Sample records for average number concentration

  1. Modeling particle number concentrations along Interstate 10 in El Paso, Texas

    PubMed Central

    Olvera, Hector A.; Jimenez, Omar; Provencio-Vasquez, Elias

    2014-01-01

    Annual average daily particle number concentrations around a highway were estimated with an atmospheric dispersion model and a land use regression model. The dispersion model was used to estimate particle concentrations along Interstate 10 at 98 locations within El Paso, Texas. This model employed annual averaged wind speed and annual average daily traffic counts as inputs. A land use regression model with vehicle kilometers traveled as the predictor variable was used to estimate local background concentrations away from the highway to adjust the near-highway concentration estimates. Estimated particle number concentrations ranged between 9.8 × 103 particles/cc and 1.3 × 105 particles/cc, and averaged 2.5 × 104 particles/cc (SE 421.0). Estimates were compared against values measured at seven sites located along I10 throughout the region. The average fractional error was 6% and ranged between -1% and -13% across sites. The largest bias of -13% was observed at a semi-rural site where traffic was lowest. The average bias amongst urban sites was 5%. The accuracy of the estimates depended primarily on the emission factor and the adjustment to local background conditions. An emission factor of 1.63 × 1014 particles/veh-km was based on a value proposed in the literature and adjusted with local measurements. The integration of the two modeling techniques ensured that the particle number concentrations estimates captured the impact of traffic along both the highway and arterial roadways. The performance and economical aspects of the two modeling techniques used in this study shows that producing particle concentration surfaces along major roadways would be feasible in urban regions where traffic and meteorological data are readily available. PMID:25313294

  2. [Relationship between sulfur dioxide pollution and upper respiratory outpatients in Jiangbei, Ningbo].

    PubMed

    Wu, Yifeng; Zhao, Fengmin; Qian, Xujun; Xu, Guozhang; He, Tianfeng; Shen, Yueping; Cai, Yibiao

    2015-07-01

    To describe the daily average concentration of sulfur dioxide (SO2) in Ningbo, and to analysis the health impacts it caused in upper respiratory disease. With outpatients log and air pollutants monitoring data matched in 2011-2013, the distributed lag non-linear models were used to analysis the relative risk of the number of upper respiratory patients associated with SO2, and also excessive risk, and the inferred number of patients due to SO2 pollution. The daily average concentration of SO2 didn't exceed the limit value of second class area. The coefficient of upper respiratory outpatient number and daily average concentration of SO2 matched was 0.44,with the excessive risk was 10% to 18%, the lag of most SO2 concentrations was 4 to 6 days. It could be estimated that about 30% of total upper respiratory outpatients were caused by SO2 pollution. Although the daily average concentration of SO2 didn't exceed the standard in 3 years, the health impacts still be caused with lag effect.

  3. In-vehicle measurement of ultrafine particles on compressed natural gas, conventional diesel, and oxidation-catalyst diesel heavy-duty transit buses.

    PubMed

    Hammond, Davyda; Jones, Steven; Lalor, Melinda

    2007-02-01

    Many metropolitan transit authorities are considering upgrading transit bus fleets to decrease ambient criteria pollutant levels. Advancements in engine and fuel technology have lead to a generation of lower-emission buses in a variety of fuel types. Dynamometer tests show substantial reductions in particulate mass emissions for younger buses (<10 years) over older models, but particle number reduction has not been verified in the research. Recent studies suggest that particle number is a more important factor than particle mass in determining health effects. In-vehicle particle number concentration measurements on conventional diesel, oxidation-catalyst diesel and compressed natural gas transit buses are compared to estimate relative in-vehicle particulate exposures. Two primary consistencies are observed from the data: the CNG buses have average particle count concentrations near the average concentrations for the oxidation-catalyst diesel buses, and the conventional diesel buses have average particle count concentrations approximately three to four times greater than the CNG buses. Particle number concentrations are also noticeably affected by bus idling behavior and ventilation options, such as, window position and air conditioning.

  4. New particle formation events arising from painting materials in an indoor microenvironment

    NASA Astrophysics Data System (ADS)

    Lazaridis, Mihalis; Serfozo, Norbert; Chatoutsidou, Sofia Eirini; Glytsos, Thodoros

    2015-02-01

    Particulate matter (PM) number size distribution and mass concentration along with total volatile organic compounds (TVOC) were measured during emissions from painting materials inside an indoor microenvironment. The emission sources were derived from oil painting medium and turpentine used for painting. Two sets of measurements (10 experiments) were conducted in a laboratory room of 54 m3. New particle formation events were observed in all 10 experiments. The nucleation events lasted on average less than one hour with an average growth rate 33.9 ± 9.1 nm/h and average formation rate 21.1 ± 8.7 cm-3s-1. After the end of the nucleation event, a condensational growth of indoor particles followed with average growth rate 11.6 ± 2.8 nm/h and duration between 1.4 and 4.1 h. High concentrations up to 3.24 ppm were measured for the indoor TVOC concentrations during the experiments. Simultaneous mass and number size concentration measurements were performed outdoors where no new particle formation event was observed. It is the first time that high nucleation rates indoors were observed in conjunction with high TVOC concentrations originating from painting materials which resulted to high exposure concentration levels of particle number concentration.

  5. Quantification of differences between occupancy and total monitoring periods for better assessment of exposure to particles in indoor environments

    NASA Astrophysics Data System (ADS)

    Wierzbicka, A.; Bohgard, M.; Pagels, J. H.; Dahl, A.; Löndahl, J.; Hussein, T.; Swietlicki, E.; Gudmundsson, A.

    2015-04-01

    For the assessment of personal exposure, information about the concentration of pollutants when people are in given indoor environments (occupancy time) are of prime importance. However this kind of data frequently is not reported. The aim of this study was to assess differences in particle characteristics between occupancy time and the total monitoring period, with the latter being the most frequently used averaging time in the published data. Seven indoor environments were selected in Sweden and Finland: an apartment, two houses, two schools, a supermarket, and a restaurant. They were assessed for particle number and mass concentrations and number size distributions. The measurements using a Scanning Mobility Particle Sizer and two photometers were conducted for seven consecutive days during winter in each location. Particle concentrations in residences and schools were, as expected, the highest during occupancy time. In the apartment average and median PM2.5 mass concentrations during the occupancy time were 29% and 17% higher, respectively compared to total monitoring period. In both schools, the average and medium values of the PM2.5 mass concentrations were on average higher during teaching hours compared to the total monitoring period by 16% and 32%, respectively. When it comes to particle number concentrations (PNC), in the apartment during occupancy, the average and median values were 33% and 58% higher, respectively than during the total monitoring period. In both houses and schools the average and median PNC were similar for the occupancy and total monitoring periods. General conclusions on the basis of measurements in the limited number of indoor environments cannot be drawn. However the results confirm a strong dependence on type and frequency of indoor activities that generate particles and site specificity. The results also indicate that the exclusion of data series during non-occupancy periods can improve the estimates of particle concentrations and characteristics suitable for exposure assessment, which is crucial for estimating health effects in epidemiological and toxicological studies.

  6. Long-term study of urban ultrafine particles and other pollutants

    NASA Astrophysics Data System (ADS)

    Wang, Yungang; Hopke, Philip K.; Chalupa, David C.; Utell, Mark J.

    2011-12-01

    Continuous measurements of number size distributions of ultrafine particles (UFPs) and other pollutants (PM 2.5, SO 2, CO and O 3) have been performed in Rochester, New York since late November 2001. The 2002-2009 average number concentrations of particles in three size ranges (10-50 nm, 50-100 nm and 100-500 nm) were 4730 cm -3, 1838 cm -3, and 1073 cm -3, respectively. The lowest annual average number concentrations of particles in 10-50 nm and 50-100 nm were observed during 2008-2009. The lowest monthly average number concentration of 10-50 nm particles was observed in July and the highest in February. The daily patterns of 10-50 nm particles had two peaks at early morning (7-8 AM) and early afternoon (2 PM). There was a distinct declining trend in the peak number concentrations from 2002-2005 to 2008-2009. Large reductions in SO 2 concentrations associated with northerly winds between 2007 and 2009 were observed. The most significant annual decrease in the frequency of morning particle nucleation was observed from 2005 to 2007. The monthly variation in the morning nucleation events showed a close correlation with number concentrations of 10-50 nm particles ( r = 0.89). The frequency of the local SO 2-related nucleation events was much higher before 2006. All of these results suggest significant impacts of highway traffic and industrial sources. The decrease in particle number concentrations and particle nucleation events likely resulted from a combination of the U.S. EPA 2007 Heavy-Duty Highway Rule implemented on October 1, 2006, the closure of a large coal-fired power plant in May 2008, and the reduction of Eastman Kodak emissions.

  7. Comparison of two estimation methods for surface area concentration using number concentration and mass concentration of combustion-related ultrafine particles

    NASA Astrophysics Data System (ADS)

    Park, Ji Young; Raynor, Peter C.; Maynard, Andrew D.; Eberly, Lynn E.; Ramachandran, Gurumurthy

    Recent research has suggested that the adverse health effects caused by nanoparticles are associated with their surface area (SA) concentrations. In this study, SA was estimated in two ways using number and mass concentrations and compared with SA (SA meas) measured using a diffusion charger (DC). Aerosol measurements were made twice: once starting in October 2002 and again starting in December 2002 in Mysore, India in residences that used kerosene or liquefied petroleum gas (LPG) for cooking. Mass, number, and SA concentrations and size distributions by number were measured in each residence. The first estimation method (SA PSD) used the size distribution by number to estimate SA. The second method (SA INV) used a simple inversion scheme that incorporated number and mass concentrations while assuming a lognormal size distribution with a known geometrical standard deviation. SA PSD was, on average, 2.4 times greater (range = 1.6-3.4) than SA meas while SA INV was, on average, 6.0 times greater (range = 4.6-7.7) than SA meas. The logarithms of SA PSD and SA INV were found to be statistically significant predictors of the logarithm of SA meas. The study showed that particle number and mass concentration measurements can be used to estimate SA with a correction factor that ranges between 2 and 6.

  8. Accuracy of the raw-data-based effective atomic numbers and monochromatic CT numbers for contrast medium with a dual-energy CT technique.

    PubMed

    Kawahara, Daisuke; Ozawa, Shuichi; Yokomachi, Kazushi; Tanaka, Sodai; Higaki, Toru; Fujioka, Chikako; Suzuki, Tatsuhiko; Tsuneda, Masato; Nakashima, Takeo; Ohno, Yoshimi; Nagata, Yasushi

    2018-02-01

    To evaluate the accuracy of raw-data-based effective atomic number (Z eff ) values and monochromatic CT numbers for contrast material of varying iodine concentrations, obtained using dual-energy CT. We used a tissue characterization phantom and varying concentrations of iodinated contrast medium. A comparison between the theoretical values of Z eff and that provided by the manufacturer was performed. The measured and theoretical monochromatic CT numbers at 40-130 keV were compared. The average difference between the Z eff values of lung (inhale) inserts in the tissue characterization phantom was 81.3% and the average Z eff difference was within 8.4%. The average difference between the Z eff values of the varying concentrations of iodinated contrast medium was within 11.2%. For the varying concentrations of iodinated contrast medium, the differences between the measured and theoretical monochromatic CT values increased with decreasing monochromatic energy. The Z eff and monochromatic CT numbers in the tissue characterization phantom were reasonably accurate. The accuracy of the raw-data-based Z eff values was higher than that of image-based Z eff values in the tissue-equivalent phantom. The accuracy of Z eff values in the contrast medium was in good agreement within the maximum SD found in the iodine concentration range of clinical dynamic CT imaging. Moreover, the optimum monochromatic energy for human tissue and iodinated contrast medium was found to be 70 keV. Advances in knowledge: The accuracy of the Z eff values and monochromatic CT numbers of the contrast medium created by raw-data-based, dual-energy CT could be sufficient in clinical conditions.

  9. Measurement of the atmospheric aerosol particle size distribution in a highly polluted mega-city in Southeast Asia (Dhaka-Bangladesh)

    NASA Astrophysics Data System (ADS)

    Salam, Abdus; Mamoon, Hassan Al; Ullah, Md. Basir; Ullah, Shah M.

    2012-11-01

    Aerosol particle size distribution was measured with an aerodynamic particle sizer (APS) spectrometer continuously from January 21 to April 24, 2006 in Dhaka, Bangladesh. Particles number, surface and mass distributions data were stored automatically with Aerosol Instrument Manager (AIM) software on average every half an hour in a computer attached to the APS. The grand total average of number, surface and mass concentrations were 8.2 × 103 ± 7.8 × 103 particles cm-3, 13.3 × 103 ± 11.8 × 103 μm2 cm-3 and 3.04 ± 2.10 mg m-3, respectively. Fine particles with diameter smaller than 1.0 μm aerodynamic diameter (AD) dominated the number concentration, accounted for 91.7% of the total particles indicating vehicular emissions were dominating in Dhaka air either from fossil fuel burning or compressed natural gas (CNGs). The surface and mass concentrations between 0.5 and 1.0 μm AD were about 56.0% and 26.4% of the total particles, respectively. Remarkable seasonal differences were observed between winter and pre-monsoon seasons with the highest monthly average in January and the lowest in April. Aerosol particles in winter were 3.79 times higher for number, 3.15 times for surface and 2.18 times for mass distributions than during the pre-monsoon season. Weekends had lower concentrations than weekdays due to less vehicular traffic in the streets. Aerosol particles concentrations were about 15.0% (ranging from 9.4% to 17.3%) higher during traffic peak hours (6:00am-8:00pm) than off hours (8:00pm-6:00am). These are the first aerosol size distribution measurements with respect to number, surface and mass concentrations in real time at Dhaka, Bangladesh.

  10. Numbers, biomass and cultivable diversity of microbial populations relate to depth and borehole-specific conditions in groundwater from depths of 4-450 m in Olkiluoto, Finland.

    PubMed

    Pedersen, Karsten; Arlinger, Johanna; Eriksson, Sara; Hallbeck, Anna; Hallbeck, Lotta; Johansson, Jessica

    2008-07-01

    Microbiology, chemistry and dissolved gas in groundwater from Olkiluoto, Finland, were analysed over 3 years; samples came from 16 shallow observation tubes and boreholes from depths of 3.9-16.2 m and 14 deep boreholes from depths of 35-742 m. The average total number of cells (TNC) was 3.9 x 10(5) cells per ml in the shallow groundwater and 5.7 x 10(4) cells per ml in the deep groundwater. There was a significant correlation between the amount of biomass, analysed as ATP concentration, and TNC. ATP concentration also correlated with the stacked output of anaerobic most probable number cultivations of nitrate-, iron-, manganese- and sulphate-reducing bacteria, and acetogenic bacteria and methanogens. The numbers and biomass varied at most by approximately three orders of magnitude between boreholes, and TNC and ATP were positively related to the concentration of dissolved organic carbon. Two depth zones were found where the numbers, biomass and diversity of the microbial populations peaked. Shallow groundwater down to a depth of 16.2 m on average contained more biomass and cultivable microorganisms than did deep groundwater, except in a zone at a depth of approximately 300 m where the average biomass and number of cultivable microorganisms approached those of shallow groundwater. Starting at a depth of approximately 300 m, there were steep gradients of decreasing sulphate and increasing methane concentrations with depth; together with the peaks in biomass and sulphide concentration at this depth, these suggest that anaerobic methane oxidation may be a significant process at depth in Olkiluoto.

  11. Concentration of Swiss Elite Orienteers.

    ERIC Educational Resources Information Center

    Seiler, Roland; Wetzel, Jorg

    1997-01-01

    A visual discrimination task was used to measure concentration among 43 members of Swiss national orienteering teams. Subjects were above average in the number of target objects dealt with and in duration of continuous concentration. For females only, ranking in orienteering performance was related to quality of concentration (ratio of correct to…

  12. Particulate pollution in different housing types in a UK suburban location.

    PubMed

    Nasir, Zaheer Ahmad; Colbeck, Ian

    2013-02-15

    To investigate the levels of particulate pollution in residential built environments measurements of PM(10), PM(2.5), and PM(1) and concentrations were made between 2004 and 2008 in various residencies in a UK suburban location. Measurements were carried out in three different residential settings (Types I, II and III). In type I non-smoking living rooms, the highest 24-hour mean concentrations were found in summer. When smoking took place in type I residences, the concentrations of PM(10), PM(2.5) and PM(1), during the winter were almost double those in summer. In type II houses the concentrations were higher in the houses with open plan kitchens than in those with separate kitchens. In type III houses, mean concentrations were significantly higher in wood heated living rooms than those using central heating. In kitchens, cooking resulted in substantially higher concentrations of particulate matter with levels above those in smoking living rooms in winter. The hourly maximum values of number concentration were considerably higher in smoking rooms than non-smoking ones. Cooking resulted in increased number concentrations, with the average hourly maximum concentration of 179,110 #/cm(3). Particle mass and number emission rates were determined for a number of activities. In kitchens grilling had the highest average number emission rate, followed by boiling and frying. The results clearly highlight the impact of different forms of dwelling and their use and management by occupants on the levels of particulate matter in naturally ventilated residential built environments. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Time and size resolved Measurement of Mass Concentration at an Urban Site

    NASA Astrophysics Data System (ADS)

    Karg, E.; Ferron, G. A.; Heyder, J.

    2003-04-01

    Time- and size-resolved measurements of ambient particles are necessary for modelling of atmospheric particle transport, the interpretation of particulate pollution events and the estimation of particle deposition in the human lungs. In the size range 0.01 - 2 µm time- and size-resolved data are obtained from differential mobility and optical particle counter measurements and from gravimetric filter analyses on a daily basis (PM2.5). By comparison of the time averaged and size integrated particle volume concentration with PM2.5 data, an average density of ambient particles can be estimated. Using this density, the number concentration data can be converted in time- and size-resolved mass concentration. Such measurements were carried out at a Munich downtown crossroads. The spectra were integrated in the size ranges 10 - 100 nm, 100 - 500 nm and 500 - 2000 nm. Particles in these ranges are named ultrafine, fine and coarse particles. These ranges roughly represent freshly emitted particles, aged/accumulated particles and particles entrained by erosive processes. An average number concentration of 80000 1/cm3 (s.d. 67%), a particle volume concentration of 53 µm3/cm3 (s.d. 76%) and a PM2.5 mass concentration of 27 µg/m3 was found. These particle volume- and PM2.5 data imply an average density of 0.51 g/cm3. Average number concentration showed 95.3%, 4.7% and 0.006% of the total particle concentration in the size ranges mentioned above. Mass concentration was 14.7%, 80.2% and 5.1% of the total, assuming the average density to be valid for all particles. The variability in mass concentration was 94%, 75% and 33% for the three size ranges. Nearly all ambient particles were in the ultrafine size range, whereas most of the mass concentration was in the fine size range. However, a considerable mass fraction of nearly 15% was found in the ultrafine size range. As the sampling site was close to the road and traffic emissions were the major source of the particles, 1) the density was very low due to agglomerated and porous structures of freshly emitted combustion particles and 2) the variability was highest in the ultrafine range, obviously correlated to traffic activity and lowest in the micron size range. In conclusion, almost all ambient particles were ultrafine particles, whereas most of the particle mass was associated with fine particles. Nevertheless, a considerable mass fraction was found in the ultrafine size range. These particles had a very low density so that they can be considered as agglomerated and porous particles emitted from vehicles passing the crossroads. Therefore they showed a much higher variation in mass concentration than the fine and coarse particles.

  14. Effect of γ-Al2O3/water nanofluid on the thermal performance of shell and coil heat exchanger with different coil torsions

    NASA Astrophysics Data System (ADS)

    Elshazly, K. M.; Sakr, R. Y.; Ali, R. K.; Salem, M. R.

    2017-06-01

    This work investigated experimentally the thermal performance of shell and coil heat exchanger with different coil torsions (λ) for γ-Al2O3/water nanofluid flow. Five helically coiled tube (HCT) with 0.0442 ≤ λ ≤ 0.1348 were tested within turbulent flow regime. The average size of γ-Al2O3 particles is 40 nm and volume concentration (φ) is varied from 0 to 2%. Results showed that reducing coil torsion enhances the heat transfer rate and increases HCT-friction factor (fc). Also, it is noticed that HCT average Nusselt number (Nut) and fc of nanofluids increase with increasing γ-Al2O3 volume concentration. The thermal performance index, TPI = (ht,nf/ht,bf)/(ΔPc,nf/ΔPc,bf). increases with increasing nanoparticles concentration, coil torsion, HCT-side inlet temperature and nanofluid flow rate. Over the studied range of HCT-Reynolds number, the average value of TPI is of 1.34 and 2.24 at φ = 0.5% and φ = 2%, respectively. The average value of TPI is of 1.64 at λ = 0.0442 while its average value at λ = 0.1348 is of 2.01. One of the main contributions is to provide heat equipments designers with Nut and fc correlations for practical configurations shell and coil heat exchangers with a wide range of nanofluid concentration.

  15. [Distribution of atmospheric ultrafine particles during haze weather in Hangzhou].

    PubMed

    Chen, Qiu-Fang; Sun, Zai; Xie, Xiao-Fang

    2014-08-01

    Atmospheric ultrafine particles (UFPs) were monitored with fast mobility particle sizer (FMPS) in continuous haze weather and the haze fading process during December 6 to 11, 2013 in Hangzhou. Particle concentration and size distribution were studied associated with meteorological factors. The results showed that number concentrations were the highest at night and began to reduce in the morning. There was a small peak at 8 o'clock in the morning and 18 o'clock in the afternoon. It showed an obvious peak traffic source, which indicated that traffic emissions played a great role in the atmospheric pollution. During haze weather, the highest number concentration of UFPs reached 8 x 10(4) cm(-3). Particle size spectrum distribution was bimodal, the peak particle sizes were 15 nm and 100 nm respectively. Majority of UFPs were Aitken mode and Accumulation mode and the size of most particles concentrated near 100 nm. Average CMD(count medium diameter) was 85.89 nm. During haze fading process, number concentration and particles with size around 100 nm began to reduce and peak size shifted to small size. Nuclear modal particles increased and were more than accumulation mode. Average CMD was 58.64 nm. Meteorological factors such as the visibility and wind were negatively correlated with the particle number concentration. Correlation coefficient R were -0.225 and - 0.229. The humidity was correlated with number concentration. Correlation coefficient R was 0.271. The atmosphere was stable in winter and the level temperature had small correlation with number concentration. Therefore, study on distribution of atmospheric ultrafine particles during haze weather had the significance on the formation mechanism and control of haze weather.

  16. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    NASA Astrophysics Data System (ADS)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for atmospheric aerosols with a coarse mode diameter situated at about 3.5 μm. The experimental results reported in this study will be important in validating satellite based observations and simulation models of the African dust plume towards the Gulf of Guinea during winter.

  17. A comment on Baker et al. 'The time dependence of an atom-vacancy encounter due to the vacancy mechanism of diffusion'

    NASA Astrophysics Data System (ADS)

    Dasenbrock-Gammon, Nathan; Zacate, Matthew O.

    2017-05-01

    Baker et al. derived time-dependent expressions for calculating average number of jumps per encounter and displacement probabilities for vacancy diffusion in crystal lattice systems with infinitesimal vacancy concentrations. As shown in this work, their formulation is readily expanded to include finite vacancy concentration, which allows calculation of concentration-dependent, time-averaged quantities. This is useful because it provides a computationally efficient method to express lineshapes of nuclear spectroscopic techniques through the use of stochastic fluctuation models.

  18. Dissolved oxygen transfer to sediments by sweep and eject motions in aquatic environments

    USGS Publications Warehouse

    O'Connor, B.L.; Hondzo, Miki

    2008-01-01

    Dissolved oxygen (DO) concentrations were quantified near the sediment-water interface to evaluate DO transfer to sediments in a laboratory recirculating flume and open channel under varying fluid-flow conditions. DO concentration fluctuations were observed within the diffusive sublayer, as defined by the time-averaged DO concentration gradient near the sediment-water interface. Evaluation of the DO concentration fluctuations along with detailed fluid-flow characterizations were used to quantify quasi-periodic sweep and eject motions (bursting events) near the sediments. Bursting events dominated the Reynolds shear stresses responsible for momentum and mass fluctuations near the sediment bed. Two independent methods for detecting bursting events using DO concentration and velocity data produced consistent results. The average time between bursting events was scaled with wall variables and was incorporated into a similarity model to describe the dimensionless mass transfer coefficient (Sherwood number, Sh) in terms of the Reynolds number, Re, and Schmidt number, Sc, which described transport in the flow. The scaling of bursting events was employed with the similarity model to quantify DO transfer to sediments and results showed a high degree of agreement with experimental data. ?? 2008, by the American Society of Limnology and Oceanography, Inc.

  19. Towards a universal master curve in magnetorheology

    NASA Astrophysics Data System (ADS)

    Ruiz-López, José Antonio; Hidalgo-Alvarez, Roque; de Vicente, Juan

    2017-05-01

    We demonstrate that inverse ferrofluids behave as model magnetorheological fluids. A universal master curve is proposed, using a reduced Mason number, under the frame of a structural viscosity model where the magnetic field strength dependence is solely contained in the Mason number and the particle concentration is solely contained in the critical Mason number (i.e. the yield stress). A linear dependence of the critical Mason number with the particle concentration is observed that is in good agreement with a mean (average) magnetization approximation, particle level dynamic simulations and micromechanical models available in the literature.

  20. Real-Time Ultrafine Aerosol Measurements from Wastewater Treatment Facilities.

    PubMed

    Piqueras, P; Li, F; Castelluccio, V; Matsumoto, M; Asa-Awuku, A

    2016-10-18

    Airborne particle emissions from wastewater treatment plants (WWTP) have been associated with health repercussions but particulate quantification studies are scarce. In this study, particulate matter (PM) number concentrations and size distributions in the ultrafine range (7-300 nm) were measured from two different sources: a laboratory-scale aerobic bioreactor and the activated sludge aeration basins at Orange County Sanitation District (OCSD). The relationships between wastewater parameters (total organic carbon (TOC), chemical oxygen demand (COD), and total suspended solids (TSS)), aeration flow rate and particle concentrations were also explored. A significant positive relationship was found between particle concentration and WWTP variables (COD: r(10) = 0.876, p <.001, TOC: r(10) = 0.664, p <.05, TSS: r(10) = 0.707, p <.05, aeration flow rate: r(8) = 0.988, p <.0001). A theoretical model was also developed from empirical data to compare real world WWTP aerosol number emission fluxes with laboratory data. Aerosol number fluxes at OCSD aerated basins (9.8 × 10 4 lbs/min·cm 2 ) and the bioreactor (7.95 × 10 4 lbs/min·cm 2 ) were calculated and showed a relatively small difference (19%). The ultrafine size distributions from both systems were consistent, with a mode of ∼48 nm. The average mass concentration (7.03 μg/cm 3 ) from OCSD was relatively small compared to other urban sources. However, the in-tank average number concentration of airborne particles (14 480 lbs/cm 3 ) was higher than background ambient concentrations.

  1. Methods for fitting a parametric probability distribution to most probable number data.

    PubMed

    Williams, Michael S; Ebel, Eric D

    2012-07-02

    Every year hundreds of thousands, if not millions, of samples are collected and analyzed to assess microbial contamination in food and water. The concentration of pathogenic organisms at the end of the production process is low for most commodities, so a highly sensitive screening test is used to determine whether the organism of interest is present in a sample. In some applications, samples that test positive are subjected to quantitation. The most probable number (MPN) technique is a common method to quantify the level of contamination in a sample because it is able to provide estimates at low concentrations. This technique uses a series of dilution count experiments to derive estimates of the concentration of the microorganism of interest. An application for these data is food-safety risk assessment, where the MPN concentration estimates can be fitted to a parametric distribution to summarize the range of potential exposures to the contaminant. Many different methods (e.g., substitution methods, maximum likelihood and regression on order statistics) have been proposed to fit microbial contamination data to a distribution, but the development of these methods rarely considers how the MPN technique influences the choice of distribution function and fitting method. An often overlooked aspect when applying these methods is whether the data represent actual measurements of the average concentration of microorganism per milliliter or the data are real-valued estimates of the average concentration, as is the case with MPN data. In this study, we propose two methods for fitting MPN data to a probability distribution. The first method uses a maximum likelihood estimator that takes average concentration values as the data inputs. The second is a Bayesian latent variable method that uses the counts of the number of positive tubes at each dilution to estimate the parameters of the contamination distribution. The performance of the two fitting methods is compared for two data sets that represent Salmonella and Campylobacter concentrations on chicken carcasses. The results demonstrate a bias in the maximum likelihood estimator that increases with reductions in average concentration. The Bayesian method provided unbiased estimates of the concentration distribution parameters for all data sets. We provide computer code for the Bayesian fitting method. Published by Elsevier B.V.

  2. Triacylglycerols profiling in plant oils important in food industry, dietetics and cosmetics using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Lísa, Miroslav; Holcapek, Michal

    2008-07-11

    Optimized non-aqueous reversed-phase high-performance liquid chromatography method using acetonitrile-2-propanol gradient elution and the column coupling in the total length of 45 cm has been applied for the high resolution separation of plant oils important in food industry, dietetics and cosmetics. Positive-ion atmospheric pressure chemical ionization mass spectrometry is used for the unambiguous identification and also the reliable quantitation with the response factors approach. Based on the precise determination of individual triacyglycerol concentrations, the calculation of average parameters important in the nutrition is performed, i.e. average carbon number, average double bond number, relative concentrations of essential, saturated, monounsaturated and polyunsaturated fatty acids. Results are reported in the form of both chromatographic fingerprints and tables containing relative concentrations for all triacylglycerols and fatty acids in individual samples. In total, 264 triacylglycerols consisting of 28 fatty acids with the alkyl chain length from 6 to 26 carbon atoms and 0 to 4 double bonds have been identified in 26 industrial important plant oils.

  3. National Program of Inspection of Non-Federal Dams, Tennessee. Jennings Creek Watershed Dam Number 15 (Inventory Number TN 08705), Cumberland River Basin, near North Springs, Jackson County, Tennessee. Phase I Investigation Report,

    DTIC Science & Technology

    1981-06-01

    acres (0.766 mi2 ). Major soil types in the watershed include Bodine, Mountview, Delrose, Dickson, and Mimosa . The drainage area is mountainous and...Bodine, Mountview, Delrose, Dickson, Mimosa c. Average slope - 40% d. Land use - Woods, pasture, few roads, and isolated structures e. Runoff from...490 acres (0.766 mi2) B. Average Channel Slope 2% C. Average Land Slope 40% D. Hydrologic Soil Group 90% C (Dickson, Mimosa ) E. Time of Concentration

  4. Results of simultaneous radon and thoron measurements in 33 metropolitan areas of Canada

    PubMed Central

    Chen, Jing; Bergman, Lauren; Falcomer, Renato; Whyte, Jeff

    2015-01-01

    Radon has been identified as the second leading cause of lung cancer after tobacco smoking. 222Rn (radon gas) and 220Rn (thoron gas) are the most common isotopes of radon. In order to assess thoron contribution to indoor radon and thoron exposure, a survey of residential radon and thoron concentrations was initiated in 2012 with ∼4000 homes in the 33 census metropolitan areas of Canada. The survey confirmed that indoor radon and thoron concentrations are not correlated and that thoron concentrations cannot be predicted from widely available radon information. The results showed that thoron contribution to the radiation dose varied from 0.5 to 6 % geographically. The study indicated that, on average, thoron contributes ∼3 % of the radiation dose due to indoor radon and thoron exposure in Canada. Even though the estimated average thoron concentration of 9 Bq m−3 (population weighted) in Canada is low, the average radon concentration of 96 Bq m−3 (population weighted) is more than double the worldwide average indoor radon concentration. It is clear that continued efforts are needed to further reduce the exposure and effectively reduce the number of lung cancers caused by radon. PMID:24748485

  5. Particles exposure while sitting at bus stops of hot and humid Singapore

    NASA Astrophysics Data System (ADS)

    Velasco, Erik; Tan, Sok Huang

    2016-10-01

    Transport microenvironments represent hotspots of personal exposure to airborne toxics, particularly of ultrafine particles. Thus, a large exposure may be experienced during daily commuting trips. Amongst these microenvironments, bus stops are critical because of the commuters' close proximity to fresh fumes rich in particles emitted by passing, idling and accelerating buses and motor vehicles, in general. Standing at a bus stop may represent a period of disproportionately high exposure and it is, therefore, essential to know the number, chemical composition and physical characteristics of such particles for a proper public health assessment and design of mobility strategies. On this account, a set of portable and battery operated sensors were used to evaluate a number of properties of the traffic particles to which thousands of citizens are daily exposed at bus stops of Singapore. In terms of fine particles, the exposure concentration was on average 1.5-3 times higher than the mean concentration at ambient level reported by the local authorities. On average 60% of those particles corresponded to black carbon. An important presence of particle-bound polycyclic aromatics was observed. The particle number concentration and active surface area were effective metrics to quantify ultrafine particles, as expected both showed strong correlations. The number of particles at bus stops was on average 3.5 times higher than at ambient level. The most alarming issue was probably the size of the particles. Assuming spherical particles, a median of 27 nm was estimated based on the active surface area and particle number data. Particles of this size form the nucleation mode, which is related to harmful health effects.

  6. Aerosol size distribution and new particle formation events in the suburb of Xi'an, northwest China

    NASA Astrophysics Data System (ADS)

    Peng, Yan; Liu, Xiaodong; Dai, Jin; Wang, Zhao; Dong, Zipeng; Dong, Yan; Chen, Chuang; Li, Xingmin; Zhao, Na; Fan, Chao

    2017-03-01

    Particle number concentration and size distribution are important for better understanding the characteristics of aerosols. However, their measurements are scarce in western China. Based on the first measurement of particle number size distribution (10-487 nm) in the suburb of Xi'an, northwest China from November 2013 to December 2014, the seasonal, monthly and diurnal average particle number concentrations were investigated, and the characteristics of new particle formation (NPF) events and their dependencies on meteorological parameters also discussed. The results showed that the annual average particle number concentrations in the nucleation (NNUC), Aitken (NAIT), and Accumulation (NACC) size ranges were 960 cm-3, 4457 cm-3, 3548 cm-3, respectively. The mean total particle number concentration (NTOT) was 8965 cm-3 and largely dominated by particles in Aitken mode. The number concentration was dominated by particles around 67.3 nm in spring, summer and fall, while about 89.8 nm in winter. The percentage of the ultrafine size range (UFP, particles of diameter below 100 nm) to total particle number concentration was 63.2%, 69.6%, 62.2% and 58.1% in four seasons. The diurnal variation of the nucleation mode particles was mainly influenced by NPF events in summer, while by both traffic densities and NPF events in spring, fall and winter. The diurnal variation of the number concentration of Aitken mode particles correlated with the traffic emission in spring, fall and winter, while in summer it more correlated with contribution of the growth of the nucleation mode particles. The burst of nucleation mode particles typically started in the daytime (08:15-16:05, LST). The growth rates of nucleated particles ranged from 2.8 to 10.7 nm h-1 with an average of 5.0 ± 1.9 nm h-1. Among observed 66 NPF events from 347 effective measurement days, 85 percent of their air masses came from north or northwest China, resulting in a low concentration of pre-existing particles, and only 15 percent came southerly from Qingling Mountains. Based on their growth rate, 64 and 36 percent of their subsequent particles, corresponding to types 1 and 2 NPF events, grew and seldom grew after the burst of nucleation mode particles. For type 1 NPF event, the nucleated particles could grow up to 40 nm or larger when surface winds shifted from westerly to easterly or southeasterly (from village areas). For type 2 NPF events, the particles kept almost unchanged when the winds stayed westerly. This implied that the surface wind direction with different emissions might play an important role in new particle growth in suburb of Xi'an.

  7. [Atmospheric particle formation events in Nanjing during summer 2010].

    PubMed

    Wang, Hong-Lei; Zhu, Bin; Shen, Li-Juan; Kang, Han-Qing; Diao, Yi-Wei

    2012-03-01

    Feature of aerosol particle number concentration, condition and impact factor of new particle formation (NPF) were investigated in Nanjing during summer. In this study, aerosol particle number concentration and gaseous pollutants (O3, SO2 and NO2) measurements were carried out by Wide-Range Particle Spectrometer (WPS) and Differential Optical Absorption Spectroscopy (DOAS) in July 2010. Combining with observations from Automatic Weather Station and Backward Trajectory Simulation, the condition and impact factor of NPF were discussed. Results showed that the averaged 10-500 nm particle number concentration was 1.7 x 10(4) cm(-3), similar to some typical observation values in North American and Europe; the 10-25 nm particle number concentration accounted for 25% of the total number concentration. Six NPF events occurred during observation. We analyzed that stable wind speed and direction, strong solar radiation promoted the NPF. The humidity during NPF event varied from 50% to 70%. Results indicated that clean ocean air mass brought from easterly and southerly wind promoted the NPF by Backward Trajectory Model Simulation. During the NPF event, the 10 - 25 nm particle number concentration positively correlated with the concentration of SO2, and negatively correlated with O3, whereas poorly correlated with NO2.

  8. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments

    NASA Astrophysics Data System (ADS)

    Morales Betancourt, R.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J. P.; Sarmiento, O. L.; Gallo-Murcia, S. M.; Contreras, Y.

    2017-05-01

    This research determined intake dose of fine particulate matter (PM2.5), equivalent black carbon (eBC), and number of sub-micron particles (Np) for commuters in Bogotá, Colombia. Doses were estimated through measurements of exposure concentration, a surrogate of physical activity, as well as travel times and speeds. Impacts of travel mode, traffic load, and street configuration on dose and exposure were explored. Three road segments were selected because of their different traffic loads and composition, and dissimilar street configuration. The transport modes considered include active modes (walking and cycling) and motorized modes (bus, car, taxi, and motorcycle). Measurements were performed simultaneously in the available modes at each road segment. High average eBC concentrations were observed throughout the campaign, ranging from 20 to 120 μgm-3 . Commuters in motorized modes experienced significantly higher exposure concentrations than pedestrians and bicyclists. The highest average concentrations of PM2.5, eBC , and Np were measured inside the city's Bus Rapid Transit (BRT) system vehicles. Pedestrians and bicycle users in an open street configuration were exposed to the lowest average concentrations of PM2.5 and eBC , six times lower than those experienced by commuters using the BRT in the same street segment. Pedestrians experienced the highest particulate matter intake dose in the road segments studied, despite being exposed to lower concentrations than commuters in motorized modes. Average potential dose of PM2.5 and eBC per unit length traveled were nearly three times higher for pedestrians in a street canyon configuration compared to commuters in public transport. Slower travel speed and elevated inhalation rates dominate PM dose for pedestrians. The presence of dedicated bike lanes on sidewalks has a significant impact on reducing the exposure concentration for bicyclists compared to those riding in mixed traffic lanes. This study proposes a simple method to perform loading effect correction for measurements of black carbon using multiple portable aethalometers.

  9. Numerical study of a confined slot impinging jet with nanofluids

    PubMed Central

    2011-01-01

    Background Heat transfer enhancement technology concerns with the aim of developing more efficient systems to satisfy the increasing demands of many applications in the fields of automotive, aerospace, electronic and process industry. A solution for obtaining efficient cooling systems is represented by the use of confined or unconfined impinging jets. Moreover, the possibility of increasing the thermal performances of the working fluids can be taken into account, and the introduction of nanoparticles in a base fluid can be considered. Results In this article, a numerical investigation on confined impinging slot jet working with a mixture of water and Al2O3 nanoparticles is described. The flow is turbulent and a constant temperature is applied on the impinging. A single-phase model approach has been adopted. Different geometric ratios, particle volume concentrations and Reynolds number have been considered to study the behavior of the system in terms of average and local Nusselt number, convective heat transfer coefficient and required pumping power profiles, temperature fields and stream function contours. Conclusions The dimensionless stream function contours show that the intensity and size of the vortex structures depend on the confining effects, given by H/W ratio, Reynolds number and particle concentrations. Furthermore, for increasing concentrations, nanofluids realize increasing fluid bulk temperature, as a result of the elevated thermal conductivity of mixtures. The local Nusselt number profiles show the highest values at the stagnation point, and the lowest at the end of the heated plate. The average Nusselt number increases for increasing particle concentrations and Reynolds numbers; moreover, the highest values are observed for H/W = 10, and a maximum increase of 18% is detected at a concentration equal to 6%. The required pumping power as well as Reynolds number increases and particle concentrations grow, which is almost 4.8 times greater than the values calculated in the case of base fluid. List of symbols PMID:21711743

  10. An Entrance Region Mass Transfer Experiment.

    ERIC Educational Resources Information Center

    Youngquist, G. R.

    1979-01-01

    This paper describes an experiment designed to reveal the consequences of the development of a concentration boundary layer. The rate of a mass transfer limited electrochemical reaction is measured and used to obtain the dependence of average Sherwood number on Reynolds number and entrance length. (Author/BB)

  11. Estimation of spatial patterns of urban air pollution over a 4-week period from repeated 5-min measurements

    NASA Astrophysics Data System (ADS)

    Gillespie, Jonathan; Masey, Nicola; Heal, Mathew R.; Hamilton, Scott; Beverland, Iain J.

    2017-02-01

    Determination of intra-urban spatial variations in air pollutant concentrations for exposure assessment requires substantial time and monitoring equipment. The objective of this study was to establish if short-duration measurements of air pollutants can be used to estimate longer-term pollutant concentrations. We compared 5-min measurements of black carbon (BC) and particle number (PN) concentrations made once per week on 5 occasions, with 4 consecutive 1-week average nitrogen dioxide (NO2) concentrations at 18 locations at a range of distances from busy roads in Glasgow, UK. 5-min BC and PN measurements (averaged over the two 5-min periods at the start and end of a week) explained 40-80%, and 7-64% respectively, of spatial variation in the intervening 1-week NO2 concentrations for individual weeks. Adjustment for variations in background concentrations increased the percentage of explained variation in the bivariate relationship between the full set of NO2 and BC measurements over the 4-week period from 28% to 50% prior to averaging of repeat measurements. The averages of five 5-min BC and PN measurements made over 5 weeks explained 75% and 33% respectively of the variation in average 1-week NO2 concentrations over the same period. The relatively high explained variation observed between BC and NO2 measured on different time scales suggests that, with appropriate steps to correct or average out temporal variations, repeated short-term measurements can be used to provide useful information on longer-term spatial patterns for these traffic-related pollutants.

  12. Field evaluation of the error arising from inadequate time averaging in the standard use of depth-integrating suspended-sediment samplers

    USGS Publications Warehouse

    Topping, David J.; Rubin, David M.; Wright, Scott A.; Melis, Theodore S.

    2011-01-01

    Several common methods for measuring suspended-sediment concentration in rivers in the United States use depth-integrating samplers to collect a velocity-weighted suspended-sediment sample in a subsample of a river cross section. Because depth-integrating samplers are always moving through the water column as they collect a sample, and can collect only a limited volume of water and suspended sediment, they collect only minimally time-averaged data. Four sources of error exist in the field use of these samplers: (1) bed contamination, (2) pressure-driven inrush, (3) inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration, and (4) inadequate time averaging. The first two of these errors arise from misuse of suspended-sediment samplers, and the third has been the subject of previous study using data collected in the sand-bedded Middle Loup River in Nebraska. Of these four sources of error, the least understood source of error arises from the fact that depth-integrating samplers collect only minimally time-averaged data. To evaluate this fourth source of error, we collected suspended-sediment data between 1995 and 2007 at four sites on the Colorado River in Utah and Arizona, using a P-61 suspended-sediment sampler deployed in both point- and one-way depth-integrating modes, and D-96-A1 and D-77 bag-type depth-integrating suspended-sediment samplers. These data indicate that the minimal duration of time averaging during standard field operation of depth-integrating samplers leads to an error that is comparable in magnitude to that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. This random error arising from inadequate time averaging is positively correlated with grain size and does not largely depend on flow conditions or, for a given size class of suspended sediment, on elevation above the bed. Averaging over time scales >1 minute is the likely minimum duration required to result in substantial decreases in this error. During standard two-way depth integration, a depth-integrating suspended-sediment sampler collects a sample of the water-sediment mixture during two transits at each vertical in a cross section: one transit while moving from the water surface to the bed, and another transit while moving from the bed to the water surface. As the number of transits is doubled at an individual vertical, this error is reduced by ~30 percent in each size class of suspended sediment. For a given size class of suspended sediment, the error arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration depends only on the number of verticals collected, whereas the error arising from inadequate time averaging depends on both the number of verticals collected and the number of transits collected at each vertical. Summing these two errors in quadrature yields a total uncertainty in an equal-discharge-increment (EDI) or equal-width-increment (EWI) measurement of the time-averaged velocity-weighted suspended-sediment concentration in a river cross section (exclusive of any laboratory-processing errors). By virtue of how the number of verticals and transits influences the two individual errors within this total uncertainty, the error arising from inadequate time averaging slightly dominates that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. Adding verticals to an EDI or EWI measurement is slightly more effective in reducing the total uncertainty than adding transits only at each vertical, because a new vertical contributes both temporal and spatial information. However, because collection of depth-integrated samples at more transits at each vertical is generally easier and faster than at more verticals, addition of a combination of verticals and transits is likely a more practical approach to reducing the total uncertainty in most field situatio

  13. Ultrafine particles, and PM 2.5 generated from cooking in homes

    NASA Astrophysics Data System (ADS)

    Wan, Man-Pun; Wu, Chi-Li; Sze To, Gin-Nam; Chan, Tsz-Chun; Chao, Christopher Y. H.

    2011-11-01

    Exposure to airborne particulate matters (PM) emitted during cooking can lead to adverse health effects. An understanding of the exposure to PM during cooking at home provides a foundation for the quantification of possible health risks. The concentrations of airborne particles covering the ultrafine (14.6-100 nm) and accumulation mode (100-661.2 nm) size ranges and PM 2.5 (airborne particulate matters smaller than 2.5 μm in diameter) during and after cooking activities were measured in 12 naturally ventilated, non-smoking homes in Hong Kong, covering a total of 33 cooking episodes. The monitored homes all practiced Chinese-style cooking. Cooking elevated the average number concentrations of ultrafine particles (UFPs) and accumulation mode particles (AMPs) by 10 fold from the background level in the living room and by 20-40 fold in the kitchen. PM 2.5 mass concentrations went up to the maximum average of about 160 μg m -3 in the kitchen and about 60 μg m -3 in the living room. Cooking emitted particles dispersed quickly from the kitchen to the living room indicating that the health impact is not limited to occupants in the kitchen. Particle number and mass concentrations remained elevated for 90 min in the kitchen and for 60 min in the living room after cooking. Particles in cooking emissions were mainly in the ultrafine size range in terms of the number count while AMPs contributed to at least 60% of the surface area concentrations in the kitchen and 73% in the living room. This suggests that AMPs could still be a major health concern since the particle surface area concentration is suggested to have a more direct relationship with inhalation toxicity than with number concentration. Particle number concentration (14.6-661.2 nm) in the living room was about 2.7 times that in the outdoor environment, suggesting that better ventilation could help reduce exposure.

  14. Aerosol particles generated by diesel-powered school buses at urban schools as a source of children’s exposure

    PubMed Central

    Hochstetler, Heather A.; Yermakov, Mikhail; Reponen, Tiina; Ryan, Patrick H.; Grinshpun, Sergey A.

    2015-01-01

    Various heath effects in children have been associated with exposure to traffic-related particulate matter (PM), including emissions from school buses. In this study, the indoor and outdoor aerosol at four urban elementary schools serviced by diesel-powered school buses was characterized with respect to the particle number concentrations and size distributions as well as the PM2.5 mass concentrations and elemental compositions. It was determined that the presence of school buses significantly affected the outdoor particle size distribution, specifically in the ultrafine fraction. The time-weighted average of the total number concentration measured outside the schools was significantly associated with the bus and the car counts. The concentration increase was consistently observed during the morning drop-off hours and in most of the days during the afternoon pick-up period (although at a lower degree). Outdoor PM2.5 mass concentrations measured at schools ranged from 3.8 to 27.6 µg m−3. The school with the highest number of operating buses exhibited the highest average PM2.5 mass concentration. The outdoor mass concentrations of elemental carbon (EC) and organic carbon (OC) were also highest at the school with the greatest number of buses. Most (47/55) correlations between traffic-related elements identified in the outdoor PM2.5 were significant with elements identified in the indoor PM2.5. Significant associations were observed between indoor and outdoor aerosols for EC, EC/OC, and the total particle number concentration. Day-to-day and school-to-school variations in Indoor/Outdoor (I/O) ratios were related to the observed differences in opening windows and doors, which enhanced the particle penetration, as well as indoor activities at schools. Overall, the results on I/O ratio obtained in this study reflect the sizes of particles emitted by diesel-powered school bus engines (primarily, an ultrafine fraction capable of penetrating indoors). PMID:25904818

  15. Aerosol particles generated by diesel-powered school buses at urban schools as a source of children's exposure

    NASA Astrophysics Data System (ADS)

    Hochstetler, Heather A.; Yermakov, Mikhail; Reponen, Tiina; Ryan, Patrick H.; Grinshpun, Sergey A.

    2011-03-01

    Various heath effects in children have been associated with exposure to traffic-related particulate matter (PM), including emissions from school buses. In this study, the indoor and outdoor aerosol at four urban elementary schools serviced by diesel-powered school buses was characterized with respect to the particle number concentrations and size distributions as well as the PM2.5 mass concentrations and elemental compositions. It was determined that the presence of school buses significantly affected the outdoor particle size distribution, specifically in the ultrafine fraction. The time-weighted average of the total number concentration measured outside the schools was significantly associated with the bus and the car counts. The concentration increase was consistently observed during the morning drop-off hours and in most of the days during the afternoon pick-up period (although at a lower degree). Outdoor PM2.5 mass concentrations measured at schools ranged from 3.8 to 27.6 μg m-3. The school with the highest number of operating buses exhibited the highest average PM2.5 mass concentration. The outdoor mass concentrations of elemental carbon (EC) and organic carbon (OC) were also highest at the school with the greatest number of buses. Most (47/55) correlations between traffic-related elements identified in the outdoor PM2.5 were significant with elements identified in the indoor PM2.5. Significant associations were observed between indoor and outdoor aerosols for EC, EC/OC, and the total particle number concentration. Day-to-day and school-to-school variations in Indoor/Outdoor (I/O) ratios were related to the observed differences in opening windows and doors, which enhanced the particle penetration, as well as indoor activities at schools. Overall, the results on I/O ratio obtained in this study reflect the sizes of particles emitted by diesel-powered school bus engines (primarily, an ultrafine fraction capable of penetrating indoors).

  16. Aerosol particles generated by diesel-powered school buses at urban schools as a source of children's exposure.

    PubMed

    Hochstetler, Heather A; Yermakov, Mikhail; Reponen, Tiina; Ryan, Patrick H; Grinshpun, Sergey A

    2011-03-01

    Various heath effects in children have been associated with exposure to traffic-related particulate matter (PM), including emissions from school buses. In this study, the indoor and outdoor aerosol at four urban elementary schools serviced by diesel-powered school buses was characterized with respect to the particle number concentrations and size distributions as well as the PM2.5 mass concentrations and elemental compositions. It was determined that the presence of school buses significantly affected the outdoor particle size distribution, specifically in the ultrafine fraction. The time-weighted average of the total number concentration measured outside the schools was significantly associated with the bus and the car counts. The concentration increase was consistently observed during the morning drop-off hours and in most of the days during the afternoon pick-up period (although at a lower degree). Outdoor PM2.5 mass concentrations measured at schools ranged from 3.8 to 27.6 µg m -3 . The school with the highest number of operating buses exhibited the highest average PM2.5 mass concentration. The outdoor mass concentrations of elemental carbon (EC) and organic carbon (OC) were also highest at the school with the greatest number of buses. Most (47/55) correlations between traffic-related elements identified in the outdoor PM2.5 were significant with elements identified in the indoor PM2.5. Significant associations were observed between indoor and outdoor aerosols for EC, EC/OC, and the total particle number concentration. Day-to-day and school-to-school variations in Indoor/Outdoor (I/O) ratios were related to the observed differences in opening windows and doors, which enhanced the particle penetration, as well as indoor activities at schools. Overall, the results on I/O ratio obtained in this study reflect the sizes of particles emitted by diesel-powered school bus engines (primarily, an ultrafine fraction capable of penetrating indoors).

  17. Optimizing a Sensor Network with Data from Hazard Mapping Demonstrated in a Heavy-Vehicle Manufacturing Facility.

    PubMed

    Berman, Jesse D; Peters, Thomas M; Koehler, Kirsten A

    2018-05-28

    To design a method that uses preliminary hazard mapping data to optimize the number and location of sensors within a network for a long-term assessment of occupational concentrations, while preserving temporal variability, accuracy, and precision of predicted hazards. Particle number concentrations (PNCs) and respirable mass concentrations (RMCs) were measured with direct-reading instruments in a large heavy-vehicle manufacturing facility at 80-82 locations during 7 mapping events, stratified by day and season. Using kriged hazard mapping, a statistical approach identified optimal orders for removing locations to capture temporal variability and high prediction precision of PNC and RMC concentrations. We compared optimal-removal, random-removal, and least-optimal-removal orders to bound prediction performance. The temporal variability of PNC was found to be higher than RMC with low correlation between the two particulate metrics (ρ = 0.30). Optimal-removal orders resulted in more accurate PNC kriged estimates (root mean square error [RMSE] = 49.2) at sample locations compared with random-removal order (RMSE = 55.7). For estimates at locations having concentrations in the upper 10th percentile, the optimal-removal order preserved average estimated concentrations better than random- or least-optimal-removal orders (P < 0.01). However, estimated average concentrations using an optimal-removal were not statistically different than random-removal when averaged over the entire facility. No statistical difference was observed for optimal- and random-removal methods for RMCs that were less variable in time and space than PNCs. Optimized removal performed better than random-removal in preserving high temporal variability and accuracy of hazard map for PNC, but not for the more spatially homogeneous RMC. These results can be used to reduce the number of locations used in a network of static sensors for long-term monitoring of hazards in the workplace, without sacrificing prediction performance.

  18. Modeling number of bacteria per food unit in comparison to bacterial concentration in quantitative risk assessment: impact on risk estimates.

    PubMed

    Pouillot, Régis; Chen, Yuhuan; Hoelzer, Karin

    2015-02-01

    When developing quantitative risk assessment models, a fundamental consideration for risk assessors is to decide whether to evaluate changes in bacterial levels in terms of concentrations or in terms of bacterial numbers. Although modeling bacteria in terms of integer numbers may be regarded as a more intuitive and rigorous choice, modeling bacterial concentrations is more popular as it is generally less mathematically complex. We tested three different modeling approaches in a simulation study. The first approach considered bacterial concentrations; the second considered the number of bacteria in contaminated units, and the third considered the expected number of bacteria in contaminated units. Simulation results indicate that modeling concentrations tends to overestimate risk compared to modeling the number of bacteria. A sensitivity analysis using a regression tree suggests that processes which include drastic scenarios consisting of combinations of large bacterial inactivation followed by large bacterial growth frequently lead to a >10-fold overestimation of the average risk when modeling concentrations as opposed to bacterial numbers. Alternatively, the approach of modeling the expected number of bacteria in positive units generates results similar to the second method and is easier to use, thus potentially representing a promising compromise. Published by Elsevier Ltd.

  19. Fine and ultrafine particles in small cities. A case study in the south of Europe.

    PubMed

    Aranda, A; Díaz-de-Mera, Y; Notario, A; Rodríguez, D; Rodríguez, A

    2015-12-01

    Ultrafine particles, PM2.5 and PM10 mass concentration, NO(x), Ozone, SO2, back-trajectories of air masses and meteorological parameters were studied in a small city over the period February, 2013 to June, 2014. The profiles of PM2.5 and PM10 particles are provided, showing averaged values of 16.6 and 21.6 μg m(-3), respectively. The average number concentration of particles in the range of diameters 5.6-560 nm was 1.2 × 10(4)#/ cm(3) with contributions of 42, 51 and 7% from the nucleation, Aitken, and accumulation modes, respectively. The average number concentration of ultrafine particles was 1.1 × 10(4)#/ cm(3). The results obtained are evidence for some differences in the pollution of ambient air by particles in the studied town in comparison to bigger cities. Nucleation events due to emissions from the city were not observed, and traffic emissions amount to a small contribution to PM2.5 and PM10 particles which are mainly due to crustal origin from the arid surroundings and long-range transport from the Sahara Desert.

  20. Estimation of inhaled airborne particle number concentration by subway users in Seoul, Korea.

    PubMed

    Kim, Minhae; Park, Sechan; Namgung, Hyeong-Gyu; Kwon, Soon-Bark

    2017-12-01

    Exposure to airborne particulate matter (PM) causes several diseases in the human body. The smaller particles, which have relatively large surface areas, are actually more harmful to the human body since they can penetrate deeper parts of the lungs or become secondary pollutants by bonding with other atmospheric pollutants, such as nitrogen oxides. The purpose of this study is to present the number of PM inhaled by subway users as a possible reference material for any analysis of the hazards to the human body arising from the inhalation of such PM. Two transfer stations in Seoul, Korea, which have the greatest number of users, were selected for this study. For 0.3-0.422 μm PM, particle number concentration (PNC) was highest outdoors but decreased as the tester moved deeper underground. On the other hand, the PNC between 1 and 10 μm increased as the tester moved deeper underground and showed a high number concentration inside the subway train as well. An analysis of the particles to which subway users are actually exposed to (inhaled particle number), using particle concentration at each measurement location, the average inhalation rate of an adult, and the average stay time at each location, all showed that particles sized 0.01-0.422 μm are mostly inhaled from the outdoor air whereas particles sized 1-10 μm are inhaled as the passengers move deeper underground. Based on these findings, we expect that the inhaled particle number of subway users can be used as reference data for an evaluation of the hazards to health caused by PM inhalation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Assessing exposure to diesel exhaust particles: a case study.

    PubMed

    See, Siao Wei; Balasubramanian, Rajasekhar; Yang, Tzuo Sern; Karthikeyan, Sathrugnan

    2006-11-01

    The assessment of the vehicular contributions to urban pollution levels is of particular importance given the current interest in the possible adverse health effects. This study focused on human exposure to diesel-engine-derived particulate matter. Diesel vehicles are known to emit fine particulate matter (PM2.5) containing carcinogens such as polycyclic aromatic hydrocarbons (PAHs), and have therefore received considerable attention. In this study, the physical (mass and number concentration, and size distribution) and chemical (PAHs) properties were investigated at a major bus interchange in Singapore, influenced only by diesel exhausts. Number concentration and size distribution of particles were determined in real time, while the mass concentrations of PM2.5, and PAHs were measured during operating and nonoperating hours. The average mass concentrations of PM2.5 and PAHs increased by a factor of 2.34 and 5.18, respectively, during operating hours. The average number concentration was also elevated by a factor of 5.07 during operating hours. This increase in the concentration of PM2.5 particles and their chemical constituents during operating hours was attributable to diesel emissions from in-use buses based on the particle size analysis, correlation among PAHs, and the commonly used PAHs diagnostic ratios. To evaluate the potential health threat due inhalation of air pollutants released from diesel engines, the incremental lifetime cancer risk was also calculated for a maximally exposed individual. The findings indicate that the air quality at the bus interchange poses adverse health effects.

  2. Feasibility of using low-cost portable particle monitors for measurement of fine and coarse particulate matter in urban ambient air.

    PubMed

    Han, Inkyu; Symanski, Elaine; Stock, Thomas H

    2017-03-01

    Exposure to ambient particulate matter (PM) is known as a significant risk factor for mortality and morbidity due to cardiorespiratory causes. Owing to increased interest in assessing personal and community exposures to PM, we evaluated the feasibility of employing a low-cost portable direct-reading instrument for measurement of ambient air PM exposure. A Dylos DC 1700 PM sensor was collocated with a Grimm 11-R in an urban residential area of Houston Texas. The 1-min averages of particle number concentrations for sizes between 0.5 and 2.5 µm (small size) and sizes larger than 2.5 µm (large size) from a DC 1700 were compared with the 1-min averages of PM 2.5 (aerodynamic size less than 2.5 µm) and coarse PM (aerodynamic size between 2.5 and 10 µm) concentrations from a Grimm 11-R. We used a linear regression equation to convert DC 1700 number concentrations to mass concentrations, utilizing measurements from the Grimm 11-R. The estimated average DC 1700 PM 2.5 concentration (13.2 ± 13.7 µg/m 3 ) was similar to the average measured Grimm 11-R PM 2.5 concentration (11.3 ± 15.1 µg/m 3 ). The overall correlation (r 2 ) for PM 2.5 between the DC 1700 and Grimm 11-R was 0.778. The estimated average coarse PM concentration from the DC 1700 (5.6 ± 12.1 µg/m 3 ) was also similar to that measured with the Grimm 11-R (4.8 ± 16.5 µg/m 3 ) with an r 2 of 0.481. The effects of relative humidity and particle size on the association between the DC 1700 and the Grimm 11-R results were also examined. The calculated PM mass concentrations from the DC 1700 were close to those measured with the Grimm 11-R when relative humidity was less than 60% for both PM 2.5 and coarse PM. Particle size distribution was more important for the association of coarse PM between the DC 1700 and Grimm 11-R than it was for PM 2.5 . The performance of a low-cost particulate matter (PM) sensor was evaluated in an urban residential area. Both PM 2.5 and coarse PM (PM 10-2.5 ) mass concentrations were estimated using a DC1700 PM sensor. The calculated PM mass concentrations from the number concentrations of DC 1700 were close to those measured with the Grimm 11-R when relative humidity was less than 60% for both PM 2.5 and coarse PM. Particle size distribution was more important for the association of coarse PM between the DC 1700 and Grimm 11-R than it was for PM 2.5 .

  3. Mercury and methylmercury in reservoirs in Indiana

    USGS Publications Warehouse

    Risch, Martin R.; Fredericksen, Amanda L.

    2015-01-01

    Methylmercury (reported as Hg) in fish-tissue samples collected for the State fish consumption advisory program was used to describe MeHg food-web accumulation and magnification in the reservoirs. The highest percentages of fish-tissue samples with Hg concentrations that exceeded the criterion of 0.30 milligram per kilogram for protection of human health were from Monroe Lake (38 percent) and Patoka Lake (33 percent). A review of the number and size of fish species caught from these two reservoirs resulted in two implications for fish consumption by humans. First, the highest numbers of fish harvested for potential human consumption were species more likely to have MeHg concentrations lower than the human-health criterion (crappie, bluegill, and catfish). Second, although largemouth bass were likely to have MeHg concentrations higher than the human-health criterion, they were caught and released more often than they were harvested. However, the average size largemouth bass (in both reservoirs) and above-average size walleye (in Monroe Lake) that were harvested for potential human consumption were likely to have MeHg concentrations higher than the human-health criterion.

  4. Serum concentrations of polychlorinated dibenzo-p-dioxins among ceramicists.

    PubMed

    Demond, Avery; Jiang, Xiaohui; Broadwater, Kendra; Meeker, John; Luksemburg, William; Maier, Martha; Garabrant, David; Franzblau, Alfred

    2015-01-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) occur naturally in ball clay at elevated concentrations. Thus, persons who habitually work with clay may be at risk for exposure to PCDDs. An earlier case report provided some evidence of elevated PCDD levels in serum for long-term hobby ceramicists; however, no previous study has measured serum dioxin concentrations among ceramicists. This study measured PCDD serum levels for 27 individuals involved in ceramics making. The average residual, defined as the average of the [log measured serum lipid concentration – log background serum lipid concentration], was calculated and then tested to determine whether it was significantly different from zero. The p-values for the average residuals indicated that the serum lipid concentrations for several PCDD congeners were elevated relative to background. The number of significant residuals increased dramatically if the background concentrations were adjusted to account for the fact that they were not contemporaneous with the measurements for the ceramicists. The ratio of the 1,2,3,6,7,8-HxCDD concentration to the 1,2,3,7,8,9-HxCDD concentration was greater than 1.0, unlike in ball clay, suggesting that although long-term working with ball clay elevates the PCDD levels in serum somewhat, it is not the predominant source of the PCDD body burden for ceramicists.

  5. Airborne observations of cloud condensation nuclei spectra and aerosols over East Inner Mongolia

    NASA Astrophysics Data System (ADS)

    Yang, Jiefan; Lei, Hengchi; Lü, Yuhuan

    2017-08-01

    A set of vertical profiles of aerosol number concentrations, size distributions and cloud condensation nuclei (CCN) spectra was observed using a passive cloud and aerosol spectrometer (PCASP) and cloud condensation nuclei counter, over the Tongliao area, East Inner Mongolia, China. The results showed that the average aerosol number concentration in this region was much lower than that in heavily polluted areas. Monthly average aerosol number concentrations within the boundary layer reached a maximum in May and a minimum in September, and the variations in CCN number concentrations at different supersaturations showed the same trend. The parameters c and k of the empirical function N = cS k were 539 and 1.477 under clean conditions, and their counterparts under polluted conditions were 1615 and 1.42. Measurements from the airborne probe mounted on a Yun-12 (Y12) aircraft, together with Hybrid Single-Particle Lagrangian Integrated Trajectory model backward trajectories indicated that the air mass from the south of Tongliao contained a high concentration of aerosol particles (1000-2500 cm-3) in the middle and lower parts of the troposphere. Moreover, detailed intercomparison of data obtained on two days in 2010 indicated that the activation efficiency in terms of the ratio of N CCN to N a (aerosols measured from PCASP) was 0.74 (0.4 supersaturations) when the air mass mainly came from south of Tongliao, and this value increased to 0.83 on the relatively cleaner day. Thus, long-range transport of anthropogenic pollutants from heavily polluted mega cities, such as Beijing and Tianjin, may result in slightly decreasing activation efficiencies.

  6. Racial/Ethnic Disparities in Nursing Home Quality of Life Deficiencies, 2001 to 2011

    PubMed Central

    Campbell, Lauren J.; Cai, Xueya; Gao, Shan; Li, Yue

    2016-01-01

    Objectives: Racial/ethnic disparities in nursing homes (NHs) are associated with lower quality of care, and state Medicaid payment policies may influence NH quality. However, no studies analyzing disparities in NH quality of life (QoL) exist. Therefore, this study aims to estimate associations at the NH level between average number of QoL deficiencies and concentrations of racial/ethnic minority residents, and to identify effects of state Medicaid payment policies on racial/ethnic disparities. Method: Multivariable Poisson regression with NH random effects was used to determine the association between NH minority concentration in 2000 to 2010 and average number of QoL deficiencies in 2001 to 2011 at the NH level, and the effect of state NH payment policies on QoL deficiencies and racial/ethnic disparities in QoL deficiencies across NH minority concentrations. Results: Racial/ethnic disparities in QoL between high and low minority concentration NHs decrease over time, but are not eliminated. Case mix payment was associated with an increased disparity between high and low minority concentration NHs in QoL deficiencies. Discussion: NH managers and policy makers should consider initiatives targeting minority residents or low-performing NHs with higher minority concentrations for improvement to reduce disparities and address QoL deficiencies. PMID:27819015

  7. Vapor-pressure osmometric study of the molecular weight and aggregation tendency of a reference-soil fulvic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.

    1990-01-01

    The molecular weight and aggregation tendency of a reference-soil fulvic acid in Armadale horizon Bh were determined by vapor-pressure osmometry using tetrahydrofuran and water as solvents. With tetrahydrofuran, number-average molecular weight values of 767 ?? 34 and 699 ?? 8 daltons were obtained from two separate sets of measurements. Two sets of measurements with water also yielded values within this range (754 ?? 70 daltons) provided that the fulvic acid concentration in water did not exceed 7 mg ml-1; at higher concentrations (9.1-13.7 mg ml-1) a number-average molecular weight of 956 ?? 25 daltons was resolved, providing evidence of molecular aggregation. Extension of these studies to 80% neutralized fulvic acid showed that a sizeable fraction of the sodium counter ion is not osmotically active.

  8. Experimental study on the nitrogen dioxide and particulate matter emissions from diesel engine retrofitted with particulate oxidation catalyst.

    PubMed

    Feng, Xiangyu; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei; Yu, Linxiao; Li, Jiaqiang; Wang, Xin

    2014-02-15

    A particulate oxidation catalyst (POC) was employed to perform experiments on the engine test bench to evaluate the effects on the nitrogen dioxide (NO2) and particulate matter (PM) emissions from diesel engine. The engine exhaust was sampled from both upstream and downstream of the POC. The results showed that the POC increased the ratios of NO2/NOx significantly in the middle and high loads, the ratio of NO2/nitrogen oxides (NOx) increased 4.5 times on average under all experiment modes with the POC. An engine exhaust particle sizer (EEPS) was used to study the particle number-weighted size distributions and the abnormal particle emissions with the POC. The results indicated that the average reduction rate of particle number (PN) was 61% in the operating range of the diesel engine. At the engine speed of 1,400 r/min, the reduction rates of PN tended to decrease with the larger particle size. In the long time run under the steady mode (520 Nm, 1,200 r/min), abnormal particle emissions after the POC happened seven times in the first hour, and the average PN concentration of these abnormal emission peaks was much higher than that in normal state. The particle emissions of peaks 1-5 equaled the particles emitted downstream of the POC in normal state for 1.9h in number concentration, and for 3.6h in mass concentration. The PN concentrations tended to increase over time in 5h under the steady engine mode and the increase of the PN in the size range of 6.04-14.3 nm was more evident. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Case study. Health hazards of automotive repair mechanics: thermal and lighting comfort, particulate matter and noise.

    PubMed

    Loupa, G

    2013-01-01

    An indoor environmental quality survey was conducted in a small private automotive repair shop during May 2009 (hot season) and February 2010 (cold season). It was established that the detached building, which is naturally ventilated and lit, had all the advantages of the temperate local climate. It provided a satisfactory microclimatic working environment, concerning the thermal and the lighting comfort, without excessive energy consumption for air-conditioning or lighting. Indoor number concentrations of particulate matter (PM) were monitored during both seasons. Their size distributions were strongly affected by the indoor activities and the air exchange rate of the building. During working hours, the average indoor/outdoor (I/O) number concentration ratio was 31 for PM0.3-1 in the hot season and 69 for the cold season. However I/O PM1-10 number concentration ratios were similar, 33 and 32 respectively, between the two seasons. The estimated indoor mass concentration of PM10 for the two seasons was on average 0.68 mg m(-3) and 1.19 mg m(-3), i.e., 22 and 36 times higher than outdoors, during the hot and the cold seasons, respectively. This is indicative that indoor air pollution may adversely affect mechanics' health. Noise levels were highly variable and the average LEX, 8 h of 69.3 dB(A) was below the European Union exposure limit value 87db (A). Noise originated from the use of manual hammers, the revving up of engines, and the closing of car doors or hoods. Octave band analysis indicated that the prevailing noise frequencies were in the area of the maximum ear sensitivity.

  10. Factors governing particle number emissions in a waste-to-energy plant.

    PubMed

    Ozgen, Senem; Cernuschi, Stefano; Giugliano, Michele

    2015-05-01

    Particle number concentration and size distribution measurements were performed on the stack gas of a waste-to-energy plant which co-incinerates municipal solid waste, sewage sludge and clinical waste in two lines. Average total number of particles was found to be 4.0·10(5)cm(-3) and 1.9·10(5)cm(-3) for the line equipped with a wet flue gas cleaning process and a dry cleaning system, respectively. Ultrafine particles (dp<100nm) accounted for about 97% of total number concentration for both lines, whereas the nanoparticle (dp<50nm) contribution differed slightly between the lines (87% and 84%). The experimental data is explored statistically through some multivariate pattern identifying methods such as factor analysis and cluster analysis to help the interpretation of the results regarding the origin of the particles in the flue gas with the objective of determining the factors governing the particle number emissions. The higher moisture of the flue gas in the wet cleaning process was found to increase the particle number emissions on average by a factor of about 2 due to increased secondary formation of nanoparticles through nucleation of gaseous precursors such as sulfuric acid, ammonia and water. The influence of flue gas dilution and cooling monitored through the variation of the sampling conditions also confirms the potential effect of the secondary new particle formation in increasing the particle number emissions. This finding shows the importance of reporting the experimental conditions in detail to enable the comparison and interpretation of particle number emissions. Regarding the fuel characteristics no difference was observed in terms of particle number concentration and size distributions between the clinical waste feed and the municipal solid waste co-incineration with sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. [Worker exposure to ultrafine particles during carbon black treatment].

    PubMed

    Mikołajczyk, Urszula; Bujak-Pietrek, Stella; Szadkowska-Stańczyk, Irena

    2015-01-01

    The aim of the project was to assess the exposure of workers to ultrafine particles released during handling and packing of carbon black. The assessment included the results of the measurements performed in a carbon black handling plant before, during, and after work shift. The number concentration of particles within the dimension range 10-1000 nm and 10-100 nm was assayed by a condensation particle counter (CPC). The mass concentration of particles was determined by a DustTrak II DRX aerosol concentration monitor. The surface area concentration of the particles potentially deposited in the alveolar (A) and tracheo-bronchial (TB) regions was estimated by an AeroTrak 9000 nanoparticle monitor. An average mass concentration of particles during the process was 6-fold higher than that before its start, while a 3-fold increase in the average number concentration of particles within the dimension range 10-1000 nm and 10-100 nm was observed during the process. At the same time a 4-fold increase was found in the surface area concentration of the particles potentially deposited in the A and TB regions. During the process of carbon black handling and packing a significantly higher values of each of the analysed parameters, characterizing the exposure to ultrafine particles, were noted. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  12. Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity

    NASA Astrophysics Data System (ADS)

    Gunthe, S. S.; King, S. M.; Rose, D.; Chen, Q.; Roldin, P.; Farmer, D. K.; Jimenez, J. L.; Artaxo, P.; Andreae, M. O.; Martin, S. T.; Pöschl, U.

    2009-10-01

    Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. We have measured and characterized CCN at water vapor supersaturations in the range of S=0.10-0.82% in pristine tropical rainforest air during the AMAZE-08 campaign in central Amazonia. The effective hygroscopicity parameters describing the influence of chemical composition on the CCN activity of aerosol particles varied in the range of κ≍0.1-0.4 (0.16±0.06 arithmetic mean and standard deviation). The overall median value of κ≍0.15 was by a factor of two lower than the values typically observed for continental aerosols in other regions of the world. Aitken mode particles were less hygroscopic than accumulation mode particles (κ≍0.1 at D≍50 nm; κ≍0.2 at D≍200 nm), which is in agreement with earlier hygroscopicity tandem differential mobility analyzer (H-TDMA) studies. The CCN measurement results are consistent with aerosol mass spectrometry (AMS) data, showing that the organic mass fraction (forg) was on average as high as ~90% in the Aitken mode (D≤100 nm) and decreased with increasing particle diameter in the accumulation mode (~80% at D≍200 nm). The κ values exhibited a negative linear correlation with forg (R2=0.81), and extrapolation yielded the following effective hygroscopicity parameters for organic and inorganic particle components: κorg≍0.1 which can be regarded as the effective hygroscopicity of biogenic secondary organic aerosol (SOA) and κinorg≍0.6 which is characteristic for ammonium sulfate and related salts. Both the size dependence and the temporal variability of effective particle hygroscopicity could be parameterized as a function of AMS-based organic and inorganic mass fractions (κp=κorg×forg +κinorg×finorg). The CCN number concentrations predicted with κp were in fair agreement with the measurement results (~20% average deviation). The median CCN number concentrations at S=0.1-0.82% ranged from NCCN,0.10≍35 cm-3 to NCCN,0.82≍160 cm-3, the median concentration of aerosol particles larger than 30 nm was NCN,30≍200 cm-3, and the corresponding integral CCN efficiencies were in the range of NCCN,0.10/NCN,30≍0.1 to NCCN,0.82/NCN,30≍0.8. Although the number concentrations and hygroscopicity parameters were much lower in pristine rainforest air, the integral CCN efficiencies observed were similar to those in highly polluted megacity air. Moreover, model calculations of NCCN,S assuming an approximate global average value of κ≍0.3 for continental aerosols led to systematic overpredictions, but the average deviations exceeded ~50% only at low water vapor supersaturation (0.1%) and low particle number concentrations (≤100 cm-3). Model calculations assuming a constant aerosol size distribution led to higher average deviations at all investigated levels of supersaturation: ~60% for the campaign average distribution and ~1600% for a generic remote continental size distribution. These findings confirm earlier studies suggesting that aerosol particle number and size are the major predictors for the variability of the CCN concentration in continental boundary layer air, followed by particle composition and hygroscopicity as relatively minor modulators. Depending on the required and applicable level of detail, the information and parameterizations presented in this paper should enable efficient description of the CCN properties of pristine tropical rainforest aerosols of Amazonia in detailed process models as well as in large-scale atmospheric and climate models.

  13. The evaluation of hollow-fiber ultrafiltration and celite concentration of enteroviruses, adenoviruses and bacteriophage from different water matrices.

    PubMed

    Rhodes, Eric R; Huff, Emma M; Hamilton, Douglas W; Jones, Jenifer L

    2016-02-01

    The collection of waterborne pathogen occurrence data often requires the concentration of microbes from large volumes of water due to the low number of microorganisms that are typically present in environmental and drinking waters. Hollow-fiber ultrafiltration (HFUF) has shown promise in the recovery of various microorganisms. This study has demonstrated that the HFUF primary concentration method is effective at recovering bacteriophage φX174, poliovirus, enterovirus 70, echovirus 7, coxsackievirus B4 and adenovirus 41 from large volumes of tap and river water with an average recovery of all viruses of 73.4% and 81.0%, respectively. This study also evaluated an effective secondary concentration method using celite for the recovery of bacteriophage and enteric viruses tested from HFUF concentrates of both matrices. Overall, the complete concentration method (HFUF primary concentration plus celite secondary concentration) resulted in a concentration factor of 3333 and average recoveries for all viruses from tap and river waters of 60.6% and 60.0%, respectively. Published by Elsevier B.V.

  14. An analysis of field-aged diesel particulate filter performance: particle emissions before, during, and after regeneration.

    PubMed

    Barone, Teresa L; Storey, John M E; Domingo, Norberto

    2010-08-01

    A field-aged, passive diesel particulate filter (DPF) used in a school bus retrofit program was evaluated for emissions of particle mass and number concentration before, during, and after regeneration. For the particle mass measurements, filter samples were collected for gravimetric analysis with a partial flow sampling system, which sampled proportionally to the exhaust flow. A condensation particle counter and scanning mobility particle sizer measured total number concentration and number-size distributions, respectively. The results of the evaluation show that the number concentration emissions decreased as the DPF became loaded with soot. However, after soot removal by regeneration, the number concentration emissions were approximately 20 times greater, which suggests the importance of the soot layer in helping to trap particles. Contrary to the number concentration results, particle mass emissions decreased from 6 +/- 1 mg/hp-hr before regeneration to 3 +/- 2 mg/hp-hr after regeneration. This indicates that nanoparticles with diameters less than 50 nm may have been emitted after regeneration because these particles contribute little to the total mass. Overall, average particle emission reductions of 95% by mass and 10,000-fold by number concentration after 4 yr of use provided evidence of the durability of a field-aged DPF. In contrast to previous reports for new DPFs in which elevated number concentrations occurred during the first 200 sec of a transient cycle, the number concentration emissions were elevated during the second half of the heavy-duty Federal Test Procedure (FTP) when high speed was sustained. This information is relevant for the analysis of mechanisms by which particles are emitted from field-aged DPFs.

  15. Selective remediation of contaminated sites using a two-level multiphase strategy and geostatistics.

    PubMed

    Saito, Hirotaka; Goovaerts, Pierre

    2003-05-01

    Selective soil remediation aims to reduce costs by cleaning only the fraction of an exposure unit (EU) necessary to lower the average concentration below the regulatory threshold. This approach requires a prior stratification of each EU into smaller remediation units (RU) which are then selected according to various criteria. This paper presents a geostatistical framework to account for uncertainties attached to both RU and EU average concentrations in selective remediation. The selection of RUs is based on their impact on the postremediation probability for the EU average concentration to exceed the regulatory threshold, which is assessed using geostatistical stochastic simulation. Application of the technique to a set of 600 dioxin concentrations collected at Piazza Road EPA Superfund site in Missouri shows a substantial decrease in the number of RU remediated compared with single phase remediation. The lower remediation costs achieved by the new strategy are obtained to the detriment of a higher risk of false negatives, yet for this data set this risk remains below the 5% rate set by EPA region 7.

