainability of the project.
What can 35 years and over 700,000 measurements tell us about noise exposure in the mining industry?
Roberts, Benjamin; Sun, Kan; Neitzel, Richard L
2017-01-01
To analyse over 700,000 cross-sectional measurements from the Mine Safety and Health Administration (MHSA) and develop statistical models to predict noise exposure for a worker. Descriptive statistics were used to summarise the data. Two linear regression models were used to predict noise exposure based on MSHA-permissible exposure limit (PEL) and action level (AL), respectively. Twofold cross validation was used to compare the exposure estimates from the models to actual measurement. The mean difference and t-statistic was calculated for each job title to determine whether the model predictions were significantly different from the actual data. Measurements were acquired from MSHA through a Freedom of Information Act request. From 1979 to 2014, noise exposure has decreased. Measurements taken before the implementation of MSHA's revised noise regulation in 2000 were on average 4.5 dBA higher than after the law was implemented. Both models produced exposure predictions that were less than 1 dBA different than the holdout data. Overall noise levels in mines have been decreasing. However, this decrease has not been uniform across all mining sectors. The exposure predictions from the model will be useful to help predict hearing loss in workers in the mining industry.
Fogerty, Daniel
2014-01-01
The present study investigated the importance of overall segment amplitude and intrinsic segment amplitude modulation of consonants and vowels to sentence intelligibility. Sentences were processed according to three conditions that replaced consonant or vowel segments with noise matched to the long-term average speech spectrum. Segments were replaced with (1) low-level noise that distorted the overall sentence envelope, (2) segment-level noise that restored the overall syllabic amplitude modulation of the sentence, and (3) segment-modulated noise that further restored faster temporal envelope modulations during the vowel. Results from the first experiment demonstrated an incremental benefit with increasing resolution of the vowel temporal envelope. However, amplitude modulations of replaced consonant segments had a comparatively minimal effect on overall sentence intelligibility scores. A second experiment selectively noise-masked preserved vowel segments in order to equate overall performance of consonant-replaced sentences to that of the vowel-replaced sentences. Results demonstrated no significant effect of restoring consonant modulations during the interrupting noise when existing vowel cues were degraded. A third experiment demonstrated greater perceived sentence continuity with the preservation or addition of vowel envelope modulations. Overall, results support previous investigations demonstrating the importance of vowel envelope modulations to the intelligibility of interrupted sentences. PMID:24606291
NASA Technical Reports Server (NTRS)
Gunn, W. J.; Shigehisa, T.; Shepherd, W. T.
1976-01-01
An experiment was conducted in order to determine the relative effectiveness of several hypothetical jet engine noise treatments and to test hypothesis that speech interference, at least in part, mediates annoyance in a TV-viewing situation. Twenty-four subjects watched television in a simulated living room. Recorded jet flyover noises were presented in such a way as to create the illusion that aircraft were actually flying overhead. There were 27 stimuli (nine spectra at three overall levels) presented at an average rate of approximately one flight every 2 minutes. Subjects judged the annoyance value of individual stimuli using either a category rating method or magnitude estimation method in each of two 1-hour sessions. The spectral treatments most effective in reducing annoyance were at 1.6 Khz and 800 Hz, in that order. The degree of annoyance reduction resulting from all treatments was affected by the overall sound level of the stimuli, with the greatest reduction at the intermediate overall sound level, about 88 to 89 db(A), peak value. The results are interpreted as supporting the hypothesis that speech interference, at least in part, mediates annoyance with aircraft noise in a TV-viewing situation.
Relationship between magnetic field strength and magnetic-resonance-related acoustic noise levels.
Moelker, Adriaan; Wielopolski, Piotr A; Pattynama, Peter M T
2003-02-01
The need for better signal-to-noise ratios and resolution has pushed magnetic resonance imaging (MRI) towards high-field MR-scanners for which only little data on MR-related acoustic noise production have been published. The purpose of this study was to validate the theoretical relationship of sound pressure level (SPL) and static magnetic field strength. This is relevant for allowing adequate comparisons of acoustic data of MR systems at various magnetic field strengths. Acoustic data were acquired during various pulse sequences at field strengths of 0.5, 1.0, 1.5 and 2.0 Tesla using the same MRI unit by means of a Helicon rampable magnet. Continuous-equivalent, i.e. time-averaged, linear SPLs and 1/3-octave band frequencies were recorded. Ramping from 0.5 to 1.0 Tesla and from 1.0 to 2.0 Tesla resulted in an SPL increase of 5.7 and 5.2 dB(L), respectively, when averaged over the various pulse sequences. Most of the acoustic energy was in the 1-kHz frequency band, irrespective of magnetic field strength. The relation between field strength and SPL was slightly non-linear, i.e. a slightly less increase at higher field strengths, presumably caused by the elastic properties of the gradient coil encasings.
Hopkins, Carl
2011-05-01
In architectural acoustics, noise control and environmental noise, there are often steady-state signals for which it is necessary to measure the spatial average, sound pressure level inside rooms. This requires using fixed microphone positions, mechanical scanning devices, or manual scanning. In comparison with mechanical scanning devices, the human body allows manual scanning to trace out complex geometrical paths in three-dimensional space. To determine the efficacy of manual scanning paths in terms of an equivalent number of uncorrelated samples, an analytical approach is solved numerically. The benchmark used to assess these paths is a minimum of five uncorrelated fixed microphone positions at frequencies above 200 Hz. For paths involving an operator walking across the room, potential problems exist with walking noise and non-uniform scanning speeds. Hence, paths are considered based on a fixed standing position or rotation of the body about a fixed point. In empty rooms, it is shown that a circle, helix, or cylindrical-type path satisfy the benchmark requirement with the latter two paths being highly efficient at generating large number of uncorrelated samples. In furnished rooms where there is limited space for the operator to move, an efficient path comprises three semicircles with 45°-60° separations.
Brännström, K Jonas; Zunic, Edita; Borovac, Aida; Ibertsson, Tina
2012-01-01
The acceptable noise level (ANL) test is a method for quantifying the amount of background noise that subjects accept when listening to speech. Large variations in ANL have been seen between normal-hearing subjects and between studies of normal-hearing subjects, but few explanatory variables have been identified. To explore a possible relationship between a Swedish version of the ANL test, working memory capacity (WMC), and auditory evoked potentials (AEPs). ANL, WMC, and AEP were tested in a counterbalanced order across subjects. Twenty-one normal-hearing subjects participated in the study (14 females and 7 males; aged 20-39 yr with an average of 25.7 yr). Reported data consists of age, pure-tone average (PTA), most comfortable level (MCL), background noise level (BNL), ANL (i.e., MCL - BNL), AEP latencies, AEP amplitudes, and WMC. Spearman's rank correlation coefficient was calculated between the collected variables to investigate associations. A principal component analysis (PCA) with Varimax rotation was conducted on the collected variables to explore underlying factors and estimate interactions between the tested variables. Subjects were also pooled into two groups depending on their results on the WMC test, one group with a score lower than the average and one with a score higher than the average. Comparisons between these two groups were made using the Mann-Whitney U-test with Bonferroni correction for multiple comparisons. A negative association was found between ANL and WMC but not between AEP and ANL or WMC. Furthermore, ANL is derived from MCL and BNL, and a significant positive association was found between BNL and WMC. However, no significant associations were seen between AEP latencies and amplitudes and the demographic variables, MCL, and BNL. The PCA identified two underlying factors: One that contained MCL, BNL, ANL, and WMC and another that contained latency for wave Na and amplitudes for waves V and Na-Pa. Using the variables in the first factor, the findings were further explored by pooling the subjects into two groups according to their WMC (WMClow and WMChigh). It was found that the WMClow had significantly poorer BNL than the WMChigh. The findings suggest that there is a strong relationship between BNL and WMC, while the association between MCL, ANL, and WMC seems less clear-cut. American Academy of Audiology.
The magnitude and colour of noise in genetic negative feedback systems.
Voliotis, Margaritis; Bowsher, Clive G
2012-08-01
The comparative ability of transcriptional and small RNA-mediated negative feedback to control fluctuations or 'noise' in gene expression remains unexplored. Both autoregulatory mechanisms usually suppress the average (mean) of the protein level and its variability across cells. The variance of the number of proteins per molecule of mean expression is also typically reduced compared with the unregulated system, but is almost never below the value of one. This relative variance often substantially exceeds a recently obtained, theoretical lower limit for biochemical feedback systems. Adding the transcriptional or small RNA-mediated control has different effects. Transcriptional autorepression robustly reduces both the relative variance and persistence (lifetime) of fluctuations. Both benefits combine to reduce noise in downstream gene expression. Autorepression via small RNA can achieve more extreme noise reduction and typically has less effect on the mean expression level. However, it is often more costly to implement and is more sensitive to rate parameters. Theoretical lower limits on the relative variance are known to decrease slowly as a measure of the cost per molecule of mean expression increases. However, the proportional increase in cost to achieve substantial noise suppression can be different away from the optimal frontier-for transcriptional autorepression, it is frequently negligible.
Rye Canyon X-ray noise test: One-third octave-band data
NASA Technical Reports Server (NTRS)
Willshire, W. L., Jr.
1983-01-01
Acoustic data were obtained for the 25 ft. diameter X-wing rotor model during performance testing of the rotor system in hover. Data collected at the outdoor whirl tower test facility with a twelve microphone array were taken for approximately 150 test conditions comprised of various combinations of RPM, blade pressure ratio (BPR), and blade angle of attack (collective). The three test parameters had four values of RPM from 404 to 497, twelve values of BPR from 1.0 to 2.1, and six values of collective from 0.0 deg to 8.5 deg. Fifteen to twenty seconds of acoustic data were reduced to obtain an average 1/3 octave band spectrum for each microphone for each test condition. The complete, as measured, 1/3 octave band results for all the acoustic data are listed. Another part of the X-wing noise test was the acoustic calibration of the Rye Canyon whirl tower bowl. Corrections were computed which, when applied to as measured data, yield estimates of the free field X-wing noise. The free field estimates provide a more realistic measure of the rotor system noise levels. Trend analysis of the three test parameters on noise level were performed.
Shot noise in radiobiological systems.
Datesman, A
2016-11-01
As a model for human tissue, this report considers the rate of free radical generation in a dilute solution of water in which a beta-emitting radionuclide is uniformly dispersed. Each decay dissipates a discrete quantity of energy, creating a large number of free radicals in a short time within a small volume determined by the beta particle range. Representing the instantaneous dissipated power as a train of randomly-spaced pulses, the time-averaged dissipated power p¯ and rate of free radical generation g¯ are derived. The analogous result in the theory of electrical circuits is known as the shot noise theorem. The reference dose of X-rays D ref producing an identical rate of free radical generation and level of oxidative stress is shown a) to increase with the square root of the absorbed dose, D, and b) to be far larger than D. This finding may have important consequences for public health in cases where the level of shot noise exceeds some noise floor corresponding to equilibrium biological processes. An estimate of this noise floor is made using the example of potassium-40, a beta-emitting radioisotope universally present in living tissue. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Cost-Effectiveness of Lowering Permissible Noise Levels Around U.S. Airports
Jiao, Boshen; Zafari, Zafar; Will, Brian; Ruggeri, Kai
2017-01-01
Aircraft noise increases the risk of cardiovascular diseases and mental illness. The allowable limit for sound in the vicinity of an airport is 65 decibels (dB) averaged over a 24-h ‘day and night’ period (DNL) in the United States. We evaluate the trade-off between the cost and the health benefits of changing the regulatory DNL level from 65 dB to 55 dB using a Markov model. The study used LaGuardia Airport (LGA) as a case study. In compliance with 55 dB allowable limit of aircraft noise, sound insulation would be required for residential homes within the 55 dB to 65 dB DNL. A Markov model was built to assess the cost-effectiveness of installing sound insulation. One-way sensitivity analyses and Monte Carlo simulation were conducted to test uncertainty of the model. The incremental cost-effectiveness ratio of installing sound insulation for residents exposed to airplane noise from LGA was $11,163/QALY gained (95% credible interval: cost-saving and life-saving to $93,054/QALY gained). Changing the regulatory standard for noise exposure around airports from 65 dB to 55 dB comes at a very good value. PMID:29207473
The Cost-Effectiveness of Lowering Permissible Noise Levels Around U.S. Airports.
Jiao, Boshen; Zafari, Zafar; Will, Brian; Ruggeri, Kai; Li, Shukai; Muennig, Peter
2017-12-02
Aircraft noise increases the risk of cardiovascular diseases and mental illness. The allowable limit for sound in the vicinity of an airport is 65 decibels (dB) averaged over a 24-h 'day and night' period (DNL) in the United States. We evaluate the trade-off between the cost and the health benefits of changing the regulatory DNL level from 65 dB to 55 dB using a Markov model. The study used LaGuardia Airport (LGA) as a case study. In compliance with 55 dB allowable limit of aircraft noise, sound insulation would be required for residential homes within the 55 dB to 65 dB DNL. A Markov model was built to assess the cost-effectiveness of installing sound insulation. One-way sensitivity analyses and Monte Carlo simulation were conducted to test uncertainty of the model. The incremental cost-effectiveness ratio of installing sound insulation for residents exposed to airplane noise from LGA was $11,163/QALY gained (95% credible interval: cost-saving and life-saving to $93,054/QALY gained). Changing the regulatory standard for noise exposure around airports from 65 dB to 55 dB comes at a very good value.
Health-hazard evaluation report HETA 88-030-2109, Neiman Sawmills, Inc. , Hulett, Wyoming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tubbs, R.L.
1991-04-01
In response to a request from management, an evaluation was undertaken of possible hazardous working conditions as a result of excessive noise at the Neiman Sawmill facilities (SIC-2421), Hulett, Wyoming. The company produced several varieties of untreated boards and lumber products from pine logs. During this survey 108 workers were employed. Noise dosimetry readings revealed that 73% of the surveyed job descriptions (16 of 22) had time weighted average (TWA) noise levels in excess of 90 decibles-A (dBA). Only one job had TWA levels less than the NIOSH recommended limits of 85dBA. Engineering noise controls produced differing amounts of noisemore » reduction to the workers. An enclosure around the planer in the planer mill was found to be effective. However, the separation of the edger and trimmer operations to their own buildings was not an effective noise reduction technique. Hearing tests revealed that 72.5% of the employees exhibited some degree of hearing impairment at one or more audiometric test frequencies. The author concludes that a health hazard existed for workers. The author recommends that a comprehensive hearing conservation program should be implemented. Recommendations for engineering controls for the mills are included.« less
NASA Astrophysics Data System (ADS)
Lalush, D. S.; Tsui, B. M. W.
1998-06-01
We study the statistical convergence properties of two fast iterative reconstruction algorithms, the rescaled block-iterative (RBI) and ordered subset (OS) EM algorithms, in the context of cardiac SPECT with 3D detector response modeling. The Monte Carlo method was used to generate nearly noise-free projection data modeling the effects of attenuation, detector response, and scatter from the MCAT phantom. One thousand noise realizations were generated with an average count level approximating a typical T1-201 cardiac study. Each noise realization was reconstructed using the RBI and OS algorithms for cases with and without detector response modeling. For each iteration up to twenty, we generated mean and variance images, as well as covariance images for six specific locations. Both OS and RBI converged in the mean to results that were close to the noise-free ML-EM result using the same projection model. When detector response was not modeled in the reconstruction, RBI exhibited considerably lower noise variance than OS for the same resolution. When 3D detector response was modeled, the RBI-EM provided a small improvement in the tradeoff between noise level and resolution recovery, primarily in the axial direction, while OS required about half the number of iterations of RBI to reach the same resolution. We conclude that OS is faster than RBI, but may be sensitive to errors in the projection model. Both OS-EM and RBI-EM are effective alternatives to the EVIL-EM algorithm, but noise level and speed of convergence depend on the projection model used.
Correlated noise in the COBE DMR sky maps
NASA Technical Reports Server (NTRS)
Lineweaver, C. H.; Smoot, G. F.; Bennett, C. L.; Wright, E. L.; Tenorio, L.; Kogut, A.; Keegstra, P. B.; Hinshaw, G.; Banday, A. J.
1994-01-01
The Cosmic Background Explorer Satellite Differential Radiometer (COBE DMR) sky maps contain low-level correlated noise. We obtain estimates of the amplitude and pattern of the correlated noise from three techniques: angular averages of the covariance matrix, Monte Carlo simulations of two-point correlation functions and direct analysis of the DMR maps. The results from the three methods are mutually consistent. The noise covariance matrix of a DMR sky maps is diagonal to an accuracy of better than 1%. For a given sky pixel, the dominant noise covariance occure with the ring of pixels at an angular separation of 60 deg due to the 60 deg separation of the DMR horns. The mean covariance at 60 deg is 0.45%((sup +0.18)(sub -0.14)) of the mean variance. Additionally, the variance in a given pixel is 0.7% greater than would be expected from a single beam experiment with the same noise properties. Autocorrelation functions suffer from a approximately 1.5 sigma positive bias at 60 deg while cross-correlations have no bias. Published COBE DMR results are not significantly affected by correlated noise.
NASA Astrophysics Data System (ADS)
di Nisi, J.; Muzet, A.; Weber, L. D.
1987-04-01
Eighty subjects of both sexes were selected according to their self-estimated high or low sensitivity to noise. Noise exposure took place during a mental task ("sound" condition) or during a video film illustrating the noises ("sound and video" condition). The experiments were conducted between 0900 and 1100 hours or between 1500 and 1700 hours. Heart rate response and finger pulse response amplitudes were averaged separately for "sound" and "sound and video" conditions. In the "sound" condition, the average amplitude of the heart rate response differed significantly between noise-sensitivity groups: the low sensitivity group showed a lower average amplitude of heart rate response than the high sensitivity group. A significant interaction between sex and time of the day (morning or afternoon) was observed in both "sound" and "sound and video" conditions. In the "sound" condition, the percentage of noises inducing a finger pulse response appeared higher in female than in male subjects.
Tutorial and Guidelines on Measurement of Sound Pressure Level in Voice and Speech.
Švec, Jan G; Granqvist, Svante
2018-03-15
Sound pressure level (SPL) measurement of voice and speech is often considered a trivial matter, but the measured levels are often reported incorrectly or incompletely, making them difficult to compare among various studies. This article aims at explaining the fundamental principles behind these measurements and providing guidelines to improve their accuracy and reproducibility. Basic information is put together from standards, technical, voice and speech literature, and practical experience of the authors and is explained for nontechnical readers. Variation of SPL with distance, sound level meters and their accuracy, frequency and time weightings, and background noise topics are reviewed. Several calibration procedures for SPL measurements are described for stand-mounted and head-mounted microphones. SPL of voice and speech should be reported together with the mouth-to-microphone distance so that the levels can be related to vocal power. Sound level measurement settings (i.e., frequency weighting and time weighting/averaging) should always be specified. Classified sound level meters should be used to assure measurement accuracy. Head-mounted microphones placed at the proximity of the mouth improve signal-to-noise ratio and can be taken advantage of for voice SPL measurements when calibrated. Background noise levels should be reported besides the sound levels of voice and speech.
The French method (of representing noise annoyance)
NASA Technical Reports Server (NTRS)
Collet, F.; Delol, J.
1980-01-01
The psophic index used in France for noise exposure from aircraft globally represents the annoyance with the following hypotheses: (1) the global annoyance is a function of the number of aircraft overflights of each type but does not depend on the overflight time; (2) an aircraft flying at night is considered to be just as annoying as 10 aircraft of the same type passing overhead during the day; and (3) and annoyance is only a function of the peak noise levels. Overall, the psophic index appears statistically as good a representation of the average annoyance as methods used in other countries; however, it does seem to reflect poorly the annoyance caused by light aircraft. Noise maps produced for Orly, Roissy, and the area around Paris are described. The range of applications and limitations of the psophic index are discussed.
Road traffic noise and hypertension--accounting for the location of rooms.
Babisch, Wolfgang; Wölke, Gabriele; Heinrich, Joachim; Straff, Wolfgang
2014-08-01
The association between the exposure to road traffic noise and the prevalence of hypertension was assessed accounting for background air pollution and the location of rooms with respect to the road. A cross-sectional study was carried out inviting all subjects aged 35-74 years for participation that lived on 7 major trunk roads in 3-4 storey terraced apartment buildings and in parallel side streets that were completely shielded from noise due to the rows of houses along the major roads. The study was performed on 1770 subjects that did not have a self-reported medical doctor diagnosis of hypertension before they moved into their current residence. Noise levels at the facade of the front and the rear side of the houses were drawn from available noise maps of the area. A large set of covariates were considered to adjust the results for confounding. Significant increases between road traffic noise and hypertension were found with respect to the 24h A-weighted average noise indicator L(DEN). The adjusted odds ratio (OR) per noise level increment of 10 dB(A) was 1.11 (95% confidence interval (CI): 1.00-1.23). Stronger significant estimates of the noise effect were found in subjects with long residence time (OR=1.20, CI=1.05-1.37), and with respect to the exposure of the living room during daytime (OR=1.24, CI=1.08-1.41) compared with the exposure of the bedroom during night-time (OR=0.91, CI=0.78-1.06). Chronic exposure to road traffic noise is associated with an increased risk of high blood pressure. Daytime noise exposure of the living room had a stronger impact on the association than night-time exposure of the bedroom. Copyright © 2014 Elsevier Inc. All rights reserved.
Engelmann, Carsten R; Neis, Jan Philipp; Kirschbaum, Clemens; Grote, Gudela; Ure, Benno M
2014-05-01
We assessed the impact of a noise-reduction program in a pediatric operating theatre. Adverse effects from noise pollution in theatres have been demonstrated. In 156 operations spatially resolved, sound levels were measured before and after a noise-reduction program on the basis of education, rules, and technical devices (Sound Ear). Surgical complications were recorded. The surgeon's biometric (saliva cortisol, electrodermal activity) and behavioral stress responses (questionnaires) were measured and correlated with mission protocols and individual noise sensitivity. Median noise levels in the control group versus the interventional group were reduced by -3 ± 3 dB(A) (63 vs 59 dB(A), P < 0.001) with a grossly decreased number of peaks greater than 70 dB(A) (Δn = -61/hour, P < 0.01). The intervention significantly reduced non-operation-related noise. The incidence of postoperative complications was significantly lower in patients of the intervention group (n = 10/56 vs 20/58 control; P < 0.05). "Responders," surgeons with an above-average noise sensitivity (correlation r = -0.6 for the work subscale of the NoiseQ questionnaire, P < 0.05), experienced improved intrateam communication, a decrease in disturbing conversations and sudden noise peaks (P < 0.05). Biometrically, the intervention decreased both the surgeon's pre- to postoperative rise in cortisol by approximately 20% and the surgeon's electrodermal potentials of greater than 15 μS, indicating severe stress by 60% (P > 0.05). Spontaneous noise during pediatric operations attains the magnitude of a lawn mower and peaks resemble a passing truck. The sound intensity could be reduced by 50% by specific measures. This reduction was associated with a significantly lowered number of postoperative complications. The surgeon's benefits are idiosyncratic with "responders" experiencing marked improvements.
Stable radio frequency transfer in 114 km urban optical fiber link.
Kumagai, Motohiro; Fujieda, Miho; Nagano, Shigeo; Hosokawa, Mizuhiko
2009-10-01
An rf dissemination system using an optical fiber link has been developed. The phase noise induced during optical fiber transmission has been successfully cancelled using what we believe to be a novel fiber-noise compensation system with a combination of electrical and optical compensations. We have performed rf transfer in a 114 km urban telecom fiber link in Tokyo with a transfer stability of 10(-18) level at an averaging time of 1 day. Additionally, a high degree of continuous operation robustness has been confirmed.
Relationship between Patient Acuity and Critical Care Noise
1997-05-01
universal dosimeter , an integrating/averaging and true peak sound level meter and a time history monitor. As shown in Figure 2, it was housed in a rugged...noise dosimeter at the patient’s bedside, was obtained from the institution from which the sample was selected. Exemption status was granted from...4^ USD H CO K H " -J 1 o • <• * Z • • • • UJ CO ♦ ■n oj !* 3 5°l ov Ui * i CO ~ i 5 S u. 1 ~ OS OS osl s o
Wolf, Kathrin; Petz, Markus; Heinrich, Joachim; Cyrys, Josef; Peters, Annette
2014-01-01
Background: Studies on the association between traffic noise and cardiovascular diseases have rarely considered air pollution as a covariate in the analyses. Isolated systolic hypertension has not yet been in the focus of epidemiological noise research. Methods: The association between traffic noise (road and rail) and the prevalence of hypertension was assessed in two study populations with a total of 4,166 participants 25–74 years of age. Traffic noise (weighted day–night average noise level; LDN) at the facade of the dwellings was derived from noise maps. Annual average PM2.5 mass concentrations at residential addresses were estimated by land-use regression. Hypertension was assessed by blood pressure readings, self-reported doctor-diagnosed hypertension, and antihypertensive drug intake. Results: In the Greater Augsburg, Germany, study population, traffic noise and air pollution were not associated with hypertension. In the City of Augsburg population (n = 1,893), where the exposure assessment was more detailed, the adjusted odds ratio (OR) for a 10-dB(A) increase in noise was 1.16 (95% CI: 1.00, 1.35), and 1.11 (95% CI: 0.94, 1.30) after additional adjustment for PM2.5. The adjusted OR for a 1-μg/m3 increase in PM2.5 was 1.15 (95% CI: 1.02, 1.30), and 1.11 (95% CI: 0.98, 1.27) after additional adjustment for noise. For isolated systolic hypertension, the fully adjusted OR for noise was 1.43 (95% CI: 1.10, 1.86) and for PM2.5 was 1.08 (95% CI: 0.87, 1.34). Conclusions: Traffic noise and PM2.5 were both associated with a higher prevalence of hypertension. Mutually adjusted associations with hypertension were positive but no longer statistically significant. Citation: Babisch W, Wolf K, Petz M, Heinrich J, Cyrys J, Peters A. 2014. Associations between traffic noise, particulate air pollution, hypertension, and isolated systolic hypertension in adults: the KORA Study. Environ Health Perspect 122:492–498; http://dx.doi.org/10.1289/ehp.1306981 PMID:24602804
The disturbance by road traffic noise of the sleep of young male adults as recorded in the home
NASA Astrophysics Data System (ADS)
Eberhardt, J. L.; Akselsson, K. R.
1987-05-01
Primary effects of road traffic noise on sleep, as derived from EEG, EOG, and EMG, were studied for seven young males (aged 21-27) in their homes along roads with heavy traffic during the night. A more quiet experimental condition was obtained by mounting sound-insulating material in the window openings, thus reducing the interiors noise level by an average of 8 dB(A). The present investigation shows that the subjects had not become completely habituated to the noise, although they had lived at least a year at their residences. The noise reduction caused an earlier onset and a prolonged duration of slow was sleep. No effects on REM sleep were seen. The subjective sleep quality was significantly correlated to the noise dose. The equivalent sound pressure level ( L eq) did not give the most adequate noise dose description. Better characterizations of the noise exposure were found in the number of car per night producing maximum sound pressure levels exceeding 50 or 55 dB(A) in the bedroom. Arousal reactions of type "body movements" and "changes towards lighter sleep" were induced by the noise of car passage but the percentage of cars inducing an effect was only <2% and <0·2% for the two types of reactions, respectively. The number of spontaneous body movements and sleep stage changes per night showed an increase during the more quiet nights as compared to the noisy nights. The sensitivity to arousal reactions was significantly lower in the present field study than the in the laboratory experiments. A description of the continuous sleep process by a few distinct "sleep stages" is too crude a tool for the detection of the rather subtle changes in the sleeping pattern caused by noise. In the present study an increased sensitivity in the analysis was obtained by dividing stage 2 into three substages.
Environmental Assessment: Installation Development at Sheppard Air Force Base, Texas
2007-05-01
column, or in topographic depressions. Water is then utilized by plants and is respired, or it moves slowly into groundwater and/or eventually to surface...water bodies where it slowly moves through the hydrologic cycle. Removal of vegetation decreases infiltration into the soil column and thereby...School District JP-4 jet propulsion fuel 4 kts knots Ldn Day- Night Average Sound Level Leq equivalent noise level Lmax maximum sound level lb pound
a Traffic-Dependent Acoustical Grinding Criterion
NASA Astrophysics Data System (ADS)
DINGS, P.; VERHEIJEN, E.; KOOTWIJK-DAMMAN, C.