  16. Turbulent heat transfer and nanofluid flow in a protruded ribbed square passage

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Kothiyal, Alok Darshan; Bisht, Mangal Singh; Kumar, Anil

    In this article, turbulent heat transfer of nanofluid flow in square passage with protruded rib shape is numerically and experimentally studied over Reynolds number ranges of 4000-18000. Different nanoparticles (Al2O3, CuO, and ZnO), with different concentration (φ) range of 1-4% and different nanoparticle diameter (dnp) range of 30-45 nm are disperse in water (base fluid). Several parameters such as stream wise distance (Xs /dp) range of 1.4-2.6, span wise distance (Ys /dp) range of 1.4-2.6, ratio of protruded height to print diameter (ep /dp) range of 0.83-1.67 also studied to find the consequence on thermal and hydrodynamic characteristics. Simulations were carried out to obtain heat and fluid flow behaviour of smooth and ribbed square channel using commercial CFD software, ANSYS 15.0 (Fluent). Renormalization k - ε model was employed to assess the influence of protruded ribs on turbulent flow and velocity field. The outcome indicates that Al2O3 nanofluid has the highest value of average Nusselt number as compare to other nanofluids. The average Nusselt number increases as the concentration increases and it decreases as nanoparticle diameter increases. The thermal hydrodynamic performance parameter based on equal pumping power, average Nusselt number and average friction factor were found to be highest for Al2O3, φ = 0.04, dnp = 30 nm, Xs /dp = 1.8, Ys /dp = 1.8 and ep /dp = 1.0 . The numerical data are compared with the corresponding experimental data. Comparison between CFD and experimental analysis results showed that good agreement as the data fell within ±7.0% error band.

  17. DNA Damage Dependence on the Subcellular Distribution of Low-Energy Beta Emitters

    NASA Astrophysics Data System (ADS)

    Cutaia, Claudia; Alloni, Daniele; Mariotti, Luca; Friedland, Werner; Ottolenghi, Andrea

    One of the main issues of low-energy internal emitters is related to the short ranges of beta particles, compared to the dimensions of the biological targets (e.g. the cell nucleus). Also depending on the chemical form, the radionuclide may be more concentrated in the cytoplasm of the target cell (in our calculations a human fibroblast in interphase) and consequently the conventional dosimetry may overestimate the dose to the nucleus; whereas if the radionuclide is more concentrated in the nuclei of the cells there is a risk of underestimating the nucleus dose. The computer code PARTRAC was modified to calculate the energy depositions in the nucleus and the DNA damage for different relative concentrations of the radionuclide in the nucleus and in the cytoplasm. The nuclides considered in the simulations were Tritium (the electrons emitted due to the β - decay have an average energy of 5.7 keV, corresponding to an average range of 0.42 µm) and Nickel-63 (the electrons emitted have an average energy of 17 keV corresponding to an average range of 5 µm). In the case of Tritium, the dose in the nucleus due the tracks generated outside this region is 15% of the average dose in the cell, whereas in the case of Nickel-63 the dose in the nucleus resulted to be 64% of the average dose in the cell. The distributions of DNA fragments as a function of the relative concentration of the nuclides in the nucleus and in the cytoplasm, were also calculated. In the same conditions, the number of complex lesions (which have a high probability of inducing lethal damage to the cells) per Gy (circa 0.5-1) and the total number of double strand breaks (DSBs) per Gy (circa 40) were also calculated. To complete the characterization of the effects of internal emitters inside the cell the distributions of DSBs per chromosome were studied for different radionuclide distributions in the cell. The results obtained from these simulations show the possible overestimation or underestimation of the risk, (particularly for Tritium intake), due to the distribution of the low energy emitters at subcellular levels.

  18. Consolidation in the Dialysis Industry, Patient Choice, and Local Market Competition.

    PubMed

    Erickson, Kevin F; Zheng, Yuanchao; Winkelmayer, Wolfgang C; Ho, Vivian; Bhattacharya, Jay; Chertow, Glenn M

    2017-03-07

    The Medicare program insures >80% of patients with ESRD in the United States. An emphasis on reducing outpatient dialysis costs has motivated consolidation among dialysis providers, with two for-profit corporations now providing dialysis for >70% of patients. It is unknown whether industry consolidation has affected patients' ability to choose among competing dialysis providers. We identified patients receiving in-center hemodialysis at the start of 2001 and 2011 from the national ESRD registry and ascertained dialysis facility ownership. For each hospital service area, we determined the maximum distance within which 90% of patients traveled to receive dialysis in 2001. We compared the numbers of competing dialysis providers within that same distance between 2001 and 2011. Additionally, we examined the Herfindahl-Hirschman Index, a metric of market concentration ranging from near zero (perfect competition) to one (monopoly) for each hospital service area. Between 2001 and 2011, the number of different uniquely owned competing providers decreased 8%. However, increased facility entry into markets to meet rising demand for care offset the effect of provider consolidation on the number of choices available to patients. The number of dialysis facilities in the United States increased by 54%, and patients experienced an average 10% increase in the number of competing proximate facilities from which they could choose to receive dialysis ( P <0.001). Local markets were highly concentrated in both 2001 and 2011 (mean Herfindahl-Hirschman Index =0.46; SD=0.2 for both years), but overall market concentration did not materially change. In summary, a decade of consolidation in the United States dialysis industry did not (on average) limit patient choice or result in more concentrated local markets. However, because dialysis markets remained highly concentrated, it will be important to understand whether market competition affects prices paid by private insurers, access to dialysis care, quality of care, and associated health outcomes. Copyright © 2017 by the American Society of Nephrology.

  19. Consolidation in the Dialysis Industry, Patient Choice, and Local Market Competition

    PubMed Central

    Zheng, Yuanchao; Winkelmayer, Wolfgang C.; Bhattacharya, Jay; Chertow, Glenn M.

    2017-01-01

    The Medicare program insures >80% of patients with ESRD in the United States. An emphasis on reducing outpatient dialysis costs has motivated consolidation among dialysis providers, with two for-profit corporations now providing dialysis for >70% of patients. It is unknown whether industry consolidation has affected patients’ ability to choose among competing dialysis providers. We identified patients receiving in-center hemodialysis at the start of 2001 and 2011 from the national ESRD registry and ascertained dialysis facility ownership. For each hospital service area, we determined the maximum distance within which 90% of patients traveled to receive dialysis in 2001. We compared the numbers of competing dialysis providers within that same distance between 2001 and 2011. Additionally, we examined the Herfindahl–Hirschman Index, a metric of market concentration ranging from near zero (perfect competition) to one (monopoly) for each hospital service area. Between 2001 and 2011, the number of different uniquely owned competing providers decreased 8%. However, increased facility entry into markets to meet rising demand for care offset the effect of provider consolidation on the number of choices available to patients. The number of dialysis facilities in the United States increased by 54%, and patients experienced an average 10% increase in the number of competing proximate facilities from which they could choose to receive dialysis (P<0.001). Local markets were highly concentrated in both 2001 and 2011 (mean Herfindahl–Hirschman Index =0.46; SD=0.2 for both years), but overall market concentration did not materially change. In summary, a decade of consolidation in the United States dialysis industry did not (on average) limit patient choice or result in more concentrated local markets. However, because dialysis markets remained highly concentrated, it will be important to understand whether market competition affects prices paid by private insurers, access to dialysis care, quality of care, and associated health outcomes. PMID:27831510

  20. Fluctuations, Stratification and Stability in a Liquid Fluidized Bed at Low Reynolds Number

    NASA Technical Reports Server (NTRS)

    Segre, P. N.; McClymer, J. P.

    2004-01-01

    The sedimentation dynamics of extremely low polydispersity, non-colloidal, particles are studied in a liquid fluidized bed at low Reynolds number, Re much less than 1. When fluidized, the system reaches a steady state, defined where the local average volume fraction does not vary in time. In steady state, the velocity fluctuations and the particle concentrations are found to strongly depend on height. Using our results, we test a recently developed stability model for steady state sedimentation. The model describes the data well, and shows that in steady state there is a balancing of particle fluxes due to the fluctuations and the concentration gradient. Some results are also presented for the dependence of the concentration gradient in fluidized beds on particle size; the gradients become smaller as the particles become larger and fewer in number.

  1. Occupational hygiene in a Finnish drum composting plant.

    PubMed

    Tolvanen, Outi; Nykänen, Jenni; Nivukoski, Ulla; Himanen, Marina; Veijanen, Anja; Hänninen, Kari

    2005-01-01

    Bioaerosols (microbes, dust and endotoxins) and volatile organic compounds (VOCs) were determined in the working air of a drum composting plant treating source-separated catering waste. Different composting activities at the Oulu drum composting plant take place in their own units separated by modular design and constructions. Important implication of this is that the control room is a relatively clean working environment and the risk of exposure to harmful factors is low. However, the number of viable airborne microbes was high both in the biowaste receiving hall and in the drum composting hall. The concentration (geometric average) of total microbes was 21.8 million pcs/m3 in the biowaste receiving hall, 13.9 million pcs/m3 in the drum composting hall, and just 1.4 million pcs/m3 in the control room. Endotoxin concentrations were high in the biowaste receiving hall and in the drum composting hall. The average (arithmetic) endotoxin concentration was over the threshold value of 200 EU/m3 in both measurement locations. In all working areas, the average (arithmetic) dust concentrations were in a low range of 0.6-0.7 mg/m3, being below the Finnish threshold value of 5 mg/m3. In the receiving hall and drum composting hall, the concentrations of airborne microbes and endotoxins may rise to levels hazardous to health during prolonged exposure. It is advisable to use a respirator mask (class P3) in these areas. Detected volatile organic compounds were typical compounds of composting plants: carboxylic acids and their esters, alcohols, ketones, aldehydes, and terpenes. Concentrations of VOCs were much lower than the Finnish threshold limit values (Finnish TLVs), many of the quantified compounds exceeded their threshold odour concentrations (TOCs). Primary health effects due VOCs were not presumable at these concentrations but unpleasant odours may cause secondary symptoms such as nausea and hypersensitivity reactions. This situation is typical of composting plants where the workers are exposed to dozens of VOCs simultaneously. The odour units (OU/m3) were measured using olfactometer. The numbers were 23,000 OU/m3 at the output end of the composting drum and 6300 OU/m3 in the exhaust pipe. Inside the composting hall, the number of odour units was 500 and 560 OU/m3.

  2. Measurements of fine and ultrafine particles formation in photocopy centers in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Wei; Hsu, Der-Jen

    This study investigates the levels of particulate matter smaller than 2.5 μm (PM 2.5) and some selected volatile organic compounds (VOCs) at 12 photocopy centers in Taiwan from November 2004 to June 2005. The results of BTEXS (benzene, toluene, ethylbenzene, xylenes and styrene) measurements indicated that toluene had the highest concentration in all photocopy centers, while the concentration of the other four compounds varied among the 12 photocopy centers. The average background-corrected eight-hour PM 2.5 in the 12 photocopy centers ranged from 10 to 83 μg m -3 with an average of 40 μg m -3. The 24-h indoor PM 2.5 at the photocopy centers was estimated and at two photocopy centers exceeded 100 μg m -3, the 24-h indoor PM 2.5 guideline recommended by the Taiwan EPA. The ozone level and particle size distribution at another photocopy center were monitored and indicated that the ozone level increased when the photocopying started and the average ozone level at some photocopy centers during business hour may exceed the value (50 ppb) recommended by the Taiwan EPA. The particle size distribution monitored during photocopying indicated that the emitted particles were much smaller than the original toner powders. Additionally, the number concentration of particles that were smaller than 0.5 μm was found to increase during the first hour of photocopying and it increased as the particle size decreased. The ultrafine particle (UFP, <100 nm) dominated the number concentration and the peak concentration appeared at sizes of under 50 nm. A high number concentration of UFP was found with a peak value of 1E+8 particles cm -3 during photocopying. The decline of UFP concentration was observed after the first hour and the decline is likely attributable to the surface deposition of charged particles, which are charged primarily by the diffusion charging of corona devices in the photocopier. This study concludes that ozone and UFP concentrations in photocopy centers should be concerned in view of indoor air quality and human health. The corona devices in photocopiers and photocopier-emitted VOCs have the potential to initiate indoor air chemistry during photocopying and result in the formation of UFP.

  3. Measurements of ultrafine particles and other vehicular pollutants inside school buses in South Texas

    NASA Astrophysics Data System (ADS)

    Zhang, Qunfang; Zhu, Yifang

    2010-01-01

    Increasing evidence has demonstrated toxic effects of vehicular emitted ultrafine particles (UFPs, diameter < 100 nm), with the highest human exposure usually occurring on and near roadways. Children are particularly at risk due to immature respiratory systems and faster breathing rates. In this study, children's exposure to in-cabin air pollutants, especially UFPs, was measured inside four diesel-powered school buses. Two 1990 and two 2006 model year diesel-powered school buses were selected to represent the age extremes of school buses in service. Each bus was driven on two routine bus runs to study school children's exposure under different transportation conditions in South Texas. The number concentration and size distribution of UFPs, total particle number concentration, PM 2.5, PM 10, black carbon (BC), CO, and CO 2 levels were monitored inside the buses. The average total particle number concentrations observed inside the school buses ranged from 7.3 × 10 3 to 3.4 × 10 4 particles cm -3, depending on engine age and window position. When the windows were closed, the in-cabin air pollutants were more likely due to the school buses' self-pollution. The 1990 model year school buses demonstrated much higher air pollutant concentrations than the 2006 model year ones. When the windows were open, the majority of in-cabin air pollutants came from the outside roadway environment with similar pollutant levels observed regardless of engine ages. The highest average UFP concentration was observed at a bus transfer station where approximately 27 idling school buses were queued to load or unload students. Starting-up and idling generated higher air pollutant levels than the driving state. Higher in-cabin air pollutant concentrations were observed when more students were on board.

  4. Polychlorinated biphenyls and organochlorine pesticides in plasma and the embryonic development in Lake Erie water snakes (Nerodia sipedon insularum) from Pelee Island, Ontario, Canada (1999).

    PubMed

    Bishop, C A; Rouse, J D

    2006-10-01

    From three locations along a 34-km shoreline of Pelee Island, Ontario, 30 gravid female Lake Erie water snakes (Nerodia sipedon insularum) were sampled to determine the organochlorine (OC) contaminant levels in plasma and the number of live and dead embryos present in the body cavity. Plasma was analyzed for 59 polychlorinated biphenyl (PCB) congeners and 14 organochlorine pesticides. Concentrations of pesticides were low (< or =0.1 ng/g wet wt) in all snakes, but there was significant variation in mean PCB concentrations in plasma from among the sampling locations on Pelee Island. Snakes (n = 5) from the West shore and dock area of the island had significantly higher PCB concentrations (90.4 +/- 15.0 ng/g wet wt) in plasma than those from Lighthouse Point (n = 5; 34.4 +/- 13 ng/g wet wt) and the south shore of the island (n = 5; 29.4 +/- 16.3 ng/g wet wt). Body mass of the female snakes ranged from 252 to 880 g, and mean masses were not significantly different among sample sites. The number of live embryos found ranged from 13 to 46 female snakes and no dead embryos were detected. There were significant positive correlations among body mass, snout-vent length, and number of young per female. There were no significant correlations among body mass, snout-vent length, number of young per female, or per-gram body mass of female snakes and contaminant concentrations in plasma. It was concluded that an interim estimate of a no-effect level on embryonic survival in N. sipedon insularum may be a maximum average concentration of 90.4 ng/g wet wt PCBs and a maximum average concentration of 3.6 ng/g wet wt p,p'-dichloro-diphenyl-dichloroethylene in plasma.

  5. Observation of Elevated Air Pollutant Concentrations in a Residential Neighborhood of Los Angeles California Using a Mobile Platform

    PubMed Central

    Hu, Shishan; Fruin, Scott; Kozawa, Kathleen; Mara, Steve; Winer, Arthur M.

    2013-01-01

    We observed elevated air pollutant concentrations, especially of ultrafine particles (UFP), black carbon (BC) and NO, across the residential neighborhood of the Boyle Heights Community (BH) of Los Angeles, California. Using an electric vehicle mobile platform equipped with fast response instruments, real-time air pollutant concentrations were measured in BH in spring and summer of 2008. Pollutant concentrations varied significantly in the two seasons, on different days, and by time of day, with an overall average UFP concentration in the residential areas of ~33 000 cm−3. The averaged UFP, BC, and NO concentrations measured on Soto St, a major surface street in BH, were 57 000 cm−3, 5.1 µg m−3, and 67 ppb, respectively. Concentrations of UFP across the residential areas in BH were nearly uniform spatially, in contrast to other areas in the greater metropolitan area of Los Angeles where UFP concentrations exhibit strong gradients downwind of roadways. We attribute this “UFP cloud” to high traffic volumes, including heavy duty diesel trucks on the freeways which surround and traverse BH, and substantial numbers of high-emitting vehicles (HEVs) on the surface streets traversing BH. Additionally, the high density of stop signs and lights and short block lengths, requiring frequent accelerations of vehicles, may contribute. The data also support a role for photochemical production of UFP in the afternoon. UFP concentration peaks (5 s average) of up to 9 million particles cm−3 were also observed immediately behind HEVs when they accelerated from stop lights in the BH neighborhood and areas immediately adjacent. Although encounters with HEV during mornings accounted for only about 6% and 17% of time spent monitoring residential areas and major surface streets, HEV contributed to about 28% and 53% of total ultrafine particles measured on the route, respectively. The observation of elevated pollutant number concentrations across the Boyle Heights community highlights how multiple factors combine to create high pollutant levels, and has important human exposure assessment implications, including the potential utility of our data as inputs to epidemiological studies. PMID:23997642

  6. Variability of aerosols and chemical composition of PM10, PM2.5 and PM1 on a platform of the Prague underground metro

    NASA Astrophysics Data System (ADS)

    Cusack, M.; Talbot, N.; Ondráček, J.; Minguillón, M. C.; Martins, V.; Klouda, K.; Schwarz, J.; Ždímal, V.

    2015-10-01

    Measurements of PM10, PM2.5 and PM1 and particle number concentration and size distribution were measured for 24 h on a platform of the Prague underground metro in October 2013. The three PM fractions were analysed for major and minor elements, secondary inorganic aerosols (SIA) and total carbon (TC). Measurements were performed both when the metro was inoperative and closed to the public (referred to as background), and when the metro was in operation and open to passengers. PM concentrations were elevated during both periods, but were substantially increased in the coarse fraction during hours when the metro was in operation. Average PM concentrations were 214.8, 93.9 and 44.8 μg m-3 for PM10, PM2.5 and PM1, respectively (determined gravimetrically). Average particle number concentrations were 8.5 × 103 cm-3 for background hours and 11.5 × 103 cm-3 during operational hours. Particle number concentrations were found to not vary as significantly as PM concentrations throughout the day. Variations in PM were strongly governed by passing trains, with highest concentrations recorded during rush hour. When trains were less frequent, PM concentrations were shown to fluctuate in unison with the entrance and exit of trains (as shown by wind velocity measured on the platform). PM was found to be highly enriched with iron, especially in the coarse fraction, comprising 46% of PM10 (98.9 μg m-3). This reduces to 6.7 μg m-3 during background hours, proving that the trains themselves were the main source of iron, most probably from wheel-rail mechanical abrasion. Other enriched elements relative to background hours included Ba, Cu, Mn, Cr, Mo, Ni and Co, among others. Many of these elements exhibited a similar size distribution, further indicating their sources were common and were attributed to train operations.

  7. Multisite study of particle number concentrations in urban air.

    PubMed

    Harrison, Roy M; Jones, Alan M

    2005-08-15

    Particle number concentration data are reported from a total of eight urban site locations in the United Kingdom. Of these, six are central urban background sites, while one is an urban street canyon (Marylebone Road) and another is influenced by both a motorway and a steelworks (Port Talbot). The concentrations are generally of a similar order to those reported in the literature, although higher than those in some of the other studies. Highest concentrations are at the Marylebone Road site and lowest are at the Port Talbot site. The central urban background locations lie somewhere between with concentrations typically around 20 000 cm(-3). A seasonal pattern affects all sites, with highest concentrations in the winter months and lowest concentrations in the summer. Data from all sites show a diurnal variation with a morning rush hour peak typical of an anthropogenic pollutant. When the dilution effects of windspeed are accounted for, the data show little directionality at the central urban background sites indicating the influence of sources from all directions as might be expected if the major source were road traffic. At the London Marylebone Road site there is high directionality driven by the air circulation in the street canyon, and at the Port Talbot site different diurnal patterns are seen for particle number count and PM10 influenced by emissions from road traffic (particle number count) and the steelworks (PM10) and local meteorological factors. Hourly particle number concentrations are generally only weakly correlated to NO(x) and PM10, with the former showing a slightly closer relationship. Correlations between daily average particle number count and PM10 were also weak. Episodes of high PM10 concentration in summer typically show low particle number concentrations consistent with transport of accumulation mode secondary aerosol, while winter episodes are frequently associated with high PM10 and particle number count arising from poor dispersion of local primary emissions.

  8. Variation of airborne bacteria and fungi at Emperor Qin's Terra-Cotta Museum, Xi'an, China, during the "Oct. 1" gold week period of 2006.

    PubMed

    Chen, Yi-Ping; Cui, Ying; Dong, Jun-Gang

    2010-02-01

    To stimulate the national economy, a so-called "gold week" comprising May Day and National Day has been put in force by the government, and the first golden-week holiday began on October 1, 1999. Statistical data show that about 15,000 visitors were received each day by Emperor Qin's Terra-Cotta Museum during just such a gold week period. To evaluate the effects of tourism on indoor air, airborne samples were collected by the sedimentation plate method for 5 min during the "Oct. 1" gold week period of 2006, and both composition and changes of airborne bacteria and fungi in indoor/outdoor air in the museums were investigated. Airborne microbes were simultaneously collected by means of gravitational sedimentation on open Petri dishes. Three parallel samples were collected at the same time each day, and samples were subsequently incubated in the lab. Microbiology media were prepared before each experiment by a professional laboratory. Concentrations were calculated and presented as average data of colony-forming units per cubic meter of air (CFU/m(3)). The results show that (1) 13 bacterial genera and eight genera of fungi were identified from indoor and outdoor air at Emperor Qin's Terra-Cotta Museum during "Oct. 1" gold week in 2006. The bacterial groups occupied 61%, the fungi groups occupied 36%, and others occupied 3% of the total number of isolated microorganism genera. (2) As for the comparison of indoor and outdoor samples, the average concentrations of fungi were higher during the afternoon (13:00) than for the morning (09:00). The average concentrations of bacteria in indoor air were higher during the afternoon (13:00) than for the morning (9:00), and in outdoor air, they were lower during the afternoon (13:00) than for the morning (9:00). (3) The average concentrations of five dominant groups of bacteria and three dominant groups of fungi were higher during the afternoon (13:00) than for the morning (9:00) in the indoor air, but the average concentrations of fungi were higher and those of bacteria were lower during the afternoon than for the morning, for outdoor air. (4) As for the comparison of indoor samples, the bacterial daily concentrations and fungal daily concentrations were higher during the afternoon (13:00) than those for the mornings (9:00) over the 10 days. For the comparison of outdoor samples, the bacterial concentration was lower, and the fungal concentrations were higher during the afternoon (13:00) than those for the morning (9:00) over the 10 days. The results also show that the numbers of airborne bacteria and fungi had a daily character in indoor air and were higher in the afternoon. The airborne microbe concentrations were found to be similar to residential indoor values from other reports; the indoor museum maximum of microbial concentrations was 90 CFU/m(3) and did not exceed the Chinese indoor bioaerosol guideline. However, microorganisms may fall on the surface of display items as a result of particle sedimentation and would, as such, be capable of degrading objects by way of their secretions, e.g., enzymes and organic acids. Therefore, the right steps should be taken to prevent any deterioration in the quality of displayed artifacts. The results show that museum air was affected by human activity; therefore, it is imperative that the number of visitors be strictly limited and that windows be opened regularly to avoid air pollution. The data provide a significant scientific basis for indoor air quality control and museum scientific management. It is recommended that the number of visitors be strictly limited.

  9. In situ formation and spatial variability of particle number concentration in a European megacity

    NASA Astrophysics Data System (ADS)

    Pikridas, M.; Sciare, J.; Freutel, F.; Crumeyrolle, S.; von der Weiden-Reinmüller, S.-L.; Borbon, A.; Schwarzenboeck, A.; Merkel, M.; Crippa, M.; Kostenidou, E.; Psichoudaki, M.; Hildebrandt, L.; Engelhart, G. J.; Petäjä, T.; Prévôt, A. S. H.; Drewnick, F.; Baltensperger, U.; Wiedensohler, A.; Kulmala, M.; Beekmann, M.; Pandis, S. N.

    2015-09-01

    Ambient particle number size distributions were measured in Paris, France, during summer (1-31 July 2009) and winter (15 January to 15 February 2010) at three fixed ground sites and using two mobile laboratories and one airplane. The campaigns were part of the Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation (MEGAPOLI) project. New particle formation (NPF) was observed only during summer on approximately 50 % of the campaign days, assisted by the low condensation sink (about 10.7 ± 5.9 × 10-3 s-1). NPF events inside the Paris plume were also observed at 600 m altitude onboard an aircraft simultaneously with regional events identified on the ground. Increased particle number concentrations were measured aloft also outside of the Paris plume at the same altitude, and were attributed to NPF. The Paris plume was identified, based on increased particle number and black carbon concentration, up to 200 km away from the Paris center during summer. The number concentration of particles with diameters exceeding 2.5 nm measured on the surface at the Paris center was on average 6.9 ± 8.7 × 104 and 12.1 ± 8.6 × 104 cm-3 during summer and winter, respectively, and was found to decrease exponentially with distance from Paris. However, further than 30 km from the city center, the particle number concentration at the surface was similar during both campaigns. During summer, one suburban site in the NE was not significantly affected by Paris emissions due to higher background number concentrations, while the particle number concentration at the second suburban site in the SW increased by a factor of 3 when it was downwind of Paris.

  10. Estimating Marine Aerosol Particle Volume and Number from Maritime Aerosol Network Data

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Smirnov, A.; Hsu, N. C.; Munchak, L. A.; Holben, B. N.

    2012-01-01

    As well as spectral aerosol optical depth (AOD), aerosol composition and concentration (number, volume, or mass) are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN) cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET) inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS) data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The average solution MODIS dataset agrees more closely with MAN than the best solution dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data.

  11. Concentration dependent carriers dynamics in CsPbBr3 perovskite nanocrystals film with transient grating

    NASA Astrophysics Data System (ADS)

    Wang, Yinghui; Wang, Yanting; Dev Verma, Sachin; Tan, Mingrui; Liu, Qinghui; Yuan, Qilin; Sui, Ning; Kang, Zhihui; Zhou, Qiang; Zhang, Han-Zhuang

    2017-05-01

    The concentration dependence of the carrier dynamics is a key parameter to describe the photo-physical properties of semiconductor films. Here, we investigate the carrier dynamics in the CsPbBr3 perovskite nanocrystal film by employing the transient grating (TG) technique with continuous bias light. The concentration of initial carriers is determined by the average number of photons per nanocrystals induced by pump light (⟨N⟩). The multi-body interaction would appear and accelerate the TG dynamics with ⟨N⟩. When ⟨N⟩ is more than 3.0, the TG dynamics slightly changes, which implies that the Auger recombination would be the highest order multi-body interaction in carrier recombination dynamics. The concentration of non-equilibrium carriers in the film is controlled by the average number of photons per nanocrystals excited by continuous bias light (⟨nne⟩). Increasing ⟨nne⟩ would improve the trapping-detrapping process by filling the trapping state, which would accelerate the carrier diffusion and add the complexity of the mono-molecular recombination mechanism. The results should be useful to further understand the mechanism of carrier dynamics in the CsPbBr3 perovskite nanocrystal film and of great importance for the operation of the corresponding optoelectronic devices.

  12. A study of ambient fine particles at Tianjin International Airport, China.

    PubMed

    Ren, Jianlin; Liu, Junjie; Li, Fei; Cao, Xiaodong; Ren, Shengxiong; Xu, Bin; Zhu, Yifang

    2016-06-15

    The total count number concentration of particles from 10 to 1000nm, particle size distribution, and PM2.5 (aerodynamic diameter≤2.5μm) mass concentration were measured on a parking apron next to the runway at Tianjin International Airport in China. The data were collected 250, 270, 300, 350, and 400m from the runway. Wind direction and wind speed played important roles in determining the characteristics of the atmospheric particles. An inverted U-shaped relationship was observed between the measured particle number concentration and wind speed, with an average peak concentration of 2.2×10(5)particles/cm(3) at wind speeds of approximately 4-5m/s. The atmospheric particle number concentration was affected mainly by aircraft takeoffs and landings, and the PM2.5 mass concentration was affected mainly by the relative humidity (RH) of the atmosphere. Ultrafine particles (UFPs, diameter<100nm), with the highest number concentration at a particle size of approximately 16nm, dominated the measured particle size distributions. The calculated particle emission index values for aircraft takeoff and landing were nearly the same, with mean values of 7.5×10(15)particles/(kg fuel) and 7.6×10(15)particles/(kg fuel), respectively. The particle emission rate for one aircraft during takeoff is two orders of magnitude higher than for all gasoline-powered passenger vehicles in Tianjin combined. The particle number concentrations remained much higher than the background concentrations even beyond 400m from the runway. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Quantifying the impact of current and future concentrations of air pollutants on respiratory disease risk in England.

    PubMed

    Pannullo, Francesca; Lee, Duncan; Neal, Lucy; Dalvi, Mohit; Agnew, Paul; O'Connor, Fiona M; Mukhopadhyay, Sabyasachi; Sahu, Sujit; Sarran, Christophe

    2017-03-27

    Estimating the long-term health impact of air pollution in a spatio-temporal ecological study requires representative concentrations of air pollutants to be constructed for each geographical unit and time period. Averaging concentrations in space and time is commonly carried out, but little is known about how robust the estimated health effects are to different aggregation functions. A second under researched question is what impact air pollution is likely to have in the future. We conducted a study for England between 2007 and 2011, investigating the relationship between respiratory hospital admissions and different pollutants: nitrogen dioxide (NO 2 ); ozone (O 3 ); particulate matter, the latter including particles with an aerodynamic diameter less than 2.5 micrometers (PM 2.5 ), and less than 10 micrometers (PM 10 ); and sulphur dioxide (SO 2 ). Bayesian Poisson regression models accounting for localised spatio-temporal autocorrelation were used to estimate the relative risks (RRs) of pollution on disease risk, and for each pollutant four representative concentrations were constructed using combinations of spatial and temporal averages and maximums. The estimated RRs were then used to make projections of the numbers of likely respiratory hospital admissions in the 2050s attributable to air pollution, based on emission projections from a number of Representative Concentration Pathways (RCP). NO 2 exhibited the largest association with respiratory hospital admissions out of the pollutants considered, with estimated increased risks of between 0.9 and 1.6% for a one standard deviation increase in concentrations. In the future the projected numbers of respiratory hospital admissions attributable to NO 2 in the 2050s are lower than present day rates under 3 Representative Concentration Pathways (RCPs): 2.6, 6.0, and 8.5, which is due to projected reductions in future NO 2 emissions and concentrations. NO 2 concentrations exhibit consistent substantial present-day health effects regardless of how a representative concentration is constructed in space and time. Thus as concentrations are predicted to remain above limits set by European Union Legislation until the 2030s in parts of urban England, it will remain a substantial health risk for some time.

  14. Relating road salt to exceedances of the water quality standard for chloride in New Hampshire streams.

    PubMed

    Trowbridge, Philip R; Kahl, J Steve; Sassan, Dari A; Heath, Douglas L; Walsh, Edward M

    2010-07-01

    Six watersheds in New Hampshire were studied to determine the effects of road salt on stream water quality. Specific conductance in streams was monitored every 15 min for one year using dataloggers. Chloride concentrations were calculated from specific conductance using empirical relationships. Stream chloride concentrations were directly correlated with development in the watersheds and were inversely related to streamflow. Exceedances of the EPA water quality standard for chloride were detected in the four watersheds with the most development. The number of exceedances during a year was linearly related to the annual average concentration of chloride. Exceedances of the water quality standard were not predicted for streams with annual average concentrations less than 102 mg L(-1). Chloride was imported into three of the watersheds at rates ranging from 45 to 98 Mg Cl km(-2) yr(-1). Ninety-one percent of the chloride imported was road salt for deicing roadways and parking lots. A simple, mass balance equation was shown to predict annual average chloride concentrations from streamflow and chloride import rates to the watershed. This equation, combined with the apparent threshold for exceedances of the water quality standard, can be used for screening-level TMDLs for road salt in impaired watersheds.

  15. Plasma concentrations of acyl-ghrelin are associated with average daily gain and feeding behavior in grow-finish pigs.

    PubMed

    Lents, C A; Brown-Brandl, T M; Rohrer, G A; Oliver, W T; Freking, B A

    2016-04-01

    The objectives of this study were to determine the effect of sex, sire line, and litter size on concentrations of acyl-ghrelin and total ghrelin in plasma of grow-finish pigs and to understand the relationship of plasma concentrations of ghrelin with feeding behavior, average daily gain (ADG), and back fat in grow-finish swine. Yorkshire-Landrace crossbred dams were inseminated with semen from Yorkshire, Landrace, or Duroc sires. Within 24 h of birth, pigs were cross-fostered into litter sizes of normal (N; >12 pigs/litter) or small (S; ≤ 9 pigs/litter). At 8 wk of age, pigs (n = 240) were blocked by sire breed, sex, and litter size and assigned to pens (n = 6) containing commercial feeders modified with a system to monitor feeding behavior. Total time eating, number of daily meals, and duration of meals were recorded for each individual pig. Body weight was recorded every 4 wk. Back fat and loin eye area were recorded at the conclusion of the 12-wk feeding study. A blood sample was collected at week 7 of the study to quantify concentrations of acyl- and total ghrelin in plasma. Pigs from small litters weighed more (P < 0.05) and tended (P = 0.07) to be fatter than pigs from normal litters. Postnatal litter size did not affect ADG, feeding behavior, or concentrations of ghrelin in plasma during the grow-finish phase. Barrows spent more time eating (P < 0.001) than gilts, but the number of meals and concentrations of ghrelin did not differ with sex of the pig. Pigs from Duroc and Yorkshire sires had lesser (P < 0.0001) concentrations of acyl-ghrelin than pigs from Landrace sires, but plasma concentrations of total ghrelin were not affected by sire breed. Concentrations of acyl-ghrelin were positively correlated with the number of meals and negatively correlated with meal length and ADG (P < 0.05). A larger number of short-duration meals may indicate that pigs with greater concentrations of acyl-ghrelin consumed less total feed, which likely explains why they were leaner and grew more slowly. Acyl-ghrelin is involved in regulating feeding behavior in pigs, and measuring acyl-ghrelin is important when trying to understand the role of this hormone in swine physiology. Published by Elsevier Inc.

  16. Patient, Physician and Organizational Influences on Variation in Antipsychotic Prescribing Behavior.

    PubMed

    Tang, Yan; Chang, Chung-Chou H; Lave, Judith R; Gellad, Walid F; Huskamp, Haiden A; Donohue, Julie M

    2016-03-01

    Physicians face the choice of multiple ingredients when prescribing drugs in many therapeutic categories. For conditions with considerable patient heterogeneity in treatment response, customizing treatment to individual patient needs and preferences may improve outcomes. To assess variation in the diversity of antipsychotic prescribing for mental health conditions, a necessary although not sufficient condition for personalizing treatment. To identify patient caseload, physician, and organizational factors associated with the diversity of antipsychotic prescribing. Using 2011 data from Pennsylvania's Medicaid program, IMS Health's HCOSTM database, and the AMA Masterfile, we identified 764 psychiatrists who prescribed antipsychotics to 10 patients. We constructed three physician-level measures of diversity/concentration of antipsychotic prescribing: number of ingredients prescribed, share of prescriptions for most preferred ingredient, and Herfindahl-Hirschman index (HHI). We used multiple membership linear mixed models to examine patient caseload, physician, and healthcare organizational predictors of physician concentration of antipsychotic prescribing. There was substantial variability in antipsychotic prescribing concentration among psychiatrists, with number of ingredients ranging from 2-17, share for most preferred ingredient from 16%-85%, and HHI from 1,088-7,270. On average, psychiatrist prescribing behavior was relatively diversified; however, 11% of psychiatrists wrote an average of 55% of their prescriptions for their most preferred ingredient. Female prescribers and those with smaller shares of disabled or serious mental illness patients had more concentrated prescribing behavior on average. Antipsychotic prescribing by individual psychiatrists in a large state Medicaid program varied substantially across psychiatrists. Our findings illustrate the importance of understanding physicians' prescribing behavior and indicate that even among specialties regularly prescribing a therapeutic category, some physicians rely heavily on a small number of agents. Health systems may need to offer educational interventions to clinicians in order to improve their ability to tailor treatment decisions to the needs of individual patients. Future studies should examine the impact of the diversity of antipsychotic prescribing to determine whether more diversified prescribing improves patient adherence and outcomes.

  17. Validation of self-reported cannabis dose and potency: an ecological study.

    PubMed

    van der Pol, Peggy; Liebregts, Nienke; de Graaf, Ron; Korf, Dirk J; van den Brink, Wim; van Laar, Margriet

    2013-10-01

    To assess the reliability and validity of self-reported cannabis dose and potency measures. Cross-sectional study comparing self-reports with objective measures of amount of cannabis and delta-9-tetrahydrocannabinol (THC) concentration. Ecological study with assessments at participants' homes or in a coffee shop. Young adult frequent cannabis users (n = 106) from the Dutch Cannabis Dependence (CanDep) study. The objectively measured amount of cannabis per joint (dose in grams) was compared with self-reported estimates using a prompt card and average number of joints made from 1 g of cannabis. In addition, objectively assessed THC concentration in the participant's cannabis was compared with self-reported level of intoxication, subjective estimate of cannabis potency and price per gram of cannabis. Objective estimates of doses per joint (0.07-0.88 g/joint) and cannabis potency (1.1-24.7%) varied widely. Self-reported measures of dose were imprecise, but at group level, average dose per joint was estimated accurately with the number of joints made from 1 g [limit of agreement (LOA) = -0.02 g, 95% confidence interval (CI) = -0.29; 0.26], whereas the prompt card resulted in serious underestimation (LOA = 0.14 g, 95% CI = -0.10; 0.37). THC concentration in cannabis was associated with subjective potency ['average' 3.77% (P = 0.002) and '(very) strong' 5.13% more THC (P < 0.001) than '(very) mild' cannabis] and with cannabis price (about 1% increase in THC concentration per euro spent on 1 g of cannabis, P < 0.001), but not with level of intoxication. Self-report measures relating to cannabis use appear at best to be associated weakly with objective measures. Of the self-report measures, number of joints per gram, cannabis price and subjective potency have at least some validity. © 2013 Society for the Study of Addiction.

  18. [Size distribution characteristics of particulate matter in the top areas of coke oven].

    PubMed

    Xie, Qiuyan; Zhao, Hongwei; Yu, Tao; Ning, Zhaojun; Li, Jinmu; Niu, Yong; Zheng, Yuxin; Zhao, Xiulan; Duan, Huawei

    2015-03-01

    To systematically evaluate the environmental exposure information of coke oven workers, we investigated the concentration and size distribution characteristics of the particle matter (PM) in the top working area of coke oven. The aerodynamic particle sizer spectrometer was employed to collect the concentration and size distribution information of PM at a top working area. The PM was divided into PM ≤ 1.0 µm, 1.0 µm < PM ≤ 2.5 µm, 2.5 µm < PM ≤ 5.0 µm, 5.0 µm < PM ≤ 10.0 µm and PM>10.0 µm based on their aerodynamic diameters. The number concentration, surface area concentration, and mass concentration were analyzed between different groups. We also conducted the correlation analysis on these parameters among groups. We found the number and surface area concentration of top area particulate was negatively correlated with particle size, but mass concentration curve showed bimodal type with higher point at PM = 1.0 µm and PM = 5.0 µm. The average number concentration of total particulate matter in the top working area was 661.27 number/cm³, surface area concentration was 523.92 µm²/cm³, and mass concentration was 0.12 mg/m³. The most number of particulate matter is not more than 1 µm (PM(1.0)), and its number concentration and surface area concentration accounted for 96.85% and 67.01% of the total particles respectively. In the correlation analysis, different particle size correlated with the total particulate matter differently. And the characteristic parameters of PM2.5 cannot fully reflect the total information of particles. The main particulate matter pollutants in the top working area of coke oven is PM1.0, and it with PM(5.0) can account for a large proportion in the mass concentration of PM. It suggest that PM1.0 and PM(5.0) should be considered for occupational health surveillance on the particulate matter in the top area of coke oven.

  19. Characterization of coarse particulate matter in school gyms.

    PubMed

    Braniš, Martin; Šafránek, Jiří

    2011-05-01

    We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM(10-2.5) and PM(2.5-1.0)) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM(10-2.5) 4.1-7.4 μg m(-3) and PM(2.5-1.0) 2.0-3.3 μg m(-3)) than indoors (average PM(10-2.5) 13.6-26.7 μg m(-3) and PM(2.5-1.0) 3.7-7.4 μg m(-3)). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM(10-2.5) and 1.4-4.8 for the PM(2.5-1.0) values. Under extreme conditions, the I/O ratios reached 180 (PM(10-2.5)) and 19.1 (PM(2.5-1.0)). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school gyms were found to be indoor microenvironments with high concentrations of coarse particulate matter, which can contribute to increased short-term inhalation exposure of exercising children. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Tropospheric ozone in the Nisqually River Drainage, Mount Rainier National Park

    USGS Publications Warehouse

    Peterson, D.L.; Bowers, Darci

    1999-01-01

    We quantified the summertime distribution of tropospheric ozone in the topographically complex Nisqually River drainage of Mount Rainier National Park from 1994 to 1997. Passive ozone samplers were used along an elevational transect to measure weekly average ozone concentrations ranging from 570 m to 2040 m elevation. Weekly average ozone concentrations were positively correlated with elevation, with the highest concentrations consistently measured at the highest sampling site (Panorama Point). Weekly average ozone concentrations at Mount Rainier National Park are considerably higher than those in the Seattle-Tacoma metropolitan area to the west. The anthropogenic contribution to ozone within the Nisqually drainage was evaluated by comparing measurements at this location with measurements from a 'reference' site in the western Olympic Mountains. The comparison suggests there is a significant anthropogenic source of ozone reaching the Cascade Range via atmospheric transport from urban areas to the west. In addition. temporal (week to week) variation in ozone distribution is synchronous within the Nisqually drainage, which indicates that subregional patterns are detectable with weekly averages. The Nisqually drainage is likely the 'hot spot' for air pollution in Mount Rainier National Park. By using passive ozone samplers in this drainage in conjunction with a limited number of continuous analyzers, the park will have a robust monitoring approach for measuring tropospheric ozone over time and protecting vegetative and human health.

  1. Atmospheric CO2 Concentrations from the Commonwealth Scientific and Industrial Research Organization (CSIRO) GASLAB Flask Sampling Network (March 1991 - December 2006)

    DOE Data Explorer

    Steele, L. P. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Aspendale, Victoria, Australia; Krummel, P. B. [Commonwealth Scientific and Industrial Research Organization (CSIRO),; Langenfelds, R. L. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Aspendale, Victoria, Australia

    2008-01-01

    Individual measurements have been obtained from flask air samples returned to the CSIRO GASLAB. Typical sample storage times range from days to weeks for some sites (e.g. Cape Grim, Aircraft over Tasmania and Bass Strait) to as much as one year for Macquarie Island and the Antarctic sites. Experiments carried out to test for changes in sample CO2 mixing ratio during storage have shown significant drifts in some flask types over test periods of several months to years (Cooper et al., 1999). Corrections derived from the test results are applied to network data according to flask type. These measurements indicate a rise in annual average atmospheric CO2 concentration from 357.72 parts per million by volume (ppmv) in 1992 to 383.05 ppmv in 2006, or an increase in annual average of about 1.81 ppmv/year. These flask data may be compared with other flask measurements from the Scripps Institution of Oceanography, available through 2004 in TRENDS; both indicate an annual average increase of 1.72 ppmv/year throuth 2004. Differences may be attributed to different sampling times or days, different numbers of samples, and different curve-fitting techniques used to obtain monthly and annual average numbers from flask data. Measurement error in flask data is believed to be small (Masarie et al., 2001).

  2. Bioavailability and chronic toxicity of bismuth citrate to earthworm Eisenia andrei exposed to natural sandy soil.

    PubMed

    Omouri, Zohra; Hawari, Jalal; Fournier, Michel; Robidoux, Pierre Yves

    2018-01-01

    The present study describes bioavailability and chronic effects of bismuth to earthworms Eisenia andrei using OECD reproduction test. Adult earthworms were exposed to natural sandy soil contaminated artificially by bismuth citrate. Average total concentrations of bismuth in soil recovered by HNO 3 digestion ranged from 75 to 289mg/kg. Results indicate that bismuth decreased significantly all reproduction parameters of Eisenia andrei at concentrations ≥ 116mg/kg. However, number of hatched cocoons and number of juveniles seem to be more sensitive than total number of cocoons, as determined by IC 50 ; i.e., 182, 123 and > 289mg/kg, respectively. Bismuth did not affect Eisenia andrei growth and survival, and had little effect on phagocytic efficiency of coelomocytes. The low immunotoxicity effect might be explained by the involvement of other mechanisms i.e. bismuth sequestered by metal-binding compounds. After 28 days of exposure bismuth concentrations in earthworms tissue increased with increasing bismuth concentrations in soil reaching a stationary state of 21.37mg/kg dry tissue for 243mg Bi/kg dry soil total content. Data indicate also that after 56 days of incubation the average fractions of bismuth available extracted by KNO 3 aqueous solution in soil without earthworms varied from 0.0051 to 0.0229mg/kg, while in soil with earthworms bismuth concentration ranged between 0.310-1.347mg/kg dry soil. We presume that mucus and chelating agents produced by earthworms and by soil or/and earthworm gut microorganisms could explain this enhancement, as well as the role of dermal and ingestion routes of earthworms uptake to soil contaminant. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. 40 CFR 63.1257 - Test methods and compliance procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the design minimum and average flame zone temperatures and combustion zone residence time; and shall... establish the design exhaust vent stream organic compound concentration level, adsorption cycle time, number... regeneration cycle, design carbon bed temperature after regeneration, design carbon bed regeneration time, and...

  4. 40 CFR 63.1257 - Test methods and compliance procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the design minimum and average flame zone temperatures and combustion zone residence time; and shall... establish the design exhaust vent stream organic compound concentration level, adsorption cycle time, number... regeneration cycle, design carbon bed temperature after regeneration, design carbon bed regeneration time, and...

  5. Children exposure to indoor ultrafine particles in urban and rural school environments.

    PubMed

    Cavaleiro Rufo, João; Madureira, Joana; Paciência, Inês; Slezakova, Klara; Pereira, Maria do Carmo; Aguiar, Lívia; Teixeira, João Paulo; Moreira, André; Oliveira Fernandes, Eduardo

    2016-07-01

    Extended exposure to ultrafine particles (UFPs) may lead to consequences in children due to their increased susceptibility when compared to older individuals. Since children spend in average 8 h/day in primary schools, assessing the number concentrations of UFPs in these institutions is important in order to evaluate the health risk for children in primary schools caused by indoor air pollution. Thus, the purpose of this study was to assess and determine the sources of indoor UFP number concentrations in urban and rural Portuguese primary schools. Indoor and outdoor ultrafine particle (UFP) number concentrations were measured in six urban schools (US) and two rural schools (RS) located in the north of Portugal, during the heating season. The mean number concentrations of indoor UFPs were significantly higher in urban schools than in rural ones (10.4 × 10(3) and 5.7 × 10(3) pt/cm(3), respectively). Higher UFP levels were associated with higher squared meters per student, floor levels closer to the ground, chalk boards, furniture or floor covering materials made of wood and windows with double-glazing. Indoor number concentrations of ultrafine-particles were inversely correlated with indoor CO2 levels. In the present work, indoor and outdoor concentrations of UFPs in public primary schools located in urban and rural areas were assessed, and the main sources were identified for each environment. The results not only showed that UFP pollution is present in augmented concentrations in US when compared to RS but also revealed some classroom/school characteristics that influence the concentrations of UFPs in primary schools.

  6. Radon safety in terms of energy efficiency classification of buildings

    NASA Astrophysics Data System (ADS)

    Vasilyev, A.; Yarmoshenko, I.; Zhukovsky, M.

    2017-06-01

    According to the results of survey in Ekaterinburg, Russia, indoor radon concentrations above city average level have been found in each of the studied buildings with high energy efficiency class. Measures to increase energy efficiency were confirmed to decrease the air exchange rate and accumulation of high radon concentrations indoors. Despite of recommendations to use mechanical ventilation with heat recovery as the main scenario for reducing elevated radon concentrations in energy-efficient buildings, the use of such systems did not show an obvious advantage. In real situation, mechanical ventilation system is not used properly both in the automatic and manual mode, which does not give an obvious advantage over natural ventilation in the climate of the Middle Urals in Ekaterinburg. Significant number of buildings with a high class of energy efficiency and built using modern space-planning decisions contributes to an increase in the average radon concentration. Such situation contradicts to “as low as reasonable achievable” principle of the radiation protection.

  7. Particle Fluxes Over a Ponderosa Pine Plantation

    NASA Astrophysics Data System (ADS)

    Baker, B.; Goldstein, A.

    2006-12-01

    Atmospheric aerosols can affect visibility, climate, and health. Particle fluxes were measured continuously over a 15 year-old ponderosa pine plantation in the foothills of the Sierra Nevada from mid July to the end of September in the year 2005. Air at this field site is affected by both biogenic emissions from the dense forests of the surrounding area and by urban pollution transported from the Sacramento valley. It is believed that fluxes of very reactive hydrocarbons from plants to the atmosphere have an impact on the production and growth of atmospheric particles at this site. Two condensation particle counters (CPCs) were located near the top of a 12 m measurement tower, several meters above the top of the tree canopy. Particle count data was collected at 10 Hz and particle fluxes were determined using the eddy covariance method. A set of diffusion screens was added to the inlet of one of the CPCs such that the lower particle size limit for detection was increased to a diameter of approximately 40 nm. The other CPC counted particles with minimum diameters of 3 nm. Particle concentrations showed a distinct diurnal pattern with minimum daily average concentrations of 2000 particles cm-3 occurring at dawn, and average daily maximum concentrations of 5700 particles cm-3 occurring at dusk. The evening increase of particle number corresponded to the arrival of polluted air from the Sacramento region. During the day, deposition of particles to the forest canopy (daytime average of 5.8x106 particles m-2 s-1 was generally observed. Concentrations and fluxes of particles under 40 nm could be examined by subtracting the data of one CPC from the other. On average, the fraction of particles under 40 nm increased from less than 20% at dawn to more than 50% at dusk; indicating that air coming from the Sacramento region was enriched in smaller, newly formed aerosol. Daily average deposition fluxes of particles under 40 nm were 1.0x107 particles m-2 s-1. Much of this flux was due to large deposition fluxes during the final three weeks of the experiment. Deposition of particles above 40 nm averaged 1.0x106 particles m-2 s-1. Deposition velocities for the particles under 40 nm were typically between 1 and 10 mm s-1. Particle deposition was correlated most strongly with temperature, and also showed some correlation with relative humidity, particle number concentration, and ozone.

  8. Hydration and rotational diffusion of levoglucosan in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Corezzi, S.; Sassi, P.; Paolantoni, M.; Comez, L.; Morresi, A.; Fioretto, D.

    2014-05-01

    Extended frequency range depolarized light scattering measurements of water-levoglucosan solutions are reported at different concentrations and temperatures to assess the effect of the presence and distribution of hydroxyl groups on the dynamics of hydration water. The anhydro bridge, reducing from five to three the number of hydroxyl groups with respect to glucose, considerably affects the hydration properties of levoglucosan with respect to those of mono and disaccharides. In particular, we find that the average retardation of water dynamics is ≈3-4, that is lower than ≈5-6 previously found in glucose, fructose, trehalose, and sucrose. Conversely, the average number of retarded water molecules around levoglucosan is 24, almost double that found in water-glucose mixtures. These results suggest that the ability of sugar molecules to form H-bonds through hydroxyl groups with surrounding water, while producing a more effective retardation, it drastically reduces the spatial extent of the perturbation on the H-bond network. In addition, the analysis of the concentration dependence of the hydration number reveals the aptitude of levoglucosan to produce large aggregates in solution. The analysis of shear viscosity and rotational diffusion time suggests a very short lifetime for these aggregates, typically faster than ≈20 ps.

  9. Sea spray aerosol as a unique source of ice nucleating particles

    DOE PAGES

    DeMott, Paul J.; Hill, Thomas C. J.; McCluskey, Christina S.; ...

    2016-05-24

    Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-generated SSA, when normalized to typical total aerosol number concentrations in the marine boundary layer, agree well with measurements from diverse regions over the oceans. In addition, data in the present study are also in accord with previously published INPmore » measurements made over remote ocean regions. INP number concentrations active within liquid water droplets increase exponentially in number with a decrease in temperature below 0°C, averaging an order of magnitude increase per 5°C interval. The plausibility of a strong increase in SSA INP emissions in association with phytoplankton blooms is also shown in laboratory simulations. Nevertheless, INP number concentrations, or active site densities approximated using “dry” geometric SSA surface areas, are a few orders of magnitude lower than corresponding concentrations or site densities in the surface boundary layer over continental regions. Lastly, these findings have important implications for cloud radiative forcing and precipitation within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean.« less

  10. Sea spray aerosol as a unique source of ice nucleating particles.

    PubMed

    DeMott, Paul J; Hill, Thomas C J; McCluskey, Christina S; Prather, Kimberly A; Collins, Douglas B; Sullivan, Ryan C; Ruppel, Matthew J; Mason, Ryan H; Irish, Victoria E; Lee, Taehyoung; Hwang, Chung Yeon; Rhee, Tae Siek; Snider, Jefferson R; McMeeking, Gavin R; Dhaniyala, Suresh; Lewis, Ernie R; Wentzell, Jeremy J B; Abbatt, Jonathan; Lee, Christopher; Sultana, Camille M; Ault, Andrew P; Axson, Jessica L; Diaz Martinez, Myrelis; Venero, Ingrid; Santos-Figueroa, Gilmarie; Stokes, M Dale; Deane, Grant B; Mayol-Bracero, Olga L; Grassian, Vicki H; Bertram, Timothy H; Bertram, Allan K; Moffett, Bruce F; Franc, Gary D

    2016-05-24

    Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-generated SSA, when normalized to typical total aerosol number concentrations in the marine boundary layer, agree well with measurements from diverse regions over the oceans. Data in the present study are also in accord with previously published INP measurements made over remote ocean regions. INP number concentrations active within liquid water droplets increase exponentially in number with a decrease in temperature below 0 °C, averaging an order of magnitude increase per 5 °C interval. The plausibility of a strong increase in SSA INP emissions in association with phytoplankton blooms is also shown in laboratory simulations. Nevertheless, INP number concentrations, or active site densities approximated using "dry" geometric SSA surface areas, are a few orders of magnitude lower than corresponding concentrations or site densities in the surface boundary layer over continental regions. These findings have important implications for cloud radiative forcing and precipitation within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean.

  11. Sea spray aerosol as a unique source of ice nucleating particles

    PubMed Central

    DeMott, Paul J.; Hill, Thomas C. J.; McCluskey, Christina S.; Prather, Kimberly A.; Ruppel, Matthew J.; Mason, Ryan H.; Irish, Victoria E.; Lee, Taehyoung; Hwang, Chung Yeon; Snider, Jefferson R.; McMeeking, Gavin R.; Dhaniyala, Suresh; Lewis, Ernie R.; Wentzell, Jeremy J. B.; Abbatt, Jonathan; Lee, Christopher; Sultana, Camille M.; Ault, Andrew P.; Axson, Jessica L.; Diaz Martinez, Myrelis; Venero, Ingrid; Santos-Figueroa, Gilmarie; Stokes, M. Dale; Deane, Grant B.; Mayol-Bracero, Olga L.; Grassian, Vicki H.; Bertram, Timothy H.; Bertram, Allan K.; Moffett, Bruce F.; Franc, Gary D.

    2016-01-01

    Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-generated SSA, when normalized to typical total aerosol number concentrations in the marine boundary layer, agree well with measurements from diverse regions over the oceans. Data in the present study are also in accord with previously published INP measurements made over remote ocean regions. INP number concentrations active within liquid water droplets increase exponentially in number with a decrease in temperature below 0 °C, averaging an order of magnitude increase per 5 °C interval. The plausibility of a strong increase in SSA INP emissions in association with phytoplankton blooms is also shown in laboratory simulations. Nevertheless, INP number concentrations, or active site densities approximated using “dry” geometric SSA surface areas, are a few orders of magnitude lower than corresponding concentrations or site densities in the surface boundary layer over continental regions. These findings have important implications for cloud radiative forcing and precipitation within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean. PMID:26699469

  12. Dynamic real-time monitoring of chloroform in an indoor swimming pool air using open-path Fourier transform infrared spectroscopy.

    PubMed

    Chen, M-J; Duh, J-M; Shie, R-H; Weng, J-H; Hsu, H-T

    2016-06-01

    This study used open-path Fourier transform infrared (OP-FTIR) spectroscopy to continuously assess the variation in chloroform concentrations in the air of an indoor swimming pool. Variables affecting the concentrations of chloroform in air were also monitored. The results showed that chloroform concentrations in air varied significantly during the time of operation of the swimming pool and that there were two peaks in chloroform concentration during the time of operation of the pool. The highest concentration was at 17:30, which is coincident with the time with the highest number of swimmers in the pool in a day. The swimmer load was one of the most important factors influencing the chloroform concentration in the air. When the number of swimmers surpassed 40, the concentrations of chloroform were on average 4.4 times higher than the concentration measured without swimmers in the pool. According to the results of this study, we suggest that those who swim regularly should avoid times with highest number of swimmers, in order to decrease the risk of exposure to high concentrations of chloroform. It is also recommended that an automatic mechanical ventilation system is installed to increase the ventilation rate during times of high swimmer load. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Concentrations of fine, ultrafine, and black carbon particles in auto-rickshaws in New Delhi, India

    NASA Astrophysics Data System (ADS)

    Apte, Joshua, S.; Kirchstetter, Thomas W.; Reich, Alexander, H.; Deshpande, Shyam J.; Kaushik, Geetanjali; Chel, Arvind; Marshall, Julian D.; Nazaroff, William W.

    2011-08-01

    Concentrations of air pollutants from vehicles are elevated along roadways, indicating that human exposure in transportation microenvironments may not be adequately characterized by centrally located monitors. We report results from ˜180 h of real-time measurements of fine particle and black carbon mass concentration (PM 2.5, BC) and ultrafine particle number concentration (PN) inside a common vehicle, the auto-rickshaw, in New Delhi, India. Measured exposure concentrations are much higher in this study (geometric mean for ˜60 trip-averaged concentrations: 190 μg m -3 PM 2.5, 42 μg m -3 BC, 280 × 10 3 particles cm -3; GSD ˜1.3 for all three pollutants) than reported for transportation microenvironments in other megacities. In-vehicle concentrations exceeded simultaneously measured ambient levels by 1.5× for PM 2.5, 3.6× for BC, and 8.4× for PN. Short-duration peak concentrations (averaging time: 10 s), attributable to exhaust plumes of nearby vehicles, were greater than 300 μg m -3 for PM 2.5, 85 μg m -3 for BC, and 650 × 10 3 particles cm -3 for PN. The incremental increase of within-vehicle concentration above ambient levels—which we attribute to in- and near-roadway emission sources—accounted for 30%, 68% and 86% of time-averaged in-vehicle PM 2.5, BC and PN concentrations, respectively. Based on these results, we estimate that one's exposure during a daily commute by auto-rickshaw in Delhi is as least as large as full-day exposures experienced by urban residents of many high-income countries. This study illuminates an environmental health concern that may be common in many populous, low-income cities.

  14. Particle Concentrations and Effectiveness of Free-Standing Air Filters in Bedrooms of Children with Asthma in Detroit, Michigan

    PubMed Central

    Du, Liuliu; Batterman, Stuart; Parker, Edith; Godwin, Christopher; Chin, Jo-Yu; O'Toole, Ashley; Robins, Thomas; Brakefield-Caldwell, Wilma; Lewis, Toby

    2011-01-01

    Asthma can be exacerbated by environmental factors including airborne particulate matter (PM) and environmental tobacco smoke (ETS). We report on a study designed to characterize PM levels and the effectiveness of filters on pollutant exposures of children with asthma. 126 households with an asthmatic child in Detroit, Michigan, were recruited and randomized into control or treatment groups. Both groups received asthma education; the latter also received a free-standing high efficiency air filter placed in the child’s bedroom. Information regarding the home, emission sources, and occupant activities was obtained using surveys administered to the child's caregiver and a household inspection. Over a one-week period, we measured PM, carbon dioxide (CO2), environmental tobacco smoke (ETS) tracers, and air exchange rates (AERs). Filters were installed at midweek. Before filter installation, PM concentrations averaged 28 µg m−3, number concentrations averaged 70,777 and 1,471 L−1 in 0.3–1.0 and 1–5 µm size ranges, respectively, and the median CO2 concentration was 1,018 ppm. ETS tracers were detected in 23 of 38 homes where smoking was unrestricted and occupants included smokers and, when detected, PM concentrations were elevated by an average of 15 µg m−3. Filter use reduced PM concentrations by an average of 69 to 80%. Simulation models representing location conditions show that filter air flow, room volume and AERs are the key parameters affecting PM removal, however, filters can achieve substantial removal in even "worst" case applications. While PM levels in homes with asthmatic children can be high, levels can be dramatically reduced using filters. PMID:21874085

  15. Particle Concentrations and Effectiveness of Free-Standing Air Filters in Bedrooms of Children with Asthma in Detroit, Michigan.

    PubMed

    Du, Liuliu; Batterman, Stuart; Parker, Edith; Godwin, Christopher; Chin, Jo-Yu; O'Toole, Ashley; Robins, Thomas; Brakefield-Caldwell, Wilma; Lewis, Toby

    2011-10-01

    Asthma can be exacerbated by environmental factors including airborne particulate matter (PM) and environmental tobacco smoke (ETS). We report on a study designed to characterize PM levels and the effectiveness of filters on pollutant exposures of children with asthma. 126 households with an asthmatic child in Detroit, Michigan, were recruited and randomized into control or treatment groups. Both groups received asthma education; the latter also received a free-standing high efficiency air filter placed in the child's bedroom. Information regarding the home, emission sources, and occupant activities was obtained using surveys administered to the child's caregiver and a household inspection. Over a one-week period, we measured PM, carbon dioxide (CO(2)), environmental tobacco smoke (ETS) tracers, and air exchange rates (AERs). Filters were installed at midweek. Before filter installation, PM concentrations averaged 28 µg m(-3), number concentrations averaged 70,777 and 1,471 L(-1) in 0.3-1.0 and 1-5 µm size ranges, respectively, and the median CO(2) concentration was 1,018 ppm. ETS tracers were detected in 23 of 38 homes where smoking was unrestricted and occupants included smokers and, when detected, PM concentrations were elevated by an average of 15 µg m(-3). Filter use reduced PM concentrations by an average of 69 to 80%. Simulation models representing location conditions show that filter air flow, room volume and AERs are the key parameters affecting PM removal, however, filters can achieve substantial removal in even "worst" case applications. While PM levels in homes with asthmatic children can be high, levels can be dramatically reduced using filters.

  16. A novel methodology for interpreting air quality measurements from urban streets using CFD modelling

    NASA Astrophysics Data System (ADS)

    Solazzo, Efisio; Vardoulakis, Sotiris; Cai, Xiaoming

    2011-09-01

    In this study, a novel computational fluid dynamics (CFD) based methodology has been developed to interpret long-term averaged measurements of pollutant concentrations collected at roadside locations. The methodology is applied to the analysis of pollutant dispersion in Stratford Road (SR), a busy street canyon in Birmingham (UK), where a one-year sampling campaign was carried out between August 2005 and July 2006. Firstly, a number of dispersion scenarios are defined by combining sets of synoptic wind velocity and direction. Assuming neutral atmospheric stability, CFD simulations are conducted for all the scenarios, by applying the standard k-ɛ turbulence model, with the aim of creating a database of normalised pollutant concentrations at specific locations within the street. Modelled concentration for all wind scenarios were compared with hourly observed NO x data. In order to compare with long-term averaged measurements, a weighted average of the CFD-calculated concentration fields was derived, with the weighting coefficients being proportional to the frequency of each scenario observed during the examined period (either monthly or annually). In summary the methodology consists of (i) identifying the main dispersion scenarios for the street based on wind speed and directions data, (ii) creating a database of CFD-calculated concentration fields for the identified dispersion scenarios, and (iii) combining the CFD results based on the frequency of occurrence of each dispersion scenario during the examined period. The methodology has been applied to calculate monthly and annually averaged benzene concentration at several locations within the street canyon so that a direct comparison with observations could be made. The results of this study indicate that, within the simplifying assumption of non-buoyant flow, CFD modelling can aid understanding of long-term air quality measurements, and help assessing the representativeness of monitoring locations for population exposure studies.

  17. Characterization of coarse particulate matter in school gyms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branis, Martin, E-mail: branis@natur.cuni.cz; Safranek, Jiri

    2011-05-15

    We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM{sub 10-2.5} and PM{sub 2.5-1.0}) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM{sub 10-2.5} 4.1-7.4 {mu}g m{sup -3} andmore » PM{sub 2.5-1.0} 2.0-3.3 {mu}g m{sup -3}) than indoors (average PM{sub 10-2.5} 13.6-26.7 {mu}g m{sup -3} and PM{sub 2.5-1.0} 3.7-7.4 {mu}g m{sup -3}). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM{sub 10-2.5} and 1.4-4.8 for the PM{sub 2.5-1.0} values. Under extreme conditions, the I/O ratios reached 180 (PM{sub 10-2.5}) and 19.1 (PM{sub 2.5-1.0}). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school gyms were found to be indoor microenvironments with high concentrations of coarse particulate matter, which can contribute to increased short-term inhalation exposure of exercising children. - Highlights: {yields} We studied concentration, composition and morphology of coarse particles in gyms. {yields} Indoor concentration of coarse particles was high during days with pupils activity. {yields} Effect of outdoor coarse dust on indoor levels was weak and inconsistent. {yields} Six main groups of minerals contributing to indoor resuspended dust were determined. {yields} The most abundant coarse particles were human skin scales.« less

  18. Neuropeptide Y in phaeochromocytomas and ganglioneuroblastomas.

    PubMed

    Adrian, T E; Allen, J M; Terenghi, G; Bacarese-Hamilton, A J; Brown, M J; Polak, J M; Bloom, S R

    1983-09-03

    Tumour tissue from nineteen patients with phaeochromocytomas and nine with ganglioneuroblastomas contained large numbers of neuropeptide Y (NPY) producing cells and extracts of these tumours had very high concentrations of immunoreactive NPY. Plasma NPY concentrations were also raised, averaging 460 pmol/l in patients with tumours of the sympathetic chain and 55 pmol/l in healthy controls. Since plasma NPY is straightforward to measure and relatively stable, its estimation may prove helpful as a screening tests for phaeochromocytoma.

  19. ELECTRICAL AEROSOL DETECTOR (EAD) MEASUREMENTS AT THE ST. LOUIS SUPERSITE

    EPA Science Inventory

    The Model 3070A Electrical Aerosol Detector (EAD) measures a unique aerosol parameter called total aerosol length. Reported as mm/cm3, aerosol length can be thought of as a number concentration times average diameter, or simply as d1 weighting. This measurement falls between nu...

  20. Toxicity to woodlice of zinc and lead oxides added to soil litter

    USGS Publications Warehouse

    Beyer, W.N.; Anderson, A.

    1985-01-01

    Previous studies have shown that high concentrations of metals in soil are associated with reductions in decomposer populations. We have here determined the relation between the concentrations of lead and zinc added as oxides to soil litter and the survival and reproduction of a decomposer population under controlled conditions. Laboratory populations of woodlice (Porcellio scaber Latr) were fed soil litter treated with lead or zinc at concentrations that ranged from 100 to 12,800 ppm. The survival of the adults, the maximum number of young alive, and the average number of young alive, were recorded over 64 weeks. Lead at 12,800 ppm and zinc at 1,600 ppm or more had statistically significant (p < 0.05) negative effects on the populations. These results agree with field observations suggesting that lead and zinc have reduced populations of decomposers in contaminated forest soil litter, and concentrations are similar to those reported to be associated with reductions in natural populations of decomposers. Poisoning of decomposers may disrupt nutrient cycling, reduce the numbers of invertebrates available to other wildlife for food, and contribute to the contamination of food chains.

  1. Biocide-mediated corrosion of coiled tubing.

    PubMed

    Sharma, Mohita; An, Dongshan; Liu, Tao; Pinnock, Tijan; Cheng, Frank; Voordouw, Gerrit

    2017-01-01

    Coiled tubing corrosion was investigated for 16 field water samples (S5 to S20) from a Canadian shale gas field. Weight loss corrosion rates of carbon steel beads incubated with these field water samples averaged 0.2 mm/yr, but injection water sample S19 had 1.25±0.07 mm/yr. S19 had a most probable number of zero acid-producing bacteria and incubation of S19 with carbon steel beads or coupons did not lead to big changes in microbial community composition. In contrast other field water samples had most probable numbers of APB of 102/mL to 107/mL and incubation of these field water samples with carbon steel beads or coupons often gave large changes in microbial community composition. HPLC analysis indicated that all field water samples had elevated concentrations of bromide (average 1.6 mM), which may be derived from bronopol, which was used as a biocide. S19 had the highest bromide concentration (4.2 mM) and was the only water sample with a high concentration of active bronopol (13.8 mM, 2760 ppm). Corrosion rates increased linearly with bronopol concentration, as determined by weight loss of carbon steel beads, for experiments with S19, with filtered S19 and with bronopol dissolved in defined medium. This indicated that the high corrosion rate found for S19 was due to its high bronopol concentration. The corrosion rate of coiled tubing coupons also increased linearly with bronopol concentration as determined by electrochemical methods. Profilometry measurements also showed formation of multiple pits on the surface of coiled tubing coupon with an average pit depth of 60 μm after 1 week of incubation with 1 mM bronopol. At the recommended dosage of 100 ppm the corrosiveness of bronopol towards carbon steel beads was modest (0.011 mm/yr). Higher concentrations, resulting if biocide is added repeatedly as commonly done in shale gas operations, are more corrosive and should be avoided. Overdosing may be avoided by assaying the presence of residual biocide by HPLC, rather than by assaying the presence of residual surviving bacteria.

  2. Biocide-mediated corrosion of coiled tubing

    PubMed Central

    An, Dongshan; Liu, Tao; Pinnock, Tijan; Cheng, Frank; Voordouw, Gerrit

    2017-01-01

    Coiled tubing corrosion was investigated for 16 field water samples (S5 to S20) from a Canadian shale gas field. Weight loss corrosion rates of carbon steel beads incubated with these field water samples averaged 0.2 mm/yr, but injection water sample S19 had 1.25±0.07 mm/yr. S19 had a most probable number of zero acid-producing bacteria and incubation of S19 with carbon steel beads or coupons did not lead to big changes in microbial community composition. In contrast other field water samples had most probable numbers of APB of 102/mL to 107/mL and incubation of these field water samples with carbon steel beads or coupons often gave large changes in microbial community composition. HPLC analysis indicated that all field water samples had elevated concentrations of bromide (average 1.6 mM), which may be derived from bronopol, which was used as a biocide. S19 had the highest bromide concentration (4.2 mM) and was the only water sample with a high concentration of active bronopol (13.8 mM, 2760 ppm). Corrosion rates increased linearly with bronopol concentration, as determined by weight loss of carbon steel beads, for experiments with S19, with filtered S19 and with bronopol dissolved in defined medium. This indicated that the high corrosion rate found for S19 was due to its high bronopol concentration. The corrosion rate of coiled tubing coupons also increased linearly with bronopol concentration as determined by electrochemical methods. Profilometry measurements also showed formation of multiple pits on the surface of coiled tubing coupon with an average pit depth of 60 μm after 1 week of incubation with 1 mM bronopol. At the recommended dosage of 100 ppm the corrosiveness of bronopol towards carbon steel beads was modest (0.011 mm/yr). Higher concentrations, resulting if biocide is added repeatedly as commonly done in shale gas operations, are more corrosive and should be avoided. Overdosing may be avoided by assaying the presence of residual biocide by HPLC, rather than by assaying the presence of residual surviving bacteria. PMID:28746397

  3. Physicochemical properties of fine aerosols at Plan d'Aups during ESCOMPTE

    NASA Astrophysics Data System (ADS)

    Marinoni, Angela; Laj, Paolo; Deveau, Pierre Alexandre; Marino, Federica; Ghermandi, Grazia; Aulagnier, Fabien; Cachier, Hélène

    2005-03-01

    The physical and chemical properties of aerosol particles were investigated at Plan d'Aups, one of the ESCOMPTE sites located in the St. Baume mountain area (700 m a.s.l.), 50 km east of Marseilles (France). The site is ideally located for assessing the vertical and horizontal extent of the pollution plume from the Marseilles-Berre area. Our study showed that polluted air masses from the Marseilles-Berre area are advected to Plan d'Aups in the early afternoon. Average daily concentration of particles reaches up to 40 μg m -3 while 1-h average particle number concentration is greater than 30,000 cm -3. Most of the particle mass is composed of SO 42- and organic carbon (OC). The chemical properties of the particles revealed that an additional source, possibly from the industrial area of Gardanne, contributes to the aerosol mass. This last source is characterised by significant emissions of elements, such as Zn, V, Al and Si. In addition to transport, we found that gas-to-particle conversion takes place at the interface between the free troposphere and the boundary layer. We estimated that on average, 30% of the particle number is accounted for by direct nucleation. This is potentially a major aerosol source to the free troposphere.

  4. Effects of preferential concentration on direct radiation transmission in a turbulent duct flow

    NASA Astrophysics Data System (ADS)

    Villafane, Laura; Banko, Andrew; Kim, Ji Hoon; Elkins, Chris; Eaton, John

    2017-11-01

    Inertial particles in turbulent flows preferentially concentrate, giving rise to spatial and temporal fluctuations of particle number density that affect radiation transmission through the medium. Positive particle correlations enhance direct transmission when compared to the exponential attenuation predicted by the Beer's Law for randomly distributed particles. In the context of a particle based solar receiver, this work studies the effects of preferential concentration and optical depth on direct transmission through a particle laden turbulent duct flow. Time resolved measurements of transmission through the mixture were performed for various particle loadings and Reynolds numbers, thus varying particle correlation lengths, optical depth and concentration fluctuations. These measurements were made using a photodiode to record the transmission of a collimated laser beam along the wall bisector of the duct. A synchronized high-speed camera provided particle positions along most of the beam path. Average and fluctuating radiation transmission results are compared to predictions derived from the imaged number density fields and to simplified analytical models. Simplified models are able to capture the correct trends with varying loading and preferential concentration. This work is funded by the Department of Energy's National Nuclear Security Administration, Grant #DE-NA0002373-1.

  5. Optimization of artificial neural network models through genetic algorithms for surface ozone concentration forecasting.

    PubMed

    Pires, J C M; Gonçalves, B; Azevedo, F G; Carneiro, A P; Rego, N; Assembleia, A J B; Lima, J F B; Silva, P A; Alves, C; Martins, F G

    2012-09-01

    This study proposes three methodologies to define artificial neural network models through genetic algorithms (GAs) to predict the next-day hourly average surface ozone (O(3)) concentrations. GAs were applied to define the activation function in hidden layer and the number of hidden neurons. Two of the methodologies define threshold models, which assume that the behaviour of the dependent variable (O(3) concentrations) changes when it enters in a different regime (two and four regimes were considered in this study). The change from one regime to another depends on a specific value (threshold value) of an explanatory variable (threshold variable), which is also defined by GAs. The predictor variables were the hourly average concentrations of carbon monoxide (CO), nitrogen oxide, nitrogen dioxide (NO(2)), and O(3) (recorded in the previous day at an urban site with traffic influence) and also meteorological data (hourly averages of temperature, solar radiation, relative humidity and wind speed). The study was performed for the period from May to August 2004. Several models were achieved and only the best model of each methodology was analysed. In threshold models, the variables selected by GAs to define the O(3) regimes were temperature, CO and NO(2) concentrations, due to their importance in O(3) chemistry in an urban atmosphere. In the prediction of O(3) concentrations, the threshold model that considers two regimes was the one that fitted the data most efficiently.

  6. Meteorological detrending of primary and secondary pollutant concentrations: Method application and evaluation using long-term (2000-2012) data in Atlanta

    NASA Astrophysics Data System (ADS)

    Henneman, Lucas R. F.; Holmes, Heather A.; Mulholland, James A.; Russell, Armistead G.

    2015-10-01

    The effectiveness of air pollution regulations and controls are evaluated based on measured air pollutant concentrations. Air pollution levels, however, are highly sensitive to both emissions and meteorological fluctuations. Therefore, an assessment of the change in air pollutant levels due to emissions controls must account for these meteorological fluctuations. Two empirical methods to quantify the impact of meteorology on pollutant levels are discussed and applied to the 13-year time period between 2000 and 2012 in Atlanta, GA. The methods employ Kolmogorov-Zurbenko filters and linear regressions to detrended pollutant signals into long-term, seasonal, weekly, short-term, and white-noise components. The methods differ in how changes in weekly and holiday emissions are accounted for. Both can provide meteorological adjustments on a daily basis for future use in acute health analyses. The meteorological impact on daily signals of ozone, NOx, CO, SO2, PM2.5, and PM species are quantified. Analyses show that the substantial decreases in seasonal averages of NOx and SO2 correspond with controls implemented in the metropolitan Atlanta area. Detrending allows for the impacts of some controls to be observed with averaging times of as little as 3 months. Annual average concentrations of NOx, SO2, and CO have all fallen by at least 50% since 2000. Reductions in NOx levels, however, do not lead to uniform reductions in ozone. While average detrended summer average maximum daily average 8 h ozone (MDA8h O3) levels fell by 4% (2.2 ± 2 ppb) between 2000 and 2012, winter averages have increased by 12% (3.8 ± 1.4 ppb), providing further evidence that high ozone levels are NOx-limited and lower ozone concentrations are NOx-inhibited. High ozone days (with MDA8h O3 greater than 60 ppb) decreased both in number and in magnitude over the study period.

  7. Black carbon at a roadside site in Beijing: Temporal variations and relationships with carbon monoxide and particle number size distribution

    NASA Astrophysics Data System (ADS)

    Song, Shaojie; Wu, Ye; Xu, Jiayu; Ohara, Toshimasa; Hasegawa, Shuichi; Li, Jiaqi; Yang, Liu; Hao, Jiming

    2013-10-01

    Black carbon (BC), carbon monoxide (CO), and particle number size distribution were measured near a major urban expressway of Beijing during summer and winter field campaigns in 2009. BC was also observed at urban and rural sites. The temporal variations of BC and its relationships with CO and particle number size distribution were analyzed. The average BC concentrations at the roadside site were 12.3 and 17.9 μg m-3 during the summer and winter campaigns, respectively. BC concentrations ranked in the order of roadside > urban > rural. A general diurnal pattern at all sites showed that the higher BC levels were observed at night. The diurnal pattern of summertime BC at the roadside site followed the variations of heavy-duty diesel vehicles (HDDVs). The increased proportion of HDDVs at night contributed to high ΔBC/ΔCO ratios. This study suggests that HDDVs are an important contributor to nighttime BC and particle number concentrations of both Aitken and accumulation modes near major roadways in Beijing, especially in summer.

  8. Characterization of traffic-related PM concentration distribution and fluctuation patterns in near-highway urban residential street canyons.