2000-03-01
On most lines of the Dutch railway network, where a substantial amount of block-braked trains have rough wheels, the average wheel roughness dominates over the rail roughness. Therefore, reducing wheel roughness is top priority in the Netherlands. However, for the situations where rail roughness exceeds wheel roughness, this roughness can be lowered at acceptable cost. The high rail roughness is often due to rail corrugation which can be removed by grinding. A method has been developed to assess periodically the rail roughness on each railway line of the network, to compare it with the average wheel roughness for that line and to determine whether a noise reduction can be achieved by grinding the rail. Roughness measurements can be carried out with an instrumented coach. The two axle-boxes of a measurement wheelset are equipped with accelerometers. Together with the train speed and the right frequency filter, the accelerometer signal is used to produce a wavelength spectrum of the rail roughness. To determine the average wheel roughness on a given line, the so-called Acoustical Timetable can be used. This database comprises train types, train intensities and train speeds for each track section in the Netherlands. An average wheel roughness spectrum is known for each type of braking system. The number of trains of each type passing by on a certain track section determine the average roughness. Analysis of the data shows on which track sections the rail roughness exceeds the wheel roughness by a specified level difference. If this track section lies in a residential area, the decision can be made to grind this piece of track to reduce the noise production locally. Using this methodology, the noise production can be kept to a minimum, determined by the local average wheel roughness.
Ho, Cheng-Yu; Li, Pei-Chun; Chiang, Yuan-Chuan; Young, Shuenn-Tsong; Chu, Woei-Chyn
2015-01-01
Binaural hearing involves using information relating to the differences between the signals that arrive at the two ears, and it can make it easier to detect and recognize signals in a noisy environment. This phenomenon of binaural hearing is quantified in laboratory studies as the binaural masking-level difference (BMLD). Mandarin is one of the most commonly used languages, but there are no publication values of BMLD or BILD based on Mandarin tones. Therefore, this study investigated the BMLD and BILD of Mandarin tones. The BMLDs of Mandarin tone detection were measured based on the detection threshold differences for the four tones of the voiced vowels /i/ (i.e., /i1/, /i2/, /i3/, and /i4/) and /u/ (i.e., /u1/, /u2/, /u3/, and /u4/) in the presence of speech-spectrum noise when presented interaurally in phase (S0N0) and interaurally in antiphase (SπN0). The BILDs of Mandarin tone recognition in speech-spectrum noise were determined as the differences in the target-to-masker ratio (TMR) required for 50% correct tone recognitions between the S0N0 and SπN0 conditions. The detection thresholds for the four tones of /i/ and /u/ differed significantly (p<0.001) between the S0N0 and SπN0 conditions. The average detection thresholds of Mandarin tones were all lower in the SπN0 condition than in the S0N0 condition, and the BMLDs ranged from 7.3 to 11.5 dB. The TMR for 50% correct Mandarin tone recognitions differed significantly (p<0.001) between the S0N0 and SπN0 conditions, at –13.4 and –18.0 dB, respectively, with a mean BILD of 4.6 dB. The study showed that the thresholds of Mandarin tone detection and recognition in the presence of speech-spectrum noise are improved when phase inversion is applied to the target speech. The average BILDs of Mandarin tones are smaller than the average BMLDs of Mandarin tones. PMID:25835987
Noise Annoyance Produced by Commercial Vehicles Transit on Rumble Strips
NASA Astrophysics Data System (ADS)
Zaiton, Haron; Khairulzan, Yahya; Nadirah, Darus; Nordiana, Mashros; Azril, Hezmi Muhammad; Samah Rosiah, Abu; Mutalif, Abdul Hameed Abdul; Asyraf, Norudin Wan Mohammad; Habab, Abd Halil Muhammad; Zanariah, Jahya; Hanifi, Othman Mohd
2018-03-01
This paper reports on research examining the extent of noise annoyance affecting residents within the vicinity of installation of two types of transverse rumble strips (TRS), namely Middle Overlapped (MO) and Multilayer Overlapping (MLO). In order to assess the noise annoyance in the area, measurements were taken at 7.5m from centre of road with TRS installation using single vehicle test to determine the extent of changes of sound level indices and sound spectrum. Two light and two medium weight commercial vehicles were used. Indicators LAeq, LAFmax, LAImax, LAIeq, and LASmax were used to determine impulsivity that led to noise annoyance. The results showed that, at 30 km/h, all commercial vehicles considered in this study that transited on MO produced impulsive noise, while only light commercial vehicles caused noise annoyance when they transited on MLO. The research also analysed the extent of low-frequency noise and found a significant low-frequency component, which indicated that noise annoyance might arise from the hitting of MO and MLO by the commercial vehicles. For night-time related annoyance, it was suggested that an additional weighting factor could be added to the average A-weighted value during night-time.
Adaptive noise correction of dual-energy computed tomography images.
Maia, Rafael Simon; Jacob, Christian; Hara, Amy K; Silva, Alvin C; Pavlicek, William; Mitchell, J Ross
2016-04-01
Noise reduction in material density images is a necessary preprocessing step for the correct interpretation of dual-energy computed tomography (DECT) images. In this paper we describe a new method based on a local adaptive processing to reduce noise in DECT images An adaptive neighborhood Wiener (ANW) filter was implemented and customized to use local characteristics of material density images. The ANW filter employs a three-level wavelet approach, combined with the application of an anisotropic diffusion filter. Material density images and virtual monochromatic images are noise corrected with two resulting noise maps. The algorithm was applied and quantitatively evaluated in a set of 36 images. From that set of images, three are shown here, and nine more are shown in the online supplementary material. Processed images had higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) than the raw material density images. The average improvements in SNR and CNR for the material density images were 56.5 and 54.75%, respectively. We developed a new DECT noise reduction algorithm. We demonstrate throughout a series of quantitative analyses that the algorithm improves the quality of material density images and virtual monochromatic images.
24 CFR 51.106 - Implementation.
Code of Federal Regulations, 2011 CFR
2011-04-01
... data. HUD field staff shall make maximum use of noise data prepared by others when such data are... day-night average sound level data are not available may be evaluated from NEF or CNEL analyses using... LCdn. (4) Use of areawide acoustical data. HUD encourages the preparation and use of areawide...
Taking into account nighttime annoyance in the calculation of the psophic index
NASA Technical Reports Server (NTRS)
Francois, J.
1981-01-01
The annoyance factor caused by air traffic noise on the residents of areas near airports is discussed. The psophic index is used to predict the level of overall annoyance suffered on the average by residents around airports. The calculation method differentiates between daytime and nighttime annoyance.
Daniels, Jacki M; Harrison, Tondi M
2016-01-01
Infants with complex congenital heart disease are at high risk for developmental delays. Although the etiology of these delays is multifactorial, the physical environment may be a contributory factor. Extensive studies have been conducted in neonatal intensive care units measuring environmental influences on development, resulting in policy and practice changes. Cardiothoracic intensive care units and cardiac step-down units are new environments in which newborns with heart disease receive care. No environmental studies have been conducted in units caring for newborn infants recovering from cardiac surgery. The aim of this study is to examine the environmental experience of a newborn infant with heart disease after surgical intervention within the first month of life. Measurements of illumination, sound levels, and sleep were recorded on 1 infant for 2 consecutive postoperative days in the cardiothoracic intensive care unit and 2 consecutive days in the step-down unit. Although average daily noise exposure remained below recommended guidelines on 3 of 4 days, the infant experienced intermittent periods of excessive noise (≥55 dBA) during 59 of 87 hours and 110 episodes of acute noise events greater than 70 dBA. Average daily light exposure was below the recommended guidelines. However, light levels were more than twice the recommended levels at multiple points daily. For each of the 4 observation days, the infant experienced 66 to 102 awakenings during sleep, and sleep durations were less than 30 minutes 90% of the time. This study provides the first report of potential environmental stressors in newborn infants cared for in cardiac specialty units. Excessive levels of light and noise as well as frequent interruptions for medical and nursing care may contribute to disorganized sleep and increased patient distress and may impact subsequent neurodevelopment. Studies are needed to identify potentially adverse aspects of the intensive caregiving environment for newborn infants who have undergone cardiac surgery.
NASA Astrophysics Data System (ADS)
Bath, Magnus; Hakansson, Markus; Borjesson, Sara; Hoeschen, Christoph; Tischenko, Oleg; Bochud, Francois O.; Verdun, Francis R.; Ullman, Gustaf; Kheddache, Susanne; Tingberg, Anders; Mansson, Lars Gunnar
2005-04-01
The aim of this work was to investigate and quantify the effects of system noise, nodule location, anatomical noise and anatomical background on the detection of lung nodules in different regions of the chest x-ray. Simulated lung nodules of diameter 10 mm but with varying detail contrast were randomly positioned in four different kinds of images: 1) clinical images collected with a 200 speed CR system, 2) images containing only system noise (including quantum noise) at the same level as the clinical images, 3) clinical images with removed anatomical noise, 4) artificial images with similar power spectrum as the clinical images but random phase spectrum. An ROC study was conducted with 5 observers. The detail contrast needed to obtain an Az of 0.80, C0.8, was used as measure of detectability. Five different regions of the chest x-ray were investigated separately. The C0.8 of the system noise images ranged from only 2% (the hilar regions) to 20% (the lateral pulmonary regions) of those of the clinical images. Compared with the original clinical images, the C0.8 was 16% lower for the de-noised clinical images and 71% higher for the random phase images, respectively, averaged over all five regions. In conclusion, regarding the detection of lung nodules with a diameter of 10 mm, the system noise is of minor importance at clinically relevant dose levels. The removal of anatomical noise and other noise sources uncorrelated from image to image leads to somewhat better detection, but the major component disturbing the detection is the overlapping of recognizable structures, which are, however, the main aspect of an x-ray image.
NASA Technical Reports Server (NTRS)
Gatski, T. B.
1979-01-01
The sound due to the large-scale (wavelike) structure in an infinite free turbulent shear flow is examined. Specifically, a computational study of a plane shear layer is presented, which accounts, by way of triple decomposition of the flow field variables, for three distinct component scales of motion (mean, wave, turbulent), and from which the sound - due to the large-scale wavelike structure - in the acoustic field can be isolated by a simple phase average. The computational approach has allowed for the identification of a specific noise production mechanism, viz the wave-induced stress, and has indicated the effect of coherent structure amplitude and growth and decay characteristics on noise levels produced in the acoustic far field.
Telegraph noise in Markovian master equation for electron transport through molecular junctions
NASA Astrophysics Data System (ADS)
Kosov, Daniel S.
2018-05-01
We present a theoretical approach to solve the Markovian master equation for quantum transport with stochastic telegraph noise. Considering probabilities as functionals of a random telegraph process, we use Novikov's functional method to convert the stochastic master equation to a set of deterministic differential equations. The equations are then solved in the Laplace space, and the expression for the probability vector averaged over the ensemble of realisations of the stochastic process is obtained. We apply the theory to study the manifestations of telegraph noise in the transport properties of molecular junctions. We consider the quantum electron transport in a resonant-level molecule as well as polaronic regime transport in a molecular junction with electron-vibration interaction.
Fast principal component analysis for stacking seismic data
NASA Astrophysics Data System (ADS)
Wu, Juan; Bai, Min
2018-04-01
Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional average-based seismic stacking methods cannot obtain optimal performance when the ambient noise is extremely strong. We propose a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. Considering the computational bottleneck of the classic PCA algorithm in processing massive seismic data, we propose an efficient PCA algorithm to make the proposed method readily applicable for industrial applications. Two numerically designed examples and one real seismic data are used to demonstrate the performance of the presented method.
Noise Levels in Patient Rooms and at Nursing Stations at Three VA Medical Centers.
Hill, Jennifer N; LaVela, Sherri L
2015-01-01
To conduct an assessment of sound, dB(A) levels, in two areas of the hospital: patient rooms and nurse stations using sound meters (SMs). The World Health Organization (WHO) recommends sound levels of 35 dB(A) during the day and 30 dB(A) during the night; however, many hospitals exceed these recommended levels. Assessing post-occupancy sound levels enables hospital administrators and healthcare workers to identify whether interventions to improve sound levels are needed. Sound assessments were conducted at three healthcare facilities in both patient rooms and nursing stations, and we include information on facility characteristics. An Amprobe SM-20A Sound Level Meter was placed for a 24-hr period and recorded decibel levels every 8 min. These sound levels were averaged for each hour for reporting purposes. Averages as well as highest and lowest readings are reported for both daytime (8 a.m.-10 p.m.) and nighttime (10 p.m.-8 a.m.) for each facility. All three sites are considered urban and are classified with the highest complexity level (1a). Average daytime measurements for patient rooms and their corresponding nurses stations were as follows: Site A-63 dB(A)/56 dB(A), Site B-52 dB(A)/55 dB(A), and Site C-42 dB(A)/59 dB(A). Average nighttime measurements for patient rooms and nurses stations were Site A-62 dB(A)/55 dB(A), Site B-48 dB(A)/55 dB(A), and Site C-42 dB(A)/60 dB(A). Our findings, considered independently and collectively, showed that facilities in this study exceeded the WHO-recommended sound levels for patient rooms of 35 dB(A) during daytime and 30 dB(A) during nighttime. Research has reported negative patient outcomes, for example, decreased satisfaction, sleep disturbance, and higher incidence of rehospitalization in patients staying in areas with higher noise levels. © The Author(s) 2015.
Spatial traffic noise pollution assessment - A case study.
Monazzam, Mohammad Reza; Karimi, Elham; Abbaspour, Majid; Nassiri, Parvin; Taghavi, Lobat
2015-01-01
Spatial assessment of traffic noise pollution intensity will provide urban planners with approximate estimation of citizens exposure to impermissible sound levels. They could identify critical noise pollution areas wherein noise barriers should be embedded. The present study aims at using the Geographic Information System (GIS) to assess spatial changes in traffic noise pollution in Tehran, the capital of Iran, and the largest city in the Middle East. For this purpose, while measuring equivalent sound levels at different time periods of a day and different days of a week in District 14 of Tehran, wherein there are highways and busy streets, the geographic coordination of the measurement points was recorded at the stations. The obtained results indicated that the equivalent sound level did not show a statistically significant difference between weekdays, and morning, afternoon and evening hours as well as time intervals of 10 min, 15 min and 30 min. Then, 91 stations were selected in the target area and equivalent sound level was measured for each station on 3 occasions of the morning (7:00-9:00 a.m.), afternoon (12.00-3:00 p.m.) and evening (5:00-8:00 p.m.) on Saturdays to Wednesdays. As the results suggest, the maximum equivalent sound level (Leq) was reported from Basij Highway, which is a very important connecting thoroughfare in the district, and was equal to 84.2 dB(A), while the minimum equivalent sound level (Leq), measured in the Fajr Hospital, was equal to 59.9 dB(A). The average equivalent sound level was higher than the national standard limit at all stations. The use of sound walls in Highways Basij and Mahallati as well as widening the Streets 17th Shahrivar, Pirouzi and Khavaran, benchmarked on a map, were recommended as the most effective mitigation measures. Additionally, the research findings confirm the outstanding applicability of the Geographic Information System in handling noise pollution data towards depicting noise pollution intensity caused by traffic. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Estimation of permanent noise-induced hearing loss in an urban setting.
Lewis, Ryan C; Gershon, Robyn R M; Neitzel, Richard L
2013-06-18
The potential burden of noise-induced permanent threshold shift (NIPTS) in U.S. urban settings is not well-characterized. We used ANSI S3.44-1996 to estimate NIPTS for a sample of 4585 individuals from New York City (NYC) and performed a forward stepwise logistic regression analysis to identify predictors of NIPTS >10 dB. The average individual is projected to develop a small NIPTS when averaged across 1000-4000 Hz for 1- to 20-year durations. For some individuals, NIPTS is expected to be substantial (>25 dB). At 4000 Hz, a greater number of individuals are at risk of NIPTS from MP3 players and stereos, but risk for the greatest NIPTS is for those with high occupational and episodic nonoccupational (e.g., power tool use) exposures. Employment sector and time spent listening to MP3 players and stereos and participating in episodic nonoccupational activities associated with excessive noise levels increased the odds of NIPTS >10 dB at 4000 Hz for 20-year durations. Our results indicate that the risk of NIPTS may be substantial for NYC and perhaps other urban settings. Noise exposures from "noisy" occupational and episodic nonoccupational activities and MP3 players and stereos are important risk factors and should be a priority for public health interventions.
Speech Intelligibility in Various Noise Conditions with the Nucleus® 5 CP810 Sound Processor.
Dillier, Norbert; Lai, Wai Kong
2015-06-11
The Nucleus(®) 5 System Sound Processor (CP810, Cochlear™, Macquarie University, NSW, Australia) contains two omnidirectional microphones. They can be configured as a fixed directional microphone combination (called Zoom) or as an adaptive beamformer (called Beam), which adjusts the directivity continuously to maximally reduce the interfering noise. Initial evaluation studies with the CP810 had compared performance and usability of the new processor in comparison with the Freedom™ Sound Processor (Cochlear™) for speech in quiet and noise for a subset of the processing options. This study compares the two processing options suggested to be used in noisy environments, Zoom and Beam, for various sound field conditions using a standardized speech in noise matrix test (Oldenburg sentences test). Nine German-speaking subjects who previously had been using the Freedom speech processor and subsequently were upgraded to the CP810 device participated in this series of additional evaluation tests. The speech reception threshold (SRT for 50% speech intelligibility in noise) was determined using sentences presented via loudspeaker at 65 dB SPL in front of the listener and noise presented either via the same loudspeaker (S0N0) or at 90 degrees at either the ear with the sound processor (S0NCI+) or the opposite unaided ear (S0NCI-). The fourth noise condition consisted of three uncorrelated noise sources placed at 90, 180 and 270 degrees. The noise level was adjusted through an adaptive procedure to yield a signal to noise ratio where 50% of the words in the sentences were correctly understood. In spatially separated speech and noise conditions both Zoom and Beam could improve the SRT significantly. For single noise sources, either ipsilateral or contralateral to the cochlear implant sound processor, average improvements with Beam of 12.9 and 7.9 dB in SRT were found. The average SRT of -8 dB for Beam in the diffuse noise condition (uncorrelated noise from both sides and back) is truly remarkable and comparable to the performance of normal hearing listeners in the same test environment. The static directivity (Zoom) option in the diffuse noise condition still provides a significant benefit of 5.9 dB in comparison with the standard omnidirectional microphone setting. These results indicate that CI recipients may improve their speech recognition in noisy environments significantly using these directional microphone-processing options.
Chemical-Induced Hearing Loss in Shipyard Workers.
Schaal, Nicholas Cody; Slagley, Jeremy M; Richburg, Cynthia McCormick; Zreiqat, Majed M; Paschold, Helmut W
2018-01-01
The aim of this study was to determine the effect of lead, cadmium, arsenic, toluene, and xylene exposure on hearing compared with noise exposures alone. Personnel at a shipyard (n = 1266) were divided into four exposure groups on the basis of concentrations: low metals/low solvents/high noise (reference group), high metals/high solvents/low noise, high metals/low solvents/high noise, and high metals/high solvents/high noise. Hearing changes occurring from the years 2004 to 2015 were analyzed. Hearing changes were significantly worse at 1000 Hz (P = 0.007), averaged across 2000 to 4000 Hz (P = 0.014), and averaged across 500 to 6000 Hz (P = 0.014) for the high metals/high solvent/high noise group compared with the low metals/low solvents/high noise only reference group. Simultaneous exposures classified as high for metals/solvents/noise appear to damage hearing more than exposure to noise alone. Hearing conservation programs should take into consideration combined exposures to metals, solvents, and noise, not simply exposure to noise.
Pan, Feng; Yang, Lizhi; Xiao, Wen
2017-09-04
In digital holographic microscopy (DHM), it is undesirable to observe coherent noise in the reconstructed images. The sources of the noise are mainly the parasitic interference fringes caused by multiple reflections and the speckle pattern caused by the optical scattering on the object surface. Here we propose a noise reduction approach in DHM by averaging multiple holograms recorded with a multimode laser. Based on the periodicity of the temporal coherence of a multimode semiconductor laser, we acquire a series of holograms by changing the optical path length difference between the reference beam and object beam. Because of the use of low coherence light, we can remove the parasitic interference fringes caused by multiple reflections in the holograms. In addition, the coherent noise patterns change in this process due to the different optical paths. Therefore, the coherent noise can be reduced by averaging the multiple reconstructions with uncorrelated noise patterns. Several experiments have been carried out to validate the effectiveness of the proposed approach for coherent noise reduction in DHM. It is shown a remarkable improvement both in amplitude imaging quality and phase measurement accuracy.
Cabin noise and weight reduction program for the Gulfstream G200
NASA Astrophysics Data System (ADS)
Barton, C. Kearney
2002-11-01
This paper describes the approach and logic involved in a cabin noise and weight reduction program for an existing aircraft that was already in service with a pre-existing insulation package. The aircraft, a Gulfstream G200, was formally an IAI Galaxy, and the program was purchased from IAI in 2001. The approach was to investigate every aspect of the aircraft that could be a factor for cabin noise. This included such items as engine mounting and balancing criteria, the hydraulic system, the pressurization and air-conditioning system, the outflow valve, the interior shell and mounting system, antennae and other hull protuberances, as well as the insulation package. Each of these items was evaluated as potential candidates for noise and weight control modifications. Although the program is still ongoing, the results to date include a 175-lb weight savings and a 5-dB reduction in the cabin average Speech Interference Level (SIL).
Fast, noise-free memory for photon synchronization at room temperature.
Finkelstein, Ran; Poem, Eilon; Michel, Ohad; Lahad, Ohr; Firstenberg, Ofer
2018-01-01
Future quantum photonic networks require coherent optical memories for synchronizing quantum sources and gates of probabilistic nature. We demonstrate a fast ladder memory (FLAME) mapping the optical field onto the superposition between electronic orbitals of rubidium vapor. Using a ladder-level system of orbital transitions with nearly degenerate frequencies simultaneously enables high bandwidth, low noise, and long memory lifetime. We store and retrieve 1.7-ns-long pulses, containing 0.5 photons on average, and observe short-time external efficiency of 25%, memory lifetime (1/ e ) of 86 ns, and below 10 -4 added noise photons. Consequently, coupling this memory to a probabilistic source would enhance the on-demand photon generation probability by a factor of 12, the highest number yet reported for a noise-free, room temperature memory. This paves the way toward the controlled production of large quantum states of light from probabilistic photon sources.
Miles, Jeffrey Hilton
2011-05-01
Combustion noise from turbofan engines has become important, as the noise from sources like the fan and jet are reduced. An aligned and un-aligned coherence technique has been developed to determine a threshold level for the coherence and thereby help to separate the coherent combustion noise source from other noise sources measured with far-field microphones. This method is compared with a statistics based coherence threshold estimation method. In addition, the un-aligned coherence procedure at the same time also reveals periodicities, spectral lines, and undamped sinusoids hidden by broadband turbofan engine noise. In calculating the coherence threshold using a statistical method, one may use either the number of independent records or a larger number corresponding to the number of overlapped records used to create the average. Using data from a turbofan engine and a simulation this paper shows that applying the Fisher z-transform to the un-aligned coherence can aid in making the proper selection of samples and produce a reasonable statistics based coherence threshold. Examples are presented showing that the underlying tonal and coherent broad band structure which is buried under random broadband noise and jet noise can be determined. The method also shows the possible presence of indirect combustion noise.
Low-noise magnetoencephalography system cooled by a continuously operating reliquefier
NASA Astrophysics Data System (ADS)
Lee, Y. H.; Kwon, H.; Yu, K. K.; Kim, J. M.; Lee, S. K.; Kim, M.-Y.; Kim, K.
2017-08-01
We fabricated a low-noise magnetoencephalography (MEG) system based on a continuously operating reliquefier for cooling of low-temperature superconducting quantum interference device gradiometers. In order to reduce the vibration transmission, the gradiometers are mounted in the vacuum space of the helmet dewar with direct thermal contact with the liquid helium helmet. The reliquefier uses a 1.4 W pulse tube cryocooler with a remote motor, and a horizontal transfer tube with a downslope angle of 1°. The white noise of the system is 3.5 fTrms/√Hz (at 100 Hz). The vibration-induced peak at 1.4 Hz is 18 fTrms/√Hz averaged over the whole helmet array of 150 channels, which is the lowest among the reported values using reliquefier cooling and comparable to the noise peak cooled by conventional direct liquid helium cooling with axial gradiometers of the same baseline. The spontaneous brain activity signal showed nearly identical signal quality with the reliquefier turned on and off, and the reliquefier-based MEG system noise is well below the brain noise level.
Syllable-constituent perception by hearing-aid users: Common factors in quiet and noise
Miller, James D.; Watson, Charles S.; Leek, Marjorie R.; Dubno, Judy R.; Wark, David J.; Souza, Pamela E.; Gordon-Salant, Sandra; Ahlstrom, Jayne B.
2017-01-01
The abilities of 59 adult hearing-aid users to hear phonetic details were assessed by measuring their abilities to identify syllable constituents in quiet and in differing levels of noise (12-talker babble) while wearing their aids. The set of sounds consisted of 109 frequently occurring syllable constituents (45 onsets, 28 nuclei, and 36 codas) spoken in varied phonetic contexts by eight talkers. In nominal quiet, a speech-to-noise ratio (SNR) of 40 dB, scores of individual listeners ranged from about 23% to 85% correct. Averaged over the range of SNRs commonly encountered in noisy situations, scores of individual listeners ranged from about 10% to 71% correct. The scores in quiet and in noise were very strongly correlated, R = 0.96. This high correlation implies that common factors play primary roles in the perception of phonetic details in quiet and in noise. Otherwise said, hearing-aid users' problems perceiving phonetic details in noise appear to be tied to their problems perceiving phonetic details in quiet and vice versa. PMID:28464618
Chang, Shu-Ju; Chang, Chin-Kuo
2009-12-01
We assessed the exposure levels of noise, estimated prevalence, and identify risk factors of noise-induced hearing loss (NIHL) among male workers with a cross-sectional study in a liquefied petroleum gas cylinder infusion factory in Taipei City. Male in-field workers exposed to noise and administrative controls were enrolled in 2006 and 2007. Face-to-face interviews were applied for demographics, employment history, and drinking/smoking habit. We then performed the measurements on noise levels in field and administration area, and hearing thresholds on study subjects with standard apparatus and protocols. Existence of hearing loss > 25 dBHL for the average of 500 Hz, 1 kHz, and 2 kHz was accordingly determined for NIHL. The effects from noise exposure, predisposing characteristics, employment-related factors, and personal habits to NIHL were estimated by univariate and multivariate logistic regressions. A total of 75 subjects were involved in research and 56.8% of in-field workers had NIHL. Between the in-field and administration groups, hearing thresholds on the worse ear showed significant differences at frequencies of 4 k, 6 k, and 8 kHz with aging considered. Adjusted odds ratio for field noise exposure (OR=99.57, 95% CI: 3.53, 2,808.74) and frequent tea or coffee consumption (OR=0.03, 95% CI: 0.01, 0.51) were found significant. Current study addressed NIHL in a specific industry in Taiwan. Further efforts in minimizing its impact are still in need.
In vitro comparison of noise levels produced by different CPAP generators.
Kirchner, Lieselotte; Wald, Martin; Jeitler, Valerie; Pollak, Arnold
2012-01-01
Minimization of noise exposure is an important aim of modern neonatal intensive care medicine. Binasal continuous positive airway pressure (CPAP) generators are among the most important sources of continuous noise in neonatal wards. The aim of this study was to find out which CPAP generator creates the least noise. In an experimental setup, two jet CPAP generators (Infant Flow® generator and MediJet®) and two conventional CPAP generators (Bubble CPAP® and Baby Flow®) were compared. Noise production was measured in decibels in an A-weighted scale [dB(A)] in a closed incubator at 2 mm lateral distance from the end of the nasal prongs. Reproduction of constant airway pressure and air leak was achieved by closure of the nasal prongs with a type of adhesive tape that is semipermeable to air. The noise levels produced by the four generators were significantly different (p < 0.001). Values measured at a continuous constant flow rate of 8 l/min averaged 83 dB(A) for the Infant Flow® generator with or without sound absorber, 72 dB(A) for the MediJet®, 62 dB(A) for the Bubble CPAP® and 55 dB(A) for the Baby Flow®. Conventional CPAP generators work more quietly than the currently available jet CPAP generators. Copyright © 2011 S. Karger AG, Basel.