    PubMed

    Hahn, Intaek; Brixey, Laurie A; Wiener, Russell W; Henkle, Stacy W; Baldauf, Richard

    2009-12-01

    Analyses of outdoor traffic-related particulate matter (PM) concentration distribution and fluctuation patterns in urban street canyons within a microscale distance of less than 500 m from a highway source are presented as part of the results from the Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) study. Various patterns of spatial and temporal changes in the street canyon PM concentrations were investigated using time-series data of real-time PM concentrations measured during multiple monitoring periods. Concurrent time-series data of local street canyon wind conditions and wind data from the John F. Kennedy (JFK) International Airport National Weather Service (NWS) were used to characterize the effects of various wind conditions on the behavior of street canyon PM concentrations.Our results suggest that wind direction may strongly influence time-averaged mean PM concentration distribution patterns in near-highway urban street canyons. The rooftop-level wind speeds were found to be strongly correlated with the PM concentration fluctuation intensities in the middle sections of the street blocks. The ambient turbulence generated by shifting local wind directions (angles) showed a good correlation with the PM concentration fluctuation intensities along the entire distance of the first and second street blocks only when the wind angle standard deviations were larger than 30 degrees. Within-canyon turbulent shearing, caused by fluctuating local street canyon wind speeds, showed no correlation with PM concentration fluctuation intensities. The time-averaged mean PM concentration distribution along the longitudinal distances of the street blocks when wind direction was mostly constantly parallel to the street was found to be similar to the distribution pattern for the entire monitoring period when wind direction fluctuated wildly. Finally, we showed that two different PM concentration metrics-time-averaged mean concentration and number of concentration peaks above a certain threshold level-can possibly lead to different assessments of spatial concentration distribution patterns.

  9. Locating helicopter emergency medical service bases to optimise population coverage versus average response time.

    PubMed

    Garner, Alan A; van den Berg, Pieter L

    2017-10-16

    New South Wales (NSW), Australia has a network of multirole retrieval physician staffed helicopter emergency medical services (HEMS) with seven bases servicing a jurisdiction with population concentrated along the eastern seaboard. The aim of this study was to estimate optimal HEMS base locations within NSW using advanced mathematical modelling techniques. We used high resolution census population data for NSW from 2011 which divides the state into areas containing 200-800 people. Optimal HEMS base locations were estimated using the maximal covering location problem facility location optimization model and the average response time model, exploring the number of bases needed to cover various fractions of the population for a 45 min response time threshold or minimizing the overall average response time to all persons, both in green field scenarios and conditioning on the current base structure. We also developed a hybrid mathematical model where average response time was optimised based on minimum population coverage thresholds. Seven bases could cover 98% of the population within 45mins when optimised for coverage or reach the entire population of the state within an average of 21mins if optimised for response time. Given the existing bases, adding two bases could either increase the 45 min coverage from 91% to 97% or decrease the average response time from 21mins to 19mins. Adding a single specialist prehospital rapid response HEMS to the area of greatest population concentration decreased the average state wide response time by 4mins. The optimum seven base hybrid model that was able to cover 97.75% of the population within 45mins, and all of the population in an average response time of 18 mins included the rapid response HEMS model. HEMS base locations can be optimised based on either percentage of the population covered, or average response time to the entire population. We have also demonstrated a hybrid technique that optimizes response time for a given number of bases and minimum defined threshold of population coverage. Addition of specialized rapid response HEMS services to a system of multirole retrieval HEMS may reduce overall average response times by improving access in large urban areas.

  10. Diesel exhaust exposures in port workers.

    PubMed

    Debia, Maximilien; Neesham-Grenon, Eve; Mudaheranwa, Oliver C; Ragettli, Martina S

    2016-07-01

    Exposure to diesel engine exhaust has been linked to increased cancer risk and cardiopulmonary diseases. Diesel exhaust is a complex mixture of chemical substances, including a particulate fraction mainly composed of ultrafine particles, resulting from the incomplete combustion of fuel. Diesel trucks are known to be an important source of diesel-related air pollution, and areas with heavy truck traffic are associated with higher air pollution levels and increased public health problems. Several indicators have been proposed as surrogates for estimating exposures to diesel exhaust but very few studies have focused specifically on monitoring the ultrafine fraction through the measurement of particle number concentrations. The aim of this study is to assess occupational exposures of gate controllers at the port of Montreal, Canada, to diesel engine emissions from container trucks by measuring several surrogates through a multimetric approach which includes the assessment of both mass and number concentrations and the use of direct reading devices. A 10-day measurement campaign was carried out at two terminal checkpoints at the port of Montreal. Respirable elemental and organic carbon, PM1, PM2.5, PMresp (PM4), PM10, PMtot (inhalable fraction), particle number concentrations, particle size distributions, and gas concentrations (NO2, NO, CO) were monitored. Gate controllers were exposed to concentrations of contaminants associated with diesel engine exhaust (elemental carbon GM = 1.6 µg/m(3); GSD = 1.6) well below recommended occupational exposure limits. Average daily particle number concentrations ranged from 16,544-67,314 particles/cm³ (GM = 32,710 particles/cm³; GSD = 1.6). Significant Pearson correlation coefficients were found between daily elemental carbon, PM fractions and particle number concentrations, as well as between total carbon, PM fractions and particle number concentrations. Significant correlation coefficients were found between particle number concentrations and the number of trucks and wind speed (R(2) = 0.432; p < 0.01). The presence of trucks with cooling systems and older trucks with older exhaust systems was associated with peak concentrations on the direct reading instruments. The results highlight the relevance of direct reading instruments in helping to identify sources of exposure and suggest that monitoring particle number concentrations improves understanding of workers' exposures to diesel exhaust. This study, by quantifying workers' exposure levels through a multimetric approach, contributes to the further understanding of occupational exposures to diesel engine exhaust.

  11. Variability of particulate matter concentrations along roads and motorways determined by a moving measurement unit

    NASA Astrophysics Data System (ADS)

    Weijers, E. P.; Khlystov, A. Y.; Kos, G. P. A.; Erisman, J. W.

    The spatial variability of aerosol number and mass along roads was determined in different regions (urban, rural and coastal-marine) of the Netherlands. A condensation particle counter (CPC) and an optical aerosol spectrometer (LAS-X) were installed in a van along with a global positioning system (GPS). Concentrations were measured with high-time resolutions while driving allowing investigations not possible with stationary equipment. In particular, this approach proves to be useful to identify those locations where numbers and mass attain high levels ('hot spots'). In general, concentrations of number and mass of particulate matter increase along with the degree of urbanisation, with number concentration being the more sensitive indicator. The lowest particle numbers and PM 1-concentrations are encountered in a coastal and rural area: <5000 cm -3 and 6 μg m -3, respectively. The presence of sea-salt material along the North-Sea coast enhances PM >1-concentrations compared to inland levels. High-particle numbers are encountered on motorways correlating with traffic intensity; the largest average number concentration is measured on the ring motorway around Amsterdam: about 160 000 cm -3 (traffic intensity 100 000 veh day -1). Peak values occur in tunnels where numbers exceed 10 6 cm -3. Enhanced PM 1 levels (i.e. larger than 9 μg m -3) exist on motorways, major traffic roads and in tunnels. The concentrations of PM >1 appear rather uniformly distributed (below 6 μg m -3 for most observations). On the urban scale, (large) spatial variations in concentration can be explained by varying intensities of traffic and driving patterns. The highest particle numbers are measured while being in traffic congestions or when behind a heavy diesel-driven vehicle (up to 600×10 3 cm -3). Relatively high numbers are observed during the passages of crossings and, at a decreasing rate, on main roads with much traffic, quiet streets and residential areas with limited traffic. The number concentration exhibits a larger variability than mass: the mass concentration on city roads with much traffic is 12% higher than in a residential area at the edge of the same city while the number of particles changes by a factor of two (due to the presence of the ultrafine particles (aerodynamic diameter <100 nm). It is further indicated that people residing at some 100 m downwind a major traffic source are exposed to (still) 40% more particles than those living in the urban background areas.

  12. Models for the Immediate Environment of Ions in Aqueous Solutions of Neodymium Chloride

    NASA Astrophysics Data System (ADS)

    Smirnov, P. R.; Grechin, O. V.

    2018-01-01

    Radial distribution functions of neodymium chloride aqueous solutions in a wide range of concentrations under ambient conditions are calculated from experimental data obtained earlier via X-ray diffraction analysis. Different models of the structural organization of the system are developed. The optimum versions are determined by calculating theoretical functions for each model and comparing their fit to the experimental functions. Such quantitative characteristics of the immediate environment of Nd3+ and Cl- ions as coordination numbers, interparticle distances, and varieties of ion pairs are determined. It is shown that the average number of water molecules in the first coordination sphere of the cation falls from 9 to 6.2 as the concentration rises. The structure of the systems over the whole range of concentrations is determined by ion associates of the noncontact type.

  13. Update of Ireland's national average indoor radon concentration - Application of a new survey protocol.

    PubMed

    Dowdall, A; Murphy, P; Pollard, D; Fenton, D

    2017-04-01

    In 2002, a National Radon Survey (NRS) in Ireland established that the geographically weighted national average indoor radon concentration was 89 Bq m -3 . Since then a number of developments have taken place which are likely to have impacted on the national average radon level. Key among these was the introduction of amending Building Regulations in 1998 requiring radon preventive measures in new buildings in High Radon Areas (HRAs). In 2014, the Irish Government adopted the National Radon Control Strategy (NRCS) for Ireland. A knowledge gap identified in the NRCS was to update the national average for Ireland given the developments since 2002. The updated national average would also be used as a baseline metric to assess the effectiveness of the NRCS over time. A new national survey protocol was required that would measure radon in a sample of homes representative of radon risk and geographical location. The design of the survey protocol took into account that it is not feasible to repeat the 11,319 measurements carried out for the 2002 NRS due to time and resource constraints. However, the existence of that comprehensive survey allowed for a new protocol to be developed, involving measurements carried out in unbiased randomly selected volunteer homes. This paper sets out the development and application of that survey protocol. The results of the 2015 survey showed that the current national average indoor radon concentration for homes in Ireland is 77 Bq m -3 , a decrease from the 89 Bq m -3 reported in the 2002 NRS. Analysis of the results by build date demonstrate that the introduction of the amending Building Regulations in 1998 have led to a reduction in the average indoor radon level in Ireland. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. [Evaluation of the influence of humidity and temperature on the drug stability by initial average rate experiment].

    PubMed

    He, Ning; Sun, Hechun; Dai, Miaomiao

    2014-05-01

    To evaluate the influence of temperature and humidity on the drug stability by initial average rate experiment, and to obtained the kinetic parameters. The effect of concentration error, drug degradation extent, humidity and temperature numbers, humidity and temperature range, and average humidity and temperature on the accuracy and precision of kinetic parameters in the initial average rate experiment was explored. The stability of vitamin C, as a solid state model, was investigated by an initial average rate experiment. Under the same experimental conditions, the kinetic parameters obtained from this proposed method were comparable to those from classical isothermal experiment at constant humidity. The estimates were more accurate and precise by controlling the extent of drug degradation, changing humidity and temperature range, or by setting the average temperature closer to room temperature. Compared with isothermal experiments at constant humidity, our proposed method saves time, labor, and materials.

  15. Stationary and oscillatory convection of binary fluids in a porous medium.

    PubMed

    Augustin, M; Umla, R; Huke, B; Lücke, M

    2010-11-01

    We investigate numerically stationary convection and traveling wave structures of binary fluid mixtures with negative separation ratio in the Rayleigh-Bénard system filled with a porous medium. The bifurcation behavior of these roll structures is elucidated as well as the properties of the velocity, temperature, and concentration fields. Moreover, we discuss lateral averaged currents of temperature and concentration. Finally, we investigate the influence of the Lewis number, of the separation ratio, and of the normalized porosity on the bifurcation branches.

  16. Deposition velocity of ultrafine particles measured with the Eddy-Correlation Method over the Nansen Ice Sheet (Antarctica)

    NASA Astrophysics Data System (ADS)

    Contini, D.; Donateo, A.; Belosi, F.; Grasso, F. M.; Santachiara, G.; Prodi, F.

    2010-08-01

    This work reports an analysis of the concentration, size distribution, and deposition velocity of atmospheric particles over snow and iced surfaces on the Nansen Ice Sheet (Antarctica). Measurements were performed using the eddy-correlation method at a remote site during the XXII Italian expedition of the National Research Program in Antarctica (PNRA) in 2006. The measurement system was based on a condensation particle counter (CPC) able to measure particles down to 9 nm in diameter with a 50% efficiency and a Differential Mobility Particle Sizer for evaluating particle size distributions from 11 to 521 nm diameter in 39 channels. A method based on postprocessing with digital filters was developed to take into account the effect of the slow time response of the CPC. The average number concentration was 1338 cm-3 (median, 978 cm-3; interquartile range, 435-1854 cm-3). Higher concentrations were observed at low wind velocities. Results gave an average deposition velocity of 0.47 mm/s (median, 0.19 mm/s; interquartile range, -0.21 -0.88 mm/s). Deposition increased with the friction velocity and was on average 0.86 mm/s during katabatic wind characterized by velocities higher than 4 m/s. Observed size distributions generally presented two distinct modes, the first at approximately 15-20 nm and the second (representing on average 70% of the total particles) at 60-70 nm. Under strong-wind conditions, the second mode dominated the average size distribution.

  17. Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data.

    PubMed

    Chemyakin, Eduard; Müller, Detlef; Burton, Sharon; Kolgotin, Alexei; Hostetler, Chris; Ferrare, Richard

    2014-11-01

    We present the results of a feasibility study in which a simple, automated, and unsupervised algorithm, which we call the arrange and average algorithm, is used to infer microphysical parameters (complex refractive index, effective radius, total number, surface area, and volume concentrations) of atmospheric aerosol particles. The algorithm uses backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm as input information. Testing of the algorithm is based on synthetic optical data that are computed from prescribed monomodal particle size distributions and complex refractive indices that describe spherical, primarily fine mode pollution particles. We tested the performance of the algorithm for the "3 backscatter (β)+2 extinction (α)" configuration of a multiwavelength aerosol high-spectral-resolution lidar (HSRL) or Raman lidar. We investigated the degree to which the microphysical results retrieved by this algorithm depends on the number of input backscatter and extinction coefficients. For example, we tested "3β+1α," "2β+1α," and "3β" lidar configurations. This arrange and average algorithm can be used in two ways. First, it can be applied for quick data processing of experimental data acquired with lidar. Fast automated retrievals of microphysical particle properties are needed in view of the enormous amount of data that can be acquired by the NASA Langley Research Center's airborne "3β+2α" High-Spectral-Resolution Lidar (HSRL-2). It would prove useful for the growing number of ground-based multiwavelength lidar networks, and it would provide an option for analyzing the vast amount of optical data acquired with a future spaceborne multiwavelength lidar. The second potential application is to improve the microphysical particle characterization with our existing inversion algorithm that uses Tikhonov's inversion with regularization. This advanced algorithm has recently undergone development to allow automated and unsupervised processing; the arrange and average algorithm can be used as a preclassifier to further improve its speed and precision. First tests of the performance of arrange and average algorithm are encouraging. We used a set of 48 different monomodal particle size distributions, 4 real parts and 15 imaginary parts of the complex refractive index. All in all we tested 2880 different optical data sets for 0%, 10%, and 20% Gaussian measurement noise (one-standard deviation). In the case of the "3β+2α" configuration with 10% measurement noise, we retrieve the particle effective radius to within 27% for 1964 (68.2%) of the test optical data sets. The number concentration is obtained to 76%, the surface area concentration to 16%, and the volume concentration to 30% precision. The "3β" configuration performs significantly poorer. The performance of the "3β+1α" and "2β+1α" configurations is intermediate between the "3β+2α" and the "3β."

  18. School bus pollution and changes in the air quality at schools: a case study.

    PubMed

    Li, Chunlei; Nguyen, Quyen; Ryan, Patrick H; Lemasters, Grace K; Spitz, Henry; Lobaugh, Megan; Glover, Samuel; Grinshpun, Sergey A

    2009-05-01

    Millions of children attending US schools are exposed to traffic-related air pollutants, including health-relevant ultrafine aerosols generated from school buses powered with diesel fuel. This case study was established in a midwestern (USA) metropolitan area to determine the concentration and elemental composition of aerosol in the vicinity of a public school during morning hours when the bus traffic in and out of the adjacent depot was especially intense. Simultaneous measurements were performed at a control site. The ambient aerosol was first characterized in real time using a particle size selective aerosol spectrometer and then continuously monitored at each site with a real-time non-size-selective instrument that detected particles of 20 nm to >1 microm. In addition, air samples were collected with PM2.5 Harvard Impactors and analyzed for elemental composition using the X-ray fluorescence technique (for 38 elements) and thermal-optical transmittance (for carbon). The measurements were conducted during two seasons: in March at ambient temperature around 0 degrees C and in May when it ranged mostly between 10 and 20 degrees C. The particle number concentration at the test site exhibited high temporal variability while it was time independent at the control site. Overall, the aerosol particle count at the school was 4.7 +/- 1.0 times (March) and 2.2 +/- 0.4 times (May) greater than at the control site. On some days, a 15 min-averaged particle number concentration showed significant correlation with the number of school bus arrivals and departures during these time intervals. On other days, the correlation was less than statistically significant. The 3 h time-averaged particle concentrations determined in the test site on days when the school buses operated were found to be more than two-fold greater (on average) than those measured on bus-free days at the same location, and this difference was statistically significant. Overall, the data suggest a possible association between the number of detected aerosol particles and the school bus traffic intensity. Analysis of the filter samples collected at the school site between 6:00 and 9:00 AM revealed higher concentrations of elemental carbon as compared to the control site (2.8 +/- 0.9 times in March and 3.1 +/- 1.1 times in May). The data collected in this case study suggest that school buses significantly contribute to exposure of children to aerosol pollutants (including diesel exhaust particles) in the school vicinity.

  19. [Peruvian scientific production in medicine and collaboration networks, analysis of the Science Citation Index 2000-2009].

    PubMed

    Huamaní, Charles; Mayta-Tristán, Percy

    2010-09-01

    To describe the Peruvian scientific production in indexed journals in the Institute for Scientific Information (ISI) and the characteristics of the institutional collaborative networks. All papers published in the ISI database (Clinical Medicine collection) were included during 2000 to 2009 with at least one author with a Peruvian affiliation. The publication trend, address of corresponding author, type of article, institution, city (only for Peru), and country were evaluated. The collaborative networks were analized using the Pajek® software. 1210 papers were found, increasing from 61 in 2000 to 200 in 2009 (average of 121 articles/year). 30.4% articles included a corresponding author from a Peruvian institution. The average of authors per article was 8.3. Original articles represented 82.1% of total articles. Infectious diseases-related journals concentrated most of the articles. The main countries that collaborate with Peru are: USA (60.4%), England (12.9%), and Brazil (8.0%). Lima concentrated 94.7% of the publications and three regions (Huancavelica, Moquegua and Tacna) did not register any publication. Only two universities published more than one article/year and four institutions published more than 10 articles/year. Universidad Peruana Cayetano Heredia published 45% of the total number of articles, being the most productive institution and which concentrated the most number of collaborations with foreign institutions. The ministry of Health--including all dependencies--published 37.3% of the total number of publications. There is a higher level of collaboration with foreign institutions rather than local institutions. The Peruvian scientific production in medicine represented in the ISI database is very low but growing, and is concentrated in Lima and in a few institutions. The most productive Peruvian institutions collaborate more intensively with foreign journals rather than local institutions.

  20. Characteristics of Fine Particles in an Urban Atmosphere-Relationships with Meteorological Parameters and Trace Gases.

    PubMed

    Zhang, Tianhao; Zhu, Zhongmin; Gong, Wei; Xiang, Hao; Fang, Ruimin

    2016-08-10

    Atmospheric fine particles (diameter < 1 μm) attract a growing global health concern and have increased in urban areas that have a strong link to nucleation, traffic emissions, and industrial emissions. To reveal the characteristics of fine particles in an industrial city of a developing country, two-year measurements of particle number size distribution (15.1 nm-661 nm), meteorological parameters, and trace gases were made in the city of Wuhan located in central China from June 2012 to May 2014. The annual average particle number concentrations in the nucleation mode (15.1 nm-30 nm), Aitken mode (30 nm-100 nm), and accumulation mode (100 nm-661 nm) reached 4923 cm(-3), 12193 cm(-3) and 4801 cm(-3), respectively. Based on Pearson coefficients between particle number concentrations and meteorological parameters, precipitation and temperature both had significantly negative relationships with particle number concentrations, whereas atmospheric pressure was positively correlated with the particle number concentrations. The diurnal variation of number concentration in nucleation mode particles correlated closely with photochemical processes in all four seasons. At the same time, distinct growth of particles from nucleation mode to Aitken mode was only found in spring, summer, and autumn. The two peaks of Aitken mode and accumulation mode particles in morning and evening corresponded obviously to traffic exhaust emissions peaks. A phenomenon of "repeated, short-lived" nucleation events have been created to explain the durability of high particle concentrations, which was instigated by exogenous pollutants, during winter in a case analysis of Wuhan. Measurements of hourly trace gases and segmental meteorological factors were applied as proxies for complex chemical reactions and dense industrial activities. The results of this study offer reasonable estimations of particle impacts and provide references for emissions control strategies in industrial cities of developing countries.

  1. Halogenated volatile organic compounds in chlorine-bleach-containing household products and implications for their use

    NASA Astrophysics Data System (ADS)

    Odabasi, Mustafa; Elbir, Tolga; Dumanoglu, Yetkin; Sofuoglu, Sait C.

    2014-08-01

    It was recently shown that substantial amounts of halogenated volatile organic compounds (VOCs) are formed in chlorine-bleach-containing household products as a result of reactions of sodium hypochlorite with organic product components. Use of these household products results in elevated indoor air halogenated VOC concentrations. Halogenated VOCs in several chlorine-bleach-containing household products (plain, n = 9; fragranced, n = 4; and surfactant-added, n = 29) from Europe and North America were measured in the present study. Chloroform and carbon tetrachloride were the dominating compounds having average concentrations of 9.5 ± 29.0 (average ± SD) and 23.2 ± 44.3 (average ± SD) mg L-1, respectively. Halogenated VOC concentrations were the lowest in plain bleach, slightly higher in fragranced products and the highest in the surfactant-added products. Investigation of the relationship between the halogenated VOCs and several product ingredients indicated that chlorinated VOC formation is closely related to product composition. Indoor air concentrations from the household use of bleach products (i.e., bathroom, kitchen, and hallway cleaning) were estimated for the two dominating VOCs (chloroform and carbon tetrachloride). Estimated indoor concentrations ranged between 0.5 and 1030 (34 ± 123, average ± SD) μg m-3 and 0.3-1124 (82 ± 194, average ± SD) μg m-3 for chloroform and carbon tetrachloride, respectively, indicating substantial increases compared to background. Results indicated that indoor air concentrations from surfactant-added products were significantly higher (p < 0.01) than other categories. The highest concentrations were from the use of surfactant-added bleach products for bathroom cleaning (92 ± 228 and 224 ± 334 μg m-3, average ± SD for chloroform and carbon tetrachloride, respectively). Associated carcinogenic risks from the use of these products were also estimated. The risk levels may reach to considerably high levels for a significant portion of the population especially for those steadily using the surfactant-added bleach products. Based on the results of the present study, it could be recommended that if possible the use of chlorine bleach containing household products should be avoided. If they are to be used, plain products should be preferred since the chlorinated VOC content increase with the number and amount of additives.

  2. [Response of HeLa cells to mitomycine C. III. The analysis of nucleoli of mother and daughter cells].

    PubMed

    Petrov, Iu P; Neguliaev, Iu A; Tsupkina, N V

    2014-01-01

    The comparative analysis of the number of nucleoli in cells of the established HeLa-M line was carried out before and after exposure to mitomycin C in a concentration of 10 μg/ml for 2 h. Using time-lapse microscopy, nucleoli in mother and their respective daughter cells were computed. It has been shown that the average number of nucleoli per cell is generally higher in daughter cells than in mother cells, and a standard deviation, on the contrary, decreases. An average number of nucleoli in daughter cells, whose mother cells had been treated with mitomycin C, was higher than in corresponding cells of control group. The separate analysis has been performed for the cells having from 1 to 4 nucleoli. Nonrandom complete coincidence of the number of nucleoli in mather and daughter cells has been typicaly shown for about 1/7 of the total cell population. Mitomycin C reduces this value of about 1.5 times.

  3. Reduction of air pollutant concentrations in an indoor ice-skating rink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, K.; Yanagisawa, Yukio; Spengler, J.D.

    1994-01-01

    High carbon monoxide and nitrogen dioxide concentrations were measured in an indoor ice-skating rink with fuel-powered ice-resurfacing equipment. In 22% to 33% of the measurements over 90-min segments, CO concentrations exceeded 20 [mu]L/L as a 90-min average in the absence of rink ventilation. Average NO[sub 2] concentrations over 14 h were higher than 600 nL/L. Reduction of air pollutant concentrations in the ice-skating rink is necessary to prevent air-pollutant-exposure-related health incidents. Various methods for reducing air pollutants in an ice-skating rink were evaluated by simultaneously measuring CO and NO[sub 2] concentrations. Single pollution reduction attempts, such as extension of themore » exhaust pipe, reduction in the number of resurfacer operations, or use of an air recirculation system, did not significantly reduce air pollutant concentrations in the rink. Full operation of the mechanical ventilation system combined with reduced resurfacer operation was required to keep the air pollutant levels in the skating rink below the recommended guidelines. This investigation showed that management of clean air quality in an ice-skating rink is practically difficult as long as fuel-powered resurfacing equipment is used. 16 refs., 3 figs., 5 tabs.« less

  4. Patient, Physician and Organizational Influences on Variation in Antipsychotic Prescribing Behavior

    PubMed Central

    Tang, Yan; Chang, Chung-Chou H.; Lave, Judith R.; Gellad, Walid F.; Huskamp, Haiden A.; Donohue, Julie M.

    2016-01-01

    Background Physicians face the choice of multiple ingredients when prescribing drugs in many therapeutic categories. For conditions with considerable patient heterogeneity in treatment response, customizing treatment to individual patient needs and preferences may improve outcomes. Aims of the Study To assess variation in the diversity of antipsychotic prescribing for mental health conditions, a necessary although not sufficient condition for personalizing treatment. To identify patient caseload, physician, and organizational factors associated with the diversity of antipsychotic prescribing. Methods Using 2011 data from Pennsylvania’s Medicaid program, IMS Health’s HCOS™ database, and the AMA Masterfile, we identified 764 psychiatrists who prescribed antipsychotics to ≥10 patients. We constructed three physician-level measures of diversity/concentration of antipsychotic prescribing: number of ingredients prescribed, share of prescriptions for most preferred ingredient, and Herfindahl-Hirschman index (HHI). We used multiple membership linear mixed models to examine patient caseload, physician, and healthcare organizational predictors of physician concentration of antipsychotic prescribing. Results There was substantial variability in antipsychotic prescribing concentration among psychiatrists, with number of ingredients ranging from 2-17, share for most preferred ingredient from 16%-85%, and HHI from 1,088-7,270. On average, psychiatrist prescribing behavior was relatively diversified; however, 11% of psychiatrists wrote an average of 55% of their prescriptions for their most preferred ingredient. Female prescribers and those with smaller shares of disabled or serious mental illness patients had more concentrated prescribing behavior on average. Discussion Antipsychotic prescribing by individual psychiatrists in a large state Medicaid program varied substantially across psychiatrists. Our findings illustrate the importance of understanding physicians’ prescribing behavior and indicate that even among specialties regularly prescribing a therapeutic category, some physicians rely heavily on a small number of agents. Implications for Health Policies, Health Care Provision and Use Health systems may need to offer educational interventions to clinicians in order to improve their ability to tailor treatment decisions to the needs of individual patients. Implications for Future Research Future studies should examine the impact of the diversity of antipsychotic prescribing to determine whether more diversified prescribing improves patient adherence and outcomes. PMID:27084793

  5. Exospheric hydrogen above St-Santin /France/

    NASA Technical Reports Server (NTRS)

    Derieux, A.; Lejeune, G.; Bauer, P.

    1975-01-01

    The temperature and hydrogen concentration of the exosphere was determined using incoherent scatter measurements performed above St. Santin from 1969 to 1972. The hydrogen concentration was deduced from measurements of the number density of positive hydrogen and oxygen ions. A statistical analysis is given of the hydrogen concentration as a function of the exospheric temperature and the diurnal variation of the hydrogen concentration is investigated for a few selected days of good quality observation. The data averaged with respect to the exospheric temperature without consideration of the local time exhibits a distribution consistent with a constant effective Jeans escape flux of about 9 x 10 to the 7 cu cm/s. The local time variation exhibits a maximum to minimum concentration ratio of at least 3.5.

  6. Comparison of Highly Resolved Model-Based Exposure ...

    EPA Pesticide Factsheets

    Human exposure to air pollution in many studies is represented by ambient concentrations from space-time kriging of observed values. Space-time kriging techniques based on a limited number of ambient monitors may fail to capture the concentration from local sources. Further, because people spend more time indoors, using ambient concentration to represent exposure may cause error. To quantify the associated exposure error, we computed a series of six different hourly-based exposure metrics at 16,095 Census blocks of three Counties in North Carolina for CO, NOx, PM2.5, and elemental carbon (EC) during 2012. These metrics include ambient background concentration from space-time ordinary kriging (STOK), ambient on-road concentration from the Research LINE source dispersion model (R-LINE), a hybrid concentration combining STOK and R-LINE, and their associated indoor concentrations from an indoor infiltration mass balance model. Using a hybrid-based indoor concentration as the standard, the comparison showed that outdoor STOK metrics yielded large error at both population (67% to 93%) and individual level (average bias between −10% to 95%). For pollutants with significant contribution from on-road emission (EC and NOx), the on-road based indoor metric performs the best at the population level (error less than 52%). At the individual level, however, the STOK-based indoor concentration performs the best (average bias below 30%). For PM2.5, due to the relatively low co

  7. Concentration of the Most-Cited Papers in the Scientific Literature: Analysis of Journal Ecosystems

    PubMed Central

    Ioannidis, John P. A.

    2006-01-01

    Background A minority of scientific journals publishes the majority of scientific papers and receives the majority of citations. The extent of concentration of the most influential articles is less well known. Methods/Principal Findings The 100 most-cited papers in the last decade in each of 21 scientific fields were analyzed; fields were considered as ecosystems and their “species” (journal) diversity was evaluated. Only 9% of journals in Journal Citation Reports had published at least one such paper. Among this 9%, half of them had published only one such paper. The number of journals that had published a larger number of most-cited papers decreased exponentially according to a Lotka law. Except for three scientific fields, six journals accounted for 53 to 94 of the 100 most-cited papers in their field. With increasing average number of citations per paper (citation density) in a scientific field, concentration of the most-cited papers in a few journals became even more prominent (p<0.001). Concentration was unrelated to the number of papers published or number of journals available in a scientific field. Multidisciplinary journals accounted for 24% of all most-cited papers, with large variability across fields. The concentration of most-cited papers in multidisciplinary journals was most prominent in fields with high citation density (correlation coefficient 0.70, p<0.001). Multidisciplinary journals had published fewer than eight of the 100 most-cited papers in eight scientific fields (none in two fields). Journals concentrating most-cited original articles often differed from those concentrating most-cited reviews. The concentration of the most-influential papers was stronger than the already prominent concentration of papers published and citations received. Conclusions Despite a plethora of available journals, the most influential papers are extremely concentrated in few journals, especially in fields with high citation density. Existing multidisciplinary journals publish selectively most-cited papers from fields with high citation density. PMID:17183679

  8. Source apportionment of PM2.5 chemically speciated mass and particle number concentrations in New York City

    NASA Astrophysics Data System (ADS)

    Masiol, M.; Hopke, P. K.; Felton, H. D.; Frank, B. P.; Rattigan, O. V.; Wurth, M. J.; LaDuke, G. H.

    2017-01-01

    The major sources of fine particulate matter (PM2.5) in New York City (NYC) were apportioned by applying positive matrix factorization (PMF) to two different sets of particle characteristics: mass concentrations using chemical speciation data and particle number concentrations (PNC) using number size distribution, continuously monitored gases, and PM2.5 data. Post-processing was applied to the PMF results to: (i) match with meteorological data, (ii) use wind data to detect the likely locations of the local sources, and (iii) use concentration weighted trajectory models to assess the strength of potential regional/transboundary sources. Nine sources of PM2.5 mass were apportioned and identified as: secondary ammonium sulfate, secondary ammonium nitrate, road traffic exhaust, crustal dust, fresh sea-salt, aged sea-salt, biomass burning, residual oil/domestic heating and zinc. The sources of PNC were investigated using hourly average number concentrations in six size bins, gaseous air pollutants, mass concentrations of PM2.5, particulate sulfate, OC, and EC. These data were divided into 3 periods indicative of different seasonal conditions. Five sources were resolved for each period: secondary particles, road traffic, NYC background pollution (traffic and oil heating largely in Manhattan), nucleation and O3-rich aerosol. Although traffic does not account for large amounts of PM2.5 mass, it was the main source of particles advected from heavily trafficked zones. The use of residual oil had limited impacts on PM2.5 mass but dominates PNC in cold periods.

  9. Study on emission characteristics of hybrid bus under driving cycles in typical Chinese city

    NASA Astrophysics Data System (ADS)

    Xie, Yongdong; Xu, Guangju

    2017-09-01

    In this study, hybrid city bus was taken as the research object, through the vehicle drum test, the vehicle emissions of hybrid bus, the transient emissions of gas pollutants, as well as the particle size and number distribution were surveyed. The results of the studies are listed as follows: First, compared to traditional fuel bus, hybrid bus could reduce about 44% of the NOx emissions, 33% of the total hydrocarbon emissions, and 51% of the particles emissions. Furthermore, the distribution of particles number concentration of test vehicle became high in middle and low in both sides. More specifically, the particle number concentration was mainly concentrated in the range from 0.021 to 0.755μm, the maximum was 0.2μm, and particle size of particulate matter (PM) less than 1.2μm accounted for 95% of the total number concentration. Particulate mass concentration was increased with increment of particle size, and the maximum of particulate mass (PM) concentration was 6.2μm. On average, whether traditional fuel bus or hybrid bus, the particle size of particulate matter(PM) less than 2.5μm accounted for more than 98% in the particles emission. It is found that the particles are more likely to deposit to the lung, respiratory bronchioles and alveoli, causing respiratory and lung diseases. Therefore, how to control the PM emissions of hybrid bus is the key factor of the study.

  10. Fine and ultrafine particle exposures on 73 trips by car to 65 non-smoking restaurants in the San Francisco Bay Area.

    PubMed

    Ott, W R; Wallace, L A; McAteer, J M; Hildemann, L M

    2017-01-01

    A number of studies indicate cooking is a major source of exposure to particulate matter, but few studies have measured indoor air pollution in restaurants, where cooking predominates. We made 73 visits by car to 65 different non-smoking restaurants in 10 Northern California towns while carrying portable continuous monitors that unobtrusively measured ultrafine (down to 10 nm) and fine (PM 2.5 ) particles to characterize indoor restaurant exposures, comparing them with exposures in the car. The mean ultrafine number concentrations in the restaurants on dinner visits averaging 1.4 h was 71 600 particles/cm 3 , or 4.3 times the mean concentration on car trips, and 12.3 times the mean background concentration in the residence. Restaurants that cooked dinner in the same room as the patrons had higher ultrafine concentrations than restaurants with separate kitchens. Restaurant PM 2.5 mass concentrations averaged 36.3 μg/m 3 , ranging from 1.5 to 454 μg/m 3 , but were relatively low on most visits: 43% of the indoor means were below 10 μg/m 3 and 66% were below 20 μg/m 3 , with 5.5% above 100 μg/m 3 . Exposure to fine and ultrafine particles when visiting a restaurant exceeded the exposure a person received while traveling by car to and from the restaurant. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Observational evidence for the convective transport of dust over the Central United States

    NASA Astrophysics Data System (ADS)

    Corr, C. A.; Ziemba, L. D.; Scheuer, E.; Anderson, B. E.; Beyersdorf, A. J.; Chen, G.; Crosbie, E.; Moore, R. H.; Shook, M.; Thornhill, K. L.; Winstead, E.; Lawson, R. P.; Barth, M. C.; Schroeder, J. R.; Blake, D. R.; Dibb, J. E.

    2016-02-01

    Bulk aerosol composition and aerosol size distributions measured aboard the DC-8 aircraft during the Deep Convective Clouds and Chemistry Experiment mission in May/June 2012 were used to investigate the transport of mineral dust through nine storms encountered over Colorado and Oklahoma. Measurements made at low altitudes (<5 km mean sea level (MSL)) in the storm inflow region were compared to those made in cirrus anvils (altitude > 9 km MSL). Storm mean outflow Ca2+ mass concentrations and total coarse (1 µm < diameter < 5 µm) aerosol volume (Vc) were comparable to mean inflow values as demonstrated by average outflow/inflow ratios greater than 0.5. A positive relationship between Ca2+, Vc, ice water content, and large (diameter > 50 µm) ice particle number concentrations was not evident; thus, the influence of ice shatter on these measurements was assumed small. Mean inflow aerosol number concentrations calculated over a diameter range (0.5 µm < diameter < 5.0 µm) relevant for proxy ice nuclei (NPIN) were ~15-300 times higher than ice particle concentrations for all storms. Ratios of predicted interstitial NPIN (calculated as the difference between inflow NPIN and ice particle concentrations) and inflow NPIN were consistent with those calculated for Ca2+ and Vc and indicated that on average less than 10% of the ingested NPIN were activated as ice nuclei during anvil formation. Deep convection may therefore represent an efficient transport mechanism for dust to the upper troposphere where these particles can function as ice nuclei cirrus forming in situ.

  12. Relevance analysis and short-term prediction of PM2.5 concentrations in Beijing based on multi-source data

    NASA Astrophysics Data System (ADS)

    Ni, X. Y.; Huang, H.; Du, W. P.

    2017-02-01

    The PM2.5 problem is proving to be a major public crisis and is of great public-concern requiring an urgent response. Information about, and prediction of PM2.5 from the perspective of atmospheric dynamic theory is still limited due to the complexity of the formation and development of PM2.5. In this paper, we attempted to realize the relevance analysis and short-term prediction of PM2.5 concentrations in Beijing, China, using multi-source data mining. A correlation analysis model of PM2.5 to physical data (meteorological data, including regional average rainfall, daily mean temperature, average relative humidity, average wind speed, maximum wind speed, and other pollutant concentration data, including CO, NO2, SO2, PM10) and social media data (microblog data) was proposed, based on the Multivariate Statistical Analysis method. The study found that during these factors, the value of average wind speed, the concentrations of CO, NO2, PM10, and the daily number of microblog entries with key words 'Beijing; Air pollution' show high mathematical correlation with PM2.5 concentrations. The correlation analysis was further studied based on a big data's machine learning model- Back Propagation Neural Network (hereinafter referred to as BPNN) model. It was found that the BPNN method performs better in correlation mining. Finally, an Autoregressive Integrated Moving Average (hereinafter referred to as ARIMA) Time Series model was applied in this paper to explore the prediction of PM2.5 in the short-term time series. The predicted results were in good agreement with the observed data. This study is useful for helping realize real-time monitoring, analysis and pre-warning of PM2.5 and it also helps to broaden the application of big data and the multi-source data mining methods.

  13. The role of resting duration in the kinematic pattern of two consecutive bench press sets to failure in elite sprint kayakers.

    PubMed

    García-López, D; Herrero, J A; Abadía, O; García-Isla, F J; Ualí, I; Izquierdo, M

    2008-09-01

    This study aimed to investigate the role of rest period duration (RP) on the time course of the acceleration portion (AP) and mean velocity of the concentric phase across two bench press sets to failure with a submaximal load (60% of the 1RM) using different RP. Ten elite junior kayakers performed, on four different days, two consecutive bench press sets to failure, allowing randomly 1-, 2-, 3- and 4-min RP between sets. AP reached a maximal value of 66% of the concentric movement time. This maximal AP was observed in repetition number 2 or 3, and then AP declined during the set, with a significant decrease when the number of repetitions was over 80% of the total number of repetitions performed. AP and lifting velocity patterns of the concentric phase were not altered during a second set to failure, regardless of RP. However, when velocity was expressed in absolute terms, 1-min RP was insufficient to maintain the average lifting velocity during the second set, compared to the first one. These results may be of use in selecting number of repetitions and resting duration in order to ensure optimal maintenance of the accelerative portion of concentric movement time with different resting-period durations.

  14. Industrial hygiene evaluation of thermal degradation products from PVC film in meat-wrapping operations.

    PubMed

    Cook, W A

    1980-07-01

    An industrial hygiene evaluation is presented concerning experimental data included in the preceding paper on thermal degradation products from hot-wire and "cool"-rod cutting of PVC film but, in this paper, limited to film used in meat-wrapping operations. Room air concentrations of less than 0.2 ppm HCl and less than 0.05 ppm benzene can be maintained by a number of factors, including minimal dilution ventilation. Estimates of room air concentrations of degradation products are presented using average values of amounts produced per cut. The relation of these concentrations to TLV's is given, together with methods of suggesting TLV's for substances not listed by ACGIH or OSHA. Room air concentrations for the 12 degradation products for which TLV's are assigned, based on average values per cut, were no greater than 0.3% of accepted limits. Room air concentrations of DOA are not determinable from available data but present information does not indicate that exposure to DOA causes airway hyperreactivity. The cool rod, rather than the hot wire, is recommended as good industrial hygiene practice, producing no apparent PVC degradation products, even though similar amounts of DOA are volatilized.

  15. LIF measurements of scalar mixing in turbulent shear layers

    NASA Technical Reports Server (NTRS)

    Karasso, Paris S.; Mungal, M. G.

    1993-01-01

    The structure of shear layer flows at high Reynolds numbers remains a very interesting problem. Straight mixing layers have been studied and yielded information on the probability density function (pdf) of a passive scalar across the layer. Konrad and Koochesfahani & Dimotakis measured the pdf of the mixture fraction for mixing layers of moderate Reynolds numbers, each about 25,000 (Re based on velocity difference and visual thickness). Their measurements showed a 'non-marching' pdf (central hump which is invariant from edge to edge across the layer), a result which is linked to the visualizations of the spanwise Kelvin-Helmholtz (K-H) instability mode, which is the primary instability for plane shear layer flows. A secondary instability mode, the Taylor-Gortler (T-G) instability, which is associated with streamwise vortical structures, has also been observed in shear layers. Image reconstruction by Jimenez et al. and volume renderings by Karasso & Mungal at low Re numbers have demonstrated that the K-H and the T-G instability modes occur simultaneously in a non-mutually destructive way, evidence that supports the quasi two-dimensional aspect of these flows and the non-marching character of the pdf at low Reynolds numbers. At higher Re numbers though, the interaction of these two instability modes is still unclear and may affect the mixing process. In this study, we perform measurements of the concentration pdf of plane mixing layers for different operating conditions. At a speed ratio of r = U(sub 1)/U(sub 2) = 4:1, we examine three Reynolds number cases: Re = 14,000, Re = 31,000, and Re = 62,000. Some other Re number cases' results, not presented in detail, are invoked to explain the behavior of the pdf of the concentration field. A case of r = 2.6:1 at Re = 20,000 is also considered. The planar laser-induced fluorescence technique is used to yield quantitative measurements. The different Re are obtained by changing the velocity magnitudes of the two streams. The question of resolution of these measurements is addressed. In order to investigate the effects of the initial conditions on the development and the structure of the mixing layer, the boundary layer on the high-speed side of the splitter plate is tripped. The average concentration and the average mixed fluid concentration are also calculated to further understand the changes in the shear layer for the different cases examined.

  16. Comparative performance of short-term diffusion barrier charcoal canisters and long-term alpha-track monitors for indoor 222Rn measurements.

    PubMed

    Martz, D E; George, J L; Langner, G H

    1991-04-01

    The accuracy and precision of indoor 222Rn measurements obtained with the use of diffusion barrier charcoal canisters (DBCC) under actual field conditions were determined by comparing the integrated average of 26 successive 7-d exposures of DBCC in each of 16 occupied residences over a 6-mo period with simultaneous measurements using four types of commercially available alpha-track monitors (ATM) and one type of scintillation chamber continuous 222Rn monitor. The results suggest that properly calibrated DBCCs provide very good estimates of the integrated 222Rn concentrations in residential structures over the standard 1-wk exposure period despite the occurrence of large diurnal variations in the actual 222Rn concentrations. The results also suggest that a relatively small number of 1-wk DBCC measurements at selected times throughout the calendar year would provide estimates of the annual average indoor 222Rn concentrations that compare favorably with single long-term ATM measurements.

  17. Number size distribution of particulate emissions of heavy-duty engines in real world test cycles

    NASA Astrophysics Data System (ADS)

    Lehmann, Urs; Mohr, Martin; Schweizer, Thomas; Rütter, Josef

    Five in-service engines in heavy-duty trucks complying with Euro II emission standards were measured on a dynamic engine test bench at EMPA. The particulate matter (PM) emissions of these engines were investigated by number and mass measurements. The mass of the total PM was evaluated using the standard gravimetric measurement method, the total number concentration and the number size distribution were measured by a Condensation Particle Counter (lower particle size cut-off: 7 nm) and an Electrical Low Pressure Impactor (lower particle size: 32 nm), respectively. The transient test cycles used represent either driving behaviour on the road (real-world test cycles) or a type approval procedure. They are characterised by the cycle power, the average cycle power and by a parameter for the cycle dynamics. In addition, the particle number size distribution was determined at two steady-state operating modes of the engine using a Scanning Mobility Particle Sizer. For quality control, each measurement was repeated at least three times under controlled conditions. It was found that the number size distributions as well as the total number concentration of emitted particles could be measured with a good repeatability. Total number concentration was between 9×10 11 and 1×10 13 particles/s (3×10 13-7×10 14 p/kWh) and mass concentration was between 0.09 and 0.48 g/kWh. For all transient cycles, the number mean diameter of the distributions lay typically at about 120 nm for aerodynamic particle diameter and did not vary significantly. In general, the various particle measurement devices used reveal the same trends in particle emissions. We looked at the correlation between specific gravimetric mass emission (PM) and total particle number concentration. The correlation tends to be influenced more by the different engines than by the test cycles.

  18. Elemental composition and sources of fine and ultrafine ambient particles in Erfurt, Germany.

    PubMed

    Cyrys, J; Stölzel, M; Heinrich, J; Kreyling, W G; Menzel, N; Wittmaack, K; Tuch, T; Wichmann, H-Erich

    2003-04-15

    We present the first results of a source apportionment for the urban aerosol in Erfurt, Germany, for the period 1995-1998. The analysis is based on data of particle number concentrations (0.01-2.5 microm; mean 1.8 x 10(4) cm(-3), continuous), the concentration of the ambient gases SO(2), NO, NO(2) and CO (continuous), particle mass less than 2.5 microm (PM(2.5)) and less than 10 microm (PM(10)) (Harvard Impactor sampling, mean PM(2.5) 26.3 micro/m(3), mean PM(10) 38.2 microg/m(3)) and the size fractionated concentrations of 19 elements (impactor sampling 0.05-1.62 microm, PIXE analysis). We determined: (a) the correlations between (i) the 1- and 24-h average concentrations of the gaseous pollutants and the particle number as well as the particle mass concentration and (ii) between the 24-h elemental concentrations; (b) Crustal Enrichment Factors for the PIXE elements using Si as reference element; and (c) the diurnal pattern of the measured pollutants on weekdays and on weekends. The highly correlated PIXE elements Si, Al, Ti and Ca having low enrichment factors were identified as soil elements. The strong correlation of particle number concentrations with NO, which is considered to be typically emitted by traffic, and the striking similarity of their diurnal variation suggest that a sizable fraction of the particle number concentration is associated with emission from vehicles. Besides NO and particle number concentrations other pollutants such as NO(2), CO as well as the elements Zn and Cu were strongly correlated and appear to reflect motor vehicle traffic. Sulfur could be a tracer for coal combustion, however, it was not correlated with any of the quoted elements. Highly correlated elements V and Ni have similar enrichment factors and are considered as tracers for oil combustion.

  19. Number concentration, size distribution and horizontal mass flux of Asian dust particles collected over free troposphere of Chinese desert region in calm weather condition using balloon borne measurements.

    NASA Astrophysics Data System (ADS)

    Habib, A.; Chen, B.

    2017-12-01

    Balloon borne measurements were carried out during calm weather conditions in Taklamakan Desert, which is considered as one of the major source areas of Asian dust (KOSA) particles. Vertical distribution of aerosols number concentration, size distribution, mass concentration and horizontal mass flux due to westerly wind was investigated .Vertical distribution of aerosol number concentration and size distribution at Dunhuang (40 °00'N, 94°30'E) China were observed by optical particle counter (OPC) on August 17, 2001, October 17, 2011, January 11, 2002, April 30, 2002. Five channels (0.3, 0.5, 0.8, 1.2 and 3.6 µm) were used in OPC for particle sizing measurements. Aerosol number concentration in winter season (January 11, 2002) at 3-5 km was very high. Variation of free tropospheric aerosols in April 30, 2002 was noticeable. Many inversions of temperature and aerosol concentration change are found at these inversion points. Super micron range was noticeable in size distribution of all balloon borne measurements. High values of estimated mass concentration of aerosols were observed at the ground atmosphere (1-2 km), and interestingly relatively high concentrations were frequently detected above about 2 km. Wind pattern observed by ERA-interim data sets at 500 and 850 hPa, shows that westerly winds were dominated in Taklamakan Desert during balloon borne observation period. Average horizontal mass flux of background Asian dust due to westerly wind was about in the range of 1219-58.5 μg/m³ tons/km2/day. Most of the profiles showed active transport of aerosols in the westerly dominated region, while, fluxes were found to be very low on January 11, 2002, compared with the other seasons. Vertical profiles of aerosols number concentration showed that significant transport of aerosols was dominated in westerly region (4-7 km). Low horizontal mass flux of aerosols was found in winter season

  20. Physical characterization of aerosol particles during the Chinese New Year’s firework events

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Wang, Xuemei; Chen, Jianmin; Cheng, Tiantao; Wang, Tao; Yang, Xin; Gong, Youguo; Geng, Fuhai; Chen, Changhong

    2010-12-01

    Measurements for particles 10 nm to 10 μm were taken using a Wide-range Particle Spectrometer during the Chinese New Year (CNY) celebrations in 2009 in Shanghai, China. These celebrations provided an opportunity to study the number concentration and size distribution of particles in an especial atmospheric pollution situation due to firework displays. The firework activities had a clear contribution to the number concentration of small accumulation mode particles (100-500 nm) and PM 1 mass concentration, with a maximum total number concentration of 3.8 × 10 4 cm -3. A clear shift of particles from nucleation and Aitken mode to small accumulation mode was observed at the peak of the CNY firework event, which can be explained by reduced atmospheric lifetimes of smaller particles via the concept of the coagulation sink. High particle density (2.7 g cm -3) was identified as being particularly characteristic of the firework aerosols. Recalculated fine particles PM 1 exhibited on average above 150 μg m -3 for more than 12 hours, which was a health risk to susceptible individuals. Integral physical parameters of firework aerosols were calculated for understanding their physical properties and further model simulation.

  1. [Environmental tobacco smoke exposure in public places in Florence, Italy].

    PubMed

    Gorini, Giuseppe; Fondelli, Maria Cristina; Lopez, Maria Josè; Salles, Joan; Serrahima, Eulàlia; Centrich, Francesc; Costantini, Adele Seniori; Nebot, Manel

    2004-01-01

    Measurements of the environmental tobacco smoke (ETS) exposure in public places in Florence. This study was part of the first European multicenter project, intended to measure ETS exposure in public places in a number of European Cities (Florence, Barcelona, Paris, Oporto, Athens, Wien and Orebro). Nicotine vapour phase was measured using passive samplers, composed of a sodium bisulphate treated filter held in a plastic cassette with a windscreen on one side. The filters were analysed at the Laboratory of the Public Health Agency of Barcelona, Spain, by gas-chromatography/mass spectrometry (GC/MS). Nicotine concentration (in microg/m3) by public place, by smoking policy, and, for restaurants with separated areas, by smoking and non-smoking section. Nicotine measurements were conducted in 5 schools, 3 university departments, 5 hospitals, 1 railway station, 1 airport, 7 bars, 7 restaurants, and 4 discotheques in Florence. The average nicotine concentration in discotheques and restaurants were respectively 26.78 microg/m3 and 2.32 microg/m3. In the other public places the concentration was about 1 microg/m3. In smoke-free public places the average concentration was 0.85 microg/m3; in public places where smoking is allowed concentration was higher (11.53 microg/m3). In the smoking section and non-smoking section of restaurants with separated areas the average concentration was respectively 2.54 and 2.14 microg/m3. The highest nicotine concentrations were recorded in discos and restaurants. A smoke-free public place is effective in reducing ETS exposure. Smoking and non-smoking sections in restaurants without a separate ventilation system seem not to solve ETS exposure.

  2. AIRBORNE MICROORGANISMS IN BROILER PROCESSING PLANTS.

    PubMed

    KOTULA, A W; KINNER, J A

    1964-05-01

    Concentrations of total aerobic bacteria, molds, yeasts, coliforms, enterococci, and psychrophiles were determined in the air of two poultry processing plants with Andersen samplers and a mobile power supply. Total aerobic bacterial counts were highest in the dressing room, with diminishing numbers in the shackling, eviscerating, and holding rooms, when sampling was carried out during plant operation. The average counts per ft(3) of air in these four rooms were 2,200; 560; 230; and 62, respectively. (Each value is the average of 36 observations.) The number of organisms increased in the shackling and dressing rooms once processing was begun. Average total aerobic bacterial counts increased from 70 to 870 to 3,000 in the shackling room and from 310 to 4,900 to 7,000 in the dressing room when sampling was carried out at 5:00 am (before plant operations), 9:00 am, and 2:00 pm, respectively. (Each value is the mean of 12 observations.) Airborne molds might originate from a source other than the poultry being processed.

  3. Airborne Microorganisms in Broiler Processing Plants

    PubMed Central

    Kotula, Anthony W.; Kinner, Jack A.

    1964-01-01

    Concentrations of total aerobic bacteria, molds, yeasts, coliforms, enterococci, and psychrophiles were determined in the air of two poultry processing plants with Andersen samplers and a mobile power supply. Total aerobic bacterial counts were highest in the dressing room, with diminishing numbers in the shackling, eviscerating, and holding rooms, when sampling was carried out during plant operation. The average counts per ft3 of air in these four rooms were 2,200; 560; 230; and 62, respectively. (Each value is the average of 36 observations.) The number of organisms increased in the shackling and dressing rooms once processing was begun. Average total aerobic bacterial counts increased from 70 to 870 to 3,000 in the shackling room and from 310 to 4,900 to 7,000 in the dressing room when sampling was carried out at 5:00 am (before plant operations), 9:00 am, and 2:00 pm, respectively. (Each value is the mean of 12 observations.) Airborne molds might originate from a source other than the poultry being processed. Images FIG. 3 PMID:14170951

  4. Evolution of Welding-Fume Aerosols with Time and Distance from the Source: A study was conducted on the spatiotemporal variability in welding-fume concentrations for the characterization of first- and second-hand exposure to welding fumes.

    PubMed

    Cena, L G; Chen, B T; Keane, M J

    2016-08-01

    Gas metal arc welding fumes were generated from mild-steel plates and measured near the arc (30 cm), representing first-hand exposure of the welder, and farther away from the source (200 cm), representing second-hand exposure of adjacent workers. Measurements were taken during 1-min welding runs and at subsequent 5-min intervals after the welding process was stopped. Number size distributions were measured in real time. Particle mass distributions were measured using a micro-orifice uniform deposition impactor, and total mass concentrations were measured with polytetrafluorothylene filters. Membrane filters were used for collecting morphology samples for electron microscopy. Average mass concentrations measured near the arc were 45 mg/m 3 and 9 mg/m 3 at the farther distance. The discrepancy in concentrations at the two distances was attributed to the presence of spatter particles, which were observed only in the morphology samples near the source. As fumes aged over time, mass concentrations at the farther distance decreased by 31% (6.2 mg/m 3 ) after 5 min and an additional 13% (5.4 mg/m 3 ) after 10 min. Particle number and mass distributions during active welding were similar at both distances, indicating similar exposure patterns for welders and adjacent workers. Exceptions were recorded for particles smaller than 50 nm and larger than 3 μm, where concentrations were higher near the arc, indicating higher exposures of welders. These results were confirmed by microscopy analysis. As residence time increased, number concentrations decreased dramatically. In terms of particle number concentrations, second-hand exposures to welding fumes during active welding may be as high as first-hand exposures.

  5. Water-based condensation particle counters comparison near a major freeway with significant heavy-duty diesel traffic

    NASA Astrophysics Data System (ADS)

    Lee, Eon S.; Polidori, Andrea; Koch, Michael; Fine, Philip M.; Mehadi, Ahmed; Hammond, Donald; Wright, Jeffery N.; Miguel, Antonio. H.; Ayala, Alberto; Zhu, Yifang

    2013-04-01

    This study compares the instrumental performance of three TSI water-based condensation particle counter (WCPC) models measuring particle number concentrations in close proximity (15 m) to a major freeway that has a significant level of heavy-duty diesel traffic. The study focuses on examining instrument biases and performance differences by different WCPC models under realistic field operational conditions. Three TSI models (3781, 3783, and 3785) were operated for one month in triplicate (nine units in total) in parallel with two sets of Scanning Mobility Particle Sizer (SMPS) spectrometers for the concurrent measurement of particle size distributions. Inter-model bias under different wind directions were first evaluated using 1-min raw data. Although all three WCPC models agreed well in upwind conditions (lower particle number concentrations, in the range of 103-104 particles cm-3), the three models' responses were significantly different under downwind conditions (higher particle number concentrations, above 104 particles cm-3). In an effort to increase inter-model linear correlations, we evaluated the results of using longer averaging time intervals. An averaging time of at least 15 min was found to achieve R2 values of 0.96 or higher when comparing all three models. Similar results were observed for intra-model comparisons for each of the three models. This strong linear relationship helped identify instrument bias related to particle number concentrations and particle size distributions. The TSI 3783 produced the highest particle counts, followed by TSI 3785, which reported 11% lower during downwind conditions than TSI 3783. TSI 3781 recorded particle number concentrations that were 24% lower than those observed by TSI 3783 during downwind condition. We found that TSI 3781 underestimated particles with a count median diameter less than 45 nm. Although the particle size dependency of instrument performance was found the most significant in TSI 3781, both models 3783 and 3785 showed somewhat size dependency. In addition, within each tested WCPC model, one unit was found to count significantly different and be more sensitive to particle size than the other two. Finally, exponential regression analysis was used to numerically quantify instrumental inter-model bias. Correction equations are proposed to adjust the TSI 3781 and 3785 data to the most recent model TSI 3783.

  6. [Concentrations of fine particulate matters and ultrafine particles and influenced factors during winter in an area of Beijing].

    PubMed

    Ni, Yang; Tu, Xing-ying; Zhu, Yi-dan; Guo, Xin-biao; Deng, Fu-rong

    2014-06-18

    To study the concentrations of fine particulate matters and ultrafine particles and influenced factors during winter in an area of Beijing. Real-time monitoring of particles' mass and number concentrations were conducted in an area of Beijing from February 7(th) to 27(th), 2013. At the same time, the meteorological data were also collected from the Beijing meteorological website. Differences of the particles' mass and number concentrations during different periods were analyzed using Mann-Whitney U test. Meanwhile, the influenced factors were also analyzed. The mean concentrations of fine particulate matters and ultrafine particles were (157.2 ± 142.8) μg/m³ and (25 018 ± 9 309) particles/cm³, respectively. The particles' number and mass concentrations in haze days were 1.27 times and 2.91 times higher than those in non-haze days, respectively. The mass concentrations of fine particulate matters in the self-monitoring site were higher than those in the nearest central monitoring sites, and the hourly-average concentrations of particles were significantly consistent with those at the commuter times. Meanwhile, the setting off of fireworks/firecrackers during the Spring Festival could lead to short-term increases of the particles' number and mass concentrations. When the wind speed was low and the related humidity was high, the concentrations of particulate matters were relatively high, and the mass concentrations of fine particulate matters were lagged about 1-2 d. The level of the particulate matters in this area was high. Heavy traffic, setting off of fireworks/firecrackers and meteorological factors may be some of the main factors affecting the concentrations of the particulate matters in this area. Among those factors, the effect of setting off of fireworks/firecrackers didn't last long and the effect of the meteorological factors had a hysteresis effect.

  7. Selection and concentration of obstetric facilities in Japan: Longitudinal study based on national census data.

    PubMed

    Matsumoto, Masatoshi; Koike, Soichi; Matsubara, Shigeki; Kashima, Saori; Ide, Hiroo; Yasunaga, Hideo

    2015-06-01

    A shortage of obstetricians with increased workload is a social problem in Japan. In response, the government and professional bodies have accelerated the 'selection and concentration' of obstetric facilities. The aim of this study was to evaluate the recent trend of selection and concentration. We used data on the number of deliveries and of obstetricians in each hospital and clinic in Japan, according to the Static Survey of Medical Institutions in 2005, 2008 and 2011. To evaluate the inter-facility equality of distribution of the number of deliveries, number of obstetricians and number of deliveries per obstetrician, Gini coefficients were calculated. The number of obstetric hospitals decreased by 20% and the number of deliveries per hospital increased by 26% between 2005 and 2011. Hospital obstetricians increased by 16% and the average number of obstetricians per hospital increased by 19% between 2008 and 2011. Gini coefficient of deliveries has significantly decreased. In contrast, Gini coefficient of deliveries per obstetrician has significantly increased. The degree of increase in obstetricians and of decrease in deliveries per obstetrician was largest at the hospitals with the highest proportion of cesarean sections. The proportion of obstetric hospitals with the optimal volume of deliveries and obstetricians, as defined by Japan Society of Obstetrics and Gynecology, was 4% in 2008, and it had doubled to 8.1% 3 years later. The selection and concentration of obstetric facilities is progressing rapidly and effectively in Japan. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  8. Relationship between different size classes of particulate matter and meteorology in three European cities.

    PubMed

    de Hartog, Jeroen J; Hoek, Gerard; Mirme, Aadu; Tuch, Thomas; Kos, Gerard P A; ten Brink, Harry M; Brunekreef, Bert; Cyrys, Josef; Heinrich, Joachim; Pitz, Mike; Lanki, Timo; Vallius, Marko; Pekkanen, Juha; Kreyling, Wolfgang G

    2005-04-01

    Evidence on the correlation between particle mass and (ultrafine) particle number concentrations is limited. Winter- and spring-time measurements of urban background air pollution were performed in Amsterdam (The Netherlands), Erfurt (Germany) and Helsinki (Finland), within the framework of the EU funded ULTRA study. Daily average concentrations of ambient particulate matter with a 50% cut off of 2.5 microm (PM2.5), total particle number concentrations and particle number concentrations in different size classes were collected at fixed monitoring sites. The aim of this paper is to assess differences in particle concentrations in several size classes across cities, the correlation between different particle fractions and to assess the differential impact of meteorological factors on their concentrations. The medians of ultrafine particle number concentrations were similar across the three cities (range 15.1 x 10(3)-18.3 x 10(3) counts cm(-3)). Within the ultrafine particle fraction, the sub fraction (10-30 nm) made a higher contribution to particle number concentrations in Erfurt than in Helsinki and Amsterdam. Larger differences across the cities were found for PM2.5(range 11-17 microg m(-3)). PM2.5 and ultrafine particle concentrations were weakly (Amsterdam, Helsinki) to moderately (Erfurt) correlated. The inconsistent correlation for PM2.5 and ultrafine particle concentrations between the three cities was partly explained by the larger impact of more local sources from the city on ultrafine particle concentrations than on PM2.5, suggesting that the upwind or downwind location of the measuring site in regard to potential particle sources has to be considered. Also, relationship with wind direction and meteorological data differed, suggesting that particle number and particle mass are two separate indicators of airborne particulate matter. Both decreased with increasing wind speed, but ultrafine particle number counts consistently decreased with increasing relative humidity, whereas PM2.5 increased with increasing barometric pressure. Within the ultrafine particle mode, nucleation mode (10-30 nm) and Aitken mode (30-100 nm) had distinctly different relationships with accumulation mode particles and weather conditions. Since the composition of these particle fractions also differs, it is of interest to test in future epidemiological studies whether they have different health effects.

  9. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... average benzene concentration determined? 80.1238 Section 80.1238 Protection of Environment ENVIRONMENTAL... Benzene Gasoline Benzene Requirements § 80.1238 How is a refinery's or importer's average benzene concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or imported...

  10. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... average benzene concentration determined? 80.1238 Section 80.1238 Protection of Environment ENVIRONMENTAL... Benzene Gasoline Benzene Requirements § 80.1238 How is a refinery's or importer's average benzene concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or imported...

  11. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... average benzene concentration determined? 80.1238 Section 80.1238 Protection of Environment ENVIRONMENTAL... Benzene Gasoline Benzene Requirements § 80.1238 How is a refinery's or importer's average benzene concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or imported...

  12. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... average benzene concentration determined? 80.1238 Section 80.1238 Protection of Environment ENVIRONMENTAL... Benzene Gasoline Benzene Requirements § 80.1238 How is a refinery's or importer's average benzene concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or imported...

  13. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... average benzene concentration determined? 80.1238 Section 80.1238 Protection of Environment ENVIRONMENTAL... Benzene Gasoline Benzene Requirements § 80.1238 How is a refinery's or importer's average benzene concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or imported...

  14. Mortality assessment attributed to long-term exposure to fine particles in ambient air of the megacity of Tehran, Iran.

    PubMed

    Yarahmadi, Maryam; Hadei, Mostafa; Nazari, Seyed Saeed Hashemi; Conti, Gea Oliveri; Alipour, Mohammd Reza; Ferrante, Margherita; Shahsavani, Abbas

    2018-05-01

    Few studies regarding the health effects of long-term exposure to particulate matter with an aerodynamic diameter of 2.5 μm or less (PM 2.5 ) have been carried out in Asia or the Middle East. The objective of our study was to assess total, lung cancer and chronic obstructive pulmonary disease (COPD) mortality attributed to long-term exposure to PM 2.5 among adults aged over 30 years in Tehran from March 2013 to March 2016 using AirQ + software. AirQ + modeling software was used to estimate the number of deaths attributed to PM 2.5 concentrations higher than 10 μg m -3 . Air quality data were obtained from the Department of Environment (DOE) and Tehran Air Quality Control Company (TAQCC). Only valid stations with data completeness of 75% in all 3 years were selected for entry into the model. The 3-year average of the 24-h concentrations was 39.17 μg m -3 . The results showed that the annual average concentration of PM 2.5 in 2015-2016 was reduced by 13% compared to that in 2013-2014. The annual average number of all natural, COPD, and lung cancer deaths attributable to long-term exposure to PM 2.5 in adults aged more than 30 years was 5073, 158, and 142 cases, respectively. The results of all three health endpoints indicate that the mortality attributable to PM 2.5 decreased yearly from 2013 to 2016 and that the reduced mortality was related to a corresponding reduction in the PM 2.5 concentration. Considering these first positive results, the steps that have been currently taken for reducing air pollution in Tehran should be continued to further improve the already positive effects of these measures on reducing health outcomes.

  15. Indoor and outdoor particulate matter in primary school classrooms with fan-assisted natural ventilation in Singapore.

    PubMed

    Chen, Ailu; Gall, Elliott T; Chang, Victor W C

    2016-09-01

    We conducted multiday continuous monitoring of indoor and outdoor particulate matter (PM) in classrooms with fan-assisted natural ventilation (NV) at five primary schools in Singapore. We monitored size-resolved number concentration of PM with diameter 0.3-10 μm at all schools and alveolar deposited surface area concentrations of PM with diameter 0.01-1.0 μm (SA0.01-1.0) at two schools. Results show that, during the monitoring period, schools closer to expressways and in the downtown area had 2-3 times higher outdoor PM0.3-1.0 number concentrations than schools located in suburban areas. Average indoor SA0.01-1.0 was 115-118 μm(2) cm(-3) during periods of occupancy and 72-87 μm(2) cm(-3) during unoccupied periods. There were close indoor and outdoor correlations for fine PM during both occupied and unoccupied periods (Pearson's r = 0.84-1.0) while the correlations for coarse PM were weak during the occupied periods (r = 0.13-0.74). Across all the schools, the size-resolved indoor/outdoor PM ratios (I/O ratios) were 0.81 to 1.58 and 0.61 to 0.95 during occupied and unoccupied periods, respectively, and average infiltration factors were 0.64 to 0.94. Average PM net emission rates, calculated during periods of occupancy in the classrooms, were lower than or in the lower range of emission rates reported in the literature. This study also reveals that indoor fine and submicron PM predominantly come from outdoor sources, while indoor sources associated with occupancy may be important for coarse PM even when the classrooms have high air exchange rates.

  16. Memantine may affect pseudobulbar affect in patients with Alzheimer's disease.

    PubMed

    Prokšelj, Tatjana; Jerin, Aleš; Kogoj, Aleš

    2013-12-01

    Behavioural symptoms are common in moderate to severe Alzheimer's disease (AD) and are improved by memantine with the most pronounced effect on agitation/aggression. Dextromethorphan in combination with quinidine is the only drug approved by US Food and Drug Administration for the treatment of pseudobulbar affect (PBA) on the basis of efficacy in patients with multiple sclerosis or amyotrophic lateral sclerosis. The aim of our study was to evaluate the efficacy of memantine on PBA in patients with AD. In a prospective, double-blind, case-control study to assess PBA with pathological laughter and crying scale patients were administered memantine (final dose of 20 mg daily) or citalopram (20 mg once daily), each for 10 weeks. The number of episodes of involuntary emotional expression, Neuropsychiatric Inventory (NPI) and Overt Aggression Scale-Modified (OAS-M) total scores were also recorded. Furthermore, the platelet serotonin (5-HT) concentration was measured. Although memantine had beneficial effects on PBA, it also had a crucial impact on behavioural symptoms, especially aggression and agitation (to an average of 3.5 times higher end-point scores on OAS-M and increase of NPI total scores for an average of 114% of initial value). Therefore, the study was prematurely stopped. In addition, we had evidenced a drop of platelet 5-HT concentration (to an average of 73% of initial value). Surprisingly, our research showed the opposite action of memantine on neuropsychiatric symptoms as expected. In a limited number of AD patients with PBA, memantine had a beneficial effect on involuntary emotional expression, but it potentiated agitation/aggression, irritability and caused a crucial drop of the platelet 5-HT concentration.

  17. Experimental analysis for heat transfer of nanofluid with wire coil turbulators in a concentric tube heat exchanger

    NASA Astrophysics Data System (ADS)

    Akyürek, Eda Feyza; Geliş, Kadir; Şahin, Bayram; Manay, Eyüphan

    2018-06-01

    Nanofluids are a novel class of heat transfer suspensions of metallic or nonmetallic nanopowders with a size of less than 100 nm in base fluids and they can increase heat transfer potential of the base fluids in various applications. In the last decade, nanofluids have become an intensive research topic because of their improved thermal properties and possible heat transfer applications. For comparison, an experiment using water as the working fluid in the heat exchanger without wire coils was also performed. Turbulent forced convection heat transfer and pressure drop characteristics of Al2O3-water nanofluids in a concentric tube heat exchanger with and without wire coil turbulators were experimentally investigated in this research. Experiments effected particle volume concentrations of 0.4-0.8 to 1.2-1.6 vol% in the Reynolds number range from 4000 to 20,000. Two turbulators with the pitches of 25 mm and 39 mm were used. The average Nusselt number increased with increasing the Reynolds number and particle concentrations. Moreover, the pressure drop of the Al2O3-water nanofluid showed nearly equal to that of pure water at the same Reynolds number range. As a result, nanofluids with lower particle concentrations did not show an important influence on pressure drop change. Nonetheless, when the wire coils used in the heat exchanger, it increased pressure drop as well as the heat transfer coefficient.

  18. Characterization of indoor diesel exhaust emissions from the parking garage of a school.

    PubMed

    Debia, Maximilien; Trachy-Bourget, Marie-Claude; Beaudry, Charles; Neesham-Grenon, Eve; Perron, Stéphane; Lapointe, Caroline

    2017-02-01

    Diesel exhaust (DE) emissions from a parking garage located in the basement of a school were characterized during spring and winter using direct reading devices and integrated sampling methods. Concentrations of CO and NO 2 were evaluated using electrochemical sensors and passive colorimetric tubes, respectively. Elemental and total carbon concentrations were measured using the NIOSH 5040 method. Particle number concentrations (PNCs), respirable particulate matter (PM resp ) mass concentrations, and size distributions were evaluated using direct reading devices. Indoor concentrations of elemental carbon, PNC, CO, and NO 2 showed significant seasonal variation; concentrations were much higher during winter (p < 0.01). Concentrations of the PM resp and total carbon did not show significant seasonal variation. Pearson correlation coefficients were 0.9 (p < 0.01) and 0.94 (p < 0.01) between the parking garage and ground floor average daily PNCs, and between the parking garage and first floor average daily PNCs, respectively. Since DE is the main identified source of fine and ultrafine particles in the school, these results suggest that DE emissions migrate from the parking garage into the school. Our results highlight the relevance of direct reading instruments in identifying migration of contaminants and suggest that monitoring PNC is a more specific way of assessing exposure to DE than monitoring the common PM resp fraction.

  19. Investigation of gaseous and particulate emissions from various marine vessel types measured on the banks of the Elbe in Northern Germany

    NASA Astrophysics Data System (ADS)

    Diesch, J.-M.; Drewnick, F.; Klimach, T.; Borrmann, S.

    2013-04-01

    Measurements of the ambient aerosol, various trace gases and meteorological quantities using a mobile laboratory (MoLa) were performed on the banks of the Lower Elbe in an emission control area (ECA) which is passed by numerous private and commercial marine vessels reaching and leaving the port of Hamburg, Germany. From 25-29 April 2011 a total of 178 vessels were probed at a distance of about 0.8-1.2 km with high temporal resolution. 139 ship emission plumes were of sufficient quality to be analyzed further and to determine emission factors (EFs). Concentrations of aerosol number and mass as well as polycyclic aromatic hydrocarbons (PAH) and black carbon were measured in PM1 and size distribution instruments covered the diameter range from 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase species analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) in the air and a weather station provided wind, precipitation, solar radiation data and other quantities. Together with ship information for each vessel obtained from Automatic Identification System (AIS) broadcasts a detailed characterization of the individual ship types and of features affecting gas and particulate emissions is provided. Particle number EFs (average 2.6e+16 # kg-1) and PM1 mass EFs (average 2.4 g kg-1) tend to increase with the fuel sulfur content. Observed PM1 composition of the vessel emissions was dominated by organic matter (72%), sulfate (22%) and black carbon (6%) while PAHs only account for 0.2% of the submicron aerosol mass. Measurements of gaseous components showed an increase of SO2 (average EF: 7.7 g kg-1) and NOx (average EF: 53 g kg-1) while O3 decreased when a ship plume reached the sampling site. The particle number size distributions of the vessels are generally characterized by a bimodal size distribution, with the nucleation mode in the 10-20 nm diameter range and a combustion aerosol mode centered at about 35 nm while particles > 1 μm were not found. "High particle number emitters" are characterized by a dominant nucleation mode. By contrast, increased particle concentrations around 150 nm primarily occurred for "high black carbon emitters". Classifying the vessels according to their gross tonnage shows a decrease of the number, black carbon and PAH EFs while EFs of SO2, NO, NO2, NOx, AMS species (particulate organics, sulfate) and PM1 mass concentration increase with increasing gross tonnages.

  20. Postmortem Toxicology Findings of Acetyl Fentanyl, Fentanyl, and Morphine in Heroin Fatalities in Tampa, Florida

    PubMed Central

    Pearson, Julia; Poklis, Justin; Poklis, Alphonse; Wolf, Carl; Mainland, Mary; Hair, Laura; Devers, Kelly; Chrostowski, Leszek; Arbefeville, Elise; Merves, Michele

    2017-01-01

    In the last two years, an epidemic of 40 fatal heroin overdose cases has occurred in the Tampa area of Florida. Of these cases, 14 involved fentanyl and acetyl fentanyl. Victim demographics, case histories, toxicology findings, and causes and manners of death for all 40 deaths are presented. In 26 deaths in which acetyl fentanyl or fentanyl were not involved, free and total peripheral blood morphine concentrations were consistent with fatal heroin intoxications, averaging 0.16 mg/L and 0.35 mg/L, respectively. In the heroin cases with fentanyl present (n=7), the average free morphine concentration was 0.040 mg/L, the average total morphine concentration was 0.080 mg/L, and the average fentanyl concentration was 0.012 mg/L. In the cases with heroin, fentanyl, and acetyl fentanyl (n=3), the average free morphine concentration was 0.010 mg/L, the average total morphine concentration was 0.030 mg/L, the average fentanyl concentration was 0.018 mg/L, and the average acetyl fentanyl concentration was 0.008 mg/L. In the cases involving only acetyl fentanyl (without heroin or fentanyl, n=4), the average acetyl fentanyl concentration was 0.47 mg/L and the average acetyl norfentanyl concentration was 0.053 mg/L. The presented cases, with associated drug concentrations, case histories, demographics, and causes and manners of death may help provide assistance with the interpretation of the postmortem findings. Based on case circumstances, autopsy results, and toxicology results, it is evident that fentanyl and/or acetyl fentanyl, when present, contributed to the cause of death. PMID:29034049

  1. Recent Greenhouse Gas Concentrations

    DOE Data Explorer

    Blasing, T. J.

    2016-01-01

    Gases typically measured in parts per million (ppm), parts per billion (ppb) or parts per trillion (ppt) are presented separately to facilitate comparison of numbers. Global Warming Potentials (GWPs) and atmospheric lifetimes are from the Intergovernmental Panel on Climate Change (IPCC, 2013, Table 8.A.1), except for the atmospheric lifetime of carbon dioxide (CO2) which is explained in footnote 4. Additional material on greenhouse gases can be found in CDIAC's Reference Tools. To find out how CFCs, HFCs, HCFCs, and halons are named, see Name that compound: The numbers game for CFCs, HFCs, HCFCs, and Halons. Concentrations given apply to the lower 75-80 percent of the atmosphere, known as the troposphere. Sources of the current and preindustrial concentrations of the atmospheric gases listed in the table below are given in the footnotes. Investigators at the National Oceanic and Atmospheric Administration have provided the recent concentrations. Much of the data provided results from the work of various investigators at institutions other than CDIAC, and represent considerable effort on their part. We ask as a basic professional courtesy that you acknowledge the primary sources, indicated in the footnotes below, or in the links given in the footnotes. Concentrations of ozone and water vapor are spatially and temporally variable due to their short atmospheric lifetimes. A vertically and horizontally averaged water vapor concentration is about 5,000 ppm. Globally averaged water vapor concentration is difficult to measure precisely because it varies from one place to another and from one season to the next. This precludes a precise determination of changes in water vapor since pre-industrial time. However, a warmer atmosphere will likely contain more water vapor than at present. For a more detailed statement on water vapor from the National Oceanic and Atmospheric Administration, see the "water vapor" page at http://lwf.ncdc.noaa.gov/oa/climate/gases.html

  2. Characterization of exposures to airborne nanoscale particles during friction stir welding of aluminum.

    PubMed

    Pfefferkorn, Frank E; Bello, Dhimiter; Haddad, Gilbert; Park, Ji-Young; Powell, Maria; McCarthy, Jon; Bunker, Kristin Lee; Fehrenbacher, Axel; Jeon, Yongho; Virji, M Abbas; Gruetzmacher, George; Hoover, Mark D

    2010-07-01

    Friction stir welding (FSW) is considered one of the most significant developments in joining technology over the last half century. Its industrial applications are growing steadily and so are the number of workers using this technology. To date, there are no reports on airborne exposures during FSW. The objective of this study was to investigate possible emissions of nanoscale (<100 nm) and fine (<1 microm) aerosols during FSW of two aluminum alloys in a laboratory setting and characterize their physicochemical composition. Several instruments measured size distributions (5 nm to 20 microm) with 1-s resolution, lung deposited surface areas, and PM(2.5) concentrations at the source and at the breathing zone (BZ). A wide range aerosol sampling system positioned at the BZ collected integrated samples in 12 stages (2 nm to 20 microm) that were analyzed for several metals using inductively coupled plasma mass spectrometry. Airborne aerosol was directly collected onto several transmission electron microscope grids and the morphology and chemical composition of collected particles were characterized extensively. FSW generates high concentrations of ultrafine and submicrometer particles. The size distribution was bimodal, with maxima at approximately 30 and approximately 550 nm. The mean total particle number concentration at the 30 nm peak was relatively stable at approximately 4.0 x 10(5) particles cm(-3), whereas the arithmetic mean counts at the 550 nm peak varied between 1500 and 7200 particles cm(-3), depending on the test conditions. The BZ concentrations were lower than the source concentrations by 10-100 times at their respective peak maxima and showed higher variability. The daylong average metal-specific concentrations were 2.0 (Zn), 1.4 (Al), and 0.24 (Fe) microg m(-3); the estimated average peak concentrations were an order of magnitude higher. Potential for significant exposures to fine and ultrafine aerosols, particularly of Al, Fe, and Zn, during FSW may exist, especially in larger scale industrial operations.