Assessment and analysis of noise levels in and around Ib river coalfield, Orissa, India.
Mohapatra, Haraprasad; Goswami, Shreerup
2012-05-01
Heavy earth moving machineries, different capacities of dumpers and loaders, blasting and drilling make the mining environment noisy. A study was carried out to assess the noise level in different opencast projects in and around Belpahar and Brajarajnagar areas of Ib river coalfield. Noise assessment was carried out in various residential, commercial and industrial places. The noise levels, especially L(eq) values of different wheel loaders, dumpers, shovel and crusher units were also assessed and were more than permissible limit (90dB) in some of their operating conditions. Sound ressure level measurements while drilling into coal and overburden at Lakhanpur opencast project yielded noise levels (L(eq)) of 81.33 to 96.2 dB. Thus, these L(eq) values of drilling machines in most of the operating conditions were above permissible limit. The average noise intensities (6 a.m.-10 p.m.: 51.6-60.875dB and 10 p.m.-6 a.m.: 42.6-49.8dB) and L(eq) values (6 a.m.-10 p.m.: 50.9-67.0dB and 10 p.m.-6 a.m.: 40.8-53.3dB) during both day and night time of the residential areas around the Ib river coalfield were in close proximity or beyond the permissible limit. The L(eq) values at some of the commercial and industrial places were beyond (6 a.m.-10 p.m.: 61.6-88.3 dB and 10 p.m.-6 a.m.: 55.4-64.8dB) permissible limit. However, in most of the cases, the L(max) noise values were more (6 a.m.-10 p.m.: 68.5-91.4 dB and 10 p.m.-6 a.m.: 69.3-76.4dB) than the permissible limit. Analysis of variance was also computed for heavy earth moving machineries in different operating conditions and also for different residential, commercial and industrial places to infer the level of significance. The difference of noise intensity produced by different wheel loaders at Lakhanpur and Lilari opencast projects, drilling machines at Lakhanpur opencast project, 50 tons capacity dumpers at various conditions of Ib river coalfield within the same operating condition was significant at both 5% and 1% levels of significance. Similarly, the variance of estimated noise level in residential places during day time and commercial and industrial places during day and night time was significant at both 5% and 1% levels of significance. Moreover, a preliminary survey adopting questionnaire method amongst the mine workers and local inhabitants was also carried out to evaluate their perception about the mining related noise.
Audibility of reverse alarms under hearing protectors for normal and hearing-impaired listeners.
Robinson, G S; Casali, J G
1995-11-01
The question of whether or not an individual suffering from a hearing loss is capable of hearing an auditory alarm or warning is an extremely important industrial safety issue. The ISO Standard that addresses auditory warnings for workplaces requires that any auditory alarm or warning be audible to all individuals in the workplace including those suffering from a hearing loss and/or wearing hearing protection devices (HPDs). Research was undertaken to determine how the ability to detect an alarm or warning signal changed for individuals with normal hearing and two levels of hearing loss as the levels of masking noise and alarm were manipulated. Pink noise was used as the masker and a heavy-equipment reverse alarm was used as the signal. The rating method paradigm of signal detection theory was used as the experimental procedure to separate the subjects' absolute sensitivities to the alarm from their individual criteria for deciding to respond in an affirmative manner. Results indicated that even at a fairly low signal-to-noise ratio (0 dB), subjects with a substantial hearing loss [a pure-tone average (PTA) hearing level of 45-50 dBHL in both ears] were capable of hearing the reverse alarm while wearing a high-attenuation earmuff in the pink noise used in the study.
Halim, Dunant; Cheng, Li; Su, Zhongqing
2011-04-01
The work proposed an optimization approach for structural sensor placement to improve the performance of vibro-acoustic virtual sensor for active noise control applications. The vibro-acoustic virtual sensor was designed to estimate the interior sound pressure of an acoustic-structural coupled enclosure using structural sensors. A spectral-spatial performance metric was proposed, which was used to quantify the averaged structural sensor output energy of a vibro-acoustic system excited by a spatially varying point source. It was shown that (i) the overall virtual sensing error energy was contributed additively by the modal virtual sensing error and the measurement noise energy; (ii) each of the modal virtual sensing error system was contributed by both the modal observability levels for the structural sensing and the target acoustic virtual sensing; and further (iii) the strength of each modal observability level was influenced by the modal coupling and resonance frequencies of the associated uncoupled structural/cavity modes. An optimal design of structural sensor placement was proposed to achieve sufficiently high modal observability levels for certain important panel- and cavity-controlled modes. Numerical analysis on a panel-cavity system demonstrated the importance of structural sensor placement on virtual sensing and active noise control performance, particularly for cavity-controlled modes.
Kittell, Aaron W.; Camenisch, Theodore G.; Ratke, Joseph J.; Sidabras, Jason W.; Hyde, James S.
2011-01-01
A continuous wave (CW) electron paramagnetic resonance (EPR) spectrum is typically displayed as the first harmonic response to the application of 100 kHz magnetic field modulation, which is used to enhance sensitivity by reducing the level of 1/f noise. However, magnetic field modulation of any amplitude causes spectral broadening and sacrifices EPR spectral intensity by at least a factor of two. In the work presented here, a CW rapid-scan spectroscopic technique that avoids these compromises and also provides a means of avoiding 1/f noise is developed. This technique, termed non-adiabatic rapid sweep (NARS) EPR, consists of repetitively sweeping the polarizing magnetic field in a linear manner over a spectral fragment with a small coil at a repetition rate that is sufficiently high that receiver noise, microwave phase noise, and environmental microphonics, each of which has 1/f characteristics, are overcome. Nevertheless, the rate of sweep is sufficiently slow that adiabatic responses are avoided and the spin system is always close to thermal equilibrium. The repetitively acquired spectra from the spectral fragment are averaged. Under these conditions, undistorted pure absorption spectra are obtained without broadening or loss of signal intensity. A digital filter such as a moving average is applied to remove high frequency noise, which is approximately equivalent in bandwidth to use of an integrating time constant in conventional field modulation with lock-in detection. Nitroxide spectra at L- and X-band are presented. PMID:21741868
Acoustic Analogy and Alternative Theories for Jet Noise Prediction
NASA Technical Reports Server (NTRS)
Morris, Philip J.; Farassat, F.
2002-01-01
Several methods for the prediction of jet noise are described. All but one of the noise prediction schemes are based on Lighthill's or Lilley's acoustic analogy, whereas the other is the jet noise generation model recently proposed by Tam and Auriault. In all of the approaches, some assumptions must be made concerning the statistical properties of the turbulent sources. In each case the characteristic scales of the turbulence are obtained from a solution of the Reynolds-averaged Navier-Stokes equation using a kappa-sigma turbulence model. It is shown that, for the same level of empiricism, Tam and Auriault's model yields better agreement with experimental noise measurements than the acoustic analogy. It is then shown that this result is not because of some fundamental flaw in the acoustic analogy approach, but instead is associated with the assumptions made in the approximation of the turbulent source statistics. If consistent assumptions are made, both the acoustic analogy and Tam and Auriault's model yield identical noise predictions. In conclusion, a proposal is presented for an acoustic analogy that provides a clearer identification of the equivalent source mechanisms, as is a discussion of noise prediction issues that remain to be resolved.
The Acoustic Analogy and Alternative Theories for Jet Noise Prediction
NASA Technical Reports Server (NTRS)
Morris, Philip J.; Farassat, F.; Morris, Philip J.
2002-01-01
This paper describes several methods for the prediction of jet noise. All but one of the noise prediction schemes are based on Lighthill's or Lilley's acoustic analogy while the other is the jet noise generation model recently proposed by Tam and Auriault. In all the approaches some assumptions must be made concerning the statistical properties of the turbulent sources. In each case the characteristic scales of the turbulence are obtained from a solution of the Reynolds-averaged Navier Stokes equation using a k-epsilon turbulence model. It is shown that, for the same level of empiricism, Tam and Auriault's model yields better agreement with experimental noise measurements than the acoustic analogy. It is then shown that this result is not because of some fundamental flaw in the acoustic analogy approach: but, is associated with the assumptions made in the approximation of the turbulent source statistics. If consistent assumptions are made, both the acoustic analogy and Tam and Auriault's model yield identical noise predictions. The paper concludes with a proposal for an acoustic analogy that provides a clearer identification of the equivalent source mechanisms and a discussion of noise prediction issues that remain to be resolved.
Noise-enhanced coupling between two oscillators with long-term plasticity
NASA Astrophysics Data System (ADS)
Lücken, Leonhard; Popovych, Oleksandr V.; Tass, Peter A.; Yanchuk, Serhiy
2016-03-01
Spike timing-dependent plasticity is a fundamental adaptation mechanism of the nervous system. It induces structural changes of synaptic connectivity by regulation of coupling strengths between individual cells depending on their spiking behavior. As a biophysical process its functioning is constantly subjected to natural fluctuations. We study theoretically the influence of noise on a microscopic level by considering only two coupled neurons. Adopting a phase description for the neurons we derive a two-dimensional system which describes the averaged dynamics of the coupling strengths. We show that a multistability of several coupling configurations is possible, where some configurations are not found in systems without noise. Intriguingly, it is possible that a strong bidirectional coupling, which is not present in the noise-free situation, can be stabilized by the noise. This means that increased noise, which is normally expected to desynchronize the neurons, can be the reason for an antagonistic response of the system, which organizes itself into a state of stronger coupling and counteracts the impact of noise. This mechanism, as well as a high potential for multistability, is also demonstrated numerically for a coupled pair of Hodgkin-Huxley neurons.
The Acoustic Analogy and Alternative Theories for Jet Noise Prediction
NASA Technical Reports Server (NTRS)
Morris, Philip J.; Farassat, F.
2002-01-01
This paper describes several methods for the prediction of jet noise. All but one of the noise prediction schemes are based on Lighthill's or Lilley's acoustic analogy while the other is the jet noise generation model recently proposed by Tam and Auriault. In all the approaches some assumptions must be made concerning the statistical properties of the turbulent sources. In each case the characteristic scales of the turbulence are obtained from a solution of the Reynolds-averaged Navier Stokes equation using a k - epsilon turbulence model. It is shown that, for the same level of empiricism, Tam and Auriault's model yields better agreement with experimental noise measurements than the acoustic analogy. It is then shown that this result is not because of some fundamental flaw in the acoustic analogy approach: but, is associated with the assumptions made in the approximation of the turbulent source statistics. If consistent assumptions are made, both the acoustic analogy and Tam and Auriault's model yield identical noise predictions. The paper concludes with a proposal for an acoustic analogy that provides a clearer identification of the equivalent source mechanisms and a discussion of noise prediction issues that remain to be resolved.
High blood pressure and long-term exposure to indoor noise and air pollution from road traffic.
Foraster, Maria; Künzli, Nino; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Vila, Joan; Bouso, Laura; Deltell, Alexandre; Marrugat, Jaume; Ramos, Rafel; Sunyer, Jordi; Elosua, Roberto; Basagaña, Xavier
2014-11-01
Traffic noise has been associated with prevalence of hypertension, but reports are inconsistent for blood pressure (BP). To ascertain noise effects and to disentangle them from those suspected to be from traffic-related air pollution, it may be essential to estimate people's noise exposure indoors in bedrooms. We analyzed associations between long-term exposure to indoor traffic noise in bedrooms and prevalent hypertension and systolic (SBP) and diastolic (DBP) BP, considering long-term exposure to outdoor nitrogen dioxide (NO2). We evaluated 1,926 cohort participants at baseline (years 2003-2006; Girona, Spain). Outdoor annual average levels of nighttime traffic noise (Lnight) and NO2 were estimated at postal addresses with a detailed traffic noise model and a land-use regression model, respectively. Individual indoor traffic Lnight levels were derived from outdoor Lnight with application of insulations provided by reported noise-reducing factors. We assessed associations for hypertension and BP with multi-exposure logistic and linear regression models, respectively. Median levels were 27.1 dB(A) (indoor Lnight), 56.7 dB(A) (outdoor Lnight), and 26.8 μg/m3 (NO2). Spearman correlations between outdoor and indoor Lnight with NO2 were 0.75 and 0.23, respectively. Indoor Lnight was associated both with hypertension (OR = 1.06; 95% CI: 0.99, 1.13) and SBP (β = 0.72; 95% CI: 0.29, 1.15) per 5 dB(A); and NO2 was associated with hypertension (OR = 1.16; 95% CI: 0.99, 1.36), SBP (β = 1.23; 95% CI: 0.21, 2.25), and DBP (β⊇= 0.56; 95% CI: -0.03, 1.14) per 10 μg/m3. In the outdoor noise model, Lnight was associated only with hypertension and NO2 with BP only. The indoor noise-SBP association was stronger and statistically significant with a threshold at 30 dB(A). Long-term exposure to indoor traffic noise was associated with prevalent hypertension and SBP, independently of NO2. Associations were less consistent for outdoor traffic Lnight and likely affected by collinearity.
Characterization of impulse noise and analysis of its effect upon correlation receivers
NASA Technical Reports Server (NTRS)
Houts, R. C.; Moore, J. D.
1971-01-01
A noise model is formulated to describe the impulse noise in many digital systems. A simplified model, which assumes that each noise burst contains a randomly weighted version of the same basic waveform, is used to derive the performance equations for a correlation receiver. The expected number of bit errors per noise burst is expressed as a function of the average signal energy, signal-set correlation coefficient, bit time, noise-weighting-factor variance and probability density function, and a time range function which depends on the crosscorrelation of the signal-set basis functions and the noise waveform. A procedure is established for extending the results for the simplified noise model to the general model. Unlike the performance results for Gaussian noise, it is shown that for impulse noise the error performance is affected by the choice of signal-set basis functions and that Orthogonal signaling is not equivalent to On-Off signaling with the same average energy.
Listening Habits of iPod Users
ERIC Educational Resources Information Center
Epstein, Michael; Marozeau, Jeremy; Cleveland, Sandra
2010-01-01
Purpose: To estimate real-environment iPod listening levels for listeners in 4 environments to gain insight into whether average listeners receive dosages exceeding occupational noise exposure guidelines as a result of their listening habits. Method: The earbud outputs of iPods were connected directly into the inputs of a digital recorder to make…
Phase noise cancellation in polarisation-maintaining fibre links
NASA Astrophysics Data System (ADS)
Rauf, B.; Vélez López, M. C.; Thoumany, P.; Pizzocaro, M.; Calonico, D.
2018-03-01
The distribution of ultra-narrow linewidth laser radiation is an integral part of many challenging metrological applications. Changes in the optical pathlength induced by environmental disturbances compromise the stability and accuracy of optical fibre networks distributing the laser light and call for active phase noise cancellation. Here we present a laboratory scale optical (at 578 nm) fibre network featuring all polarisation maintaining fibres in a setup with low optical powers available and tracking voltage-controlled oscillators implemented. The stability and accuracy of this system reach performance levels below 1 × 10-19 after 10 000 s of averaging.
Ultra-low noise miniaturized neural amplifier with hardware averaging.
Dweiri, Yazan M; Eggers, Thomas; McCallum, Grant; Durand, Dominique M
2015-08-01
Peripheral nerves carry neural signals that could be used to control hybrid bionic systems. Cuff electrodes provide a robust and stable interface but the recorded signal amplitude is small (<3 μVrms 700 Hz-7 kHz), thereby requiring a baseline noise of less than 1 μVrms for a useful signal-to-noise ratio (SNR). Flat interface nerve electrode (FINE) contacts alone generate thermal noise of at least 0.5 μVrms therefore the amplifier should add as little noise as possible. Since mainstream neural amplifiers have a baseline noise of 2 μVrms or higher, novel designs are required. Here we apply the concept of hardware averaging to nerve recordings obtained with cuff electrodes. An optimization procedure is developed to minimize noise and power simultaneously. The novel design was based on existing neural amplifiers (Intan Technologies, LLC) and is validated with signals obtained from the FINE in chronic dog experiments. We showed that hardware averaging leads to a reduction in the total recording noise by a factor of 1/√N or less depending on the source resistance. Chronic recording of physiological activity with FINE using the presented design showed significant improvement on the recorded baseline noise with at least two parallel operation transconductance amplifiers leading to a 46.1% reduction at N = 8. The functionality of these recordings was quantified by the SNR improvement and shown to be significant for N = 3 or more. The present design was shown to be capable of generating <1.5 μVrms total recording baseline noise when connected to a FINE placed on the sciatic nerve of an awake animal. An algorithm was introduced to find the value of N that can minimize both the power consumption and the noise in order to design a miniaturized ultralow-noise neural amplifier. These results demonstrate the efficacy of hardware averaging on noise improvement for neural recording with cuff electrodes, and can accommodate the presence of high source impedances that are associated with the miniaturized contacts and the high channel count in electrode arrays. This technique can be adopted for other applications where miniaturized and implantable multichannel acquisition systems with ultra-low noise and low power are required.
Wennberg, Richard; Cheyne, Douglas
2014-05-01
To assess the reliability of MEG source imaging (MSI) of anterior temporal spikes through detailed analysis of the localization and orientation of source solutions obtained for a large number of spikes that were separately confirmed by intracranial EEG to be focally generated within a single, well-characterized spike focus. MSI was performed on 64 identical right anterior temporal spikes from an anterolateral temporal neocortical spike focus. The effects of different volume conductors (sphere and realistic head model), removal of noise with low frequency filters (LFFs) and averaging multiple spikes were assessed in terms of the reliability of the source solutions. MSI of single spikes resulted in scattered dipole source solutions that showed reasonable reliability for localization at the lobar level, but only for solutions with a goodness-of-fit exceeding 80% using a LFF of 3 Hz. Reliability at a finer level of intralobar localization was limited. Spike averaging significantly improved the reliability of source solutions and averaging 8 or more spikes reduced dependency on goodness-of-fit and data filtering. MSI performed on topographically identical individual spikes from an intracranially defined classical anterior temporal lobe spike focus was limited by low reliability (i.e., scattered source solutions) in terms of fine, sublobar localization within the ipsilateral temporal lobe. Spike averaging significantly improved reliability. MSI performed on individual anterior temporal spikes is limited by low reliability. Reduction of background noise through spike averaging significantly improves the reliability of MSI solutions. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Davidson, Lisa S; Skinner, Margaret W; Holstad, Beth A; Fears, Beverly T; Richter, Marie K; Matusofsky, Margaret; Brenner, Christine; Holden, Timothy; Birath, Amy; Kettel, Jerrica L; Scollie, Susan
2009-06-01
The purpose of this study was to examine the effects of a wider instantaneous input dynamic range (IIDR) setting on speech perception and comfort in quiet and noise for children wearing the Nucleus 24 implant system and the Freedom speech processor. In addition, children's ability to understand soft and conversational level speech in relation to aided sound-field thresholds was examined. Thirty children (age, 7 to 17 years) with the Nucleus 24 cochlear implant system and the Freedom speech processor with two different IIDR settings (30 versus 40 dB) were tested on the Consonant Nucleus Consonant (CNC) word test at 50 and 60 dB SPL, the Bamford-Kowal-Bench Speech in Noise Test, and a loudness rating task for four-talker speech noise. Aided thresholds for frequency-modulated tones, narrowband noise, and recorded Ling sounds were obtained with the two IIDRs and examined in relation to CNC scores at 50 dB SPL. Speech Intelligibility Indices were calculated using the long-term average speech spectrum of the CNC words at 50 dB SPL measured at each test site and aided thresholds. Group mean CNC scores at 50 dB SPL with the 40 IIDR were significantly higher (p < 0.001) than with the 30 IIDR. Group mean CNC scores at 60 dB SPL, loudness ratings, and the signal to noise ratios-50 for Bamford-Kowal-Bench Speech in Noise Test were not significantly different for the two IIDRs. Significantly improved aided thresholds at 250 to 6000 Hz as well as higher Speech Intelligibility Indices afforded improved audibility for speech presented at soft levels (50 dB SPL). These results indicate that an increased IIDR provides improved word recognition for soft levels of speech without compromising comfort of higher levels of speech sounds or sentence recognition in noise.
Performance of correlation receivers in the presence of impulse noise.
NASA Technical Reports Server (NTRS)
Moore, J. D.; Houts, R. C.
1972-01-01
An impulse noise model, which assumes that each noise burst contains a randomly weighted version of a basic waveform, is used to derive the performance equations for a correlation receiver. The expected number of bit errors per noise burst is expressed as a function of the average signal energy, signal-set correlation coefficient, bit time, noise-weighting-factor variance and probability density function, and a time range function which depends on the crosscorrelation of the signal-set basis functions and the noise waveform. Unlike the performance results for additive white Gaussian noise, it is shown that the error performance for impulse noise is affected by the choice of signal-set basis function, and that Orthogonal signaling is not equivalent to On-Off signaling with the same average energy. Furthermore, it is demonstrated that the correlation-receiver error performance can be improved by inserting a properly specified nonlinear device prior to the receiver input.
Impact of Diwali celebrations on urban air and noise quality in Delhi City, India.
Mandal, Papiya; Prakash, Mamta; Bassin, J K
2012-01-01
A study was conducted in the residential areas of Delhi, India, to assess the variation in ambient air quality and ambient noise levels during pre-Diwali month (DM), Diwali day (DD) and post-Diwali month during the period 2006 to 2008. The use of fireworks during DD showed 1.3 to 4.0 times increase in concentration of respirable particulate matter (PM(10)) and 1.6 to 2.5 times increase in concentration of total suspended particulate matter (TSP) than the concentration during DM. There was a significant increase in sulfur dioxide (SO(2)) concentration but the concentration of nitrogen dioxide (NO(2)) did not show any considerable variation. Ambient noise level were 1.2 to 1.3 times higher than normal day. The study also showed a strong correlation between PM(10) and TSP (R (2) ≥ 0.9) and SO(2) and NO(2) (R (2) ≥ 0.9) on DD. The correlation between noise level and gaseous pollutant were moderate (R (2) ≥ 0.5). The average concentration of the pollutants during DD was found higher in 2007 which could be due to adverse meteorological conditions. The statistical interpretation of data indicated that the celebration of Diwali festival affects the ambient air and noise quality. The study would provide public awareness about the health risks associated with the celebrations of Diwali festival so as to take proper precautions.
Landsat-7 ETM+ on-orbit reflective-band radiometric characterization
Scaramuzza, P.L.; Markham, B.L.; Barsi, J.A.; Kaita, E.
2004-01-01
The Landsat-7 Enhanced Thematic Mapper Plus (ETM+) has been and continues to be radiometrically characterized using the Image Assessment System (IAS), a component of the Landsat-7 Ground System. Key radiometric properties analyzed include: overall, coherent, and impulse noise; bias stability; relative gain stability; and other artifacts. The overall instrument noise is characterized across the dynamic range of the instrument during solar diffuser deployments. Less than 1% per year increases are observed in signal-independent (dark) noise levels, while signal-dependent noise is stable with time. Several coherent noise sources exist in ETM+ data with scene-averaged magnitudes of up to 0.4 DN, and a noise component at 20 kHz whose magnitude varies across the scan and peaks at the image edges. Bit-flip noise does not exist on the ETM+. However, impulse noise due to charged particle hits on the detector array has been discovered. The instrument bias is measured every scan line using a shutter. Most bands show less than 0.1 DN variations in bias across the instrument lifetime. The panchromatic band is the exception, where the variation approaches 2 DN and is related primarily to temperature. The relative gains of the detectors, i.e., each detector's gain relative to the band average gain, have been stable to /spl plusmn/0.1% over the mission life. Two exceptions to this stability include band 2 detector 2, which dropped about 1% in gain about 3.5 years after launch and stabilized, and band 7 detector 5, which has changed several tenths of a percent several times since launch. Memory effect and scan-correlated shift, a hysteresis and a random change in bias between multiple states, respectively, both of which have been observed in previous Thematic Mapper sensors, have not been convincingly found in ETM+ data. Two artifacts, detector ringing and "oversaturation", affect a small amount of ETM+ data.
[Industrial sound spectrum entailing noise-induced occupational hearing loss in Iasi industry].
Carp, Cristina Maria; Costinescu, V N
2011-01-01
In European Union every day millions of employees are exposed to noise at work and the risk this can entail. this study presents the sound spectrum in Iasi heavy industry: metal foundries industry, punching and embossing of metal sheets, cold and hot metal processing. it was used a type 2 Sound Level Meter (SLM) and the considered value was the average value over 10 test values in 10 consecutive days for each octave band in common audible frequency range. It is obviously that the large values of sound intensities in the most of frequency octave band exceed maximum admissible and legal values. The study reveals the necessity of hardware, medical and managerial measures in order to reduce the occupational noise and to prevent the hearing acuity damage of the workers.
The effects of noise in cardiac diffusion tensor imaging and the benefits of averaging complex data.
Scott, Andrew D; Nielles-Vallespin, Sonia; Ferreira, Pedro F; McGill, Laura-Ann; Pennell, Dudley J; Firmin, David N
2016-05-01
There is growing interest in cardiac diffusion tensor imaging (cDTI), but, unlike other diffusion MRI applications, there has been little investigation of the effects of noise on the parameters typically derived. One method of mitigating noise floor effects when there are multiple image averages, as in cDTI, is to average the complex rather than the magnitude data, but the phase contains contributions from bulk motion, which must be removed first. The effects of noise on the mean diffusivity (MD), fractional anisotropy (FA), helical angle (HA) and absolute secondary eigenvector angle (E2A) were simulated with various diffusion weightings (b values). The effect of averaging complex versus magnitude images was investigated. In vivo cDTI was performed in 10 healthy subjects with b = 500, 1000, 1500 and 2000 s/mm(2). A technique for removing the motion-induced component of the image phase present in vivo was implemented by subtracting a low-resolution copy of the phase from the original images before averaging the complex images. MD, FA, E2A and the transmural gradient in HA were compared for un-averaged, magnitude- and complex-averaged reconstructions. Simulations demonstrated an over-estimation of FA and MD at low b values and an under-estimation at high b values. The transition is relatively signal-to-noise ratio (SNR) independent and occurs at a higher b value for FA (b = 1000-1250 s/mm(2)) than MD (b ≈ 250 s/mm(2)). E2A is under-estimated at low and high b values with a transition at b ≈ 1000 s/mm(2), whereas the bias in HA is comparatively small. The under-estimation of FA and MD at high b values is caused by noise floor effects, which can be mitigated by averaging the complex data. Understanding the parameters of interest and the effects of noise informs the selection of the optimal b values. When complex data are available, they should be used to maximise the benefit from the acquisition of multiple averages. The combination of complex data is also a valuable step towards segmented acquisitions. Copyright © 2016 John Wiley & Sons, Ltd.
External noise-induced transitions in a current-biased Josephson junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Qiongwei; Xue, Changfeng, E-mail: cfxue@163.com; Tang, Jiashi
We investigate noise-induced transitions in a current-biased and weakly damped Josephson junction in the presence of multiplicative noise. By using the stochastic averaging procedure, the averaged amplitude equation describing dynamic evolution near a constant phase difference is derived. Numerical results show that a stochastic Hopf bifurcation between an absorbing and an oscillatory state occurs. This means the external controllable noise triggers a transition into the non-zero junction voltage state. With the increase of noise intensity, the stationary probability distribution peak shifts and is characterised by increased width and reduced height. And the different transition rates are shown for large andmore » small bias currents.« less
Implications of Liebig’s law of the minimum for tree-ring reconstructions of climate
NASA Astrophysics Data System (ADS)
Stine, A. R.; Huybers, P.