  3. Characterization of Exposures to Airborne Nanoscale Particles During Friction Stir Welding of Aluminum

    PubMed Central

    Pfefferkorn, Frank E.; Bello, Dhimiter; Haddad, Gilbert; Park, Ji-Young; Powell, Maria; Mccarthy, Jon; Bunker, Kristin Lee; Fehrenbacher, Axel; Jeon, Yongho; Virji, M. Abbas; Gruetzmacher, George; Hoover, Mark D.

    2010-01-01

    Friction stir welding (FSW) is considered one of the most significant developments in joining technology over the last half century. Its industrial applications are growing steadily and so are the number of workers using this technology. To date, there are no reports on airborne exposures during FSW. The objective of this study was to investigate possible emissions of nanoscale (<100 nm) and fine (<1 μm) aerosols during FSW of two aluminum alloys in a laboratory setting and characterize their physicochemical composition. Several instruments measured size distributions (5 nm to 20 μm) with 1-s resolution, lung deposited surface areas, and PM2.5 concentrations at the source and at the breathing zone (BZ). A wide range aerosol sampling system positioned at the BZ collected integrated samples in 12 stages (2 nm to 20 μm) that were analyzed for several metals using inductively coupled plasma mass spectrometry. Airborne aerosol was directly collected onto several transmission electron microscope grids and the morphology and chemical composition of collected particles were characterized extensively. FSW generates high concentrations of ultrafine and submicrometer particles. The size distribution was bimodal, with maxima at ∼30 and ∼550 nm. The mean total particle number concentration at the 30 nm peak was relatively stable at ∼4.0 × 105 particles cm−3, whereas the arithmetic mean counts at the 550 nm peak varied between 1500 and 7200 particles cm−3, depending on the test conditions. The BZ concentrations were lower than the source concentrations by 10–100 times at their respective peak maxima and showed higher variability. The daylong average metal-specific concentrations were 2.0 (Zn), 1.4 (Al), and 0.24 (Fe) μg m−3; the estimated average peak concentrations were an order of magnitude higher. Potential for significant exposures to fine and ultrafine aerosols, particularly of Al, Fe, and Zn, during FSW may exist, especially in larger scale industrial operations. PMID:20453001

  4. Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories

    NASA Astrophysics Data System (ADS)

    Schmale, Julia; Henning, Silvia; Decesari, Stefano; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Pöhlker, Mira L.; Brito, Joel; Bougiatioti, Aikaterini; Kristensson, Adam; Kalivitis, Nikos; Stavroulas, Iasonas; Carbone, Samara; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Iwamoto, Yoko; Aalto, Pasi; Äijälä, Mikko; Bukowiecki, Nicolas; Ehn, Mikael; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Herrmann, Erik; Herrmann, Hartmut; Holzinger, Rupert; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Nenes, Athanasios; O'Dowd, Colin; Petäjä, Tuukka; Picard, David; Pöhlker, Christopher; Pöschl, Ulrich; Poulain, Laurent; Prévôt, André Stephan Henry; Swietlicki, Erik; Andreae, Meinrat O.; Artaxo, Paulo; Wiedensohler, Alfred; Ogren, John; Matsuki, Atsushi; Yum, Seong Soo; Stratmann, Frank; Baltensperger, Urs; Gysel, Martin

    2018-02-01

    Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set - ready to be used for model validation - of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles > 20 nm) across the range of 0.1 to 1.0 % supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, κ, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2-0.3). We performed closure studies based on κ-Köhler theory to predict CCN number concentrations. The ratio of predicted to measured CCN concentrations is between 0.87 and 1.4 for five different types of κ. The temporal variability is also well captured, with Pearson correlation coefficients exceeding 0.87. Information on CCN number concentrations at many locations is important to better characterise ACI and their radiative forcing. But long-term comprehensive aerosol particle characterisations are labour intensive and costly. Hence, we recommend operating migrating-CCNCs to conduct collocated CCN number concentration and particle number size distribution measurements at individual locations throughout one year at least to derive a seasonally resolved hygroscopicity parameter. This way, CCN number concentrations can only be calculated based on continued particle number size distribution information and greater spatial coverage of long-term measurements can be achieved.

  5. Response of nesting northern goshawks to logging truck noise: Kaibab National Forest, Arizona

    Treesearch

    Teryl G. Grubb; Angela E. Gatto; Larry L. Pater; David K. Delaney

    2012-01-01

    The northern goshawk (Accipiter gentilis) is a pandemic species found across North America and Eurasia. The Kaibab Plateau on the Kaibab National Forest in northern Arizona supports one of the most concentrated populations of goshawks known in North America, averaging 43 active breeding areas per year until a 2001 drought reduced the subsequent number of nesting pairs...

  6. Lung cancer prevalence associated with radon exposure in Norwegian homes.

    PubMed

    Hassfjell, Christina Søyland; Grimsrud, Tom Kristian; Standring, William J F; Tretli, Steinar

    2017-08-22

    Radioactive radon gas is generated from uranium and thorium in underlying rocks and seeps into buildings. The gas and its decay products emit carcinogenic radiation and are regarded as the second most important risk factor for lung cancer after active tobacco smoking. The average radon concentration in Norwegian homes is higher than in most other Western countries. From a health and cost perspective, it is important to be able to quantify the risk of lung cancer posed by radon exposure. We estimated the radon-related risk of lung cancer in Norway based on risk estimates from the largest pooled analysis of European case-control studies, combined with the hitherto largest set of data on radon concentration measurements in Norwegian homes. Based on these estimates, we calculate that radon is a contributory factor in 12 % of all cases of lung cancer annually, assuming an average radon concentration of 88 Bq/m3 in Norwegian homes. For 2015, this accounted for 373 cases of lung cancer, with an approximate 95 % confidence interval of 145 – 682. Radon most likely contributes to a considerable number of cases of lung cancer. Since most cases of radon-associated lung cancer involve smokers or former smokers, a reduction of the radon concentration in homes could be a key measure to reduce the risk, especially for persons who are unable to quit smoking. The uncertainty in the estimated number of radon-associated cases can be reduced through a new national radon mapping study with an improved design.

  7. Pesticides present in migrant farmworker housing in North Carolina.

    PubMed

    Arcury, Thomas A; Lu, Chensheng; Chen, Haiying; Quandt, Sara A

    2014-03-01

    Migrant farmworkers are exposed to pesticides at work. Housing provided to migrant farmworkers may also expose them to pesticides, increasing their health risks. This analysis (1) describes the presence of organophosphorous (OP) and pyrethroid pesticides in North Carolina migrant farmworker houses, and (2) delineates associations of farmworker camp characteristics with pesticide detection and concentration. In 2010, 186 migrant farmworkers camps in NC were recruited (participation rate of 82.3%); pesticide wipe samples for 176 houses were analyzed. Tobacco is the predominant hand-harvested crop in this region. Two farmworkers per camp completed interviews; a third assisted with a housing inspection. Gas chromatography-mass spectrometry was used to detect OP and pyrethroid pesticides. Covariates of pesticide detection and concentration were determined with ANOVA and Tobit regression. OPs were found in 166 of 176 houses (average of 2.4/house); pyrethroids were found in 171 houses (average of 4.3/house). The number of different OPs detected in each camp and concentrations of these OPs were not associated with camp and housing characteristics. The number of different pyrethroids detected in each camp and concentrations of these pyrethroids were associated with camps having residents with H2-A visas, a posted North Carolina Department of Labor Certificate of Inspection, no barracks, fewer residents, no bedroom weather protection or floor violations, and no roaches. Farmworkers are exposed to pesticides where they live. Policy on removing pesticides from farmworker houses is needed. Reducing pesticides in farmworker houses will reduce one health risk confronted by this vulnerable population. © 2013 Wiley Periodicals, Inc.

  8. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders

    PubMed Central

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-01-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm−3, with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. PMID:26464505

  9. Pesticides Present in Migrant Farmworker Housing in North Carolina

    PubMed Central

    Arcury, Thomas A.; Lu, Chensheng; Chen, Haiying; Quandt, Sara A.

    2014-01-01

    Background Migrant farmworkers are exposed to pesticides at work. Housing provided to migrant farmworkers may also expose them to pesticides, increasing their health risks. This analysis (1) describes the presence of organophosphorous (OP) and pyrethroid pesticides in North Carolina migrant farmworker houses, and (2) delineates associations of farmworker camp characteristics with pesticide detection and concentration. Methods In 2010, 186 migrant farmworkers camps in NC were recruited (participation rate of 82.3%); pesticide wipe samples for 176 houses were analyzed. Tobacco is the predominant hand-harvested crop in this region. Two farmworkers per camp completed interviews; a third assisted with a housing inspection. Gas chromatography–mass spectrometry was used to detect OP and pyrethroid pesticides. Covariates of pesticide detection and concentration were determined with ANOVA and Tobit regression. Results OPs were found in 166 of 176 houses (average of 2.4/house); pyrethroids were found in 171 houses (average of 4.3/house). The number of different OPs detected in each camp and concentrations of these OPs were not associated with camp and housing characteristics. The number of different pyrethroids detected in each camp and concentrations of these pyrethroids were associated with camps having residents with H2-A visas, a posted North Carolina Department of Labor Certificate of Inspection, no barracks, fewer residents, no bedroom weather protection or floor violations, and no roaches. Conclusions Farmworkers are exposed to pesticides where they live. Policy on removing pesticides from farmworker houses is needed. Reducing pesticides in farmworker houses will reduce one health risk confronted by this vulnerable population. PMID:24038176

  10. The effect of concentrate allocation on traffic and milk production of pasture-based cows milked by an automatic milking system.

    PubMed

    Lessire, F; Froidmont, E; Shortall, J; Hornick, J L; Dufrasne, I

    2017-11-01

    Increased economic, societal and environmental challenges facing agriculture are leading to a greater focus on effective way to combine grazing and automatic milking systems (AMS). One of the fundamental aspects of robotic milking is cows' traffic to the AMS. Numerous studies have identified feed provided, either as fresh grass or concentrate supplement, as the main incentive for cows to return to the robot. The aim of this study was to determine the effect of concentrate allocation on voluntary cow traffic from pasture to the robot during the grazing period, to highlight the interactions between grazed pasture and concentrate allocation in terms of substitution rate and the subsequent effect on average milk yield and composition. Thus, 29 grazing cows, milked by a mobile robot, were monitored for the grazing period (4 months). They were assigned to two groups: a low concentrate (LC) group (15 cows) and a high concentrate (HC) group (14 cows) receiving 2 and 4 kg concentrate/cow per day, respectively; two allocations per day of fresh pasture were provided at 0700 and 1600 h. The cows had to go through the AMS to receive the fresh pasture allocation. The effect of concentrate level on robot visitation was calculated by summing milkings, refusals and failed milkings/cow per day. The impact on average daily milk yield and composition was also determined. The interaction between lactation number and month was used as an indicator of pasture availability. Concentrate allocation increased significantly robot visitations in HC (3.60±0.07 visitations/cow per day in HC and 3.10±0.07 visitations/cow per day in LC; P<0.001) while milkings/cow per day were similar in both groups (LC: 2.37±0.02/day and HC: 2.39±0.02/day; Ns). The average daily milk yield over the grazing period was enhanced in HC (22.39±0.22 kg/cow per day in HC and 21.33±0.22 kg/cow per day in LC; P<0.001). However the gain in milk due to higher concentrate supply was limited with regards to the amount of provided concentrates. Milking frequency in HC primiparous compared with LC was increased. In the context of this study, considering high concentrate levels as an incentive for robot visitation might be questioned, as it had no impact on milking frequency and limited impact on average milk yield and composition. By contrast, increased concentrate supply could be targeted specifically to primiparous cows.

  11. Polychlorinated dibenzo-p-dioxins and dibenzofurans in the atmosphere around the Great Lakes.

    PubMed

    Venier, Marta; Ferrario, Joseph; Hites, Ronald A

    2009-02-15

    The atmospheric concentrations of PCDDs and PCDFs were measured in four sites near the shores of the North American Great Lakes. The sites included an urban site (Chicago, Illinois) and three rural/remote sites (Eagle Harbor, Michigan; Sleeping Bear Dunes, Michigan; and Sturgeon Point, New York). Sampling occurred every 24 days between November 2004 and December 2007. The concentration of PCDD/Fs averaged 2.3 +/- 0.2 fg WHO TEQ/m3 at Eagle Harbor, 35 +/- 3 fg WHO TEO/ m3 at Chicago, 7.4 +/- 1.4 fg WHO TEO/m3 at Sleeping Bear Dunes, and 13 +/- 2 fg WHO TED/m3 at Sturgeon Point. The total concentration of the 17 toxic PCDD/F congeners showed a significant seasonal trend at all sites, except Chicago. The date of maximum concentration averaged Dec 6 +/- 35 days, which is consistent with residential heating being an important source of PCDD/Fs to the atmosphere. A significant positive relationship between the logarithm of the total concentration of the 17 toxic PCDD/F congeners and the logarithm of the number of people within a 25 km radius around the sampling site was found. We suggest that urban and industrial areas, which are heavily populated, act as sources of PCDDs and PCDFs to the atmosphere.

  12. Diurnal variations of aerosol characteristics at a rural measuring site close to the Ruhr-Area, Germany

    NASA Astrophysics Data System (ADS)

    Kuhlbusch, T. A. J.; John, A. C.; Fissan, H.

    PM10, PM2.5, and Black Carbon (BC) mass concentrations as well as number size distributions were measured quasi-online at a rural sampling site from 18 September to 17 October 1997. Average PM10, PM2.5, and BC mass concentrations were 37 ± 25, 25 ± 23, and 2 ± 1 μgm -3, respectively. All determined aerosol characteristics showed significant diurnal variations with generally higher concentrations during daytime compared to nights. Maxima in mass concentrations were around 11 AM and 8 PM during weekdays, most likely caused by commuter traffic. Decreased mass concentrations, changes in chemical composition and size distribution have been observed for the time from 12 to 5 PM. Diurnal variations of the BC/PM2.5 mass ratio revealed a minimum between 12 and 4 PM. The ratio of particle volume (0.5-2.5 μm) to particle mass (PM2.5) called 'potential density' also showed significant diurnal changes. These changes could be attributed to increasing in mixing height and windspeed. The determined diurnal variations in particle mass, composition, and size distribution may be relevant for epidemiological studies. We propose that diurnally weighted averages of relevant aerosol characteristics, which take diurnal patterns of human activities into account, should be used in epidemiological studies.

  13. Photochemical modeling of emissions trading of highly reactive volatile organic compounds in Houston, Texas. 1. Reactivity based trading and potential for ozone hot spot formation.

    PubMed

    Wang, Linlin; Thompson, Tammy; McDonald-Buller, Elena C; Webb, Alba; Allen, David T

    2007-04-01

    As part of the State Implementation Plan for attaining the National Ambient Air Quality Standard for ozone, the Texas Commission of Environmental Quality has created a Highly Reactive Volatile Organic Compounds (HRVOC) Emissions Cap and Trade Program for industrial point sources in the Houston/Galveston/Brazoria area. This program has a number of unique features, including its focus on a limited group of ozone precursors and its provisions for trading emissions based on atmospheric reactivity. This series of papers examines the potential air quality impacts of this new emission trading program through photochemical modeling of potential trading scenarios; this first paper in the series describes the air quality modeling methods used to assess potential trades, the potential for localized increases in ozone concentrations (ozone "hot spots") due to HRVOC emission trading, and the use of reactivity scales in the trading. When HRVOC emissions are traded on a mass basis, the simulations indicate that trading of HRVOC allowances between facilities resulted in less than 0.15 ppb (<0.13%) and 0.06 ppb (<0.06%) increases in predicted maximum, area-wide 1-h averaged and 8-h averaged ozone concentrations, respectively. Maximum decreases in ozone concentrations associated with trading, as opposed to across-the-board reductions, were larger than the increases. All of these changes are small compared to the maximum changes in ozone concentrations due to the VOC emissions from these sources (up to 5-10 ppb for 8 h averages; up to 30 ppb for 1-h averages). When emissions of HRVOCs are traded for other, less reactive emissions, on a reactivity weighted basis, air quality simulations indicate that daily maximum ozone concentrations increased by less than 0.3%. Because these relatively small changes (< 1%) are for unlikely trading scenarios designed to produce a maximum change in ozone concentrations (all emissions traded into localized regions), the simulations indicate that the implementation of the trading program, as currently configured and possibly expanded, is unlikely to cause localized increases in ozone concentrations ("hot spots").

  14. Investigation of Ground-Level Ozone and High-Pollution Episodes in a Megacity of Eastern China

    PubMed Central

    Zhao, Heng; Wang, Shanshan; Wang, Wenxin; Liu, Rui; Zhou, Bin

    2015-01-01

    Differential Optical Absorption Spectroscopy (DOAS) was used for the long-term observation of ground-level ozone (O3) from March 2010 to March 2013 over Shanghai, China. The 1-hour average concentration of O3 was 27.2 ± 17.0 ppbv. O3 level increased during spring, reached the peak in late spring and early summer, and then decreased in autumn and finally dropped to the bottom in winter. The highest monthly average O3 concentration in June (41.1 ppbv) was nearly three times as high as the lowest level recorded in December (15.2 ppbv). In terms of pollution episodes, 56 hourly samples (on 14 separate days) in 2010 exceeded the 1-hour ozone limit of 200 μg/m3 specified by the Grade II of the Chinese Ambient Air Quality Standards (CAAQS, revised GB 3095-2012). Utilizing the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, the primary contribution to high ozone days (HODs) was identified as the regional transportation of volatile organic compounds (VOC) and high concentrations of O3 from the chemical industrial zone in the Jinshan district of Shanghai. HODs showed higher concentrations of HONO and NO2 than non-episode conditions, implying that HONO at high concentration during HODs was capable of increasing the O3 concentration. The photolysis rate of HONO was estimated, suggesting that the larger number of OH radicals resulting from high concentrations of HONO have a considerable impact on ozone concentrations. PMID:26121146

  15. Infrared spectroscopy for the determination of hydrocarbon types in jet fuels

    NASA Technical Reports Server (NTRS)

    Buchar, C. S.

    1981-01-01

    The concentration of hydrocarbon types in conventional jet fuels and synfuels can be measured using a computerized infrared spectrophotometer. The computerized spectrophotometer is calibrated using a fuel of known aromatic and olefinic content. Once calibration is completed, other fuels can be rapidly analyzed using an analytical program built into the computer. The concentration of saturates can be calculated as 100 percent minus the sum of the aromatic and olefinic concentrations. The analysis of a number of jet fuels produced an average standard deviation of 1.76 percent for aromatic types and one of 3.99 percent for olefinic types. Other substances such as oils and organic mixtures can be analyzed for their hydrocarbon content.

  16. Airborne measurement of submicron aerosol number concentration and CCN activity in and around the Korean Peninsula and their comparison to ground measurement in Seoul

    NASA Astrophysics Data System (ADS)

    Park, M.; Kim, N.; Yum, S. S.

    2016-12-01

    Aerosols exert impact not only on human health and visibility but also on climate change directly by scattering or absorbing solar radiation and indirectly by acting as cloud condensation nuclei (CCN) and thus altering cloud radiative and microphysical properties. Aerosol indirect effects on climate has been known to have large uncertainty because of insufficient measurement data on aerosol and CCN activity distribution. Submicron aerosol number concentration (NCN, TSI CPC) and CCN number concentration (NCCN, DMT CCNC) were measured on board the NASA DC-8 research aircraft and at a ground site at Olympic Park in Seoul from May 2nd to June 10th, 2016. CCNC on the airborne platform was operated with the fixed internal supersaturation of 0.6% and CCNC at the ground site was operated with the five different supersaturations (0.2%, 0.4%, 0.6%, 0.8%, and 1.0%). The NASA DC-8 conducted 20 research flights (about 150 hours) in and around the Korean Peninsula and the ground measurement at Olympic Park was continuously made during the measurement period. Both airborne and ground measurements showed spatially and temporally varied aerosol number concentration and CCN activity. Aerosol number concentration in the boundary layer measured on airborne platform was highly affected by pollution sources on the ground. The average diurnal distribution of ground aerosol number concentration showed distinct peaks are located at about 0800, 1500, and 2000. The middle peak indicates that new particle formation events frequently occurred during the measurement period. CCN activation ratio at 0.6% supersaturation (NCCN/NCN) of the airborne measurement ranged from 0.1 to 0.9, indicating that aerosol properties in and around the Korean Peninsula varied so much (e. g. size, hygroscopicity). Comprehensive analysis results will be shown at the conference.

  17. Characteristics of Fine Particles in an Urban Atmosphere—Relationships with Meteorological Parameters and Trace Gases

    PubMed Central

    Zhang, Tianhao; Zhu, Zhongmin; Gong, Wei; Xiang, Hao; Fang, Ruimin

    2016-01-01

    Atmospheric fine particles (diameter < 1 μm) attract a growing global health concern and have increased in urban areas that have a strong link to nucleation, traffic emissions, and industrial emissions. To reveal the characteristics of fine particles in an industrial city of a developing country, two-year measurements of particle number size distribution (15.1 nm–661 nm), meteorological parameters, and trace gases were made in the city of Wuhan located in central China from June 2012 to May 2014. The annual average particle number concentrations in the nucleation mode (15.1 nm–30 nm), Aitken mode (30 nm–100 nm), and accumulation mode (100 nm–661 nm) reached 4923 cm−3, 12193 cm−3 and 4801 cm−3, respectively. Based on Pearson coefficients between particle number concentrations and meteorological parameters, precipitation and temperature both had significantly negative relationships with particle number concentrations, whereas atmospheric pressure was positively correlated with the particle number concentrations. The diurnal variation of number concentration in nucleation mode particles correlated closely with photochemical processes in all four seasons. At the same time, distinct growth of particles from nucleation mode to Aitken mode was only found in spring, summer, and autumn. The two peaks of Aitken mode and accumulation mode particles in morning and evening corresponded obviously to traffic exhaust emissions peaks. A phenomenon of “repeated, short-lived” nucleation events have been created to explain the durability of high particle concentrations, which was instigated by exogenous pollutants, during winter in a case analysis of Wuhan. Measurements of hourly trace gases and segmental meteorological factors were applied as proxies for complex chemical reactions and dense industrial activities. The results of this study offer reasonable estimations of particle impacts and provide references for emissions control strategies in industrial cities of developing countries. PMID:27517948

  18. Characterization of air pollutant concentrations, fleet emission factors, and dispersion near a North Carolina interstate freeway across two seasons

    NASA Astrophysics Data System (ADS)

    Saha, Provat K.; Khlystov, Andrey; Snyder, Michelle G.; Grieshop, Andrew P.

    2018-03-01

    We present field measurement data and modeling of multiple traffic-related air pollutants during two seasons at a site adjoining Interstate 40, near Durham, North Carolina. We analyze spatial-temporal and seasonal trends and fleet-average pollutant emission factors and use our data to evaluate a line source dispersion model. Month-long measurement campaigns were performed in summer 2015 and winter 2016. Data were collected at a fixed near-road site located within 10 m from the highway edge, an upwind background site and, under favorable meteorological conditions, along downwind perpendicular transects. Measurements included the size distribution, chemical composition, and volatility of submicron particles, black carbon (BC), nitrogen oxides (NOx), meteorological conditions and traffic activity data. Results show strong seasonal and diurnal differences in spatial distribution of traffic sourced pollutants. A strong signature of vehicle emissions was observed within 100-150 m from the highway edge with significantly higher concentrations during morning. Substantially higher concentrations and less-sharp near-road gradients were observed in winter for many species. Season-specific fleet-average fuel-based emission factors for NO, NOx, BC, and particle number (PN) were derived based on up- and down-wind roadside measurements. The campaign-average NOx and PN emission factors were 20% and 300% higher in winter than summer, respectively. These results suggest that the combined effect of higher emissions and their slower downwind dispersion in winter dictate the observed higher downwind concentrations and wider highway influence zone in winter for several species. Finally, measurements of traffic data, emission factors, and pollutant concentrations were integrated to evaluate a line source dispersion model (R-LINE). The dispersion model captured the general trends in the spatial and temporal patterns in near-road concentrations. However, there was a tendency for the model to under-predict concentrations near the road in the mornings and over-predict concentrations in the evenings.

  19. Outdoor and indoor UFP in primary schools across Barcelona.

    PubMed

    Reche, C; Viana, M; Rivas, I; Bouso, L; Àlvarez-Pedrerol, M; Alastuey, A; Sunyer, J; Querol, X

    2014-09-15

    Indoor and outdoor measurements of real-time ultrafine particles (UFP; N10-700 in this study) number concentration and average diameter were collected twice at 39 primary schools located in Barcelona (Spain), with classrooms naturally ventilated under warm weather conditions. Simultaneous outdoor N concentration measurements at schools under different traffic exposures showed the important role of this source, with higher levels by 40% on average at schools near heavy traffic, highlighting thus the increased exposure of children due to urban planning decisions. A well-defined spatial pattern of outdoor UFP levels was observed. Midday increases in outdoor N levels mainly attributed to nucleation processes have been recorded both at high and low temperatures in several of the outdoor school sites (increasing levels by 15%-70%). The variation of these increases also followed a characteristic spatial pattern, pointing at schools' location as a key variable in terms of UFP load owing to the important contribution of traffic emissions. Indoor N concentrations were to some extent explained by outdoor N concentrations during school hours, together with average temperatures, related with natural ventilation. Outdoor midday increases were generally mimicked by indoor N concentrations, especially under warm temperatures. At specific cases, indoor concentrations during midday were 30%-40% higher than outdoor. The time scale of these observations evidenced the possible role of: a) secondary particle formation enhanced by indoor precursors or conditions, maybe related with surface chemistry reactions mediated by O3, and/or b) UFP from cooking activities. Significant indoor N increases were detected after school hours, probably associated with cleaning activities, resulting in indoor N concentrations up to 3 times higher than those in outdoor. A wide variability of indoor/outdoor ratios of N concentrations and mean UFP sizes was detected among schools and measurement periods, which seems to be partly associated with climatic conditions and O3 levels, although further research is required. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Exposure to fine particulate matter and hospital admissions due to pneumonia: Effects on the number of hospital admissions and its costs.

    PubMed

    Patto, Nicole Vargas; Nascimento, Luiz Fernando Costa; Mantovani, Katia Cristina C; Vieira, Luciana C P F S; Moreira, Demerval S

    2016-07-01

    Given that respiratory diseases are a major cause of hospitalization in children, the objectives of this study are to estimate the role of exposure to fine particulate matter in hospitalizations due to pneumonia and a possible reduction in the number of these hospitalizations and costs. An ecological time-series study was developed with data on hospitalization for pneumonia among children under 10 years of age living in São José do Rio Preto, state of São Paulo, using PM2.5 concentrations estimated using a mathematical model. We used Poisson regression with a dependent variable (hospitalization) associated with PM2.5 concentrations and adjusted for effective temperature, seasonality and day of the week, with estimates of reductions in the number of hospitalizations and costs. 1,161 children were admitted to hospital between October 1st, 2011, and September 30th, 2013; the average concentration of PM2.5 was 18.7 µg/m3 (≈32 µg/m3 of PM10) and exposure to this pollutant was associated with hospitalization four and five days after exposure. A 10 µg/m3 decrease in concentration would imply 256 less hospital admissions and savings of approximately R$ 220,000 in a medium-sized city.

  1. Spatial variation of ultrafine particles and black carbon in two cities: results from a short-term measurement campaign.

    PubMed

    Klompmaker, Jochem O; Montagne, Denise R; Meliefste, Kees; Hoek, Gerard; Brunekreef, Bert

    2015-03-01

    Recently, short-term monitoring campaigns have been carried out to investigate the spatial variation of air pollutants within cities. Typically, such campaigns are based on short-term measurements at relatively large numbers of locations. It is largely unknown how well these studies capture the spatial variation of long term average concentrations. The aim of this study was to evaluate the within-site temporal and between-site spatial variation of the concentration of ultrafine particles (UFPs) and black carbon (BC) in a short-term monitoring campaign. In Amsterdam and Rotterdam (the Netherlands) measurements of number counts of particles larger than 10nm as a surrogate for UFP and BC were performed at 80 sites per city. Each site was measured in three different seasons of 2013 (winter, spring, summer). Sites were selected from busy urban streets, urban background, regional background and near highways, waterways and green areas, to obtain sufficient spatial contrast. Continuous measurements were performed for 30 min per site between 9 and 16 h to avoid traffic spikes of the rush hour. Concentrations were simultaneously measured at a reference site to correct for temporal variation. We calculated within- and between-site variance components reflecting temporal and spatial variations. Variance ratios were compared with previous campaigns with longer sampling durations per sample (24h to 14 days). The within-site variance was 2.17 and 2.44 times higher than the between-site variance for UFP and BC, respectively. In two previous studies based upon longer sampling duration much smaller variance ratios were found (0.31 and 0.09 for UFP and BC). Correction for temporal variation from a reference site was less effective for the short-term monitoring campaign compared to the campaigns with longer duration. Concentrations of BC and UFP were on average 1.6 and 1.5 times higher at urban street compared to urban background sites. No significant differences between the other site types and urban background were found. The high within to between-site concentration variances may result in the loss of precision and low explained variance when average concentrations from short-term campaigns are used to develop land use regression models. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Assessment of Lead Exposure Risk in Locksmiths

    PubMed Central

    Kondrashov, Vladislav; McQuirter, Joseph L.; Miller, Melba; Rothenberg, Stephen J.

    2005-01-01

    Exposure to lead has been well recognized in a number of work environments, but little is known about lead exposure associated with machining brass keys containing lead. The brass that is widely used for key manufacturing usually contains 1.5% – 2.5 % of lead. Six (6) licensed locksmiths and 6 case-matched controls successfully completed the pilot study to assess the prevalence of increased body lead burden of professional locksmiths. We measured both Blood Lead (atomic absorption spectrometry), bone-lead (KXRF) and had each subject complete a health and lead exposure risk questionnaire. One locksmith had not cut keys during the past two years, therefore this subject and case-matched control was excluded from the blood lead analysis only. The average blood-lead concentration (±SEM) for the 5 paired subjects was 3.1 (± 0.4) μg/dL and 2.2 (± 0.3) μg /dL for controls. Bone measurements, including all 6 paired subjects, showed tibia lead concentration (±SEM) for locksmiths and controls was 27.8 (± 2.3) μg /g and 13.7 (± 3.3) μg /g, respectively; average calcaneus lead concentration for locksmiths and controls was 31.9 (± 3.7) μg /g and 22.6 (± 4.1) μg /g, respectively: The t-test shows a significantly higher tibia lead (p<0.05) and blood lead (p<0.05) for locksmiths than for their matched controls, but no significant difference for calcaneus lead (p>0.10). Given that the mean tibia bone lead concentration was 13.1μg/g higher in locksmiths than in their matched controls, this average difference in the two groups would translate to an OR of increased hypertension in locksmiths of between 1.1 and 2.3, based on the published literature. Even with the very small number of subjects participating in this pilot study, we were able to demonstrate that locksmiths had significantly higher current exposure to lead (blood lead concentration) and significantly higher past exposure to lead (tibia lead concentration) than their age, sex and ethnically matched controls. Additional research is needed to fully identify the prevalence and associated risk factors for occupational exposure of lead in this previously understudied profession. PMID:16705814

  3. The self-association of acebutolol: Conductometry and light scattering

    NASA Astrophysics Data System (ADS)

    Ruso, Juan M.; López-Fontán, José L.; Prieto, Gerardo; Sarmiento, Félix

    2003-04-01

    The association characteristics of an amphiphilic beta-blocker drug, acebutolol hydrochloride, in aqueous solution containing high concentrations of electrolyte and at different temperatures have been examined by static and dynamic light scattering and electrical conductivity. Time averaged light scattering measurements on aqueous solutions of acebutolol at 298.15 K in the presence of added electrolyte (0.4-1.0 mol kg-1 NaCl) have shown discontinuities which reflect the appearance of aggregates. The critical micelle concentration, aggregation numbers, effective micelle charges, and degree of micellar ionization were calculated. Dynamic light scattering has shown an increase in micellar size with increase in concentration of added electrolyte. Data have been interpreted using the DLVO theory to quantify the interaction between the drug aggregates and the colloidal stability. Critical micelle concentrations in water have been calculated from conductivity measurements over the temperature range 288.15-313.15 K. The variation in critical concentration with temperature passes through a minimum close to 294 K. Thermodynamic parameters of aggregate formation (ΔGm0,ΔHm0,ΔSm0) were obtained from a variation of the mass action model applicable to systems of low aggregation number.

  4. Single-drop reactive extraction/extractive reaction with forced convective diffusion and interphase mass transfer

    NASA Technical Reports Server (NTRS)

    Kleinman, Leonid S.; Red, X. B., Jr.

    1995-01-01

    An algorithm has been developed for time-dependent forced convective diffusion-reaction having convection by a recirculating flow field within the drop that is hydrodynamically coupled at the interface with a convective external flow field that at infinity becomes a uniform free-streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet, or reactions can take place in both phases. The algorithm has been implemented, and for comparison results are shown here for the case of no reaction in either phase and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.

  5. Single-drop reactive extraction/extractive reaction with forced convective diffusion and interphase mass transfer

    NASA Technical Reports Server (NTRS)

    Kleinman, Leonid S.; Reed, X. B., Jr.

    1995-01-01

    An algorithm has been developed for the forced convective diffusion-reaction problem for convection inside and outside a droplet by a recirculating flow field hydrodynamically coupled at the droplet interface with an external flow field that at infinity becomes a uniform streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet or reactions can take place in both phases. The algorithm has been implemented and results are shown here for the case of no reaction and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.

  6. Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO 2

    DOE PAGES

    Ho, Tuan Anh; Ilgen, Anastasia

    2017-10-26

    Using molecular dynamics simulation, we studied the density fluctuations and cavity formation probabilities in aqueous solutions and their effect on the hydration of CO 2. With increasing salt concentration, we report an increased probability of observing a larger than the average number of species in the probe volume. Our energetic analyses indicate that the van der Waals and electrostatic interactions between CO 2 and aqueous solutions become more favorable with increasing salt concentration, favoring the solubility of CO 2 (salting in). However, due to the decreasing number of cavities forming when salt concentration is increased, the solubility of CO 2more » decreases. The formation of cavities was found to be the primary control on the dissolution of gas, and is responsible for the observed CO 2 salting-out effect. Finally, our results provide the fundamental understanding of the density fluctuation in aqueous solutions and the molecular origin of the salting-out effect for real gas.« less

  7. Nanoparticle Tracking Analysis for Determination of Hydrodynamic Diameter, Concentration, and Zeta-Potential of Polyplex Nanoparticles.

    PubMed

    Wilson, David R; Green, Jordan J

    2017-01-01

    Nanoparticle tracking analysis (NTA) is a recently developed nanoparticle characterization technique that offers certain advantages over dynamic light scattering for characterizing polyplex nanoparticles in particular. Dynamic light scattering results in intensity-weighted average measurements of nanoparticle characteristics. In contrast, NTA directly tracks individual particles, enabling concentration measurements as well as the direct determination of number-weighted particle size and zeta-potential. A direct number-weighted assessment of nanoparticle characteristics is particularly useful for polydisperse samples of particles, including many varieties of gene delivery particles that can be prone to aggregation. Here, we describe the synthesis of poly(beta-amino ester)/deoxyribonucleic acid (PBAE/DNA) polyplex nanoparticles and their characterization using NTA to determine hydrodynamic diameter, zeta-potential, and concentration. Additionally, we detail methods of labeling nucleic acids with fluorophores to assess only those polyplex nanoparticles containing plasmids via NTA. Polymeric gene delivery of exogenous plasmid DNA has great potential for treating a wide variety of diseases by inducing cells to express a gene of interest.

  8. Density Fluctuation in Aqueous Solutions and Molecular Origin of Salting-Out Effect for CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Tuan Anh; Ilgen, Anastasia

    Using molecular dynamics simulation, we studied the density fluctuations and cavity formation probabilities in aqueous solutions and their effect on the hydration of CO 2. With increasing salt concentration, we report an increased probability of observing a larger than the average number of species in the probe volume. Our energetic analyses indicate that the van der Waals and electrostatic interactions between CO 2 and aqueous solutions become more favorable with increasing salt concentration, favoring the solubility of CO 2 (salting in). However, due to the decreasing number of cavities forming when salt concentration is increased, the solubility of CO 2more » decreases. The formation of cavities was found to be the primary control on the dissolution of gas, and is responsible for the observed CO 2 salting-out effect. Finally, our results provide the fundamental understanding of the density fluctuation in aqueous solutions and the molecular origin of the salting-out effect for real gas.« less

  9. Dynamical pattern formation in a low-concentration magnetorheological fluid under two orthogonal sinusoidal fields

    NASA Astrophysics Data System (ADS)

    Yépez, L. D.; Carrillo, J. L.; Donado, F.; Sausedo-Solorio, J. M.; Miranda-Romagnoli, P.

    2016-06-01

    The dynamical pattern formation of clusters of magnetic particles in a low-concentration magnetorheological fluid, under the influence of a superposition of two perpendicular sinusoidal fields, is studied experimentally. By varying the frequency and phase shift of the perpendicular fields, this configuration enables us to experimentally analyze a wide range of field configurations, including the case of a pure rotating field and the case of an oscillating unidirectional field. The fields are applied parallel to the horizontal plane where the fluid lies or in the vertical plane. For fields applied in the horizontal plane, we observed that, when the ratio of the frequencies increases, the average cluster size exhibits a kind of periodic resonances. When the phase shift between the fields is varied, the average chain length reaches maximal values for the cases of the rotating field and the unidirectional case. We analyze and discuss these results in terms of a weighted average of the time-dependent Mason number. In the case of a rotating field on the vertical plane, we also observe that the competition between the magnetic and the viscous forces determines the average cluster size. We show that this configuration generates a series of physically meaningful self-organization of clusters and transport phenomena.

  10. 40 CFR 63.7732 - What test methods and other procedures must I use to demonstrate initial compliance with the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hexane); n = Number of exhaust streams sampled; and Qi = Volumetric flow rate of effluent gas from... organic compounds (TOC), using hexane as the calibration gas. (2) Determine the average VOHAP, TGNMO, or... the concentration of TGNMO or TOC in ppmv as hexane as measured by Method 25 or 25A in 40 CFR part 60...

  11. 40 CFR 63.7732 - What test methods and other procedures must I use to demonstrate initial compliance with the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hexane); n = Number of exhaust streams sampled; and Qi = Volumetric flow rate of effluent gas from... organic compounds (TOC), using hexane as the calibration gas. (2) Determine the average VOHAP, TGNMO, or... the concentration of TGNMO or TOC in ppmv as hexane as measured by Method 25 or 25A in 40 CFR part 60...

  12. 40 CFR 63.7732 - What test methods and other procedures must I use to demonstrate initial compliance with the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hexane); n = Number of exhaust streams sampled; and Qi = Volumetric flow rate of effluent gas from... organic compounds (TOC), using hexane as the calibration gas. (2) Determine the average VOHAP, TGNMO, or... the concentration of TGNMO or TOC in ppmv as hexane as measured by Method 25 or 25A in 40 CFR part 60...

  13. 40 CFR 63.7732 - What test methods and other procedures must I use to demonstrate initial compliance with the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hexane); n = Number of exhaust streams sampled; and Qi = Volumetric flow rate of effluent gas from... organic compounds (TOC), using hexane as the calibration gas. (2) Determine the average VOHAP, TGNMO, or... the concentration of TGNMO or TOC in ppmv as hexane as measured by Method 25 or 25A in 40 CFR part 60...

  14. Support, shape and number of replicate samples for tree foliage analysis.

    PubMed

    Luyssaert, Sebastiaan; Mertens, Jan; Raitio, Hannu

    2003-06-01

    Many fundamental features of a sampling program are determined by the heterogeneity of the object under study and the settings for the error (alpha), the power (beta), the effect size (ES), the number of replicate samples, and sample support, which is a feature that is often overlooked. The number of replicates, alpha, beta, ES, and sample support are interconnected. The effect of the sample support and its shape on the required number of replicate samples was investigated by means of a resampling method. The method was applied to a simulated distribution of Cd in the crown of a Salix fragilis L. tree. Increasing the dimensions of the sample support results in a decrease in the variance of the element concentration under study. Analysis of the variance is often the foundation of statistical tests, therefore, valid statistical testing requires the use of a fixed sample support during the experiment. This requirement might be difficult to meet in time-series analyses and long-term monitoring programs. Sample supports have their largest dimension in the direction with the largest heterogeneity, i.e. the direction representing the crown height, and this will give more accurate results than supports with other shapes. Taking the relationships between the sample support and the variance of the element concentrations in tree crowns into account provides guidelines for sampling efficiency in terms of precision and costs. In terms of time, the optimal support to test whether the average Cd concentration of the crown exceeds a threshold value is 0.405 m3 (alpha = 0.05, beta = 0.20, ES = 1.0 mg kg(-1) dry mass). The average weight of this support is 23 g dry mass, and 11 replicate samples need to be taken. It should be noted that in this case the optimal support applies to Cd under conditions similar to those of the simulation, but not necessarily all the examinations for this tree species, element, and hypothesis test.

  15. Determinants of aerosol lung-deposited surface area variation in an urban environment.

    PubMed

    Reche, Cristina; Viana, Mar; Brines, Mariola; Pérez, Noemí; Beddows, David; Alastuey, Andrés; Querol, Xavier

    2015-06-01

    Ultrafine particles are characterized by a high surface area per mass. Particle surface has been reported to play a significant role in determining the toxicological activity of ultrafine particles. In light of this potential role, the time variation of lung deposited surface area (LDSA) concentrations in the alveolar region was studied at the urban background environment of Barcelona (Spain), aiming to asses which processes and sources govern this parameter. Simultaneous data on Black Carbon (BC), total particle number (N) and particle number size distribution were correlated with LDSA. Average LDSA concentrations in Barcelona were 37 ± 26 μm(2)cm(-3), levels which seem to be characteristic for urban environments under traffic influence across Europe. Results confirm the comparability between LDSA data provided by the online monitor and those calculated based on particle size distributions (by SMPS), and reveal that LDSA concentrations are mainly influenced by particles in the size range 50-200 nm. A set of representative daily cycles for LDSA concentrations was obtained by means of a k-means cluster technique. The contribution of traffic emissions to daily patterns was evidenced in all the clusters, but was quantitatively different. Traffic events under stable atmospheric conditions increased mean hourly background LDSA concentrations up to 6 times, attaining levels higher than 200 μm(2)cm(-3). However, under warm and relatively clean atmospheric conditions, the traffic rush hour contribution to the daily LDSA mean appeared to be lower and the contribution of new urban particle formation events (by photochemically induced nucleation) was detected. These nucleation events were calculated to increase average background LDSA concentrations by 15-35% (maximum LDSA levels=45-50 μm(2)cm(-3)). Thereby, it may be concluded that in the urban background of Barcelona road traffic is the main source increasing the aerosol surface area which can deposit on critical regions of the human lung, followed by nucleation episodes. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Hydrocarbon reservoirs of Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, P.K.

    1988-01-01

    The statistical distribution of over 12,000 producible hydrocarbon reservoirs from various biostratigraphic intervals of the Gulf of Mexico is presented. The average number, thickness, volume, subsurface depth, and ecozone of depositional environments of the reservoirs are grouped according to biostratigraphic intervals, trends, and geographic areas. The upper Pliocene and Pleistocene reservoirs account for more than 77% of the total number. Within the Miocene trend, Bigenerina H in the western Gulf of Bigenerina A and Bigenerina 2 in the central Gulf show significant concentration of reservoirs. The average depth of production for all trends gets deeper, both from west and east,more » toward Ship Shoal-South Timbalier areas. The average thickness varies slightly between trends; however, variation between areas is more significant. A significant majority of the reservoirs of all trends in the entire Gulf is reported from the outer shelf-upper slope ecozones (E3 and E4). According to volume, the E3-E5 reservoirs can be classified into three groups; larger than 10,000 acre-ft/reservoir, 5,000 to 10,000 acre-ft/reservoir, and smaller than 5,000 acre-ft/reservoir.« less

  17. Study of percolation behavior depending on molecular structure design

    NASA Astrophysics Data System (ADS)

    Yu, Ji Woong; Lee, Won Bo

    Each differently designed anisotropic nano-crystals(ANCs) are studied using Langevin dynamic simulation and their percolation behaviors are presented. Popular molecular dynamics software LAMMPS was used to design the system and perform the simulation. We calculated the minimum number density at which percolation occurs(i.e. percolation threshold), radial distribution function, and the average number of ANCs for a cluster. Electrical conductivity is improved when the number of transfers of electrons between ANCs, so called ''inter-hopping process'', which has the considerable contribution to resistance decreases and the number of inter-hopping process is directly related with the concentration of ANCs. Therefore, with the investigation of relationship between molecular architecture and percolation behavior, optimal design of ANC can be achieved.

  18. Scale inhibition in geothermal operations: experiments with Dequest 2060 phosphonate in Republic's East Mesa Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vetter, O.J.; Campbell, D.A.

    Two calcium carbonate (CaCO/sub 3/) scale inhibition tests have been performed at East Mesa wells number 16-29 and number 56-30. The first test at well number 16-29 could not be finished due to downhole pump problems. However, two inhibitor concentration runs were completed and a third run started before the pump failed. A follow-up test at well number 56-30 was completed according to the original plan. Typical power plant conditions (i.e., pressure and temperature drops, flow conditions) were simulated by using test loops (pipe diameters of eight inches at well number 16-29 and twelve inches at well number 56-30) andmore » field separators. Untreated East Mesa brine exhibits a calcium carbonate scale tendency as soon as the pressure is dropped below 75 psig. The uninhibited brine from well number 16-29 formed a maximum scale thickness of 0.5 inch in an eight inch ID pipe after a 92.75 hour test run at an average production rate of 375,000 lb/hr. The brine from well number 56-30 formed a maximum scale thickness of 1.25 inches in a twelve inch ID pipe after a 104 hour test run at an average production rate of 722,000 lb/hr. The principal conclusions of this test work are listed.« less

  19. Distribution of randomly diffusing particles in inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A.

    2017-09-01

    Diffusion can be conceptualized, at microscopic scales, as the random hopping of particles between neighboring lattice sites. In the case of diffusion in inhomogeneous media, distinct spatial domains in the system may yield distinct particle hopping rates. Starting from the master equations (MEs) governing diffusion in inhomogeneous media we derive here, for arbitrary spatial dimensions, the deterministic lattice equations (DLEs) specifying the average particle number at each lattice site for randomly diffusing particles in inhomogeneous media. We consider the case of free (Fickian) diffusion with no steric constraints on the maximum particle number per lattice site as well as the case of diffusion under steric constraints imposing a maximum particle concentration. We find, for both transient and asymptotic regimes, excellent agreement between the DLEs and kinetic Monte Carlo simulations of the MEs. The DLEs provide a computationally efficient method for predicting the (average) distribution of randomly diffusing particles in inhomogeneous media, with the number of DLEs associated with a given system being independent of the number of particles in the system. From the DLEs we obtain general analytic expressions for the steady-state particle distributions for free diffusion and, in special cases, diffusion under steric constraints in inhomogeneous media. We find that, in the steady state of the system, the average fraction of particles in a given domain is independent of most system properties, such as the arrangement and shape of domains, and only depends on the number of lattice sites in each domain, the particle hopping rates, the number of distinct particle species in the system, and the total number of particles of each particle species in the system. Our results provide general insights into the role of spatially inhomogeneous particle hopping rates in setting the particle distributions in inhomogeneous media.

  20. Influence of prefermentary clarification on the composition of apple musts.

    PubMed

    Hubert, Bertrand; Baron, Alain; Le Quere, Jean-Michel; Renard, Catherine M G C

    2007-06-27

    The polyphenol contents and colors of cider apple juices were compared before (NCM, not clarified must) and after five clarification treatments: enzymatic depectinization by pectinases followed by (i) sedimentation (depectinized and decanted juice), (ii) tangential microfiltration (microfiltered juice) or (iii) fining using gelatin (gelatin-treated juice); (iv) enzymatic gelification of pectin by pectin methylesterase followed by natural keeving by a cider manufacturer (producer keeved juice), or (v) flotation (floated with nitrogen gas juice). The pressing of the apples led to the highly selective extraction of the flavan-3-ols with the lowest molecular weights: In the apples, the number average degree of polymerization of the flavanols was 14.7, and it dropped to 2.2 in the NCM. Keeving had the highest impact on the reduction of both flavanol content and number average degree of polymerization. The flavanol concentrations were decreased in the permeate by fining (30%) much more than by depectinization. The clarification step led to a further decrease of the number average degree of polymerization. Hydroxycinnamic acids were less affected by the extraction process (with extraction yields >50%) and not affected by clarification. The color evolved with all treatments: L*, a*, b*, and chromaticity distance index measures indicated a reduction of orange-yellow saturation except after sedimentation.

  1. Nature of alpha and beta particles in glycogen using molecular size distributions.

    PubMed

    Sullivan, Mitchell A; Vilaplana, Francisco; Cave, Richard A; Stapleton, David; Gray-Weale, Angus A; Gilbert, Robert G

    2010-04-12

    Glycogen is a randomly hyperbranched glucose polymer. Complex branched polymers have two structural levels: individual branches and the way these branches are linked. Liver glycogen has a third level: supramolecular clusters of beta particles which form larger clusters of alpha particles. Size distributions of native glycogen were characterized using size exclusion chromatography (SEC) to find the number and weight distributions and the size dependences of the number- and weight-average masses. These were fitted to two distinct randomly joined reference structures, constructed by random attachment of individual branches and as random aggregates of beta particles. The z-average size of the alpha particles in dimethylsulfoxide does not change significantly with high concentrations of LiBr, a solvent system that would disrupt hydrogen bonding. These data reveal that the beta particles are covalently bonded to form alpha particles through a hitherto unsuspected enzyme process, operative in the liver on particles above a certain size range.

  2. Exposure of Children to Ultrafine Particles in Primary Schools in Portugal.

    PubMed

    Rufo, João Cavaleiro; Madureira, Joana; Paciência, Inês; Slezakova, Klara; Pereira, Maria do Carmo; Pereira, Cristiana; Teixeira, João Paulo; Pinto, Mariana; Moreira, André; Fernandes, Eduardo de Oliveira

    2015-01-01

    Children spend a large part of their time at schools, which might be reflected as chronic exposure. Ultrafine particles (UFP) are generally associated with a more severe toxicity compared to fine and coarse particles, due to their ability to penetrate cell membranes. In addition, children tend to be more susceptible to UFP-mediated toxicity compared to adults, due to various factors including undeveloped immune and respiratory systems and inhalation rates. Thus, the purpose of this study was to determine indoor UFP number concentrations in Portuguese primary schools. Ultrafine particles were sampled between January and March 2014 in 10 public primary schools (35 classrooms) located in Porto, Portugal. Overall, the average indoor UFP number concentrations were not significantly different from outdoor concentrations (8.69 × 10(3) vs. 9.25 × 10(3) pt/cm(3), respectively; considering 6.5 h of indoor occupancy). Classrooms with distinct characteristics showed different trends of indoor UFP concentrations. The levels of carbon dioxide were negatively correlated with indoor UFP concentrations. Occupational density was significantly and positively correlated with UFP concentrations. Although the obtained results need to be interpreted with caution since there are no guidelines for UFP levels, special attention needs to be given to source control strategies in order to reduce major particle emissions and ensure good indoor air quality.

  3. Temporal Variation of Ambient PM10 Concentration within an Urban-Industrial Environment

    NASA Astrophysics Data System (ADS)

    Wong, Yoon-Keaw; Noor, Norazian Mohamed; Izzah Mohamad Hashim, Nur

    2018-03-01

    PM10 concentration in the ambient air has been reported to be the main pollutant affecting human health, particularly in the urban areas. This research is conducted to study the variation of PM10 concentration at the three urban-industrial areas in Malaysia, namely Shah Alam, Kuala Terengganu and Melaka. In addition, the association and correlation between PM10 concentration and other air pollutants will be distinguished. Five years interval dataset (2008-2012) consisting of PM10, SOX, NOX and O3 concentrations and other weather parameters such as wind speed, humidity and temperature were obtained from Department of Environment, Malaysia. Shah Alam shows the highest average of PM10 concentration with the value of 62.76 μg/m3 in June, whereas for Kuala Terengganu was 59.29 μg/m3 in February and 46.61 μg/m3 in August for Melaka. Two peaks were observed from the time series plot using the averaged monthly PM10 concentration. First peak occurs when PM10 concentration rises from January to February and the second peak is reached in June and remain high for the next two consecutive months for Shah Alam and Kuala Terengganu. Meanwhile the second peak for Melaka is only achieved in August as a result of the transboundary of smoke from forest fires in the Sumatra region during dry season from May to September. Both of the pollutants can be sourced from rapid industrial activities at Shah Alam. PM10 concentration is strongly correlated with carbon monoxide concentration in Kuala Terengganu and Melaka with value of r2 = 0.1725 and 0.2744 respectively. High carbon monoxide and PM10 concentration are associated with burning of fossil fuel from increased number of vehicles at these areas.

  4. Observation of elevated air pollutant concentrations in a residential neighborhood of Los Angeles California using a mobile platform

    NASA Astrophysics Data System (ADS)

    Hu, Shishan; Paulson, Suzanne E.; Fruin, Scott; Kozawa, Kathleen; Mara, Steve; Winer, Arthur M.

    2012-05-01

    We observed elevated air pollutant concentrations, especially of ultrafine particles (UFP), black carbon (BC) and NO, across the residential neighborhood of the Boyle Heights Community (BH) of Los Angeles, California. Using an electric vehicle mobile platform equipped with fast response instruments, real-time air pollutant concentrations were measured in BH in spring and summer of 2008. Pollutant concentrations varied significantly in the two seasons, on different days, and by time of day, with an overall average UFP concentration in the residential areas of ∼33 000 cm-3. The averaged UFP, BC, and NO concentrations measured on Soto St, a major surface street in BH, were 57 000 cm-3, 5.1 μg m-3, and 67 ppb, respectively. Concentrations of UFP across the residential areas in BH were nearly uniform spatially, in contrast to other areas in the greater metropolitan area of Los Angeles where UFP concentrations exhibit strong gradients downwind of roadways. We attribute this “UFP cloud” to high traffic volumes, including heavy duty diesel trucks on the freeways which surround and traverse BH, and substantial numbers of high-emitting vehicles (HEVs) on the surface streets traversing BH. Additionally, the high density of stop signs and lights and short block lengths, requiring frequent accelerations of vehicles, may contribute. The data also support a role for photochemical production of UFP in the afternoon. UFP concentration peaks (5 s average) of up to 9 million particles cm-3 were also observed immediately behind HEVs when they accelerated from stop lights in the BH neighborhood and areas immediately adjacent. Although encounters with HEV during mornings accounted for only about 6% and 17% of time spent monitoring residential areas and major surface streets, HEV contributed to about 28% and 53% of total ultrafine particles measured on the route, respectively. The observation of elevated pollutant concentrations across the Boyle Heights community highlights how multiple factors combine to create high pollutant levels, and has important human exposure assessment implications, including the potential utility of our data as inputs to epidemiological studies.

  5. Global Studies of the Sulfur Cycle Including the Influence of DMS and Fossil Fuel Sulfur on Climate and Climate Change

    NASA Technical Reports Server (NTRS)

    Penner, Joyce E.

    1998-01-01

    The indirect effect of anthropogenic aerosols, wherein aerosol particles are thought to increase cloud droplet concentrations and cloud lifetime, is the most uncertain component of climate forcing over the past 100 years. Here, for the first time, we use a mechanistic treatment of droplet nucleation and a prognostic treatment of the number of cloud droplets to study the indirect aerosol effect from changes in carbonaceous and sulfate aerosols. Cloud droplet nucleation is parameterized as a function of total aerosol number concentration, updraft velocity and a shape parameter, which takes into account the mechanism, of sulfate aerosol formation, while cloud droplet number depends on the nucleation as well as on droplet sinks. Whereas previous treatments have predicted annual average indirect effects between -1 and -2 W/sq m, we obtain an indirect aerosol effect between -0.14 W/sq m and -0.42 W/sq m in the global mean.

  6. Coatings of black carbon in Tijuana, Mexico, during the CalMex Campaign

    NASA Astrophysics Data System (ADS)

    Takahama, S.; Russell, L. M.; Duran, R.; Subramanian, R.; Kok, G.

    2010-12-01

    Black carbon number and mass concentrations were measured by a single-particle soot photometer (SP2; by Droplet Measurement Technologies) in Tijuana, Mexico between May 15, 2010, and June 30, 2010, for the CalMex campaign. The measurement site, Parque Morelos, is a recreational area located in the Southeast region of Tijuana. The SP2 was equipped with 8-channels of signal detection that spans a wider range of sensitivity for incandescing and scattering measurements than traditional configurations. The campaign-average number concentration of incandescing particles was 280 #/cc, peaking during traffic activity in the mornings. Incandescing particles made up 50% of all particles (incandescing and purely scattering) detected by the SP2. The mode of the number size distribution estimated for black carbon, according to estimated mass-equivalent diameters, was approximately 100 nm or smaller. Temporal variations in estimated coating thicknesses for these black carbon particles are discussed together with co-located measurements of organic aerosol and inorganic salts.

  7. [Pollutions of indoor fine particles in four types of public places and the influencing factors].

    PubMed

    Liu, Bo; Deng, Fu-rong; Guo, Xin-biao; Yang, Dong-mei; Teng, Xiu-quan; Zheng, Xu; Gao, Jing; Dong, Jing; Wu, Shao-wei

    2009-08-01

    To study the levels of pollutions caused by fine particulate matter (PM(2.5)) in the public places and investigate the possible influencing factors. A total of 20 public places in four types such as rest room in bath center, restaurant, karaoke bars and cyber cafe in Tongzhou district in Beijing were chosen in this study; indoor and outdoor PM(2.5) was monitored by TSI sidepak AM510. Data under varying conditions were collected and analyzed, such as doors or windows or mechanical ventilation devices being opened, rooms cramped with people and smoking. The average concentration of indoor PM(2.5) in 20 public places was (334.6 +/- 386.3) microg/m(3), ranging from 6 microg/m(3) to 1956 microg/m(3); while in bath center, restaurant, karaoke bars and cyber cafe were (116.9 +/- 100.1)microg/m(3), (317.9 +/- 235.3) microg/m(3), (750.6 +/- 521.6)microg/m(3) and (157.5 +/- 98.5) microg/m(3) respectively. The concentrations of PM(2.5) in restaurant (compared with bath center: Z = -10.785, P < 0.01; compared with karaoke bars: Z = -10.488, P < 0.01; compared with cyber cafe: Z = -7.547, P < 0.01) and karaoke bars (compared with bath center: Z = -16.670, P < 0.01; compared with cyber cafe: Z = -15.682, P < 0.01) were much higher than those in other two places. Single-factor analysis revealed that the average concentration of indoor PM(2.5) in 20 public places was associated with the number of smokers per cube meters(9.13 x 10(-3); r = 0.772, F = 26.579, P < 0.01) and ventilation score [(2.5 +/- 1.5) points; r = 0.667, F = 14.442, P < 0.01], and there were significant correlation between the average indoor and outdoor levels in restaurant [(317.9 +/- 235.3) microg/m(3), (67.8 +/- 78.9) microg/m(3); r = 0.918, F = 16.013, P = 0.028] and cyber cafe [(157.5 +/- 98.5) microg/m(3), (67.7 +/- 43.7) microg/m(3); r = 0.955, F = 30.785, P = 0.012]. Furthermore, significant correlation was observed between the average concentration of indoor PM(2.5) [(157.5 +/- 98.5) microg/m(3)]and the number of people per cube meters (288.7 x 10(-3)) in cyber cafe (r = 0.891, F = 11.615, P = 0.042). Multiple regression analysis showed that smoking (b' = 0.581, t = 3.542, P = 0.003) and ventilation (b' = -0.348, t = -2.122, P = 0.049) were the major factors that may influence the concentration of indoor PM(2.5) in four public places. With cluster analysis, the results showed that the major factors that influence the concentration of indoor PM(2.5) was the outdoor PM(2.5) levels [(49.6 +/- 39.5) microg/m(3); b = 1.556, t = 3.760, P = 0.007] when ventilation (score > 2) was relatively good. The number of smokers per cube meters (14.7 x 10(-3)) became the major influence factor when the ventilation score

  8. [Time-series analysis of ambient PM₁₀ pollution on residential mortality in Beijing].

    PubMed

    Xue, Jiang-li; Wang, Qi; Cai, Yue; Zhou, Mai-geng

    2012-05-01

    To explore the short-term impact of ambient PM(10) on daily non-accidental death, cardiovascular and respiratory death of residents in Beijing. Mortality data of residents in Beijing during 2006 to 2009 were obtained from public health surveillance and information service center of Chinese Center for Disease Control and Prevention, contemporaneous data of average daily air concentration of PM(10), SO(2), NO(2) were obtained from Beijing Environment Protection Bureau (year 2005 - 2006) and public website of Beijing environmental protection (year 2007 - 2009), respectively, contemporaneous meteorological data were obtained from china meteorological data sharing service system. Generalized addictive model (GAM) of time serial analysis was applied. In additional to the control of confounding factors such as long-term trend, day of the week effect, meteorological factors, lag effect and the effects of other atmospheric pollutants were also analyzed. During year 2006 to 2009, the number of average daily non-accidental death, respiratory disease caused death, cardiovascular and cerebrovascular diseases caused death among Beijing residents were 140.1, 15.0, 65.8, respectively;contemporaneous medians of average daily air concentration of PM(10), SO(2), NO(2) were 123.0, 26.0, 58.0 µg/m(3), respectively;contemporaneous average atmosphere pressure, temperature and relative humidity were 10.1 kPa, 13.5°C and 51.9%, respectively. An exposure-response relationship between exposure to ambient PM(10) and increased daily death number was found as every 10 µg/m(3) increase in daily average concentration of PM(10), there was a 0.1267% (95%CI: 0.0824% - 0.1710%) increase in daily non-accidental death of residents, 0.1365% (95%CI: 0.0010% - 0.2720%) increase in respiratory death and 0.1239% (95%CI: 0.0589% - 0.1889%) increase in cardiovascular death. Ambient PM(10) had greatest influence on daily non-accidental and cardiovascular death of the same day, while its greatest influence on respiratory death occurred 5 days later. The ambient PM(10) pollution increased daily non-accidental, respiratory disease caused, cardiovascular and cerebrovascular diseases caused deaths among residents in Beijing, and lag effect existed as for the effect of ambient PM(10) pollution on respiratory disease caused death.

  9. Ultrafine particle concentrations and exposures in seven residences in northern California.

    PubMed

    Bhangar, S; Mullen, N A; Hering, S V; Kreisberg, N M; Nazaroff, W W

    2011-04-01

    Human exposures to ultrafine particles (UFP) are poorly characterized given the potential associated health risks. Residences are important sites of exposure. To characterize residential exposures to UFP in some circumstances and to investigate governing factors, seven single-family houses in California were studied during 2007-2009. During multiday periods, time-resolved particle number concentrations were monitored indoors and outdoors and information was acquired concerning occupancy, source-related activities, and building operation. On average, occupants were home for 70% of their time. The geometric mean time-average residential exposure concentration for 21 study subjects was 14,500 particles per cm(3) (GSD = 1.8; arithmetic mean ± standard deviation = 17,000 ± 10,300 particles per cm(3)). The average contribution to residential exposures from indoor episodic sources was 150% of the contribution from particles of outdoor origin. Unvented natural-gas pilot lights contributed up to 19% to exposure for the two households where present. Episodic indoor source activities, most notably cooking, caused the highest peak exposures and most of the variation in exposure among houses. Owing to the importance of indoor sources and variations in the infiltration factor, residential exposure to UFP cannot be characterized by ambient measurements alone. Indoor and outdoor sources each contribute to residential ultrafine particle (UFP) concentrations and exposures. Under the conditions investigated, peak exposure concentrations indoors were associated with cooking, using candles, or the use of a furnace. Active particle removal systems can mitigate exposure by reducing the persistence of particles indoors. Eliminating the use of unvented gas pilot lights on cooking appliances could also be beneficial. The study results indicate that characterization of human exposure to UFP, an air pollutant of emerging public health concern, cannot be accomplished without a good understanding of conditions inside residences. © 2010 John Wiley & Sons A/S.

  10. Total and methyl mercury contents and distribution characteristics in cicada, Cryptotympana atrata (Fabricius).

    PubMed

    Zheng, Dongmei; Zhang, Zhongsheng; Wang, Qichao

    2010-06-01

    Total and methyl mercury concentrations of cicada bodies, wings, and exuviae were investigated to study the mercury distribution characteristics. Results indicated that total and methyl mercury concentrations of cicada bodies were 2.64 mg/kg and 123.93 ng/g on average, respectively. In cicada tissues, total mercury concentrations were found to increase in the order of exuviae (0.50 mg/kg on average) < wings (0.98 mg/kg on average) < cicada bodies (2.64 mg/kg on average) and methyl mercury concentrations of cicada bodies were 123.93 ng/g on average and were the highest. Methyl mercury concentrations accounted for about 4.69% of total mercury in cicada bodies and most mercury was in inorganic forms in cicada. Sex differences of total mercury concentrations were significantly great (F = 8.433, p < 0.01) and total mercury concentrations of the males, which were 3.38 mg/kg on average, were much higher. Correlation analysis showed that neither total nor methyl mercury concentrations of cicada bodies was significantly related to the corresponding contents of soil (r = 0.0598, p > 0.05).

  11. Mapping Air Quality Index of Carbon Monoxide (CO) in Medan City

    NASA Astrophysics Data System (ADS)

    Suryati, I.; Khair, H.

    2017-03-01

    This study aims to map and analyze air quality index of carbon monoxide (CO) in Medan City. This research used 12 (twelve) sampling points around in Medan with an hour duration each point. CO concentration was analyzed using the NDIR CO Analyzer sampling tool. The concentration CO was obtained between 1 ppm - 23 ppm, with an average concentration was 9.5 ppm. This condition is still below the national ambient air quality standard set by Government Regulation of Indonesian Republic Number 41-1999 amounted to 29 ppm. The result of CO concentration measurements was converted into air pollutant standard index, obtained the index value of 58 - 204. Surfer 10 was used to create map of air pollutant standard index for CO. The map illustrates very unhealthy area where located in the Medan Belawan district. The main factors affecting the concentration of CO are from transportation and meteorological factors.

  12. Real-world emission factors of fine and ultrafine aerosol particles for different traffic situations in Switzerland.

    PubMed

    Imhof, David; Weingartner, Ernest; Ordónez, Carlos; Gehrig, Robert; Hill, Matz; Buchmann, Brigitte; Baltensperger, Urs

    2005-11-01

    Extended field measurements of particle number (size distribution of particle diameters, D, in the range between 18 nm and 10 microm), surface area concentrations, and PM1 and PM10 mass concentrations were performed in Switzerland to determine traffic emissions using a comprehensive set of instruments. Measurements took place at roads with representative traffic regimes: at the kerbside of a motorway (120 km h(-1)), a highway (80-100 km h(-1)), and in an urban area with stop-and-go traffic (0-50 km h(-1)) regulated by light signals. Mean diurnal variations showed that the highest pollutant concentrations were during the morning rush hours, especially of the number density in the nanoparticle size range (D <50 nm). From the differences between up- and downwind concentrations (or differences between kerbside and background concentrations for the urban site), "real-life" emission factors were derived using NOx concentrations to calculate dilution factors. Particle number and volume emission factors of different size ranges (18-50 nm, 18-100 nm, and 18-300 nm) were derived for the total vehicle fleet and separated into a light-duty (LDV) and a heavy-duty vehicle (HDV) contribution. The total particle number emissions per vehicle were found to be about 11.7-13.5 x 10(14) particles km(-1) for constant speed (80-120 km h(-1) and 3.9 x 10(14) particles km(-1) for urban driving conditions. LDVs showed higher emission factors at constant high speed than under urban disturbed traffic flow. In contrast, HDVs emitted more air pollutants during deceleration and acceleration processes in stop-and-go traffic than with constant speed of about 80 km h(-1). On average, one HDV emits a 10-30 times higher amount of particulate air pollutants (in terms of both number and volume) than one LDV.

  13. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders.

    PubMed

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-03-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm(-3), with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  14. Biomass-burning impact on CCN number, hygroscopicity and cloud formation during summertime in the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Bougiatioti, Aikaterini; Bezantakos, Spiros; Stavroulas, Iasonas; Kalivitis, Nikos; Kokkalis, Panagiotis; Biskos, George; Mihalopoulos, Nikolaos; Papayannis, Alexandros; Nenes, Athanasios

    2016-06-01

    This study investigates the concentration, cloud condensation nuclei (CCN) activity and hygroscopic properties of particles influenced by biomass burning in the eastern Mediterranean and their impacts on cloud droplet formation. Air masses sampled were subject to a range of atmospheric processing (several hours up to 3 days). Values of the hygroscopicity parameter, κ, were derived from CCN measurements and a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA). An Aerosol Chemical Speciation Monitor (ACSM) was also used to determine the chemical composition and mass concentration of non-refractory components of the submicron aerosol fraction. During fire events, the increased organic content (and lower inorganic fraction) of the aerosol decreases the values of κ, for all particle sizes. Particle sizes smaller than 80 nm exhibited considerable chemical dispersion (where hygroscopicity varied up to 100 % for particles of same size); larger particles, however, exhibited considerably less dispersion owing to the effects of condensational growth and cloud processing. ACSM measurements indicate that the bulk composition reflects the hygroscopicity and chemical nature of the largest particles (having a diameter of ˜ 100 nm at dry conditions) sampled. Based on positive matrix factorization (PMF) analysis of the organic ACSM spectra, CCN concentrations follow a similar trend as the biomass-burning organic aerosol (BBOA) component, with the former being enhanced between 65 and 150 % (for supersaturations ranging between 0.2 and 0.7 %) with the arrival of the smoke plumes. Using multilinear regression of the PMF factors (BBOA, OOA-BB and OOA) and the observed hygroscopicity parameter, the inferred hygroscopicity of the oxygenated organic aerosol components is determined. We find that the transformation of freshly emitted biomass burning (BBOA) to more oxidized organic aerosol (OOA-BB) can result in a 2-fold increase of the inferred organic hygroscopicity; about 10 % of the total aerosol hygroscopicity is related to the two biomass-burning components (BBOA and OOA-BB), which in turn contribute almost 35 % to the fine-particle organic water of the aerosol. Observation-derived calculations of the cloud droplet concentrations that develop for typical boundary layer cloud conditions suggest that biomass burning increases droplet number, on average by 8.5 %. The strongly sublinear response of clouds to biomass-burning (BB) influences is a result of strong competition of CCN for water vapor, which results in very low maximum supersaturation (0.08 % on average). Attributing droplet number variations to the total aerosol number and the chemical composition variations shows that the importance of chemical composition increases with distance, contributing up to 25 % of the total droplet variability. Therefore, although BB may strongly elevate CCN numbers, the impact on droplet number is limited by water vapor availability and depends on the aerosol particle concentration levels associated with the background.

  15. Phosphorus fertilizer and grazing management effects on phosphorus in runoff from dairy pastures.

    PubMed

    Dougherty, Warwick J; Nicholls, Paul J; Milham, Paul J; Havilah, Euie J; Lawrie, Roy A

    2008-01-01

    Fertilizer phosphorus (P) and grazing-related factors can influence runoff P concentrations from grazed pastures. To investigate these effects, we monitored the concentrations of P in surface runoff from grazed dairy pasture plots (50 x 25 m) treated with four fertilizer P rates (0, 20, 40, and 80 kg ha(-1) yr(-1)) for 3.5 yr at Camden, New South Wales. Total P concentrations in runoff were high (0.86-11.13 mg L(-1)) even from the control plot (average 1.94 mg L(-1)). Phosphorus fertilizer significantly (P < 0.001) increased runoff P concentrations (average runoff P concentrations from the P(20), P(40), and P(80) treatments were 2.78, 3.32, and 5.57 mg L(-1), respectively). However, the magnitude of the effect of P fertilizer varied between runoff events (P < 0.01). Further analysis revealed the combined effects on runoff P concentration of P rate, P rate x number of applications (P < 0.001), P rate x time since fertilizer (P < 0.001), dung P (P < 0.001), time since grazing (P < 0.05), and pasture biomass (P < 0.001). A conceptual model of the sources of P in runoff comprising three components is proposed to explain the mobilization of P in runoff and to identify strategies to reduce runoff P concentrations. Our data suggest that the principal strategy for minimizing runoff P concentrations from grazed dairy pastures should be the maintenance of soil P at or near the agronomic optimum by the use of appropriate rates of P fertilizer.

  16. Concentrations of methoxyflurane and nitrous oxide in veterinary operating rooms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, G.S.; Byland, R.R.

    1982-02-01

    The surgical rooms of 14 private veterinary practices were monitored to determined methoxyflurane (MOF) concentrations during surgical procedure under routine working conditions. The average room volume for these 14 rooms was 29 m3. The average MOF value for all rooms was 2.3 ppm, with a range of 0.7 to 7.4 ppm. Four of the 14 rooms exceeded the maximum recommended concentration of 2 ppm. Six rooms which had 6 or more air changes/hr averaged 1.1 ppm, whereas 8 rooms with less than 6 measurable air changes/hr averaged 3.2 ppm. Operating rooms that had oxygen flows of more than 1,000 cm3/minmore » averaged 4.4 ppm, whereas those with flows of less than 1,000 cm3/min averaged 1.5 ppm. The average time spent during a surgical procedure using MOF, for all 14 facilities, was 2 hours. Nitrous oxide (N/sub 2/O) concentrations were determined in 4 veterinary surgical rooms. The average N/sub 2/O concentration for 3 rooms without waste anesthetic gas scavenging was 138 ppm. Concentration of N/sub 2/O in the waste anesthetic gas-scavenged surgical room was 14 ppm, which was below the maximum recommended concentration of 25 ppm.« less

  17. An initial investigation of multidimensional flow and transverse mixing characteristics of the Ohio River near Cincinnati, Ohio

    USGS Publications Warehouse

    Holtschlag, David J.

    2009-01-01

    Two-dimensional hydrodynamic and transport models were applied to a 34-mile reach of the Ohio River from Cincinnati, Ohio, upstream to Meldahl Dam near Neville, Ohio. The hydrodynamic model was based on the generalized finite-element hydrodynamic code RMA2 to simulate depth-averaged velocities and flow depths. The generalized water-quality transport code RMA4 was applied to simulate the transport of vertically mixed, water-soluble constituents that have a density similar to that of water. Boundary conditions for hydrodynamic simulations included water levels at the U.S. Geological Survey water-level gaging station near Cincinnati, Ohio, and flow estimates based on a gate rating at Meldahl Dam. Flows estimated on the basis of the gate rating were adjusted with limited flow-measurement data to more nearly reflect current conditions. An initial calibration of the hydrodynamic model was based on data from acoustic Doppler current profiler surveys and water-level information. These data provided flows, horizontal water velocities, water levels, and flow depths needed to estimate hydrodynamic parameters related to channel resistance to flow and eddy viscosity. Similarly, dye concentration measurements from two dye-injection sites on each side of the river were used to develop initial estimates of transport parameters describing mixing and dye-decay characteristics needed for the transport model. A nonlinear regression-based approach was used to estimate parameters in the hydrodynamic and transport models. Parameters describing channel resistance to flow (Manning’s “n”) were estimated in areas of deep and shallow flows as 0.0234, and 0.0275, respectively. The estimated RMA2 Peclet number, which is used to dynamically compute eddy-viscosity coefficients, was 38.3, which is in the range of 15 to 40 that is typically considered appropriate. Resulting hydrodynamic simulations explained 98.8 percent of the variability in depth-averaged flows, 90.0 percent of the variability in water levels, 93.5 percent of the variability in flow depths, and 92.5 percent of the variability in velocities. Estimates of the water-quality-transport-model parameters describing turbulent mixing characteristics converged to different values for the two dye-injection reaches. For the Big Indian Creek dye-injection study, an RMA4 Peclet number of 37.2 was estimated, which was within the recommended range of 15 to 40, and similar to the RMA2 Peclet number. The estimated dye-decay coefficient was 0.323. Simulated dye concentrations explained 90.2 percent of the variations in measured dye concentrations for the Big Indian Creek injection study. For the dye-injection reach starting downstream from Twelvemile Creek, however, an RMA4 Peclet number of 173 was estimated, which is far outside the recommended range. Simulated dye concentrations were similar to measured concentration distributions at the first four transects downstream from the dye-injection site that were considered vertically mixed. Farther downstream, however, simulated concentrations did not match the attenuation of maximum concentrations or cross-channel transport of dye that were measured. The difficulty of determining a consistent RMA4 Peclet was related to the two-dimension model assumption that velocity distributions are closely approximated by their depth-averaged values. Analysis of velocity data showed significant variations in velocity direction with depth in channel reaches with curvature. Channel irregularities (including curvatures, depth irregularities, and shoreline variations) apparently produce transverse currents that affect the distribution of constituents, but are not fully accounted for in a two-dimensional model. The two-dimensional flow model, using channel resistance to flow parameters of 0.0234 and 0.0275 for deep and shallow areas, respectively, and an RMA2 Peclet number of 38.3, and the RMA4 transport model with a Peclet number of 37.2, may have utility for emergency-planning purposes. Emergency-response efforts would be enhanced by continuous streamgaging records downstream from Meldahl Dam, real-time water-quality monitoring, and three-dimensional modeling. Decay coefficients are constituent specific.

  18. Assessment of indoor air quality at an electronic cigarette (Vaping) convention.

    PubMed

    Chen, Rui; Aherrera, Angela; Isichei, Chineye; Olmedo, Pablo; Jarmul, Stephanie; Cohen, Joanna E; Navas-Acien, Ana; Rule, Ana M

    2017-12-29

    E-cigarette (vaping) conventions are public events promoting electronic cigarettes, in which indoor use of e-cigarettes is allowed. The large concentration of people using e-cigarettes and poor air ventilation can result in indoor air pollution. In order to estimate this worst-case exposure to e-cigarettes, we evaluated indoor air quality in a vaping convention in Maryland (MD), USA. Real-time concentrations of particulate matter (PM 10 ) and real-time total volatile organic compounds (TVOCs), CO 2 and NO 2 concentrations were measured. Integrated samples of air nicotine and PM 10 concentrations were also collected. The number of attendees was estimated to range from 75 to 600 at any single observation time. The estimated 24-h time-weighted average (TWA) PM 10 was 1800 μg/m 3 , 12-fold higher than the EPA 24-h regulation (150 μg/m 3 ). Median (range) indoor TVOCs concentration was 0.13 (0.04-0.3) ppm. PM 10 and TVOC concentrations were highly correlated with CO 2 concentrations, indicating the high number of people using e-cigarettes and poor indoor air quality. Air nicotine concentration was 125 μg/m 3 , equivalent to concentrations measured in bars and nightclubs. E-cigarette aerosol in a vaping convention that congregates many e-cigarette users is a major source of PM 10 , air nicotine and VOCs, impairing indoor air quality. These findings also raise occupational concerns for e-cigarette vendors and other venue staff workers.

  19. Identification and level of organochlorine insecticide contamination in groundwater and iridology analysis for people in Upper Citarum cascade

    NASA Astrophysics Data System (ADS)

    Oginawati, K.; Pratama, M. A.

    2016-03-01

    Organochlorines are the main pollutants in the class of persistent organic pollutants which are types of pollutants that are being questioned worldwide due to chronic persistence, toxicity and bioaccumulation. Human around the Citarum River are still using groundwater as a drinking source. It is very risky for people health that consume groundwater because in 2009 the application of organochlorine still found in the Upper Citarum watershed rice field and had potential to contaminate groundwater. Groundwater was analyzed with nine species belonging to the organochlorine pollutants Organic Peristent types. 7 types of organochlorinesAldrin was detected with an average concentration of 0.09 ppb, dieldrin with an average concentration of 24 ppb, heptaklor with an average concentration of 0.51 ppb, with concentrations of endosulfan on average 0.73 ppb, DDT with average concentration of 0.13 ppb, Lindan with an average concentration of 1.2 ppb, endrin with an average concentration of 0.03 ppb. Types with the highest concentration of organochlorine a lindan and endosulfan. Residues of aldrin, dieldrin and heptaklor in groundwater already exceeds the quality standards for drinking water Permenkes 492/2010. Based on the iridology analysis obtained several systems are expected to nervous, immune and reproductive system disorders and toxin deposits under the skin.