2017-11-01
A basic principle of ecology, known as Liebig’s Law of the Minimum, is that plant growth reflects the strongest limiting environmental factor. This principle implies that a limiting environmental factor can be inferred from historical growth and, in dendrochronology, such reconstruction is generally achieved by averaging collections of standardized tree-ring records. Averaging is optimal if growth reflects a single limiting factor and noise but not if growth also reflects locally variable stresses that intermittently limit growth. In this study a collection of Arctic tree ring records is shown to follow scaling relationships that are inconsistent with the signal-plus-noise model of tree growth but consistent with Liebig’s Law acting at the local level. Also consistent with law-of-the-minimum behavior is that reconstructions based on the least-stressed trees in a given year better-follow variations in temperature than typical approaches where all tree-ring records are averaged. Improvements in reconstruction skill occur across all frequencies, with the greatest increase at the lowest frequencies. More comprehensive statistical-ecological models of tree growth may offer further improvement in reconstruction skill.
Using Smart Devices to Measure Intermittent Noise in the Workplace
Roberts, Benjamin; Neitzel, Richard Lee
2017-01-01
Purpose: To determine the accuracy of smart devices (iPods) to measure intermittent noise and integrate a noise dose in the workplace. Materials and Methods: In experiment 1, four iPods were each paired with a Larson Davis Spark dosimeter and exposed to randomly fluctuating pink noise in a reverberant sound chamber. Descriptive statistics and the mean difference between the iPod and its paired dosimeter were calculated for the 1-s data logged measurements. The calculated time weighted average (TWA) was also compared between the devices. In experiment 2, 15 maintenance workers and 14 office workers wore an iPod and dosimeter during their work-shift for a maximum of five workdays. A mixed effects linear regression model was used to control for repeated measures and to determine the effect of the device type on the projected 8-h TWA. Results: In experiment 1, a total of 315,306 1-s data logged measurements were made. The interquartile range of the mean difference fell within ±2.0 A-weighted decibels (dBA), which is the standard used by the American National Standards Institute to classify a type 2 sound level meter. The mean difference of the calculated TWA was within ±0.5 dBA except for one outlier. In experiment 2, the results of the mixed effects model found that, on average, iPods measured an 8-h TWA 1.7 dBA higher than their paired dosimeters. Conclusion: This study shows that iPods have the ability to make reasonably accurate noise measurements in the workplace, but they are not as accurate as traditional noise dosimeters. PMID:29192614
Hidden Markov analysis of mechanosensitive ion channel gating.
Khan, R Nazim; Martinac, Boris; Madsen, Barry W; Milne, Robin K; Yeo, Geoffrey F; Edeson, Robert O
2005-02-01
Patch clamp data from the large conductance mechanosensitive channel (MscL) in E. coli was studied with the aim of developing a strategy for statistical analysis based on hidden Markov models (HMMs) and determining the number of conductance levels of the channel, together with mean current, mean dwell time and equilibrium probability of occupancy for each level. The models incorporated state-dependent white noise and moving average adjustment for filtering, with maximum likelihood parameter estimates obtained using an EM (expectation-maximisation) based iteration. Adjustment for filtering was included as it could be expected that the electronic filter used in recording would have a major effect on obviously brief intermediate conductance level sojourns. Preliminary data analysis revealed that the brevity of intermediate level sojourns caused difficulties in assignment of data points to levels as a result of over-estimation of noise variances. When reasonable constraints were placed on these variances using the better determined noise variances for the closed and fully open levels, idealisation anomalies were eliminated. Nevertheless, simulations suggested that mean sojourn times for the intermediate levels were still considerably over-estimated, and that recording bandwidth was a major limitation; improved results were obtained with higher bandwidth data (10 kHz sampled at 25 kHz). The simplest model consistent with these data had four open conductance levels, intermediate levels being approximately 20%, 51% and 74% of fully open. The mean lifetime at the fully open level was about 1 ms; estimates for the three intermediate levels were 54-92 micros, probably still over-estimates.
Tharmmaphornphilas, Wipawee; Green, Benjamin; Carnahan, Brian J; Norman, Bryan A
2003-01-01
This research developed worker schedules by using administrative controls and a computer programming model to reduce the likelihood of worker hearing loss. By rotating the workers through different jobs during the day it was possible to reduce their exposure to hazardous noise levels. Computer simulations were made based on data collected in a real setting. Worker schedules currently used at the site are compared with proposed worker schedules from the computer simulations. For the worker assignment plans found by the computer model, the authors calculate a significant decrease in time-weighted average (TWA) sound level exposure. The maximum daily dose that any worker is exposed to is reduced by 58.8%, and the maximum TWA value for the workers is reduced by 3.8 dB from the current schedule.
2018-01-01
The cell division rate, size and gene expression programmes change in response to external conditions. These global changes impact on average concentrations of biomolecule and their variability or noise. Gene expression is inherently stochastic, and noise levels of individual proteins depend on synthesis and degradation rates as well as on cell-cycle dynamics. We have modelled stochastic gene expression inside growing and dividing cells to study the effect of division rates on noise in mRNA and protein expression. We use assumptions and parameters relevant to Escherichia coli, for which abundant quantitative data are available. We find that coupling of transcription, but not translation rates to the rate of cell division can result in protein concentration and noise homeostasis across conditions. Interestingly, we find that the increased cell size at fast division rates, observed in E. coli and other unicellular organisms, buffers noise levels even for proteins with decreased expression at faster growth. We then investigate the functional importance of these regulations using gene regulatory networks that exhibit bi-stability and oscillations. We find that network topology affects robustness to changes in division rate in complex and unexpected ways. In particular, a simple model of persistence, based on global physiological feedback, predicts increased proportion of persister cells at slow division rates. Altogether, our study reveals how cell size regulation in response to cell division rate could help controlling gene expression noise. It also highlights that understanding circuits' robustness across growth conditions is key for the effective design of synthetic biological systems. PMID:29657814
Infrasonic wind-noise reduction by barriers and spatial filters.
Hedlin, Michael A H; Raspet, Richard
2003-09-01
This paper reports experimental observations of wind speed and infrasonic noise reduction inside a wind barrier. The barrier is compared with "rosette" spatial filters and with a reference site that uses no noise reduction system. The barrier is investigated for use at International Monitoring System (IMS) infrasound array sites where spatially extensive noise-reducing systems cannot be used because of a shortage of suitable land. Wind speed inside a 2-m-high 50%-porous hexagonal barrier coated with a fine wire mesh is reduced from ambient levels by 90%. If the infrasound wind-noise level reductions are all plotted versus the reduced frequency given by f*L/v, where L is the characteristic size of the array or barrier, f is the frequency, and v is the wind speed, the reductions at different wind speeds are observed to collapse into a single curve for each wind-noise reduction method. The reductions are minimal below a reduced frequency of 0.3 to 1, depending on the device, then spatial averaging over the turbulence structure leads to increased reduction. Above the reduced corner frequency, the barrier reduces infrasonic noise by up to 20 to 25 dB. Below the corner frequency the barrier displays a small reduction of about 4 dB. The rosettes display no reduction below the corner frequency. One other advantage of the wind barrier over rosette spatial filters is that the signal recorded inside the barrier enters the microbarometer from free air and is not integrated, possibly out of phase, after propagation through a system of narrow pipes.
Cardiovascular effects of environmental noise: research in Sweden.
Bluhm, Gösta; Eriksson, Charlotta
2011-01-01
In Sweden, as in many other European countries, traffic noise is an important environmental health issue. At present, almost two million people are exposed to average noise levels exceeding the outdoor national guideline value (55 dB(A)). Despite efforts to reduce the noise burden, noise-related health effects, such as annoyance and sleep disturbances, are increasing. The scientific interest regarding more serious health effects related to the cardiovascular system is growing, and several experimental and epidemiological studies have been performed or are ongoing. Most of the studies on cardiovascular outcomes have been related to noise from road or aircraft traffic. Few studies have included railway noise. The outcomes under study include morning saliva cortisol, treatment for hypertension, self-reported hypertension, and myocardial infarction. The Swedish studies on road traffic noise support the hypothesis of an association between long-term noise exposure and cardiovascular disease. However, the magnitude of effect varies between the studies and has been shown to depend on factors such as sex, number of years at residence, and noise annoyance. Two national studies have been performed on the cardiovascular effects of aircraft noise exposure. The first one, a cross-sectional study assessing self-reported hypertension, has shown a 30% risk increase per 5 dB(A) noise increase. The second one, which to our knowledge is the first longitudinal study assessing the cumulative incidence of hypertension, found a relative risk (RR) of 1.10 (95% CI 1.01 - 1.19) per 5 dB(A) noise increase. No associations have been found between railway noise and cardiovascular diseases. The findings regarding noise-related health effects and their economic consequences should be taken into account in future noise abatement policies and community planning.
Before-after field study of effects of wind turbine noise on polysomnographic sleep parameters.
Jalali, Leila; Bigelow, Philip; Nezhad-Ahmadi, Mohammad-Reza; Gohari, Mahmood; Williams, Diane; McColl, Steve
2016-01-01
Wind is considered one of the most advantageous alternatives to fossil energy because of its low operating cost and extensive availability. However, alleged health-related effects of exposure to wind turbine (WT) noise have attracted much public attention and various symptoms, such as sleep disturbance, have been reported by residents living close to wind developments. Prospective cohort study with synchronous measurement of noise and sleep physiologic signals was conducted to explore the possibility of sleep disturbance in people hosting new industrial WTs in Ontario, Canada, using a pre and post-exposure design. Objective and subjective sleep data were collected through polysomnography (PSG), the gold standard diagnostic test, and sleep diary. Sixteen participants were studied before and after WT installation during two consecutive nights in their own bedrooms. Both audible and infrasound noises were also concurrently measured inside the bedroom of each participant. Different noise exposure parameters were calculated (LAeq, LZeq) and analyzed in relation to whole-night sleep parameters. Results obtained from PSG show that sleep parameters were not significantly changed after exposure. However, reported sleep qualities were significantly (P = 0.008) worsened after exposure. Average noise levels during the exposure period were low to moderate and the mean of inside noise levels did not significantly change after exposure. The result of this study based on advanced sleep recording methodology together with extensive noise measurements in an ecologically valid setting cautiously suggests that there are no major changes in the sleep of participants who host new industrial WTs in their community. Further studies with a larger sample size and including comprehensive single-event analyses are warranted.
Before–After Field Study of Effects of Wind Turbine Noise on Polysomnographic Sleep Parameters
Jalali, Leila; Bigelow, Philip; Nezhad-Ahmadi, Mohammad-Reza; Gohari, Mahmood; Williams, Diane; McColl, Steve
2016-01-01
Wind is considered one of the most advantageous alternatives to fossil energy because of its low operating cost and extensive availability. However, alleged health-related effects of exposure to wind turbine (WT) noise have attracted much public attention and various symptoms, such as sleep disturbance, have been reported by residents living close to wind developments. Prospective cohort study with synchronous measurement of noise and sleep physiologic signals was conducted to explore the possibility of sleep disturbance in people hosting new industrial WTs in Ontario, Canada, using a pre and post-exposure design. Objective and subjective sleep data were collected through polysomnography (PSG), the gold standard diagnostic test, and sleep diary. Sixteen participants were studied before and after WT installation during two consecutive nights in their own bedrooms. Both audible and infrasound noises were also concurrently measured inside the bedroom of each participant. Different noise exposure parameters were calculated (LAeq, LZeq) and analyzed in relation to whole-night sleep parameters. Results obtained from PSG show that sleep parameters were not significantly changed after exposure. However, reported sleep qualities were significantly (P=0.008) worsened after exposure. Average noise levels during the exposure period were low to moderate and the mean of inside noise levels did not significantly change after exposure. The result of this study based on advanced sleep recording methodology together with extensive noise measurements in an ecologically valid setting cautiously suggests that there are no major changes in the sleep of participants who host new industrial WTs in their community. Further studies with a larger sample size and including comprehensive single-event analyses are warranted. PMID:27569407
Active noise reduction in aviation helmets during a military jet trainer test flight.
Pääkkönen, R; Kuronen, P; Korteoja, M
2001-01-01
Cockpit noise measurements were carried out in a two-seat jet trainer. For the continuous time and frequency analyses a two-channel tape-recording system was constructed of two miniature microphones connected through an amplifier to a digital tape-recorder. The analysed and averaged noise exposure including radio communication was 80-81 dB when the ANC system was on and 84-89 dB when the ANC system was off. For the conventional flight helmet the same noise exposure was 86 dB, and the noise exposure in the cockpit was 104-106 dB. The effect of the ANC system on the averaged noise exposure (L(Aeq8min)) was an improvement of 4-8 dB over the noise attenuation of the same helmets when the ANC system was off. Both ANC systems worked properly during the test flights. No severe ringing or voice circulation was found except during extreme vibration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Xinming; Lai Chaojen; Whitman, Gary J.
Purpose: The scan equalization digital mammography (SEDM) technique combines slot scanning and exposure equalization to improve low-contrast performance of digital mammography in dense tissue areas. In this study, full-field digital mammography (FFDM) images of an anthropomorphic breast phantom acquired with an anti-scatter grid at various exposure levels were superimposed to simulate SEDM images and investigate the improvement of low-contrast performance as quantified by primary signal-to-noise ratios (PSNRs). Methods: We imaged an anthropomorphic breast phantom (Gammex 169 ''Rachel,'' Gammex RMI, Middleton, WI) at various exposure levels using a FFDM system (Senographe 2000D, GE Medical Systems, Milwaukee, WI). The exposure equalization factorsmore » were computed based on a standard FFDM image acquired in the automatic exposure control (AEC) mode. The equalized image was simulated and constructed by superimposing a selected set of FFDM images acquired at 2, 1, 1/2, 1/4, 1/8, 1/16, and 1/32 times of exposure levels to the standard AEC timed technique (125 mAs) using the equalization factors computed for each region. Finally, the equalized image was renormalized regionally with the exposure equalization factors to result in an appearance similar to that with standard digital mammography. Two sets of FFDM images were acquired to allow for two identically, but independently, formed equalized images to be subtracted from each other to estimate the noise levels. Similarly, two identically but independently acquired standard FFDM images were subtracted to estimate the noise levels. Corrections were applied to remove the excess system noise accumulated during image superimposition in forming the equalized image. PSNRs over the compressed area of breast phantom were computed and used to quantitatively study the effects of exposure equalization on low-contrast performance in digital mammography. Results: We found that the highest achievable PSNR improvement factor was 1.89 for the anthropomorphic breast phantom used in this study. The overall PSNRs were measured to be 79.6 for the FFDM imaging and 107.6 for the simulated SEDM imaging on average in the compressed area of breast phantom, resulting in an average improvement of PSNR by {approx}35% with exposure equalization. We also found that the PSNRs appeared to be largely uniform with exposure equalization, and the standard deviations of PSNRs were estimated to be 10.3 and 7.9 for the FFDM imaging and the simulated SEDM imaging, respectively. The average glandular dose for SEDM was estimated to be 212.5 mrad, {approx}34% lower than that of standard AEC-timed FFDM (323.8 mrad) as a result of exposure equalization for the entire breast phantom. Conclusions: Exposure equalization was found to substantially improve image PSNRs in dense tissue regions and result in more uniform image PSNRs. This improvement may lead to better low-contrast performance in detecting and visualizing soft tissue masses and micro-calcifications in dense tissue areas for breast imaging tasks.« less
Loupa, G
2013-01-01
An indoor environmental quality survey was conducted in a small private automotive repair shop during May 2009 (hot season) and February 2010 (cold season). It was established that the detached building, which is naturally ventilated and lit, had all the advantages of the temperate local climate. It provided a satisfactory microclimatic working environment, concerning the thermal and the lighting comfort, without excessive energy consumption for air-conditioning or lighting. Indoor number concentrations of particulate matter (PM) were monitored during both seasons. Their size distributions were strongly affected by the indoor activities and the air exchange rate of the building. During working hours, the average indoor/outdoor (I/O) number concentration ratio was 31 for PM0.3-1 in the hot season and 69 for the cold season. However I/O PM1-10 number concentration ratios were similar, 33 and 32 respectively, between the two seasons. The estimated indoor mass concentration of PM10 for the two seasons was on average 0.68 mg m(-3) and 1.19 mg m(-3), i.e., 22 and 36 times higher than outdoors, during the hot and the cold seasons, respectively. This is indicative that indoor air pollution may adversely affect mechanics' health. Noise levels were highly variable and the average LEX, 8 h of 69.3 dB(A) was below the European Union exposure limit value 87db (A). Noise originated from the use of manual hammers, the revving up of engines, and the closing of car doors or hoods. Octave band analysis indicated that the prevailing noise frequencies were in the area of the maximum ear sensitivity.
Schafer, Erin C; Mathews, Lauren; Mehta, Smita; Hill, Margaret; Munoz, Ashley; Bishop, Rachel; Moloney, Molly
2013-01-01
The goal of this initial investigation was to examine the potential benefit of a frequency modulation (FM) system for 11 children diagnosed with autism spectrum disorders (ASD), attention-deficit hyperactivity disorder (ADHD), or both disorders through measures of speech recognition performance in noise, observed classroom behavior, and teacher-rated educational risk and listening behaviors. Use of the FM system resulted in significant average improvements in speech recognition in noise for the children with ASD and ADHD as well as large effect sizes. When compared to typically functioning peers, children with ASD and ADHD had significantly poorer average speech recognition performance in noise without the FM system but comparable average performance when the FM system was used. Similarly, classroom observations yielded a significant increase in on-task behaviors and large effect sizes when the FM system was in use during two separate trial periods. Although teacher ratings on questionnaires showed no significant improvement in the average level of educational risk of participants, they did indicate significant improvement in average listening behaviors during two trial periods with the FM system. Given the significantly better speech recognition in noise, increased on-task behaviors, and improved teacher ratings of listening behaviors with the FM system, these devices may be a viable option for children who have ASD and ADHD in the classroom. However, an individual evaluation including audiological testing and a functional evaluation in the child's primary learning environment will be necessary to determine the benefit of an FM system for a particular student. 1. The reader will be able to describe the potential benefit of FM systems for children with ASD and/or ADHD. 2. The reader will be able to identify on-task versus off-task listening behaviors in children with ASD and/or ADHD. 3. The reader will be able to explain the components of a successful pre-fit education program that may be necessary prior to fitting an FM system in children with ASD. Copyright © 2012 Elsevier Inc. All rights reserved.
Association of aircraft noise stress to periodontal disease in aircrew members.
Haskell, B S
1975-08-01
A review of the literature reveals a multitude of effects that noise may contribute to periodontal disease, including cardiovascular disease, angiospasm of peripheral vessels, hypertension, and an increase in inflammatory cells with concurrent inhibition of healing. Three groups of 25 men were selected from the Pennsylvania Air National Guard for study. Group 1 consisted of F-102 jet fighter pilots; Group 2, pilots and crew of a four-engine, propeller-driven C-121 aircraft; and Group 3, enlisted men not exposed to aircraft noise, as a control. The degree of alveolar, intraceptal bone loss for each subject was measured from full-mouth radiographs of all groups. The greatest amount of bone loss occurred in crew members of propeller-driven aircraft. Jet pilots had considerably less bone loss while the average number of millimeters of bone lost per tooth revealed a difference between the three groups to the 0.01 significance level (F=24.7). The data suggests there is a degree of alveolar bone loss over a period of years associated with exposure to propeller aircraft noise and vibration, and negligible loss for jet aircraft noise.
Robust averaging protects decisions from noise in neural computations
Herce Castañón, Santiago; Solomon, Joshua A.; Vandormael, Hildward
2017-01-01
An ideal observer will give equivalent weight to sources of information that are equally reliable. However, when averaging visual information, human observers tend to downweight or discount features that are relatively outlying or deviant (‘robust averaging’). Why humans adopt an integration policy that discards important decision information remains unknown. Here, observers were asked to judge the average tilt in a circular array of high-contrast gratings, relative to an orientation boundary defined by a central reference grating. Observers showed robust averaging of orientation, but the extent to which they did so was a positive predictor of their overall performance. Using computational simulations, we show that although robust averaging is suboptimal for a perfect integrator, it paradoxically enhances performance in the presence of “late” noise, i.e. which corrupts decisions during integration. In other words, robust decision strategies increase the brain’s resilience to noise arising in neural computations during decision-making. PMID:28841644
Monthly mean simulation experiments with a course-mesh global atmospheric model
NASA Technical Reports Server (NTRS)
Spar, J.; Klugman, R.; Lutz, R. J.; Notario, J. J.
1978-01-01
Substitution of observed monthly mean sea-surface temperatures (SSTs) as lower boundary conditions, in place of climatological SSTs, failed to improve the model simulations. While the impact of SST anomalies on the model output is greater at sea level than at upper levels the impact on the monthly mean simulations is not beneficial at any level. Shifts of one and two days in initialization time produced small, but non-trivial, changes in the model-generated monthly mean synoptic fields. No improvements in the mean simulations resulted from the use of either time-averaged initial data or re-initialization with time-averaged early model output. The noise level of the model, as determined from a multiple initial state perturbation experiment, was found to be generally low, but with a noisier response to initial state errors in high latitudes than the tropics.
Ocean ambient sound south of Bermuda and Panama Canal traffic.
Širović, Ana; Hildebrand, John A; McDonald, Mark A
2016-05-01
Comparisons of current and historic ocean ambient noise levels are rare, especially in the North Atlantic. Recent (2013-2014) monthly patterns in ocean ambient sound south of Bermuda were compared to those recorded at the same location in 1966. Additionally, trends in ocean traffic, in particular, Panama Canal traffic, over this time were also investigated. One year of ocean ambient noise measurements were collected in 1966 using cabled, omnidirectional hydrophones at the U.S. Navy Tudor Hill Laboratory in Bermuda, and repeat measurements were collected at the same location from June 2013-May 2014 using a High-frequency Acoustic Recording Package. Average monthly pressure spectrum levels at 44 Hz increased 2.8 ± 0.8 dB from 1966 to 2013, indicating an average increase of 0.6 dB/decade. This low level of increase may be due to topographic shielding at this site, limiting it to only southern exposure, and the limit in the number of ship transits through the Panama Canal, which did not change substantially during this time. The impending expansion of the Canal, which will enable the transit of larger ships at twice the current rate, is likely to lead to a substantial increase in ocean ambient sound at this location in the near future.
Tenailleau, Quentin M; Bernard, Nadine; Pujol, Sophie; Houot, Hélène; Joly, Daniel; Mauny, Frédéric
2015-01-01
Environmental epidemiological studies rely on the quantification of the exposure level in a surface defined as the subject's exposure area. For residential exposure, this area is often the subject's neighborhood. However, the variability of the size and nature of the neighborhoods makes comparison of the findings across studies difficult. This article examines the impact of the neighborhood's definition on environmental noise exposure levels obtained from four commonly used sampling techniques: address point, façade, buffers, and official zoning. A high-definition noise model, built on a middle-sized French city, has been used to estimate LAeq,24 h exposure in the vicinity of 10,825 residential buildings. Twelve noise exposure indicators have been used to assess inhabitants' exposure. Influence of urban environmental factors was analyzed using multilevel modeling. When the sampled area increases, the average exposure increases (+3.9 dB), whereas the SD decreases (-1.6 dB) (P<0.01). Most of the indicators differ statistically. When comparing indicators from the 50-m and 400-m radius buffers, the assigned LAeq,24 h level varies across buildings from -9.4 to +22.3 dB. This variation is influenced by urban environmental characteristics (P<0.01). On the basis of this study's findings, sampling technique, neighborhood size, and environmental composition should be carefully considered in further exposure studies.
Kastelein, Ronald A; Hoek, Lean; Gransier, Robin; Rambags, Martijn; Claeys, Naomi
2014-07-01
Safety criteria for underwater low-frequency active sonar sounds produced during naval exercises are needed to protect harbor porpoise hearing. As a first step toward defining criteria, a porpoise was exposed to sequences consisting of series of 1-s, 1-2 kHz sonar down-sweeps without harmonics (as fatiguing noise) at various combinations of average received sound pressure levels (SPLs; 144-179 dB re 1 μPa), exposure durations (1.9-240 min), and duty cycles (5%-100%). Hearing thresholds were determined for a narrow-band frequency-swept sine wave centered at 1.5 kHz before exposure to the fatiguing noise, and at 1-4, 4-8, 8-12, 48, 96, 144, and 1400 min after exposure, to quantify temporary threshold shifts (TTSs) and recovery of hearing. Results show that the inter-pulse interval of the fatiguing noise is an important parameter in determining the magnitude of noise-induced TTS. For the reported range of exposure combinations (duration and SPL), the energy of the exposure (i.e., cumulative sound exposure level; SELcum) can be used to predict the induced TTS, if the inter-pulse interval is known. Exposures with equal SELcum but with different inter-pulse intervals do not result in the same induced TTS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Huai; Jiang, Huijun; Hou, Zhonghuai, E-mail: hzhlj@ustc.edu.cn
The dynamics of point-like Brownian particles in a periodic confined channel with oscillating boundaries has been studied. Directional transport (DT) behavior, characterized by net displacement along the horizontal direction, is observed even without external force which is necessary for the conventional DT where the boundaries are static. For typical parameter values, the average velocity V{sub t} of DT reaches a maximum with the variation of the noise intensity D, being alike to the phenomenon of stochastic resonance. Interestingly, we find that V{sub t} shows nontrivial dependences on the particle gravity G depending on the noise level. When the noise ismore » large, V{sub t} increases monotonically with G indicating that heavier particle moves faster, while for small noise, V{sub t} shows a bell-shape dependence on G, suggesting that a particle with an intermediate weight may move the fastest. Such results were not observed for DT in a channel with static boundaries. To understand these findings, we have adopted an effective one-dimensional coarsening description, which facilitates us to introduce an effective entropic force along the horizontal direction. The average force is apparently nonzero due to the oscillatory boundary, hence leading to the net transport, and it shows similar dependences as V{sub t} on the noise intensity D and particle gravity G. The dependences of the DT behavior on other parameters describing the oscillatory channel have also been investigated, showing that DT is more pronounced for larger oscillation amplitude and frequency, and asymmetric geometry within a channel period and phase difference between neighboring periods are both necessary for the occurrence of DT.« less
Potential hazard of hearing damage to students in undergraduate popular music courses.
Barlow, Christopher
2010-12-01
In recent years, there has been a rapid growth in university courses related to popular and commercial music, with a commensurate increase in the number of students studying these courses. Students of popular music subjects are frequently involved in the use of electronically amplified sound for rehearsal and recording, in addition to the "normal" noise exposure commonly associated with young people. The combination of these two elements suggests a higher than average noise exposure hazard for these students. To date, the majority of noise studies on students have focused on exposure from personal music players and on classical, orchestral, and marching band musicians. One hundred students across a range of university popular music courses were surveyed using a 30-point questionnaire regarding their musical habits both within and external to their university courses. This was followed by noise dosimetry of studios/recording spaces and music venues popular with students. Questionnaire responses showed 76% of subjects reported having experienced symptoms associated with hearing loss, while only 18% reported using hearing protection devices. Rehearsals averaged 11.5 hrs/wk, with a mean duration 2 hrs 13 mins and mean level of 98 dB LAEQ. Ninety-four percent of subjects reported attending concerts or nightclubs at least once per week, and measured exposure in two of these venues ranged from 98 to 112 dB LAEQ with a mean of 98.9 dB LAEQ over a 4.5-hr period. Results suggested an extremely high hazard of excessive noise exposure among this group from both their social and study-based music activities.
Industrial Noise and Tooth Wear - Experimental Study
Cavacas, Maria Alzira; Tavares, Vitor; Borrecho, Gonçalo; Oliveira, Maria João; Oliveira, Pedro; Brito, José; Águas, Artur; dos Santos, José Martins
2015-01-01
Tooth wear is a complex multifactorial process that involves the loss of hard dental tissue. Parafunctional habits have been mentioned as a self-destructive process caused by stress, which results in hyperactivity of masticatory muscles. Stress manifests itself through teeth grinding, leading to progressive teeth wear. The effects of continuous exposure to industrial noise, a “stressor” agent, cannot be ignored and its effects on the teeth must be evaluated. Aims: The aim of this study was to ascertain the effects of industrial noise on dental wear over time, by identifying and quantifying crown area loss. Material and Methods: 39 Wistar rats were used. Thirty rats were divided in 3 experimental groups of 10 animals each. Animals were exposed to industrial noise, rich in LFN components, for 1, 4 and 7 months, with an average weekly exposure of 40 hours (8h/day, 5 days/week with the weekends in silence). The remaining 9 animals were kept in silence. The areas of the three main cusps of the molars were measured under light microscopy. Statistical analysis used: A two-way ANOVA model was applied at significance level of 5%. Results: The average area of the molar cusps was significantly different between exposed and non-exposed animals. The most remarkable differences occurred between month 1 and 4. The total crown loss from month 1 to month 7 was 17.3% in the control group, and 46.5% in the exposed group, and the differences between these variations were significant (p<0.001). Conclusions: Our data suggest that industrial noise is an important factor in the pathogenesis of tooth wear. PMID:25798052
Effects of alcohol and noise on temporary threshold shift in Guinea pigs.
Liu, Tien-Chen; Hsu, Chuan-Jen; Hwang, Juen-Haur; Tseng, Fen-Yu; Chen, Yuh-Shyang
2004-01-01
The purpose of this study was to investigate the effects of concomitant exposure to noise and alcohol on the auditory thresholds. Twenty-four guinea pigs were equally divided into three groups: the acute intoxication group, the chronic intoxication group and the control group. Animals in the acute group received single intraperitoneal injections of ethanol (2 g/kg). In the chronic group, alcohol was administered via drinking water (10%, v/v) over a 60-day period. All animals were exposed to a white noise at the intensity of 105 dB A for 30 min. Auditory brainstem response (ABR) thresholds and distortion product otoacoustic emission (DPOAE) levels were measured before, immediately after noise exposure and also 1, 2, and 7 days following exposure. The results showed: first, acute alcohol injection caused a significant, temporary elevation of ABR threshold (4.8 dB in average), while chronic alcohol treatment did not change auditory threshold significantly. Second, noise exposure induced a mean threshold shift of 15.4- 19.7 dB. ABR threshold returned to normal 2 days after exposure. Both acute and chronic alcohol treatment did not alter the magnitude and time course of recovery of the temporary threshold shift (TTS). Third, the mean DPOAE amplitudes decreased at most frequencies following acute injection of alcohol. However, the differences did not reach statistical significance. Fourth, the mean DPOAE levels dropped 3.4-9.6 dB in all groups after noise exposure and returned to normal 1 day to 2 days after noise. There were no significant differences in the amount of DPOAE suppression after noise between the three groups. In summary, we have found that acute and chronic treatment of alcohol in combination with noise did not significantly exacerbate TTS or decrease DPOAE amplitudes relative to noise exposure alone. Copyright 2004 S. Karger AG, Basel
A new algorithm to reduce noise in microscopy images implemented with a simple program in python.
Papini, Alessio
2012-03-01
All microscopical images contain noise, increasing when (e.g., transmission electron microscope or light microscope) approaching the resolution limit. Many methods are available to reduce noise. One of the most commonly used is image averaging. We propose here to use the mode of pixel values. Simple Python programs process a given number of images, recorded consecutively from the same subject. The programs calculate the mode of the pixel values in a given position (a, b). The result is a new image containing in (a, b) the mode of the values. Therefore, the final pixel value corresponds to that read in at least two of the pixels in position (a, b). The application of the program on a set of images obtained by applying salt and pepper noise and GIMP hurl noise with 10-90% standard deviation showed that the mode performs better than averaging with three-eight images. The data suggest that the mode would be more efficient (in the sense of a lower number of recorded images to process to reduce noise below a given limit) for lower number of total noisy pixels and high standard deviation (as impulse noise and salt and pepper noise), while averaging would be more efficient when the number of varying pixels is high, and the standard deviation is low, as in many cases of Gaussian noise affected images. The two methods may be used serially. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Anderson, Paul August
Loud noise in aquaria represents a cacophonous environment for captive fishes. I tested the effects of loud noise on acoustic communication, feeding behavior, courtship behavior, and the stress response of the lined seahorse, Hippocampus erectus. Total Root Mean Square (RMS) power of ambient noise to which seahorses are exposed in captivity varies widely but averages 126.1 +/- 0.8 deciBels with reference to one micropascal (dB re: 1 muPa) at the middle of the water column and 133.7 +/- 1.1 dB at the tank bottom, whereas ambient noise in the wild averages 119.6 +/- 3.5 dB. Hearing sensitivity of H. erectus, measured from auditory evoked potentials, demonstrated maximum spectrum-level sensitivities of 105.0 +/- 1.5 dB and 3.5 x 10-3 + 7.6 x 10-4 m/s2 at 200 Hz; which is characteristic of hearing generalists. H. erectus produces acoustic clicks with mean peak spectrum-level amplitudes of 94.3 +/- 0.9 dB at 232 +/- 16 Hz and 1.5 x 10 -3 +/- 1.9 x 10-4 m/s2 at 265 +/- 22 Hz. Frequency matching of clicks to best hearing sensitivity, and estimates of audition of broadband signals suggest that seahorses may hear conspecific clicks, especially in terms of particle motion. Behavioral investigations revealed that clicking did not improve prey capture proficiency. However, animals clicked more often as time progressed in a courtship sequence, and mates performed more courtship behaviors with control animals than with muted animals, lending additional evidence to the role of clicking as an acoustic signal during courtship. Despite loud noise and the role of clicking in communication, masking of the acoustic signal was not demonstrated. Seahorses exposed to loud noise in aquaria for one month demonstrated physiological, chronic stress responses: reduced weight and body condition, and increased heterophil to lymphocyte ratio. Behavioral alterations were characterized by greater mean and variance of activity among animals housed in loud tanks in the first week, followed by habituation. By week four, animals in loud tanks demonstrated variable performance of clicking and piping, putative distress behaviors. Despite the physiological stress response, animals in loud tanks did not reduce feeding response or courtship behavior, suggesting allostasis.
Global Culture: A Noise Induced Transition in Finite Systems
NASA Astrophysics Data System (ADS)
Klemm, Konstantin; Eguíluz, Victor M.; Toral, Raúl; San Miguel, Maxi
2003-04-01
We analyze Axelrod's model for the unbiased transmission of culture in the presence of noise. In a one-dimensional lattice, the dynamics is described in terms of a Lyapunov potential, where the disordered configurations are metastable states of the dynamics. In a two-dimensional lattice the dynamics is governed by the average relaxation time T for perturbations to the homogeneous configuration. If the noise rate is smaller than 1/T, the perturbations drive the system to a completely ordered configuration, whereas the system remains disordered for larger noise rates. Based on a mean-field approximation we obtain the average relaxation time T(N) = Nln(N) for system size N. Thus in the limit of infinite system size the system is disordered for any finite noise rate.
Cornfeld, Daniel; Israel, Gary; Detroy, Ezra; Bokhari, Jamal; Mojibian, Hamid
2011-03-01
The purpose of the study was to quantify the radiation dose reduction achieved when imaging the aorta using Adaptive Statistical Iterative Reconstruction (ASIR) and to determine if this has an effect on image quality. We retrospectively reviewed 31 CT angiography examinations of the thoracic and abdominal aorta performed with ASIR and 32 consecutive similar examinations performed without ASIR. Volume CT dose index (CTDI(vol)), dose-length product (DLP), aortic enhancement at multiple levels, aorta-to-muscle contrast-to-noise ratio at multiple levels, and subjective image quality were compared between the two groups. The mean CTDI(vol) and DLP were significantly lower for the studies performed with ASIR versus studies without ASIR (15.6 vs 21.5 mGy, with an average difference of 5.8 mGy [95% CI 2.3-9.4 mGy] and 818 vs 1075 mGy × cm with an average difference of -257 mGy × cm [54-460 mGy × cm], respectively). Aortic enhancement, aortic signal-to-noise ratio, and aortic to muscle contrast-to-noise ratio were not different between the two groups. Subjectively, one reviewer preferred the non-ASIR images and one found the images equivalent. Both reviewers believed the images were of diagnostic quality. A 29% decrease in CTDI(vol) and a 20% decrease in DLP were obtained in scans with ASIR compared with scans without ASIR, without a quantitative loss of image quality.
Bertsche, Patricia K; Mensah, Edward; Stevens, Thomas
2006-08-01
The purpose of this study was to determine whether the benefits of early identification of work-related noise-induced hearing loss outweigh the costs of complying with a Global Noise Medical Surveillance Procedure of a large corporation. Hearing is fundamental to language, communication, and socialization. Its loss is a common cause of disability, affecting an estimated 20 to 40 million individuals in the United States (Daniell et al., 1998). NIOSH reported that approximately 30 million U.S. workers are exposed to noise on the job and that noise-induced hearing loss is one of the most common occupational diseases. It is irreversible (NIOSH, 2004). The average cost of a noise-induced hearing loss is reported to range from dollars 4,726 to dollars 25,500. Corporate history indicates a range of dollars 44 to dollars 20,157 per case. During this 4-year study in one plant, the average annual cost of complying with the Global Noise Medical Surveillance Procedure was dollars 19,509 to screen an average of 390 employees, or dollars 50 per worker. The study identified 11 non-work-related standard threshold shifts. All cases were referred for appropriate early intervention. Given the results, this hearing health program is considered beneficial to the corporation for both work- and non-work-related reasons.
Reducing Noise by Repetition: Introduction to Signal Averaging
ERIC Educational Resources Information Center
Hassan, Umer; Anwar, Muhammad Sabieh
2010-01-01
This paper describes theory and experiments, taken from biophysics and physiological measurements, to illustrate the technique of signal averaging. In the process, students are introduced to the basic concepts of signal processing, such as digital filtering, Fourier transformation, baseline correction, pink and Gaussian noise, and the cross- and…
Design, fabrication, and delivery of a charge injection device as a stellar tracking device
NASA Technical Reports Server (NTRS)
Burke, H. K.; Michon, G. J.; Tomlinson, H. W.; Vogelsong, T. L.; Grafinger, A.; Wilson, R.
1979-01-01
Six 128 x 128 CID imagers fabricated on bulk silicon and with thin polysilicon upper-level electrodes were tested in a star tracking mode. Noise and spectral response were measured as a function of temperature over the range of +25 C to -40 C. Noise at 0 C and below was less than 40 rms carriers/pixel for all devices at an effective noise bandwidth of 150 Hz. Quantum yield for all devices averaged 40% from 0.4 to 1.0 microns with no measurable temperature dependence. Extrapolating from these performance parameters to those of a large (400 x 400) array and accounting for design and processing improvements, indicates that the larger array would show a further improvement in noise performance -- on the order of 25 carriers. A preliminary evaluation of the projected performance of the 400 x 400 array and a representative set of star sensor requirements indicates that the CID has excellent potential as a stellar tracking device.
Validation of an interior noise prediction model for a composite cylinder
NASA Technical Reports Server (NTRS)
Beyer, Todd B.; Grosveld, Ferdinand W.
1987-01-01
An acoustic modal analysis has been performed in the cavity of a composite cylinder model of an aircraft fuselage. The filament wound, composite shell is 12 feet long and 5.5 feet in diameter. A one-half-in. thick plywood floor is attached to the shell 69 deg from the vertical centerline through the bottom of the shell. The acoustic modal frequencies were obtained from a sound pressure level and phase survey conducted throughout the interior volume bounded by the floor, endcaps and stiffened shell, while being excited by white noise from a loudspeaker source. The measured acoustic resonance frequencies and mode shapes compare well with analytical predictions from the Propeller Aircraft Interior Noise (PAIN) model. Details of the theory and derivation of the acoustic characteristics have been included. Reverberation time measurements, using the integrated impulse technique, have been performed to determine acoustic loss factors. These measured loss factors have been input to the PAIN program in order to more accurately predict the space-averaged interior noise of the composite cylinder.
Lovelady, Douglas C.; Friedman, Jennifer; Patel, Sonali; Rabson, David A.; Lo, Chun-Min
2009-01-01
We performed micromotion experiments using electric cell-substrate impedance sensing (ECIS) on a confluent layer of 3T3 fibroblasts exposed to different low levels of the toxin cytochalasin B. This toxin is know to affect actin polymerization and to disrupt cytoskeletal structure and function in cells, changing the morphology of confluent cell cultures and altering the nature of the cellular micromotion, which is measured by ECIS as changes in impedance. By looking at several measures to characterize the long- and short-term correlations in the noise of the impedance time series, we are able to detect the effects of the toxin at concentrations down to 1 μM; there are intriguing hints that the effects may be discernible at levels as low as 0.1 μM. These measures include the power spectrum, the Hurst and detrended-fluctuation-analysis exponents, and the first zero and first 1/e crossings of the autocorrelation function. While most published work with ECIS uses only average impedance values, we demonstrate that noise analysis provides a more sensitive probe. PMID:19026529
Acoustic pollution in hospital environments
NASA Astrophysics Data System (ADS)
Olivera, J. M.; Rocha, L. A.; Rotger, V. I.; Herrera, M. C.
2011-12-01
There are many different services within a hospital. This means different types of noise which can be considered as acoustic pollution. Knowing that preterm infants exposed to high amounts of noise in the NICU are at a much higher risk because of their neurologic immaturity and physiologic instability, that excessive levels of noise also affect the persons and it can also impede some studies on patients, it was proposed to evaluate the Sound Pressure Level in some services of the Instituto de Maternidad, Tucumán, Argentina. There were evaluated the Level III NICU, the laundry service, a physical space destined for a service of evoked potential and a neonatal incubator under working conditions. The measurements were performed with a type II sonometer (CENTER 322) and it was also used an incubator analyzer (FLUKE INCU) for the incubator. The average values obtained were of 63.6 dBA for the NICU, 82.5dBA for the laundry room, 52.7 dBA for the evoked potential room and 62.8 dBA in the inside of the incubator under 64 dBA in the outside. The reports were documented in compliance with the appropriate standards.
NASA Astrophysics Data System (ADS)
Noda, Takahiro; Nakakita, Kazuyki; Wakahara, Masaki; Kameda, Masaharu
2018-06-01
Image measurement using pressure-sensitive paint (PSP) is an effective tool for analyzing the unsteady pressure field on the surface of a body in a low-speed air flow, which is associated with wind noise. In this study, the surface pressure fluctuation due to the tonal trailing edge (TE) noise for a two-dimensional NACA 0012 airfoil was quantitatively detected using a porous anodized aluminum PSP (AA-PSP). The emission from the PSP upon illumination by a blue laser diode was captured using a 12-bit high-speed complementary metal-oxide-semiconductor (CMOS) camera. The intensities of the captured images were converted to pressures using a standard intensity-based method. Three image-processing methods based on the fast Fourier transform (FFT) were tested to determine their efficiency in improving the signal-to-noise ratio (SNR) of the unsteady PSP data. In addition to two fundamental FFT techniques (the full data and ensemble averaging FFTs), a technique using the coherent output power (COP), which involves the cross correlation between the PSP data and the signal measured using a pointwise sound-level meter, was tested. Preliminary tests indicated that random photon shot noise dominates the intensity fluctuations in the captured PSP emissions above 200 Hz. Pressure fluctuations associated with the TE noise, whose dominant frequency is approximately 940 Hz, were successfully measured by analyzing 40,960 sequential PSP images recorded at 10 kfps. Quantitative validation using the power spectrum indicates that the COP technique is the most effective method of identification of the pressure fluctuation directly related to TE noise. It is possible to distinguish power differences with a resolution of 10 Pa^2 (4 Pa in amplitude) when the COP was employed without use of another wind-off data. This resolution cannot be achieved by the ensemble averaging FFT because of an insufficient elimination of the background noise.
Vachha, Behroze; Brodoefel, Harald; Wilcox, Carol; Hackney, David B; Moonis, Gul
2013-12-01
To compare objective and subjective image quality in neck CT images acquired at different tube current-time products (275 mAs and 340 mAs) and reconstructed with filtered-back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR). HIPAA-compliant study with IRB approval and waiver of informed consent. 66 consecutive patients were randomly assigned to undergo contrast-enhanced neck CT at a standard tube-current-time-product (340 mAs; n = 33) or reduced tube-current-time-product (275 mAs, n = 33). Data sets were reconstructed with FBP and 2 levels (30%, 40%) of ASIR-FBP blending at 340 mAs and 275 mAs. Two neuroradiologists assessed subjective image quality in a blinded and randomized manner. Volume CT dose index (CTDIvol), dose-length-product (DLP), effective dose, and objective image noise were recorded. Signal-to-noise ratio (SNR) was computed as mean attenuation in a region of interest in the sternocleidomastoid muscle divided by image noise. Compared with FBP, ASIR resulted in a reduction of image noise at both 340 mAs and 275 mAs. Reduction of tube current from 340 mAs to 275 mAs resulted in an increase in mean objective image noise (p=0.02) and a decrease in SNR (p = 0.03) when images were reconstructed with FBP. However, when the 275 mAs images were reconstructed using ASIR, the mean objective image noise and SNR were similar to those of the standard 340 mAs CT images reconstructed with FBP (p>0.05). Subjective image noise was ranked by both raters as either average or less-than-average irrespective of the tube current and iterative reconstruction technique. Adapting ASIR into neck CT protocols reduced effective dose by 17% without compromising image quality. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Nisenson, P.; Papaliolios, C.
1983-01-01
An analysis of the effects of photon noise on astronomical speckle image reconstruction using the Knox-Thompson algorithm is presented. It is shown that the quantities resulting from the speckle average arre biased, but that the biases are easily estimated and compensated. Calculations are also made of the convergence rate for the speckle average as a function of the source brightness. An illustration of the effects of photon noise on the image recovery process is included.
Allan Deviation Plot as a Tool for Quartz-Enhanced Photoacoustic Sensors Noise Analysis.
Giglio, Marilena; Patimisco, Pietro; Sampaolo, Angelo; Scamarcio, Gaetano; Tittel, Frank K; Spagnolo, Vincenzo
2016-04-01
We report here on the use of the Allan deviation plot to analyze the long-term stability of a quartz-enhanced photoacoustic (QEPAS) gas sensor. The Allan plot provides information about the optimum averaging time for the QEPAS signal and allows the prediction of its ultimate detection limit. The Allan deviation can also be used to determine the main sources of noise coming from the individual components of the sensor. Quartz tuning fork thermal noise dominates for integration times up to 275 s, whereas at longer averaging times, the main contribution to the sensor noise originates from laser power instabilities.
Noise Benefits of Rotor Trailing Edge Blowing for a Model Turbofan
NASA Technical Reports Server (NTRS)
Woodward, Richard P.; Fite, E. Brian; Podboy, Gary G.
2007-01-01
An advanced model turbofan was tested in the NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) to explore far field acoustic effects associated with rotor Trailing-Edge-Blowing (TEB) for a modern, 1.294 stage pressure ratio turbofan model. The TEB rotor (Fan9) was designed to be aerodynamically similar to the previously tested Fan1, and used the same stator and nacelle hardware. Fan9 was designed with trailing edge blowing slots using an external air supply directed through the rotor hub. The TEB flow was heated to approximate the average fan exit temperature at each fan test speed. Rotor root blockage inserts were used to block TEB to all but the outer 40 and 20% span in addition to full-span blowing. A configuration with full-span TEB on alternate rotor blades was also tested. Far field acoustic data were taken at takeoff/approach conditions at 0.10 tunnel Mach. Far-field acoustic results showed that full-span blowing near 2.0% of the total flow could reduce the overall sound power level by about 2 dB. This noise reduction was observed in both the rotor-stator interaction tones and for the spectral broadband noise levels. Blowing only the outer span region was not very effective for lowering noise, and actually increased the far field noise level in some instances. Full-span blowing of alternate blades at 1.0% of the overall flow rate (equivalent to full-span blowing of all blades at 2.0% flow) showed a more modest noise decrease relative to full-span blowing of all blades. Detailed hot film measurements of the TEB rotor wake at 2.0% flow showed that TEB was not every effective for filling in the wake defect at approach fan speed toward the tip region, but did result in overfilling the wake toward the hub. Downstream turbulence measurements supported this finding, and support the observed reduction in spectral broadband noise.
Influence of leisure-time noise on outer hair cell activity in medical students.
Rosanowski, Frank; Eysholdt, Ulrich; Hoppe, Ulrich
2006-10-01
Noise exceeding a certain level can damage outer hair cells and thus cause hearing loss. In the past, noise-induced hearing loss was mainly caused by occupational noise. Leisure-time noise may be a promoting factor, particularly in young adults. The purpose of this study was to investigate whether transient evoked otoacoustic emissions (TEOAE) can be used to evaluate outer hair cell damage in young adults with no history of hearing complaints. The data obtained from the measurement of TEOAE were correlated with the participants' listening habits and exposure to leisure-time noise. Eighty-eight young adults (47 women, 41 men; age 22.9+/-2.9 years) were examined. TEOAE were measured using standard ILO 88 equipment. All participants had normal hearing (hearing thresholds better than 20 dB HL; frequency range 0.125-10 kHz). None of the participants suffered from permanent tinnitus. All participants answered a questionnaire concerning their listening habits. On average, the participants frequented a discotheque 1.4 times a month; 25% had never visited a discotheque, 35% visited once a month and 32% twice or three times a month. Sixteen per cent reported transient tinnitus after every visit to a discotheque and 58% after nearly every visit. Eight per cent suffered from transient hearing loss after every visit to a disco and 37% after nearly every visit. Three per cent (4%) reported tinnitus (nearly) every morning after visiting a discotheque. The TEOAE level was above 6 dB in all participants [9.2+/-3.6 dB (mean +/- SD)] and reproducibility was above 60% (90+/-9%). All values matched pass criteria for normal TEOAE under clinical conditions. However, TEOAE levels and reproducibility decreased significantly with an increased number of visits to discotheques. Outer hair cell damage could be measured using TEOAE in individuals exposed to leisure-time noise, although these individuals exhibited no measurable puretone hearing loss.
Investigating the Group-Level Impact of Advanced Dual-Echo fMRI Combinations
Kettinger, Ádám; Hill, Christopher; Vidnyánszky, Zoltán; Windischberger, Christian; Nagy, Zoltán
2016-01-01
Multi-echo fMRI data acquisition has been widely investigated and suggested to optimize sensitivity for detecting the BOLD signal. Several methods have also been proposed for the combination of data with different echo times. The aim of the present study was to investigate whether these advanced echo combination methods provide advantages over the simple averaging of echoes when state-of-the-art group-level random-effect analyses are performed. Both resting-state and task-based dual-echo fMRI data were collected from 27 healthy adult individuals (14 male, mean age = 25.75 years) using standard echo-planar acquisition methods at 3T. Both resting-state and task-based data were subjected to a standard image pre-processing pipeline. Subsequently the two echoes were combined as a weighted average, using four different strategies for calculating the weights: (1) simple arithmetic averaging, (2) BOLD sensitivity weighting, (3) temporal-signal-to-noise ratio weighting and (4) temporal BOLD sensitivity weighting. Our results clearly show that the simple averaging of data with the different echoes is sufficient. Advanced echo combination methods may provide advantages on a single-subject level but when considering random-effects group level statistics they provide no benefit regarding sensitivity (i.e., group-level t-values) compared to the simple echo-averaging approach. One possible reason for the lack of clear advantages may be that apart from increasing the average BOLD sensitivity at the single-subject level, the advanced weighted averaging methods also inflate the inter-subject variance. As the echo combination methods provide very similar results, the recommendation is to choose between them depending on the availability of time for collecting additional resting-state data or whether subject-level or group-level analyses are planned. PMID:28018165
Mechanical-thermal noise in drive-mode of a silicon micro-gyroscope.
Yang, Bo; Wang, Shourong; Li, Hongsheng; Zhou, Bailing
2009-01-01
A new closed-loop drive scheme which decouples the phase and the gain of the closed-loop driving system was designed in a Silicon Micro-Gyroscope (SMG). We deduce the system model of closed-loop driving and use stochastic averaging to obtain an approximate "slow" system that clarifies the effect of thermal noise. The effects of mechanical-thermal noise on the driving performance of the SMG, including the noise spectral density of the driving amplitude and frequency, are derived. By calculating and comparing the noise amplitude due to thermal noise both in the opened-loop driving and in the closed-loop driving, we find that the closed-loop driving does not reduce the RMS noise amplitude. We observe that the RMS noise frequency can be reduced by increasing the quality factor and the drive amplitude in the closed-loop driving system. The experiment and simulation validate the feasibility of closed-loop driving and confirm the validity of the averaged equation and its stablility criterion. The experiment and simulation results indicate the electrical noise of closed-loop driving circuitry is bigger than the mechanical-thermal noise and as the driving mass decreases, the mechanical-thermal noise may get bigger than the electrical noise of the closed-loop driving circuitry.
UWB pulse detection and TOA estimation using GLRT
NASA Astrophysics Data System (ADS)
Xie, Yan; Janssen, Gerard J. M.; Shakeri, Siavash; Tiberius, Christiaan C. J. M.
2017-12-01
In this paper, a novel statistical approach is presented for time-of-arrival (TOA) estimation based on first path (FP) pulse detection using a sub-Nyquist sampling ultra-wide band (UWB) receiver. The TOA measurement accuracy, which cannot be improved by averaging of the received signal, can be enhanced by the statistical processing of a number of TOA measurements. The TOA statistics are modeled and analyzed for a UWB receiver using threshold crossing detection of a pulse signal with noise. The detection and estimation scheme based on the Generalized Likelihood Ratio Test (GLRT) detector, which captures the full statistical information of the measurement data, is shown to achieve accurate TOA estimation and allows for a trade-off between the threshold level, the noise level, the amplitude and the arrival time of the first path pulse, and the accuracy of the obtained final TOA.
NASA Astrophysics Data System (ADS)
Thapa, Damber; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan
2015-12-01
In this paper, we propose a speckle noise reduction method for spectral-domain optical coherence tomography (SD-OCT) images called multi-frame weighted nuclear norm minimization (MWNNM). This method is a direct extension of weighted nuclear norm minimization (WNNM) in the multi-frame framework since an adequately denoised image could not be achieved with single-frame denoising methods. The MWNNM method exploits multiple B-scans collected from a small area of a SD-OCT volumetric image, and then denoises and averages them together to obtain a high signal-to-noise ratio B-scan. The results show that the image quality metrics obtained by denoising and averaging only five nearby B-scans with MWNNM method is considerably better than those of the average image obtained by registering and averaging 40 azimuthally repeated B-scans.
NASA Astrophysics Data System (ADS)
Skorobogatiy, Maksim; Sadasivan, Jayesh; Guerboukha, Hichem
2018-05-01
In this paper, we first discuss the main types of noise in a typical pump-probe system, and then focus specifically on terahertz time domain spectroscopy (THz-TDS) setups. We then introduce four statistical models for the noisy pulses obtained in such systems, and detail rigorous mathematical algorithms to de-noise such traces, find the proper averages and characterise various types of experimental noise. Finally, we perform a comparative analysis of the performance, advantages and limitations of the algorithms by testing them on the experimental data collected using a particular THz-TDS system available in our laboratories. We conclude that using advanced statistical models for trace averaging results in the fitting errors that are significantly smaller than those obtained when only a simple statistical average is used.
Detection and characterization of pulses in broadband seismometers
Wilson, David; Ringler, Adam; Hutt, Charles R.
2017-01-01
Pulsing - caused either by mechanical or electrical glitches, or by microtilt local to a seismometer - can significantly compromise the long‐period noise performance of broadband seismometers. High‐fidelity long‐period recordings are needed for accurate calculation of quantities such as moment tensors, fault‐slip models, and normal‐mode measurements. Such pulses have long been recognized in accelerometers, and methods have been developed to correct these acceleration steps, but considerable work remains to be done in order to detect and correct similar pulses in broadband seismic data. We present a method for detecting and characterizing the pulses using data from a range of broadband sensor types installed in the Global Seismographic Network. The technique relies on accurate instrument response removal and employs a moving‐window approach looking for acceleration baseline shifts. We find that pulses are present at varying levels in all sensor types studied. Pulse‐detection results compared with average daily station noise values are consistent with predicted noise levels of acceleration steps. This indicates that we can calculate maximum pulse amplitude allowed per time window that would be acceptable without compromising long‐period data analysis.