  20. Comparative elemental analysis of fine particulate matter (PM2.5) from industrial and residential areas in Greater Cairo-Egypt by means of a multi-secondary target energy dispersive X-ray fluorescence spectrometer

    NASA Astrophysics Data System (ADS)

    Shaltout, Abdallah A.; Hassan, Salwa K.; Karydas, Andreas G.; Zaki, Z. I.; Mostafa, Nasser Y.; Kregsamer, Peter; Wobrauschek, Peter; Streli, Christina

    2018-07-01

    Fine aerosol particles with aerodynamic diameter equal or <2.5 μm (PM2.5) have been collected from industrial and residential areas of Greater Cairo, Egypt during two different seasons namely; autumn 2014 and winter 2014/2015. Energy dispersive X-ray fluorescence (EDXRF) analysis utilizing polarization geometry and three different secondary targets (CaF2, Ge, and Mo) was employed for the quantitative analysis of eighteen (18) elements in PM2.5 samples. Light elements like Na and Mg was possible to be quantified, whereas detection limits in the range of few ng m-3 were attained for the most of the detected elements. Although, the average mass concentrations of the PM2.5 collected from the residential area (27 ± 7 μg m-3) is close to the annual mean limit value, a significant number of the collected samples (33%) presented higher average mass concentrations. For the industrial location, the average mass concentration is equal to 55 ± 19 μg m-3, exceeded twofold the annual mean limit value of the European Commission. Remarkably high elemental concentrations were determined for the most of the detected elements from the industrial area samples, clearly indicating the significant influence of anthropogenic activities. The present optimized EDXRF analysis offered significantly improved analytical range and limits of detection with respect to previous similar studies, thus enhancing our knowledge and understanding on the contribution of different pollution sources.

  1. Characterizing Dust from Cutting Corian®, a Solid-Surface Composite Material, in a Laboratory Testing System.

    PubMed

    Qi, Chaolong; Echt, Alan; Murata, Taichi K

    2016-06-01

    We conducted a laboratory test to characterize dust from cutting Corian(®), a solid-surface composite material, with a circular saw. Air samples were collected using filters and direct-reading instruments in an automatic laboratory testing system. The average mass concentrations of the total and respirable dusts from the filter samples were 4.78±0.01 and 1.52±0.01mg cm(-3), respectively, suggesting about 31.8% mass of the airborne dust from cutting Corian(®) is respirable. Analysis of the metal elements on the filter samples reveals that aluminum hydroxide is likely the dominant component of the airborne dust from cutting Corian(®), with the total airborne and respirable dusts containing 86.0±6.6 and 82.2±4.1% aluminum hydroxide, respectively. The results from the direct-reading instruments confirm that the airborne dust generated from cutting Corian(®) were mainly from the cutting process with very few particles released from the running circular saw alone. The number-based size distribution of the dusts from cutting Corian(®) had a peak for fine particles at 1.05 µm with an average total concentration of 871.9 particles cm(-3), and another peak for ultrafine particles at 11.8nm with an average total concentration of 1.19×10(6) particles cm(-3) The small size and high concentration of the ultrafine particles suggest additional investigation is needed to study their chemical composition and possible contribution to pulmonary effect. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2016.

  2. Characterizing Dust from Cutting Corian®, a Solid-Surface Composite Material, in a Laboratory Testing System

    PubMed Central

    Qi, Chaolong; Echt, Alan; Murata, Taichi K

    2016-01-01

    We conducted a laboratory test to characterize dust from cutting Corian®, a solid-surface composite material, with a circular saw. Air samples were collected using filters and direct-reading instruments in an automatic laboratory testing system. The average mass concentrations of the total and respirable dusts from the filter samples were 4.78±0.01 and 1.52±0.01 mg cm−3, respectively, suggesting about 31.8% mass of the airborne dust from cutting Corian® is respirable. Analysis of the metal elements on the filter samples reveals that aluminum hydroxide is likely the dominant component of the airborne dust from cutting Corian®, with the total airborne and respirable dusts containing 86.0%±6.6% and 82.2%±4.1% aluminum hydroxide, respectively. The results from the direct-reading instruments confirm that the airborne dust generated from cutting Corian® were mainly from the cutting process with very few particles released from the running circular saw alone. The number-based size distribution of the dusts from cutting Corian® had a peak for fine particles at 1.05 µm with an average total concentration of 871.9 particles cm−3, and another peak for ultrafine particles at 11.8 nm with an average total concentration of 1.19×106 particles cm−3. The small size and high concentration of the ultrafine particles suggest additional investigation is needed to study their chemical composition and possible contribution to pulmonary effect. PMID:26872962

  3. Simulation study of sulfonate cluster swelling in ionomers

    NASA Astrophysics Data System (ADS)

    Allahyarov, Elshad; Taylor, Philip L.; Löwen, Hartmut

    2009-12-01

    We have performed simulations to study how increasing humidity affects the structure of Nafion-like ionomers under conditions of low sulfonate concentration and low humidity. At the onset of membrane hydration, the clusters split into smaller parts. These subsequently swell, but then maintain constant the number of sulfonates per cluster. We find that the distribution of water in low-sulfonate membranes depends strongly on the sulfonate concentration. For a relatively low sulfonate concentration, nearly all the side-chain terminal groups are within cluster formations, and the average water loading per cluster matches the water content of membrane. However, for a relatively higher sulfonate concentration the water-to-sulfonate ratio becomes nonuniform. The clusters become wetter, while the intercluster bridges become drier. We note the formation of unusual shells of water-rich material that surround the sulfonate clusters.

  4. Shear dispersion in dense granular flows

    DOE PAGES

    Christov, Ivan C.; Stone, Howard A.

    2014-04-18

    We formulate and solve a model problem of dispersion of dense granular materials in rapid shear flow down an incline. The effective dispersivity of the depth-averaged concentration of the dispersing powder is shown to vary as the Péclet number squared, as in classical Taylor–Aris dispersion of molecular solutes. An extension to generic shear profiles is presented, and possible applications to industrial and geological granular flows are noted.

  5. Nucleation of Crystals From Solution in Microgravity (USML-1 Glovebox (GBX) Investigation)

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.; Reiss, Donald A.; Lehoczky, Sandor L.

    1994-01-01

    A new method for initiating nucleation from solutions in microgravity which avoids nucleation on container walls and other surfaces is described. This method consists of injecting a small quantity of highly concentrated, heated solution into the interior of a lightly supersaturated, cooler host gowth solution. It was tested successfully on USML-I, producing a large number of LAP crystals whose longest dimension averaged 1 mm.

  6. Mercury contamination, a potential threat to the globally endangered aquatic warbler Acrocephalus paludicola.

    PubMed

    Pacyna, Aneta Dorota; Martínez, Carlos Zumalacárregui; Miguélez, David; Jiguet, Frédéric; Polkowska, Żaneta; Wojczulanis-Jakubas, Katarzyna

    2017-12-01

    Mercury (Hg) contamination is considered a global concern for humans and wildlife, and although the number of studies dealing with that issue continues to increase, some taxonomic groups such as small passerine birds are largely understudied. In this paper, concentration of mercury in the aquatic warbler (Acrocephalus paludicola) feathers, a globally threatened passerine species, was examined. The concentration differences between two ages and sexes were investigated. The comparison of feathers taken on autumn migrants of two age categories act as a comparison of the species' exposure within the two different areas (European breeding or African wintering grounds). The average Hg concentration for all sampled individuals [2.32 μg/g dw (range 0.38-12.76)] is relatively high, compared with values found in other passerine species. An age difference was found, with first-year individuals displaying higher mercury concentrations than adults. This indicates that birds are exposed to mercury pollution during the breeding season, i.e., in the continental floodplains of eastern Europe. The average Hg concentration in feathers grown on the breeding grounds was 3.88 ± 2.59 μg/g dw, closer to the critical value of 5 μg/g dw, which is considered to impair the health of individuals. The findings suggest that mercury pollution may constitute a threat so far neglected for the endangered aquatic warbler.

  7. In vivo quantification of brain metabolites by 1H-MRS using water as an internal standard.

    PubMed

    Christiansen, P; Henriksen, O; Stubgaard, M; Gideon, P; Larsson, H B

    1993-01-01

    The reliability of absolute quantification of average metabolite concentrations in the human brain in vivo by 1H-MRS using the fully relaxed water signal as an internal standard was tested in a number of in vitro as well as in vivo measurements. The experiments were carried out on a SIEMENS HELICON SP 63/84 wholebody MR-scanner operating at 1.5 T using a STEAM sequence. In vitro studies indicate a very high correlation between metabolite signals (area under peaks) and concentration, R = 0.99 as well as between metabolite signals and the volume of the selected voxel, R = 1.00. The error in quantification of N-acetyl aspartate (NAA) concentration was about 1-2 mM (6-12%). Also in vivo a good linearity between water signal and selected voxel size was seen. The same was true for the studied metabolites, N-acetyl aspartate (NAA), creatine/phosphocreatine (Cr/PCr), and choline (Cho). Calculated average concentrations of NAA, Cr/PCr, and Cho in the occipital lobe of the brain in five healthy volunteers were (mean +/- 1 SD) 11.6 +/- 1.3 mM, 7.6 +/- 1.4 mM, and 1.7 +/- 0.5 mM. The results indicate that the method presented offers reasonable estimation of metabolite concentrations in the brain in vivo and therefore is useful in clinical research.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poenkae, A.

    The weekly changes in ambient sulfur dioxide, nitrogen dioxide, and temperature were compared with the figures for respiratory infection in children and adults and for absenteeism from day-care centers (DCC), schools, and workplaces during a 1-year period in Helsinki. The annual average level of sulfur dioxide was 21 micrograms/m3 and of nitrogen dioxide 47 micrograms/m3; the average temperature was +3.1 degrees C. The levels of these pollutants and the temperature were significantly correlated with the number of upper respiratory infections reported from health centers. Low temperature also correlated with increased frequency of acute tonsillitis, of lower respiratory tract infection amongmore » DCC children, and of absenteeism from day-care centers, schools and workplaces. Furthermore, a significant association was found between levels of sulfur dioxide and absenteeism. After statistical standardization for temperature, no other correlations were observed apart from that between high levels of sulfur dioxide and numbers of upper respiratory tract infections diagnosed at health centers (P = 0.04). When the concentrations of sulfur dioxide were above the mean, the frequency of the upper respiratory tract infections was 15% higher than that during the periods of low concentration. The relative importance of the effects of low-level air pollution and low temperature on health is difficult to assess.« less

  9. Short-term effects of air pollution on lower respiratory diseases and forecasting by the group method of data handling

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjin; Wang, Jianzhou; Zhang, Wenyu; Sun, Donghuai

    2012-05-01

    Risk of lower respiratory diseases was significantly correlated with levels of monthly average concentration of SO2; NO2 and association rules have high lifts. In view of Lanzhou's special geographical location, taking into account the impact of different seasons, especially for the winter, the relations between air pollutants and the respiratory disease deserve further study. In this study the monthly average concentration of SO2, NO2, PM10 and the monthly number of people who in hospital because of lower respiratory disease from January 2001 to December 2005 are grouped equidistant and considered as the terms of transactions. Then based on the relational algebraic theory we employed the optimization relation association rule to mine the association rules of the transactions. Based on the association rules revealing the effects of air pollutants on the lower respiratory disease, we forecast the number of person who suffered from lower respiratory disease by the group method of data handling (GMDH) to reveal the risk and give a consultation to the hospital in Xigu District, the most seriously polluted district in Lanzhou. The data and analysis indicate that individuals may be susceptible to the short-term effects of pollution and thus suffer from lower respiratory diseases and this effect presents seasonal.

  10. Optimised synthesis of ZnO-nano-fertiliser through green chemistry: boosted growth dynamics of economically important L. esculentum.

    PubMed

    Jabeen, Nyla; Maqbool, Qaisar; Bibi, Tahira; Nazar, Mudassar; Hussain, Syed Z; Hussain, Talib; Jan, Tariq; Ahmad, Ishaq; Maaza, Malik; Anwaar, Sadaf

    2018-06-01

    Mounting-up economic losses to annual crops yield due to micronutrient deficiency, fertiliser inefficiency and increasing microbial invasions (e.g. Xanthomonas cempestri attack on tomatoes) are needed to be solved via nano-biotechnology. So keeping this in view, the authors' current study presents the new horizon in the field of nano-fertiliser with highly nutritive and preservative effect of green fabricated zinc oxide-nanostructures (ZnO-NSs) during Lycopersicum esculentum (tomato) growth dynamics. ZnO-NS prepared via green chemistry possesses highly homogenous crystalline structures well-characterised through ultraviolet and visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscope. The ZnO-NS average size was found as small as 18 nm having a crystallite size of 5 nm. L. esculentum were grown in different concentrations of ZnO-NS to examine the different morphological parameters includes time of seed germination, germination percentage, the number of plant leaves, the height of the plant, average number of branches, days count for flowering and fruiting time period along with fruit quantity. Promising results clearly predict that bio-fabricated ZnO-NS at optimum concentration resulted as growth booster and dramatically triggered the plant yield.

  11. Seasonal and spatial trends in particle number concentrations and size distributions at the children's health study sites in Southern California.

    PubMed

    Singh, Manisha; Phuleria, Harish C; Bowers, Kenneth; Sioutas, Constantinos

    2006-01-01

    Continuous measurements of particle number (PN), particle mass (PM(10)) and gaseous copollutants (NO(x), CO and O3) were obtained at eight sites (urban, suburban and remote) in Southern California during years 2002 and 2003 in support of University of Southern California Children's Health Study. We report the spatial and temporal variation of PNs and size distributions within these sites. Higher average total PN concentrations are found in winter (November to February), compared to summer (July to September) and spring (March to June) in all urban sites. Contribution of local vehicular emissions is most evident in cooler months, whereas effects of long-range transport of particles are enhanced during warmer periods. The particle size profile is most represented by a combination of the spatial effects, for example, sources, atmospheric processes and meteorological conditions prevalent at each location. Afternoon periods in the warmer months are characterized by elevated number concentrations that either coincide or follow a peak in ozone concentrations, suggesting the formation of new particles by photochemistry. Results show no meaningful correlation between PN and mass, indicating that mass based standards may not be effective in controlling ultrafine particles. The study of the impact of the Union worker's strike at port of Long Beach in October 2002 revealed statistically significant increase in PN concentrations in the 60-200 nm range (P<0.001), which are indicative of contributions of emissions from the idling ships at the port.

  12. Significant reduction in indoor radon in newly built houses.

    PubMed

    Finne, Ingvild E; Kolstad, Trine; Larsson, Maria; Olsen, Bård; Prendergast, Josephine; Rudjord, Anne Liv

    2018-02-15

    Results from two national surveys of radon in newly built homes in Norway, performed in 2008 and 2016, were used in this study to investigate the effect of the 2010 building regulations introducing limit values on radon and requirements for radon prevention measures upon construction of new buildings. In both surveys, homes were randomly selected from the National Building Registry. The overall result was a considerable reduction of radon concentrations after the implementation of new regulations, but the results varied between the different dwelling categories. A statistically significant reduction was found for detached houses where the average radon concentration was almost halved from 76 to 40 Bq/m 3 . The fraction of detached houses which had at least one frequently occupied room with a radon concentration above the Action Level (100 Bq/m 3 ) fell from 23.9% to 6.4%, while the fraction above the Upper Limit Value (200 Bq/m 3 ) was reduced from 7.6% to 2.5%. In 2008 the average radon concentration measured in terraced and semi-detached houses was 44 and in 2016 it was 29 Bq/m 3 , but the reduction was not statistically significant. For multifamily houses, it was not possible to draw a conclusion due to insufficient number of measurements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Investigating air quality status and air pollutant trends over the Metropolitan Area of Tehran, Iran over the past decade between 2005 and 2014.

    PubMed

    Jamaati, Hamidreza; Attarchi, Mirsaeed; Hassani, Somayeh; Farid, Elham; Seyedmehdi, Mohammad; Salimi Pormehr, Pegah

    2018-06-03

    Studies on the trend of air pollution in Tehran as one of the most polluted metropolis in the world are scant, and today Tehran is known for its high levels of air pollution. In this study, the trend of air pollution concentration was evaluated over the past 10 years (2004-2015). The data were collected from 22 stations of the Air Quality Control Company. Daily concentrations of CO, NO2, SO2, O3, PM10 were analyzed using SPSS 16 based on the statistical method, repeated measures, and intra-group test to determine the pattern of each pollutant changes. As a result of the 22 air pollution monitoring stations, NO2 and SO2 concentrations have been increasing over the period of 10 years. The highest anomaly is related to SO2. The CO concentrations represent a descending pattern over the period, although there was a slight increase in 2013 and 2014. The ozone concentrations declined in the following years. The average concentration of PM10 has been rising during the period. Also we evaluated changes of each pollutant in different months and calculated the number of clean, healthy, unhealthy days for sensitive, unhealthy, very unhealthy, and dangerous groups. The study findings illustrated the necessity for larger investment in air pollution abatement. Over ally, trends have been progressed to worsening, the number of healthy days has been declined and the number of unhealthy days has been increased in recent years.

  14. Environmental monitoring at Mound: 1986 report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carfagno, D.G.; Farmer, B.M.

    1987-05-11

    The local environment around Mound was monitored for tritium and plutonium-238. The results are reported for 1986. Environmental media analyzed included air, water, vegetation, foodstuffs, and sediment. The average concentrations of plutonium-238 and tritium were within the DOE interim air and water Derived Concentration Guides (DCG) for these radionuclides. The average incremental concentrations of plutonium-238 and tritium oxide in air measured at all offsite locations during 1986 were 0.03% and 0.01%, respectively, of the DOE DCGs for uncontrolled areas. The average incremental concentration of plutonium-238 measured at all locations in the Great Miami River during 1986 was 0.0005% of themore » DOE DCG. The average incremental concentration of tritium measured at all locations in the Great Miami River during 1986 was 0.005% of the DOE DCG. The average incremental concentrations of plutonium-238 found during 1986 in surface and area drinking water were less than 0.00006% of the DOE DCG. The average incremental concentration of tritium in surface water was less than 0.005% of the DOE DCG. All tritium in drinking water data is compared to the US EPA Drinking Water Standard. The average concentrations in local private and municipal drinking water systems were less than 25% and 1.5%, respectively. Although no DOE DCG is available for foodstuffs, the average concentrations are a small fraction of the water DCG (0.04%). The concentrations of sediment samples obtained at offsite surface water sampling locations were extremely low and therefore represent no adverse impact to the environment. The dose equivalent estimates for the average air, water, and foodstuff concentrations indicate that the levels are within 1% of the DOE standard of 100 mrem. None of these exceptions, however, had an adverse impact on the water quality of the Great Miami River or caused the river to exceed Ohio Stream Standards. 20 refs., 5 figs., 31 tabs.« less

  15. Increased dimensionality of cell-cell communication can decrease the precision of gradient sensing

    NASA Astrophysics Data System (ADS)

    Smith, Tyler; Levchenko, Andre; Nemenman, Ilya; Mugler, Andrew

    Gradient sensing is a biological computation that involves comparison of concentrations measured in at least two different locations. As such, the pre- cision of gradient sensing is limited by the intrinsic stochasticity in the com- munication that brings such distributed information to the same location. We have recently analyzed such limitations experimentally and theoretically in multicellular gradient sensing in mammary epithelial cell organoids. For 1d chains of collectively sensing cells, the communication noise puts a se- vere constraint on how the accuracy of gradient sensing increases with the number of cells in the sensor. A question remains as to whether the effect of the noise can be mitigated by the extra spatial averaging allowed in sensing by 2d and 3d cellular organoids. Here we show using computer simulations that, counterintuitively, such spatial averaging decreases gradient sensitiv- ity (while it increases concentration sensitivity). We explain the findings analytically and propose that a recently introduced Regional Excitation - Global Inhibition model of gradient sensing can overcome this limitation and use 2d or 3d spatial averaging to improve the sensing accuracy. Supported by NSF Grant PHY/1410978 and James S. McDonnell Foundation Grant # 220020321.

  16. An experimental study of the wall-pressure fluctuations beneath low Reynolds number turbulent boundary layers.

    PubMed

    Van Blitterswyk, Jared; Rocha, Joana

    2017-02-01

    A more complete understanding of the physical relationships, between wall-pressure and turbulence, is required for modeling flow-induced noise and developing noise reduction strategies. In this study, the wall-pressure fluctuations, induced by low Reynolds number turbulent boundary layers, are experimentally studied using a high-resolution microphone array. Statistical characteristics obtained using traditional cross-correlation and cross-spectra analyses are complimented with wall-pressure-velocity cross-spectra and wavelet cross-correlations. Wall-pressure-velocity correlations revealed that turbulent activity in the buffer layer contributes at least 40% of the energy to the wall-pressure spectrum at all measured frequencies. As Reynolds number increases, the low-frequency energy shifts from the buffer layer to the logarithmic layer, as expected for regions of uniform streamwise momentum formed by hairpin packets. Conditional cross-spectra suggests that the majority of broadband wall-pressure energy is concentrated within the packets, with the pressure signatures of individual hairpin vortices estimated to decay on average within traveling ten displacement thicknesses, and the packet signature is retained for up to seven boundary layer thicknesses on average.

  17. On the Concentration Gradient across a Spherical Source Washed by Slow Flow

    PubMed Central

    Jaffe, Lionel

    1965-01-01

    A model has been numerically analyzed to help interpret the orienting effects of flow upon cells. The model is a sphere steadily and uniformly emitting a diffusible stuff into a medium otherwise free of it and moving past with Stokes flow. Its properties depend primarily upon the Peclet number, Pe, equal to a · v∞/D, i.e., the sphere's radius, a, times the free stream speed, v∞, over the stuff's diffusion constant, D. As Pe rises, and washing becomes more effective, the average surface concentration, C̄s a falls (Figs. 2 and 5) and the residual material becomes relatively concentrated on the sphere's lee pole (Figs. 2 and 4). Specifically, as Pe rises from 0.1 to 1, the relative concentration gradient, G, rises from 0.7 to 5.0 per cent and to the point where it is rising at about 8 per cent per decade; by Pe 1000, G = 22.1 per cent. From Pe 1 through 1000, G/(1 - C̄s a), or the gradient per concentration deficiency remains at about 26 per cent suggesting that G approaches a ceiling of about 26 per cent. Also from Pe 1 through 1000, the average mass transfer co-efficient nearly equals that previously calculated for spheres maintaining constant surface concentration instead of flux. The complete differential equation without approximations, the Gauss-Seidel method, and an approximation for the outer boundary condition were used. PMID:14268954

  18. Thermal conditions and perceived air quality in an air-conditioned auditorium

    NASA Astrophysics Data System (ADS)

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p < 0.001) positive correlation has been observed between T and PAQ values and CO2 concentrations (r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  19. Task-based exposure assessment of nanoparticles in the workplace

    NASA Astrophysics Data System (ADS)

    Ham, Seunghon; Yoon, Chungsik; Lee, Euiseung; Lee, Kiyoung; Park, Donguk; Chung, Eunkyo; Kim, Pilje; Lee, Byoungcheun

    2012-09-01

    Although task-based sampling is, theoretically, a plausible approach to the assessment of nanoparticle exposure, few studies using this type of sampling have been published. This study characterized and compared task-based nanoparticle exposure profiles for engineered nanoparticle manufacturing workplaces (ENMW) and workplaces that generated welding fumes containing incidental nanoparticles. Two ENMW and two welding workplaces were selected for exposure assessments. Real-time devices were utilized to characterize the concentration profiles and size distributions of airborne nanoparticles. Filter-based sampling was performed to measure time-weighted average (TWA) concentrations, and off-line analysis was performed using an electron microscope. Workplace tasks were recorded by researchers to determine the concentration profiles associated with particular tasks/events. This study demonstrated that exposure profiles differ greatly in terms of concentrations and size distributions according to the task performed. The size distributions recorded during tasks were different from both those recorded during periods with no activity and from the background. The airborne concentration profiles of the nanoparticles varied according to not only the type of workplace but also the concentration metrics. The concentrations measured by surface area and the number concentrations measured by condensation particle counter, particulate matter 1.0, and TWA mass concentrations all showed a similar pattern, whereas the number concentrations measured by scanning mobility particle sizer indicated that the welding fume concentrations at one of the welding workplaces were unexpectedly higher than were those at workplaces that were engineering nanoparticles. This study suggests that a task-based exposure assessment can provide useful information regarding the exposure profiles of nanoparticles and can therefore be used as an exposure assessment tool.

  20. A review of historical exposures to asbestos among skilled craftsmen (1940-2006).

    PubMed

    Williams, Pamela R D; Phelka, Amanda D; Paustenbach, Dennis J

    2007-01-01

    This article provides a review and synthesis of the published and selected unpublished literature on historical asbestos exposures among skilled craftsmen in various nonshipyard and shipyard settings. The specific crafts evaluated were insulators, pipefitters, boilermakers, masons, welders, sheet-metal workers, millwrights, electricians, carpenters, painters, laborers, maintenance workers, and abatement workers. Over 50 documents were identified and summarized. Sufficient information was available to quantitatively characterize historical asbestos exposures for the most highly exposed workers (insulators), even though data were lacking for some job tasks or time periods. Average airborne fiber concentrations collected for the duration of the task and/or the entire work shift were found to range from about 2 to 10 fibers per cubic centimeter (cm3 or cc) during activities performed by insulators in various nonshipyard settings from the late 1960s and early 1970s. Higher exposure levels were observed for this craft during the 1940s to 1950s, when dust counts were converted from millions of particles per cubic foot (mppcf) to units of fibers per cubic centimeter (fibers/cc) using a 1:6 conversion factor. Similar tasks performed in U.S. shipyards yielded average fiber concentrations about two-fold greater, likely due to inadequate ventilation and confined work environments; however, excessively high exposure levels were reported in some British Naval shipyards due to the spraying of asbestos. Improved industrial hygiene practices initiated in the early to mid-1970s were found to reduce average fiber concentrations for insulator tasks approximately two- to five-fold. For most other crafts, average fiber concentrations were found to typically range from <0.01 to 1 fibers/cc (depending on the task or time period), with higher concentrations observed during the use of powered tools, the mixing or sanding of drywall cement, and the cleanup of asbestos insulation or lagging materials. The available evidence suggests that although many historical measurements exceeded the current OSHA 8-h time-weighted average (TWA) permissible exposure limit (PEL) of 0.1 fibers/cc, average fiber concentrations generally did not exceed historical occupational exposure limits in place at the time, except perhaps during ripout activities or the spraying of asbestos in enclosed spaces or onboard ships. Additionally, reported fiber concentrations may not have represented daily or actual human exposures to asbestos, since few samples were collected beyond specific short-term tasks and workers sometimes wore respiratory protective equipment. The available data were not sufficient to determine whether the airborne fiber concentrations represented serpentine or amphibole asbestos fibers, which would have a pronounced impact on the potential health hazards posed by the asbestos. Despite a number of limitations associated with the available air sampling data, the information should provide guidance for reconstructing asbestos exposures for different crafts in specific occupational settings where asbestos was present during the 1940 to 2006 time period.

  1. Sensitivity of Cirrus Properties to Ice Nuclei Abundance

    NASA Technical Reports Server (NTRS)

    Jensen, Eric

    2014-01-01

    The relative importance of heterogeneous and homogeneous ice nucleation for cirrus formation remains an active area of debate in the cloud physics community. From a theoretical perspective, a number of modeling studies have investigated the sensitivity of ice number concentration to the nucleation mechanism and the abundance of ice nuclei. However, these studies typically only addressed ice concentration immediately after ice nucleation. Recent modeling work has shown that the high ice concentrations produced by homogeneous freezing may not persist very long, which is consistent with the low frequency of occurrence of high ice concentrations indicated by cirrus measurements. Here, I use idealized simulations to investigate the impact of ice nucleation mechanism and ice nuclei abundance on the full lifecycle of cirrus clouds. The primary modeling framework used includes different modes of ice nucleation, deposition growth/sublimation, aggregation, sedimentation, and radiation. A limited number of cloud-resolving simulations that treat radiation/dynamics interactions will also been presented. I will show that for typical synoptic situations with mesoscale waves present, the time-averaged cirrus ice crystal size distributions and bulk cloud properties are less sensitive to ice nucleation processes than might be expected from the earlier simple ice nucleation calculations. I will evaluate the magnitude of the ice nuclei impact on cirrus for a range of temperatures and mesoscale wave specifications, and I will discuss the implications for cirrus aerosol indirect effects in general.

  2. Role of organic aerosols in CCN activation and closure over a rural background site in Western Ghats, India

    NASA Astrophysics Data System (ADS)

    Singla, V.; Mukherjee, S.; Safai, P. D.; Meena, G. S.; Dani, K. K.; Pandithurai, G.

    2017-06-01

    The cloud condensation nuclei (CCN) closure study was performed to exemplify the effect of aerosol chemical composition on the CCN activity of aerosols at Mahabaleshwar, a high altitude background site in the Western Ghats, India. For this, collocated aerosol, CCN, Elemental Carbon (EC), Organic Carbon (OC), sub-micron aerosol chemical speciation for the period from 3rd June to 19th June 2015 was used. The chemical composition of non-refractory particulate matter (<1 μm) as measured by Time of Flight - Aerosol Chemical Speciation Monitor (ToF-ACSM) was dominated by organics with average concentration of 3.81 ± 1.6, 0.32 ± 0.06, 0.15 ± 0.02, 0.13 ± 0.03 and 0.95 ± 0.12 μg m-3 for organics, ammonium, chloride, nitrate and sulphate, respectively. The PM1 number concentration as obtained by Wide Range Aerosol Spectrometer (WRAS) varied from 750 to 6480 cm-3. The average mass concentration of elemental carbon (EC) as measured by OC-EC analyzer was 1.16 ± 0.4 μg m-3. The average CCN concentrations obtained from CCN counter (CCNC) at five super-saturations (SS's) was 118 ± 58 cm-3 (0.1% SS), 873 ± 448 cm-3 (0.31% SS), 1308 ± 603 cm-3 (0.52% SS), 1610 ± 838 cm-3 (0.73% SS) and 1826 ± 985 cm-3 (0.94% SS). The CCN concentrations were predicted using Köhler theory on the basis of measured aerosol particle number size distribution, size independent NR-PM1 chemical composition and calculated hygroscopicity. The CCN closure study was evaluated for 3 scenarios, B-I (all soluble inorganics), B-IO (all soluble organics and inorganics) and B-IOOA (all soluble inorganic and soluble oxygenated organic aerosol, OOA). OOA component was derived from the positive matrix factorization (PMF) analysis of organic aerosol mass spectra. Considering the bulk composition as internal mixture, CCN closure study was underestimated by 16-39% for B-I and overestimated by 47-62% for B-IO. The CCN closure result was appreciably improved for B-IOOA where the knowledge of OOA fraction was introduced and uncertainty reduced to within 8-10%.

  3. Reynolds number trend of hierarchies and scale interactions in turbulent boundary layers.

    PubMed

    Baars, W J; Hutchins, N; Marusic, I

    2017-03-13

    Small-scale velocity fluctuations in turbulent boundary layers are often coupled with the larger-scale motions. Studying the nature and extent of this scale interaction allows for a statistically representative description of the small scales over a time scale of the larger, coherent scales. In this study, we consider temporal data from hot-wire anemometry at Reynolds numbers ranging from Re τ ≈2800 to 22 800, in order to reveal how the scale interaction varies with Reynolds number. Large-scale conditional views of the representative amplitude and frequency of the small-scale turbulence, relative to the large-scale features, complement the existing consensus on large-scale modulation of the small-scale dynamics in the near-wall region. Modulation is a type of scale interaction, where the amplitude of the small-scale fluctuations is continuously proportional to the near-wall footprint of the large-scale velocity fluctuations. Aside from this amplitude modulation phenomenon, we reveal the influence of the large-scale motions on the characteristic frequency of the small scales, known as frequency modulation. From the wall-normal trends in the conditional averages of the small-scale properties, it is revealed how the near-wall modulation transitions to an intermittent-type scale arrangement in the log-region. On average, the amplitude of the small-scale velocity fluctuations only deviates from its mean value in a confined temporal domain, the duration of which is fixed in terms of the local Taylor time scale. These concentrated temporal regions are centred on the internal shear layers of the large-scale uniform momentum zones, which exhibit regions of positive and negative streamwise velocity fluctuations. With an increasing scale separation at high Reynolds numbers, this interaction pattern encompasses the features found in studies on internal shear layers and concentrated vorticity fluctuations in high-Reynolds-number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  4. On the competition among aerosol number, size and composition in predicting CCN variability: a multi-annual field study in an urbanized desert.

    PubMed

    Crosbie, E; Youn, J-S; Balch, B; Wonaschütz, A; Shingler, T; Wang, Z; Conant, W C; Betterton, E A; Sorooshian, A

    2015-02-10

    A 2-year data set of measured CCN (cloud condensation nuclei) concentrations at 0.2 % supersaturation is combined with aerosol size distribution and aerosol composition data to probe the effects of aerosol number concentrations, size distribution and composition on CCN patterns. Data were collected over a period of 2 years (2012-2014) in central Tucson, Arizona: a significant urban area surrounded by a sparsely populated desert. Average CCN concentrations are typically lowest in spring (233 cm -3 ), highest in winter (430 cm -3 ) and have a secondary peak during the North American monsoon season (July to September; 372 cm -3 ). There is significant variability outside of seasonal patterns, with extreme concentrations (1 and 99 % levels) ranging from 56 to 1945 cm -3 as measured during the winter, the season with highest variability. Modeled CCN concentrations based on fixed chemical composition achieve better closure in winter, with size and number alone able to predict 82% of the variance in CCN concentration. Changes in aerosol chemical composition are typically aligned with changes in size and aerosol number, such that hygroscopicity can be parameterized even though it is still variable. In summer, models based on fixed chemical composition explain at best only 41% (pre-monsoon) and 36% (monsoon) of the variance. This is attributed to the effects of secondary organic aerosol (SOA) production, the competition between new particle formation and condensational growth, the complex interaction of meteorology, regional and local emissions and multi-phase chemistry during the North American monsoon. Chemical composition is found to be an important factor for improving predictability in spring and on longer timescales in winter. Parameterized models typically exhibit improved predictive skill when there are strong relationships between CCN concentrations and the prevailing meteorology and dominant aerosol physicochemical processes, suggesting that similar findings could be possible in other locations with comparable climates and geography.

  5. Plant uptake of elements in soil and pore water: field observations versus model assumptions.

    PubMed

    Raguž, Veronika; Jarsjö, Jerker; Grolander, Sara; Lindborg, Regina; Avila, Rodolfo

    2013-09-15

    Contaminant concentrations in various edible plant parts transfer hazardous substances from polluted areas to animals and humans. Thus, the accurate prediction of plant uptake of elements is of significant importance. The processes involved contain many interacting factors and are, as such, complex. In contrast, the most common way to currently quantify element transfer from soils into plants is relatively simple, using an empirical soil-to-plant transfer factor (TF). This practice is based on theoretical assumptions that have been previously shown to not generally be valid. Using field data on concentrations of 61 basic elements in spring barley, soil and pore water at four agricultural sites in mid-eastern Sweden, we quantify element-specific TFs. Our aim is to investigate to which extent observed element-specific uptake is consistent with TF model assumptions and to which extent TF's can be used to predict observed differences in concentrations between different plant parts (root, stem and ear). Results show that for most elements, plant-ear concentrations are not linearly related to bulk soil concentrations, which is congruent with previous studies. This behaviour violates a basic TF model assumption of linearity. However, substantially better linear correlations are found when weighted average element concentrations in whole plants are used for TF estimation. The highest number of linearly-behaving elements was found when relating average plant concentrations to soil pore-water concentrations. In contrast to other elements, essential elements (micronutrients and macronutrients) exhibited relatively small differences in concentration between different plant parts. Generally, the TF model was shown to work reasonably well for micronutrients, whereas it did not for macronutrients. The results also suggest that plant uptake of elements from sources other than the soil compartment (e.g. from air) may be non-negligible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A numerical study of transient heat and mass transfer in crystal growth

    NASA Technical Reports Server (NTRS)

    Han, Samuel Bang-Moo

    1987-01-01

    A numerical analysis of transient heat and solute transport across a rectangular cavity is performed. Five nonlinear partial differential equations which govern the conservation of mass, momentum, energy and solute concentration related to crystal growth in solution, are simultaneously integrated by a numerical method based on the SIMPLE algorithm. Numerical results showed that the flow, temperature and solute fields are dependent on thermal and solutal Grashoff number, Prandtl number, Schmidt number and aspect ratio. The average Nusselt and Sherwood numbers evaluated at the center of the cavity decrease markedly when the solutal buoyancy force acts in the opposite direction to the thermal buoyancy force. When the solutal and thermal buoyancy forces act in the same direction, however, Sherwood number increases significantly and yet Nusselt number decreases. Overall effects of convection on the crystal growth are seen to be an enhancement of growth rate as expected but with highly nonuniform spatial growth variations.

  7. [Effects of Relative Humidity and Aerosol Physicochemical Properties on Atmospheric Visibility in Northern Suburb of Nanjing].

    PubMed

    Yu, Xing-na; Ma, Jia; Zhu, Bin; Wang, Hong-lei; Yan, Shu-qi; Xia, Hang

    2015-06-01

    To understand the effects of relative humidity (RH) and aerosol physicochemical properties on the atmospheric visibility in autumn and winter in northern suburb of Nanjing, the relationships between meteorological elements, particulate matter and visibility were analyzed with the data of meteorological elements, aerosol particle spectra, particulate matter concentration and chemical composition. The average visibility was 4.76 km in autumn and winter in northern suburb of Nanjing. There was a certain negative correlation between the particulate matter concentration and the visibility, especially the influence of fine particles on the visibility was more remarkable. The occurrence frequencies of low visibilities showed an increasing trend with the increasing concentration of fine particles and RH. When the visibility decreased from 5-10 km to <5 km, the mass concentrations of PM10 and PM2.5 increased by 7.56% and 37.64%, respectively. Meanwhile, the mass concentrations of SO4(2-) and NO3-increased significantly. Effects of aerosol particle number concentration on the visibility were related with RH. Aerosol number concentration with diameters ranging from 0.5 microm to 2 microm increased slowly with the increase of RH, while those ranging from 2 microm to 10 microm decreased. The correlation analysis between the aerosol surface area concentration and the visibility showed that RH and fine particles between 0.5 microm and 2 microm were the main factors which caused the decrease of atmospheric visibility in autumn and winter in northern suburb of Nanjing.

  8. Emissions from an international airport increase particle number concentrations 4-fold at 10 km downwind.

    PubMed

    Hudda, Neelakshi; Gould, Tim; Hartin, Kris; Larson, Timothy V; Fruin, Scott A

    2014-06-17

    We measured the spatial pattern of particle number (PN) concentrations downwind from the Los Angeles International Airport (LAX) with an instrumented vehicle that enabled us to cover larger areas than allowed by traditional stationary measurements. LAX emissions adversely impacted air quality much farther than reported in previous airport studies. We measured at least a 2-fold increase in PN concentrations over unimpacted baseline PN concentrations during most hours of the day in an area of about 60 km(2) that extended to 16 km (10 miles) downwind and a 4- to 5-fold increase to 8-10 km (5-6 miles) downwind. Locations of maximum PN concentrations were aligned to eastern, downwind jet trajectories during prevailing westerly winds and to 8 km downwind concentrations exceeded 75 000 particles/cm(3), more than the average freeway PN concentration in Los Angeles. During infrequent northerly winds, the impact area remained large but shifted to south of the airport. The freeway length that would cause an impact equivalent to that measured in this study (i.e., PN concentration increases weighted by the area impacted) was estimated to be 280-790 km. The total freeway length in Los Angeles is 1500 km. These results suggest that airport emissions are a major source of PN in Los Angeles that are of the same general magnitude as the entire urban freeway network. They also indicate that the air quality impact areas of major airports may have been seriously underestimated.

  9. Heritability of semen traits in German Warmblood stallions.

    PubMed

    Gottschalk, M; Sieme, H; Martinsson, G; Distl, O

    2016-07-01

    The objectives of the present study were to evaluate genetic parameters for semen quality traits of 241 fertile German Warmblood stallions regularly employed in artificial insemination (AI). Stallions were owned by the National Studs Celle and Warendorf in Germany. Semen traits analyzed were gel-free volume, sperm concentration, total number of sperm, progressive motility and total number of progressively motile sperm. Semen protocols from a total of 63,972 ejaculates were collected between the years 2001 and 2014 for the present analysis. A multivariate linear animal model was employed for estimation of additive genetic and permanent environmental variances among stallions and breeding values (EBVs) for semen traits. Heritabilities estimated for all German Warmblood stallions were highest for gel-free volume (h(2)=0.28) and lowest for total number of progressively motile sperm (h(2)=0.13). The additive genetic correlation among gel-free volume and sperm concentration was highly negative (rg=-0.76). Average reliabilities of EBVs were at 0.37-0.68 for the 241 stallions with own records. The inter-stallion variance explained between 33 and 61% of the trait variance, underlining the major impact of the individual stallion on semen quality traits analyzed here. Recording of semen traits from stallions employed in AI may be recommended because EBVs achieve sufficient accuracies to improve semen quality in future generations. Due to favorable genetic correlations, sperm concentration, total number of sperm and total number of progressively motile sperm may be increased simultaneously. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Polonium-210 budget in cigarettes.

    PubMed

    Khater, Ashraf E M

    2004-01-01

    Due to the relatively high activity concentrations of (210)Po and (210)Pb that are found in tobacco and its products, cigarette smoking highly increases the internal intake of both radionuclides and their concentrations in the lung tissues. That might contribute significantly to an increase in the internal radiation dose and in the number of instances of lung cancer observed among smokers. Samples of most frequently smoked fine and popular brands of cigarettes were collected from those available on the Egyptian market. (210)Po activity concentrations were measured by alpha spectrometry, using surface barrier detectors, following the radiochemical separation of polonium. Samples of fresh tobacco, wrapping paper, fresh filters, ash and post-smoking filters were spiked with (208)Po for chemical recovery calculation. The samples were dissolved using mineral acids (HNO(3), HCl and HF). Polonium was spontaneously plated-out on stainless steel disks from diluted HCl solution. The (210)Po activity concentration in smoke was estimated on the basis of its activity in fresh tobacco and wrapping paper, fresh filter, ash and post-smoking filters. The percentages of (210)Po activity concentrations that were recovered from the cigarette tobacco to ash, post-smoking filters, and smokes were assessed. The results of this work indicate that the average (range) activity concentration of (210)Po in cigarette tobacco was 16.6 (9.7-22.5) mBq/cigarette. The average percentages of (210)Po content in fresh tobacco plus wrapping paper that were recovered by post-smoking filters, ash and smoke were 4.6, 20.7 and 74.7, respectively. Cigarette smokers, who are smoking one pack (20 cigarettes) per day, are inhaling on average 123 mBq/d of (210)Po and (210)Pb each. The annual effective doses were calculated on the basis of (210)Po and (210)Pb intake with the cigarette smoke. The mean values of the annual effective dose for smokers (one pack per day) were estimated to be 193 and 251 microSv from (210)Po and (210)Pb, respectively.

  11. Hepatitis B Virus S Protein Enhances Sperm Apoptosis and Reduces Sperm Fertilizing Capacity In Vitro

    PubMed Central

    Huang, JiHua; Zhong, Ying; Fang, XiaoWu; Xie, QingDong; Kang, XiangJin; Wu, RiRan; Li, FangZheng; Xu, XiaoQin; Lu, Hui; Xu, Lan; Huang, TianHua

    2013-01-01

    Objective Studying the impact of Hepatitis B virus S protein (HBs) on early apoptotic events in human spermatozoa and sperm fertilizing capacity. Methodology/Principal Findings Spermatozoa were exposed to HBs (0, 25, 50, 100 µg/ml) for 3 h, and then fluo-4 AM calcium assay, Calcein/Co2+ assay, protein extraction and ELISA, ADP/ATP ratio assay, sperm motility and hyperactivation and sperm-zona pellucida (ZP) binding and ZP-induced acrosome reaction (ZPIAR) tests were performed. The results showed that in the spermatozoa, with increasing concentration of HBs, (1) average cytosolic free Ca2+ concentration ([Ca2+]i) rose; (2) fluorescence intensity of Cal-AM declined; (3) average levels of cytochrome c decreased in mitochondrial fraction and increased in cytosolic fraction; (4) ADP/ATP ratios rose; (5) average rates of total motility and mean hyperactivation declined; (6) average rate of ZPIAR declined. In the above groups the effects of HBs exhibited dose dependency. However, there was no significant difference in the number of sperms bound to ZP between the control and all test groups. Conclusion HBs could induce early events in the apoptotic cascade in human spermatozoa, such as elevation of [Ca2+]i, opening of mitochondrial permeability transition pore (MPTP), release of cytochrome c (cyt c) and increase of ADP/ATP ratio, but exerted a negative impact on sperm fertilizing capacity. PMID:23874723

  12. Saturated laser fluorescence in turbulent sooting flames at high pressure

    NASA Technical Reports Server (NTRS)

    King, G. B.; Carter, C. D.; Laurendeau, N. M.

    1984-01-01

    The primary objective was to develop a quantitative, single pulse, laser-saturated fluorescence (LSF) technique for measurement of radical species concentrations in practical flames. The species of immediate interest was the hydroxyl radical. Measurements were made in both turbulent premixed diffusion flames at pressures between 1 and 20 atm. Interferences from Mie scattering were assessed by doping with particles or by controlling soot loading through variation of equivalence ratio and fuel type. The efficacy of the LSF method at high pressure was addressed by comparing fluorescence and adsorption measurements in a premixed, laminar flat flame at 1-20 atm. Signal-averaging over many laser shots is sufficient to determine the local concentration of radical species in laminar flames. However, for turbulent flames, single pulse measurements are more appropriate since a statistically significant number of laser pulses is needed to determine the probability function (PDF). PDFs can be analyzed to give true average properties and true local kinetics in turbulent, chemically reactive flows.

  13. Modifications of exposure to ambient particulate matter: Tackling bias in using ambient concentration as surrogate with particle infiltration factor and ambient exposure factor.

    PubMed

    Shi, Shanshan; Chen, Chen; Zhao, Bin

    2017-01-01

    Numerous epidemiological studies explored health risks attributed to outdoor particle pollution. However, a number of these studies routinely utilized ambient concentration as a surrogate for personal exposure to ambient particles. This simplification ignored the difference between indoor and outdoor concentrations of outdoor originated particles and may bias the estimate of particle-health associations. Intending to avoid the bias, particle infiltration factor (F inf ), which describes the penetration of outdoor particles in indoor environment, and ambient exposure factor (α), which represents the fraction of outdoor particles people are truly exposed to, are utilized as modification factors to modify outdoor particle concentration. In this study, the probabilistic distributions of annually-averaged and seasonally-averaged F inf and α were assessed for residences and residents in Beijing. F inf of a single residence and α of an individual was estimated based on the mechanisms governing particle outdoor-to-indoor migration and human time-activity pattern. With this as the core deterministic model, probabilistic distributions of F inf and α were estimated via Monte Carlo Simulation. Annually-averaged F inf of PM 2.5 and PM 10 for residences in Beijing tended to be log-normally distributed as lnN(-0.74,0.14) and lnN(-0.94,0.15) with geometric mean value as 0.47 and 0.39, respectively. Annually-averaged α of PM 2.5 and PM 10 for Beijing residents also tended to be log-normally distributed as lnN(-0.59,0.12) and lnN(-0.73,0.13) with geometric mean value as 0.55 and 0.48, respectively. As for seasonally-averaged results, F inf and α of PM 2.5 and PM 10 were largest in summer and smallest in winter. The obvious difference between these modification factors and unity suggested that modifications of ambient particle concentration need to be considered in epidemiological studies to avoid misclassifications of personal exposure to ambient particles. Moreover, considering the inter-individual difference of F inf and α may lead to a brand new perspective of particle-health associations in further epidemiological study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Evaluation of gas well setback policy in the Marcellus Shale region of Pennsylvania in relation to emissions of fine particulate matter.

    PubMed

    Banan, Zoya; Gernand, Jeremy M

    2018-04-18

    Shale gas has become an important strategic energy source with considerable potential economic benefits and the potential to reduce greenhouse gas emissions in so far as it displaces coal use. However, there still exist environmental health risks caused by emissions from exploration and production activities. In the United States, states and localities have set different minimum setback policies to reduce the health risks corresponding to the emissions from these locations, but it is unclear whether these policies are sufficient. This study uses a Gaussian plume model to evaluate the probability of exposure exceedance from EPA concentration limits for PM2.5 at various locations around a generic wellsite in the Marcellus shale region. A set of meteorological data monitored at ten different stations across Marcellus shale gas region in Pennsylvania during 2015 serves as an input to this model. Results indicate that even though the current setback distance policy in Pennsylvania (500 ft. or 152.4 m) might be effective in some cases, exposure limit exceedance occurs frequently at this distance with higher than average emission rates and/or greater number of wells per wellpad. Setback distances should be 736 m to ensure compliance with the daily average concentration of PM2.5, and a function of the number of wells to comply with the annual average PM2.5 exposure standard. The Marcellus Shale gas is known as a significant source of criteria pollutants and studies show that the current setback distance in Pennsylvania is not adequate to protect the residents from exceeding the established limits. Even an effective setback distance to meet the annual exposure limit may not be adequate to meet the daily limit. The probability of exceeding the annual limit increases with number of wells per site. We use a probabilistic dispersion model to introduce a technical basis to select appropriate setback distances.

  15. A multivariate study for characterizing particulate matter (PM(10), PM(2.5), and PM(1)) in Seoul metropolitan subway stations, Korea.

    PubMed

    Kwon, Soon-Bark; Jeong, Wootae; Park, Duckshin; Kim, Ki-Tae; Cho, Kyung Hwa

    2015-10-30

    Given that around eight million commuters use the Seoul Metropolitan Subway (SMS) each day, the indoor air quality (IAQ) of its stations has attracted much public attention. We have monitored the concentration of particulate matters (PMx) (i.e., PM10, PM2.5, and PM1) in six major transfer stations per minute for three weeks during the summer, autumn, and winter in 2014 and 2015. The data were analyzed to investigate the relationship between PMx concentration and multivariate environmental factors using statistical methods. The average PM concentration observed was approximately two or three times higher than outdoor PM10 concentration, showing similar temporal patterns at concourses and platforms. This implies that outdoor PM10 is the most significant factor in controlling indoor PM concentration. In addition, the station depth and number of trains passing through stations were found to be additional influences on PMx. Principal component analysis (PCA) and self-organizing map (SOM) were employed, through which we found that the number of trains influences PM concentration in the vicinity of platforms only, and PMx hotspots were determined. This study identifies the external and internal factors affecting PMx characteristics in six SMS stations, which can assist in the development of effective IAQ management plans to improve public health. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Multi-fluid Dynamics for Supersonic Jet-and-Crossflows and Liquid Plug Rupture

    NASA Astrophysics Data System (ADS)

    Hassan, Ezeldin A.

    Multi-fluid dynamics simulations require appropriate numerical treatments based on the main flow characteristics, such as flow speed, turbulence, thermodynamic state, and time and length scales. In this thesis, two distinct problems are investigated: supersonic jet and crossflow interactions; and liquid plug propagation and rupture in an airway. Gaseous non-reactive ethylene jet and air crossflow simulation represents essential physics for fuel injection in SCRAMJET engines. The regime is highly unsteady, involving shocks, turbulent mixing, and large-scale vortical structures. An eddy-viscosity-based multi-scale turbulence model is proposed to resolve turbulent structures consistent with grid resolution and turbulence length scales. Predictions of the time-averaged fuel concentration from the multi-scale model is improved over Reynolds-averaged Navier-Stokes models originally derived from stationary flow. The response to the multi-scale model alone is, however, limited, in cases where the vortical structures are small and scattered thus requiring prohibitively expensive grids in order to resolve the flow field accurately. Statistical information related to turbulent fluctuations is utilized to estimate an effective turbulent Schmidt number, which is shown to be highly varying in space. Accordingly, an adaptive turbulent Schmidt number approach is proposed, by allowing the resolved field to adaptively influence the value of turbulent Schmidt number in the multi-scale turbulence model. The proposed model estimates a time-averaged turbulent Schmidt number adapted to the computed flowfield, instead of the constant value common to the eddy-viscosity-based Navier-Stokes models. This approach is assessed using a grid-refinement study for the normal injection case, and tested with 30 degree injection, showing improved results over the constant turbulent Schmidt model both in mean and variance of fuel concentration predictions. For the incompressible liquid plug propagation and rupture study, numerical simulations are conducted using an Eulerian-Lagrangian approach with a continuous-interface method. A reconstruction scheme is developed to allow topological changes during plug rupture by altering the connectivity information of the interface mesh. Rupture time is shown to be delayed as the initial precursor film thickness increases. During the plug rupture process, a sudden increase of mechanical stresses on the tube wall is recorded, which can cause tissue damage.

  17. Can hemozoin alone cause host anaemia?

    PubMed

    Sun, Jun; Wang, Su-Wen; Jin, Chang-Long; Zeng, Xiao-Li; Piao, Xing-Yu; Bai, Ling; Tang, Dan-Li; Ji, Chang-Le

    2016-12-01

    Both schistosomes and malaria parasites produce hemozoin and cause host anaemia. However, the relationship between anaemia and hemozoin is unclear. Although some studies have proposed that hemozoin is related to anaemia in malaria patients, whether hemozoin alone can cause anaemia in patients infected by malaria parasites or schistosomes is uncertain. To investigate the effect of hemozoin on hosts, β-haematin was injected intravenously to normal mice. Then, liver and spleen tissues were observed. Mouse blood was examined. Red blood cells (RBCs), white blood cells (WBCs) and haemoglobin were analysed. Macrophage changes in the spleens and marrow cells were compared using immunofluorescence and H&E or Giemsa stain, respectively. We found that after 15 injections of β-haematin, a large amount of β-haematin was observed to deposit in the livers and spleens. Splenomegaly and bone marrow mild hyperplasia were detected. The average number of RBCs, average number of WBCs and average concentration of haemoglobin decreased significantly from 9.36 × 10 12 cells/L to 8.7 × 10 12 cells/L, 3.8 × 10 9 cells/L to 1.7 × 10 9 cells/L and 142.8 g/L to 131.8 g/L, respectively. In specific, the number of macrophages in the spleens greatly increased after β-haematin infection. The results showed that injections of β-haematin alone can cause anaemia possibly through hypersplenism.

  18. Seasonal variations of ambient air mercury species nearby an airport

    NASA Astrophysics Data System (ADS)

    Fang, Guor-Cheng; Tsai, Kai-Hsiang; Huang, Chao-Yang; Yang, Kuang-Pu Ou; Xiao, You-Fu; Huang, Wen-Chuan; Zhuang, Yuan-Jie

    2018-04-01

    This study focuses on the collection of ambient air mercury species (total gaseous mercury (TGM), reactive gaseous mercury (RGM), gaseous element mercury (GEM) and particulate bound mercury (PBM) pollutants at airport nearby sampling site during the year of Apr. 2016 to Mar. 2017 by using Four-stage gold amalgamation and denuder. The results indicated that the average TGM, RGM and GEM concentrations were 5.04 ± 2.43 ng/m3, 29.58 ± 80.54 pg/m3, 4.70 ± 2.63 ng/m3, respectively during the year of Apr. 2016 to Mar. 2017 (n = 49) period at this airport sampling site nearby. In addition, the results also indicated that the average PBM concentrations in TSP and PM2.5 were 0.35 ± 0.08 ng/m3 and 0.09 ± 0.03 ng/m3, respectively. And the average PBM in TSP concentrations order follows as summer > autumn > spring > winter, while the average PBM in PM2.5 concentrations order follows as spring > summer > winter > autumn. Moreover, the average TGM, RGM and GEM concentrations order follow as spring > summer > autumn > winter. Finally, the Asian continent has the highest average mercury species concentrations (TGM, RGM, GEM and PBM) when compared with the American and European continents, and the average mercury species concentrations (TGM, RGM, GEM and PBM) displayed declined trends for North America (United States and Canada) and Europe (Spain, Sweden and Southern Baltic) during the years of 2004-2014. Also noteworthy is that the average mercury species concentrations (TGM, RGM, GEM) displayed increasing trends in China and Taiwan during the years of 2008-2016. Japan and Korea are the only two exceptions. Those above two countries mercury species concentrations displayed decreasing trends during years of 2008-2015.

  19. The washout effect during laundry on benzothiazole, benzotriazole, quinoline, and their derivatives in clothing textiles.

    PubMed

    Luongo, Giovanna; Avagyan, Rozanna; Hongyu, Ren; Östman, Conny

    2016-02-01

    In two previous papers, the authors have shown that benzothiazole, benzotriazole, quinoline, and several of their derivatives are widespread in clothing textile articles. A number of these compounds exhibit allergenic and irritating properties and, due to their octanol-water partition coefficient, are prone to be absorbed by the skin. Moreover, they are slightly soluble in water, which could make washing of clothes a route of emission into the environment. In the present study, the washout effect of benzothiazole, benzotriazole, quinoline, and some of their derivatives has been investigated. Twenty-seven textile samples were analyzed before, as well as after five and ten times of washing. The most abundant analyte was found to be benzothiazole, which was detected in 85 % of the samples with an average concentration of 0.53 μg/g (median 0.44 μg/g), followed by quinoline, detected in 81 % of the samples with an average concentration of 2.42 μg/g (median 0.21 μg/g). The average decrease in concentration for benzothiazoles was 50 % after ten times washing, while it was around 20 % for quinolines. The average emission to household wastewater of benzothiazoles and quinolines during one washing (5 kg of clothes made from polyester materials) was calculated to 0.5 and 0.24 g, respectively. These results strongly indicate that laundering of clothing textiles can be an important source of release of these compounds to household wastewater and in the end to aquatic environments. It also demonstrates a potential source of human exposure to these chemicals since considerable amounts of the compounds remain in the clothes even after ten times of washing.

  20. Correlation of transient adenosine release and oxygen changes in the caudate-putamen

    PubMed Central

    Wang, Ying; Venton, B. Jill

    2016-01-01

    Adenosine is an endogenous nucleoside that modulates important physiological processes, such as vasodilation, in the central nervous system. A rapid, 2–4 seconds, mode of adenosine signaling has been recently discovered, but the relationship between this type of adenosine and blood flow change has not been characterized. In this study, adenosine and oxygen changes were simultaneously measured using fast-scan cyclic voltammetry. Oxygen changes occur when there is an increase in local cerebral blood flow and thus are a measure of vasodilation. About 34% of adenosine transients in the rat caudate-putamen are correlated with a subsequent transient change in oxygen. The amount of oxygen was correlated with the concentration of adenosine release and larger adenosine transients (over 0.4 μM) always had subsequent oxygen changes. The average duration of adenosine and oxygen transients were 3.2 seconds and 3.5 seconds, respectively. On average, the adenosine release starts and peaks 0.2 seconds prior to the oxygen. The A2a antagonist, SCH442416, decreased the number of both adenosine and oxygen transient events by about 32%. However, the A1 antagonist, DPCPX, did not significantly affect simultaneous adenosine and oxygen release. The nitric oxide (NO) synthase inhibitor L-NAME also did not affect the concentration or number of adenosine and oxygen release events. These results demonstrate that both adenosine and oxygen release are modulated via A2a receptors. The correlation of transient concentrations, time delay between adenosine and oxygen peaks, and effect of A2a receptors suggests adenosine modulates blood flow on a rapid, sub-second time scale. PMID:27314215

  1. The effect of rumen ciliates on chitinolytic activity, chitin content and the number of fungal zoospores in the rumen fluid of sheep.

    PubMed

    Miltko, Renata; Bełżecki, Grzegorz; Herman, Andrzej; Kowalik, Barbara; Skomiał, Jacek

    2016-12-01

    The objective of this study was to investigate the effect of selected protozoa on the degradation and concentration of chitin and the numbers of fungal zoospores in the rumen fluid of sheep. Three adult ewes were fed a hay-concentrate diet, defaunated, then monofaunated with Entodinium caudatum or Diploplastron affine alone and refaunated with natural rumen fauna. The average density of the protozoa population varied from 6.1 · 10(4) (D. affine) to 42.2 · 10(4) cells/ml rumen fluid (natural rumen fauna). The inoculation of protozoa in the rumen of defaunated sheep increased the total activity of chitinolytic enzymes from 2.9 to 3.6 μmol N-acetylglucosamine/g dry matter (DM) of rumen fluid per min, the chitin concentration from 6.3 to 7.2 mg/g DM of rumen fluid and the number of fungal zoospores from 8.1 to 10.9 · 10(5) cells/ml rumen fluid. All examined indices showed diurnal variations. Ciliate population density was highest immediately prior to feeding and lowest at 4 h thereafter. The opposite effects were observed for the numbers of fungal zoospores, the chitin concentration and chitinolytic activity. Furthermore, it was found that chitin from zoospores may account for up to 95% of total microbial chitin in the rumen fluid of sheep. In summary, the examined ciliate species showed the ability of chitin degradation as well as a positive influence on the development of the ruminal fungal population.

  2. Random SU(2) invariant tensors

    NASA Astrophysics Data System (ADS)

    Li, Youning; Han, Muxin; Ruan, Dong; Zeng, Bei

    2018-04-01

    SU(2) invariant tensors are states in the (local) SU(2) tensor product representation but invariant under the global group action. They are of importance in the study of loop quantum gravity. A random tensor is an ensemble of tensor states. An average over the ensemble is carried out when computing any physical quantities. The random tensor exhibits a phenomenon known as ‘concentration of measure’, which states that for any bipartition the average value of entanglement entropy of its reduced density matrix is asymptotically the maximal possible as the local dimensions go to infinity. We show that this phenomenon is also true when the average is over the SU(2) invariant subspace instead of the entire space for rank-n tensors in general. It is shown in our earlier work Li et al (2017 New J. Phys. 19 063029) that the subleading correction of the entanglement entropy has a mild logarithmic divergence when n  =  4. In this paper, we show that for n  >  4 the subleading correction is not divergent but a finite number. In some special situation, the number could be even smaller than 1/2, which is the subleading correction of random state over the entire Hilbert space of tensors.

  3. Effects of Al2O3-Cu/water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime

    NASA Astrophysics Data System (ADS)

    Takabi, Behrouz; Shokouhmand, Hossein

    2015-09-01

    In this paper, forced convection of a turbulent flow of pure water, Al2O3/water nanofluid and Al2O3-Cu/water hybrid nanofluid (a new advanced nanofluid composited of Cu and Al2O3 nanoparticles) through a uniform heated circular tube is numerically analyzed. This paper examines the effects of these three fluids as the working fluids, a wide range of Reynolds number (10 000 ≤ Re ≤ 10 0000) and also the volume concentration (0% ≤ ϕ ≤ 2%) on heat transfer and hydrodynamic performance. The finite volume discretization method is employed to solve the set of the governing equations. The results indicate that employing hybrid nanofluid improves the heat transfer rate with respect to pure water and nanofluid, yet it reveals an adverse effect on friction factor and appears severely outweighed by pressure drop penalty. However, the average increase of the average Nusselt number (when compared to pure water) in Al2O3-Cu/water hybrid nanofluid is 32.07% and the amount for the average increase of friction factor would be 13.76%.

  4. A partial least squares based spectrum normalization method for uncertainty reduction for laser-induced breakdown spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Li, Xiongwei; Wang, Zhe; Lui, Siu-Lung; Fu, Yangting; Li, Zheng; Liu, Jianming; Ni, Weidou

    2013-10-01

    A bottleneck of the wide commercial application of laser-induced breakdown spectroscopy (LIBS) technology is its relatively high measurement uncertainty. A partial least squares (PLS) based normalization method was proposed to improve pulse-to-pulse measurement precision for LIBS based on our previous spectrum standardization method. The proposed model utilized multi-line spectral information of the measured element and characterized the signal fluctuations due to the variation of plasma characteristic parameters (plasma temperature, electron number density, and total number density) for signal uncertainty reduction. The model was validated by the application of copper concentration prediction in 29 brass alloy samples. The results demonstrated an improvement on both measurement precision and accuracy over the generally applied normalization as well as our previously proposed simplified spectrum standardization method. The average relative standard deviation (RSD), average of the standard error (error bar), the coefficient of determination (R2), the root-mean-square error of prediction (RMSEP), and average value of the maximum relative error (MRE) were 1.80%, 0.23%, 0.992, 1.30%, and 5.23%, respectively, while those for the generally applied spectral area normalization were 3.72%, 0.71%, 0.973, 1.98%, and 14.92%, respectively.

  5. Hydration of alcohol clusters in 1-propanol-water mixture studied by quasielastic neutron scattering and an interpretation of anomalous excess partial molar volume.

    PubMed

    Misawa, M; Inamura, Y; Hosaka, D; Yamamuro, O

    2006-08-21

    Quasielastic neutron scattering measurements have been made for 1-propanol-water mixtures in a range of alcohol concentration from 0.0 to 0.167 in mole fraction at 25 degrees C. Fraction alpha of water molecules hydrated to fractal surface of alcohol clusters in 1-propanol-water mixture was obtained as a function of alcohol concentration. Average hydration number N(ws) of 1-propanol molecule is derived from the value of alpha as a function of alcohol concentration. By extrapolating N(ws) to infinite dilution, we obtain values of 12-13 as hydration number of isolated 1-propanol molecule. A simple interpretation of structural origin of anomalous excess partial molar volume of water is proposed and as a result a simple equation for the excess partial molar volume is deduced in terms of alpha. Calculated values of the excess partial molar volumes of water and 1-propanol and the excess molar volume of the mixture are in good agreement with experimental values.

  6. Urban-air-toxics Monitoring Program carbonyl results, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-07-01

    The report summarizes the results of sampling ambient air for selected carbonyl containing compounds in 12 urban centers in the contiguous United States as part of the Urban Air Toxics Monitoring Program (UATMP). Formaldehyde, acetaldehyde, and acetone concentrations were measured using 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges to collect the carbonyls for subsequent analysis. Sampling and analysis followed guidance provided in U.S. Environmental Protection Agency (EPA) compendium method TO-11. Formaldehyde concentrations ranged from 0.42 to 34.5 ppbv with an average concentration for all sites of 4.2 ppbv. Site average formaldehyde concentrations ranged from 1.5 ppbv for Houston, TX (H1TX) to 7.9 formore » Washington, DC (W2DC). Acetaldehyde concentrations ranged from 0.37 to 9.5 ppbv, averaging 1.7 ppbv over all 1990 UATMP sites. Site average acetaldehyde concentrations ranged from 0.76 ppbv at Houston, TX (H1TX) to 2.5 ppbv at Baton Rouge, LA (BRLA). Acetone concentrations ranged from 0.37 to 10.8 ppbv and averaged 1.8 ppbv over all sites. Site average acetone concentrations ranged from 0.68 ppbv at Houston, TX (H1TX) to 2.9 ppbv at Chicago, IL (C4IL).« less

  7. Characteristic of nanoparticles generated from different nano-powders by using different dispersion methods

    NASA Astrophysics Data System (ADS)

    Tsai, Chuen-Jinn; Lin, Guan-Yu; Liu, Chun-Nan; He, Chi-En; Chen, Chun-Wan

    2012-03-01

    A standard rotating drum with a modified sampling train (RD), a vortex shaker (VS), and a SSPD (small-scale powder disperser) were used to investigate the emission characteristics of nano-powders, including nano-titanium dioxide (nano-TiO2, primary diameter: 21 nm), nano-zinc oxide (nano-ZnO, primary diameter: 30-50 nm), and nano-silicon dioxide (nano-SiO2, primary diameter: 10-30 nm). A TSI SMPS (scanning mobility particle sizer), a TSI APS (aerodynamic particle sizer), and a MSP MOUDI (micro-orifice uniform deposit impactor) were used to measure the number and mass distributions of generated particles. Significant differences in specific number and mass concentration or distributions were found among different methods and nano-powders with the most specific number and mass concentration and the smallest particles being generated by the most energetic SSPD, followed by VS and RD. Near uni-modal number or mass distributions were observed for the SSPD while bi-modal number or mass distributions existed for nano-powders except nano-SiO2 which also exhibited bimodal mass distributions. The 30-min average results showed that the mass median aerodynamic diameter (MMAD) and number median diameter (NMD) of the SSPD ranged 1.1-2.1 μm and 166-261 nm, respectively, for all three nano-powders, which were smaller than those of the VS (MMAD: 3.3-6.0 μm and NMD: 156-462 nm), and the RD (MMAD: 5.2-11.2 μm and NMD: 198-479 nm). For nano-particles (electric mobility diameter < 100 nm), specific mass concentrations were nearly negligible for all three nano-powders and test methods. Specific number concentrations of nano-particles were low for the RD tester but were elevated when more energetic VS and SSPD testers were used. The quantitative size and concentration data obtained in this study is useful to elucidate the field emission and personal exposure data in the future provided that particle loss in the generation system is carefully assessed.

  8. Occupational Exposure to Cobalt and Tungsten in the Swedish Hard Metal Industry: Air Concentrations of Particle Mass, Number, and Surface Area

    PubMed Central

    Bryngelsson, Ing-Liss; Pettersson, Carin; Husby, Bente; Arvidsson, Helena; Westberg, Håkan

    2016-01-01

    Exposure to cobalt in the hard metal industry entails severe adverse health effects, including lung cancer and hard metal fibrosis. The main aim of this study was to determine exposure air concentration levels of cobalt and tungsten for risk assessment and dose–response analysis in our medical investigations in a Swedish hard metal plant. We also present mass-based, particle surface area, and particle number air concentrations from stationary sampling and investigate the possibility of using these data as proxies for exposure measures in our study. Personal exposure full-shift measurements were performed for inhalable and total dust, cobalt, and tungsten, including personal real-time continuous monitoring of dust. Stationary measurements of inhalable and total dust, PM2.5, and PM10 was also performed and cobalt and tungsten levels were determined, as were air concentration of particle number and particle surface area of fine particles. The personal exposure levels of inhalable dust were consistently low (AM 0.15mg m−3, range <0.023–3.0mg m−3) and below the present Swedish occupational exposure limit (OEL) of 10mg m−3. The cobalt levels were low as well (AM 0.0030mg m−3, range 0.000028–0.056mg m−3) and only 6% of the samples exceeded the Swedish OEL of 0.02mg m−3. For continuous personal monitoring of dust exposure, the peaks ranged from 0.001 to 83mg m−3 by work task. Stationary measurements showed lower average levels both for inhalable and total dust and cobalt. The particle number concentration of fine particles (AM 3000 p·cm−3) showed the highest levels at the departments of powder production, pressing and storage, and for the particle surface area concentrations (AM 7.6 µm2·cm−3) similar results were found. Correlating cobalt mass-based exposure measurements to cobalt stationary mass-based, particle area, and particle number concentrations by rank and department showed significant correlations for all measures except for particle number. Linear regression analysis of the same data showed statistically significant regression coefficients only for the mass-based aerosol measures. Similar results were seen for rank correlation in the stationary rig, and linear regression analysis implied significant correlation for mass-based and particle surface area measures. The mass-based air concentration levels of cobalt and tungsten in the hard metal plant in our study were low compared to Swedish OELs. Particle number and particle surface area concentrations were in the same order of magnitude as for other industrial settings. Regression analysis implied the use of stationary determined mass-based and particle surface area aerosol concentration as proxies for various exposure measures in our study. PMID:27143598

  9. Aircraft- and ground-based assessment of the CCN-AOD relationship and implications on model analysis of ACI and underlying aerosol processes

    NASA Astrophysics Data System (ADS)

    Shinozuka, Y.; Clarke, A. D.; Nenes, A.; Lathem, T. L.; Redemann, J.; Jefferson, A.; Wood, R.

    2014-12-01

    Contrary to common assumptions in satellite-based modeling of aerosol-cloud interactions, ∂logCCN/∂logAOD is less than unity, i.e., the number concentration of cloud condensation nuclei (CCN) less than doubles as aerosol optical depth (AOD) doubles. This can be explained by omnipresent aerosol processes. Condensation, coagulation and cloud processing, for example, generally make particles scatter more light while hardly increasing their number. This paper reports on the relationship in local air masses between CCN concentration, aerosol size distribution and light extinction observed from aircraft and the ground at diverse locations. The CCN-to-local-extinction relationship, when averaged over ~1 km distance and sorted by the wavelength dependence of extinction, varies approximately by a factor of 2, reflecting the variability in aerosol intensive properties. This, together with retrieval uncertainties and the variability in aerosol spatio-temporal distribution and hygroscopic growth, challenges satellite-based CCN estimates. However, the large differences in estimated CCN may correspond to a considerably lower uncertainty in cloud drop number concentration (CDNC), given the sublinear response of CDNC to CCN. Overall, our findings from airborne and ground-based observations call for model-based reexamination of aerosol-cloud interactions and underlying aerosol processes.

  10. A systematic coarse-graining strategy for semi-dilute copolymer solutions: from monomers to micelles.

    PubMed

    Capone, Barbara; Coluzza, Ivan; Hansen, Jean-Pierre

    2011-05-18

    A systematic coarse-graining procedure is proposed for the description and simulation of AB diblock copolymers in selective solvents. Each block is represented by a small number, n(A) or n(B), of effective segments or blobs, containing a large number of microscopic monomers. n(A) and n(B) are unequivocally determined by imposing that blobs do not, on average, overlap, even if complete copolymer coils interpenetrate (semi-dilute regime). Ultra-soft effective interactions between blobs are determined by a rigorous inversion procedure in the low concentration limit. The methodology is applied to an athermal copolymer model where A blocks are ideal (theta solvent), B blocks self-avoiding (good solvent), while A and B blocks are mutually avoiding. The model leads to aggregation into polydisperse spherical micelles beyond a critical micellar concentration determined by Monte Carlo simulations for several size ratios f of the two blocks. The simulations also provide accurate estimates of the osmotic pressure and of the free energy of the copolymer solutions over a wide range of concentrations. The mean micellar aggregation numbers are found to be significantly lower than those predicted by an earlier, minimal two-blob representation (Capone et al 2009 J. Phys. Chem. B 113 3629).

  11. Phenotypic and biochemical profile changes in calendula (Calendula officinalis L.) plants treated with two chemical mutagenesis.

    PubMed

    El-Nashar, Y I; Asrar, A A

    2016-05-06

    Chemical mutagenesis is an efficient tool used in mutation-breeding programs to improve the vital characters of the floricultural crops. This study aimed to estimate the effects of different concentrations of two chemical mutagens; sodium azide (SA) and diethyl sulfate (DES). The vegetative growth and flowering characteristics in two generations (M1 and M2) of calendula plants were investigated. Seeds were treated with five different concentrations of SA and DES (at the same rates) of 1000, 2000, 3000, 4000, and 5000 ppm, in addition to a control treatment of 0 ppm. Results showed that lower concentrations of SA mutagen had significant effects on seed germination percentage, plant height, leaf area, plant fresh weight, flowering date, inflorescence diameter, and gas-exchange measurements in plants of both generations. Calendula plants tended to flower earlier under low mutagen concentrations (1000 ppm), whereas higher concentrations delayed flowering significantly. Positive results on seed germination, plant height, number of branches, plant fresh weight, and leaf area were observed in the M2-generation at lower concentrations of SA (1000 ppm), as well as at 4000 ppm DES on number of leaves and inflorescences. The highest total soluble protein was detected at the concentrations of 1000 ppm SA and 2000 ppm DES. DES showed higher average of acid phosphatase activity than SA. Results indicated that lower concentrations of SA and DES mutagens had positive effects on seed germination percentage, plant height, leaf area, plant fresh weight, flowering date, inflorescence diameter, and gas-exchange measurements. Thus, lower mutagen concentrations could be recommended for better floral and physio-chemical performance.

  12. Preliminary structural design of a lunar transfer vehicle aerobrake. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.

    1992-01-01

    An aerobrake concept for a Lunar transfer vehicle was weight optimized through the use of the Taguchi design method, structural finite element analyses and structural sizing routines. Six design parameters were chosen to represent the aerobrake structural configuration. The design parameters included honeycomb core thickness, diameter to depth ratio, shape, material, number of concentric ring frames, and number of radial frames. Each parameter was assigned three levels. The minimum weight aerobrake configuration resulting from the study was approx. half the weight of the average of all twenty seven experimental configurations. The parameters having the most significant impact on the aerobrake structural weight were identified.

  13. CCN production by new particle formation in the free troposphere

    NASA Astrophysics Data System (ADS)

    Rose, Clémence; Sellegri, Karine; Moreno, Isabel; Velarde, Fernando; Ramonet, Michel; Weinhold, Kay; Krejci, Radovan; Andrade, Marcos; Wiedensohler, Alfred; Ginot, Patrick; Laj, Paolo

    2017-01-01

    Global models predict that new particle formation (NPF) is, in some environments, responsible for a substantial fraction of the total atmospheric particle number concentration and subsequently contributes significantly to cloud condensation nuclei (CCN) concentrations. NPF events were frequently observed at the highest atmospheric observatory in the world, on Chacaltaya (5240 m a.s.l.), Bolivia. The present study focuses on the impact of NPF on CCN population. Neutral cluster and Air Ion Spectrometer and mobility particle size spectrometer measurements were simultaneously used to follow the growth of particles from cluster sizes down to ˜ 2 nm up to CCN threshold sizes set to 50, 80 and 100 nm. Using measurements performed between 1 January and 31 December 2012, we found that 61 % of the 94 analysed events showed a clear particle growth and significant enhancement of the CCN-relevant particle number concentration. We evaluated the contribution of NPF, relative to the transport and growth of pre-existing particles, to CCN size. The averaged production of 50 nm particles during those events was 5072, and 1481 cm-3 for 100 nm particles, with a larger contribution of NPF compared to transport, especially during the wet season. The data set was further segregated into boundary layer (BL) and free troposphere (FT) conditions at the site. The NPF frequency of occurrence was higher in the BL (48 %) compared to the FT (39 %). Particle condensational growth was more frequently observed for events initiated in the FT, but on average faster for those initiated in the BL, when the amount of condensable species was most probably larger. As a result, the potential to form new CCN was higher for events initiated in the BL (67 % against 53 % in the FT). In contrast, higher CCN number concentration increases were found when the NPF process initially occurred in the FT, under less polluted conditions. This work highlights the competition between particle growth and the removal of freshly nucleated particles by coagulation processes. The results support model predictions which suggest that NPF is an effective source of CCN in some environments, and thus may influence regional climate through cloud-related radiative processes.

  14. Observed ozone exceedances in Italy: statistical analysis and modelling in the period 2002-2015

    NASA Astrophysics Data System (ADS)

    Falasca, Serena; Curci, Gabriele; Candeloro, Luca; Conte, Annamaria; Ippoliti, Carla

    2017-04-01

    Local ambient air quality is strongly influenced by anthropogenic emissions and meteorological conditions. The year 2015 is considered by NASA scientists as one of the hottest at the global scale since 1880. Furthermore, in Europe it was the first summer after the introduction of Euro6 regulation, the latest emission standard for passenger vehicles. The goal of this study is twofold: (1) the investigation of the impact of the heat wave occurred in the summer of 2015 on ozone levels and (2) the exploration of the weight of temperature as driver of high-level ozone events with respect to other variables. We performed a quantitative examination of the ozone seasons (May-September) for the period 2002-2015 using ozone concentration and weather data from 24 stations across Italy. The number of exceedances of limit values set by the European directive was calculated for each year, and compared with the trend of ozone concentration and temperature. Furthermore, the data were grouped in clusters of consecutive days of ozone exceedances in order to characterize the duration and the intensity of high ozone events. Finally, we developed a multivariate logistic regression model to investigate the role of a set of independent variables (meteorological, and temporal variables, altitude, number of inhabitants, vehicle emission standard) on the probability of exceedances. Results show that 2015 is one of the hottest years after 2003. During the period 2002-2015, the average number of exceedances per station of the daily maximum 8-hour average is often higher than the limit established by the European directive (25 per year). The highest number of exceedances was 65 per station, reached in 2003. The Po Valley is confirmed as a hot spot for pollution, with more frequent exceedances and a higher sensitivity to temperature, especially at urban sites. Ozone events in 2015 were fewer than recent years, but of longer duration (on average 4 days against 3 days), and with similar mean concentrations. On the other hand, high-temperature events have similar duration and higher mean temperature with respect to recent years, pointing out that temperature is not the only driver of high-ozone events. The statistical model confirms a significant impact of the meteorological variables (positive for temperature and pressure, negative for humidity and wind speed) on the probability of ozone events. Significant predictors are also the altitude (negative) and the number of inhabitants (positive). The decreasing observed recent trend is explained by the introduction of the Euro regulations, rather than natural variability. However, we find an inversion of trend for the more recent period under Euro6 (from September 2014), but we cautionary wait a confirmation from additional data at least for the year 2016.