Lie, Arve; Skogstad, Marit; Johnsen, Torstein Seip; Engdahl, Bo; Tambs, Kristian
2014-01-01
Objective Railway workers performing maintenance work of trains and tracks could be at risk of developing noise-induced hearing loss, since they are exposed to noise levels of 75–90 dB(A) with peak exposures of 130–140 dB(C). The objective was to make a risk assessment by comparing the hearing thresholds among train and track maintenance workers with a reference group not exposed to noise and reference values from the ISO 1999. Design Cross-sectional. Setting A major Norwegian railway company. Participants 1897 and 2730 male train and track maintenance workers, respectively, all exposed to noise, and 2872 male railway traffic controllers and office workers not exposed to noise. Outcome measures The primary outcome was the hearing threshold (pure tone audiometry, frequencies from 0.5 to 8 kHz), and the secondary outcome was the prevalence of audiometric notches (Coles notch) of the most recent audiogram. Results Train and track maintenance workers aged 45 years or older had a small mean hearing loss in the 3–6 kHz area of 3–5 dB. The hearing loss was less among workers younger than 45 years. Audiometric notches were slightly more prevalent among the noise exposed (59–64%) group compared with controls (49%) for all age groups. They may therefore be a sensitive measure in disclosing an early hearing loss at a group level. Conclusions Train and track maintenance workers aged 45 years or older, on average, have a slightly greater hearing loss and more audiometric notches compared with reference groups not exposed to noise. Younger (<45 years) workers have hearing thresholds comparable to the controls. PMID:25324318
Estimating small-scale roughness of a rock joint using TLS data
NASA Astrophysics Data System (ADS)
Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh
2016-04-01
Roughness of a rock joint is an important parameter influencing rock mass stability. Besides the surface amplitude, also the roughness direction- and scale-dependency should be observed (i.e. 3D roughness). Up to now most of roughness measurements and parameters rely on point or profile data obtained on small samples, mostly in a laboratory. State-of-the-art remote sensing technologies supply 3D measurements of an in-situ rock surface and therefore enable a 3D roughness parameterization. Detailed morphology of a remote large-scale vertical structure can be best observed by Terrestrial Laser Scanning (TLS). In a short time and from distances of a few hundred meters, TLS provides relatively dense and precise point cloud. Sturzenegger and Stead [2009] showed that the TLS technology and careful fieldwork allow the extraction of first-order roughness profiles, i.e. the surface irregularities with a wavelength greater than about 10 cm. Our goal is to find the lower limit; this is, to define the smallest discernible detail, and appropriate measuring and processing steps to extract this detail from the TLS data. The smallest observable roughness amplitude depends on the TLS data precision, which is limited mostly by an inherent range error (noise). An influence of the TLS noise on the rock joint roughness was analyzed using highly precise reference data acquired by Advanced TOpometric Sensor (ATOS) on a 20x30 cm rock joint sample. ATOS data were interpolated into 1 mm grid, to which five levels (0.5, 1, 1.5, 2, 2.5 mm) of normally distributed noise were added. The 3D surfaces entered direction-dependent roughness parameter computation after Grasselli [2001]. Average roughness of noisy surfaces logarithmically increase with the noise level and is already doubled for 1 mm noise. Performing Monte Carlo simulation roughness parameter noise sensitivity was investigated. Distribution of roughness differences (roughness of noisy surfaces minus roughness of reference ATOS surface) is approximately normal. Standard deviation of differences on average slightly increases with the noise level, but is strongly dependent on the analysis direction. As proved by different researches within the field of signal, image and also TLS data processing, noise can be, to a certain extent, removed by a post-processing step called denoising. In this research, four denoising methods, namely discrete WT (DWT) and stationary WT (SWT), and classic NLM (NLM) and probabilistic NLM (PNLM), were used on noisy ATOS data. Results were compared based on the (i) height and (ii) roughness differences between denoised surfaces and reference ATOS surface, (iii) the peak signal-to-noise ratio (PSNR) and (iv) the visual check of denoised surface. Increased PSNRs and reduced roughness differences prove the importance of the TLS data denoising procedure. In case of SWT, NLM and PNLM the surface is mostly over smoothed, whereas in case of DWT some noise remains. References: - Grasselli, G. (2001). Shear strength of rock joints based on quantified surface description. École Polytechnique Fédérale de Lausanne. Lausanne, EPFL. - Sturzenegger, M. and D. Stead (2009). "Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts." Engineering Geology 106(3-4): 163-182.
Robust Speech Enhancement Using Two-Stage Filtered Minima Controlled Recursive Averaging
NASA Astrophysics Data System (ADS)
Ghourchian, Negar; Selouani, Sid-Ahmed; O'Shaughnessy, Douglas
In this paper we propose an algorithm for estimating noise in highly non-stationary noisy environments, which is a challenging problem in speech enhancement. This method is based on minima-controlled recursive averaging (MCRA) whereby an accurate, robust and efficient noise power spectrum estimation is demonstrated. We propose a two-stage technique to prevent the appearance of musical noise after enhancement. This algorithm filters the noisy speech to achieve a robust signal with minimum distortion in the first stage. Subsequently, it estimates the residual noise using MCRA and removes it with spectral subtraction. The proposed Filtered MCRA (FMCRA) performance is evaluated using objective tests on the Aurora database under various noisy environments. These measures indicate the higher output SNR and lower output residual noise and distortion.
NASA Technical Reports Server (NTRS)
Miles, Jeffrey Hilton
2010-01-01
Combustion noise from turbofan engines has become important, as the noise from sources like the fan and jet are reduced. An aligned and un-aligned coherence technique has been developed to determine a threshold level for the coherence and thereby help to separate the coherent combustion noise source from other noise sources measured with far-field microphones. This method is compared with a statistics based coherence threshold estimation method. In addition, the un-aligned coherence procedure at the same time also reveals periodicities, spectral lines, and undamped sinusoids hidden by broadband turbofan engine noise. In calculating the coherence threshold using a statistical method, one may use either the number of independent records or a larger number corresponding to the number of overlapped records used to create the average. Using data from a turbofan engine and a simulation this paper shows that applying the Fisher z-transform to the un-aligned coherence can aid in making the proper selection of samples and produce a reasonable statistics based coherence threshold. Examples are presented showing that the underlying tonal and coherent broad band structure which is buried under random broadband noise and jet noise can be determined. The method also shows the possible presence of indirect combustion noise. Copyright 2011 Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America.
Some health effects of aircraft noise with special reference to shift work.
Rizk, Sanaa A M; Sharaf, Nevin E; Mahdy-Abdallah, Heba; ElGelil, Khalid S Abd
2016-06-01
Aircraft noise is an environmental stressor. A positive relationship exists between noise and high blood pressure. Shift work is an additional hazardous working condition with negative effect on the behavior attitude of workers. This study aimed at investigating some health hazards for shift work on workers at Cairo International Airport (CIA), Egypt, as a strategic work place, with more than one stressor. Assessment of noise effects were carried out in four working sites at the airport besides control sites. The average noise level in the exposure sites was 106.5 dB compared with 54 dB at the control sites. The study comprised a group of 200 male workers exposed to aircraft noise and 110 male workers not exposed to noise as control group. All workers had full general medical examination after filling specially formulated questionnaire. Hearing impairment, raised blood pressure, headaches, disturbed sleep, and symptoms of anxiety were more prominent among the exposed workers than the control. Symptoms of upper respiratory tract were reported among night shifters of both groups with high tendency for smoking. Thus, night-shift workers at CIA work under more than one stressor. Hypertension and smoking might act as intermediate factors on the causal pathway of complaints, making aircraft noise and night shift acting as two synergistic stressors. Airport workers are in need for aggressive hearing conservation programs. Organization of the working hours schedule is mandatory to avoid excessive noise exposure. © The Author(s) 2014.
Euler, André; Solomon, Justin; Marin, Daniele; Nelson, Rendon C; Samei, Ehsan
2018-06-01
The purpose of this study was to assess image noise, spatial resolution, lesion detectability, and the dose reduction potential of a proprietary third-generation adaptive statistical iterative reconstruction (ASIR-V) technique. A phantom representing five different body sizes (12-37 cm) and a contrast-detail phantom containing lesions of five low-contrast levels (5-20 HU) and three sizes (2-6 mm) were deployed. Both phantoms were scanned on a 256-MDCT scanner at six different radiation doses (1.25-10 mGy). Images were reconstructed with filtered back projection (FBP), ASIR-V with 50% blending with FBP (ASIR-V 50%), and ASIR-V without blending (ASIR-V 100%). In the first phantom, noise properties were assessed by noise power spectrum analysis. Spatial resolution properties were measured by use of task transfer functions for objects of different contrasts. Noise magnitude, noise texture, and resolution were compared between the three groups. In the second phantom, low-contrast detectability was assessed by nine human readers independently for each condition. The dose reduction potential of ASIR-V was estimated on the basis of a generalized linear statistical regression model. On average, image noise was reduced 37.3% with ASIR-V 50% and 71.5% with ASIR-V 100% compared with FBP. ASIR-V shifted the noise power spectrum toward lower frequencies compared with FBP. The spatial resolution of ASIR-V was equivalent or slightly superior to that of FBP, except for the low-contrast object, which had lower resolution. Lesion detection significantly increased with both ASIR-V levels (p = 0.001), with an estimated radiation dose reduction potential of 15% ± 5% (SD) for ASIR-V 50% and 31% ± 9% for ASIR-V 100%. ASIR-V reduced image noise and improved lesion detection compared with FBP and had potential for radiation dose reduction while preserving low-contrast detectability.
Quality issues in blue noise halftoning
NASA Astrophysics Data System (ADS)
Yu, Qing; Parker, Kevin J.
1998-01-01
The blue noise mask (BNM) is a halftone screen that produces unstructured visually pleasing dot patterns. The BNM combines the blue-noise characteristics of error diffusion and the simplicity of ordered dither. A BNM is constructed by designing a set of interdependent binary patterns for individual gray levels. In this paper, we investigate the quality issues in blue-noise binary pattern design and mask generation as well as in application to color reproduction. Using a global filtering technique and a local 'force' process for rearranging black and white pixels, we are able to generate a series of binary patterns, all representing a certain gray level, ranging from white-noise pattern to highly structured pattern. The quality of these individual patterns are studied in terms of low-frequency structure and graininess. Typically, the low-frequency structure (LF) is identified with a measurement of the energy around dc in the spatial frequency domain, while the graininess is quantified by a measurement of the average minimum distance (AMD) between minority dots as well as the kurtosis of the local kurtosis distribution (KLK) for minority pixels of the binary pattern. A set of partial BNMs are generated by using the different patterns as unique starting 'seeds.' In this way, we are able to study the quality of binary patterns over a range of gray levels. We observe that the optimality of a binary pattern for mask generation is related to its own quality mertirc values as well as the transition smoothness of those quality metric values over neighboring levels. Several schemes have been developed to apply blue-noise halftoning to color reproduction. Different schemes generate halftone patterns with different textures. In a previous paper, a human visual system (HVS) model was used to study the color halftone quality in terms of luminance and chrominance error in CIELAB color space. In this paper, a new series of psycho-visual experiments address the 'preferred' color rendering among four different blue noise halftoning schemes. The experimental results will be interpreted with respect to the proposed halftone quality metrics.
Drung, D; Krause, C; Becker, U; Scherer, H; Ahlers, F J
2015-02-01
An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drung, D.; Krause, C.; Becker, U.
2015-02-15
An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA’s transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibratemore » both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.« less
NASA Astrophysics Data System (ADS)
Drung, D.; Krause, C.; Becker, U.; Scherer, H.; Ahlers, F. J.
2015-02-01
An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.
The magnitude and colour of noise in genetic negative feedback systems
Voliotis, Margaritis; Bowsher, Clive G.
2012-01-01
The comparative ability of transcriptional and small RNA-mediated negative feedback to control fluctuations or ‘noise’ in gene expression remains unexplored. Both autoregulatory mechanisms usually suppress the average (mean) of the protein level and its variability across cells. The variance of the number of proteins per molecule of mean expression is also typically reduced compared with the unregulated system, but is almost never below the value of one. This relative variance often substantially exceeds a recently obtained, theoretical lower limit for biochemical feedback systems. Adding the transcriptional or small RNA-mediated control has different effects. Transcriptional autorepression robustly reduces both the relative variance and persistence (lifetime) of fluctuations. Both benefits combine to reduce noise in downstream gene expression. Autorepression via small RNA can achieve more extreme noise reduction and typically has less effect on the mean expression level. However, it is often more costly to implement and is more sensitive to rate parameters. Theoretical lower limits on the relative variance are known to decrease slowly as a measure of the cost per molecule of mean expression increases. However, the proportional increase in cost to achieve substantial noise suppression can be different away from the optimal frontier—for transcriptional autorepression, it is frequently negligible. PMID:22581772
NASA Astrophysics Data System (ADS)
Lardner, Timothy; Li, Minghui; Gachagan, Anthony
2014-02-01
Materials with a coarse grain structure are becoming increasingly prevalent in industry due to their resilience to stress and corrosion. These materials are difficult to inspect with ultrasound because reflections from the grains lead to high noise levels which hinder the echoes of interest. Spatially Averaged Sub-Aperture Correlation Imaging (SASACI) is an advanced array beamforming technique that uses the cross-correlation between images from array sub-apertures to generate an image weighting matrix, in order to reduce noise levels. This paper presents a method inspired by SASACI to further improve imaging using phase information to refine focusing and reduce noise. A-scans from adjacent array elements are cross-correlated using both signal amplitude and phase to refine delay laws and minimize phase aberration. The phase-based and amplitude-based corrected images are used as inputs to a two-dimensional cross-correlation algorithm that will output a weighting matrix that can be applied to any conventional image. This approach was validated experimentally using a 5MHz array a coarse grained Inconel 625 step wedge, and compared to the Total Focusing Method (TFM). Initial results have seen SNR improvements of over 20dB compared to TFM, and a resolution that is much higher.
The Prediction of Scattered Broadband Shock-Associated Noise
NASA Technical Reports Server (NTRS)
Miller, Steven A. E.
2015-01-01
A mathematical model is developed for the prediction of scattered broadband shock-associated noise. Model arguments are dependent on the vector Green's function of the linearized Euler equations, steady Reynolds-averaged Navier-Stokes solutions, and the two-point cross-correlation of the equivalent source. The equivalent source is dependent on steady Reynolds-averaged Navier-Stokes solutions of the jet flow, that capture the nozzle geometry and airframe surface. Contours of the time-averaged streamwise velocity component and turbulent kinetic energy are examined with varying airframe position relative to the nozzle exit. Propagation effects are incorporated by approximating the vector Green's function of the linearized Euler equations. This approximation involves the use of ray theory and an assumption that broadband shock-associated noise is relatively unaffected by the refraction of the jet shear layer. A non-dimensional parameter is proposed that quantifies the changes of the broadband shock-associated noise source with varying jet operating condition and airframe position. Scattered broadband shock-associated noise possesses a second set of broadband lobes that are due to the effect of scattering. Presented predictions demonstrate relatively good agreement compared to a wide variety of measurements.
Optical implementation of spin squeezing
NASA Astrophysics Data System (ADS)
Ono, Takafumi; Sabines-Chesterking, Javier; Cable, Hugo; O'Brien, Jeremy L.; Matthews, Jonathan C. F.
2017-05-01
Quantum metrology enables estimation of optical phase shifts with precision beyond the shot-noise limit. One way to exceed this limit is to use squeezed states, where the quantum noise of one observable is reduced at the expense of increased quantum noise for its complementary partner. Because shot-noise limits the phase sensitivity of all classical states, reduced noise in the average value for the observable being measured allows for improved phase sensitivity. However, additional phase sensitivity can be achieved using phase estimation strategies that account for the full distribution of measurement outcomes. Here we experimentally investigate a model of optical spin-squeezing, which uses post-selection and photon subtraction from the state generated using a parametric downconversion photon source, and we investigate the phase sensitivity of this model. The Fisher information for all photon-number outcomes shows it is possible to obtain a quantum advantage of 1.58 compared to the shot-noise value for five-photon events, even though due to experimental imperfection, the average noise for the relevant spin-observable does not achieve sub-shot-noise precision. Our demonstration implies improved performance of spin squeezing for applications to quantum metrology.
Actively generated noise liquid flowmeter.
Tanisawa, S; Hirose, H; Yoshihisa, N
1994-01-01
A new noise flowmeter with two transducers has been tested experimentally in water. It detects the noises generated by the interaction between artificially introduced air bubbles and a built-in obstacle with a downstream transducer, and differentiates them from the external noises detected by the upstream transducer in a pipe. The system includes processing instrumentation with functions such as averaging and difference-operating for reduction of external noise effects.
NASA Technical Reports Server (NTRS)
deArantesGomesEller, Rogerio; Urbina, Ligia Maria Soto; Porto, Protogenes Pires
2003-01-01
Aircraft noise perception is related to several variables that are tangible and objective, such as the number of operations, flight schedules. Other variables, instead, are more subjective, such as preferences. However, although their elusiveness, they contribute to determine the individuals' perception of this type of externality. Despite the fact that the complaints related to aeronautical noise have been registered since the decade of 50, it has been observed that the perception of noise seems to have grown, especially since the 80's. It has been argued that this change in noise perception has its roots on the accelerated expansion of air traffic. But, it is necessary to point out the important role played on modeling preferences, by the growing environmental conscience and the higher welfare and quality of life standards and expectations. In that context, the main objective of this paper is to study the aeronautical noise perception in the neighborhoods of the Aeroporto Internacional de Sao Paulo - AISP (the biggest airport of South America). Specifically, it analyzes the relationship between aircraft noise perception and social class, which is expected to be positive. Since noise perception is an intangible variable, this study chose as a proxy the value losses of residential properties, caused by aeronautical noise. The variable social class has been measured utilizing average per capita income of the population who live nearby the airport. The comparison of both, the lowest and the highest social class suggests that the relationship between social class and noise perception is positive in the AISP region. Moreover, it was observed that all social classes are very susceptible to aircraft noise annoyance. In fact, the magnitude of the noise perception proxy for both social classes -the residential value losses- was found to be comparable to levels encountered in developed countries.
Salomons, Erik M; Janssen, Sabine A
2011-06-01
In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a noise signal varies considerably with the shape of the frequency spectrum of the noise signal. In particular the bandwidth of the spectrum has a large effect on the loudness level, due to the effect of critical bands in the human hearing system. The low-frequency content of the spectrum also has an effect on the loudness level. In this note the relation between loudness level and A-weighted sound level is analyzed for various environmental noise spectra, including spectra of traffic noise, aircraft noise, and industrial noise. From loudness levels calculated for these environmental noise spectra, diagrams are constructed that show the relation between loudness level, A-weighted sound level, and shape of the spectrum. The diagrams show that the upper limits of the loudness level for broadband environmental noise spectra are about 20 to 40 phon higher than the lower limits for narrowband spectra, which correspond to the loudness levels of pure tones. The diagrams are useful for assessing limitations and potential improvements of environmental noise control methods and policy based on A-weighted sound levels.
Analysis of Subthreshold Current Reset Noise in Image Sensors.
Teranishi, Nobukazu
2016-05-10
To discuss the reset noise generated by slow subthreshold currents in image sensors, intuitive and simple analytical forms are derived, in spite of the subthreshold current nonlinearity. These solutions characterize the time evolution of the reset noise during the reset operation. With soft reset, the reset noise tends to m k T / 2 C P D when t → ∞ , in full agreement with previously published results. In this equation, C P D is the photodiode (PD) capacitance and m is a constant. The noise has an asymptotic time dependence of t - 1 , even though the asymptotic time dependence of the average (deterministic) PD voltage is as slow as log t . The flush reset method is effective because the hard reset part eliminates image lag, and the soft reset part reduces the noise to soft reset level. The feedback reset with reverse taper control method shows both a fast convergence and a good reset noise reduction. When the feedback amplifier gain, A, is larger, even small value of capacitance, C P , between the input and output of the feedback amplifier will drastically decrease the reset noise. If the feedback is sufficiently fast, the reset noise limit when t → ∞ , becomes m k T ( C P D + C P 1 ) 2 2 q 2 A ( C P D + ( 1 + A ) C P ) in terms of the number of electron in the PD. According to this simple model, if CPD = 10 fF, CP/CPD = 0.01, and A = 2700 are assumed, deep sub-electron rms reset noise is possible.
Noise in gene expression is coupled to growth rate.
Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran
2015-12-01
Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle-regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. © 2015 Keren et al.; Published by Cold Spring Harbor Laboratory Press.
Noise in gene expression is coupled to growth rate
Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran
2015-01-01
Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle–regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. PMID:26355006
NASA Astrophysics Data System (ADS)
Khelifa, S.
2014-12-01
Using wavelet transform and Allan variance, we have analysed the solutions of weekly position residuals of 09 high latitude DORIS stations in STCD (STation Coordinate Difference) format provided from the three Analysis Centres : IGN-JPL (solution ign11wd01), INASAN (solution ina10wd01) and CNES-CLS (solution lca11wd02), in order to compare the spectral characteristics of their residual noise. The temporal correlations between the three solutions, two by two and station by station, for each component (North, East and Vertical) reveal a high correlation in the horizontal components (North and East). For the North component, the correlation average is about 0.88, 0.81 and 0.79 between, respectively, IGN-INA, IGN-LCA and INA-LCA solutions, then for the East component it is about 0.84, 0.82 and 0.76, respectively. However, the correlations for the Vertical component are moderate with an average of 0.64, 0.57 and 0.58 in, respectively, IGN-INA, IGN-LCA and INA-LCA solutions. After removing the trends and seasonal components from the analysed time series, the Allan variance analysis shows that the three solutions are dominated by a white noise in the all three components (North, East and Vertical). The wavelet transform analysis, using the VisuShrink method with soft thresholding, reveals that the noise level in the LCA solution is less important compared to IGN and INA solutions. Indeed, the standard deviation of the noise for the three components is in the range of 5-11, 5-12 and 4-9mm in the IGN, INA, and LCA solutions, respectively.
Temporal variability and coloured noise of SLR translations with respect to the ITRF2014 origin
NASA Astrophysics Data System (ADS)
Riddell, Anna; King, Matt; Watson, Christopher; Rietbroek, Roelof; Sun, Yu; Riva, Riccardo
2017-04-01
Inferring large-scale environmental change, such as of sea-level change, glacial isostatic adjustment or ice sheet volume change (i.e. from altimetry), requires a geodetic reference frame stable to 0.1 mm/yr. Since 1988, each iterative improvement in the precision of the International Terrestrial Reference Frame (ITRF) has enabled significant advancement of scientific and technical research in the Earth sciences. We demonstrate the occurrence of coloured noise in the translation components between the SLR network and the long-term ITRF2014 origin from 1993.0 to 2015.0 with power law spectral indices close to -1, where white-noise-only linear trend uncertainties are underestimated by a factor of five in contrast to power-law linear trend uncertainties. The observed geocentre motion is expected to be influenced by the SLR observing network, known as the "network effect". Temporal translations in the SLR network may not necessarily average out over long time periods and therefore have the potential to shift the computed reference frame origin from the true long term centre of mass. Comparison with geophysical loading models demonstrates that the variability cannot be fully accounted for by surface mass transport such as changes in atmospheric, hydrologic or glacial loading. Our results demonstrate that the proportion of variance explained by geophysical surface loading is less than 50% in each translational component. Evidence of temporal variability in both the SLR amplitude and trend of the annual signal suggest that a different coloured noise model be considered in place of, or as an extension of, the traditional linear and white-noise-only model to represent the long-term average centre of mass.
Dynamics of a prey-predator system under Poisson white noise excitation
NASA Astrophysics Data System (ADS)
Pan, Shan-Shan; Zhu, Wei-Qiu
2014-10-01
The classical Lotka-Volterra (LV) model is a well-known mathematical model for prey-predator ecosystems. In the present paper, the pulse-type version of stochastic LV model, in which the effect of a random natural environment has been modeled as Poisson white noise, is investigated by using the stochastic averaging method. The averaged generalized Itô stochastic differential equation and Fokker-Planck-Kolmogorov (FPK) equation are derived for prey-predator ecosystem driven by Poisson white noise. Approximate stationary solution for the averaged generalized FPK equation is obtained by using the perturbation method. The effect of prey self-competition parameter ɛ2 s on ecosystem behavior is evaluated. The analytical result is confirmed by corresponding Monte Carlo (MC) simulation.
Adenosine Amine Congener as a Cochlear Rescue Agent
Vlajkovic, Srdjan M.; Chang, Hao; Paek, Song Yee; Chi, Howard H.-T.; Sreebhavan, Sreevalsan; Telang, Ravindra S.; Tingle, Malcolm; Housley, Gary D.; Thorne, Peter R.
2014-01-01
We have previously shown that adenosine amine congener (ADAC), a selective A1 adenosine receptor agonist, can ameliorate noise- and cisplatin-induced cochlear injury. Here we demonstrate the dose-dependent rescue effects of ADAC on noise-induced cochlear injury in a rat model and establish the time window for treatment. Methods. ADAC (25–300 μg/kg) was administered intraperitoneally to Wistar rats (8–10 weeks old) at intervals (6–72 hours) after exposure to traumatic noise (8–16 kHz, 110 dB sound pressure level, 2 hours). Hearing sensitivity was assessed using auditory brainstem responses (ABR) before and 12 days after noise exposure. Pharmacokinetic studies investigated ADAC concentrations in plasma after systemic (intravenous) administration. Results. ADAC was most effective in the first 24 hours after noise exposure at doses >50 μg/kg, providing up to 21 dB protection (averaged across 8–28 kHz). Pharmacokinetic studies demonstrated a short (5 min) half-life of ADAC in plasma after intravenous administration without detection of degradation products. Conclusion. Our data show that ADAC mitigates noise-induced hearing loss in a dose- and time-dependent manner, but further studies are required to establish its translation as a clinical otological treatment. PMID:25243188
NASA Astrophysics Data System (ADS)
Guarnaccia, Claudio; Quartieri, Joseph; Tepedino, Carmine
2017-06-01
One of the most hazardous physical polluting agents, considering their effects on human health, is acoustical noise. Airports are a strong source of acoustical noise, due to the airplanes turbines, to the aero-dynamical noise of transits, to the acceleration or the breaking during the take-off and landing phases of aircrafts, to the road traffic around the airport, etc.. The monitoring and the prediction of the acoustical level emitted by airports can be very useful to assess the impact on human health and activities. In the airports noise scenario, thanks to flights scheduling, the predominant sources may have a periodic behaviour. Thus, a Time Series Analysis approach can be adopted, considering that a general trend and a seasonal behaviour can be highlighted and used to build a predictive model. In this paper, two different approaches are adopted, thus two predictive models are constructed and tested. The first model is based on deterministic decomposition and is built composing the trend, that is the long term behaviour, the seasonality, that is the periodic component, and the random variations. The second model is based on seasonal autoregressive moving average, and it belongs to the stochastic class of models. The two different models are fitted on an acoustical level dataset collected close to the Nice (France) international airport. Results will be encouraging and will show good prediction performances of both the adopted strategies. A residual analysis is performed, in order to quantify the forecasting error features.
NASA Astrophysics Data System (ADS)
Gong, Yubing; Xie, Huijuan
2017-09-01
Using spike-timing-dependent plasticity (STDP), we study the effect of channel noise on temporal coherence and synchronization of adaptive scale-free Hodgkin-Huxley neuronal networks with time delay. It is found that the spiking regularity and spatial synchronization of the neurons intermittently increase and decrease as channel noise intensity is varied, exhibiting transitions of temporal coherence and synchronization. Moreover, this phenomenon depends on time delay, STDP, and network average degree. As time delay increases, the phenomenon is weakened, however, there are optimal STDP and network average degree by which the phenomenon becomes strongest. These results show that channel noise can intermittently enhance the temporal coherence and synchronization of the delayed adaptive neuronal networks. These findings provide a new insight into channel noise for the information processing and transmission in neural systems.
Masking Release in Children and Adults With Hearing Loss When Using Amplification
McCreery, Ryan; Kopun, Judy; Lewis, Dawna; Alexander, Joshua; Stelmachowicz, Patricia
2016-01-01
Purpose This study compared masking release for adults and children with normal hearing and hearing loss. For the participants with hearing loss, masking release using simulated hearing aid amplification with 2 different compression speeds (slow, fast) was compared. Method Sentence recognition in unmodulated noise was compared with recognition in modulated noise (masking release). Recognition was measured for participants with hearing loss using individualized amplification via the hearing-aid simulator. Results Adults with hearing loss showed greater masking release than the children with hearing loss. Average masking release was small (1 dB) and did not depend on hearing status. Masking release was comparable for slow and fast compression. Conclusions The use of amplification in this study contrasts with previous studies that did not use amplification. The results suggest that when differences in audibility are reduced, participants with hearing loss may be able to take advantage of dips in the noise levels, similar to participants with normal hearing. Although children required a more favorable signal-to-noise ratio than adults for both unmodulated and modulated noise, masking release was not statistically different. However, the ability to detect a difference may have been limited by the small amount of masking release observed. PMID:26540194
Measured noise reductions resulting from modified approach procedures for business jet aircraft
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Putnam, T. W.; Lasagna, P. L.; Parish, O. O.
1975-01-01
Five business jet airplanes were flown to determine the noise reductions that result from the use of modified approach procedures. The airplanes tested were a Gulfstream 2, JetStar, Hawker Siddeley 125-400, Sabreliner-60 and LearJet-24. Noise measurements were made 3, 5, and 7 nautical miles from the touchdown point. In addition to a standard 3 deg glide slope approach, a 4 deg glide slope approach, a 3 deg glide slope approach in a low-drag configuration, and a two-segment approach were flown. It was found that the 4 deg approach was about 4 EPNdB quieter than the standard 3 deg approach. Noise reductions for the low-drag 3 deg approach varied widely among the airplanes tested, with an average of 8.5 EPNdB on a fleet-weighted basis. The two-segment approach resulted in noise reductions of 7 to 8 EPNdB at 3 and 5 nautical miles from touchdown, but only 3 EPNdB at 7 nautical miles from touchdown when the airplanes were still in level flight prior to glide slope intercept. Pilot ratings showed progressively increasing workload for the 4 deg, low-drag 3 deg, and two-segment approaches.
ERIC Educational Resources Information Center
Schlauch, Robert S.; Han, Heekyung J.; Yu, Tzu-Ling J.; Carney, Edward
2017-01-01
Purpose: The purpose of this article is to examine explanations for pure-tone average-spondee threshold differences in functional hearing loss. Method: Loudness magnitude estimation functions were obtained from 24 participants for pure tones (0.5 and 1.0 kHz), vowels, spondees, and speech-shaped noise as a function of level (20-90 dB SPL).…
Improving time-lapse seismic repeatability: CO2CRC Otway site permanent geophone array field trials
NASA Astrophysics Data System (ADS)
Pevzner, Roman; Dupuis, Christian; Shulakova, Valeriya; Urosevic, Milovan; Lumley, David
2013-04-01
The proposed Stage 2C of the CO2CRC Otway project involves injection of a small amount (around 15,000 tonnes) of CO2/CH4 gas mixture into saline acquifer (Paaratte formation) at the depth of ~1.5 km. The seismic time-lapse signal will depend largely on the formation properties and the injection scenario, but is likely to be relatively weak. In order to improve time-lapse seismic monitoring capabilities by decreasing the noise level, a buried receiver arrays can be used. A small-scale trial of such an array was conducted at Otway site in June 2012. A set of 25 geophones was installed in 3 m deep boreholes in parallel to the same number of surface geophones. In addition, four geophones were placed into boreholes of 1 to 12 m depth. In order to assess the gain in the signal-to-noise ratio and repeatability, both active and passive seismic surveys were carried out. The surveys were conducted in relatively poor weather conditions, with rain, strong wind and thunderstorms increasing the noise level. We found that noise level for buried geophones is on average 20 dB lower compared to the surface ones. Furthermore, the combination of active and passive experiments has allowed us to perform a detailed classification of various noise sources. Acknowledgement The authors acknowledge the funding provided by the Australian government through its CRC program to support this CO2CRC research project. We also acknowledge the CO2CRC's corporate sponsors and the financial assistance provided through Australian National Low Emissions Coal Research and Development (ANLEC R&D). ANLEC R&D is supported by Australian Coal Association Low Emissions Technology Limited and the Australian Government through the Clean Energy Initiative.
Real Diffusion-Weighted MRI Enabling True Signal Averaging and Increased Diffusion Contrast
Eichner, Cornelius; Cauley, Stephen F; Cohen-Adad, Julien; Möller, Harald E; Turner, Robert; Setsompop, Kawin; Wald, Lawrence L
2015-01-01
This project aims to characterize the impact of underlying noise distributions on diffusion-weighted imaging. The noise floor is a well-known problem for traditional magnitude-based diffusion-weighted MRI (dMRI) data, leading to biased diffusion model fits and inaccurate signal averaging. Here, we introduce a total-variation-based algorithm to eliminate shot-to-shot phase variations of complex-valued diffusion data with the intention to extract real-valued dMRI datasets. The obtained real-valued diffusion data are no longer superimposed by a noise floor but instead by a zero-mean Gaussian noise distribution, yielding dMRI data without signal bias. We acquired high-resolution dMRI data with strong diffusion weighting and, thus, low signal-to-noise ratio. Both the extracted real-valued and traditional magnitude data were compared regarding signal averaging, diffusion model fitting and accuracy in resolving crossing fibers. Our results clearly indicate that real-valued diffusion data enables idealized conditions for signal averaging. Furthermore, the proposed method enables unbiased use of widely employed linear least squares estimators for model fitting and demonstrates an increased sensitivity to detect secondary fiber directions with reduced angular error. The use of phase-corrected, real-valued data for dMRI will therefore help to clear the way for more detailed and accurate studies of white matter microstructure and structural connectivity on a fine scale. PMID:26241680
The temporal structure of pollution levels in developed cities.
Barrigón Morillas, Juan Miguel; Ortiz-Caraballo, Carmen; Prieto Gajardo, Carlos
2015-06-01
Currently, the need for mobility can cause significant pollution levels in cities, with important effects on health and quality of life. Any approach to the study of urban pollution and its effects requires an analysis of spatial distribution and temporal variability. It is a crucial dilemma to obtain proven methodologies that allow an increase in the quality of the prediction and the saving of resources in the spatial and temporal sampling. This work proposes a new analytical methodology in the study of temporal structure. As a result, a model for estimating annual levels of urban traffic noise was proposed. The average errors are less than one decibel in all acoustics indicators. A new working methodology of urban noise has begun. Additionally, a general application can be found for the study of the impacts of pollution associated with traffic, with implications for urban design and possibly in economic and sociological aspects. Copyright © 2015 Elsevier B.V. All rights reserved.
Seismic Noise Characterization in the Northern Mississippi Embayment
NASA Astrophysics Data System (ADS)
Wiley, S.; Deshon, H. R.; Boyd, O. S.
2009-12-01
We present a study of seismic noise sources present within the northern Mississippi embayment near the New Madrid Seismic Zone (NMSZ). The northern embayment contains up to 1 km of unconsolidated coastal plain sediments overlying bedrock, making it an inherently noisy environment for seismic stations. The area is known to display high levels of cultural noise caused by agricultural activity, passing cars, trains, etc. We characterize continuous broadband seismic noise data recorded for the months of March through June 2009 at six stations operated by the Cooperative New Madrid Seismic Network. We looked at a single horizontal component of data during nighttime hours, defined as 6:15PM to 5:45AM Central Standard Time, which we determined to be the lowest amplitude period of noise for the region. Hourly median amplitudes were compared to daily average wind speeds downloaded from the National Oceanic and Atmospheric Administration. We find a correlation between time periods of increased noise and days with high wind speeds, suggesting that wind is likely a prevalent source of seismic noise in the area. The effects of wind on seismic recordings may result from wind induced tree root movement which causes ground motion to be recorded at the vaults located ~3m below ground. Automated studies utilizing the local network or the EarthScope Transportable Array, scheduled to arrive in the area in 2010-11, should expect to encounter wind induced noise fluctuations and must account for this in their analysis.
Development of elastomeric isolators to reduce roof bolting machine drilling noise
Michael, Robert; Yantek, David; Johnson, David; Ferro, Ernie; Swope, Chad
2015-01-01
Among underground coal miners, hearing loss remains one of the most common occupational illnesses. In response to this problem, the National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) conducts research to reduce the noise emission of underground coal-mining equipment, an example of which is a roof bolting machine. Field studies show that, on average, drilling noise is the most significant contributor to a roof bolting machine operator’s noise exposure. NIOSH OMSHR has determined that the drill steel and chuck are the dominant sources of drilling noise. NIOSH OMSHR, Corry Rubber Corporation, and Kennametal, Inc. have developed a bit isolator that breaks the steel-to-steel link between the drill bit and drill steel and a chuck isolator that breaks the mechanical connection between the drill steel and the chuck, thus reducing the noise radiated by the drill steel and chuck, and the noise exposure of the roof bolter operator. This paper documents the evolution of the bit isolator and chuck isolator including various alternative designs which may enhance performance. Laboratory testing confirms that production bit and chuck isolators reduce the A-weighted sound level generated during drilling by 3.7 to 6.6 dB. Finally, this paper summarizes results of a finite element analysis used to explore the key parameters of the drill bit isolator and chuck isolator to understand the impact these parameters have on noise. PMID:26568650
Long-Term Exposure to Transportation Noise in Relation to Development of Obesity—a Cohort Study
Eriksson, Charlotta; Lind, Tomas; Mitkovskaya, Natalya; Wallas, Alva; Ögren, Mikael; Östenson, Claes-Göran; Pershagen, Göran
2017-01-01
Background: Exposure to transportation noise is widespread and has been associated with obesity in some studies. However, the evidence from longitudinal studies is limited and little is known about effects of combined exposure to different noise sources. Objectives: The aim of this longitudinal study was to estimate the association between exposure to noise from road traffic, railways, or aircraft and the development of obesity markers. Methods: We assessed individual long-term exposure to road traffic, railway, and aircraft noise based on residential histories in a cohort of 5,184 men and women from Stockholm County. Noise levels were estimated at the most exposed façade of each dwelling. Waist circumference, weight, and height were measured at recruitment and after an average of 8.9 y of follow-up. Extensive information on potential confounders was available from repeated questionnaires and registers. Results: Waist circumference increased 0.04cm/y (95% CI: 0.02, 0.06) and 0.16cm/y (95% CI: 0.14, 0.17) per 10 dB Lden in relation to road traffic and aircraft noise, respectively. No corresponding association was seen for railway noise. Weight gain was only related to aircraft noise exposure. A similar pattern occurred for incidence rate ratios (IRRs) of central obesity and overweight. The IRR of central obesity increased from 1.22 (95% CI: 1.08, 1.39) in those exposed to only one source of transportation noise to 2.26 (95% CI: 1.55, 3.29) among those exposed to all three sources. Conclusion: Our results link transportation noise exposure to development of obesity and suggest that combined exposure from different sources may be particularly harmful. https://doi.org/10.1289/EHP1910 PMID:29161230
Significance of shock structure on supersonic jet mixing noise of axisymmetric nozzles
NASA Astrophysics Data System (ADS)
Kim, Chan M.; Krejsa, Eugene A.; Khavaran, Abbas
1994-09-01
One of the key technical elements in NASA's high speed research program is reducing the noise level to meet the federal noise regulation. The dominant noise source is associated with the supersonic jet discharged from the engine exhaust system. Whereas the turbulence mixing is largely responsible for the generation of the jet noise, a broadband shock-associated noise is also generated when the nozzle operates at conditions other than its design. For both mixing and shock noise components, because the source of the noise is embedded in the jet plume, one can expect that jet noise can be predicted from the jet flowfield computation. Mani et al. developed a unified aerodynamic/acoustic prediction scheme by applying an extension of Reichardt's aerodynamic model to compute turbulent shear stresses which are utilized in estimating the strength of the noise source. Although this method produces a fast and practical estimate of the jet noise, a modification by Khavaran et al. has led to an improvement in aerodynamic solution. The most notable feature in this work is that Reichardt's model is replaced with the computational fluid dynamics (CFD) solution of Reynolds-averaged Navier-Stokes equations. The major advantage of this work is that the essential, noise-related flow quantities such as turbulence intensity and shock strength can be better predicted. The predictions were limited to a shock-free design condition and the effect of shock structure on the jet mixing noise was not addressed. The present work is aimed at investigating this issue. Under imperfectly expanded conditions the existence of the shock cell structure and its interaction with the convecting turbulence structure may not only generate a broadband shock-associated noise but also change the turbulence structure, and thus the strength of the mixing noise source. Failure in capturing shock structures properly could lead to incorrect aeroacoustic predictions.
Significance of shock structure on supersonic jet mixing noise of axisymmetric nozzles
NASA Technical Reports Server (NTRS)
Kim, Chan M.; Krejsa, Eugene A.; Khavaran, Abbas
1994-01-01
One of the key technical elements in NASA's high speed research program is reducing the noise level to meet the federal noise regulation. The dominant noise source is associated with the supersonic jet discharged from the engine exhaust system. Whereas the turbulence mixing is largely responsible for the generation of the jet noise, a broadband shock-associated noise is also generated when the nozzle operates at conditions other than its design. For both mixing and shock noise components, because the source of the noise is embedded in the jet plume, one can expect that jet noise can be predicted from the jet flowfield computation. Mani et al. developed a unified aerodynamic/acoustic prediction scheme by applying an extension of Reichardt's aerodynamic model to compute turbulent shear stresses which are utilized in estimating the strength of the noise source. Although this method produces a fast and practical estimate of the jet noise, a modification by Khavaran et al. has led to an improvement in aerodynamic solution. The most notable feature in this work is that Reichardt's model is replaced with the computational fluid dynamics (CFD) solution of Reynolds-averaged Navier-Stokes equations. The major advantage of this work is that the essential, noise-related flow quantities such as turbulence intensity and shock strength can be better predicted. The predictions were limited to a shock-free design condition and the effect of shock structure on the jet mixing noise was not addressed. The present work is aimed at investigating this issue. Under imperfectly expanded conditions the existence of the shock cell structure and its interaction with the convecting turbulence structure may not only generate a broadband shock-associated noise but also change the turbulence structure, and thus the strength of the mixing noise source. Failure in capturing shock structures properly could lead to incorrect aeroacoustic predictions.
NASA Astrophysics Data System (ADS)
Wang, Hui; Blencowe, M. P.; Armour, A. D.; Rimberg, A. J.
2017-09-01
We give a semiclassical analysis of the average photon number as well as photon number variance (Fano factor F ) for a Josephson junction (JJ) embedded microwave cavity system, where the JJ is subject to a fluctuating (i.e., noisy) bias voltage with finite dc average. Through the ac Josephson effect, the dc voltage bias drives the effectively nonlinear microwave cavity mode into an amplitude squeezed state (F <1 ), as has been established previously [Armour et al., Phys. Rev. Lett. 111, 247001 (2013), 10.1103/PhysRevLett.111.247001], but bias noise acts to degrade this squeezing. We find that the sensitivity of the Fano factor to bias voltage noise depends qualitatively on which stable fixed point regime the system is in for the corresponding classical nonlinear steady-state dynamics. Furthermore, we show that the impact of voltage bias noise is most significant when the cavity is excited to states with large average photon number.
Effects of Wind Turbine Noise on Self-Reported and Objective Measures of Sleep.
Michaud, David S; Feder, Katya; Keith, Stephen E; Voicescu, Sonia A; Marro, Leonora; Than, John; Guay, Mireille; Denning, Allison; Murray, Brian J; Weiss, Shelly K; Villeneuve, Paul J; van den Berg, Frits; Bower, Tara
2016-01-01
To investigate the association between self-reported and objective measures of sleep and wind turbine noise (WTN) exposure. The Community Noise and Health Study, a cross-sectional epidemiological study, included an in-house computer-assisted interview and sleep pattern monitoring over a 7 d period. Outdoor WTN levels were calculated following international standards for conditions that typically approximate the highest long-term average levels at each dwelling. Study data were collected between May and September 2013 from adults, aged 18-79 y (606 males, 632 females) randomly selected from each household and living between 0.25 and 11.22 kilometers from operational wind turbines in two Canadian provinces. Self-reported sleep quality over the past 30 d was assessed using the Pittsburgh Sleep Quality Index. Additional questions assessed the prevalence of diagnosed sleep disorders and the magnitude of sleep disturbance over the previous year. Objective measures for sleep latency, sleep efficiency, total sleep time, rate of awakening bouts, and wake duration after sleep onset were recorded using the wrist worn Actiwatch2® from a subsample of 654 participants (289 males, 365 females) for a total of 3,772 sleep nights. Participant response rate for the interview was 78.9%. Outdoor WTN levels reached 46 dB(A) with an arithmetic mean of 35.6 and a standard deviation of 7.4. Self-reported and objectively measured sleep outcomes consistently revealed no apparent pattern or statistically significant relationship to WTN levels. However, sleep was significantly influenced by other factors, including, but not limited to, the use of sleep medication, other health conditions (including sleep disorders), caffeine consumption, and annoyance with blinking lights on wind turbines. Study results do not support an association between exposure to outdoor WTN up to 46 dB(A) and an increase in the prevalence of disturbed sleep. Conclusions are based on WTN levels averaged over 1 y and, in some cases, may be strengthened with an analysis that examines sleep quality in relation to WTN levels calculated during the precise sleep period time. © 2016 Associated Professional Sleep Societies, LLC.
Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons
NASA Astrophysics Data System (ADS)
Wolters, Janik; Buser, Gianni; Horsley, Andrew; Béguin, Lucas; Jöckel, Andreas; Jahn, Jan-Philipp; Warburton, Richard J.; Treutlein, Philipp
2017-08-01
Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δ f =0.66 GHz , the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For a 50 ns storage time, we measure ηe2 e 50 ns=3.4 (3 )% end-to-end efficiency of the fiber-coupled memory, with a total intrinsic efficiency ηint=17 (3 )%. Straightforward technological improvements can boost the end-to-end-efficiency to ηe 2 e≈35 %; beyond that, increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional read-out noise level of 9 ×10-3 photons is dominated by atomic fluorescence, and for input pulses containing on average μ1=0.27 (4 ) photons, the signal to noise level would be unity.
Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons.
Wolters, Janik; Buser, Gianni; Horsley, Andrew; Béguin, Lucas; Jöckel, Andreas; Jahn, Jan-Philipp; Warburton, Richard J; Treutlein, Philipp
2017-08-11
Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δf=0.66 GHz, the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For a 50 ns storage time, we measure η_{e2e}^{50 ns}=3.4(3)% end-to-end efficiency of the fiber-coupled memory, with a total intrinsic efficiency η_{int}=17(3)%. Straightforward technological improvements can boost the end-to-end-efficiency to η_{e2e}≈35%; beyond that, increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional read-out noise level of 9×10^{-3} photons is dominated by atomic fluorescence, and for input pulses containing on average μ_{1}=0.27(4) photons, the signal to noise level would be unity.
NASA Technical Reports Server (NTRS)
Vonglahn, U. H.; Groesbeck, D. E.
1981-01-01
Predicted engine core noise levels are compared with measured total aircraft noise levels and with current and proposed federal noise certification requirements. Comparisons are made at the FAR-36 measuring stations and include consideration of both full- and cutback-power operation at takeoff. In general, core noise provides a barrier to achieving proposed EPA stage 5 noise levels for all types of aircraft. More specifically, core noise levels will limit further reductions in aircraft noise levels for current widebody commercial aircraft.
Adaptive noise Wiener filter for scanning electron microscope imaging system.
Sim, K S; Teh, V; Nia, M E
2016-01-01
Noise on scanning electron microscope (SEM) images is studied. Gaussian noise is the most common type of noise in SEM image. We developed a new noise reduction filter based on the Wiener filter. We compared the performance of this new filter namely adaptive noise Wiener (ANW) filter, with four common existing filters as well as average filter, median filter, Gaussian smoothing filter and the Wiener filter. Based on the experiments results the proposed new filter has better performance on different noise variance comparing to the other existing noise removal filters in the experiments. © Wiley Periodicals, Inc.
Helicopter Noise Reduction Design Trade-Off Study
1977-01-01
level, A-weighted sound pressure level, perceived noise level and tone corrected perceived noise level time histories, and are further analyzed to...DATA ---------------------------- 101 10 BASELINE VEHICLE EFFECTIVE PERCEIVED NOISE LEVELS (EPiII.) AND RANGE FOR MAXIMIJM TONE CORRECTED PERCEIVED...and tone corrected perceived noise level (PNLT) units. All noise level calculation methods have been computerized in FORTRAN language for use on the
Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A; Kagemann, Larry; Schuman, Joel S
2016-01-01
Developing a novel image enhancement method so that nonframe-averaged optical coherence tomography (OCT) images become comparable to active eye-tracking frame-averaged OCT images. Twenty-one eyes of 21 healthy volunteers were scanned with noneye-tracking nonframe-averaged OCT device and active eye-tracking frame-averaged OCT device. Virtual averaging was applied to nonframe-averaged images with voxel resampling and adding amplitude deviation with 15-time repetitions. Signal-to-noise (SNR), contrast-to-noise ratios (CNR), and the distance between the end of visible nasal retinal nerve fiber layer (RNFL) and the foveola were assessed to evaluate the image enhancement effect and retinal layer visibility. Retinal thicknesses before and after processing were also measured. All virtual-averaged nonframe-averaged images showed notable improvement and clear resemblance to active eye-tracking frame-averaged images. Signal-to-noise and CNR were significantly improved (SNR: 30.5 vs. 47.6 dB, CNR: 4.4 vs. 6.4 dB, original versus processed, P < 0.0001, paired t -test). The distance between the end of visible nasal RNFL and the foveola was significantly different before (681.4 vs. 446.5 μm, Cirrus versus Spectralis, P < 0.0001) but not after processing (442.9 vs. 446.5 μm, P = 0.76). Sectoral macular total retinal and circumpapillary RNFL thicknesses showed systematic differences between Cirrus and Spectralis that became not significant after processing. The virtual averaging method successfully improved nontracking nonframe-averaged OCT image quality and made the images comparable to active eye-tracking frame-averaged OCT images. Virtual averaging may enable detailed retinal structure studies on images acquired using a mixture of nonframe-averaged and frame-averaged OCT devices without concerning about systematic differences in both qualitative and quantitative aspects.
Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A.; Kagemann, Larry; Schuman, Joel S.
2016-01-01
Purpose Developing a novel image enhancement method so that nonframe-averaged optical coherence tomography (OCT) images become comparable to active eye-tracking frame-averaged OCT images. Methods Twenty-one eyes of 21 healthy volunteers were scanned with noneye-tracking nonframe-averaged OCT device and active eye-tracking frame-averaged OCT device. Virtual averaging was applied to nonframe-averaged images with voxel resampling and adding amplitude deviation with 15-time repetitions. Signal-to-noise (SNR), contrast-to-noise ratios (CNR), and the distance between the end of visible nasal retinal nerve fiber layer (RNFL) and the foveola were assessed to evaluate the image enhancement effect and retinal layer visibility. Retinal thicknesses before and after processing were also measured. Results All virtual-averaged nonframe-averaged images showed notable improvement and clear resemblance to active eye-tracking frame-averaged images. Signal-to-noise and CNR were significantly improved (SNR: 30.5 vs. 47.6 dB, CNR: 4.4 vs. 6.4 dB, original versus processed, P < 0.0001, paired t-test). The distance between the end of visible nasal RNFL and the foveola was significantly different before (681.4 vs. 446.5 μm, Cirrus versus Spectralis, P < 0.0001) but not after processing (442.9 vs. 446.5 μm, P = 0.76). Sectoral macular total retinal and circumpapillary RNFL thicknesses showed systematic differences between Cirrus and Spectralis that became not significant after processing. Conclusion The virtual averaging method successfully improved nontracking nonframe-averaged OCT image quality and made the images comparable to active eye-tracking frame-averaged OCT images. Translational Relevance Virtual averaging may enable detailed retinal structure studies on images acquired using a mixture of nonframe-averaged and frame-averaged OCT devices without concerning about systematic differences in both qualitative and quantitative aspects. PMID:26835180
Early age noise exposure increases loudness perception - A novel animal model of hyperacusis.
Alkharabsheh, Ana'am; Xiong, Fen; Xiong, Binbin; Manohar, Senthilvelan; Chen, Guangdi; Salvi, Richard; Sun, Wei
2017-04-01
The neural mechanisms that give rise to hyperacusis, a reduction in loudness tolerance, are largely unknown. Some reports suggest that hyperacusis is linked to childhood hearing loss. However, the evidence for this is largely circumstantial. In order to rigorously test this hypothesis, we studied loudness changes in rats caused by intense noise exposure (12 kHz narrow band noise, 115 dB SPL, 4 h) at postnatal 16 days. Rats without noise exposure were used as controls. The exposed noise group (n = 7) showed a mean 40-50 dB hearing loss compared to the control group (n = 8) at high frequencies (>= 8 kHz) and less hearing loss at lower frequencies. Loudness was evaluated using sound reaction time and loudness response functions in an operant conditioning-based behavioral task using narrow-band noise (40-110 dB SPL, centered at 2, 4 and 12 kHz). Interestingly, the sound reaction time of the noise group was significantly shorter than the control group at supra-threshold levels. The average reaction time was less than 100 ms in the noise group at 100 dB SPL, which was three times shorter than the control group. Our results indicate that early noise-induced hearing loss leads to a significant increase of loudness, a behavior indicative of hyperacusis. Our results are consistent with clinical reports suggesting that hearing loss at an early age is a significant risk factor for hyperacusis. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Greenwood, Eric II; Schmitz, Fredric H.
2009-01-01
A new method of separating the contributions of helicopter main and tail rotor noise sources is presented, making use of ground-based acoustic measurements. The method employs time-domain de-Dopplerization to transform the acoustic pressure time-history data collected from an array of ground-based microphones to the equivalent time-history signals observed by an array of virtual inflight microphones traveling with the helicopter. The now-stationary signals observed by the virtual microphones are then periodically averaged with the main and tail rotor once per revolution triggers. The averaging process suppresses noise which is not periodic with the respective rotor, allowing for the separation of main and tail rotor pressure time-histories. The averaged measurements are then interpolated across the range of directivity angles captured by the microphone array in order to generate separate acoustic hemispheres for the main and tail rotor noise sources. The new method is successfully applied to ground-based microphone measurements of a Bell 206B3 helicopter and demonstrates the strong directivity characteristics of harmonic noise radiation from both the main and tail rotors of that helicopter.
Hierarchical differences in population coding within auditory cortex.
Downer, Joshua D; Niwa, Mamiko; Sutter, Mitchell L
2017-08-01
Most models of auditory cortical (AC) population coding have focused on primary auditory cortex (A1). Thus our understanding of how neural coding for sounds progresses along the cortical hierarchy remains obscure. To illuminate this, we recorded from two AC fields: A1 and middle lateral belt (ML) of rhesus macaques. We presented amplitude-modulated (AM) noise during both passive listening and while the animals performed an AM detection task ("active" condition). In both fields, neurons exhibit monotonic AM-depth tuning, with A1 neurons mostly exhibiting increasing rate-depth functions and ML neurons approximately evenly distributed between increasing and decreasing functions. We measured noise correlation ( r noise ) between simultaneously recorded neurons and found that whereas engagement decreased average r noise in A1, engagement increased average r noise in ML. This finding surprised us, because attentive states are commonly reported to decrease average r noise We analyzed the effect of r noise on AM coding in both A1 and ML and found that whereas engagement-related shifts in r noise in A1 enhance AM coding, r noise shifts in ML have little effect. These results imply that the effect of r noise differs between sensory areas, based on the distribution of tuning properties among the neurons within each population. A possible explanation of this is that higher areas need to encode nonsensory variables (e.g., attention, choice, and motor preparation), which impart common noise, thus increasing r noise Therefore, the hierarchical emergence of r noise -robust population coding (e.g., as we observed in ML) enhances the ability of sensory cortex to integrate cognitive and sensory information without a loss of sensory fidelity. NEW & NOTEWORTHY Prevailing models of population coding of sensory information are based on a limited subset of neural structures. An important and under-explored question in neuroscience is how distinct areas of sensory cortex differ in their population coding strategies. In this study, we compared population coding between primary and secondary auditory cortex. Our findings demonstrate striking differences between the two areas and highlight the importance of considering the diversity of neural structures as we develop models of population coding. Copyright © 2017 the American Physiological Society.