  15. Nonimaging concentrators for diode-pumped slab lasers

    NASA Astrophysics Data System (ADS)

    Lacovara, Philip; Gleckman, Philip L.; Holman, Robert L.; Winston, Roland

    1991-10-01

    Diode-pumped slab lasers require concentrators for high-average power operation. We detail the properties of diode lasers and slab lasers which set the concentration requirements and the concentrator design methodologies that are used, and describe some concentrator designs used in high-average power slab lasers at Lincoln Laboratory.

  16. 40 CFR Table 2 to Subpart Dddd of... - Operating Requirements

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... THC concentration a in the thermal oxidizer exhaust below the maximum concentration established during... average THC concentration a in the catalytic oxidizer exhaust below the maximum concentration established... the range established according to § 63.2262(m) Maintain the 24-hour block average THC concentration a...

  17. 40 CFR Table 2 to Subpart Dddd of... - Operating Requirements

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... THC concentration a in the thermal oxidizer exhaust below the maximum concentration established during... average THC concentration a in the catalytic oxidizer exhaust below the maximum concentration established... the range established according to § 63.2262(m) Maintain the 24-hour block average THC concentration a...

  18. 40 CFR Table 2 to Subpart Dddd of... - Operating Requirements

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... THC concentration a in the thermal oxidizer exhaust below the maximum concentration established during... average THC concentration a in the catalytic oxidizer exhaust below the maximum concentration established... the range established according to § 63.2262(m) Maintain the 24-hour block average THC concentration a...

  19. Secondhand smoke in cars: assessing children's potential exposure during typical journey conditions.

    PubMed

    Semple, Sean; Apsley, Andrew; Galea, Karen S; MacCalman, Laura; Friel, Brenda; Snelgrove, Vicki

    2012-11-01

    To measure levels of fine particulate matter in the rear passenger area of cars where smoking does and does not take place during typical real-life car journeys. Fine particulate matter (PM(2.5)) was used as a marker of secondhand smoke and was measured and logged every minute of each car journey undertaken by smoking and non-smoking study participants. The monitoring instrument was located at breathing zone height in the rear seating area of each car. Participants were asked to carry out their normal driving and smoking behaviours over a 3-day period. 17 subjects (14 smokers) completed a total of 104 journeys (63 smoking journeys). Journeys averaged 27 min (range 5-70 min). PM(2.5) levels averaged 85 and 7.4 μg/m(3) during smoking and non-smoking car journeys, respectively. During smoking journeys, peak PM(2.5) concentrations averaged 385 μg/m(3), with one journey measuring over 880 μg/m(3). PM(2.5) concentrations were strongly linked to rate of smoking (cigarettes per minute). Use of forced ventilation and opening of car windows were very common during smoking journeys, but PM(2.5) concentrations were still found to exceed WHO indoor air quality guidance (25 μg/m(3)) at some point in the measurement period during all smoking journeys. PM(2.5) concentrations in cars where smoking takes place are high and greatly exceed international indoor air quality guidance values. Children exposed to these levels of fine particulate are likely to suffer ill-health effects. There are increasing numbers of countries legislating against smoking in cars and such measures may be appropriate to prevent the exposure of children to these high levels of secondhand smoke.

  20. Health risk among asbestos cement sheet manufacturing workers in Thailand.

    PubMed

    Phanprasit, Wantanee; Sujirarat, Dusit; Chaikittiporn, Chalermchai

    2009-12-01

    To assess asbestos exposure and calculate the relative risks of lung cancer among asbestos cement roof sheet workers and to predict the incidence rate of lung cancer caused by asbestos in Thailand. A cross-sectional study was conducted in four asbestos cement roof factories. Both area and personal air samples were collected and analyzed employing NIOSH method # 7400 and counting rule A for all procesess and activities. The time weight average exposures were calculated for each studied task using average area concentrations of the mill and personal concentrations. Then, cumulative exposures were estimated based on the past nation-wide air sampling concentrations and those from the present study. The relative risk (RR) of lung cancer among asbestos cement sheet workers was calculated and the number of asbestos related lung cancer case was estimated. The roof fitting polishers had the highest exposure to airborne asbestos fiber (0.73 fiber/ml). The highest average area concentration was at the conveyor to the de-bagger areas (0.02 fiber/ml). The estimated cumulative exposure for the workers performed studied-tasks ranged in between 90.13-115.65 fiber-years/ml while the relative risk of lung cancer calculated using US. EPA's model were 5.37-5.96. Based on the obtained RR, lung cancer among AC sheet in Thailand would be 2 case/year. In case that AC sheet will not be prohibited from being manufactured, even though only chrysotile is allowed, the surveillance system should be further developed and more seriously implemented. The better control measures for all processes must be implemented. Furthermore, due to the environmental persistence of asbestos fiber, its life cycle analysis should be conducted in order to control environmental exposure of general population.

  1. Spatiotemporal analysis and human exposure assessment on polycyclic aromatic hydrocarbons in indoor air, settled house dust, and diet: A review.

    PubMed

    Ma, Yuning; Harrad, Stuart

    2015-11-01

    This review summarizes the published literature on the presence of polycyclic aromatic hydrocarbons (PAH) in indoor air, settled house dust, and food, and highlights geographical and temporal trends in indoor PAH contamination. In both indoor air and dust, ΣPAH concentrations in North America have decreased over the past 30 years with a halving time of 6.7±1.9years in indoor air and 5.0±2.3 years in indoor dust. In contrast, indoor PAH concentrations in Asia have remained steady. Concentrations of ΣPAH in indoor air are significantly (p<0.01) higher in Asia than North America. In studies recording both vapor and particulate phases, the global average concentration in indoor air of ΣPAH excluding naphthalene is between 7 and 14,300 ng/m(3). Over a similar period, the average ΣPAH concentration in house dust ranges between 127 to 115,817ng/g. Indoor/outdoor ratios of atmospheric concentrations of ΣPAH have declined globally with a half-life of 6.3±2.3 years. While indoor/outdoor ratios for benzo[a]pyrene toxicity equivalents (BaPeq) declined in North America with a half-life of 12.2±3.2 years, no significant decline was observed when data from all regions were considered. Comparison of the global database, revealed that I/O ratios for ΣPAH (average=4.3±1.3), exceeded significantly those of BaPeq (average=1.7±0.4) in the same samples. The significant decline in global I/O ratios suggests that indoor sources of PAH have been controlled more effectively than outdoor sources. Moreover, the significantly higher I/O ratios for ΣPAH compared to BaPeq, imply that indoor sources of PAH emit proportionally more of the less carcinogenic PAH than outdoor sources. Dietary exposure to PAH ranges from 137 to 55,000 ng/day. Definitive spatiotemporal trends in dietary exposure were precluded due to relatively small number of relevant studies. However, although reported in only one study, PAH concentrations in Chinese diets exceeded those in diet from other parts of the world, a pattern consistent with the spatial trends observed for concentrations of PAH in indoor air. Evaluation of human exposure to ΣPAH via inhalation, dust and diet ingestion, suggests that while intake via diet and inhalation exceeds that via dust ingestion; all three pathways contribute and merit continued assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Influence of wind speed averaging on estimates of dimethylsulfide emission fluxes

    DOE PAGES

    Chapman, E. G.; Shaw, W. J.; Easter, R. C.; ...

    2002-12-03

    The effect of various wind-speed-averaging periods on calculated DMS emission fluxes is quantitatively assessed. Here, a global climate model and an emission flux module were run in stand-alone mode for a full year. Twenty-minute instantaneous surface wind speeds and related variables generated by the climate model were archived, and corresponding 1-hour-, 6-hour-, daily-, and monthly-averaged quantities calculated. These various time-averaged, model-derived quantities were used as inputs in the emission flux module, and DMS emissions were calculated using two expressions for the mass transfer velocity commonly used in atmospheric models. Results indicate that the time period selected for averaging wind speedsmore » can affect the magnitude of calculated DMS emission fluxes. A number of individual marine cells within the global grid show DMS emissions fluxes that are 10-60% higher when emissions are calculated using 20-minute instantaneous model time step winds rather than monthly-averaged wind speeds, and at some locations the differences exceed 200%. Many of these cells are located in the southern hemisphere where anthropogenic sulfur emissions are low and changes in oceanic DMS emissions may significantly affect calculated aerosol concentrations and aerosol radiative forcing.« less

  3. Association of Air Pollution Exposures With High-Density Lipoprotein Cholesterol and Particle Number: The Multi-Ethnic Study of Atherosclerosis.

    PubMed

    Bell, Griffith; Mora, Samia; Greenland, Philip; Tsai, Michael; Gill, Ed; Kaufman, Joel D

    2017-05-01

    The relationship between air pollution and cardiovascular disease may be explained by changes in high-density lipoprotein (HDL). We examined the cross-sectional relationship between air pollution and both HDL cholesterol and HDL particle number in the MESA Air study (Multi-Ethnic Study of Atherosclerosis Air Pollution). Study participants were 6654 white, black, Hispanic, and Chinese men and women aged 45 to 84 years. We estimated individual residential ambient fine particulate pollution exposure (PM 2.5 ) and black carbon concentrations using a fine-scale likelihood-based spatiotemporal model and cohort-specific monitoring. Exposure periods were averaged to 12 months, 3 months, and 2 weeks prior to examination. HDL cholesterol and HDL particle number were measured in the year 2000 using the cholesterol oxidase method and nuclear magnetic resonance spectroscopy, respectively. We used multivariable linear regression to examine the relationship between air pollution exposure and HDL measures. A 0.7×10 - 6 m - 1 higher exposure to black carbon (a marker of traffic-related pollution) averaged over a 1-year period was significantly associated with a lower HDL cholesterol (-1.68 mg/dL; 95% confidence interval, -2.86 to -0.50) and approached significance with HDL particle number (-0.55 mg/dL; 95% confidence interval, -1.13 to 0.03). In the 3-month averaging time period, a 5 μg/m 3 higher PM 2.5 was associated with lower HDL particle number (-0.64 μmol/L; 95% confidence interval, -1.01 to -0.26), but not HDL cholesterol (-0.05 mg/dL; 95% confidence interval, -0.82 to 0.71). These data are consistent with the hypothesis that exposure to air pollution is adversely associated with measures of HDL. © 2017 American Heart Association, Inc.

  4. Waste Workers’ Exposure to Airborne Fungal and Bacterial Species in the Truck Cab and During Waste Collection

    PubMed Central

    Madsen, Anne Mette; Alwan, Taif; Ørberg, Anders; Uhrbrand, Katrine; Jørgensen, Marie Birk

    2016-01-01

    A large number of people work with garbage collection, and exposure to microorganisms is considered an occupational health problem. However, knowledge on microbial exposure at species level is limited. The aim of the study was to achieve knowledge on waste collectors’ exposure to airborne inhalable fungal and bacterial species during waste collection with focus on the transport of airborne microorganisms into the truck cab. Airborne microorganisms were collected with samplers mounted in the truck cab, on the workers’ clothes, and outdoors. Fungal and bacterial species were quantified and identified. The study showed that the workers were exposed to between 112 and 4.8×104 bacteria m−3 air and 326 and 4.6×104 fungi m−3 air. The personal exposures to bacteria and fungi were significantly higher than the concentrations measured in the truck cabs and in the outdoor references. On average, the fungal and bacterial concentrations in truck cabs were 111 and 7.7 times higher than outdoor reference measurements. In total, 23 fungal and 38 bacterial species were found and identified. Most fungal species belonged to the genus Penicillium and in total 11 Penicillium species were found. Identical fungal species were often found both in a personal sample and in the same person’s truck cab, but concentrations were on average 27 times higher in personal samples. Concentrations of fungal and bacterial species found only in the personal samples were lower than concentrations of species also found in truck cabs. Skin-related bacteria constituted a large fraction of bacterial isolates found in personal and truck cab samples. In total, six Staphylococcus species were found. In outdoor samples, no skin-related bacteria were found. On average, concentrations of bacterial species found both in the truck cab and personal samples were 77 times higher in personal samples than in truck cab samples. In conclusion, high concentrations of fungi were found in truck cabs, but the highest concentrations were found in personal samples; fungal and bacterial species found in high concentrations in personal samples were also found in truck cabs, but in lower concentrations indicating that both fungi and bacteria are transported by the workers into the truck cab, and are subsequently aerosolized in the truck cab. PMID:27098185

  5. Dissolved Organic Carbon in the Yukon, Tanana and Porcupine Rivers, Alaska

    NASA Astrophysics Data System (ADS)

    Aiken, G. R.; Striegl, R. G.; Wickland, K. P.; Dornblaser, M. M.; Raymond, P. A.

    2006-12-01

    The spatial and temporal variability of dissolved organic carbon (DOC) in the Yukon River (YR) and two major tributaries, the Porcupine River (PR), a black water river draining a watershed almost entirely underlain by permafrost, and the Tanana River (TR), a glacial dominated river, are being studied to better define processes controlling DOC in these systems. Five-year seasonal averages indicate DOC concentrations follow the discharge hydrograph, with highest daily and seasonal flux occurring during spring in YR and PR and during summer-autumn in TR. Largest DOC concentrations and specific UV absorption (SUVA) values, a measure of aromatic carbon content of the DOC and an indicator of DOC source, occurred at all locations during spring snowmelt. Lowest DOC concentration and SUVA occurred during low-flow in winter due to greatly reduced contributions of soil organic matter and to relatively greater influences of ground water. While all sites had comparable DOC concentration during winter, DOC concentration was greatest at PR during spring and summer-autumn, whereas TR had the lowest average DOC and SUVA values. Within the YR, average DOC concentration and SUVA values in spring and summer-autumn increase downriver due to contributions from organic carbon rich tributaries, such as PR, that increase in number and significance as the river flows through Alaska. Most the DOC in each system was comprised of hydrophobic organic acids (HPOA) derived from terrestrial vegetation. During winter, the hydrophilic fraction, determined to be the most biodegradable, was a larger percentage of the DOC than during spring-autumn. During spring, HPOA concentration and SUVA increased significantly at all sites, suggesting that most DOC in spring is derived from terrestrial organic matter that was frozen on the land surface over winter. During spring-autumn, PR had the largest concentration of HPOA and TR had the least. Like DOC concentration, HPOA concentration and SUVA increased down river. 14C-DOC values correspond to radiocarbon ages of modern (PR), 282 (TR), and 328 (YR) yrs B.P, indicating the presence of some aged DOC in YR and TR. Comparison of the chemical character of DOC from sites along the YR suggests that most DOC is transported from its source to the Bering Sea with little within river chemical or biological alteration, a result supported by laboratory biodegradation experiments.

  6. Associations between IVF outcomes and essential trace elements measured in follicular fluid and urine: a pilot study.

    PubMed

    Ingle, Mary E; Bloom, Michael S; Parsons, Patrick J; Steuerwald, Amy J; Kruger, Pamela; Fujimoto, Victor Y

    2017-02-01

    A hypothesis-generating pilot study exploring associations between essential trace elements measured in follicular fluid (FF) and urine and in vitro fertilization (IVF) endpoints. We recruited 58 women undergoing IVF between 2007 and 2008, and measured cobalt, chromium, copper, manganese, molybdenum, and zinc in FF (n = 46) and urine (n = 45) by inductively coupled plasma mass spectrometry (ICP-MS). We used multivariable regression models to assess the impact of FF and urine trace elements on IVF outcomes, adjusted for age, body mass index, race, and cigarette smoking. Trace elements were mostly present at lower concentrations in FF than in urine. The average number of oocytes retrieved was positively associated with higher urine cobalt, chromium, copper, and molybdenum concentrations. FF chromium and manganese were negatively associated with the proportion of mature oocytes, yet urine manganese had a positive association. FF zinc was inversely associated with average oocyte fertilization. Urine trace elements were significant positive predictors for the total number of embryos generated. FF copper predicted lower embryo fragmentation while urine copper was associated with higher embryo cell number and urine manganese with higher embryo fragmentation. No associations were detected for implantation, pregnancy, or live birth. Our results suggest the importance of trace elements in both FF and urine for intermediate, although not necessarily clinical, IVF endpoints. The results differed using FF or urine biomarkers of exposure, which may have implications for the design of clinical and epidemiologic investigations. These initial findings will form the basis of a more definitive future study.

  7. The effect of concentric constriction of the visual field to 10 and 15 degrees on simulated motor vehicle accidents

    PubMed Central

    Udagawa, Sachiko; Iwase, Aiko; Susuki, Yuto; Kunimatsu-Sanuki, Shiho; Fukuchi, Takeo; Matsumoto, Chota; Ohno, Yuko; Ono, Hiroshi; Sugiyama, Kazuhisa; Araie, Makoto

    2018-01-01

    Purpose Traffic accidents are associated with the visual function of drivers, as well as many other factors. Driving simulator systems have the advantage of controlling for traffic- and automobile-related conditions, and using pinhole glasses can control the degree of concentric concentration of the visual field. We evaluated the effect of concentric constriction of the visual field on automobile driving, using driving simulator tests. Methods Subjects meeting criteria for normal eyesight were included in the study. Pinhole glasses with variable aperture sizes were adjusted to mimic the conditions of concentric visual field constrictions of 10° and 15°, using a CLOCK CHART®. The test contained 8 scenarios (2 oncoming right-turning cars and 6 jump-out events from the side). Results Eighty-eight subjects were included in the study; 37 (mean age = 52.9±15.8 years) subjects were assigned to the 15° group, and 51 (mean = 48.6±15.5 years) were assigned to the 10° group. For all 8 scenarios, the number of accidents was significantly higher among pinhole wearing subjects. The average number of all types of accidents per person was significantly higher in the pinhole 10° group (4.59±1.81) than the pinhole 15° group (3.68±1.49) (P = 0.032). The number of accidents associated with jump-out scenarios, in which a vehicle approaches from the side on a straight road with a good view, was significantly higher in the pinhole 10° group than in the pinhole 15° group. Conclusions Concentric constriction of the visual field was associated with increased number of traffic accidents. The simulation findings indicated that a visual field of 10° to 15° may be important for avoiding collisions in places where there is a straight road with a good view. PMID:29538425

  8. An investigation on the effects of air on electron energy in atmospheric pressure helium plasma jets

    NASA Astrophysics Data System (ADS)

    Liu, Yadi; Tan, Zhenyu; Chen, Xinxian; Li, Xiaotong; Zhang, Huimin; Pan, Jie; Wang, Xiaolong

    2018-03-01

    In this work, the effects of air on electron energy in the atmospheric pressure helium plasma jet produced by a needle-plane discharge system have been investigated by means of the numerical simulation based on a two-dimensional fluid model, and the air concentration dependences of the reactive species densities have also been calculated. In addition, the synergistic effects of the applied voltage and air concentration on electron energy have been explored. The present work gives the following significant results. For a fixed applied voltage, the averaged electron energy is basically a constant at air concentrations below about 0.5%, but it evidently decreases above the concentration of 0.5%. Furthermore, the averaged densities of four main reactive species O, O(1D), O2(1Δg), and N2(A3Σu+) increase with the increasing air concentration, but the increase becomes slow at air concentrations above 0.5%. The air concentration dependences of the averaged electron energy under different voltage amplitudes are similar, and for a given air concentration, the averaged electron energy increases with the increase in the voltage amplitude. For the four reactive species, the effects of the air concentration on their averaged densities are similar for a given voltage amplitude. In addition, the averaged densities of the four reactive species increase with increasing voltage amplitude for a fixed air concentration. The present work suggests that a combination of high voltage amplitude and the characteristic air concentration, 0.5% in the present discharge system, allows an expected electron energy and also generates abundant reactive species.

  9. 40 CFR Table 2 to Subpart Fffff of... - Initial Compliance With Emission and Opacity Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flow-weighted average concentration of particulate matter from one or more control devices applied to...). 4. Each discharge end at a new sinter plant a. The flow-weighted average concentration of... BOPF at a new or existing BOPF shop a. The average concentration of particulate matter from a primary...

  10. 40 CFR Table 2 to Subpart Fffff of... - Initial Compliance With Emission and Opacity Limits

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... flow-weighted average concentration of particulate matter from one or more control devices applied to...). 4. Each discharge end at a new sinter plant a. The flow-weighted average concentration of... BOPF at a new or existing BOPF shop a. The average concentration of particulate matter from a primary...

  11. 40 CFR Table 2 to Subpart Fffff of... - Initial Compliance With Emission and Opacity Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flow-weighted average concentration of particulate matter from one or more control devices applied to...). 4. Each discharge end at a new sinter plant a. The flow-weighted average concentration of... BOPF at a new or existing BOPF shop a. The average concentration of particulate matter from a primary...

  12. 40 CFR Table 2 to Subpart Fffff of... - Initial Compliance With Emission and Opacity Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... flow-weighted average concentration of particulate matter from one or more control devices applied to...). 4. Each discharge end at a new sinter plant a. The flow-weighted average concentration of... BOPF at a new or existing BOPF shop a. The average concentration of particulate matter from a primary...

  13. Evaluation of retrofit crankcase ventilation controls and diesel oxidation catalysts for reducing air pollution in school buses

    NASA Astrophysics Data System (ADS)

    Trenbath, Kim; Hannigan, Michael P.; Milford, Jana B.

    2009-12-01

    This study evaluates the effect of retrofit closed crankcase ventilation filters (CCFs) and diesel oxidation catalysts (DOCs) on the in-cabin air quality in transit-style diesel school buses. In-cabin pollution levels were measured on three buses from the Pueblo, CO District 70 fleet. Monitoring was conducted while buses were driven along their regular routes, with each bus tested three times before and three times after installation of control devices. Ultrafine number concentrations in the school bus cabins were 33-41% lower, on average, after the control devices were installed. Mean mass concentrations of particulate matter less than 2.5 μm in diameter (PM2.5) were 56% lower, organic carbon (OC) 41% lower, elemental carbon (EC) 85% lower, and formaldehyde 32% lower after control devices were installed. While carbon monoxide concentrations were low in all tests, mean concentrations were higher after control devices were installed than in pre-retrofit tests. Reductions in number, OC, and formaldehyde concentrations were statistically significant, but reductions in PM2.5 mass were not. Even with control devices installed, during some runs PM2.5 and OC concentrations in the bus cabins were elevated compared to ambient concentrations observed in the area. OC concentrations inside the bus cabins ranged from 22 to 58 μg m -3 before and 13 to 33 μg m -3 after control devices were installed. OC concentrations were correlated with particle-bound organic tracers for lubricating oil emissions (hopanes) and diesel fuel and tailpipe emissions (polycyclic aromatic hydrocarbons (PAH) and aliphatic hydrocarbons). Mean concentrations of hopanes, PAH, and aliphatic hydrocarbons were lower by 37, 50, and 43%, respectively, after the control devices were installed, suggesting that both CCFs and DOCs were effective at reducing in-cabin OC concentrations.

  14. The use of kernel density estimators in breakthrough curve reconstruction and advantages in risk analysis

    NASA Astrophysics Data System (ADS)

    Siirila, E. R.; Fernandez-Garcia, D.; Sanchez-Vila, X.

    2014-12-01

    Particle tracking (PT) techniques, often considered favorable over Eulerian techniques due to artificial smoothening in breakthrough curves (BTCs), are evaluated in a risk-driven framework. Recent work has shown that given a relatively few number of particles (np), PT methods can yield well-constructed BTCs with kernel density estimators (KDEs). This work compares KDE and non-KDE BTCs simulated as a function of np (102-108) and averaged as a function of the exposure duration, ED. Results show that regardless of BTC shape complexity, un-averaged PT BTCs show a large bias over several orders of magnitude in concentration (C) when compared to the KDE results, remarkably even when np is as low as 102. With the KDE, several orders of magnitude less np are required to obtain the same global error in BTC shape as the PT technique. PT and KDE BTCs are averaged as a function of the ED with standard and new methods incorporating the optimal h (ANA). The lowest error curve is obtained through the ANA method, especially for smaller EDs. Percent error of peak of averaged-BTCs, important in a risk framework, is approximately zero for all scenarios and all methods for np ≥105, but vary between the ANA and PT methods, when np is lower. For fewer np, the ANA solution provides a lower error fit except when C oscillations are present during a short time frame. We show that obtaining a representative average exposure concentration is reliant on an accurate representation of the BTC, especially when data is scarce.

  15. The effects of dietary supplementation with chromium picolinate throughout gestation on productive performance, Cr concentration, serum parameters, and colostrum composition in sows.

    PubMed

    Wang, Liansheng; Shi, Zhan; Jia, Zhiqiang; Su, Binchao; Shi, Baoming; Shan, Anshan

    2013-07-01

    The objective of this study was to determine the effects of supplemental chromium as chromium picolinate (CrPic) on productive performance, chromium (Cr) concentration, serum parameters, and colostrum composition in sows. Thirty Yorkshire sows were bred with semen from a pool of Landrace boars. The sows were equally grouped and treated with either a diet containing 0 (control) or 400 ppb dietary Cr supplementation throughout gestation. The sows received the same basal diet based on corn-DDGS meal. Supplemental CrPic increased (P < 0.05) the sow body mass gain from the insemination to the day 110 of gestation in sows. No differences (P > 0.50) were observed in the gestation interval, sow mass, and backfat at insemination, after farrowing, at weaning and lactation loss. The number of piglets born alive, piglets per litter at weaning, and litter weaned mass were increased (P < 0.05) for those supplemented with CrPic compared with the control. However, the total number of piglets born, total born litter mass, average piglet birth body mass, born alive litter mass, and average born alive piglet mass did not differ among the treatments (P > 0.05). The placental masses of sows were similar among treatments (P > 0.05). Dietary supplementation with CrPic throughout gestation in sows showed increased (P < 0.01) concentration of Cr in the colostrum or serum at days 70 and 110. Compared with the control group, dietary supplementation with CrPic throughout gestation in sows decreased (P < 0.05) the serum insulin concentration, the glucose or serum urea nitrogen concentration at days 70 and 110. However, no differences (P > 0.05) were observed in total protein concentration among treatments. No differences (P > 0.05) were observed in total solids, protein, fat or lactose among sows fed the diets supplemented with CrPic compared with the control. This exciting finding provides evidence for an increase in mass gain and live-born piglets in sows supplemented with CrPic throughout gestation.

  16. Assessment of Determinants of Emission Potentially Affecting the Concentration of Airborne Nano-Objects and Their Agglomerates and Aggregates.

    PubMed

    Bekker, Cindy; Fransman, Wouter; Boessen, Ruud; Oerlemans, Arné; Ottenbros, Ilse B; Vermeulen, Roel

    2017-01-01

    Nano-specific inhalation exposure models could potentially be effective tools to assess and control worker exposure to nano-objects, and their aggregates and agglomerates (NOAA). However, due to the lack of reliable and consistent collected NOAA exposure data, the scientific basis for validation of the existing NOAA exposure models is missing or limited. The main objective of this study was to gain more insight into the effect of various determinants underlying the potential on the concentration of airborne NOAA close to the source with the purpose of providing a scientific basis for existing and future exposure inhalation models. Four experimental studies were conducted to investigate the effect of 11 determinants of emission on the concentration airborne NOAA close to the source during dumping of ~100% nanopowders. Determinants under study were: nanomaterial, particle size, dump mass, height, rate, ventilation rate, mixing speed, containment, particle surface coating, moisture content of the powder, and receiving surface. The experiments were conducted in an experimental room (19.5 m3) with well-controlled environmental and ventilation conditions. Particle number concentration and size distribution were measured using real-time measurement devices. Dumping of nanopowders resulted in a higher number concentration and larger particles than dumping their reference microsized powder (P < 0.05). Statistically significant more and larger particles were also found during dumping of SiO2 nanopowder compared to TiO2/Al2O3 nanopowders. Particle surface coating did not affect the number concentration but on average larger particles were found during dumping of coated nanopowders. An increase of the powder's moisture content resulted in less and smaller particles in the air. Furthermore, the results indicate that particle number concentration increases with increasing dump height, rate, and mass and decreases when ventilation is turned on. These results give an indication of the direction and magnitude of the effect of the studied determinants on concentrations close to the source and provide a scientific basis for (further) development of existing and future NOAA inhalation exposure models. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  17. Reduced serum myostatin concentrations associated with genetic muscle disease progression.

    PubMed

    Burch, Peter M; Pogoryelova, Oksana; Palandra, Joe; Goldstein, Richard; Bennett, Donald; Fitz, Lori; Guglieri, Michela; Bettolo, Chiara Marini; Straub, Volker; Evangelista, Teresinha; Neubert, Hendrik; Lochmüller, Hanns; Morris, Carl

    2017-03-01

    Myostatin is a highly conserved protein secreted primarily from skeletal muscle that can potently suppress muscle growth. This ability to regulate skeletal muscle mass has sparked intense interest in the development of anti-myostatin therapies for a wide array of muscle disorders including sarcopenia, cachexia and genetic neuromuscular diseases. While a number of studies have examined the circulating myostatin concentrations in healthy and sarcopenic populations, very little data are available from inherited muscle disease patients. Here, we have measured the myostatin concentration in serum from seven genetic neuromuscular disorder patient populations using immunoaffinity LC-MS/MS. Average serum concentrations of myostatin in all seven muscle disease patient groups were significantly less than those measured in healthy controls. Furthermore, circulating myostatin concentrations correlated with clinical measures of disease progression for five of the muscle disease patient populations. These findings greatly expand the understanding of myostatin in neuromuscular disease and suggest its potential utility as a biomarker of disease progression.

  18. Are atmospheric surface layer flows ergodic?

    NASA Astrophysics Data System (ADS)

    Higgins, Chad W.; Katul, Gabriel G.; Froidevaux, Martin; Simeonov, Valentin; Parlange, Marc B.

    2013-06-01

    The transposition of atmospheric turbulence statistics from the time domain, as conventionally sampled in field experiments, is explained by the so-called ergodic hypothesis. In micrometeorology, this hypothesis assumes that the time average of a measured flow variable represents an ensemble of independent realizations from similar meteorological states and boundary conditions. That is, the averaging duration must be sufficiently long to include a large number of independent realizations of the sampled flow variable so as to represent the ensemble. While the validity of the ergodic hypothesis for turbulence has been confirmed in laboratory experiments, and numerical simulations for idealized conditions, evidence for its validity in the atmospheric surface layer (ASL), especially for nonideal conditions, continues to defy experimental efforts. There is some urgency to make progress on this problem given the proliferation of tall tower scalar concentration networks aimed at constraining climate models yet are impacted by nonideal conditions at the land surface. Recent advancements in water vapor concentration lidar measurements that simultaneously sample spatial and temporal series in the ASL are used to investigate the validity of the ergodic hypothesis for the first time. It is shown that ergodicity is valid in a strict sense above uniform surfaces away from abrupt surface transitions. Surprisingly, ergodicity may be used to infer the ensemble concentration statistics of a composite grass-lake system using only water vapor concentration measurements collected above the sharp transition delineating the lake from the grass surface.

  19. Analytical modeling and experimental characterization of chemotaxis in Serratia marcescens

    NASA Astrophysics Data System (ADS)

    Zhuang, Jiang; Wei, Guopeng; Wright Carlsen, Rika; Edwards, Matthew R.; Marculescu, Radu; Bogdan, Paul; Sitti, Metin

    2014-05-01

    This paper presents a modeling and experimental framework to characterize the chemotaxis of Serratia marcescens (S. marcescens) relying on two-dimensional and three-dimensional tracking of individual bacteria. Previous studies mainly characterized bacterial chemotaxis based on population density analysis. Instead, this study focuses on single-cell tracking and measuring the chemotactic drift velocity VC from the biased tumble rate of individual bacteria on exposure to a concentration gradient of l-aspartate. The chemotactic response of S. marcescens is quantified over a range of concentration gradients (10-3 to 5 mM/mm) and average concentrations (0.5×10-3 to 2.5 mM). Through the analysis of a large number of bacterial swimming trajectories, the tumble rate is found to have a significant bias with respect to the swimming direction. We also verify the relative gradient sensing mechanism in the chemotaxis of S. marcescens by measuring the change of VC with the average concentration and the gradient. The applied full pathway model with fitted parameters matches the experimental data. Finally, we show that our measurements based on individual bacteria lead to the determination of the motility coefficient μ (7.25×10-6 cm2/s) of a population. The experimental characterization and simulation results for the chemotaxis of this bacterial species contribute towards using S. marcescens in chemically controlled biohybrid systems.

  20. Assimilation of concentration measurements for retrieving multiple point releases in atmosphere: A least-squares approach to inverse modelling

    NASA Astrophysics Data System (ADS)

    Singh, Sarvesh Kumar; Rani, Raj

    2015-10-01

    The study addresses the identification of multiple point sources, emitting the same tracer, from their limited set of merged concentration measurements. The identification, here, refers to the estimation of locations and strengths of a known number of simultaneous point releases. The source-receptor relationship is described in the framework of adjoint modelling by using an analytical Gaussian dispersion model. A least-squares minimization framework, free from an initialization of the release parameters (locations and strengths), is presented to estimate the release parameters. This utilizes the distributed source information observable from the given monitoring design and number of measurements. The technique leads to an exact retrieval of the true release parameters when measurements are noise free and exactly described by the dispersion model. The inversion algorithm is evaluated using the real data from multiple (two, three and four) releases conducted during Fusion Field Trials in September 2007 at Dugway Proving Ground, Utah. The release locations are retrieved, on average, within 25-45 m of the true sources with the distance from retrieved to true source ranging from 0 to 130 m. The release strengths are also estimated within a factor of three to the true release rates. The average deviations in retrieval of source locations are observed relatively large in two release trials in comparison to three and four release trials.

  1. Rapid identification of high particle number emitting on-road vehicles and its application to a large fleet of diesel buses.

    PubMed

    Jayaratne, E R; Morawska, L; Ristovski, Z D; He, C

    2007-07-15

    Pollutant concentrations measured in the exhaust plume of a vehicle may be related to the pollutant emission factor using the CO2 concentration as a measure of the dilution factor. We have used this method for the rapid identification of high particle number (PN) emitting on-road vehicles. The method was validated for PN using a medium-duty vehicle and successfully applied to measurements of PN emissions from a large fleet of on-road diesel buses. The ratio of PN concentration to CO2 concentration, Z, in the exhaust plume was estimated for individual buses. On the average, a bus emitted about 1.5 x 10(9) particles per mg of CO2 emitted. A histogram of the number of buses as a function of Z showed, for the first time, that the PN emissions from diesel buses followed a gamma distribution, with most of the values within a narrow range and a few buses exhibiting relatively large values. It was estimated that roughly 10% and 50% of the PN emissions came from just 2% and 25% of the buses, respectively. A regression analysis showed that there was a positive correlation between Z and age of buses, with the slope of the best line being significantly different from zero. The mean Z value for the pre-Euro buses was significantly greater than each of the values for the Euro I and II buses.

  2. Evaluation of soil and leaves nutrient on the growth of cultivated tabatbarito (Ficusdeltoidea jack.) in Makroman Village, Sambutan District of East Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Manurung, H.; Kustiawan, W.; Kusuma, IW; Marjenah

    2018-04-01

    This study aimed to evaluate the soil and leaves nutrient status on the growth of cultivated tabatbarito (Ficusdeltoidea Jack) in various level ages. The field experiment was conducted during December 2015 to November 2016 at Makroman Village, Samarinda-East Kalimantan. On 6, 9, and 12 months old after planting (MAP) the data was collected to evaluate the plant height, leaf number, branch number, biomass, soil and leaves nutrient concentrations. The results showed that the average pH of soil was 3.92±0.06, categorized as a very acid. The concentration of soil nutrients were: nitrogen (1.13±0.31 %), phosphorus (0.01±0.01 ppm), potassium (297.60±50.11 ppm), calcium (2.97±1.79 cmol(+)Kg-1), and magnesium (3.69±2.30 cmol(+)Kg-1). The leaf nutrient concentration was 1.74±1.42 % (N), 0.25±0.19 % (P), 1.86±0.15 % (Ca), 1.88±0.29 % (Mg). The soil nutrients concentration (N, P, Mg) and the leaf nutrient (N, P, K, Ca, Mg) has a correlates with plant height increment, branch number increment, and biomass increment. The results indicated that the N, P, K, Ca, Mg played an important role in the growth of F. deltoidea and this nutrient should be considered well when this plant will be cultivated as a source of the medicinal plant on a large scale.

  3. Aerosol Fluxes over Amazon Rain Forest Measured with the Eddy Covariance Method

    NASA Astrophysics Data System (ADS)

    Ahlm, L.; Nilsson, E. D.; Krejci, R.; Mårtensson, E. M.; Vogt, M.; Artaxo, P.

    2008-12-01

    We present measurements of vertical aerosol fluxes over the Amazon carried out on top of K34, a 50 meter high tower in the Cuieiras Reserve about 50 km north of Manaus in northern Brazil. The turbulent fluxes were measured with the eddy covariance method. The covariance of vertical wind speed from a sonic anemometer Gill Windmaster and total aerosol number concentration from a condensation particle counter (CPC) TSI 3010 provided the total number flux (diameter >0.01 μm). The covariance of vertical wind speed and size resolved number concentrations from an optical particle counter (OPC) Grimm 1.109 provided size resolved number fluxes in 15 bins from 0.25 μm to 2.5 μm diameter. Additionally fluxes of CO2 and H2O were derived from Li-7500 observations. The observational period, from early March to early August, includes both wet and dry season. OPC fluxes generally show net aerosol deposition both during wet and dry season with the largest downward fluxes during midday. CPC fluxes show different patterns in wet and dry season. During dry season, when number concentrations are higher, downward fluxes clearly dominate. In the wet season however, when number concentrations are lower, our data indicates that upward and downward fluxes are quite evenly distributed during course of a day. On average there is a peak in upward flux during late morning and another peak during the afternoon. Since the OPC fluxes in the same time show net deposition, there is an indication of net source of primary aerosol particles with diameters between 10 and 250 nm emitted from the rain forest. Future data analysis will hopefully shed light on origin and formation mechanism of these particles and thus provide a deeper insight in the rain forest - atmosphere interactions. The aerosol flux measurements were carried out as a part of the AMAZE project in collaboration with University of Sao Paulo, Brazil, and financial support was provided by Swedish International Development Cooperation Agency (SIDA).

  4. 40 CFR 421.113 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Maximum for monthly average mg/kg (pounds per million pounds) of concentrate digested Lead .174 .081 Zinc... monthly average mg/Kg (pounds per million pounds) of concentrate digested Lead 2.592 1.203 Zinc 9.442 3... Maximum for monthly average mg/kg (pounds per million pounds) of concentrate digested Lead .069 .032 Zinc...

  5. 40 CFR 421.113 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Maximum for monthly average mg/kg (pounds per million pounds) of concentrate digested Lead .174 .081 Zinc... monthly average mg/Kg (pounds per million pounds) of concentrate digested Lead 2.592 1.203 Zinc 9.442 3... Maximum for monthly average mg/kg (pounds per million pounds) of concentrate digested Lead .069 .032 Zinc...

  6. Respiratory hospitalizations in association with fine PM and its ...

    EPA Pesticide Factsheets

    Despite observed geographic and temporal variation in particulate matter (PM)-related health morbidities, only a small number of epidemiologic studies have evaluated the relation between PM2.5 chemical constituents and respiratory disease. Most assessments are limited by inadequate spatial and temporal resolution of ambient PM measurements and/or by their approaches to examine the role of specific PM components on health outcomes. In a case-crossover analysis using daily average ambient PM2.5 total mass and species estimates derived from the Community Multiscale Air Quality (CMAQ) model and available observations, we examined the association between the chemical components of PM (including elemental and organic carbon, sulfate, nitrate, ammonium, and other remaining) and respiratory hospitalizations in New York State. We evaluated relationships between levels (low, medium, high) of PM constituent mass fractions, and assessed modification of the PM2.5–hospitalization association via models stratified by mass fractions of both primary and secondary PM components. In our results, average daily PM2.5 concentrations in New York State were generally lower than the 24-hr average National Ambient Air Quality Standard (NAAQS). Year-round analyses showed statistically significant positive associations between respiratory hospitalizations and PM2.5 total mass, sulfate, nitrate, and ammonium concentrations at multiple exposure lags (0.5–2.0% per interquartile range [IQR

  7. Structure of a swirling jet with vortex breakdown and combustion

    NASA Astrophysics Data System (ADS)

    Sharaborin, D. K.; Dulin, V. M.; Markovich, D. M.

    2018-03-01

    An experimental investigation is performed in order to compare the time-averaged spatial structure of low- and high-swirl turbulent premixed lean flames by using the particle image velocimetry and spontaneous Raman scattering techniques. Distributions of the time-average velocity, density and concentration of the main components of the gas mixture are measured for turbulent premixed swirling propane/air flames at atmospheric pressure for the equivalence ratio Φ = 0.7 and Reynolds number Re = 5000 for low- and high-swirl reacting jets. For the low-swirl jet (S = 0.41), the local minimum of the axial mean velocity is observed within the jet center. The positive value of the mean axial velocity indicates the absence of a permanent recirculation zone, and no clear vortex breakdown could be determined from the average velocity field. For the high-swirl jet (S = 1.0), a pronounced vortex breakdown took place with a bubble-type central recirculation zone. In both cases, the flames are stabilized in the inner mixing layer of the jet around the central wake, containing hot combustion products. O2 and CO2 concentrations in the wake of the low-swirl jet are found to be approximately two times smaller and greater than those in the recirculation zone of the high-swirl jet, respectively.

  8. Emissions from an International Airport Increase Particle Number Concentrations 4-fold at 10 km Downwind

    PubMed Central

    2014-01-01

    We measured the spatial pattern of particle number (PN) concentrations downwind from the Los Angeles International Airport (LAX) with an instrumented vehicle that enabled us to cover larger areas than allowed by traditional stationary measurements. LAX emissions adversely impacted air quality much farther than reported in previous airport studies. We measured at least a 2-fold increase in PN concentrations over unimpacted baseline PN concentrations during most hours of the day in an area of about 60 km2 that extended to 16 km (10 miles) downwind and a 4- to 5-fold increase to 8–10 km (5–6 miles) downwind. Locations of maximum PN concentrations were aligned to eastern, downwind jet trajectories during prevailing westerly winds and to 8 km downwind concentrations exceeded 75 000 particles/cm3, more than the average freeway PN concentration in Los Angeles. During infrequent northerly winds, the impact area remained large but shifted to south of the airport. The freeway length that would cause an impact equivalent to that measured in this study (i.e., PN concentration increases weighted by the area impacted) was estimated to be 280–790 km. The total freeway length in Los Angeles is 1500 km. These results suggest that airport emissions are a major source of PN in Los Angeles that are of the same general magnitude as the entire urban freeway network. They also indicate that the air quality impact areas of major airports may have been seriously underestimated. PMID:24871496

  9. Recent Findings Related to Giant Cloud Condensation Nuclei in the Marine Boundary Layer and Impacts on Clouds and Precipitation

    NASA Astrophysics Data System (ADS)

    Sorooshian, Armin; Dadashazar, Hossein; Wang, Zhen; Crosbie, Ewan; Brunke, Michael; Zeng, Xubin; Jonsson, Haflidi; Woods, Roy; Flagan, Richard; Seinfeld, John

    2017-04-01

    This presentation reports on findings from multiple airborne field campaigns off the California coast to understand the sources, nature, and impacts of giant cloud condensation nuclei (GCCN). Aside from sea spray emissions, measurements have revealed that ocean-going ships can be a source of GCCN due to wake and stack emissions off the California coast. Observed particle number concentrations behind 10 ships exceeded those in "control" areas, exhibiting number concentration enhancement ratios (ERs) for minimum threshold diameters of 2, 10, and 20 μm as high as 2.7, 5.5, and 7.5, respectively. The data provide insights into how ER is related to a variety of factors (downwind distance, altitude, ship characteristics such as gross tonnage, length, and beam). The data also provide insight into the extent to which a size distribution parameter and a cloud water chemical measurement can capture the effect of sea salt on marine stratocumulus cloud properties. The two GCCN proxy variables, near-surface particle number concentration for diameter > 5 µm and cloud water chloride concentration, are significantly correlated with each other, and both exhibit expected relationships with other parameters that typically coincide with sea salt emissions. Factors influencing the relationship between these two GCCN proxy measurements will be discussed. When comparing twelve pairs of high and low chloride cloud cases (at fixed liquid water path and cloud drop number concentration), the average drop spectra for high chloride cases exhibit enhanced drop number at diameters exceeding 20 µm, especially above 30 µm. In addition, high chloride cases coincide with enhanced mean columnar R and negative values of precipitation susceptibility. The difference in drop effective radius (re) between high and low chloride conditions decreases with height in cloud, suggesting that some GCCN-produced rain drops precipitate before reaching cloud tops. The sign of cloud responses (i.e., re, R) to perturbations in giant sea salt particle concentration, as evaluated from MERRA-2 reanalysis data, is consistent with the aircraft data.

  10. The concentration of erlotinib in the cerebrospinal fluid of patients with brain metastasis from non-small-cell lung cancer

    PubMed Central

    DENG, YANMING; FENG, WEINENG; WU, JING; CHEN, ZECHENG; TANG, YICONG; ZHANG, HUA; LIANG, JIANMIAO; XIAN, HAIBING; ZHANG, SHUNDA

    2014-01-01

    It has been demonstrated that erlotinib is effective in treating patients with brain metastasis from non-small-cell lung cancer. However, the number of studies determining the erlotinib concentration in these patients is limited. The purpose of this study was to measure the concentration of erlotinib in the cerebrospinal fluid of patients with brain metastasis from non-small-cell lung carcinoma. Six patients were treated with the standard recommended daily dose of erlotinib (150 mg) for 4 weeks. All the patients had previously received chemotherapy, but no brain radiotherapy. At the end of the treatment period, blood plasma and cerebrospinal fluid samples were collected and the erlotinib concentration was determined by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The average erlotinib concentration in the blood plasma and the cerebrospinal fluid was 717.7±459.7 and 23.7±13.4 ng/ml, respectively. The blood-brain barrier permeation rate of erlotinib was found to be 4.4±3.2%. In patients with partial response (PR), stable disease (SD) and progressive disease (PD), the average concentrations of erlotinib in the cerebrospinal fluid were 35.5±19.0, 19.1±8.7 and 16.4±5.9 ng/ml, respectively. In addition, the efficacy rate of erlotinib for metastatic brain lesions was 33.3%, increasing to 50% in patients with EGFR mutations. However, erlotinib appeared to be ineffective in cases with wild-type EGFR. In conclusion, a relatively high concentration of erlotinib was detected in the cerebrospinal fluid of patients with brain metastases from non-small-cell lung cancer. Thus, erlotinib may be considered as a treatment option for this patient population. PMID:24649318

  11. Increase in dust storm related PM10 concentrations: A time series analysis of 2001-2015.

    PubMed

    Krasnov, Helena; Katra, Itzhak; Friger, Michael

    2016-06-01

    Over the last decades, changes in dust storms characteristics have been observed in different parts of the world. The changing frequency of dust storms in the southeastern Mediterranean has led to growing concern regarding atmospheric PM10 levels. A classic time series additive model was used in order to describe and evaluate the changes in PM10 concentrations during dust storm days in different cities in Israel, which is located at the margins of the global dust belt. The analysis revealed variations in the number of dust events and PM10 concentrations during 2001-2015. A significant increase in PM10 concentrations was identified since 2009 in the arid city of Beer Sheva, southern Israel. Average PM10 concentrations during dust days before 2009 were 406, 312, and 364 μg m(-3) (median 337, 269,302) for Beer Sheva, Rehovot (central Israel) and Modi'in (eastern Israel), respectively. After 2009 the average concentrations in these cities during dust storms were 536, 466, and 428 μg m(-3) (median 382, 335, 338), respectively. Regression analysis revealed associations between PM10 variations and seasonality, wind speed, as well as relative humidity. The trends and periodicity are stronger in the southern part of Israel, where higher PM10 concentrations are found. Since 2009 dust events became more extreme with much higher daily and hourly levels. The findings demonstrate that in the arid area variations of dust storms can be quantified easier through PM10 levels over a relatively short time scale of several years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Nationwide conversion to generic tacrolimus in pediatric kidney transplant recipients.

    PubMed

    Naicker, Derisha; Reed, Peter W; Ronaldson, Jane; Kara, Tonya; Wong, William; Prestidge, Chanel

    2017-11-01

    Bioequivalence between Tacrolimus Prograf® and generic tacrolimus formulations has been demonstrated in adult populations, however clinical experience and safety data regarding generic tacrolimus in pediatric transplant recipients is limited. This study aimed to evaluate conversion from Tacrolimus Prograf® to Sandoz® in pediatric renal transplant recipients nationwide. The primary outcome was a change in mean trough tacrolimus concentration. Additionally, changes in tacrolimus intra-patient coefficient of variation (CoV), allograft function, requirement for dose adjustments, and episodes of biopsy-proven rejection were evaluated. Retrospective cohort study in 37 pediatric renal transplant recipients who switched to Tacrolimus Sandoz®. Each patient had three pre-conversion tacrolimus trough and creatinine concentrations within the 4 months prior and three post-conversion concentrations on day 3, 10, and the next subsequent level. Mean pre- and post-conversion tacrolimus trough concentrations and glomerular filtration rate (eGFR) were calculated. Tacrolimus concentration, CoV, and creatinine differences were compared by paired t test. Thirty-seven patients (41% females, age 3-18 years) were included. Average intra-patient difference in trough tacrolimus concentration was 0.05μg/l (95% CI -0.37 to 0.47). Average intra-patient difference in eGFR was -1.20 ml/min/1.73 2 (95% CI -3.53 to 1.13). Three patients had acute rejection during 12 months post-conversion compared to none during 12 months pre-conversion. Pediatric renal transplant recipients can be converted from Tacrolimus Prograf® to Sandoz® with negligible change in trough concentration, dose adjustments, or immediate allograft function. Of concern was the number of acute rejection episodes, however non-adherence contributed to at least one episode and this difference was determined clinically and statistically not significant.

  13. A comparative study of hospital admissions for respiratory diseases during normal and dusty days in Iran.

    PubMed

    Geravandi, Sahar; Sicard, Pierre; Khaniabadi, Yusef Omidi; De Marco, Alessandra; Ghomeishi, Ali; Goudarzi, Gholamreza; Mahboubi, Mohammad; Yari, Ahmad Reza; Dobaradaran, Sina; Hassani, Ghasem; Mohammadi, Mohammad Javad; Sadeghi, Shahram

    2017-08-01

    During the last century, most of people around the world moved from communicable to non-communicable diseases, mainly due to air pollution. Air pollutants and dust storm increase risk of morbidity, for cardiovascular and respiratory diseases, and increase the number of deaths. The city of Ahvaz is considered as the focal point of air pollution and dust storm in Iran. The aim of this study was to determine the number of Hospital Admission Respiratory Disease (HARD) including asthma attacks, acute bronchitis and chronic obstructive pulmonary disease attributed to PM 10 by a descriptive study during normal and dust event days in Ahvaz during the time period 2010-2012. The hourly PM 10 data was collected from the Iranian Environmental Protection Agency and Razi hospital. The annual PM 10 mean concentrations reached 282, 288 and 278 μg/m 3 in 2010, 2011 and 2012, respectively. The number of HARD attributed to PM 10 was 1438, 1945 and 1393 people, respectively, and the highest number of daily admissions was attributed to the highest daily PM 10 concentration in Ahvaz. The average number of daily HARD during dusty days was higher than normal days, and a significant positive correlation, between the number of hospital admissions and dusty days, was found. Dust had significant impact on HARD in Ahvaz.

  14. 40 CFR Table 7 to Subpart Sssss of... - Continuous Compliance with Emission Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen; OR the average THC... other than a thermal or catalytic oxidizer The average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen; OR the average THC performance reduction must equal or exceed 95 percent...

  15. 40 CFR Table 7 to Subpart Sssss of... - Continuous Compliance with Emission Limits

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen; OR the average THC... other than a thermal or catalytic oxidizer The average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen; OR the average THC performance reduction must equal or exceed 95 percent...

  16. 40 CFR Table 7 to Subpart Sssss of... - Continuous Compliance with Emission Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen; OR the average THC... other than a thermal or catalytic oxidizer The average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen; OR the average THC performance reduction must equal or exceed 95 percent...

  17. 40 CFR Table 7 to Subpart Sssss of... - Continuous Compliance with Emission Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen; OR the average THC... other than a thermal or catalytic oxidizer The average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen; OR the average THC performance reduction must equal or exceed 95 percent...

  18. 40 CFR Table 7 to Subpart Sssss of... - Continuous Compliance with Emission Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen; OR the average THC... other than a thermal or catalytic oxidizer The average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen; OR the average THC performance reduction must equal or exceed 95 percent...

  19. Impact of storm runoff on Salmonella and Escherichia coli prevalence in irrigation ponds of fresh produce farms in southern Georgia.

    PubMed

    Harris, C S; Tertuliano, M; Rajeev, S; Vellidis, G; Levy, K

    2018-03-01

    To examine Salmonella and Escherichia coli in storm runoff and irrigation ponds used by fresh produce growers, and compare Salmonella serovars with those found in cases of human salmonellosis. We collected water before and after rain events at two irrigation ponds on farms in southern Georgia, USA, and collected storm runoff/storm flow within the contributing watershed of each pond. Salmonella and E. coli concentrations were higher in ponds after rain events by an average of 0·46 (P < 0·01) and 0·61 (P < 0·05) log 10 most probable number (MPN) per 100 ml respectively. Salmonella concentrations in storm runoff from fields and forests were not significantly higher than in ponds before rain events, but concentrations in storm flow from streams and ditches were higher by an average of 1·22 log 10 MPN per 100 ml (P < 0·001). Eighteen Salmonella serovars were identified from 155 serotyped isolates, and eight serovars were shared between storm runoff/storm flow and ponds. Seven of the serovars, including five of the shared serovars, were present in cases of human illness in the study region in the same year. However, several serovars most commonly associated with human illness in the study region (e.g. Javiana, Enteritidis, and Montevideo) were not found in any water samples. Salmonella and E. coli concentrations in irrigation ponds were higher, on average, after rain events, but concentrations of Salmonella were low, and the ponds met FDA water quality standards based on E. coli. Some similarities and notable differences were found between Salmonella serovars in water samples and in cases of human illness. This study directly examined storm runoff/storm flow into irrigation ponds and quantified increases in Salmonella and E. coli following rain events, with potential implications for irrigation pond management as well as human health. © 2018 The Society for Applied Microbiology.

  20. Dissolution Front Instabilities in Reacting Porous Media

    NASA Astrophysics Data System (ADS)

    Raoof, Amir; Spiers, Chris; Hassanizadeh, Majid

    2013-04-01

    The main objective of this research is to gain a better understanding of the relation between regime of reaction and dissolution front instability, leading to formation of channels or wormholes. Potential applications are geological sequestration of CO2 and acid-gas injection during enhanced oil recovery. The microscopic pore space is modeled using a multi-directional pore network, allowing for a distribution of pore coordination number, together with distribution of pore sizes. In order to simulate transport of multi-component chemical species, mass balance equations are solved within each element of the network (i.e., pore body and pore throat). We have considered advective and diffusive transport processes within the pore spaces together with multi-component chemical reactions, including both equilibrium and kinetic reactions. Using dimensionless scaling groups (such as Damköhler number and Péclet-Damköhler number) we characterized the dissolution front behavior, and by averaging over the network domain we calculated the evolution of porosity and permeability as well as flux-averaged concentration breakthrough curves. We obtain constitutive relations linking porosity and permeability, under conditions relevant to geological storage of CO2. Effect of distribution of reactive minerals is also evaluated and regime of reaction is shown to play a key role.

  1. Is trace element concentration correlated to parasite abundance? A case study in a population of the green frog Pelophylax synkl. hispanicus from the Neto River (Calabria, southern Italy).

    PubMed

    De Donato, Carlo; Barca, Donatella; Milazzo, Concetta; Santoro, Raffaella; Giglio, Gianni; Tripepi, Sandro; Sperone, Emilio

    2017-06-01

    Bioaccumulation of 13 trace elements in the livers of 38 Pelophylax sinkl. hispanicus (Ranidae) and its helminth communities were studied and compared among three sites, each with a different degree of pollution along River Neto (south Italy) during September, 2014. Trace element concentrations in water and liver were measured using inductively coupled plasma mass spectrometry. For most elements, the highest concentration was recorded in the frogs inhabiting the third site, the one with the highest degree of pollution. The trend of trace element concentration in the liver can be represented as follows: Cu > Zn > Mn > Se > Cr. Concentrations of some elements in water and liver samples were significantly different among the three sites and this is evidenced by the bioaccumulation in the frogs. Four species of helminths, all belonging to Nematoda, were found: Rhabdias sp., Oswaldocruzia filiformis (Goeze, 1782), Cosmocerca ornata (Dujarden, 1845), Seuratascaris numidica (Seurat, 1917). The parasite survey presents an important difference of prevalence and average number of helminths in frogs between the three sites. Correlating parasitological and ecotoxicological data showed a strong positive correlation between prevalence and number of parasites with some trace elements such as Mn, Co, Ni, As, Se, and Cd.

  2. Investigation of gaseous and particulate emissions from various marine vessel types measured on the banks of the Elbe in Northern Germany

    NASA Astrophysics Data System (ADS)

    Diesch, J.-M.; Drewnick, F.; Klimach, T.; Borrmann, S.

    2012-08-01

    Measurements of the ambient aerosol, various trace gases and meteorological parameters using a mobile laboratory (MoLa) were performed on the banks of the Lower Elbe in an emission control area (ECA) which is passed by numerous private and commercial marine vessels reaching and leaving the port of Hamburg, Germany. From 25-30 April 2011 a total of 178 vessels were probed at a distance of about 0.8-2 km with high temporal resolution. 139 ship emission plumes were of sufficient quality to be analyzed further and to determine emission factors (EFs). Concentrations of aerosol number and mass as well as polycyclic aromatic hydrocarbons (PAH) and black carbon were measured in PM1 and size distribution instruments covered the size diameter range from 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase species analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) in the air and a weather station provided wind, precipitation, solar radiation and other parameters. Together with ship information for each vessel obtained from Automatic Identification System (AIS) broadcasts a detailed characterization of the individual ship types and of features affecting gas and particulate emissions is provided. Particle number EFs (average 2.6×1016 # kg -1) and PM1 mass EFs (average 2.4 g kg -1) positively correlate with the fuel sulfur content and depend on the engine type and performance. Observed PM1 composition of the vessel emissions was dominated by organic matter (72%), sulfate (22%) and black carbon (6%) while PAHs only account for 0.2% of the submicron aerosol mass. Measurements of gaseous components showed an increase of SO2 (average EF: 7.7 g kg-1) and NOx (average EF: 53 g kg-1) while O3 decreased when a ship plume reached the sampling site. The particle number size distributions of the vessels are generally characterized by a bimodal size distribution, with the nucleation mode in the 10-20 nm diameter range and a combustion aerosol mode centered at about 35 nm while particles >1 μm were not found. "High particle number emitters" are characterized by a dominant nucleation mode. By contrast, a third weaker mode at 150 nm primarily occurred for "high black carbon emitters". Classifying the vessels according to their gross tonnage shows a decrease of the number, black carbon and PAH EFs while EFs of SO2, NO, NO2, NOx, AMS species (particulate organics, sulfate) and PM1 mass concentration increase with increasing gross tonnages.

  3. Monte carlo simulation of vesicular release, spatiotemporal distribution of glutamate in synaptic cleft and generation of postsynaptic currents.

    PubMed

    Glavinovíc, M I

    1999-02-01

    The release of vesicular glutamate, spatiotemporal changes in glutamate concentration in the synaptic cleft and the subsequent generation of fast excitatory postsynaptic currents at a hippocampal synapse were modeled using the Monte Carlo method. It is assumed that glutamate is released from a spherical vesicle through a cylindrical fusion pore into the synaptic cleft and that S-alpha-amino-3-hydroxy -5-methyl-4-isoxazolepropionic acid (AMPA) receptors are uniformly distributed postsynaptically. The time course of change in vesicular concentration can be described by a single exponential, but a slow tail is also observed though only following the release of most of the glutamate. The time constant of decay increases with vesicular size and a lower diffusion constant, and is independent of the initial concentration, becoming markedly shorter for wider fusion pores. The cleft concentration at the fusion pore mouth is not negligible compared to vesicular concentration, especially for wider fusion pores. Lateral equilibration of glutamate is rapid, and within approximately 50 micros all AMPA receptors on average see the same concentration of glutamate. Nevertheless the single-channel current and the number of channels estimated from mean-variance plots are unreliable and different when estimated from rise- and decay-current segments. Greater saturation of AMPA receptor channels provides higher but not more accurate estimates. Two factors contribute to the variability of postsynaptic currents and render the mean-variance nonstationary analysis unreliable, even when all receptors see on average the same glutamate concentration. Firstly, the variability of the instantaneous cleft concentration of glutamate, unlike the mean concentration, first rapidly decreases before slowly increasing; the variability is greater for fewer molecules in the cleft and is spatially nonuniform. Secondly, the efficacy with which glutamate produces a response changes with time. Understanding the factors that determine the time course of vesicular content release as well as the spatiotemporal changes of glutamate concentration in the cleft is crucial for understanding the mechanism that generates postsynaptic currents.

  4. [Air pollution in an urban area nearby the Rome-Ciampino city airport].

    PubMed

    Di Menno di Bucchianico, Alessandro; Cattani, Giorgio; Gaeta, Alessandra; Caricchia, Anna Maria; Troiano, Francesco; Sozzi, Roberto; Bolignano, Andrea; Sacco, Fabrizio; Damizia, Sesto; Barberini, Silvia; Caleprico, Roberta; Fabozzi, Tina; Ancona, Carla; Ancona, Laura; Cesaroni, Giulia; Forastiere, Francesco; Gobbi, Gian Paolo; Costabile, Francesca; Angelini, Federico; Barnaba, Francesca; Inglessis, Marco; Tancredi, Francesco; Palumbo, Lorenzo; Fontana, Luca; Bergamaschi, Antonio; Iavicoli, Ivo

    2014-01-01

    to assess air pollution spatial and temporal variability in the urban area nearby the Ciampino International Airport (Rome) and to investigate the airport-related emissions contribute. the study domain was a 64 km2 area around the airport. Two fifteen-day monitoring campaigns (late spring, winter) were carried out. Results were evaluated using several runs outputs of an airport-related sources Lagrangian particle model and a photochemical model (the Flexible Air quality Regional Model, FARM). both standard and high time resolution air pollutant concentrations measurements: CO, NO, NO2, C6H6, mass and number concentration of several PM fractions. 46 fixed points (spread over the study area) of NO2 and volatile organic compounds concentrations (fifteen days averages); deterministic models outputs. standard time resolution measurements, as well as model outputs, showed the airport contribution to air pollution levels being little compared to the main source in the area (i.e. vehicular traffic). However, using high time resolution measurements, peaks of particles associated with aircraft takeoff (total number concentration and soot mass concentration), and landing (coarse mass concentration) were observed, when the site measurement was downwind to the runway. the frequently observed transient spikes associated with aircraft movements could lead to a not negligible contribute to ultrafine, soot and coarse particles exposure of people living around the airport. Such contribute and its spatial and temporal variability should be investigated when assessing the airports air quality impact.

  5. Determination of the lowest concentrations of aldehyde fixatives for completely fixing various cellular structures by real-time imaging and quantification.

    PubMed

    Zeng, Fangfa; Yang, Wen; Huang, Jie; Chen, Yuan; Chen, Yong

    2013-05-01

    The effectiveness of fixatives for fixing biological specimens has long been widely investigated. However, the lowest concentrations of fixatives needed to completely fix whole cells or various cellular structures remain unclear. Using real-time imaging and quantification, we determined the lowest concentrations of glutaraldehyde (0.001-0.005, ~0.005, 0.01-005, 0.01-005, and 0.01-0.1 %) and formaldehyde/paraformaldehyde (0.01-0.05, ~0.05, 0.5-1, 1-1.5, and 0.5-1 %) required to completely fix focal adhesions, cell-surface particles, stress fibers, the cell cortex, and the inner structures of human umbilical vein endothelial cells within 20 min. With prolonged fixation times (>20 min), the concentration of fixative required to completely fix these structures will shift to even lower values. These data may help us understand and optimize fixation protocols and understand the potential effects of the small quantities of endogenously generated aldehydes in human cells. We also determined the lowest concentration of glutaraldehyde (0.5 %) and formaldehyde/paraformaldehyde (2 %) required to induce cell blebbing. We found that the average number and size of the fixation-induced blebs per cell were dependent on both fixative concentration and cell spread area, but were independent of temperature. These data provide important information for understanding cell blebbing, and may help optimize the vesiculation-based technique used to isolate plasma membrane by suggesting ways of controlling the number or size of fixation-induced cell blebs.

  6. Exploring the uncertainty in attributing sediment contributions in fingerprinting studies due to uncertainty in determining element concentrations in source areas.

    NASA Astrophysics Data System (ADS)

    Gomez, Jose Alfonso; Owens, Phillip N.; Koiter, Alex J.; Lobb, David

    2016-04-01

    One of the major sources of uncertainty in attributing sediment sources in fingerprinting studies is the uncertainty in determining the concentrations of the elements used in the mixing model due to the variability of the concentrations of these elements in the source materials (e.g., Kraushaar et al., 2015). The uncertainty in determining the "true" concentration of a given element in each one of the source areas depends on several factors, among them the spatial variability of that element, the sampling procedure and sampling density. Researchers have limited control over these factors, and usually sampling density tends to be sparse, limited by time and the resources available. Monte Carlo analysis has been used regularly in fingerprinting studies to explore the probable solutions within the measured variability of the elements in the source areas, providing an appraisal of the probability of the different solutions (e.g., Collins et al., 2012). This problem can be considered analogous to the propagation of uncertainty in hydrologic models due to uncertainty in the determination of the values of the model parameters, and there are many examples of Monte Carlo analysis of this uncertainty (e.g., Freeze, 1980; Gómez et al., 2001). Some of these model analyses rely on the simulation of "virtual" situations that were calibrated from parameter values found in the literature, with the purpose of providing insight about the response of the model to different configurations of input parameters. This approach - evaluating the answer for a "virtual" problem whose solution could be known in advance - might be useful in evaluating the propagation of uncertainty in mixing models in sediment fingerprinting studies. In this communication, we present the preliminary results of an on-going study evaluating the effect of variability of element concentrations in source materials, sampling density, and the number of elements included in the mixing models. For this study a virtual catchment was constructed, composed by three sub-catchments each of 500 x 500 m size. We assumed that there was no selectivity in sediment detachment or transport. A numerical excercise was performed considering these variables: 1) variability of element concentration: three levels with CVs of 20 %, 50 % and 80 %; 2) sampling density: 10, 25 and 50 "samples" per sub-catchment and element; and 3) number of elements included in the mixing model: two (determined), and five (overdetermined). This resulted in a total of 18 (3 x 3 x 2) possible combinations. The five fingerprinting elements considered in the study were: C, N, 40K, Al and Pavail, and their average values, taken from the literature, were: sub-catchment 1: 4.0 %, 0.35 %, 0.50 ppm, 5.0 ppm, 1.42 ppm, respectively; sub-catchment 2: 2.0 %, 0.18 %, 0.20 ppm, 10.0 ppm, 0.20 ppm, respectively; and sub-catchment 3: 1.0 %, 0.06 %, 1.0 ppm, 16.0 ppm, 7.8 ppm, respectively. For each sub-catchment, three maps of the spatial distribution of each element was generated using the random generator of Mejia and Rodriguez-Iturbe (1974) as described in Freeze (1980), using the average value and the three different CVs defined above. Each map for each source area and property was generated for a 100 x 100 square grid, each grid cell being 5 m x 5 m. Maps were randomly generated for each property and source area. In doing so, we did not consider the possibility of cross correlation among properties. Spatial autocorrelation was assumed to be weak. The reason for generating the maps was to create a "virtual" situation where all the element concentration values at each point are known. Simultaneously, we arbitrarily determined the percentage of sediment coming from sub-catchments. These values were 30 %, 10 % and 60 %, for sub-catchments 1, 2 and 3, respectively. Using these values, we determined the element concentrations in the sediment. The exercise consisted of creating different sampling strategies in a virtual environment to determine an average value for each of the different maps of element concentration and sub-catchment, under different sampling densities: 200 different average values for the "high" sampling density (average of 50 samples); 400 different average values for the "medium" sampling density (average of 25 samples); and 1,000 different average values for the "low" sampling density (average of 10 samples). All these combinations of possible values of element concentrations in the source areas were solved for the concentration in the sediment already determined for the "true" solution using limSolve (Soetaert et al., 2014) in R language. The sediment source solutions found for the different situations and values were analyzed in order to: 1) evaluate the uncertainty in the sediment source attribution; and 2) explore strategies to detect the most probable solutions that might lead to improved methods for constructing the most robust mixing models. Preliminary results on these will be presented and discussed in this communication. Key words: sediment, fingerprinting, uncertainty, variability, mixing model. References Collins, A.L., Zhang, Y., McChesney, D., Walling, D.E., Haley, S.M., Smith, P. 2012. Sediment source tracing in a lowland agricultural catchment in southern England using a modified procedure combining statistical analysis and numerical modelling. Science of the Total Environment 414: 301-317. Freeze, R.A. 1980. A stochastic-conceptual analysis of rainfall-runoff processes on a hillslope. Water Resources Research 16: 391-408.

  7. A Complete Analytical Screening Identifies the Real Pesticide Contamination of Surface Waters

    NASA Astrophysics Data System (ADS)

    Moschet, Christoph; Wittmer, Irene; Simovic, Jelena; Junghans, Marion; Singer, Heinz; Stamm, Christian; Leu, Christian; Hollender, Juliane

    2014-05-01

    A comprehensive assessment of pesticides in surface waters is challenging due to the large number of potential contaminants. In Switzerland for example, roughly 500 active ingredients are registered as either plant protection agent (PPA) or as biocide. In addition, an unlimited number of transformations products (TPs) can enter or be formed in surfaced waters. Most scientific publications or regulatory monitoring authorities have implemented 15-40 pesticides in their analytics. Only a few TPs are normally included. Interpretations of the surface water quality based on these subsets remains error prone. In the presented study, we carried out a nearly complete analytical screening covering 86% of all polar organic pesticides (from agricultural and urban sources) in Switzerland (300 substances) and 134 TPs with limits of quantification in the low ng/L range. The comprehensive pesticide screening was conducted by liquid-chromatography coupled to high-resolution tandem mass spectrometry. Five medium-sized rivers (Strahler stream order 3-4, catchment size 35-105 km2), containing high percentiles of diverse crops, orchards and urban settlements in their catchments, were sampled from March till July 2012. Nine subsequent time-proportional bi-weekly composite samples were taken in order to quantify average concentrations. In total, 104 different active ingredients could be detected in at least one of the five rivers. Thereby, 82 substances were only registered as PPA, 20 were registered as PPA and as biocide and 2 were only registered as biocide. Within the PPAs, herbicides had the most frequent detections and the highest concentrations, followed by fungicides and insecticides. Most concentrations were found between 1 and 50 ng/L; however 31 substances (mainly herbicides) had concentrations above 100 ng/L and 3 herbicides above 1000 ng/L. It has to be noted that the measured concentrations are average concentrations over two weeks in medium sized streams and that maximum concentrations, especially in smaller streams, can be much higher. In each sample, between 30-50 pesticides were detected and the concentration sum of all active ingredients exceeded 1000 ng/L in 78% of the samples. Forty of the 134 investigated TPs could be detected in all the five rivers. As for the active ingredients, herbicide TPs dominated the detection frequency and the concentration range. Twelve TPs exceeded 100 ng/L in at least one sample. Between 15 and 25 TPs were detected in each sample, and 35% of all samples had a concentration sum of more than 1000 ng/L. The comparison of the measured concentrations of the parent compounds with chronic environmental quality standards (AA-EQS), revealed that 70% of all surface water samples exceeded at least one of them; in some samples up to seven AA-EQS exceedances were observed. In total, 19 substances (mainly herbicides and insecticides) exceeded critical concentrations in at least one sample. The conducted study showed that the investigated medium-sized rivers were exposed to a large number of pesticides and TPs over the whole sampling period. For a correct assessment of the surface water quality, it is therefore crucial to measure as many pesticides as possible in order to get the real contamination of pesticides in surface waters.

  8. Health impacts due to particulate air pollution in Volos City, Greece.

    PubMed

    Moustris, Konstantinos P; Proias, George T; Larissi, Ioanna K; Nastos, Panagiotis T; Koukouletsos, Konstantinos V; Paliatsos, Athanasios G

    2016-01-01

    There is great consensus among the scientific community that suspended particulate matter is considered as one of the most harmful pollutants, particularly the inhalable particulate matter with aerodynamic diameter less than 10 μm (PM10) causing respiratory health problems and heart disorders. Average daily concentrations exceeding established standard values appear, among other cases, to be the main cause of such episodes, especially during Saharan dust episodes, a natural phenomenon that degrades air quality in the urban area of Volos. In this study the AirQ2.2.3 model, developed by the World Health Organization (WHO) European Center for Environment and Health, was used to evaluate adverse health effects by PM10 pollution in the city of Volos during a 5-year period (2007-2011). Volos is a coastal medium size city in the Thessaly region. The city is located on the northern side of the Gulf of Pagassitikos, on the east coast of Central Greece. Air pollution data were obtained by a fully automated monitoring station, which was established by the Municipal Water Supply and Sewage Department in the Greater Area of Volos, located in the centre of the city. The results of the current study indicate that when the mean annual PM10 concentration exceeds the corresponding European Union (EU) threshold value, the number of hospital admissions for respiratory disease (HARD) is increased by 25% on average. There is also an estimated increase of about 2.5% in HARD compared to the expected annual HARD cases for Volos. Finally, a strong correlation was found between the number of days exceeding the EU daily threshold concentration ([PM10] ≥ 50 μg m(-3)) and the annual HARD cases.

  9. Eddy interaction model for turbulent suspension in Reynolds-averaged Euler-Lagrange simulations of steady sheet flow

    NASA Astrophysics Data System (ADS)

    Cheng, Zhen; Chauchat, Julien; Hsu, Tian-Jian; Calantoni, Joseph

    2018-01-01

    A Reynolds-averaged Euler-Lagrange sediment transport model (CFDEM-EIM) was developed for steady sheet flow, where the inter-granular interactions were resolved and the flow turbulence was modeled with a low Reynolds number corrected k - ω turbulence closure modified for two-phase flows. To model the effect of turbulence on the sediment suspension, the interaction between the turbulent eddies and particles was simulated with an eddy interaction model (EIM). The EIM was first calibrated with measurements from dilute suspension experiments. We demonstrated that the eddy-interaction model was able to reproduce the well-known Rouse profile for suspended sediment concentration. The model results were found to be sensitive to the choice of the coefficient, C0, associated with the turbulence-sediment interaction time. A value C0 = 3 was suggested to match the measured concentration in the dilute suspension. The calibrated CFDEM-EIM was used to model a steady sheet flow experiment of lightweight coarse particles and yielded reasonable agreements with measured velocity, concentration and turbulence kinetic energy profiles. Further numerical experiments for sheet flow suggested that when C0 was decreased to C0 < 3, the simulation under-predicted the amount of suspended sediment in the dilute region and the Schmidt number is over-predicted (Sc > 1.0). Additional simulations for a range of Shields parameters between 0.3 and 1.2 confirmed that CFDEM-EIM was capable of predicting sediment transport rates similar to empirical formulations. Based on the analysis of sediment transport rate and transport layer thickness, the EIM and the resulting suspended load were shown to be important when the fall parameter is less than 1.25.

  10. Total mercury in canned tuna sold in Canada in 2006.

    PubMed

    Dabeka, Robert W; Mckenzie, Arthur D; Forsyth, Donald S

    2014-01-01

    Total mercury was measured in 156 composites prepared from 936 samples of canned tuna sold in Canada in 2006. Each composite comprised a single brand. Yellowfin tuna contained the lowest concentrations, averaging 0.066 mg/kg. Skipjack tuna contained slightly higher concentrations, averaging 0.132 mg/kg. The highest average concentration was found in the Albacore tuna: mean 0.325 mg/kg, range 0.174-0.507 mg/kg. The second highest concentration among the 49 albacore composites was 0.469 mg/kg. There were 72 composites for which the type of tuna was not specified. The mercury in these averaged 0.095 mg/kg and ranged from 0.016 to 0.237 mg/kg.

  11. Effect of protein supplementation on ruminal parameters and microbial community fingerprint of Nellore steers fed tropical forages.

    PubMed

    Bento, C B P; Azevedo, A C; Gomes, D I; Batista, E D; Rufino, L M A; Detmann, E; Mantovani, H C

    2016-01-01

    In tropical regions, protein supplementation is a common practice in dairy and beef farming. However, the effect of highly degradable protein in ruminal fermentation and microbial community composition has not yet been investigated in a systematic manner. In this work, we aimed to investigate the impact of casein supplementation on volatile fatty acids (VFA) production, specific activity of deamination (SAD), ammonia concentration and bacterial and archaeal community composition. The experimental design was a 4×4 Latin square balanced for residual effects, with four animals (average initial weight of 280±10 kg) and four experimental periods, each with duration of 29 days. The diet comprised Tifton 85 (Cynodon sp.) hay with an average CP content of 9.8%, on a dry matter basis. Animals received basal forage (control) or infusions of pure casein (230 g) administered direct into the rumen, abomasum or divided (50 : 50 ratio) in the rumen/abomasum. There was no differences (P>0.05) in ruminal pH and microbial protein concentration between supplemented v. non-supplemented animals. However, in steers receiving ruminal infusion of casein the SAD and ruminal ammonia concentration increased 33% and 76%, respectively, compared with the control. The total concentration of VFA increased (P0.05) in species richness and diversity of γ-proteobacteria, firmicutes and archaea between non-supplemented Nellore steers and steers receiving casein supplementation in the rumen. However, species richness and the Shannon-Wiener index were lower (P<0.05) for the phylum bacteroidetes in steers supplemented with casein in the rumen compared with non-supplemented animals. Venn diagrams indicated that the number of unique bands varied considerably among individual animals and was usually higher in number for non-supplemented steers compared with supplemented animals. These results add new knowledge about the effects of ruminal and postruminal protein supplementation on metabolic activities of rumen microbes and the composition of bacterial and archaeal communities in the rumen of steers.

  12. AUPHEP—Austrian Project on Health Effects of Particulates—general overview

    NASA Astrophysics Data System (ADS)

    Hauck, H.; Berner, A.; Frischer, T.; Gomiscek, B.; Kundi, M.; Neuberger, M.; Puxbaum, H.; Preining, O.; Auphep-Team

    AUPHEP was started in 1999 as a 5 years program to investigate the situation of the atmospheric aerosol with respect to effects on human health. At four different sites in Austria (3 urban and one rural site) an extended monitoring program was conducted for PM 1, PM 2.5 and PM 10 as well as particle number concentration for 12 months each. Beside continuous measurements using TEOM and beta attenuation high-volume sampling of PM 2.5 and PM 10 provided samples for chemical analyses of various ions, heavy metals and organic compounds. Furthermore, carbonaceous material (TC, EC, OC) year round and PAHs on selected days were analyzed. From collocated public monitoring stations also pollutant gases (SO 2, NO, NO 2, O 3, CO) and meteorological components are available. In winter and summer campaigns aerosol size spectra including chemical components were measured for at least one week each. All data are collected in a project data base (CD-ROM). While extensive data analysis will be presented in following papers, some general results are presented within this paper: annual averages for PM 1 are between 10 and 20 μg m -3, for PM 2.5 between 15 and 26 mg m -3 and for PM 10 between 20 and 38 μg m -3. Number concentrations are between 10,000 and 30,000 cm -3. Urban concentrations are usually higher in winter, rural concentrations in summer. PM 2.5 is in average around 70% of PM 10, for PM 1 this fraction is about 57%. Several studies on health effects are included in this project: a cross-sectional study on preschool and school children regarding lung function measurements and questionnaires about respiratory impairment in the surrounding area of the monitoring sites as well as time series studies on mortality and respiratory morbidity on the general population.

  13. Long-term dynamics of freshwater red tide in shallow lake in central Japan.

    PubMed

    Hirabayashi, Kimio; Yoshizawa, Kazuya; Yoshida, Norihiko; Ariizumi, Kazunori; Kazama, Futaba

    2007-01-01

    The aim of this study is to clarify the long-term dynamics of the red tide occurring in Lake Kawaguchi. The measurement of environmental factors and water sampling were carried out monthly at a fixed station in Lake Kawaguchi's center basin from April 1993 to March 2004. On June 26, 1995, the horizontal distribution ofPeridinium bipes was investigated using a plastic pipe, obtaining 0∼1-m layers of water column samples at 68 locations across the entire lake. P. bipes showed an explosive growth and formed a freshwater red tide in the early summer of 1995, when the nutrient level was higher than those in the other years, particularly the phosphate concentration in the surface layer. The dissolved total phosphorus (DTP) concentration was sufficient forP. bipes growth in that year. In the study of its horizontal distribution,P. bipes was found at all the locations. The numbers of cells per milliliter ranged from 67 to 5360, averaging 1094±987 cells/ml, with particularly high densities along the northern shore. Since then,P. bipes has annually averaged about 25 cells/ml in Lake Kawaguchi. We observed that the red tide caused byP. bipes correlates with a high DTP concentration in Lake Kawaguchi.

  14. Year-to-year variations in annual average indoor 222Rn concentrations.

    PubMed

    Martz, D E; Rood, A S; George, J L; Pearson, M D; Langner, G H

    1991-09-01

    Annual average indoor 222Rn concentrations in 40 residences in and around Grand Junction, CO, have been measured repeatedly since 1984 using commercial alpha-track monitors (ATM) deployed for successive 12-mo time periods. Data obtained provide a quantitative measure of the year-to-year variations in the annual average Rn concentrations in these structures over this 6-y period. A mean coefficient of variation of 25% was observed for the year-to-year variability of the measurements at 25 sampling stations for which complete data were available. Individual coefficients of variation at the various stations ranged from a low of 7.7% to a high of 51%. The observed mean coefficient of variation includes contributions due to the variability in detector response as well as the true year-to-year variation in the annual average Rn concentrations. Factoring out the contributions from the measured variability in the response of the detectors used, the actual year-to-year variability of the annual average Rn concentrations was approximately 22%.

  15. Seasonal prediction of US summertime ozone using statistical analysis of large scale climate patterns.

    PubMed

    Shen, Lu; Mickley, Loretta J

    2017-03-07

    We develop a statistical model to predict June-July-August (JJA) daily maximum 8-h average (MDA8) ozone concentrations in the eastern United States based on large-scale climate patterns during the previous spring. We find that anomalously high JJA ozone in the East is correlated with these springtime patterns: warm tropical Atlantic and cold northeast Pacific sea surface temperatures (SSTs), as well as positive sea level pressure (SLP) anomalies over Hawaii and negative SLP anomalies over the Atlantic and North America. We then develop a linear regression model to predict JJA MDA8 ozone from 1980 to 2013, using the identified SST and SLP patterns from the previous spring. The model explains ∼45% of the variability in JJA MDA8 ozone concentrations and ∼30% variability in the number of JJA ozone episodes (>70 ppbv) when averaged over the eastern United States. This seasonal predictability results from large-scale ocean-atmosphere interactions. Warm tropical Atlantic SSTs can trigger diabatic heating in the atmosphere and influence the extratropical climate through stationary wave propagation, leading to greater subsidence, less precipitation, and higher temperatures in the East, which increases surface ozone concentrations there. Cooler SSTs in the northeast Pacific are also associated with more summertime heatwaves and high ozone in the East. On average, models participating in the Atmospheric Model Intercomparison Project fail to capture the influence of this ocean-atmosphere interaction on temperatures in the eastern United States, implying that such models would have difficulty simulating the interannual variability of surface ozone in this region.

  16. Seasonal prediction of US summertime ozone using statistical analysis of large scale climate patterns

    PubMed Central

    Mickley, Loretta J.

    2017-01-01

    We develop a statistical model to predict June–July–August (JJA) daily maximum 8-h average (MDA8) ozone concentrations in the eastern United States based on large-scale climate patterns during the previous spring. We find that anomalously high JJA ozone in the East is correlated with these springtime patterns: warm tropical Atlantic and cold northeast Pacific sea surface temperatures (SSTs), as well as positive sea level pressure (SLP) anomalies over Hawaii and negative SLP anomalies over the Atlantic and North America. We then develop a linear regression model to predict JJA MDA8 ozone from 1980 to 2013, using the identified SST and SLP patterns from the previous spring. The model explains ∼45% of the variability in JJA MDA8 ozone concentrations and ∼30% variability in the number of JJA ozone episodes (>70 ppbv) when averaged over the eastern United States. This seasonal predictability results from large-scale ocean–atmosphere interactions. Warm tropical Atlantic SSTs can trigger diabatic heating in the atmosphere and influence the extratropical climate through stationary wave propagation, leading to greater subsidence, less precipitation, and higher temperatures in the East, which increases surface ozone concentrations there. Cooler SSTs in the northeast Pacific are also associated with more summertime heatwaves and high ozone in the East. On average, models participating in the Atmospheric Model Intercomparison Project fail to capture the influence of this ocean–atmosphere interaction on temperatures in the eastern United States, implying that such models would have difficulty simulating the interannual variability of surface ozone in this region. PMID:28223483

  17. Two-stage solar concentrators based on parabolic troughs: asymmetric versus symmetric designs.

    PubMed

    Schmitz, Max; Cooper, Thomas; Ambrosetti, Gianluca; Steinfeld, Aldo

    2015-11-20

    While nonimaging concentrators can approach the thermodynamic limit of concentration, they generally suffer from poor compactness when designed for small acceptance angles, e.g., to capture direct solar irradiation. Symmetric two-stage systems utilizing an image-forming primary parabolic concentrator in tandem with a nonimaging secondary concentrator partially overcome this compactness problem, but their achievable concentration ratio is ultimately limited by the central obstruction caused by the secondary. Significant improvements can be realized by two-stage systems having asymmetric cross-sections, particularly for 2D line-focus trough designs. We therefore present a detailed analysis of two-stage line-focus asymmetric concentrators for flat receiver geometries and compare them to their symmetric counterparts. Exemplary designs are examined in terms of the key optical performance metrics, namely, geometric concentration ratio, acceptance angle, concentration-acceptance product, aspect ratio, active area fraction, and average number of reflections. Notably, we show that asymmetric designs can achieve significantly higher overall concentrations and are always more compact than symmetric systems designed for the same concentration ratio. Using this analysis as a basis, we develop novel asymmetric designs, including two-wing and nested configurations, which surpass the optical performance of two-mirror aplanats and are comparable with the best reported 2D simultaneous multiple surface designs for both hollow and dielectric-filled secondaries.

  18. [Treatment of polluted urban river water using filamentous green algae].

    PubMed

    Liang, Xia; Li, Xiao-Ping

    2008-01-01

    Filamentous green algae dominated treatment system was set up to remove contaminants from polluted urban river water under lab conditions. Experiments show that TP is decreased up to 50%, associated with 72% removal of TSS. The removal efficiencies of soluble species, PO4(3-) and NH4(+)-N, are up to 90% and 85% respectively. Under heavily polluted conditions (TP > 3.0 mg x L(-1), TN > 22.0 mg x L(-1)), the average removal efficiencies of TP and TN are 89% and 45% respectively, while under light polluted conditions (TP < 0.50 mg x L(-1), TN < 10 mg x L(-1)), the average effluent concentration of PO4(3-) and NH4(+)-N are well below 0.1 mg x L(-1) and 2.0 mg x L(-1) respectively. During the experiments, the biomass of filamentous green algae is increased significantly (38.78%), and at the same time a large number of unicellular Chlorophytes and Cyanophytes species are occurred on the interior wall surface of experimental fertility. The maximum biomass occurs at the highest concentration of DO.

  19. Temporal dynamics of optical-microphysical characteristics of atmospheric aerosol at the Spitsbergen Archipelago in 2011-2014

    NASA Astrophysics Data System (ADS)

    Chernov, D. G.; Kozlov, V. S.; Panchenko, M. V.; Turchinovich, Yu. S.; Radionov, V. F.; Gubin, A. V.; Prakhov, A. N.

    2015-11-01

    In 2011-2014, the Institute of Atmospheric Optics (IAO SB RAS, Tomsk) and the Arctic and Antarctic Research Institute (AARI, St. Petersburg) conducted field investigations of the near-ground aerosol characteristics near Barentsburg (Spitsbergen Archipelago) in the spring and summer seasons. The particle number density in the size range 0.3-20 μm, size distribution of particles, and mass concentrations of aerosol and black carbon were measured round-the-clock every hour with Grimm 1.108 and 1.109; and AZ-10 optical counters. The mass concentration of black carbon was measured by the MDA-02 aethalometer developed by the IAO SB RAS. Series of observations are obtained, annual and seasonal average values and their standard deviations are estimated, and seasonal and annual dynamics of the studied parameters is analyzed. Peculiarities of the temporal dynamics of average values of the aerosol characteristics are revealed and compared with the data of observations at other stations of the Spitsbergen Archipelago and in different regions of the Russian Arctic and Subarctic.

  20. Submicron polycaprolactone particles as a carrier for imaging contrast agent for in vitro applications.

    PubMed

    Iqbal, Muhammad; Robin, Sophie; Humbert, Philippe; Viennet, Céline; Agusti, Geraldine; Fessi, Hatem; Elaissari, Abdelhamid

    2015-12-01

    Fluorescent materials have recently attracted considerable attention due to their unique properties and high performance as imaging agent in biomedical fields. Different imaging agents have been encapsulated in order to restrict its delivery to a specific area. In this study, a fluorescent contrast agent was encapsulated for in vitro application by polycaprolactone (PCL) polymer. The encapsulation was performed using modified double emulsion solvent evaporation technique with sonication. Fluorescent nanoparticles (20 nm) were incorporated in the inner aqueous phase of double emulsion. A number of samples were fabricated using different concentrations of fluorescent contrast agent. The contrast agent-containing submicron particle was characterized by a zetasizer for average particle size, SEM and TEM for morphology observations and fluorescence spectrophotometer for encapsulation efficiency. Moreover, contrast agent distribution in the PCL matrix was determined by confocal microscopy. The incorporation of contrast agent in different concentrations did not affect the physicochemical properties of PCL particles and the average size of encapsulated particles was found to be in the submicron range. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Percolation Thresholds in Angular Grain media: Drude Directed Infiltration

    NASA Astrophysics Data System (ADS)

    Priour, Donald

    Pores in many realistic systems are not well delineated channels, but are void spaces among grains impermeable to charge or fluid flow which comprise the medium. Sparse grain concentrations lead to permeable systems, while concentrations in excess of a critical density block bulk fluid flow. We calculate percolation thresholds in porous materials made up of randomly placed (and oriented) disks, tetrahedrons, and cubes. To determine if randomly generated finite system samples are permeable, we deploy virtual tracer particles which are scattered (e.g. specularly) by collisions with impenetrable angular grains. We hasten the rate of exploration (which would otherwise scale as ncoll1 / 2 where ncoll is the number of collisions with grains if the tracers followed linear trajectories) by considering the tracer particles to be charged in conjunction with a randomly directed uniform electric field. As in the Drude treatment, where a succession of many scattering events leads to a constant drift velocity, tracer displacements on average grow linearly in ncoll. By averaging over many disorder realizations for a variety of systems sizes, we calculate the percolation threshold and critical exponent which characterize the phase transition.

  2. Numerical Investigation of the Hydrogen Jet Flammable Envelope Extent with Account for Unsteady Phenomena

    NASA Astrophysics Data System (ADS)

    Chernyavsky, Boris; Benard, Pierre

    2010-11-01

    An important aspect of safety analysis in hydrogen applications is determination of the extent of flammable gas envelope in case of hydrogen jet release. Experimental investigations had shown significant disagreements between the extent of average flammable envelope predicted by steady-state numerical methods, and the region observed to support ignition, with proposed cause being non-steady jet phenomena resulting in significant variations of instantaneous gas concentration and velocity fields in the jet. In order to investigate the influence of these transient phenomena, a numerical investigation of hydrogen jet at low Mach number had been performed using unsteady Large Eddy Simulation. Instantaneous hydrogen concentration and velocity fields were monitored to determine instantaneous flammable envelope. The evolution of the instantaneous fields, including the development of the turbulence structures carrying hydrogen, their extent and frequency, and their relation with averaged fields had been characterized. Simulation had shown significant variability of the flammable envelope, with jet flapping causing shedding of large scale rich and lean gas pockets from the main jet core, which persist for significant times and substantially alter the extent of flammability envelope.

  3. [Correlation between the visiting rate of patients with allergic rhinitis and airborne pollen concentrations in Beijing in recent 3 years].

    PubMed

    Hu, W N; Zhu, L; Xie, L F; Zhang, F Z; Bai, M Y; Wang, N; Sun, Z W

    2017-01-07

    Objective: To evaluate the daily airborne pollen concentrations and visiting rate of patients with allergic rhinitis (AR) and their correlation during 2012-2014 in Beijing. Methods: Daily airborne pollen concentrations (55 998 numbers in total and 549 numbers in average) and its constitution from April to September each year (2012 to 2014) were compared. The number of patients with AR (44 203 in total) who visited the outpatient department of Otorhinolaryngology Head and Neck Surgery, Peking University Third Hospital between January 2012 and December 2014 was analyzed by month. Using SPSS 22.0 software, Kruskal - Wallis test was done for the comparison of visiting rate of patients with AR and airborne pollen concentrations. Correlation analysis between them was made as well. Results: χ(2) value of airborne pollen concentrations between different months in 2012 to 2014 was 110.7, 108.4 and 121.4, respectively; all P <0.01. The airborne pollen concentrations had two peaks per year, respectively: April to May, August to September. χ(2) value of visiting rate of patients with AR between different months in 2012 to 2014 was 175.0, 185.1 and 134.5, respectively; all P <0.01. Visiting rate of patients with AR showed two scattering peaks each year, respectively: April to May, August to September. The highest pollen concentration of spring (April to May) was in early and middle April. Tree pollen was the major portion in spring, which were poplar pollen, pine tree pollen, ash tree pollen, cypress tree pollen and birch trees pollen. The highest pollen concentration of autumn (August to September) was in late August and early September. Weed pollen was the major portion in summer and autumn, which were artemisia pollen, chenopodiaceae pollen and humulus japonicas pollen. The visiting rate of patients with AR showed significant correlation with airborne pollen concentrations ( r value was 0.537, 0.484 and 0.566, respectively; all P <0.01). Conclusion: The visiting rate of patients with AR showed positive correlation with airborne pollen concentrations in recent three years.

  4. Urinary concentrations of cyclohexane-1,2-dicarboxylic acid monohydroxy isononyl ester, a metabolite of the non-phthalate plasticizer di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH), and markers of ovarian response among women attending a fertility center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mínguez-Alarcón, Lidia, E-mail: lminguez@hsph.harv

    Di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH), a non-phthalate plasticizer, was introduced commercially in 2002 as an alternative to ortho-phthalate esters because of its favorable toxicological profile. However, the potential health effects from DINCH exposure remain largely unknown. We explored the associations between urinary concentrations of metabolites of DINCH on markers of ovarian response among women undergoing in vitro fertilization (IVF) treatments. Between 2011 and 2015, 113 women enrolled a prospective cohort study at the Massachusetts General Hospital Fertility Center and provided up to two urine samples prior to oocyte retrieval. The urinary concentrations of two DINCH metabolites, cyclohexane-1,2-dicarboxylic acid monohydroxy isononyl ester (MHiNCH) andmore » cyclohexane-1,2-dicarboxylic acid monocarboxyisooctyl ester (MCOCH), were quantified by isotope dilution tandem mass spectrometry. We used generalized linear mixed models to evaluate the association between urinary metabolite concentrations and markers of ovarian response, accounting for multiple IVF cycles per woman via random intercepts. On average, women with detectable urinary MHiNCH concentrations, as compared to those below LOD, had a lower estradiol levels (−325 pmol/l, p=0.09) and number of retrieved oocytes (−1.8, p=0.08), with a stronger association among older women. However, urinary MHiNCH concentrations were unrelated to mature oocyte yield and endometrial wall thickness. In conclusion, we found suggestive negative associations between urinary MHiNCH concentrations and peak estradiol levels and number of total oocyte yields. This is the first study evaluating the effect of DINCH exposure on human reproductive health and raises the need for further experimental and epidemiological studies to better understand the potential effects of this chemical on health. - Highlights: • Women with detectable urinary MHiNCH concentrations had a lower estradiol levels and number of retrieved oocytes. • The negative association between urinary MHiNCH concentrations and total oocyte yield was stronger in older women. • Urinary MHiNCH concentrations were unrelated to mature oocyte yield and endometrial wall thickness.« less

  5. The effect of nicotine on reproduction and attachment of human gingival fibroblasts in vitro.

    PubMed

    Peacock, M E; Sutherland, D E; Schuster, G S; Brennan, W A; O'Neal, R B; Strong, S L; Van Dyke, T E

    1993-07-01

    The ability of fibroblasts to reproduce and attach to teeth is of paramount importance in re-establishing the lost connective tissue attachment after periodontal therapy. This study examined the effect of nicotine, a major component of the particulate phase of tobacco smoke, on human gingival fibroblast (HGF) reproduction and attachment to tissue culture surfaces. Pooled HGF cultures made from explants of gingival biopsies were utilized between passages 5 and 10 and plated in 96-well plates at 1.0 x 10(4) cells per well. Cell numbers were determined using 3-(4,5-dimethylthiazol-2-y)-2,5-diphenyl tetrazolium bromide (MTT), which is a reflection of mitochondrial dehydrogenase activity. The concentrations of nicotine used were 0.025, 0.05, 0.1, 0.2, and 0.4 microM, the average serum concentration for a smoker being approximately 0.1 microM. The effect of continuous nicotine exposure on HGF reproduction was determined by incubating cell cultures and media containing nicotine for up to 48 hours. Residual toxicity was determined by preincubating cells with nicotine for 1 or 6 hours. HGF suspensions and increasing concentrations of nicotine were added together to determine the effect on attachment. Results showed an enhanced effect of nicotine on HGF attachment, with increasing numbers of cells attaching with increasing nicotine concentrations, compared to the control. Low concentrations of nicotine had a stimulatory effect on cell replication, while higher concentrations of nicotine appear to have no significant effect on HGF reproduction. The responses of cells to some concentrations of nicotine may persist after its removal.

  6. Electrophysiological and neuromuscular stability of persons with chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Gilmore, Kevin J; Allen, Matti D; Doherty, Timothy J; Kimpinski, Kurt; Rice, Charles L

    2017-09-01

    We assessed motor unit (MU) properties and neuromuscular stability in the tibialis anterior (TA) of chronic inflammatory demyelinating polyneuropathy (CIDP) patients using decomposition-based quantitative electromyography. Dorsiflexion strength was assessed, and surface and concentric needle electromyography were sampled from the TA. Estimates of MU numbers were derived using decomposition-based quantitative electromyography and spike-triggered averaging. Neuromuscular transmission stability was assessed from concentric needle-detected MU potentials. CIDP patients had 43% lower compound muscle action potential amplitude than controls, and despite near-maximum voluntary activation, were 37% weaker. CIDP had 27% fewer functioning MUs in the TA, and had 90% and 44% higher jiggle and jitter values, respectively compared with controls. CIDP had lower strength and compound muscle action potential values, moderately fewer numbers of MUs, and significant neuromuscular instability compared with controls. Thus, in addition to muscle atrophy, voluntary weakness is also due to limitations of peripheral neural transmission consistent with demyelination. Muscle Nerve 56: 413-420, 2017. © 2016 Wiley Periodicals, Inc.

  7. Contributions of burner, pan, meat and salt to PM emission during grilling.

    PubMed

    Amouei Torkmahalleh, Mehdi; Ospanova, Saltanat; Baibatyrova, Aknur; Nurbay, Shynggys; Zhanakhmet, Gulaina; Shah, Dhawal

    2018-07-01

    Grilling ground beef meat was conducted in two locations at Nazarbayev University, Kazakhstan. The experiments were designed such that only particles from beef meat were isolated. A similar experimental protocol was applied at both locations. The average particle number and mass emission rates for grilling pure meat itself (excluding particles from pan and burner) were found to be 9.4 × 10 12 (SD = 7.2 × 10 12 particle min -1 and 7.6 × 10 (SD = 6.3 × 10) mg.min -1 , respectively. The PM emissions (number and mass) from the burner were found to be negligible compared to the pan and meat emissions. Ultrafine particle (UFP) concentrations from the heated pan itself were comparable to those of grilled meat. However, the particle mass concentrations from the pan itself were negligible. Approximately an hour of continuous heating resulted in zero emissions from the pan. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Binding of fluoresceinated epidermal growth factor to A431 cell sub-populations studied using a model-independent analysis of flow cytometric fluorescence data.

    PubMed Central

    Chatelier, R C; Ashcroft, R G; Lloyd, C J; Nice, E C; Whitehead, R H; Sawyer, W H; Burgess, A W

    1986-01-01

    A method is developed for determining ligand-cell association parameters from a model-free analysis of data obtained with a flow cytometer. The method requires measurement of the average fluorescence per cell as a function of ligand and cell concentration. The analysis is applied to data obtained for the binding of fluoresceinated epidermal growth factor to a human epidermoid carcinoma cell line, A431. The results indicate that the growth factor binds to two classes of sites on A431 cells: 4 X 10(4) sites with a dissociation constant (KD) of less than or equal to 20 pM, and 1.5 X 10(6) sites with a KD of 3.7 nM. A derived plot of the average fluorescence per cell versus the average number of bound ligands per cell is used to construct binding isotherms for four sub-populations of A431 cells fractionated on the basis of low-angle light scatter. The four sub-populations bind the ligand with equal affinity but differ substantially in terms of the number of binding sites per cell. We also use this new analysis to critically evaluate the use of 'Fluorotrol' as a calibration standard in flow cytometry. PMID:3015587

  9. Postmortem Tissue Distribution of Acetyl Fentanyl, Fentanyl and their Respective Nor-Metabolites Analyzed by Ultrahigh Performance Liquid Chromatography with Tandem Mass Spectrometry

    PubMed Central

    Poklis, Justin; Poklis, Alphonse; Wolf, Carl; Mainland, Mary; Hair, Laura; Devers, Kelly; Chrostowski, Leszek; Arbefeville, Elise; Merves, Michele; Pearson, Julia

    2015-01-01

    In the last two years, an epidemic of fatal narcotic overdose cases has occurred in the Tampa area of Florida. Fourteen of these deaths involved fentanyl and/or the new designer drug, acetyl fentanyl. Victim demographics, case histories, toxicology findings and causes and manners of death, as well as, disposition of fentanyl derivatives and their nor-metabolites in postmortem heart blood, peripheral blood, bile, brain, liver, urine and vitreous humor are presented. In the cases involving only acetyl fentanyl (without fentanyl, n=4), the average peripheral blood acetyl fentanyl concentration was 0.467 mg/L (range 0.31 to .60 mg/L) and average acetyl norfentanyl concentration was 0.053 mg/L (range 0.002 to 0.086 mg/L). In the cases involving fentanyl (without acetyl fentanyl, n=7), the average peripheral blood fentanyl concentration was 0.012 mg/L (range 0.004 to 0.027 mg/L) and average norfentanyl blood concentration was 0.001 mg/L (range 0.0002 to 0.003 mg/L). In the cases involving both acetyl fentanyl and fentanyl (n=3), the average peripheral blood acetyl fentanyl concentration was 0.008 mg/L (range 0.006 to 0.012 mg/L), the average peripheral blood acetyl norfentanyl concentration was 0.001 mg/L (range 0.001 to 0.002 mg/L), the average peripheral blood fentanyl concentration was 0.018 mg/L (range 0.015 to 0.021 mg/L) and the average peripheral blood norfentanyl concentration was 0.002 mg/L (range 0.001 mg/L to 0.003 mg/L). Based on the toxicology results, it is evident that when fentanyl and/or acetyl fentanyl were present, they contributed to the cause of death. A novel ultrahigh performance liquid chromatography (UPLC) tandem mass spectrometry (MS/MS) method to identify and quantify acetyl fentanyl, acetyl norfentanyl, fentanyl and norfentanyl in postmortem fluids and tissues is also presented. PMID:26583960

  10. 40 CFR 61.356 - Recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., annual average flow-weighted benzene concentration, and annual benzene quantity. (2) For each waste... measurements, calculations, and other documentation used to determine that the continuous flow of process... benzene concentrations in the waste, the annual average flow-weighted benzene concentration of the waste...

  11. 40 CFR 61.356 - Recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., annual average flow-weighted benzene concentration, and annual benzene quantity. (2) For each waste... measurements, calculations, and other documentation used to determine that the continuous flow of process... benzene concentrations in the waste, the annual average flow-weighted benzene concentration of the waste...

  12. 40 CFR 61.356 - Recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., annual average flow-weighted benzene concentration, and annual benzene quantity. (2) For each waste... measurements, calculations, and other documentation used to determine that the continuous flow of process... benzene concentrations in the waste, the annual average flow-weighted benzene concentration of the waste...

  13. Characterization of Particulate Matter Profiling and Alveolar Deposition from Biomass Burning in Northern Thailand: The 7-SEAS Study

    NASA Technical Reports Server (NTRS)

    Chuang, Hsiao-Chi; Hsiao, Ta-Chih; Wang, Sheng-Hsiang; Tsay, Si-Chee; Lin, Neng-Huei

    2016-01-01

    Biomass burning (BB) frequently occurs in SouthEast Asia (SEA), which significantly affects the air quality and could consequently lead to adverse health effects. The aim of this study was to characterize particulate matter (PM) and black carbon (BC) emitted from BB source regions in SEA and their potential of deposition in the alveolar region of human lungs. A 31-day characterization of PM profiling was conducted at the Doi Ang Khang (DAK) meteorology station in northern Thailand in March 2013. Substantial numbers of PM (10147 +/- 5800 # per cubic centimeter) with a geometric mean diameter (GMD) of 114.4 +/- 9.2 nm were found at the study site. The PM of less than 2.5 micron in aerodynamic diameter (PM sub 2.5) hourly-average mass concentration was 78.0 +/- 34.5 per cubic microgram whereas the black carbon (BC) mass concentration was 4.4 +/- 2.6 micrograms per cubic meter. Notably, high concentrations of nanoparticle surface area (100.5 +/- 54.6 square micrometers per cubic centimeter) emitted from biomass burning can be inhaled into the human alveolar region. Significant correlations with fire counts within different ranges around DAK were found for particle number, the surface area concentration of alveolar deposition, and BC. In conclusion, biomass burning is an important PM source in SEA, particularly nanoparticles, which has high potency to be inhaled into the lung environment and interact with alveolar cells, leading to adverse respiratory effects. The fire counts within 100 to 150 km shows the highest Pearson's r for particle number and surface area concentration. It suggests 12 to 24 hr could be a fair time scale for initial aging process of BB aerosols. Importantly, the people lives in this region could have higher risk for PM exposure.

  14. RARE EARTH ELEMENTS IN FLY ASHES AS POTENTIAL INDICATORS OF ANTHROPOGENIC SOIL CONTAMINATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattigod, Shas V.

    2003-08-01

    Studies of rare earth element (REE) content of disposed fly ashes and their potential mobility were neglected for decades because these elements were believed to be environmentally benign. A number of recent studies have now shown that REE may pose a long-term risk to the biosphere. Therefore, there is a critical need to study the REE concentrations in fly ash and their potential mobilization and dispersal upon disposal in the environment. We analyzed the REE content of bulk, size fractionated, and density separated fractions of three fly ash samples derived from combustion of sub bituminous coals from the western Unitedmore » States and found that the concentrations of these elements in bulk ashes were within the range typical of fly ashes derived from coals from the North American continent. The concentrations of light rare earth elements (LREE) such as La, Ce, and Nd, however, tended towards the higher end of the concentration range whereas, the concentrations of middle rare earth elements (MREE) (Sm and Eu) and heavy rare earth elements (HREE) (Lu) were closer to the lower end of the observed range for North American fly ashes. The concentrations of REE did not show any significant enrichment with decreasing particle size, this is typical of nonvolatile lithophilic element behavior during the combustion process. The lithophilic nature of REE was also confirmed by their concentrations in heavy density fractions of these fly ashes being on average about two times more enriched than the concentrations in the light density fractions. Shale normalized average of REE concentrations of fly ashes and coals revealed significant positive anomalies for Eu and Dy. Because of these distinctive positive anomalies of Eu and Dy, we believe that fly ash contamination of soils can be fingerprinted and distinguished from other sources of anthropogenic REE inputs in to the environment.« less

  15. Heat transfer and pressure drop studies of TiO2/DI water nanofluids in helically corrugated tubes using spiraled rod inserts

    NASA Astrophysics Data System (ADS)

    Anbu, S.; Venkatachalapathy, S.; Suresh, S.

    2018-05-01

    An experimental study on the convective heat transfer and friction factor characteristics of TiO2/DI water nanofluids in uniformly heated plain and helically corrugated tubes (HCT) with and without spiraled rod inserts (SRI) under laminar flow regime is presented in this paper. TiO2 nanoparticles with an average size of 32 nm are dispersed in deionized (DI) water to form stable suspensions containing 0.1, 0.15, 0.2, and 0.25% volume concentrations of nanoparticles. It is found that the inclusion of nanoparticles to DI water ameliorated Nusselt number which increased with nanoparticles concentration upto 0.2%. Two spiraled rod inserts made of copper with different pitches (pi = 50 mm and 30 mm) are inserted in both plain and corrugated tubes and it is found that the addition of these inserts increased the Nusselt number substantially. For Helically corrugated tube with lower pitch and maximum height of corrugation (pc = 8 mm, hc = 1 mm) with 0.2% volume concentration of nanoparticles, a maximum enhancement of 15% in Nusselt number is found without insert and with insert having lower pitch (pi = 30 mm) the enhancement is 34% when compared to DI water in plain tube. The results on friction factor show a maximum penalty of about 53.56% for the above HCT.

  16. Vertical distribution of aerosol number concentration in the troposphere over Siberia derived from airborne in-situ measurements

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail Yu.; Belan, Boris D.; Paris, Jean-Daniel; Machida, Toshinobu; Kozlov, Alexandr; Malyskin, Sergei; Simonenkov, Denis; Davydov, Denis; Fofonov, Alexandr

    2016-04-01

    Knowledge of the vertical distribution of aerosols particles is very important when estimating aerosol radiative effects. To date there are a lot of research programs aimed to study aerosol vertical distribution, but only a few ones exist in such insufficiently explored region as Siberia. Monthly research flights and several extensive airborne campaigns carried out in recent years in Siberian troposphere allowed the vertical distribution of aerosol number concentration to be summarized. In-situ aerosol measurements were performed in a wide range of particle sizes by means of improved version of the Novosibirsk-type diffusional particle sizer and GRIMM aerosol spectrometer Model 1.109. The data on aerosol vertical distribution enabled input parameters for the empirical equation of Jaenicke (1993) to be derived for Siberian troposphere up to 7 km. Vertical distributions of aerosol number concentration in different size ranges averaged for the main seasons of the year will be presented. This work was supported by Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); and Russian Foundation for Basic Research (grant No. 14-05-00526). Jaenicke R. Tropospheric aerosols, in Aerosol-Cloud-Climate Interactions, edited by P.V. Hobs. -Academic Press, San Diego, CA, 1993.- P. 1-31.

  17. Molybdenum, vanadium, and uranium weathering in small mountainous rivers and rivers draining high-standing islands

    NASA Astrophysics Data System (ADS)

    Gardner, Christopher B.; Carey, Anne E.; Lyons, W. Berry; Goldsmith, Steven T.; McAdams, Brandon C.; Trierweiler, Annette M.

    2017-12-01

    Rivers draining high standing islands (HSIs) and small mountainous rivers (SMRs) are known to have extremely high sediment fluxes, and can also have high chemical weathering yields, which makes them potentially important contributors to the global riverine elemental flux to the ocean. This work reports on the riverine concentrations, ocean flux, and weathering yields of Molybdenum (Mo), Vanadium (V), and Uranium (U) in a large number of small but geochemically important rivers using 338 river samples from ten lithologically-diverse regions. These redox-sensitive elements are used extensively to infer paleo-redox conditions in the ocean, and Mo and V are also important rock-derived micronutrients used by microorganisms in nitrogen fixation. Unlike in large river systems, in which dissolved Mo has been attributed predominately to pyrite dissolution, Mo concentrations in these rivers did not correlate with sulfate concentrations. V was found to correlate strongly with Si in terrains dominated by silicate rocks, but this trend was not observed in primarily sedimentary regions. Many rivers exhibited much higher V/Si ratios than larger rivers, and rivers draining young Quaternary volcanic rocks in Nicaragua had much higher dissolved V concentrations (mean = 1306 nM) than previously-studied rivers. U concentrations were generally well below the global average with the exception of rivers draining primarily sedimentary lithologies containing carbonates and shales. Fluxes of U and Mo from igneous terrains of intermediate composition are lower than the global average, while fluxes of V from these regions are higher, and up to two orders of magnitude higher in the Nicaragua rivers. Weathering yields of Mo and V in most regions are above the global mean, despite lower than average concentrations measured in some of those systems, indicating that the chemical weathering of these elements are higher in these SMR watersheds than larger drainages. In regions of active boundaries with andesite/dacite lithologies, rivers draining young Pleistocene rocks had higher concentrations than did older Miocene-Pliocene rocks of a similar composition. This work shows that weathering yields of Mo, V, and U from SMRs are slightly higher than from large rivers, and the age of igneous lithologies in these regions exhibits a measurable control on riverine concentrations of these elements.

  18. New particle formation leads to cloud dimming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Ryan C.; Crippa, Paola; Matsui, Hitoshi

    New particle formation (NPF), nucleation of condensable vapors to the solid or liquid phase, is a significant source of atmospheric aerosol particle number concentrations. With sufficient growth, these nucleated particles may be a significant source of cloud condensation nuclei (CCN), thus altering cloud albedo, structure, and lifetimes, and insolation reaching the Earth's surface. Herein we present one of the first numerical experiments to quantify the impact of NPF on cloud radiative properties that is conducted at a convection permitting resolution and that explicitly simulates cloud droplet number concentrations. Consistent with observations, these simulations suggest that in spring over the Midwesternmore » U.S.A., NPF occurs frequently and on regional scales. However, the simulations suggest that NPF is not associated with enhancement of regional cloud albedos as would be expected from an increase of CCN. These simulations indicate that NPF reduces ambient sulfuric acid concentrations sufficiently to inhibit growth of preexisting particles to CCN sizes. This reduction in CCN-sized particles reduces cloud albedo, resulting in a domain average positive top of atmosphere cloud radiative forcing of 10 W m-2 and up to ~ 50 W m-2 in individual grid cells relative to a simulation in which NPF is excluded.« less

  19. Determining the ventilation and aerosol deposition rates from routine indoor-air measurements.

    PubMed

    Halios, Christos H; Helmis, Costas G; Deligianni, Katerina; Vratolis, Sterios; Eleftheriadis, Konstantinos

    2014-01-01

    Measurement of air exchange rate provides critical information in energy and indoor-air quality studies. Continuous measurement of ventilation rates is a rather costly exercise and requires specific instrumentation. In this work, an alternative methodology is proposed and tested, where the air exchange rate is calculated by utilizing indoor and outdoor routine measurements of a common pollutant such as SO2, whereas the uncertainties induced in the calculations are analytically determined. The application of this methodology is demonstrated, for three residential microenvironments in Athens, Greece, and the results are also compared against ventilation rates calculated from differential pressure measurements. The calculated time resolved ventilation rates were applied to the mass balance equation to estimate the particle loss rate which was found to agree with literature values at an average of 0.50 h(-1). The proposed method was further evaluated by applying a mass balance numerical model for the calculation of the indoor aerosol number concentrations, using the previously calculated ventilation rate, the outdoor measured number concentrations and the particle loss rates as input values. The model results for the indoors' concentrations were found to be compared well with the experimentally measured values.

  20. Factors associated with ruminal pH at herd level.

    PubMed

    Geishauser, T; Linhart, N; Neidl, A; Reimann, A

    2012-08-01

    The objective of this study was to evaluate factors associated with ruminal pH at herd level. Four hundred and thirty-two cows of a Thuringian dairy herd were sampled before claw trimming using a rumen fluid scoop. Volume and pH of the rumen sample were measured, and lactation number, percentage of concentrates in the ration, days in milk (DIM), time of day, and daily milk yield were recorded. Rumen sampling was successful in 99.8% of the cows. The average sample volume was 25 mL. Rumen sample pH decreased with increasing percentage of concentrates in the ration. Ruminal pH decreased from calving to 77 DIM, and grew subsequently to 330 DIM. During the day, rumen pH followed a sinus curve, with maxima in the morning (0915 h) and afternoon (1533 h), and a minimum around noon (1227 h). Ruminal pH decreased with increasing daily milk yield. Lactation number interacted with daily milk yield on rumen pH. The percentage of concentrates in the ration, DIM, time of day, and daily milk yield were significant factors affecting ruminal pH at the herd level. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Health effects of ambient levels of respirable particulate matter (PM) on healthy, young-adult population

    NASA Astrophysics Data System (ADS)

    Shaughnessy, William J.; Venigalla, Mohan M.; Trump, David

    2015-12-01

    There is an absence of studies that define the relationship between ambient particulate matter (PM) levels and adverse health outcomes among the young and healthy adult sub-group. In this research, the relationship between exposures to ambient levels of PM in the 10 micron (PM10) and 2.5 micron (PM2.5) size fractions and health outcomes in members of the healthy, young-adult subgroup who are 18-39 years of age was examined. Active duty military personnel populations at three strategically selected military bases in the United States were used as a surrogate to the control group. Health outcome data, which consists of the number of diagnoses for each of nine International Classification of Diseases, 9th Revision (ICD-9) categories related to respiratory illness, were derived from outpatient visits at each of the three military bases. Data on ambient concentrations of particulate matter, specifically PM10 and PM2.5, were obtained for these sites. The health outcome data were correlated and regressed with the PM10 and PM2.5 data, and other air quality and weather-related data on a daily and weekly basis for the period 1998 to 2004. Results indicate that at Fort Bliss, which is a US Environmental Protection Agency designated non-attainment area for PM10, a statistically significant association exists between the weekly-averaged number of adverse health effects in the young and healthy adult population and the corresponding weekly-average ambient PM10 concentration. A least squares regression analysis was performed on the Fort Bliss data sets indicated that the health outcome data is related to several environmental parameters in addition to PM10. Overall, the analysis estimates a .6% increase in the weekly rate of emergency room visits for upper respiratory infections for every 10 μg/m3 increase in the weekly-averaged PM10 concentration above the mean. The findings support the development of policy and guidance opportunities that can be developed to mitigate exposures to particulate matter.

  2. Modeling population exposures to outdoor sources of hazardous air pollutants.

    PubMed

    Ozkaynak, Halûk; Palma, Ted; Touma, Jawad S; Thurman, James

    2008-01-01

    Accurate assessment of human exposures is an important part of environmental health effects research. However, most air pollution epidemiology studies rely upon imperfect surrogates of personal exposures, such as information based on available central-site outdoor concentration monitoring or modeling data. In this paper, we examine the limitations of using outdoor concentration predictions instead of modeled personal exposures for over 30 gaseous and particulate hazardous air pollutants (HAPs) in the US. The analysis uses the results from an air quality dispersion model (the ASPEN or Assessment System for Population Exposure Nationwide model) and an inhalation exposure model (the HAPEM or Hazardous Air Pollutant Exposure Model, Version 5), applied by the US. Environmental protection Agency during the 1999 National Air Toxic Assessment (NATA) in the US. Our results show that the total predicted chronic exposure concentrations of outdoor HAPs from all sources are lower than the modeled ambient concentrations by about 20% on average for most gaseous HAPs and by about 60% on average for most particulate HAPs (mainly, due to the exclusion of indoor sources from our modeling analysis and lower infiltration of particles indoors). On the other hand, the HAPEM/ASPEN concentration ratio averages for onroad mobile source exposures were found to be greater than 1 (around 1.20) for most mobile-source related HAPs (e.g. 1, 3-butadiene, acetaldehyde, benzene, formaldehyde) reflecting the importance of near-roadway and commuting environments on personal exposures to HAPs. The distribution of the ratios of personal to ambient concentrations was found to be skewed for a number of the VOCs and reactive HAPs associated with major source emissions, indicating the importance of personal mobility factors. We conclude that the increase in personal exposures from the corresponding predicted ambient levels tends to occur near locations where there are either major emission sources of HAPs or when individuals are exposed to either on- or nonroad sources of HAPs during their daily activities. These findings underscore the importance of applying exposure-modeling methods, which incorporate information on time-activity, commuting, and exposure factors data, for the purposes of assigning exposures in air pollution health studies.

  3. [Determinants of dengue transmission in Veracruz: an ecological approach to its control].

    PubMed

    Escobar-Mesa, Javier; Gómez-Dantés, Héctor

    2003-01-01

    To assess the ecological, social, and demographic factors associated with the transmission of dengue virus infection in Veracruz, Mexico, and to identify risk areas to target control measures. This ecological study included data for 1,249 localities within the 11 Health Jurisdictions of the State of Veracruz, Mexico, for the 1995-1998 period. The following data were collected for each locality: total number of cases per year, population by sex, number of households, provision of public services, altitude, latitude, longitude, and deprivation index. Dengue transmission was registered in 17% of the localities in the State; 70% of the cases were concentrated in only 6% of the localities. Recurrent localities were urban centers with adequate availability of public services and low deprivation indices. Dengue transmission was detected in rural areas, but it was not common. The average number of cases differed according to the size of the locality and the number of years dengue was reported. A population threshold to maintain transmission was found. Recurrent localities concentrating 70% of dengue fever cases were identified, as well as the ecological and demographic factors associated with dengue transmission. The risk stratification approach to dengue transmission may improve control and prevention of this disease in high-risk areas.

  4. Detailed characterization of particulate matter emitted by lean-burn gasoline direct injection engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelenyuk, Alla; Wilson, Jacqueline; Imre, Dan

    This study presents detailed characterization of the chemical and physical properties of PM emitted by a 2.0L BMW lean-burn turbocharged GDI engine operated under a number of combustion strategies that include lean homogeneous, lean stratified, stoichiometric, and fuel rich conditions. We characterized PM number concentrations, size distributions, and the size, mass, compositions, and effective density of fractal and compact individual exhaust particles. For the fractal particles, these measurements yielded fractal dimension, average diameter of primary spherules, and number of spherules, void fraction, and dynamic shape factors as function of particle size. Overall, the PM properties were shown to vary significantlymore » with engine operation condition. Lean stratified operation yielded the most diesel-like size distribution and the largest PM number and mass concentrations, with nearly all particles being fractal agglomerates composed of elemental carbon with small amounts of ash and organics. In contrast, stoichiometric operation yielded a larger fraction of ash particles, especially at low speed and low load. Three distinct forms of ash particles were observed, with their fractions strongly dependent on engine operating conditions: sub-50 nm ash particles, abundant at low speed and low load, ash-containing fractal particles, and large compact ash particles that significantly contribute to PM mass loadings« less

  5. Rural and Urban Differences in Air Quality, 2008–2012, and Community Drinking Water Quality, 2010–2015 — United States

    PubMed Central

    Kennedy, Caitlin; Monti, Michele; Yip, Fuyuen

    2017-01-01

    Problem/Condition The places in which persons live, work, and play can contribute to the development of adverse health outcomes. Understanding the differences in risk factors in various environments can help to explain differences in the occurrence of these outcomes and can be used to develop public health programs, interventions, and policies. Efforts to characterize urban and rural differences have largely focused on social and demographic characteristics. A paucity of national standardized environmental data has hindered efforts to characterize differences in the physical aspects of urban and rural areas, such as air and water quality. Reporting Period 2008–2012 for air quality and 2010–2015 for water quality. Description of System Since 2002, CDC’s National Environmental Public Health Tracking Program has collaborated with federal, state, and local partners to gather standardized environmental data by creating national data standards, collecting available data, and disseminating data to be used in developing public health actions. The National Environmental Public Health Tracking Network (i.e., the tracking network) collects data provided by national, state, and local partners and includes 21 health outcomes, exposures, and environmental hazards. To assess environmental factors that affect health, CDC analyzed three air-quality measures from the tracking network for all counties in the contiguous United States during 2008–2012 and one water-quality measure for 26 states during 2010–2015. The three air-quality measures include 1) total number of days with fine particulate matter (PM2.5) levels greater than the U.S. Environmental Protection Agency’s (EPA’s) National Ambient Air Quality Standards (NAAQS) for 24-hour average PM2.5 (PM2.5 days); 2) mean annual average ambient concentrations of PM2.5 in micrograms per cubic meter (mean PM2.5); and 3) total number of days with maximum 8-hour average ozone concentrations greater than the NAAQS (ozone days). The water-quality measure compared the annual mean concentration for a community water system (CWS) to the maximum contaminant level (MCL) defined by EPA for 10 contaminants: arsenic, atrazine, di(2-ethylhexyl) phthalate (DEHP), haloacetic acids (HAA5), nitrate, perchloroethene (PCE), radium, trichloroethene (TCE), total trihalomethanes (TTHM), and uranium. Findings are presented by urban-rural classification scheme: four metropolitan (large central metropolitan, large fringe metropolitan, medium metropolitan, and small metropolitan) and two nonmetropolitan (micropolitan and noncore) categories. Regression modeling was used to determine whether differences in the measures by urban-rural categories were statistically significant. Results Patterns for all three air-quality measures suggest that air quality improves as areas become more rural (or less urban). The mean total number of ozone days decreased from 47.54 days in large central metropolitan counties to 3.81 days in noncore counties, whereas the mean total number of PM2.5 days decreased from 11.21 in large central metropolitan counties to 0.95 in noncore counties. The mean average annual PM2.5 concentration decreased from 11.15 μg/m3 in large central metropolitan counties to 8.87 μg/m3 in noncore counties. Patterns for the water-quality measure suggest that water quality improves as areas become more urban (or less rural). Overall, 7% of CWSs reported at least one annual mean concentration greater than the MCL for all 10 contaminants combined. The percentage increased from 5.4% in large central metropolitan counties to 10% in noncore counties, a difference that was significant, adjusting for U.S. region, CWS size, water source, and potential spatial correlation. Similar results were found for two disinfection by-products, HAA5 and TTHM. Arsenic was the only other contaminant with a significant result. Medium metropolitan counties had 3.1% of CWSs reporting at least one annual mean greater than the MCL, compared with 2.4% in large central counties. Interpretation Noncore (rural) counties experienced fewer unhealthy air-quality days than large central metropolitan counties, likely because of fewer air pollution sources in the noncore counties. All categories of counties had a mean annual average PM2.5 concentration lower than the EPA standard. Among all CWSs analyzed, the number reporting one or more annual mean contaminant concentrations greater the MCL was small. The water-quality measure suggests that water quality worsens as counties become more rural, in regards to all contaminants combined and for the two disinfection by-products individually. Although significant differences were found for the water-quality measure, the odds ratios were very small, making it difficult to determine whether these differences have a meaningful effect on public health. These differences might be a result of variations in water treatment practices in rural versus urban counties. Public Health Action Understanding the differences between rural and urban areas in air and water quality can help public health departments to identify, monitor, and prioritize potential environmental public health concerns and opportunities for action. These findings suggest a continued need to develop more geographically targeted, evidence-based interventions to prevent morbidity and mortality associated with poor air and water quality. PMID:28640797

  6. Rural and Urban Differences in Air Quality, 2008-2012, and Community Drinking Water Quality, 2010-2015 - United States.

    PubMed

    Strosnider, Heather; Kennedy, Caitlin; Monti, Michele; Yip, Fuyuen

    2017-06-23

    The places in which persons live, work, and play can contribute to the development of adverse health outcomes. Understanding the differences in risk factors in various environments can help to explain differences in the occurrence of these outcomes and can be used to develop public health programs, interventions, and policies. Efforts to characterize urban and rural differences have largely focused on social and demographic characteristics. A paucity of national standardized environmental data has hindered efforts to characterize differences in the physical aspects of urban and rural areas, such as air and water quality. 2008-2012 for air quality and 2010-2015 for water quality. Since 2002, CDC's National Environmental Public Health Tracking Program has collaborated with federal, state, and local partners to gather standardized environmental data by creating national data standards, collecting available data, and disseminating data to be used in developing public health actions. The National Environmental Public Health Tracking Network (i.e., the tracking network) collects data provided by national, state, and local partners and includes 21 health outcomes, exposures, and environmental hazards. To assess environmental factors that affect health, CDC analyzed three air-quality measures from the tracking network for all counties in the contiguous United States during 2008-2012 and one water-quality measure for 26 states during 2010-2015. The three air-quality measures include 1) total number of days with fine particulate matter (PM 2.5 ) levels greater than the U.S. Environmental Protection Agency's (EPA's) National Ambient Air Quality Standards (NAAQS) for 24-hour average PM 2.5 (PM 2.5 days); 2) mean annual average ambient concentrations of PM 2.5 in micrograms per cubic meter (mean PM 2.5 ); and 3) total number of days with maximum 8-hour average ozone concentrations greater than the NAAQS (ozone days). The water-quality measure compared the annual mean concentration for a community water system (CWS) to the maximum contaminant level (MCL) defined by EPA for 10 contaminants: arsenic, atrazine, di(2-ethylhexyl) phthalate (DEHP), haloacetic acids (HAA5), nitrate, perchloroethene (PCE), radium, trichloroethene (TCE), total trihalomethanes (TTHM), and uranium. Findings are presented by urban-rural classification scheme: four metropolitan (large central metropolitan, large fringe metropolitan, medium metropolitan, and small metropolitan) and two nonmetropolitan (micropolitan and noncore) categories. Regression modeling was used to determine whether differences in the measures by urban-rural categories were statistically significant. Patterns for all three air-quality measures suggest that air quality improves as areas become more rural (or less urban). The mean total number of ozone days decreased from 47.54 days in large central metropolitan counties to 3.81 days in noncore counties, whereas the mean total number of PM 2.5 days decreased from 11.21 in large central metropolitan counties to 0.95 in noncore counties. The mean average annual PM 2.5 concentration decreased from 11.15 μg/m 3 in large central metropolitan counties to 8.87 μg/m 3 in noncore counties. Patterns for the water-quality measure suggest that water quality improves as areas become more urban (or less rural). Overall, 7% of CWSs reported at least one annual mean concentration greater than the MCL for all 10 contaminants combined. The percentage increased from 5.4% in large central metropolitan counties to 10% in noncore counties, a difference that was significant, adjusting for U.S. region, CWS size, water source, and potential spatial correlation. Similar results were found for two disinfection by-products, HAA5 and TTHM. Arsenic was the only other contaminant with a significant result. Medium metropolitan counties had 3.1% of CWSs reporting at least one annual mean greater than the MCL, compared with 2.4% in large central counties. Noncore (rural) counties experienced fewer unhealthy air-quality days than large central metropolitan counties, likely because of fewer air pollution sources in the noncore counties. All categories of counties had a mean annual average PM 2.5 concentration lower than the EPA standard. Among all CWSs analyzed, the number reporting one or more annual mean contaminant concentrations greater the MCL was small. The water-quality measure suggests that water quality worsens as counties become more rural, in regards to all contaminants combined and for the two disinfection by-products individually. Although significant differences were found for the water-quality measure, the odds ratios were very small, making it difficult to determine whether these differences have a meaningful effect on public health. These differences might be a result of variations in water treatment practices in rural versus urban counties. Understanding the differences between rural and urban areas in air and water quality can help public health departments to identify, monitor, and prioritize potential environmental public health concerns and opportunities for action. These findings suggest a continued need to develop more geographically targeted, evidence-based interventions to prevent morbidity and mortality associated with poor air and water quality.

  7. Settling velocity and preferential concentration of heavy particles under two-way coupling effects in homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Monchaux, R.; Dejoan, A.

    2017-10-01

    The settling velocity of inertial particles falling in homogeneous turbulence is investigated by making use of direct numerical simulation (DNS) at moderate Reynolds number that include momentum exchange between both phases (two-way coupling approach). Effects of particle volume fraction, particle inertia, and gravity are presented for flow and particle parameters similar to the experiments of Aliseda et al. [J. Fluid Mech. 468, 77 (2002), 10.1017/S0022112002001593]. A good agreement is obtained between the DNS and the experiments for the settling velocity statistics, when overall averaged, but as well when conditioned on the local particle concentration. Both DNS and experiments show that the settling velocity further increases with increasing volume fraction and local concentration. At the considered particle loading the effects of two-way coupling is negligible on the mean statistics of turbulence. Nevertheless, the DNS results show that fluid quantities are locally altered by the particles. In particular, the conditional average on the local particle concentration of the slip velocity shows that the main contribution to the settling enhancement results from the increase of the fluid velocity surrounding the particles along the gravitational direction induced by the collective particle back-reaction force. Particles and the surrounding fluid are observed to fall together, which in turn results in an amplification of the sampling of particles in the downward fluid motion. Effects of two-way coupling on preferential concentration are also reported. Increase of both volume fraction and gravity is shown to lower preferential concentration of small inertia particles while a reverse tendency is observed for large inertia particles. This behavior is found to be related to an attenuation of the centrifuge effects and to an increase of particle accumulation along gravity direction, as particle loading and gravity become large.

  8. Preparation of chitosan/tripolyphosphate nanoparticles with highly tunable size and low polydispersity.

    PubMed

    Sawtarie, Nader; Cai, Yuhang; Lapitsky, Yakov

    2017-09-01

    Nanoparticles prepared through the ionotropic gelation of chitosan with tripolyphosphate (TPP) have been extensively studied as vehicles for drug and gene delivery. Though a number of these works have focused on preparing particles with narrow size distributions, the monodisperse particles produced by these methods have been limited to narrow size ranges (where the average particle size was not varied by more than twofold). Here we show how, by tuning the NaCl concentration in the parent chitosan and TPP solutions, low-polydispersity particles with z-average diameters ranging between roughly 100 and 900nm can be prepared. Further, we explore how the size of these particles depends on the method by which the TPP is mixed into the chitosan solution, specifically comparing: (1) single-shot mixing; (2) dropwise addition; and (3) a dilution technique, where chitosan and TPP are codissolved at a high (gelation-inhibiting) ionic strength and then diluted to lower ionic strengths to trigger gelation. Though the particle size increases sigmoidally with the NaCl concentration for all three mixing methods, the dilution method delivers the most uniform/gradual size increase - i.e., it provides the most precise control. Also investigated are the effects of mixture composition and mixing procedure on the particle yield. These reveal the particle yield to increase with the chitosan/TPP concentration, decrease with the NaCl concentration, and vary only weakly with the mixing protocol; thus, at elevated NaCl concentrations, it may be beneficial to increase chitosan and TPP concentrations to ensure high particle yields. Finally, possible pitfalls of the salt-assisted size control strategy (and their solutions) are discussed. Taken together, these findings provide a simple and reliable method for extensively tuning chitosan/TPP particle size while maintaining narrow size distributions. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The influences of macro- and microphysical characteristics of sea-fog on fog-water chemical composition

    NASA Astrophysics Data System (ADS)

    Yue, Yanyu; Niu, Shengjie; Zhao, Lijuan; Zhang, Yu; Xu, Feng

    2014-05-01

    During a sea-fog field observation campaign on Donghai Island in the spring of 2011, fog-water, visibility, meteorological elements, and fog droplet spectra were measured. The main cations and anions in 191 fog-water samples were Na+, NH{4/+}, H+, NO{3/-}, Cl- and SO{4/2-}, and the average concentrations of cations and anions were 2630 and 2970 μeq L-1, respectively. The concentrations of Na+ and Cl- originated from the ocean were high. The enhancement of anthropogenic pollution might have contributed to the high concentration of NH{4/+}, H+, and NO{3/-}. The average values of pH and electrical conductivity (EC) were 3.34 and 505 μS cm-1, respectively, with a negative correlation between them. Cold fronts associated with cyclonic circulations promoted the decline of ion loadings. Air masses from coastal areas had the highest ion loadings, contrary to those from the sea. The ranges of wind speed, wind direction and temperature corresponding to the maximum total ion concentration (TIC) were 3.5-4 m s-1, 79°-90° and 21°C-22°C, respectively. In view of the low correlation coefficients, a new parameter Lr was proposed as a predictive parameter for TIC and the correlation coefficient increased to 0.74. Based on aerosol concentrations during the sea-fog cases in 2010, we confirmed that fog-water chemical composition also depended on the species and sizes of aerosol particles. When a dust storm passed through Donghai Island, the number concentration of large aerosol particles (with diameter > 1 μm) increased. This caused the ratio of Ca2+/Na+ in fog-water to increase significantly.

  10. Measurement of fine particles and smoking activity in a statewide survey of 36 California Indian casinos

    PubMed Central

    Jiang, Ru O-Ting; Cheng, Ka I-Chung; Acevedo-Bolton, Viviana; Klepeis, Neil E; Repace, James L; Ott, Wayne R; Hildemann, Lynn M

    2011-01-01

    Despite California's 1994 statewide smoking ban, exposure to secondhand smoke (SHS) continues in California's Indian casinos. Few data are available on exposure to airborne fine particles (PM2.5) in casinos, especially on a statewide basis. We sought to measure PM2.5 concentrations in Indian casinos widely distributed across California, exploring differences due to casino size, separation of smoking and non-smoking areas, and area smoker density. A selection of 36 out of the 58 Indian casinos throughout California were each visited for 1–3 h on weekend or holiday evenings, using two or more concealed monitors to measure PM2.5 concentrations every 10 s. For each casino, the physical dimensions and the number of patrons and smokers were estimated. As a preliminary assessment of representativeness, we also measured eight casinos in Reno, NV. The average PM2.5 concentration for the smoking slot machine areas (63 μg/m3) was nine times as high as outdoors (7 μg/m3), whereas casino non-smoking restaurants (29 μg/m3) were four times as high. Levels in non-smoking slot machine areas varied: complete physical separation reduced concentrations almost to outdoor levels, but two other separation types had mean levels that were 13 and 29 μg/m3, respectively, higher than outdoors. Elevated PM2.5 concentrations in casinos can be attributed primarily to SHS. Average PM2.5 concentrations during 0.5–1 h visits to smoking areas exceeded 35 μg/m3 for 90% of the casino visits. PMID:20160761

  11. Determination of beryllium concentrations in UK ambient air

    NASA Astrophysics Data System (ADS)

    Goddard, Sharon L.; Brown, Richard J. C.; Ghatora, Baljit K.

    2016-12-01

    Air quality monitoring of ambient air is essential to minimise the exposure of the general population to toxic substances such as heavy metals, and thus the health risks associated with them. In the UK, ambient air is already monitored under the UK Heavy Metals Monitoring Network for a number of heavy metals, including nickel (Ni), arsenic (As), cadmium (Cd) and lead (Pb) to ensure compliance with legislative limits. However, the UK Expert Panel on Air Quality Standards (EPAQS) has highlighted a need to limit concentrations of beryllium (Be) in air, which is not currently monitored, because of its toxicity. The aim of this work was to analyse airborne particulate matter (PM) sampled onto filter papers from the UK Heavy Metals Monitoring Network for quantitative, trace level beryllium determination and compare the results to the guideline concentration specified by EPAQS. Samples were prepared by microwave acid digestion in a matrix of 2% sulphuric acid and 14% nitric acid, verified by the use of Certified Reference Materials (CRMs). The digested samples were then analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The filters from the UK Heavy Metals Monitoring Network were tested using this procedure and the average beryllium concentration across the network for the duration of the study period was 7.87 pg m-3. The highest site average concentration was 32.0 pg m-3 at Scunthorpe Low Santon, which is significantly lower than levels that are thought to cause harm. However the highest levels were observed at sites monitoring industrial point sources, indicating that beryllium is being used and emitted, albeit at very low levels, from these point sources. Comparison with other metals concentrations and data from the UK National Atmospheric Emissions Inventory suggests that current emissions of beryllium may be significantly overestimated.

  12. Characteristics of water, sediment, and benthic communities of the Wolf River, Menominee Indian Reservation, Wisconsin, water years 1986-98

    USGS Publications Warehouse

    Garn, Herbert S.; Scudder, Barbara C.; Richards, Kevin D.; Sullivan, Daniel J.

    2001-01-01

    Analyses and interpretation of water quality, sediment, and biological data from water years 1986 through 1998 indicated that land use and other human activities have had only minimal effects on water quality in the Wolf River upstream from and within the Menominee Indian Reservation in northeastern Wisconsin. Relatively high concentrations of calcium and magnesium (natural hardness), iron, manganese, and aluminum were measured in Wolf River water samples during water years 1986?98 from the three sampled sites and attributed to presence of highly mineralized geologic materials in the basin. Average calcium and magnesium concentrations varied from 22?26 milligrams per liter (mg/L) and 11?13 mg/L, respectively. Average iron concentrations ranged from 290?380 micrograms per liter (?g/L); average manganese concentrations ranged from 53?56 mg/L. Average aluminum concentrations ranged from 63?67 ?g/L. Mercury was present in water samples but concentrations were not at levels of concern. Levels of Kjeldahl nitrogen, ammonia, nitrite plus nitrate, total phosphorus, and orthophosphorus in water samples were often low or below detection limits (0.01? 0.10 mg/L). Trace amounts of atrazine (maximum concentration of 0.031 ?g/L), deethylatrazine (maximum 0.032 ?g/L), and alachlor (maximum of 0.002 ?g/L) were detected. Low concentrations of most trace elements were found in streambed sediment. Tissues of fish and aquatic invertebrates collected once each year from 1995 through 1998 at the Langlade and Keshena sites, near the northern and southern boundaries of the Reservation, respectively, were low in concentrations of most trace elements. Arsenic and silver in fish livers from both sites were less than or equal to 2 ?g/g arsenic and less than 1 ?g/g silver for dry weight analysis, and concentrations of antimony, beryllium, cadmium, cobalt, lead, nickel, and uranium were all below detection limits (less than 1 ?g/g dry weight). Concentrations of most other trace elements in fish were low, with the exceptions of chromium, copper, mercury, and selenium; however, these concentrations are not at levels of concern. Concentrations of all trace elements analyzed in whole caddisfly larvae also were low compared to those reported in the literature. During 1998, a total of 48 species of macroinvertebrates were identified at each of two sampled sites, with similar numbers of genera represented at both: 41 at Keshena and 44 at Langlade. The percentage EPT (Ephemeroptera, Plecoptera, and Trichoptera) was 52 at Keshena and 77 at Langlade; these relatively large percentages suggest very good to excellent water quality at these sites. A total of 52 algal taxa were identified at the Wolf River near Langlade. Diatoms made up 96 percent of the algal biomass. A total of 58 algal taxa were identified at Keshena, including 48 diatom taxa (83 percent). Although diatoms accounted for just 22 percent of the algal relative abundance, in cells per square centimeter, diatoms contributed 91 percent of the total algal biomass. The overall biological integrity of the Keshena and Langlade sites, based on diversity, siltation, and pollution indexes for diatoms is excellent.

  13. Effects of legislation restricting pack sizes of paracetamol and salicylate on self poisoning in the United Kingdom: before and after study

    PubMed Central

    Hawton, Keith; Townsend, Ellen; Deeks, Jonathan; Appleby, Louis; Gunnell, David; Bennewith, Olive; Cooper, Jayne

    2001-01-01

    Objective To evaluate the effects on suicidal behaviour of legislation limiting the size of packs of paracetamol and salicylates sold over the counter. Design Before and after study. Setting UK population, with detailed monitoring of data from five liver units and seven general hospitals, between September 1996 and September 1999. Subjects People who died by suicidal or accidental overdose with paracetamol or salicylates or who died of undetermined causes; patients admitted to liver units with hepatic paracetamol poisoning; patients presenting to general hospitals with self poisoning after taking paracetamol or salicylates. Main outcome measures Mortality from paracetamol or salicylate overdose; numbers of patients referred to liver units or listed for liver transplant; numbers of transplantations; numbers of overdoses and tablets taken; blood concentrations of the drugs; prothrombin times; sales to pharmacies and other outlets of paracetamol and salicylates. Results Numbers of tablets per pack of paracetamol and salicylates decreased markedly in the year after the change in legislation on 16 September 1998. The annual number of deaths from paracetamol poisoning decreased by 21% (95% confidence interval 5% to 34%) and the number from salicylates decreased by 48% (11% to 70%). Liver transplant rates after paracetamol poisoning decreased by 66% (55% to 74%). The rate of non-fatal self poisoning with paracetamol in any form decreased by 11% (5% to 16%), mainly because of a 15% (8% to 21%) reduction in overdoses of paracetamol in non-compound form. The average number of tablets taken in paracetamol overdoses decreased by 7% (0% to 12%), and the proportion involving >32 tablets decreased by 17% (4% to 28%). The average number of tablets taken in salicylate overdoses did not decrease, but 34% fewer (2% to 56%) salicylate overdoses involved >32 tablets. After the legislation mean blood concentrations of salicylates after overdose decreased, as did prothrombin times; mean blood concentrations of paracetamol did not change. Conclusion Legislation restricting pack sizes of paracetamol and salicylates in the United Kingdom has had substantial beneficial effects on mortality and morbidity associated with self poisoning using these drugs. What is already known on this topicParacetamol and salicylate overdoses are very common in the United Kingdom and are associated with high levels of mortality and morbidityInternational comparison shows that national mortality from paracetamol overdose may be related to the maximum number of tablets in individual preparationsLegislation to limit the size of packs of paracetamol and salicylates was introduced in the United Kingdom in September 1998What this study addsThe number of tablets in packets of paracetamol and salicylate preparations decreased markedly in the 12 months after the legislationThe number of deaths from self poisoning with paracetamol alone and with salicylates alone decreased after the legislationThere was also a decrease in the number of liver transplants and admissions to liver units with hepatic paracetamol poisoning and in the number of overdoses of paracetamol and salicylates in which large numbers of tablets were taken PMID:11358770

  14. Reduction of Biomechanical and Welding Fume Exposures in Stud Welding.

    PubMed

    Fethke, Nathan B; Peters, Thomas M; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A

    2016-04-01

    The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18 min) when using conventional methods were high (18.2 mg m(-3) for bare beam; 65.7 mg m(-3) for through deck), with estimated mass concentrations of iron (7.8 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), zinc (0.2 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), and manganese (0.9 mg m(-3) for bare beam; 1.5 mg m(-3) for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17 nm) through deck conditions (34±34 nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure levels during stud welding simulations, but further development is needed before field deployment is possible. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  15. Reduction of Biomechanical and Welding Fume Exposures in Stud Welding

    PubMed Central

    Fethke, Nathan B.; Peters, Thomas M.; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A.

    2016-01-01

    The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18min) when using conventional methods were high (18.2mg m−3 for bare beam; 65.7mg m−3 for through deck), with estimated mass concentrations of iron (7.8mg m−3 for bare beam; 15.8mg m−3 for through deck), zinc (0.2mg m−3 for bare beam; 15.8mg m−3 for through deck), and manganese (0.9mg m−3 for bare beam; 1.5mg m−3 for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17nm) through deck conditions (34±34nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure levels during stud welding simulations, but further development is needed before field deployment is possible. PMID:26602453

  16. 40 CFR 464.34 - New source performance standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-continuous dischargers, annual average mass standards and maximum day and maximum for monthly average concentration (mg/l) standards shall apply. Concentration standards and annual average mass standards shall only... 40 Protection of Environment 31 2012-07-01 2012-07-01 false New source performance standards. 464...

  17. 40 CFR 464.34 - New source performance standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-continuous dischargers, annual average mass standards and maximum day and maximum for monthly average concentration (mg/l) standards shall apply. Concentration standards and annual average mass standards shall only... 40 Protection of Environment 30 2014-07-01 2014-07-01 false New source performance standards. 464...

  18. 40 CFR 464.34 - New source performance standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-continuous dischargers, annual average mass standards and maximum day and maximum for monthly average concentration (mg/l) standards shall apply. Concentration standards and annual average mass standards shall only... 40 Protection of Environment 31 2013-07-01 2013-07-01 false New source performance standards. 464...

  19. Environmental lead pollution and its possible influence on tooth loss and hard dental tissue lesions.

    PubMed

    Cenić-Milosević, Desanka; Mileusnić, Ivan; Kolak, Veljko; Pejanović, Djordje; Ristić, Tamara; Jakovljević, Ankica; Popović, Milica; Pesić, Dragana; Melih, Irena

    2013-08-01

    Environmental lead (Pb) pollution is a global problem. Hard dental tissue is capable of accumulating lead and other hard metals from the environment. The aim of this study was to investigate any correlation between the concentration of lead in teeth extracted from inhabitants of Pancevo and Belgrade, Serbia, belonging to different age groups and occurrence of tooth loss, caries and non-carious lesions. A total of 160 volunteers were chosen consecutively from Pancevo (the experimental group) and Belgrade (the control group) and divided into 5 age subgroups of 32 subjects each. Clinical examination consisted of caries and hard dental tissue diagnostics. The Decayed Missing Filled Teeth (DMFT) Index and Significant Caries Index were calculated. Extracted teeth were freed of any organic residue by UV digestion and subjected to voltammetric analysis for the content of lead. The average DMFT scores in Pancevo (20.41) were higher than in Belgrade (16.52); in the patients aged 31-40 and 41-50 years the difference was significant (p < 0.05) and highly significant in the patients aged 51-60 (23.69 vs 18.5, p < 0.01). Non-carious lesions were diagnosed in 71 (44%) patients from Pancevo and 39 (24%) patients from Belgrade. The concentrations of Pb in extracted teeth in all the groups from Pancevo were statistically significantly (p < 0.05) higher than in all the groups from Belgrade. In the patients from Pancevo correlations between Pb concentration in extracted teeth and the number of extracted teeth, the number of carious lesions and the number of non-carious lesions showed a statistical significance (p < 0.001, p < 0.01 andp < 0.001, respectively). According to correlations between lead concentration and the number of extracted teeth, number of carious lesions and non-carious lesions found in the patients living in Pancevo, one possible cause of tooth loss and hard dental tissue damage could be a long-term environmental exposure to lead.

  20. Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity

    NASA Astrophysics Data System (ADS)

    Gunthe, S. S.; King, S. M.; Rose, D.; Chen, Q.; Roldin, P.; Farmer, D. K.; Jimenez, J. L.; Artaxo, P.; Andreae, M. O.; Martin, S. T.; Pöschl, U.

    2009-02-01

    Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. We have measured and characterized CCN at water vapor supersaturations in the range of S=0.10-0.82% in pristine tropical rainforest air during the AMAZE-08 campaign in central Amazonia. The effective hygroscopicity parameters describing the influence of chemical composition on the CCN activity of aerosol particles varied in the range of κ=0.05-0.45. The overall median value of κ≍0.15 was only half of the value typically observed for continental aerosols in other regions of the world. Aitken mode particles were less hygroscopic than accumulation mode particles (κ≍0.1 at D≍50 nm; κ≍0.2 at D≍200 nm). The CCN measurement results were fully consistent with aerosol mass spectrometry (AMS) data, which showed that the organic mass fraction (Xm,org) was on average as high as ~90% in the Aitken mode (D≤100 nm) and decreased with increasing particle diameter in the accumulation mode (~80% at D≍200 nm). The κ values exhibited a close linear correlation with Xm,org and extrapolation yielded the following effective hygroscopicity parameters for organic and inorganic particle components: κorg≍0.1 which is consistent with laboratory measurements of secondary organic aerosols and κinorg≍0.6 which is characteristic for ammonium sulfate and related salts. Both the size-dependence and the temporal variability of effective particle hygroscopicity could be parameterized as a function of AMS-based organic and inorganic mass fractions (κp=0.1 Xm,org+0.6 Xm,inorg), and the CCN number concentrations predicted with κp were in fair agreement with the measurement results. The median CCN number concentrations at S=0.1-0.82% ranged from NCCN,0.10≍30 cm-3 to NCCN,0.82≍150 cm-3, the median concentration of aerosol particles larger than 30 nm was NCN,30≍180 cm-3, and the corresponding integral CCN efficiencies were in the range of NCCN,0.10/NCN,30≍0.1 to NCCN,0.82/NCN,30≍0.8. Although the number concentrations and hygroscopicity parameters were much lower, the integral CCN efficiencies observed in pristine rainforest air were similar to those in highly polluted mega-city air. Moreover, model calculations of NCCN,S with a global average value of κ=0.3 led to systematic overpredictions, but the relative deviations exceeded ~50% only at low water vapor supersaturation (0.1%) and low particle number concentrations (≤100 cm-3). These findings confirm earlier studies suggesting that aerosol particle number and size are the major predictors for the variability of the CCN concentration in continental boundary layer air, followed by particle composition and hygroscopicity as relatively minor modulators. Depending on the required and applicable level of detail, the information and parameterizations presented in this paper should enable efficient description of the CCN properties of pristine tropical rainforest aerosols in detailed process models as well as in large-scale atmospheric and climate models.

  1. X-ray microanalytical surveys of minor element concentrations in unsectioned biological samples

    NASA Astrophysics Data System (ADS)

    Schofield, R. M. S.; Lefevre, H. W.; Overley, J. C.; Macdonald, J. D.

    1988-03-01

    Approximate concentration maps of small unsectioned biological samples are made using the pixel by pixel ratio of PIXE images to areal density images. Areal density images are derived from scanning transmission ion microscopy (STIM) proton energy-loss images. Corrections for X-ray production cross section variations, X-ray attenuation, and depth averaging are approximated or ignored. Estimates of the magnitude of the resulting error are made. Approximate calcium concentrations within the head of a fruit fly are reported. Concentrations in the retinula cell region of the eye average about 1 mg/g dry weight. Concentrations of zinc in the mandible of several ant species average about 40 mg/g. Zinc concentrations in the stomachs of these ants are at least 1 mg/g.

  2. Water-quality assessment of stormwater runoff from a heavily used urban highway bridge in Miami, Florida

    USGS Publications Warehouse

    McKenzie, Donald J.; Irwin, G.A.

    1983-01-01

    Runoff from a heavily-traveled, 1.43-acre bridge section of Interstate-95 in Miami, Florida, was comprehensively monitored for both quality and quantity during five selected storms between November 1979 and May 1981. For most water-quality parameters, 6 to 11 samples were collected during each of the 5 runoff events. Concentrations of most parameters in the runoff were quite variable both during individual storm events and among the five storm events; however, the ranges in parameter concentration were about the same magnitude report for numerous other highway and urban drainages. Data were normalized to estimate the average, discharge-weighted parameter loads per storm per acre of bridge surface and results suggested that the most significant factor influencing stormwater loads was parameter concentration. Rainfall intensity and runoff volume, however, influenced rates of loading. The total number of antecedent dry days and traffic volume did not appear to be conspicously related to either runoff concentrations or loads. (USGS)

  3. A COMPARATIVE STUDY OF DIURNAL VARIATION OF RADON AND THORON CONCENTRATIONS IN INDOOR ENVIRONMENT.

    PubMed

    Pant, Preeti; Kandari, Tushar; Prasad, Mukesh; Ramola, R C

    2016-10-01

    The diurnal measurements of radon and thoron concentrations were performed in the indoor environment of Nuclear Research Laboratory, Badshahi Thaul, Tehri Garhwal, Uttarakhand, India by using AlphaGUARD, Portable Radon Monitor (SMART RnDuo) and RAD7. Using AlphaGUARD, the radon concentration was found to vary from 8 to 94 Bq m -3 with an average of 41.5±22.2 Bq m -3 Using Portable Radon Monitor (SMART RnDuo), the concentration was found to vary from 2 to 101 Bq m -3 with an average of 41.7±23.6 Bq m -3 , and with RAD7, the concentration was found to vary from 3 to 99 Bq m -3 with an average of 40±20.3 Bqm -3 While the thoron concentration using Portable Radon Monitor (SMART RnDuo) was found to vary from 4 to 65 Bq m -3 with an average of 17.3±12.9 Bqm -3 , and using RAD7, the concentration was found to vary from 5 to 90 Bq m -3 with an average of 29.8±17.3 Bq m -3 . © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Averaging processes in granular flows driven by gravity

    NASA Astrophysics Data System (ADS)

    Rossi, Giulia; Armanini, Aronne

    2016-04-01

    One of the more promising theoretical frames to analyse the two-phase granular flows is offered by the similarity of their rheology with the kinetic theory of gases [1]. Granular flows can be considered a macroscopic equivalent of the molecular case: the collisions among molecules are compared to the collisions among grains at a macroscopic scale [2,3]. However there are important statistical differences in dealing with the two applications. In the two-phase fluid mechanics, there are two main types of average: the phasic average and the mass weighed average [4]. The kinetic theories assume that the size of atoms is so small, that the number of molecules in a control volume is infinite. With this assumption, the concentration (number of particles n) doesn't change during the averaging process and the two definitions of average coincide. This hypothesis is no more true in granular flows: contrary to gases, the dimension of a single particle becomes comparable to that of the control volume. For this reason, in a single realization the number of grain is constant and the two averages coincide; on the contrary, for more than one realization, n is no more constant and the two types of average lead to different results. Therefore, the ensamble average used in the standard kinetic theory (which usually is the phasic average) is suitable for the single realization, but not for several realization, as already pointed out in [5,6]. In the literature, three main length scales have been identified [7]: the smallest is the particles size, the intermediate consists in the local averaging (in order to describe some instability phenomena or secondary circulation) and the largest arises from phenomena such as large eddies in turbulence. Our aim is to solve the intermediate scale, by applying the mass weighted average, when dealing with more than one realizations. This statistical approach leads to additional diffusive terms in the continuity equation: starting from experimental results, we aim to define the scales governing the diffusive phenomenon, introducing the diffusive terms following the Boussinesq model. The diffusive coefficient will be experimentally defined; it will be probably proportional to the square root of the granular temperature θ and the diameter of the particles d or, alternatively, the flow height h. REFERENCES 1 Chapman S., Cowling T.G., 1971. Cambridge University Press, Cambridge, England. 2 Jenkins J.T., Savage S.B., 1983 J. Fluid.Mech., 130: 187-202 3 Savage S.B.,1984. J. Fluid.Mech., 24: 289-366 4 D.A.Drew, 1983. Annu. Rev. Fluid Mech. 15:261-291 5 I. Goldhirsch, 2003. Annu. Rev. Fluid Mech., 35:267-293. 6 I. Goldhirsch, 2008. Powder Technology, 182: 130-136. 7 T.J. Hsu, J.T. Jenkins, P.L. Liu 2004. Proc. Royal Soc.

  5. Sources of secondary organic aerosols over North China Plain in winter

    NASA Astrophysics Data System (ADS)

    Xing, L.; Li, G.; Tie, X.; Junji, C.; Long, X.

    2017-12-01

    Organic aerosol (OA) concentrations are simulated over the North China Plain (NCP) from 10th to 26th January, 2014 using the Weather Research and Forecasting model coupled to chemistry (WRF-CHEM), with the goal of examining the impact of heterogeneous HONO sources on atmospheric oxidation capacity and consequently on SOA formation and SOA formation from different pathways in winter. Generally, the model well reproduced the spatial and temporal distribution of PM2.5, SO2, NO2, and O3 concentrations. The heterogeneous HONO formation contributed a major part of atmospheric HONO concentrations in Beijing. The heterogeneous HONO sources significantly increased the daily maximum OH concentrations by 260% on average in Beijing, which enhanced the atmospheric oxidation capacity and consequently SOA concentrations by 80% in Beijing on average. Under severe haze pollution on January 16th 2014, the regional average HONO concentration over NCP was 0.86 ppb, which increased SOA concentration by 68% on average. The average mass fractions of ASOA (SOA from oxidation of anthropogenic VOCs), BSOA (SOA from oxidation of biogenic VOCs), PSOA (SOA from oxidation of evaporated POA), and GSOA (SOA from irreversible uptake of glyoxal and methylglyoxal) during the simulation period over NCP were 24%, 5%, 26% and 45%, respectively. GSOA contributed most to the total SOA mass over NCP in winter. The model sensitivity simulation revealed that GSOA in winter was mainly from primary residential sources. The regional average of GSOA from primary residential sources constituted 87% of total GSOA mass.