Radiometry Measurements of Mars at 1064 nm Using the Mars Orbiter Laser Altimeter
NASA Technical Reports Server (NTRS)
Sun, Xiao-Li; Abshire, James B.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E. (Technical Monitor)
2001-01-01
Measurements by the Mars Orbiter Laser Altimeter (MOLA) on board the Mars Global Surveyor (MGS) may be used to provides a radiometric measurement of Mars in addition to the topographic measurement. We will describe the principle of operation, a mathematical model, and the receiver calibration in this presentation. MOLA was designed primarily to measure Mars topography, surface roughness end the bidirectional reflectance to the laser beam. To achieve the highest sensitivity the receiver detection threshold is dynamically adjusted to be as low as possible while keeping a predetermined false alarm rate. The average false alarm rate 29 monitored in real time on board MOLA via a noise counter, whose output is fed to the threshold control loop. The false alarm rate at a given threshold is a function of the detector output noise which is the sum of the photo detector, shot noise due to the background light seen by the detector and the dark noise. A mathematical model has been developed that can be used to numerically solve for the optical background power given the MOLA threshold setting and the average noise count. The radiance of Mars can then be determined by dividing the optical power by the solid angle subtended by the MOLA receiver, the receiver optical band-width, end the Mars surface area within the receiver field of view. The phase angle which is the sun-Mars-MOLA angle is available from the MGS database. MOLA also measures simultaneously the bidirectional reflectance of Mars vie its 106-lum loser beam at nadir with nearly zero phase angle. The optical bandwidth of the MOLA receiver is 2um full width at half maximum (FWHM) and centered at 106-lum. The receiver field of view is 0.95mrad FWHM. The nominated spacecraft altitude is 100km and the ground track speed is about 3km/s. Under normal operation, the noise counter are read and the threshold levels are updated at 1Hz. The receiver sensitivity is limited by the detector dark noise to about 0.1nW, which corresponds to less than 2% the maximum radiance during daytime from the brightest area on Mars. The results from the mathematical model agree well with the prelaunch measurements at several calibrated optical power levels. The radiance of sunlit Mars estimated with this technique correlates well with the measurement from the MGS. Thermal Emission Spectrometer (TES) and the Hubble Space Telescope at similar wavelength.
Effects of background noise on total noise annoyance
NASA Technical Reports Server (NTRS)
Willshire, K. F.
1987-01-01
Two experiments were conducted to assess the effects of combined community noise sources on annoyance. The first experiment baseline relationships between annoyance and noise level for three community noise sources (jet aircraft flyovers, traffic and air conditioners) presented individually. Forty eight subjects evaluated the annoyance of each noise source presented at four different noise levels. Results indicated the slope of the linear relationship between annoyance and noise level for the traffic noise was significantly different from that of aircraft and of air conditioner noise, which had equal slopes. The second experiment investigated annoyance response to combined noise sources, with aircraft noise defined as the major noise source and traffic and air conditioner noise as background noise sources. Effects on annoyance of noise level differences between aircraft and background noise for three total noise levels and for both background noise sources were determined. A total of 216 subjects were required to make either total or source specific annoyance judgements, or a combination of the two, for a wide range of combined noise conditions.
Prabha, S; Suganthi, S S; Sujatha, C M
2015-01-01
Breast thermography is a potential imaging method for the early detection of breast cancer. The pathological conditions can be determined by measuring temperature variations in the abnormal breast regions. Accurate delineation of breast tissues is reported as a challenging task due to inherent limitations of infrared images such as low contrast, low signal to noise ratio and absence of clear edges. Segmentation technique is attempted to delineate the breast tissues by detecting proper lower breast boundaries and inframammary folds. Characteristic features are extracted to analyze the asymmetrical thermal variations in normal and abnormal breast tissues. An automated analysis of thermal variations of breast tissues is attempted using nonlinear adaptive level sets and Riesz transform. Breast thermal images are initially subjected to Stein's unbiased risk estimate based orthonormal wavelet denoising. These denoised images are enhanced using contrast-limited adaptive histogram equalization method. The breast tissues are then segmented using non-linear adaptive level set method. The phase map of enhanced image is integrated into the level set framework for final boundary estimation. The segmented results are validated against the corresponding ground truth images using overlap and regional similarity metrics. The segmented images are further processed with Riesz transform and structural texture features are derived from the transformed coefficients to analyze pathological conditions of breast tissues. Results show that the estimated average signal to noise ratio of denoised images and average sharpness of enhanced images are improved by 38% and 6% respectively. The interscale consideration adopted in the denoising algorithm is able to improve signal to noise ratio by preserving edges. The proposed segmentation framework could delineate the breast tissues with high degree of correlation (97%) between the segmented and ground truth areas. Also, the average segmentation accuracy and sensitivity are found to be 98%. Similarly, the maximum regional overlap between segmented and ground truth images obtained using volume similarity measure is observed to be 99%. Directionality as a feature, showed a considerable difference between normal and abnormal tissues which is found to be 11%. The proposed framework for breast thermal image analysis that is aided with necessary preprocessing is found to be useful in assisting the early diagnosis of breast abnormalities.
High Blood Pressure and Long-Term Exposure to Indoor Noise and Air Pollution from Road Traffic
Künzli, Nino; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Vila, Joan; Bouso, Laura; Deltell, Alexandre; Marrugat, Jaume; Ramos, Rafel; Sunyer, Jordi; Elosua, Roberto; Basagaña, Xavier
2014-01-01
Background: Traffic noise has been associated with prevalence of hypertension, but reports are inconsistent for blood pressure (BP). To ascertain noise effects and to disentangle them from those suspected to be from traffic-related air pollution, it may be essential to estimate people’s noise exposure indoors in bedrooms. Objectives: We analyzed associations between long-term exposure to indoor traffic noise in bedrooms and prevalent hypertension and systolic (SBP) and diastolic (DBP) BP, considering long-term exposure to outdoor nitrogen dioxide (NO2). Methods: We evaluated 1,926 cohort participants at baseline (years 2003–2006; Girona, Spain). Outdoor annual average levels of nighttime traffic noise (Lnight) and NO2 were estimated at postal addresses with a detailed traffic noise model and a land-use regression model, respectively. Individual indoor traffic Lnight levels were derived from outdoor Lnight with application of insulations provided by reported noise-reducing factors. We assessed associations for hypertension and BP with multi-exposure logistic and linear regression models, respectively. Results: Median levels were 27.1 dB(A) (indoor Lnight), 56.7 dB(A) (outdoor Lnight), and 26.8 μg/m3 (NO2). Spearman correlations between outdoor and indoor Lnight with NO2 were 0.75 and 0.23, respectively. Indoor Lnight was associated both with hypertension (OR = 1.06; 95% CI: 0.99, 1.13) and SBP (β = 0.72; 95% CI: 0.29, 1.15) per 5 dB(A); and NO2 was associated with hypertension (OR = 1.16; 95% CI: 0.99, 1.36), SBP (β = 1.23; 95% CI: 0.21, 2.25), and DBP (β⊇= 0.56; 95% CI: –0.03, 1.14) per 10 μg/m3. In the outdoor noise model, Lnight was associated only with hypertension and NO2 with BP only. The indoor noise–SBP association was stronger and statistically significant with a threshold at 30 dB(A). Conclusion: Long-term exposure to indoor traffic noise was associated with prevalent hypertension and SBP, independently of NO2. Associations were less consistent for outdoor traffic Lnight and likely affected by collinearity. Citation: Foraster M, Künzli N, Aguilera I, Rivera M, Agis D, Vila J, Bouso L, Deltell A, Marrugat J, Ramos R, Sunyer J, Elosua R, Basagaña X. 2014. High blood pressure and long-term exposure to indoor noise and air pollution from road traffic. Environ Health Perspect 122:1193–1200; http://dx.doi.org/10.1289/ehp.1307156 PMID:25003348
Measurement of hearing aid internal noise1
Lewis, James D.; Goodman, Shawn S.; Bentler, Ruth A.
2010-01-01
Hearing aid equivalent input noise (EIN) measures assume the primary source of internal noise to be located prior to amplification and to be constant regardless of input level. EIN will underestimate internal noise in the case that noise is generated following amplification. The present study investigated the internal noise levels of six hearing aids (HAs). Concurrent with HA processing of a speech-like stimulus with both adaptive features (acoustic feedback cancellation, digital noise reduction, microphone directionality) enabled and disabled, internal noise was quantified for various stimulus levels as the variance across repeated trials. Changes in noise level as a function of stimulus level demonstrated that (1) generation of internal noise is not isolated to the microphone, (2) noise may be dependent on input level, and (3) certain adaptive features may contribute to internal noise. Quantifying internal noise as the variance of the output measures allows for noise to be measured under real-world processing conditions, accounts for all sources of noise, and is predictive of internal noise audibility. PMID:20370034
Brownian motion of a circle swimmer in a harmonic trap
NASA Astrophysics Data System (ADS)
Jahanshahi, Soudeh; Löwen, Hartmut; ten Hagen, Borge
2017-02-01
We study the dynamics of a Brownian circle swimmer with a time-dependent self-propulsion velocity in an external temporally varying harmonic potential. For several situations, the noise-free swimming paths, the noise-averaged mean trajectories, and the mean-square displacements are calculated analytically or by computer simulation. Based on our results, we discuss optimal swimming strategies in order to explore a maximum spatial range around the trap center. In particular, we find a resonance situation for the maximum escape distance as a function of the various frequencies in the system. Moreover, the influence of the Brownian noise is analyzed by comparing noise-free trajectories at zero temperature with the corresponding noise-averaged trajectories at finite temperature. The latter reveal various complex self-similar spiral or rosette-like patterns. Our predictions can be tested in experiments on artificial and biological microswimmers under dynamical external confinement.
High-order noise filtering in nontrivial quantum logic gates.
Green, Todd; Uys, Hermann; Biercuk, Michael J
2012-07-13
Treating the effects of a time-dependent classical dephasing environment during quantum logic operations poses a theoretical challenge, as the application of noncommuting control operations gives rise to both dephasing and depolarization errors that must be accounted for in order to understand total average error rates. We develop a treatment based on effective Hamiltonian theory that allows us to efficiently model the effect of classical noise on nontrivial single-bit quantum logic operations composed of arbitrary control sequences. We present a general method to calculate the ensemble-averaged entanglement fidelity to arbitrary order in terms of noise filter functions, and provide explicit expressions to fourth order in the noise strength. In the weak noise limit we derive explicit filter functions for a broad class of piecewise-constant control sequences, and use them to study the performance of dynamically corrected gates, yielding good agreement with brute-force numerics.
2007-08-06
Suppose the average number of photon-pairs per pulse is μ ( 1<<μ ) and the laser repetition frequency isν . The average noise photon numbers per pulse...pump power is low , the noise is dominated by the detector dark count rate per time window, i.e. /s it d∗ . #83485 - $15.00 USD Received 29 May 2007...suppression of noise photons by cooling fiber", Opt. Express, 13, 7832 (2005) #83485 - $15.00 USD Received 29 May 2007; revised 28 Jun 2007; accepted 29 Jun
Effects of Wind Turbine Noise on Self-Reported and Objective Measures of Sleep
Michaud, David S.; Feder, Katya; Keith, Stephen E.; Voicescu, Sonia A.; Marro, Leonora; Than, John; Guay, Mireille; Denning, Allison; Murray, Brian J.; Weiss, Shelly K.; Villeneuve, Paul J.; van den Berg, Frits; Bower, Tara
2016-01-01
Study Objectives: To investigate the association between self-reported and objective measures of sleep and wind turbine noise (WTN) exposure. Methods: The Community Noise and Health Study, a cross-sectional epidemiological study, included an in-house computer-assisted interview and sleep pattern monitoring over a 7 d period. Outdoor WTN levels were calculated following international standards for conditions that typically approximate the highest long-term average levels at each dwelling. Study data were collected between May and September 2013 from adults, aged 18–79 y (606 males, 632 females) randomly selected from each household and living between 0.25 and 11.22 kilometers from operational wind turbines in two Canadian provinces. Self-reported sleep quality over the past 30 d was assessed using the Pittsburgh Sleep Quality Index. Additional questions assessed the prevalence of diagnosed sleep disorders and the magnitude of sleep disturbance over the previous year. Objective measures for sleep latency, sleep efficiency, total sleep time, rate of awakening bouts, and wake duration after sleep onset were recorded using the wrist worn Actiwatch2® from a subsample of 654 participants (289 males, 365 females) for a total of 3,772 sleep nights. Results: Participant response rate for the interview was 78.9%. Outdoor WTN levels reached 46 dB(A) with an arithmetic mean of 35.6 and a standard deviation of 7.4. Self-reported and objectively measured sleep outcomes consistently revealed no apparent pattern or statistically significant relationship to WTN levels. However, sleep was significantly influenced by other factors, including, but not limited to, the use of sleep medication, other health conditions (including sleep disorders), caffeine consumption, and annoyance with blinking lights on wind turbines. Conclusions: Study results do not support an association between exposure to outdoor WTN up to 46 dB(A) and an increase in the prevalence of disturbed sleep. Conclusions are based on WTN levels averaged over 1 y and, in some cases, may be strengthened with an analysis that examines sleep quality in relation to WTN levels calculated during the precise sleep period time. Citation: Michaud DS, Feder K, Keith SE, Voicescu SA, Marro L, Than J, Guay M, Denning A, Murray BJ, Weiss SK, Villeneuve PJ, van den Berg F, Bower T. Effects of wind turbine noise on self-reported and objective measures of sleep. SLEEP 2016;39(1):97–109. PMID:26518593
Simulation of Turbine Tone Noise Generation Using a Turbomachinery Aerodynamics Solver
NASA Technical Reports Server (NTRS)
VanZante, Dale; Envia, Edmane
2010-01-01
As turbofan engine bypass ratios continue to increase, the contribution of the turbine to the engine noise signature is receiving more attention. Understanding the relative importance of the various turbine noise generation mechanisms and the characteristics of the turbine acoustic transmission loss are essential ingredients in developing robust reduced-order models for predicting the turbine noise signature. A computationally based investigation has been undertaken to help guide the development of a turbine noise prediction capability that does not rely on empiricism. As proof-of-concept for this approach, two highly detailed numerical simulations of the unsteady flow field inside the first stage of a modern high-pressure turbine were carried out. The simulations were computed using TURBO, which is an unsteady Reynolds-Averaged Navier-Stokes code capable of multi-stage simulations. Spectral and modal analysis of the unsteady pressure data from the numerical simulation of the turbine stage show a circumferential modal distribution that is consistent with the Tyler-Sofrin rule. Within the high-pressure turbine, the interaction of velocity, pressure and temperature fluctuations with the downstream blade rows are all possible tone noise source mechanisms. We have taken the initial step in determining the source strength hierarchy by artificially reducing the level of temperature fluctuations in the turbine flowfield. This was accomplished by changing the vane cooling flow temperature in order to mitigate the vane thermal wake in the second of the two simulations. The results indicated that, despite a dramatic change in the vane cooling flow, the computed modal levels changed very little indicating that the contribution of temperature fluctuations to the overall pressure field is rather small compared with the viscous and potential field interaction mechanisms.
Method and apparatus for in-situ detection and isolation of aircraft engine faults
NASA Technical Reports Server (NTRS)
Bonanni, Pierino Gianni (Inventor); Brunell, Brent Jerome (Inventor)
2007-01-01
A method for performing a fault estimation based on residuals of detected signals includes determining an operating regime based on a plurality of parameters, extracting predetermined noise standard deviations of the residuals corresponding to the operating regime and scaling the residuals, calculating a magnitude of a measurement vector of the scaled residuals and comparing the magnitude to a decision threshold value, extracting an average, or mean direction and a fault level mapping for each of a plurality of fault types, based on the operating regime, calculating a projection of the measurement vector onto the average direction of each of the plurality of fault types, determining a fault type based on which projection is maximum, and mapping the projection to a continuous-valued fault level using a lookup table.
Judgments of aircraft noise in a traffic noise background
NASA Technical Reports Server (NTRS)
Powell, C. A.; Rice, C. G.
1975-01-01
An investigation was conducted to determine subjective response to aircraft noise in different road traffic backgrounds. In addition, two laboratory techniques for presenting the aircraft noise with the background noise were evaluated. For one technique, the background noise was continuous over an entire test session; for the other, the background noise level was changed with each aircraft noise during a session. Subjective response to aircraft noise was found to decrease with increasing background noise level, for a range of typical indoor noise levels. Subjective response was found to be highly correlated with the Noise Pollution Level (NPL) measurement scale.
Response Growth With Sound Level in Auditory-Nerve Fibers After Noise-Induced Hearing Loss
Heinz, Michael G.; Young, Eric D.
2010-01-01
People with sensorineural hearing loss are often constrained by a reduced acoustic dynamic range associated with loudness recruitment; however, the neural correlates of loudness and recruitment are still not well understood. The growth of auditory-nerve (AN) activity with sound level was compared in normal-hearing cats and in cats with a noise-induced hearing loss to test the hypothesis that AN-fiber rate-level functions are steeper in impaired ears. Stimuli included best-frequency and fixed-frequency tones, broadband noise, and a brief speech token. Three types of impaired responses were observed. 1) Fibers with rate-level functions that were similar across all stimuli typically had broad tuning, consistent with outer-hair-cell (OHC) damage. 2) Fibers with a wide dynamic range and shallow slope above threshold often retained sharp tuning, consistent with primarily inner-hair-cell (IHC) damage. 3) Fibers with very steep rate-level functions for all stimuli had thresholds above approximately 80 dB SPL and very broad tuning, consistent with severe IHC and OHC damage. Impaired rate-level slopes were on average shallower than normal for tones, and were steeper in only limited conditions. There was less variation in rate-level slopes across stimuli in impaired fibers, presumably attributable to the lack of suppression-induced reductions in slopes for complex stimuli relative to BF-tone slopes. Sloping saturation was observed less often in impaired fibers. These results illustrate that AN fibers do not provide a simple representation of the basilar-membrane I/O function and suggest that both OHC and IHC damage can affect AN response growth. PMID:14534289
AiResearch QCGAT engine: Acoustic test results
NASA Technical Reports Server (NTRS)
Kisner, L. S.
1980-01-01
The noise levels of the quiet, general aviation turbofan (QCGAT) engine were measured in ground static noise tests. The static noise levels were found to be markedly lower than the demonstrably quiet AiResearch model TFE731 engine. The measured QCGAT noise levels were correlated with analytical noise source predictions to derive free-field component noise predictions. These component noise sources were used to predict the QCGAT flyover noise levels at FAR Part 36 conditions. The predicted flyover noise levels are about 10 decibels lower than the current quietest business jets.
Current fluctuations in quantum absorption refrigerators
NASA Astrophysics Data System (ADS)
Segal, Dvira
2018-05-01
Absorption refrigerators transfer thermal energy from a cold bath to a hot bath without input power by utilizing heat from an additional "work" reservoir. Particularly interesting is a three-level design for a quantum absorption refrigerator, which can be optimized to reach the maximal (Carnot) cooling efficiency. Previous studies of three-level chillers focused on the behavior of the averaged cooling current. Here, we go beyond that and study the full counting statistics of heat exchange in a three-level chiller model. We explain how to obtain the complete cumulant generating function of the refrigerator in a steady state, then derive a partial cumulant generating function, which yields closed-form expressions for both the averaged cooling current and its noise. Our analytical results and simulations are beneficial for the design of nanoscale engines and cooling systems far from equilibrium, with their performance optimized according to different criteria, efficiency, power, fluctuations, and dissipation.
NASA Astrophysics Data System (ADS)
Sadleir, Rosalind J.; Sajib, Saurav Z. K.; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2013-05-01
MREIT is a new imaging modality that can be used to reconstruct high-resolution conductivity images of the human body. Since conductivity values of cancerous tissues in the breast are significantly higher than those of surrounding normal tissues, breast imaging using MREIT may provide a new noninvasive way of detecting early stage of cancer. In this paper, we present results of experimental and numerical simulation studies of breast MREIT. We built a realistic three-dimensional model of the human breast connected to a simplified model of the chest including the heart and evaluated the ability of MREIT to detect cancerous anomalies in a background material with similar electrical properties to breast tissue. We performed numerical simulations of various scenarios in breast MREIT including assessment of the effects of fat inclusions and effects related to noise levels, such as changing the amplitude of injected currents, effect of added noise and number of averages. Phantom results showed straightforward detection of cancerous anomalies in a background was possible with low currents and few averages. The simulation results showed it should be possible to detect a cancerous anomaly in the breast, while restricting the maximal current density in the heart below published levels for nerve excitation.
Aeroacoustic Simulation of Nose Landing Gear on Adaptive Unstructured Grids With FUN3D
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Khorrami, Mehdi R.; Park, Michael A.; Lockard, David P.
2013-01-01
Numerical simulations have been performed for a partially-dressed, cavity-closed nose landing gear configuration that was tested in NASA Langley s closed-wall Basic Aerodynamic Research Tunnel (BART) and in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D, developed at NASA Langley Research center, is used to compute the unsteady flow field for this configuration. Starting with a coarse grid, a series of successively finer grids were generated using the adaptive gridding methodology available in the FUN3D code. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these computations. Time-averaged and instantaneous solutions obtained on these grids are compared with the measured data. In general, the correlation with the experimental data improves with grid refinement. A similar trend is observed for sound pressure levels obtained by using these CFD solutions as input to a FfowcsWilliams-Hawkings noise propagation code to compute the farfield noise levels. In general, the numerical solutions obtained on adapted grids compare well with the hand-tuned enriched fine grid solutions and experimental data. In addition, the grid adaption strategy discussed here simplifies the grid generation process, and results in improved computational efficiency of CFD simulations.
Meuse, Curtis W; Filliben, James J; Rubinson, Kenneth A
2018-04-17
As has long been understood, the noise on a spectrometric signal can be reduced by averaging over time, and the averaged noise is expected to decrease as t 1/2 , the square root of the data collection time. However, with contemporary capability for fast data collection and storage, we can retain and access a great deal more information about a signal train than just its average over time. During the same collection time, we can record the signal averaged over much shorter, equal, fixed periods. This is, then, the set of signals over submultiples of the total collection time. With a sufficiently large set of submultiples, the distribution of the signal's fluctuations over the submultiple periods of the data stream can be acquired at each wavelength (or frequency). From the autocorrelations of submultiple sets, we find only some fraction of these fluctuations consist of stochastic noise. Part of the fluctuations are what we call "fast drift", which is defined as drift over a time shorter than the complete measurement period of the average spectrum. In effect, what is usually assumed to be stochastic noise has a significant component of fast drift due to changes of conditions in the spectroscopic system. In addition, we show that the extreme values of the fluctuation of the signals are usually not balanced (equal magnitudes, equal probabilities) on either side of the mean or median without an inconveniently long measurement time; the data is almost inevitably biased. In other words, the unbalanced data is collected in an unbalanced manner around the mean, and so the median provides a better measure of the true spectrum. As is shown here, by using the medians of these distributions, the signal-to-noise of the spectrum can be increased and sampling bias reduced. The effect of this submultiple median data treatment is demonstrated for infrared, circular dichroism, and Raman spectrometry.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises.
Deng, Mao-Lin; Zhu, Wei-Qiu
2016-08-01
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Mao-Lin; Zhu, Wei-Qiu, E-mail: wqzhu@zju.edu.cn
2016-08-15
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Wind dependence of ambient noise in a biologically rich coastal area.
Mathias, Delphine; Gervaise, Cédric; Di Iorio, Lucia
2016-02-01
The wind dependence of acoustic spectrum between 100 Hz and 16 kHz is investigated for coastal biologically rich areas. The analysis of 5 months of continuous measurements run in a 10 m deep shallow water environment off Brittany (France) showed that wind dependence of spectral levels is subject to masking by biological sounds. When dealing with raw data, the wind dependence of spectral levels was not significant for frequencies where biological sounds were present (2 to 10 kHz). An algorithm developed by Kinda, Simard, Gervaise, Mars, and Fortier [J. Acoust. Soc. Am. 134(1), 77-87 (2013)] was used to automatically filter out the loud distinctive biological contribution and estimated the ambient noise spectrum. The wind dependence of ambient noise spectrum was always significant after application of this filter. A mixture model for ambient noise spectrum which accounts for the richness of the soundscape is proposed. This model revealed that wind dependence holds once the wind speed was strong enough to produce sounds higher in amplitude than the biological chorus (9 kn at 3 kHz, 11 kn at 8 kHz). For these higher wind speeds, a logarithmic affine law was adequate and its estimated parameters were compatible with previous studies (average slope 27.1 dB per decade of wind speed increase).
Are the noise levels acceptable in a built environment like Hong Kong?
To, Wai Ming; Mak, Cheuk Ming; Chung, Wai Leung
2015-01-01
Governments all over the world have enacted environmental noise directives and noise control ordinances/acts to protect tranquility in residential areas. However, there is a lack of literature on the evaluation of whether the Acceptable Noise Levels (ANLs) stipulated in the directive/ordinance/act are actually achievable. The study aimed at measuring outdoor environmental noise levels in Hong Kong and identifying whether the measured noise levels are lower than the stipulated ANLs at 20 categories of residential areas. Data were gathered from a territory-wide noise survey. Outdoor noise measurements were conducted at 203 residential premises in urban areas, low-density residential areas, rural areas, and other areas. In total, 366 daytime hourly Leq outdoor noise levels, 362 nighttime hourly Leq outdoor noise levels, and 20 sets of daily, that is, 24 Leq,1-h outdoor noise levels were recorded. The mean daytime Leq,1-h values ranged 54.4-70.8 dBA, while the mean nighttime Leq,1-h values ranged 52.6-67.9 dBA. When the measured noise levels were compared with the stipulated ANLs, only three out of the 20 categories of areas had outdoor noise levels below ANLs during daytime. All other areas (and all areas during nighttime) were found to have outdoor noise levels at or above ANLs. PMID:26572703
Precision and Accuracy in PDV and VISAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrose, W. P.
2017-08-22
This is a technical report discussing our current level of understanding of a wide and varying distribution of uncertainties in velocity results from Photonic Doppler Velocimetry in its application to gas gun experiments. Using propagation of errors methods with statistical averaging of photon number fluctuation in the detected photocurrent and subsequent addition of electronic recording noise, we learn that the velocity uncertainty in VISAR can be written in closed form. For PDV, the non-linear frequency transform and peak fitting methods employed make propagation of errors estimates notoriously more difficult to write down in closed form expect in the limit ofmore » constant velocity and low time resolution (large analysis-window width). An alternative method of error propagation in PDV is to use Monte Carlo methods with a simulation of the time domain signal based on results from the spectral domain. A key problem for Monte Carlo estimation for an experiment is a correct estimate of that portion of the time-domain noise associated with the peak-fitting region-of-interesting in the spectral domain. Using short-time Fourier transformation spectral analysis and working with the phase dependent real and imaginary parts allows removal of amplitude-noise cross terms that invariably show up when working with correlation-based methods or FFT power spectra. Estimation of the noise associated with a given spectral region of interest is then possible. At this level of progress, we learn that Monte Carlo trials with random recording noise and initial (uncontrolled) phase yields velocity uncertainties that are not as large as those observed. In a search for additional noise sources, a speckleinterference modulation contribution with off axis rays was investigated, and was found to add a velocity variation beyond that from the recording noise (due to random interference between off axis rays), but in our experiments the speckle modulation precision was not as important as the recording noise precision. But from these investigations we do appreciate that the velocity-uncertainty itself has a wide distribution of values that varies with signal-amplitude modulation (is not a single value). To provide a rough rule of thumb for the velocity uncertainty, we computed the average of the relative standard deviation distributions from 60 recorded traces (with distributions of uncertainties roughly between 0.1 % to 1 % in each trace) and found a mean of the distribution of uncertainties for our experiments is not better than 0.4 % at an analysis window width of 5 ns (although for brief intervals it can be as good as 0.1 %). Further imagination and testing may be needed to reveal other possible hydrodynamics-related sources of velocity error in PDV.« less