  6. Data on fluoride concentration levels in cold and warm season in City area of Sistan and Baluchistan Province, Iran.

    PubMed

    Neisi, Akazem; Mirzabeygi Radfard, Majid; Zeyduni, Ghader; Hamzezadeh, Asghar; Jalili, Davoud; Abbasnia, Abbas; Yousefi, Mahmood; Khodadadi, Rouhollah

    2018-06-01

    The need for fluoride in drinking water to the extent that reduces the amount of tooth decay and the other hand does not cause dental fluorosis, has been well documented as an important fact. The aim of this research is to survey values of fluoride in drinking water in Sistan and Baluchestan. In this descriptive and analytical study, the number of 551 samples during 4 seasons of 2013 year from rural drinking water sources via rural water and Wastewater Company has been taken. The concentration of fluoride in water samples was measured using SPADNS method. Results shows that the average concentration of fluoride in drinking water supplies for the rural region of Khash, Sarbaz, Iranshahr, Saravan, Nickshahr city are 0.72 (±0.31), 0.55(±0.21), 0.33 (±0.127), 0.6 (±0.24), 0.435 (±0.23) respectively.

  7. Experimental study of formation and dynamics of cavitation bubbles and acoustic flows in NaCl, KCl water solutions

    NASA Astrophysics Data System (ADS)

    Rybkin, K. A.; Bratukhin, Yu. K.; Lyubimova, T. P.; Fatallov, O.; Filippov, L. O.

    2017-07-01

    The acoustic flows and the phenomena associated with them arising under the action of ultrasound of different power on distilled water and aqueous solutions of a mixture of NaCl and KCl salts of various concentrations are studied experimentally. It is found that in the distilled water, under the action of ultrasound, the appearance of inertial and non-inertial cavitation bubbles takes place, then the formation of stable clusters, the distance between which depends on the power of the ultrasound source is observed. Experiments show that an increase in the mass concentration of salts in water leads to the decrease in the average diameter of the arising inertial cavitation bubbles and to the gradual decrease in their number, up to an almost complete disappearance at nearly 13% of the concentration of the salt mixture in the water.

  8. Watershed Regressions for Pesticides (WARP) for Predicting Annual Maximum and Annual Maximum Moving-Average Concentrations of Atrazine in Streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.; Crawford, Charles G.

    2008-01-01

    Regression models were developed for predicting annual maximum and selected annual maximum moving-average concentrations of atrazine in streams using the Watershed Regressions for Pesticides (WARP) methodology developed by the National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey (USGS). The current effort builds on the original WARP models, which were based on the annual mean and selected percentiles of the annual frequency distribution of atrazine concentrations. Estimates of annual maximum and annual maximum moving-average concentrations for selected durations are needed to characterize the levels of atrazine and other pesticides for comparison to specific water-quality benchmarks for evaluation of potential concerns regarding human health or aquatic life. Separate regression models were derived for the annual maximum and annual maximum 21-day, 60-day, and 90-day moving-average concentrations. Development of the regression models used the same explanatory variables, transformations, model development data, model validation data, and regression methods as those used in the original development of WARP. The models accounted for 72 to 75 percent of the variability in the concentration statistics among the 112 sampling sites used for model development. Predicted concentration statistics from the four models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports the application of the WARP models for predicting annual maximum and selected annual maximum moving-average atrazine concentration in streams and provides a framework to interpret the predictions in terms of uncertainty. For streams with inadequate direct measurements of atrazine concentrations, the WARP model predictions for the annual maximum and the annual maximum moving-average atrazine concentrations can be used to characterize the probable levels of atrazine for comparison to specific water-quality benchmarks. Sites with a high probability of exceeding a benchmark for human health or aquatic life can be prioritized for monitoring.

  9. Persistence and distribution of 4-nonylphenol in water, sediment, macrophytes, and wall material of littoral enclosures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinis, L.J.; Tunell, R.; Liber, K.

    1994-12-31

    Eighteen enclosures (5 m x 10 m) were constructed in the littoral zone of a 2-ha pond near Duluth, MN. Each enclosure consisted of 5 m of natural shoreline and three walls of an inert plastic. The enclosures had an average surface area of 31.9 m{sup 2} , an average depth of 0.6 m and an average water volume of 33.1 m{sup 3}. The enclosure waters were treated with the alkyl phenol ethoxylate precursor and degradation product 4-nonylphenol. Application was accomplished by sub-surface injection over a 20-day period with a 2 day frequency. Nominal aqueous concentrations were 0, 3, 30,more » 100 and 300 {mu}g/L. Concentrations of 4-nonylphenol were monitored during and after application in the water, sediment, macrophytes, and enclosure wall material. Average maximum water concentrations ranged from 96.5% of nominal to 62.0% of nominal and average minimum water concentrations ranged from 33.3% of nominal to 29.5% of nominal during the application period. Water concentrations decreased exponentially after application ended. Sediment concentrations during the application period were constant from 8 to 20 d and peak concentrations occurred 48 d after application began. Macrophyte concentrations peaked 21 d after initial application with a steady decline through 76 d. Enclosure wall material concentrations reached a peak 3 h before the final application. A gradual decline occurred until 34 d after initial application followed by a more rapid dissipation.« less

  10. Characterization of particulate matter from diesel passenger cars tested on chassis dynamometers.

    PubMed

    Jung, Sungwoon; Lim, Jaehyun; Kwon, Sangil; Jeon, Sangwoo; Kim, Jeongsoo; Lee, Jongtae; Kim, Sunmoon

    2017-04-01

    Emission characterization of particle number as well as particle mass from three diesel passenger cars equipped with diesel particulate filter (DPF), diesel oxidation catalyst (DOC) and exhaust gas recirculation (EGR) under the vehicle driving cycles and regulatory cycle. Total particle number emissions (PNEs) decreased gradually during speed-up of vehicle from 17.3 to 97.3km/hr. As the average vehicle speed increases, the size-segregated peak of particle number concentration shifts to smaller size ranges of particles. The correlation analysis with various particulate components such as particle number concentration (PNC), ultrafine particle number concentration (UFPNC) and particulate matter (PM) mass was conducted to compare gaseous compounds (CO, CO 2 , HC and NO x ). The UFPNC and PM were not only emitted highly in Seoul during severe traffic jam conditions, but also have good correlation with hydrocarbons and NO x influencing high potential on secondary aerosol generation. The effect of the dilution temperature on total PNC under the New European Driving Cycle (NEDC), was slightly higher than the dilution ratio. In addition, the nuclei mode (D P : ≤13nm) was confirmed to be more sensitive to the dilution temperature rather than other particle size ranges. Comparison with particle composition between vehicle speed cycles and regulatory cycle showed that sulfate was slightly increased at regulatory cycle, while other components were relatively similar. During cold start test, semivolatile nucleation particles were increased due to effect of cold environment. Research on particle formation dependent on dilution conditions of diesel passenger cars under the NEDC is important to verify impact on vehicular traffic and secondary aerosol formation in Seoul. Copyright © 2016. Published by Elsevier B.V.

  11. Computer simulation radiation damages in condensed matters

    NASA Astrophysics Data System (ADS)

    Kupchishin, A. I.; Kupchishin, A. A.; Voronova, N. A.; Kirdyashkin, V. I.; Gyngazov, V. A.

    2016-02-01

    As part of the cascade-probability method were calculated the energy spectra of primary knocked-out atoms and the concentration of radiation-induced defects in a number of metals irradiated by electrons. As follows from the formulas, the number of Frenkel pairs at a given depth depends on three variables having certain physical meaning: firstly, Cd (Ea h) is proportional to the average energy of the considered depth of the PKA (if it is higher, than the greater number of atoms it will displace); secondly is inversely proportional to the path length λ2 for the formation of the PKA (if λ1 is higher than is the smaller the probability of interaction) and thirdly is inversely proportional to Ed. In this case calculations are in satisfactory agreement with the experimental data (for example, copper and aluminum).

  12. STUDY OF RADIATION EXPOSURE DUE TO RADON, THORON AND THEIR PROGENY IN THE INDOOR ENVIRONMENT OF RAJPUR REGION OF UTTARAKHAND HIMALAYA.

    PubMed

    Kandari, Tushar; Aswal, Sunita; Prasad, Mukesh; Pant, Preeti; Bourai, A A; Ramola, R C

    2016-10-01

    In the present study, the measurements of indoor radon, thoron and their progeny concentrations have been carried out in the Rajpur region of Uttarakhand, Himalaya, India by using LR-115 solid-state nuclear track detector-based time-integrated techniques. The gas concentrations have been measured by single-entry pin-hole dosemeter technique, while for the progeny concentrations, deposition-based Direct Thoron and Radon Progeny Sensor technique has been used. The radiation doses due to the inhalation of radon, thoron and progeny have also been determined by using obtained concentrations of radon, thoron and their progeny in the study area. The average radon concentration varies from 75 to 123 Bq m -3 with an overall average of 89 Bq m -3 The average thoron concentration varies from 29 to 55 Bq m -3 with an overall average of 38 Bq m -3 The total annual effective dose received due to radon, thoron and their progeny varies from 2.4 to 4.1 mSv y -1 with an average of 2.9 mSv y -1 While the average equilibrium factor for radon and its progeny was found to be 0.39, for thoron and its progeny, it was 0.06. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Nandrolone decanoate increases satellite cell numbers in the chicken pectoralis muscle.

    PubMed

    Allouh, Mohammed Z; Rosser, Benjamin W C

    2010-02-01

    The anabolic androgenic steroid nandrolone decanoate has minimal androgenic effects and, thus, is widely used to induce muscle hypertrophy in both patients and athletes. Although increases in satellite cell numbers and satellite cells giving rise to new myonuclei are associated with hypertrophy in many experimental models, the relationship between nandrolone and satellite cells is poorly understood. Here we test the hypothesis that nandrolone administration is associated with an increase in satellite cell numbers in muscle. Nandrolone was injected at weekly intervals for four weeks into the right pectoralis muscle of female white leghorn chickens aged 63 days post hatch. Age/size/sex matched control birds received saline injections. The contralateral pectoralis was excised for study from each control and nandrolone treated bird. An antibody against Pax7 and immunocytochemical techniques were used to identify satellite cells. Nandrolone significantly increased mean pectoralis mass by approximately 22%, and mean fiber diameter by about 24%. All satellite cell indices that were quantified increased significantly in chicken pectoralis with administration of nandrolone. Nandrolone injected birds had on average higher satellite cell frequencies (#SC nuclei/all nuclei within basal lamina), number of satellite cells per millimeter of fiber, and satellite cell concentrations (closer together). Myonuclei were further apart (less concentrated) in nandrolone injected muscle. However, an overall increase in myonuclear numbers was revealed by a significantly greater mean number of myonuclei per millimeter of fiber in nandrolone injected muscle. Our results suggest that satellite cells may be key cellular vectors for nandrolone induced muscle fiber hypertrophy.

  14. Effects of dilute aqueous NaCl solution on caffeine aggregation

    NASA Astrophysics Data System (ADS)

    Sharma, Bhanita; Paul, Sandip

    2013-11-01

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.

  15. The influence of trehalose on hydrophobic interactions of small nonpolar solute: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Paul, Subrata; Paul, Sandip

    2013-07-01

    Molecular dynamics simulations were carried out to investigate the influences of aqueous trehalose solution on the hydrophobic interactions between neopentane molecules. In this study, we consider six different trehalose concentrations ranging from 0% to 56%. We observe that with increasing trehalose concentration the dispersion of solute neopentane takes place. The neopentane-neopentane association constant value decreases with addition of trehalose. Our preferential interaction calculations suggest that with increasing trehalose concentration neopentane interacts preferentially with water over trehalose. Site-site neopentane-trehalose rdfs indicate that trehalose molecules are expelled out from the neopentane surface. Also observed are (i) trehalose induced second shell collapse of water network (ii) decrease in average number of water-water and water-trehalose hydrogen bonds with increasing trehalose concentration. We also find that addition of trehalose decreases the translational motion of all the solution species. The decrease in diffusion coefficient value is more pronounced for trehalose. We, further, observe that the ratio of the diffusion coefficient values of water and trehalose increases with increasing trehalose concentration.

  16. Effects of isoconcentration surface threshold values on the characteristics of needle-shaped precipitates in atom probe tomography data from an aged Al-Mg-Si alloy.

    PubMed

    Aruga, Yasuhiro; Kozuka, Masaya

    2016-04-01

    Needle-shaped precipitates in an aged Al-0.62Mg-0.93Si (mass%) alloy were identified using a compositional threshold method, an isoconcentration surface, in atom probe tomography (APT). The influence of thresholds on the morphological and compositional characteristics of the precipitates was investigated. Utilizing optimum parameters for the concentration space, a reliable number density of the precipitates is obtained without dependence on the elemental concentration threshold in comparison with evaluation by transmission electron microscopy (TEM). It is suggested that careful selection of the concentration space in APT can lead to a reasonable average Mg/Si ratio for the precipitates. It was found that the maximum length and maximum diameter of the precipitates are affected by the elemental concentration threshold. Adjustment of the concentration threshold gives better agreement with the precipitate dimensions measured by TEM. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Effects of dilute aqueous NaCl solution on caffeine aggregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bhanita; Paul, Sandip, E-mail: sandipp@iitg.ernet.in

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogenmore » bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.« less

  18. Variability of chlorination by-product occurrence in water of indoor and outdoor swimming pools.

    PubMed

    Simard, Sabrina; Tardif, Robert; Rodriguez, Manuel J

    2013-04-01

    Swimming is one of the most popular aquatic activities. Just like natural water, public pool water may contain microbiological and chemical contaminants. The purpose of this study was to study the presence of chemical contaminants in swimming pools, in particular the presence of disinfection by-products (DBPs) such as trihalomethanes (THMs), haloacetic acids (HAAs) and inorganic chloramines (CAMi). Fifty-four outdoor and indoor swimming pools were investigated over a period of one year (monthly or bi-weekly sampling, according to the type of pool) for the occurrence of DBPs. The results showed that DBP levels in swimming pools were greater than DBP levels found in drinking water, especially for HAAs. Measured concentrations of THMs (97.9 vs 63.7 μg/L in average) and HAAs (807.6 vs 412.9 μg/L in average) were higher in outdoor pools, whereas measured concentrations of CAMi (0.1 vs 0.8 mg/L in average) were higher in indoor pools. Moreover, outdoor pools with heated water contained more DBPs than unheated pools. Finally, there was significant variability in tTHM, HAA9 and CAMi levels in pools supplied by the same municipal drinking water network, suggesting that individual pool characteristics (number of swimmers) and management strategies play a major role in DBP formation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Concentration of Enteroviruses, Adenoviruses, and Noroviruses from Drinking Water by Use of Glass Wool Filters▿

    PubMed Central

    Lambertini, Elisabetta; Spencer, Susan K.; Bertz, Phillip D.; Loge, Frank J.; Kieke, Burney A.; Borchardt, Mark A.

    2008-01-01

    Available filtration methods to concentrate waterborne viruses are either too costly for studies requiring large numbers of samples, limited to small sample volumes, or not very portable for routine field applications. Sodocalcic glass wool filtration is a cost-effective and easy-to-use method to retain viruses, but its efficiency and reliability are not adequately understood. This study evaluated glass wool filter performance to concentrate the four viruses on the U.S. Environmental Protection Agency contaminant candidate list, i.e., coxsackievirus, echovirus, norovirus, and adenovirus, as well as poliovirus. Total virus numbers recovered were measured by quantitative reverse transcription-PCR (qRT-PCR); infectious polioviruses were quantified by integrated cell culture (ICC)-qRT-PCR. Recovery efficiencies averaged 70% for poliovirus, 14% for coxsackievirus B5, 19% for echovirus 18, 21% for adenovirus 41, and 29% for norovirus. Virus strain and water matrix affected recovery, with significant interaction between the two variables. Optimal recovery was obtained at pH 6.5. No evidence was found that water volume, filtration rate, and number of viruses seeded influenced recovery. The method was successful in detecting indigenous viruses in municipal wells in Wisconsin. Long-term continuous filtration retained viruses sufficiently for their detection for up to 16 days after seeding for qRT-PCR and up to 30 days for ICC-qRT-PCR. Glass wool filtration is suitable for large-volume samples (1,000 liters) collected at high filtration rates (4 liters min−1), and its low cost makes it advantageous for studies requiring large numbers of samples. PMID:18359827

  20. Time course of ozone-induced changes in breathing pattern in healthy exercising humans.

    PubMed

    Schelegle, Edward S; Walby, William F; Adams, William C

    2007-02-01

    We examined the time course of O3-induced changes in breathing pattern in 97 healthy human subjects (70 men and 27 women). One- to five-minute averages of breathing frequency (f(B)) and minute ventilation (Ve) were used to generate plots of cumulative breaths and cumulative exposure volume vs. time and cumulative exposure volume vs. cumulative breaths. Analysis revealed a three-phase response; delay, no response detected; onset, f(B) began to increase; response, f(B) stabilized. Regression analysis was used to identify four parameters: time to onset, number of breaths at onset, cumulative inhaled dose of ozone at onset of O3-induced tachypnea, and the percent change in f(B). The effect of altering O3 concentration, Ve, atropine treatment, and indomethacin treatment were examined. We found that the lower the O3 concentration, the greater the number of breaths at onset of tachypnea at a fixed ventilation, whereas number of breaths at onset of tachypnea remains unchanged when Ve is altered and O3 concentration is fixed. The cumulative inhaled dose of O3 at onset of tachypnea remained constant and showed no relationship with the magnitude of percent change in f(B). Atropine did not affect any of the derived parameters, whereas indomethacin did not affect time to onset, number of breaths at onset, or cumulative inhaled dose of O3 at onset of tachypnea but did attenuate percent change in f(B). The results are discussed in the context of dose response and intrinsic mechanisms of action.

  1. Analysis of Relative Concentration of Ethanol and Other Odorous Compounds (OCs) Emitted from the Working Surface at a Landfill in China

    PubMed Central

    Li, Dong; Lu, Wenjing; Liu, Yanjun; Guo, Hanwen; Xu, Sai; Ming, Zhongyuan; Wang, Hongtao

    2015-01-01

    Estimating odor emissions from landfill sites is a complicated task because of the various chemical and biological species that exist in landfill gases. In this study, the relative concentration of ethanol and other odorous compounds emitted from the working surface at a landfill in China was analyzed. Gas sampling was conducted at the landfill on a number of selected days from March 2012 to March 2014, which represented different periods throughout the two years. A total of 41, 59, 66, 54, 63, 54, 41, and 42 species of odorous compounds were identified and quantified in eight sampling activities, respectively; a number of 86 species of odorous compounds were identified and quantified all together in the study. The measured odorous compounds were classified into six different categories (Oxygenated compounds, Halogenated compounds, Terpenes, Sulfur compounds, Aromatics, and Hydrocarbons). The total average concentrations of the oxygenated compounds, sulfur compounds, aromatics, halogenated compounds, hydrocarbons, and terpenes were 2.450 mg/m3, 0.246 mg/m3, 0.203 mg/m3, 0.319 mg/m3, 0.530 mg/m3, and 0.217 mg/m3, respectively. The relative concentrations of 59 odorous compounds with respect to the concentration of ethyl alcohol (1000 ppm) were determined. The dominant contaminants that cause odor pollution around the landfill are ethyl sulfide, methyl mercaptan, acetaldehyde, and hydrogen sulfide; dimethyl disulfide and dimethyl sulfide also contribute to the pollution to a certain degree. PMID:25769100

  2. Assessing conditions influencing the longitudinal distribution of exotic brown trout (Salmo trutta) in a mountain stream: a spatially-explicit modeling approach

    USGS Publications Warehouse

    Meredith, Christy S.; Budy, Phaedra; Hooten, Mevin B.; Oliveira Prates, Marcos

    2017-01-01

    Trout species often segregate along elevational gradients, yet the mechanisms driving this pattern are not fully understood. On the Logan River, Utah, USA, exotic brown trout (Salmo trutta) dominate at low elevations but are near-absent from high elevations with native Bonneville cutthroat trout (Onchorhynchus clarkii utah). We used a spatially-explicit Bayesian modeling approach to evaluate how abiotic conditions (describing mechanisms related to temperature and physical habitat) as well as propagule pressure explained the distribution of brown trout in this system. Many covariates strongly explained redd abundance based on model performance and coefficient strength, including average annual temperature, average summer temperature, gravel availability, distance from a concentrated stocking area, and anchor ice-impeded distance from a concentrated stocking area. In contrast, covariates that exhibited low performance in models and/or a weak relationship to redd abundance included reach-average water depth, stocking intensity to the reach, average winter temperature, and number of days with anchor ice. Even if climate change creates more suitable summer temperature conditions for brown trout at high elevations, our findings suggest their success may be limited by other conditions. The potential role of anchor ice in limiting movement upstream is compelling considering evidence suggesting anchor ice prevalence on the Logan River has decreased significantly over the last several decades, likely in response to climatic changes. Further experimental and field research is needed to explore the role of anchor ice, spawning gravel availability, and locations of historical stocking in structuring brown trout distributions on the Logan River and elsewhere.

  3. Characterization of particle exposure in ferrochromium and stainless steel production.

    PubMed

    Järvelä, Merja; Huvinen, Markku; Viitanen, Anna-Kaisa; Kanerva, Tomi; Vanhala, Esa; Uitti, Jukka; Koivisto, Antti J; Junttila, Sakari; Luukkonen, Ritva; Tuomi, Timo

    2016-07-01

    This study describes workers' exposure to fine and ultrafine particles in the production chain of ferrochromium and stainless steel during sintering, ferrochromium smelting, stainless steel melting, and hot and cold rolling operations. Workers' personal exposure to inhalable dust was assessed using IOM sampler with a cellulose acetate filter (AAWP, diameter 25 mm; Millipore, Bedford, MA). Filter sampling methods were used to measure particle mass concentrations in fixed locations. Particle number concentrations and size distributions were examined using an SMPS+C sequential mobile particle sizer and counter (series 5.400, Grimm Aerosol Technik, Ainring, Germany), and a hand-held condensation particle counter (CPC, model 3007, TSI Incorporated, MN). The structure and elemental composition of particles were analyzed using TEM-EDXA (TEM: JEM-1220, JEOL, Tokyo, Japan; EDXA: Noran System Six, Thermo Fisher Scientific Inc., Madison,WI). Workers' personal exposure to inhalable dust averaged 1.87, 1.40, 2.34, 0.30, and 0.17 mg m(-3) in sintering plant, ferrochromium smelter, stainless steel melting shop, hot rolling mill, and the cold rolling mill, respectively. Particle number concentrations measured using SMPS+C varied from 58 × 10(3) to 662 × 10(3) cm(-3) in the production areas, whereas concentrations measured using SMPS+C and CPC3007 in control rooms ranged from 24 × 10(3) to 243 × 10(3) cm(-3) and 5.1 × 10(3) to 97 × 10(3) cm(-3), respectively. The elemental composition and the structure of particles in different production phases varied. In the cold-rolling mill non-process particles were abundant. In other sites, chromium and iron originating from ore and recycled steel scrap were the most common elements in the particles studied. Particle mass concentrations were at the same level as that reported earlier. However, particle number measurements showed a high amount of ultrafine particles, especially in sintering, alloy smelting and melting, and tapping operations. Particle number concentration and size distribution measurements provide important information regarding exposure to ultrafine particles, which cannot be seen in particle mass measurements.

  4. Radon in indoor concentrations and indoor concentrations of metal dust particles in museums and other public buildings.

    PubMed

    Carneiro, G L; Braz, D; de Jesus, E F; Santos, S M; Cardoso, K; Hecht, A A; Dias da Cunha, Moore K

    2013-06-01

    The aim of this study was to evaluate the public and occupational exposure to radon and metal-bearing particles in museums and public buildings located in the city of Rio de Janeiro, Brazil. For this study, four buildings were selected: two historic buildings, which currently house an art gallery and an art museum; and two modern buildings, a chapel and a club. Integrated radon concentration measurements were performed using passive radon detectors with solid state nuclear track detector-type Lexan used as nuclear track detector. Air samplers with a cyclone were used to collect the airborne particle samples that were analyzed by the particle-induced X-ray emission technique. The average unattached-radon concentrations in indoor air in the buildings were above 40 Bq/m(3), with the exception of Building D as measured in 2009. The average radon concentrations in indoor air in the four buildings in 2009 were below the recommended reference level by World Health Organization (100 Bq/m(3)); however, in 2011, the average concentrations of radon in Buildings A and C were above this level, though lower than 300 Bq/m(3). The average concentrations of unattached radon were lower than 148 Bq/m(3) (4pCi/L), the USEPA level recommended to take action to reduce the concentrations of radon in indoor air. The unattached-radon average concentrations were also lower than the value recommended by the European Union for new houses. As the unattached-radon concentrations were below the international level recommended to take action to reduce the radon concentration in air, it was concluded that during the period of sampling, there was low risk to human health due to the inhalation of unattached radon in these four buildings.

  5. Environmental radiation and potential ecological risk levels in the intertidal zone of southern region of Tamil Nadu coast (HBRAs), India.

    PubMed

    Punniyakotti, J; Ponnusamy, V

    2018-02-01

    Natural radioactivity content and heavy metal concentration in the intertidal zone sand samples from the southern region of Tamil Nadu coast, India, have been analyzed using gamma ray spectrometer and ICP-OES, respectively. From gamma spectral analysis, the average radioactivity contents of 238 U, 232 Th, and 40 K in the intertidal zone sand samples are 12.13±4.21, 59.03±4.26, and 197.03±26.24Bq/kg, respectively. The average radioactivity content of 232 Th alone is higher than the world average value. From the heavy metal analysis, the average Cd, Cr, Cu, Ni, Pb, and Zn concentrations are 3.1, 80.24, 82.84, 23.66, 91.67, and 137.07ppm, respectively. The average Cr and Ni concentrations are lower, whereas other four metal (Cd, Cu, Pb, and Zn) concentrations are higher than world surface rock average values. From pollution assessment parameter values, the pollution level is "uncontaminated to moderately contaminated" in the study area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Use of Recirculating Ventilation with Dust Filtration to Improve Wintertime Air Quality in a Swine Farrowing Room

    PubMed Central

    Anthony, T. Renée; Altmaier, Ralph; Jones, Samuel; Gassman, Rich; Park, Jae Hong; Peters, Thomas M.

    2016-01-01

    The performance of a recirculating ventilation system with dust filtration was evaluated to determine its effectiveness to improve the air quality in a swine farrowing room of a concentrated animal feeding operation (CAFO). Air was exhausted from the room (0.47 m3sec−1; 1000 cfm), treated with a filtration unit (Shaker-Dust Collector), and returned to the farrowing room to reduce dust concentrations while retaining heat necessary for livestock health. The air quality in the room was assessed over a winter, during which time limited fresh air is traditionally brought into the building. Over the study period, dust concentrations ranged from 0.005 to 0.31 mg m−3 (respirable) and 0.17 to 2.09 mg m−3 (inhalable). In-room dust concentrations were reduced (41% for respirable and 33% for inhalable) with the system in operation, while gas concentrations (ammonia [NH3], hydrogen sulfide [H2S], carbon monoxide [CO], carbon dioxide [CO2]) were unchanged. The position of the exhaust and return air systems provided reasonably uniform contaminant distributions, although the respirable dust concentrations nearest one of the exhaust ducts was statistically higher than other locations in the room, with differences averaging only 0.05 mg m−3. Throughout the study, CO2 concentrations consistently exceeded 1540 ppm (industry recommendations) and on eight of the 18 study days it exceeded 2500 ppm (50% of the ACGIH TLV), with significantly higher concentrations near a door to a temperature-controlled hallway that was typically often left open. Alternative heaters are recommended to reduce CO2 concentrations in the room. Contaminant concentrations were modeled using production and environmental factors, with NH3 related to the number of sow in the room and outdoor temperatures and CO2 related to the number of piglets and outdoor temperatures. The recirculating ventilation system provided dust reduction without increasing concentrations of hazardous gases. PMID:25950713

  7. Rocky Mountain Snowpack Chemistry at Selected Sites, 2004

    USGS Publications Warehouse

    Ingersoll, George P.; Mast, M. Alisa; Nanus, Leora; Handran, Heather H.; Manthorne, David J.; Hultstrand, Douglas M.

    2007-01-01

    During spring 2004, the U.S. Geological Survey in cooperation with the National Park Service and the U.S. Department of Agriculture, Forest Service collected and analyzed snowpack samples for 65 sites in the Rocky Mountain region from New Mexico to Montana. Snowpacks were sampled from late February through early April and generally had well-below-average- to near-average snow-water equivalent. Regionally, on April 1, snow-water equivalent ranged from 50 to 89 percent. At most regional sites monitored during 1993-2004, snowpack ammonium, nitrate, and sulfate concentrations for 2004 were lower than the 12-year averages. Snowpack ammonium concentrations in the region were lower than average concentrations for the period at 61 percent of sites in the region, but showed a new pattern compared to previous years with three of the four highest 2004 concentrations observed in northern Colorado. Nitrate concentrations in 2004 were lower than the 12-year average for the year at 53 percent of regional sites, and typically occurred at sites in Wyoming, Idaho, and Montana where powerplants and large industrial areas were limited. A regional decrease in sulfate concentrations across most of the Rocky Mountains (with concentrations lower than the 12-year average at 84 percent of snowpack sites) was consistent with other monitoring of atmospheric deposition in the Western United States. Total mercury concentrations, although data are only available for the past 3 years, decreased slightly for the region as a whole in 2004 relative to 2003. Ratios of stable sulfur isotopes indicated a similar regional pattern as observed in recent years with sulfur-34 (d34S) values generally increasing northward from northern New Mexico and southern Colorado to northern Colorado, Wyoming, Idaho, and Montana.

  8. Effect of ceramic membrane channel diameter on limiting retentate protein concentration during skim milk microfiltration.

    PubMed

    Adams, Michael C; Barbano, David M

    2016-01-01

    Our objective was to determine the effect of retentate flow channel diameter (4 or 6mm) of nongraded permeability 100-nm pore size ceramic membranes operated in nonuniform transmembrane pressure mode on the limiting retentate protein concentration (LRPC) while microfiltering (MF) skim milk at a temperature of 50°C, a flux of 55 kg · m(-2) · h(-1), and an average cross-flow velocity of 7 m · s(-1). At the above conditions, the retentate true protein concentration was incrementally increased from 7 to 11.5%. When temperature, flux, and average cross-flow velocity were controlled, ceramic membrane retentate flow channel diameter did not affect the LRPC. This indicates that LRPC is not a function of the Reynolds number. Computational fluid dynamics data, which indicated that both membranes had similar radial velocity profiles within their retentate flow channels, supported this finding. Membranes with 6-mm flow channels can be operated at a lower pressure decrease from membrane inlet to membrane outlet (ΔP) or at a higher cross-flow velocity, depending on which is controlled, than membranes with 4-mm flow channels. This implies that 6-mm membranes could achieve a higher LRPC than 4-mm membranes at the same ΔP due to an increase in cross-flow velocity. In theory, the higher LRPC of the 6-mm membranes could facilitate 95% serum protein removal in 2 MF stages with diafiltration between stages if no serum protein were rejected by the membrane. At the same flux, retentate protein concentration, and average cross-flow velocity, 4-mm membranes require 21% more energy to remove a given amount of permeate than 6-mm membranes, despite the lower surface area of the 6-mm membranes. Equations to predict skim milk MF retentate viscosity as a function of protein concentration and temperature are provided. Retentate viscosity, retentate recirculation pump frequency required to maintain a given cross-flow velocity at a given retentate viscosity, and retentate protein determination by mid-infrared spectrophotometry were all useful tools for monitoring the retentate protein concentration to ensure a sustainable MF process. Using 6-mm membranes instead of 4-mm membranes would be advantageous for processors who wish to reduce energy costs or maximize the protein concentration of a MF retentate. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, F.; Luo, G.; Pryor, S. C.

    Recent laboratory chamber studies indicate a significant role for highly oxidized low-volatility organics in new particle formation (NPF), but the actual role of these highly oxidized low-volatility organics in atmospheric NPF remains uncertain. Here, particle size distributions (PSDs) measured in nine forest areas in North America are used to characterize the occurrence and intensity of NPF and to evaluate model simulations using an empirical formulation in which formation rate is a function of the concentrations of sulfuric acid and low-volatility organics from alpha-pinene oxidation (Nucl-Org), and using an ion-mediated nucleation mechanism (excluding organics) (Nucl-IMN). On average, NPF occurred on ~more » 70 % of days during March for the four forest sites with springtime PSD measurements, while NPF occurred on only ~ 10 % of days in July for all nine forest sites. Both Nucl-Org and Nucl-IMN schemes capture the observed high frequency of NPF in spring, but the Nucl-Org scheme significantly overpredicts while the Nucl-IMN scheme slightly underpredicts NPF and particle number concentrations in summer. Statistical analyses of observed and simulated ultrafine particle number concentrations and frequency of NPF events indicate that the scheme without organics agrees better overall with observations. The two schemes predict quite different nucleation rates (including their spatial patterns), concentrations of cloud condensation nuclei, and aerosol first indirect radiative forcing in North America, highlighting the need to reduce NPF uncertainties in regional and global earth system models.« less

  10. Simple and Effective Methods of Freezing Capercaillie (Tetrao urogallus L.) Semen

    PubMed Central

    Kowalczyk, Artur; Łukaszewicz, Ewa

    2015-01-01

    A continuous decline in the number and range of capercaillie (Tetrao urogallus L.) in many European countries can be observed, mostly due to habitat destruction by human activity, unecological forestry management, and increased density of natural predators. Ex situ in vitro gene banks provide a unique opportunity to preserve the genetic material for future generations. Simple and effective cryopreservation methods for capercaillie semen are discussed. Semen was collected from seven males kept in the Capercaillie Breeding Centre at Forestry Wisła in Poland. Within five minutes after collection, ejaculates were diluted with EK diluent, then divided into two parts, and subjected to two freezing procedures: in pellets and in straws. In fresh semen, ejaculate clearness, viscosity, color and volume, as well as sperm concentration, motility and morphology, were evaluated, while in frozen-thawed semen only motility and morphology of sperm were determined. Fertilizing ability of thawed semen was examined for samples frozen in straws. Significant (P<0.05) differences between individual males were found in relation to the majority of fresh semen traits: ejaculate volume averaged 102.1 µL (varying from 49.0 to 205.0); average sperm concentration was 632.5 x106 mL-1 (178.8–1257.1); percentage of live normal cells varied from 39.2 to 70.3% (58.7% on an average); percentage of motile cells ranged from 76.0 to 85.7%) and motility parameters were male dependent, as well. Both cryopreservation methods had a negative effect on morphology and motility of frozen-thawed semen; however, the straw method yielded 60.7% and the pellet method 42.5% of live cells in total in thawed semen (P<0.05), while the number of live normal (intact) cells was similar (22.4 and 22.2%, respectively). Egg fertility varied between 77.8 and 91.7% (average 84.4%). Both freezing procedures seem to be effective in obtaining acceptable viability and high fertilizing potency of thawed sperm and can be used to create a gene bank of capercaillie semen. PMID:25615640

  11. Inter-comparison of interpolated background nitrogen dioxide concentrations across Greater Manchester, UK

    NASA Astrophysics Data System (ADS)

    Lindley, S. J.; Walsh, T.

    There are many modelling methods dedicated to the estimation of spatial patterns in pollutant concentrations, each with their distinctive advantages and disadvantages. The derivation of a surface of air quality values from monitoring data alone requires the conversion of point-based data from a limited number of monitoring stations to a continuous surface using interpolation. Since interpolation techniques involve the estimation of data at un-sampled points based on calculated relationships between data measured at a number of known sample points, they are subject to some uncertainty, both in terms of the values estimated and their spatial distribution. These uncertainties, which are incorporated into many empirical and semi-empirical mapping methodologies, could be recognised in any further usage of the data and also in the assessment of the extent of an exceedence of an air quality standard and the degree of exposure this may represent. There is a wide range of available interpolation techniques and the differences in the characteristics of these result in variations in the output surfaces estimated from the same set of input points. The work presented in this paper provides an examination of uncertainties through the application of a number of interpolation techniques available in standard GIS packages to a case study nitrogen dioxide data set for the Greater Manchester conurbation in northern England. The implications of the use of different techniques are discussed through application to hourly concentrations during an air quality episode and annual average concentrations in 2001. Patterns of concentrations demonstrate considerable differences in the estimated spatial pattern of maxima as the combined effects of chemical processes, topography and meteorology. In the case of air quality episodes, the considerable spatial variability of concentrations results in large uncertainties in the surfaces produced but these uncertainties vary widely from area to area. In view of the uncertainties with classical techniques research is ongoing to develop alternative methods which should in time help improve the suite of tools available to air quality managers.

  12. Magnetic propulsion of robotic sperms at low-Reynolds number

    NASA Astrophysics Data System (ADS)

    Khalil, Islam S. M.; Fatih Tabak, Ahmet; Klingner, Anke; Sitti, Metin

    2016-07-01

    We investigate the microswimming behaviour of robotic sperms in viscous fluids. These robotic sperms are fabricated from polystyrene dissolved in dimethyl formamide and iron-oxide nanoparticles. This composition allows the nanoparticles to be concentrated within the bead of the robotic sperm and provide magnetic dipole, whereas the flexibility of the ultra-thin tail enables flagellated locomotion using magnetic fields in millitesla range. We show that these robotic sperms have similar morphology and swimming behaviour to those of sperm cells. Moreover, we show experimentally that our robotic sperms swim controllably at an average speed of approximately one body length per second (around 125 μm s-1), and they are relatively faster than the microswimmers that depend on planar wave propulsion in low-Reynolds number fluids.

  13. [Early inflammatory response following elective abdominal aortic aneurysm repair: a comparison between endovascular procedure and conventional, open surgery].

    PubMed

    Marjanović, Ivan; Jevtić, Miodrag; Misović, Sidor; Vojvodić, Danilo; Zoranović, Uros; Rusović, Sinisa; Sarac, Momir; Stanojević, Ivan

    2011-11-01

    Abdominal aorta aneurysm (AAA) represents a pathological enlargment of infrarenal portion of aorta for over 50% of its lumen. The only treatment of AAA is a surgical reconstruction of the affected segment. Until the late XX century, surgical reconstruction implied explicit, open repair (OR) of AAA, which was accompanied by a significant morbidity and mortality of the treated patients. Development of endovascular repair of (EVAR) AAA, especially in the last decade, offered another possibility of surgical reconstruction of AAA. The preliminary results of world studies show that complications of such a procedure, as well as morbidity and mortality of patients, are significantly lower than with OR of AAA. The aim of this paper was to present results of comparative clinical prospective study of early inflammatory response after reconstruction of AAA be tween endovascular and open, conventional surgical technique. A comparative clinical prospective study included 39 patients, electively operated on for AAA within the period of December 2008 - February 2010, divided into two groups. The group I counted 21 (54%) of the patients, 58-87 years old (mean 74.3 years), who had been submited to EVAR by the use of excluder stent graft. The group II consisted of 18 (46%) of the patients, 49-82 (mean 66.8) years, operated on using OR technique. All of the treated patients in both groups had AAA larger than 50 mm. The study did not include patients who have been treated as urgent cases, due to the rupture or with simptomatic AAA. Clinical, biochemical and inflamatory parameters in early postoperative period were analyzed, in direct postoperative course (number of leucocytes, thrombocytes, serum circulating levels of cytokine--interleukine (IL)-2, IL-4, IL-6 and IL-10). Parameters were monitored on the zero, first, second, third and seventh postoperative days. The study was approved by the Ethics Commitee of the Military Medical Academy. The study showed a statistically significantly shorter time of treatment in the EVAR group (average 90 min) compared to the OR group (average 136 min). Also, there was a statistically significantly less blood loss in the patients operated on by the use of EVAR surgery (average 60 mL) as compared to the patients treated with OR techinique (average 495 mL), as well as a shorter postoperative hospitalization of patients in the EVAR group (average 4 days) compared to the OR group (average 8 days). The OR group was detected with a statistically significant increase of leucocytes and statistically significant fall of the number of thrombocytes in comparison with the EVAR group in all the investigated terms. A significant concentration rise of IL-2 in the OR group and concentration rise of IL-6 in the EVAR group was shown 24 hours after the procedure, whereas on the second postoperative day there was detected a significant fall of IL-6 in the EVAR group. IL-4 concentration in the OR group was significantly higher as of the third postoperative day in comparison to the EVAR group. There was no significant difference in IL-10 concentration between the groups. The EVAR techinique is a safer and less invasive and less traumatic procedure for patients than the OR of AAA. Following the EVAR, there are less inflammatory reactions in the early postoperative period as compared to the OR and therefore less possibility of the development of systemic inflammatory respons syndrome in patients treated.

  14. Ultrafine particles and nitrogen oxides generated by gas and electric cooking.

    PubMed

    Dennekamp, M; Howarth, S; Dick, C A; Cherrie, J W; Donaldson, K; Seaton, A

    2001-08-01

    To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens. Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NO(x)) were measured by a chemiluminescent ML9841A NO(x) analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm. High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NO(X) were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide. Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NO(x) might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable.

  15. Behavior of ambient concentrations of natural radionuclides (7)Be, (210)Pb, (40)K in the Mediterranean coastal city of Málaga (Spain).

    PubMed

    Gordo, E; Dueñas, C; Fernández, M C; Liger, E; Cañete, S

    2015-05-01

    During a 4-year period (January 2009-December 2012), the (7)Be, (210)Pb, and (40)K activity concentrations in airborne particulate matter were weekly determined at the Málaga (Spain) located in the southern Iberian Peninsula. Totally 209 polypropylene filters were analyzed in the mentioned period. In 100% of the filters, (7)Be and (40)K activity concentrations were detected while (210)Pb activity concentration was detected in 96% of the filters. The results from individual measurements of (7)Be, (210)Pb, and (40)K concentrations were analyzed to derive the statistical estimates characterizing the distributions. Principal components analysis (PCA) was applied to the datasets and the results of the study reveal that aerosol behavior is represented by two principal components which explain 73.2% of total variance. Components PC1 and PC2 respectively explain 46.0 and 27.2% of total variance. PC1 was related positively to dust content, (7)Be and (40)K concentrations and negatively to sunspot numbers. In contrast, PC2 was related positively to temperature and (210)Pb activity and negatively to precipitation and relative humidity. The (7)Be levels showed a significant correlation with sunspot numbers due to the cosmogenic origin. (40)K activities showed a good correlation with dust deposition in filters mainly because it was transported to the air as resuspended particle from the soil. An inverse relationship was observed between the (210)Pb concentrations and monthly rainfall, indicating washout of atmospheric aerosols carrying these radionuclides and a pronounced positive correlation with the average monthly temperature of air.

  16. Associations between mortality and prolonged exposure to elevated particulate matter concentrations in East Asia.

    PubMed

    Kim, Satbyul Estella; Bell, Michelle L; Hashizume, Masahiro; Honda, Yasushi; Kan, Haidong; Kim, Ho

    2018-01-01

    Previous epidemiological studies regarding mortality and particulate matter with an aerodynamic diameter of <10μm (PM 10 ) have considered only absolute concentrations of PM 10 as a risk factor. However, none have evaluated the durational effect of multi-day periods with high PM 10 concentrations. To evaluate the durational effect (i.e., number of days) of high PM 10 concentrations on mortality, we collected data regarding 3,662,749 deaths from 28 cities in Japan, South Korea, and China (1993-2009). Exposure was defined as consecutive days with daily PM 10 concentrations ≥75μg/m 3 . A Poisson model was used with duration as the variable of interest, while controlling for daily PM 10 concentrations, meteorological variables, seasonal trends, and day of the week. The increase in mortality risk for each additional consecutive day with PM 10 concentrations ≥75μg/m 3 was 0.68% in Japan (95% confidence interval [CI]: 0.35-1.01%), 0.48% in South Korea (95% CI: 0.30-0.66%), and 0.24% in China (95% CI: 0.14-0.33%). The annual average maximum number of consecutive days with high PM 10 in Japan (2.40days), South Korea (6.96days), and China (42.26days) was associated with non-accidental death increases of 1.64% (95% CI: 1.31-1.98%), 3.37% (95% CI: 3.19-3.56%), and 10.43% (95% CI: 10.33-10.54%), respectively. These findings may facilitate the planning of public health interventions to minimize the health burden of air pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Did Socioeconomic Inequality in Self-Reported Health in Chile Fall after the Equity-Based Healthcare Reform of 2005? A Concentration Index Decomposition Analysis.

    PubMed

    Cabieses, Baltica; Cookson, Richard; Espinoza, Manuel; Santorelli, Gillian; Delgado, Iris

    2015-01-01

    Chile, a South American country recently defined as a high-income nation, carried out a major healthcare system reform from 2005 onwards that aimed at reducing socioeconomic inequality in health. This study aimed to estimate income-related inequality in self-reported health status (SRHS) in 2000 and 2013, before and after the reform, for the entire adult Chilean population. Using data on equivalized household income and adult SRHS from the 2000 and 2013 CASEN surveys (independent samples of 101 046 and 172 330 adult participants, respectively) we estimated Erreygers concentration indices (CIs) for above average SRHS for both years. We also decomposed the contribution of both "legitimate" standardizing variables (age and sex) and "illegitimate" variables (income, education, occupation, ethnicity, urban/rural, marital status, number of people living in the household, and healthcare entitlement). There was a significant concentration of above average SRHS favoring richer people in Chile in both years, which was less pronounced in 2013 than 2000 (Erreygers corrected CI 0.165 [Standard Error, SE 0.007] in 2000 and 0.047 [SE 0.008] in 2013). To help interpret the magnitude of this decline, adults in the richest fifth of households were 33% more likely than those in the poorest fifth to report above-average health in 2000, falling to 11% in 2013. In 2013, the contribution of illegitimate factors to income-related inequality in SRHS remained higher than the contribution of legitimate factors. Income-related inequality in SRHS in Chile has fallen after the equity-based healthcare reform. Further research is needed to ascertain how far this fall in health inequality can be attributed to the 2005 healthcare reform as opposed to economic growth and other determinants of health that changed during the period.

  18. Inflammatory markers and exposure to airborne particles among workers in a Swedish pulp and paper mill.

    PubMed

    Westberg, Håkan; Elihn, Karine; Andersson, Eva; Persson, Bodil; Andersson, Lennart; Bryngelsson, Ing-Liss; Karlsson, Cathe; Sjögren, Bengt

    2016-07-01

    To study the relationship between exposure to airborne particles in a pulp and paper mill and markers of inflammation and coagulation in blood. Personal sampling of inhalable dust was performed for 72 subjects working in a Swedish pulp and paper mill. Stationary measurements were used to study concentrations of total dust, respirable dust, PM10 and PM2.5, the particle surface area and the particle number concentrations. Markers of inflammation, interleukins (IL-1b, IL-6, IL-8, and IL-10), C-reactive protein (CRP), serum amyloid A (SAA), and fibrinogen and markers of coagulation factor VIII, von Willebrand, plasminogen activator inhibitor, and D-dimer were measured in plasma or serum. Sampling was performed on the last day of the work free period of 5 days, before and after the shift the first day of work and after the shifts the second and third day. In a mixed model analysis, the relationship between particulate exposures and inflammatory markers was determined. Sex, age, smoking, and BMI were included as covariates. The average 8-h time-weighted average (TWA) air concentration levels of inhalable dust were 0.30 mg/m(3), range 0.005-3.3 mg/m(3). The proxies for average 8-h TWAs of respirable dust were 0.045 mg/m(3). Significant and consistent positive relations were found between several exposure metrics (PM 10, total and inhalable dust) and CRP, SAA and fibrinogen taken post-shift, suggesting a dose-effect relationship. This study supports a relationship between occupational particle exposure and established inflammatory markers, which may indicate an increased risk of cardiovascular disease.

  19. Impact of smoking on in-vehicle fine particle exposure during driving

    NASA Astrophysics Data System (ADS)

    Sohn, Hongji; Lee, Kiyoung

    2010-09-01

    Indoor smoking ban in public places can reduce secondhand smoke (SHS) exposure. However, smoking in cars and homes has continued. The purpose of this study was to assess particulate matter less than 2.5 μm (PM 2.5) concentration in moving cars with different window opening conditions. The PM 2.5 level was measured by an aerosol spectrometer inside and outside moving cars simultaneously, along with ultrafine particle (UFP) number concentration, speed, temperature and humidity inside cars. Two sport utility vehicles were used. Three different ventilation conditions were evaluated by up to 20 repeated experiments. In the pre-smoking phase, average in-vehicle PM 2.5 concentrations were 16-17 μg m -3. Regardless of different window opening conditions, the PM 2.5 levels promptly increased when smoking occurred and decreased after cigarette was extinguished. Although only a single cigarette was smoked, the average PM 2.5 levels were 506-1307 μg m -3 with different window opening conditions. When smoking was ceased, the average PM 2.5 levels for 15 min were several times higher than the US National Ambient Air Quality Standard of 35 μg m -3. It took longer than 10 min to reach the level of the pre-smoking phase. Although UFP levels had a similar temporal profile of PM 2.5, the increased levels during the smoking phase were relatively small. This study demonstrated that the SHS exposure in cars with just a single cigarette being smoked could exceed the US EPA NAAQS under realistic window opening conditions. Therefore, the findings support the need for public education against smoking in cars and advocacy for a smoke-free car policy.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozguner, O; Dhanantwari, A; Halliburton, S

    Purpose: To evaluate the attenuation response of iodine and the accuracy of iodine quantification on a detector-based spectral CT scanner. Methods: A Gammex 461A phantom was scanned using a dual-layer detector (IQon, Philips) at 120 kVp using helical acquisition with a CDTIvol of 15 mGy to approximate the hospital’s clinical body protocol. No modifications to the standard protocol were necessary to enable spectral imaging. Iodine inserts at 6 concentrations (2, 5, 7.5, 10, 15, 20 mg/ml) were scanned individually at the center of the phantom and the 20 mg/ml insert was additionally scanned at the 3, 6, and 12 o’clockmore » positions. Scans were repeated 10 times. Conventional, virtual monoenergetic (40–200 keV) and iodine-no-water images (with pixel values equal to iodine concentration of corresponding tissue) were reconstructed from acquired data. A circular ROI (diameter=30 pixels) was used in each conventional and monoenergetic image to measure the mean and standard deviation of the CT number in HU and in each iodine-no-water image to measure iodine concentration in mg/ml. Results: Mean CT number and contrast-to-noise ratio (CNR) measured from monoenergetic images increased with decreasing keV for all iodine concentrations and matched measurements from conventional images at 75 keV. Measurements from the 20 ml insert showed the CT number is independent of location and CNR is a function only of noise, which was higher in the center. Measured concentration from iodine-no-water images matched phantom manufacturer suggested concentration to within 6% on average for inserts at the center of the phantom. Measured concentrations were systematically higher due to optimization of iodine quantification parameters for clinical mixtures of iodine and blood/tissue. Conclusion: Spectral acquisition and reconstruction with a dual-layer detector represents the physical behavior of iodine as expected and accurately quantifies the material concentration. This should permit a variety of clinical applications including lesion characterization, vessel patency, and myocardial perfusion. This study was performed as part of a research agreement among Philips Healthcare, University Hospitals of Cleveland, and Case Western Reserve University.« less

  1. Water quality of Somerville Lake, south-central Texas

    USGS Publications Warehouse

    McPherson, Emma; Mendieta, H.B.

    1983-01-01

    The concentration of dissolved solids ranged from 139 to 292 milligrams per liter and averaged about 220 milligrams per liter. Dissolved chloride concentrations ranged from 20 to 68 milligrams per liter and averaged 43 milligrams per liter. Dissolved sulfate concentrations ranged from 30 to 130 milligrams per liter and averaged 63 milligrams per liter. The total hardness of the water ranged from 75 to 140 milligrams per liter, expressed as calcium carbonate, placing it in the moderately hard to hard (61 to 180 milligrams per liter) classification. The concentrations of principal dissolved constituents indicate that Somerville Lake is an excellent source of water for municipal, industrial, or agricultural use.

  2. Effect of membrane filtration artifacts on dissolved trace element concentrations

    USGS Publications Warehouse

    Horowitz, Arthur J.; Elrick, Kent A.; Colberg, Mark R.

    1992-01-01

    Among environment scientists, the current and almost universally accepted definition of dissolved constituents is an operational one; only those materials which pass through a 0.45-??m membrane filter are considered to be dissolved. Detailed laboratory and field studies on Fe and Al indicate that a number of factors associated with filtration, other than just pore size, can substantially alter 'dissolved' trace element concentrations; these include: filter type, filter diameter, filtration method, volume of sample processed, suspended sediment concentration, suspended sediment grain-size distribution, concentration of colloids and colloidally associated trace elements and concentration of organic matter. As such, reported filtered-water concentrations employing the same pore size filter may not be equal. Filtration artifacts may lead to the production of chemical data that indicate seasonal or annual 'dissolved' chemical trends which do not reflect actual environmental conditions. Further, the development of worldwide averages for various dissolved chemical constituents, the quantification of geochemical cycles, and the determination of short- or long-term environmental chemical trends may be subject to substantial errors, due to filtration artifacts, when data from the same or multiple sources are combined. Finally, filtration effects could have a substantial impact on various regulatory requirements.

  3. The effect of membrane filtration artifacts on dissolved trace element concentrations

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Colberg, M.R.

    1992-01-01

    Among environment scientists, the current and almost universally accepted definition of dissolved constituents is an operational one only those materials which pass through a 0.45-??m membrane filter are considered to be dissolved. Detailed laboratory and field studies on Fe and Al indicate that a number of factors associated with filtration, other than just pore size, can substantially alter 'dissolved' trace element concentrations; these include: filter type, filter diameter, filtration method, volume of sample processed, suspended sediment concentration, suspended sediment grain-size distribution, concentration of colloids and colloidally-associated trace elements and concentration of organic matter. As such, reported filtered-water concentrations employing the same pore size filter may not be equal. Filtration artifacts may lead to the production of chemical data that indicate seasonal or annual 'dissolved' chemical trends which do not reflect actual environmental conditions. Further, the development of worldwide averages for various dissolved chemical constituents, the quantification of geochemical cycles, and the determination of short- or long-term environmental chemical trends may be subject to substantial errors, due to filtration artifacts, when data from the same or multiple sources are combined. Finally, filtration effects could have a substantial impact on various regulatory requirements.

  4. Monitoring of airborne particulate matter at mountainous urban sites.

    PubMed

    Dai, Jun; Kim, Ki-Hyun; Dutta, Tanushree; Park, Wha Me; Hong, Jong-Ki; Jung, Kweon; Brown, Richard J C

    2016-08-01

    Concentrations of various size fractions (TSP, PM10, PM2.5, and PM1.0) of particulate matter (PM) were measured at two mountainous sites, Buk Han (BH) and Gwan AK (GA), along with one ground reference site at Gwang Jin (GJ), located in Seoul, South Korea for the 4 years from 2010 to 2013. The daily average concentrations of TSP, PM10, PM2.5, and PM1.0 at BH were 47.9 ± 32.5, 37.0 ± 24.6, 20.6 ± 12.9, and 15.3 ± 9.53 μg m(-3), respectively. These values were slightly larger than those measured at GA while much lower than those measured at the reference site (GJ). Seasonal variations in PM concentrations were consistent across all locations with a relative increase in concentrations observed in spring and winter. Correlation analysis showed clear differences in PM concentrations between the mountainous sites and the reference site. Analysis of these PM concentrations indicated that the distribution of PM in the mountainous locations was affected by a number of manmade sources from nearby locations, including both traffic and industrial emissions.

  5. Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging

    PubMed Central

    Yaginuma, Hideyuki; Kawai, Shinnosuke; Tabata, Kazuhito V.; Tomiyama, Keisuke; Kakizuka, Akira; Komatsuzaki, Tamiki; Noji, Hiroyuki; Imamura, Hiromi

    2014-01-01

    Recent advances in quantitative single-cell analysis revealed large diversity in gene expression levels between individual cells, which could affect the physiology and/or fate of each cell. In contrast, for most metabolites, the concentrations were only measureable as ensemble averages of many cells. In living cells, adenosine triphosphate (ATP) is a critically important metabolite that powers many intracellular reactions. Quantitative measurement of the absolute ATP concentration in individual cells has not been achieved because of the lack of reliable methods. In this study, we developed a new genetically-encoded ratiometric fluorescent ATP indicator “QUEEN”, which is composed of a single circularly-permuted fluorescent protein and a bacterial ATP binding protein. Unlike previous FRET-based indicators, QUEEN was apparently insensitive to bacteria growth rate changes. Importantly, intracellular ATP concentrations of numbers of bacterial cells calculated from QUEEN fluorescence were almost equal to those from firefly luciferase assay. Thus, QUEEN is suitable for quantifying the absolute ATP concentration inside bacteria cells. Finally, we found that, even for a genetically-identical Escherichia coli cell population, absolute concentrations of intracellular ATP were significantly diverse between individual cells from the same culture, by imaging QUEEN signals from single cells. PMID:25283467

  6. Blood alcohol concentration in fatally injured drivers and the efficacy of alcohol policies of the new law on road traffic safety: A retrospective 10-year study in autonomous province of Vojvodina, Republic of Serbia.

    PubMed

    Petković, Stojan; Palić, Kristina; Samojlik, Isidora

    2016-08-17

    The aim of this study was primarily to evaluate inebriated fatally injured drivers (FIDs) according to blood alcohol concentration (BAC) in a 10-year period (2004-2013) in Autonomous Province (AP) of Vojvodina, Republic of Serbia, to analyze the efficacy of alcohol polices in the new law on road traffic safety through changes in the number of inebriated FIDs before and after implementation of the law, as well as to identify factors that influence the occurrence of FIDs with BACs above the legal limit. All data for this retrospective study were obtained from the Centre of Forensic Medicine, Toxicology and Molecular Genetics of Clinical Centre of Vojvodina, Novi Sad. Autopsy records for each case included age, gender, BAC, type of vehicle, and date of accident (year, month, and recalculated day of the week). BAC was determined by gas chromatography with flame ionization detection. Statistical analysis was carried out by chi-square tests and Student's t test, with P < .05 as a statistical significance, and multiple binary logistic regression. Of the 354 inebriated FIDs (60% of all FIDs), the majority had BACs between of 0.031 and 0.3 mg/ml (28%), followed by those with BAC > 2.01 mg/ml (23%). The average BAC of those driving under the influence of alcohol (DUIA) for the whole period was 1.235 ± 1.00 mg/ml and the average number of DUIA/year was 35. Among the total number of FIDs there were significantly more males (93.7%; P < .001) than females (6.3%), though the distribution of intoxicated men and women was not different (P > .05). There was a statistically significant difference in the distribution of sober and inebriated FIDs according to age (P < .001) with the predominance of inebriated FIDs between 21 and 30 years. Although gender and age were found to be significant predictors of BAC above legal limit in FIDs, the area under the receiver operating characteristics (ROC) curve showed that the model had poor discrimination (ROC = 0.673). Of all observed FIDs, 65 cases per year were attributed to the first 5-year period (2004-2009) and 49 to the second 5-year (2010-2013) period, which indicates that there was no statistically significant decrease in the number of FIDs after implementation of the new law. The highest number of intoxicated FIDs during the period in AP Vojvodina were mildly and completely inebriated. In the 4-year post-policy period (2010-2013), the number of FIDs and average BAC levels of inebriated FIDs did not significantly change. The abolition of a permissible BAC should be considered.

  7. PM10-bound polycyclic aromatic hydrocarbons in Chiang Mai (Thailand): Seasonal variations, source identification, health risk assessment and their relationship to air-mass movement

    NASA Astrophysics Data System (ADS)

    Wiriya, Wan; Prapamontol, Tippawan; Chantara, Somporn

    2013-04-01

    This study aims to analyze the seasonal variations of PM10-bound polycyclic aromatic hydrocarbons (PAHs) for an estimation of the human health risk and identification of their possible sources. Ninety four PM10 samples were collected during the dry and wet seasons of 2010 and the dry season of 2011 in Chiang Mai, Thailand, and analyzed for 16 PAHs by gas chromatography-mass spectrometry. The average PM10 concentrations were 104.91 ± 32.70, 13.28 ± 11.34 and 36.24 ± 19.16 μg/m3 in dry season of 2010, wet season of 2010 and dry season of 2011, respectively, while the average 16-PAHs concentrations were 25.87 ± 10.13, 3.12 ± 2.18 and 4.58 ± 2.18 ng/m3, respectively. Correlations of PM10 and total PAHs concentrations were relatively high during all seasons (r > 0.796). In addition, PM10 concentrations were highly correlated with carcinogenic PAHs (r = 0.927) during the dry season of 2010, indicating that carcinogenic compounds were dominant in the particulate PAHs and could be generated from open burning, usually conducted in the dry season. The average PM10 concentration in the dry season of 2011 was much lower than that in 2010 and lower than the annual average of the past 12 years (48.17 μg/m3) because of the unusually high amount of rain precipitation and low open burning activity in this year. According to the accumulated number of hot spots occurring in northern part of Thailand, approximately 19,000 spots were found in the dry season of 2010, while only 6,600 spots were found in the dry season of 2011. It can be seen that larger scale open burning activities were performed in the dry season of 2010 than in the dry season of 2011. The value of toxicity equivalent concentration from PAHs in the dry season of 2010 was higher than that of the wet season of 2010 and the dry season of 2011. This is obviously related to concentrations of PM10 and PAHs. Diagnostic ratio and principal component analysis were used to find out the sources of PM10-bound PAHs. It was found that vehicle emission and biomass burning were the main sources of PM10 and PAHs in this area. The high ratio value of benzo(a)anthracene/chrysene (BaA/CHR) in the dry season of 2010 indicated possible photochemical processes and long distance emissions. Findings on source identification of PM10 and PAHs were found to be relevant to the direction and speed of air mass movement run by backward trajectory.

  8. 40 CFR 63.1574 - What notifications must I submit and when?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... analytical methods you will use to determine the equilibrium catalyst Ni concentration, the equilibrium catalyst Ni concentration monthly rolling average, and the hourly or hourly average Ni operating value. (v...

  9. 40 CFR 63.7943 - How do I determine the average VOHAP concentration of my remediation material?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... concentration of my remediation material? 63.7943 Section 63.7943 Protection of Environment ENVIRONMENTAL... Remediation Performance Tests § 63.7943 How do I determine the average VOHAP concentration of my remediation... remediation material using either direct measurement as specified in paragraph (b) of this section or by...

  10. 40 CFR 63.7943 - How do I determine the average VOHAP concentration of my remediation material?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... concentration of my remediation material? 63.7943 Section 63.7943 Protection of Environment ENVIRONMENTAL... Remediation Performance Tests § 63.7943 How do I determine the average VOHAP concentration of my remediation... remediation material using either direct measurement as specified in paragraph (b) of this section or by...

  11. 40 CFR 63.7943 - How do I determine the average VOHAP concentration of my remediation material?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... concentration of my remediation material? 63.7943 Section 63.7943 Protection of Environment ENVIRONMENTAL... Remediation Performance Tests § 63.7943 How do I determine the average VOHAP concentration of my remediation... remediation material using either direct measurement as specified in paragraph (b) of this section or by...

  12. 38 CFR 4.76a - Computation of average concentric contraction of visual fields.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... concentric contraction of visual fields. 4.76a Section 4.76a Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS SCHEDULE FOR RATING DISABILITIES Disability Ratings The Organs of Special Sense § 4.76a Computation of average concentric contraction of visual fields. Table III—Normal Visual...

  13. 40 CFR Table 1 to Subpart Sssss of... - Emission Limits

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that are controlled with a thermal or catalytic oxidizer a. The 3-hour block average THC concentration... the outlet of the control device; or b. The 3-hour block average THC mass emissions rate must be... than a thermal or catalytic oxidizer a. The 3-hour block average THC concentration must not exceed 20...

  14. 40 CFR Table 1 to Subpart Sssss of... - Emission Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that are controlled with a thermal or catalytic oxidizer a. The 3-hour block average THC concentration... the outlet of the control device; or b. The 3-hour block average THC mass emissions rate must be... than a thermal or catalytic oxidizer a. The 3-hour block average THC concentration must not exceed 20...

  15. 40 CFR Table 1 to Subpart Sssss of... - Emission Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that are controlled with a thermal or catalytic oxidizer a. The 3-hour block average THC concentration... the outlet of the control device; or b. The 3-hour block average THC mass emissions rate must be... than a thermal or catalytic oxidizer a. The 3-hour block average THC concentration must not exceed 20...

  16. 40 CFR Table 1 to Subpart Sssss of... - Emission Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that are controlled with a thermal or catalytic oxidizer a. The 3-hour block average THC concentration... the outlet of the control device; or b. The 3-hour block average THC mass emissions rate must be... than a thermal or catalytic oxidizer a. The 3-hour block average THC concentration must not exceed 20...

  17. 40 CFR Table 1 to Subpart Sssss of... - Emission Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that are controlled with a thermal or catalytic oxidizer a. The 3-hour block average THC concentration... the outlet of the control device; or b. The 3-hour block average THC mass emissions rate must be... than a thermal or catalytic oxidizer a. The 3-hour block average THC concentration must not exceed 20...

  18. Wastewater Treatment by a Prototype Slow Rate Land Treatment System,

    DTIC Science & Technology

    1981-08-01

    this application of K, crop yields ing rate. To average an application of 10 mg/L of and N uptake improved significantly. While this nitrate , a loading...RECIPIENT’S CATALOG NUMBER CRREL Report 81-14 ’ & TT~~g*&IS~ -S. TYPE OF REPORT &PERIO00 COVERED ,WASTEWATER jtREATMENT BY A ROTOTYPE SLOW RATE LAN~DjJEATMENT...soluble N, mainly nitrate . Nitrate concentrations in the percolate were found to D,~", W3 mouo~ MS~ ill SLETEUnclassified ~, tS9CUIt CLASSIFICATION OF

  19. Demonstration Results of Phytoremediation of Explosives-Contaminated Groundwater Using Constructed Wetlands at the Milan Army Ammunition Plant, Milan, Tennessee Volume I (Phase II Demonstration Results).

    DTIC Science & Technology

    1998-12-01

    influence community respiration, photosynthesis, solubility of dissolved oxygen, redox potential, biochemical reaction rates, and ensuing treatment...Conductivity 15-8 15.1.3.5 Dissolved Oxygen Concentration 15-12 15.1.3.6 Redox Potential 15-14 15.1.3.7 pH 15-16 15.1.3.8 Nutrients and Water Quality 15-19...Average Redox Potential of Wetland Waters From June 17, 6-27 1996, to September 16, 1997 Phytoremediation Demonstration Milan AAP FIGURE NUMBER

  20. Estimating Air-Manganese Exposures in Two Ohio Towns ...

    EPA Pesticide Factsheets

    Manganese (Mn), a nutrient required for normal metabolic function, is also a persistent air pollutant and a known neurotoxin at high concentrations. Elevated exposures can result in a number of motor and cognitive deficits. Quantifying chronic personal exposures in residential populations studied by environmental epidemiologists can be time-consuming and expensive. We developed an approach for quantifying chronic exposures for two towns (Marietta and East Liverpool, Ohio) with elevated air Mn concentrations (air-Mn) related to ambient emissions from industrial processes. This was accomplished through the use of measured and modeled data in the communities studied. A novel approach was developed because one of the facilities lacked emissions data for the purposes of modeling. A unit emission rate was assumed over the surface area of both source facilities, and offsite concentrations at receptor residences and air monitoring sites were estimated with the American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD). Ratios of all modeled receptor points were created, and a long-running air monitor was identified as a reference location. All ratios were normalized to the reference location. Long-term averages at all residential receptor points were calculated using modeled ratios and data from the reference monitoring location. Modeled five-year average air-Mn exposures ranged from 0.03-1.61 µg/m3 in Marietta and 0.01-6.32 µg/m3 in E

  1. Carbonaceous and Ionic Compositions of PM2.5 Aerosols at Ieodo Ocean Research Station in the East China Sea.

    NASA Astrophysics Data System (ADS)

    Kim, J.; Hwang, G.; Han, J.; Lee, M.; Sim, J.

    2008-12-01

    The aim of this study is to examine characteristic of long range transported aerosol in the East China Sea. The PM2.5 samples have been collected using RAAS 2.5-300 since June 2004 at Ieodo Ocean Research Station (IORS), which is located in the middle of China and South Korea. The number of total samples is 118 for which inorganic ions, elemental carbon (EC) and organic carbon (OC) were analyzed. Along with aerosol species, ozone and meteorological parameters were measured. From December 2004 to June 2007, The mean PM2.5 concentration was 21.2ug/m3. The average concentrations (mass fractions) of SO42- and NH4+ were 6.74ug/3(32.2%), 1.70ug/m3(14.2%), respectively. EC and OC concentrations for 1 year from June 2006 to June 2007 were 1.1ug/m3, 2.2ug/m3. Organic matter (OM=OC*1.4) and elemental carbon constituted 15.0% and 5.1% of PM2.5 mass, respectively. The average OC/EC ratio was 2.49 and there was a good correlation among EC, OC, and SO42- except for July and August : r= 0.54 (EC and SO42-, 0.45 (OC and SO42-), 0.71 (EC and OC)

  2. Workplace exposure to nanoparticles and the application of provisional nanoreference values in times of uncertain risks

    NASA Astrophysics Data System (ADS)

    van Broekhuizen, Pieter; van Broekhuizen, Fleur; Cornelissen, Ralf; Reijnders, Lucas

    2012-03-01

    Nano reference values (NRVs) for occupational use of nanomaterials were tested as provisional substitute for Occupational Exposure Limits (OELs). NRVs can be used as provisional limit values until Health-Based OELs or derived no-effect levels (DNEL) become available. NRVs were defined for 8 h periods (time weighted average) and for short-term exposure periods (15 min-time weighted average). To assess the usefulness of these NRVs, airborne number concentrations of nanoparticles (NPs) in the workplace environment were measured during paint manufacturing, electroplating, light equipment manufacturing, non-reflective glass production, production of pigment concentrates and car refinishing. Activities monitored were handling of solid engineered NPs (ENP), abrasion, spraying and heating during occupational use of nanomaterials (containing ENPs) and machining nanosurfaces. The measured concentrations are often presumed to contain ENPs as well as process-generated NPs (PGNP). The PGNP are found to be a significant source for potential exposure and cannot be ignored in risk assessment. Levels of NPs identified in workplace air were up to several millions of nanoparticles/cm3. Conventional components in paint manufacturing like CaCO3 and talc may contain a substantial amount of nanosized particulates giving rise to airborne nanoparticle concentrations. It is argued that risk assessments carried out for e.g. paint manufacturing processes using conventional non-nano components should take into account potential nanoparticle emissions as well. The concentrations measured were compared with particle-based NRVs and with mass-based values that have also been proposed for workers protection. It is concluded that NRVs can be used for risk management for handling or processing of nanomaterials at workplaces provided that the scope of NRVs is not limited to ENPs only, but extended to the exposure to process-generated NPs as well.

  3. Source appointment of fine particle number and volume concentration during severe haze pollution in Beijing in January 2013.

    PubMed

    Liu, Zirui; Wang, Yuesi; Hu, Bo; Ji, Dongsheng; Zhang, Junke; Wu, Fangkun; Wan, Xin; Wang, Yonghong

    2016-04-01

    Extreme haze episodes repeatedly shrouded Beijing during the winter of 2012-2013, causing major environmental and health problems. To better understand these extreme events, particle number size distribution (PNSD) and particle chemical composition (PCC) data collected in an intensive winter campaign in an urban site of Beijing were used to investigate the sources of ambient fine particles. Positive matrix factorization (PMF) analysis resolved a total of eight factors: two traffic factors, combustion factors, secondary aerosol, two accumulation mode aerosol factors, road dust, and long-range transported (LRT) dust. Traffic emissions (54%) and combustion aerosol (27%) were found to be the most important sources for particle number concentration, whereas combustion aerosol (33%) and accumulation mode aerosol (37%) dominated particle volume concentrations. Chemical compositions and sources of fine particles changed dynamically in the haze episodes. An enhanced role of secondary inorganic species was observed in the formation of haze pollution. Regional transport played an important role for high particles, contribution of which was on average up to 24-49% during the haze episodes. Secondary aerosols from urban background presented the largest contributions (45%) for the rapid increase of fine particles in the severest haze episode. In addition, the invasion of LRT dust aerosols further elevated the fine particles during the extreme haze episode. Our results showed a clear impact of regional transport on the local air pollution, suggesting the importance of regional-scale emission control measures in the local air quality management of Beijing.

  4. Ecological significance of hazardous concentrations in a planktonic food web.

    PubMed

    De Laender, Frederik; Soetaert, Karline; De Schamphelaere, Karel A C; Middelburg, Jack J; Janssen, Colin R

    2010-03-01

    Species sensitivity distributions (SSDs) are statistical distributions that are used to estimate the potentially affected fraction (PAF) of species at a given toxicant concentration, the hazardous concentration for that fraction of species (HC(PAF)). Here, we use an aquatic food web model that includes 14 phytoplankton and 6 zooplankton species to estimate the number of species experiencing a biomass reduction when the food web is exposed to the HC(PAF) and this for 1000 hypothetical toxicants and for PAF=5-30%. When choosing a 20% decrease as a cut-off to categorize a species' biomass as affected, 0-1 and 2-5 out of the 20 species were affected at the HC(5) and HC(30), respectively. From this, it can be concluded that the PAF is a relatively good estimator of the number of affected species. However, when phytoplankton species experiencing >or=20% biomass increase were also classified as affected, the number of affected species predicted by the food web model varied strongly among toxicants for PAF >5, with 2-16 out of 20 species affected at the HC(30). Phytoplankton species with extreme (both high and low) values for uptake rates and light limitation constants experienced smaller effects on their biomass than phytoplankton species with more average parameter values. We conclude that, next to measures of toxicity, ecological characteristics of species may help understanding ecological effects occurring in ecosystems also. (c) 2009 Elsevier Inc. All rights reserved.

  5. Biodiversity and concentrations of airborne fungi in large US office buildings from the BASE study

    NASA Astrophysics Data System (ADS)

    Tsai, Feng C.; Macher, Janet M.; Hung, Yun-Yi

    The Building Assessment Survey and Evaluation (BASE) study measured baseline concentrations of airborne fungi in 100 representative US office buildings in 1994-1998. Multiple samples for different sampling durations, sites, and times of the day were aggregated into building-wide indoor and outdoor average concentrations. Fungal concentrations were compared between locations (indoor vs. outdoor), sampling and analytical methods (culture vs. microscopy), and season (summer vs. winter). The arithmetic means (standard deviations) of the indoor/outdoor concentrations of culturable fungi and fungal spores were 100/680 (230/840) CFUm-3 and 270/6540 (1190/6780) sporem-3, respectively. Although fewer groups were observed indoors than outdoors, at lower average concentrations (except in two buildings), site-specific and building-wide indoor measurements had higher coefficients of variation. More groups were seen in summer, and aggregated concentrations tended to be higher than in winter except for culturable Aureobasidium spp. and Botrytis spp. outdoors and non-sporulating fungi in both locations. Rankings of the predominant fungi identified by both methods were similar, but overall indoor and outdoor spore concentrations were approximately 3 and 10 times higher, respectively, than concentrations of culturable fungi. In the 44 buildings with both measurements, the indoor and outdoor total culturable fungi to fungal spore ratios (total C/S ratios) were 1.27 and 0.25, with opposite seasonal patterns. The indoor C/S ratio was higher in summer than in winter (1.47 vs. 0.86; N=29 and 15, respectively), but the outdoor ratio was lower in summer (0.19 vs. 0.36, respectively). Comparison of the number of different fungal groups and individual occurrence in buildings and samples indicated that the outdoor environment and summer season were more diverse, but the proportional contributions of the groups were very similar suggesting that the indoor and outdoor environments were related as were summer and winter seasons for each location. The extreme (e.g., 90th percentile) indoor concentrations ( 200CFUm-3 and 210sporem-3) may provide reference values for non-complaint US office environments.

  6. Water-quality characteristics and trends for selected sites at and near the Idaho National Laboratory, Idaho, 1949-2009

    USGS Publications Warehouse

    Bartholomay, Roy C.; Davis, Linda C.; Fisher, Jason C.; Tucker, Betty J.; Raben, Flint A.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, analyzed water-quality data collected from 67 aquifer wells and 7 surface-water sites at the Idaho National Laboratory (INL) from 1949 through 2009. The data analyzed included major cations, anions, nutrients, trace elements, and total organic carbon. The analyses were performed to examine water-quality trends that might inform future management decisions about the number of wells to sample at the INL and the type of constituents to monitor. Water-quality trends were determined using (1) the nonparametric Kendall's tau correlation coefficient, p-value, Theil-Sen slope estimator, and summary statistics for uncensored data; and (2) the Kaplan-Meier method for calculating summary statistics, Kendall's tau correlation coefficient, p-value, and Akritas-Theil-Sen slope estimator for robust linear regression for censored data. Statistical analyses for chloride concentrations indicate that groundwater influenced by Big Lost River seepage has decreasing chloride trends or, in some cases, has variable chloride concentration changes that correlate with above-average and below-average periods of recharge. Analyses of trends for chloride in water samples from four sites located along the Big Lost River indicate a decreasing trend or no trend for chloride, and chloride concentrations generally are much lower at these four sites than those in the aquifer. Above-average and below-average periods of recharge also affect concentration trends for sodium, sulfate, nitrate, and a few trace elements in several wells. Analyses of trends for constituents in water from several of the wells that is mostly regionally derived groundwater generally indicate increasing trends for chloride, sodium, sulfate, and nitrate concentrations. These increases are attributed to agricultural or other anthropogenic influences on the aquifer upgradient of the INL. Statistical trends of chemical constituents from several wells near the Naval Reactors Facility may be influenced by wastewater disposal at the facility or by anthropogenic influence from the Little Lost River basin. Groundwater samples from three wells downgradient of the Power Burst Facility area show increasing trends for chloride, nitrate, sodium, and sulfate concentrations. The increases could be caused by wastewater disposal in the Power Burst Facility area. Some groundwater samples in the southwestern part of the INL and southwest of the INL show concentration trends for chloride and sodium that may be influenced by wastewater disposal. Some of the groundwater samples have decreasing trends that could be attributed to the decreasing concentrations in the wastewater from the late 1970s to 2009. The young fraction of groundwater in many of the wells is more than 20 years old, so samples collected in the early 1990s are more representative of groundwater discharged in the 1960s and 1970s, when concentrations in wastewater were much higher. Groundwater sampled in 2009 would be representative of the lower concentrations of chloride and sodium in wastewater discharged in the late 1980s. Analyses of trends for sodium in several groundwater samples from the central and southern part of the eastern Snake River aquifer show increasing trends. In most cases, however, the sodium concentrations are less than background concentrations measured in the aquifer. Many of the wells are open to larger mixed sections of the aquifer, and the increasing trends may indicate that the long history of wastewater disposal in the central part of the INL is increasing sodium concentrations in the groundwater.

  7. Single Molecule Study of Metalloregulatory Protein-DNA Interactions

    NASA Astrophysics Data System (ADS)

    Sarkar, Susanta; Benitez, Jaime; Huang, Zhengxi; Wang, Qi; Chen, Peng

    2007-03-01

    Control of metal concentrations is essential for living body. Metalloregulatory proteins respond to metal concentrations by regulating transcriptions of metal resistance genes via protein-DNA interactions. It is thus necessary to understand interactions of metalloregulatory proteins with DNA. Ensemble measurements provide average behavior of a vast number of biomolecules. In contrast, single molecule spectroscopy can track single molecules individually and elucidate dynamics of processes of short time scales and intermediate structures not revealed by ensemble measurements. Here we present single molecule study of interactions between PbrR691, a MerR-family metalloregulatory protein and DNA. We presume that the dynamics of protein/DNA conformational changes and interactions are important for the transcription regulation and kinetics of these dynamic processes can provide useful information about the mechanisms of these metalloregulatory proteins.

  8. Drift and Behavior of E. coli Cells

    NASA Astrophysics Data System (ADS)

    Micali, Gabriele; Colin, Rémy; Sourjik, Victor; Endres, Robert G.

    2017-12-01

    Chemotaxis of the bacterium Escherichia coli is well understood in shallow chemical gradients, but its swimming behavior remains difficult to interpret in steep gradients. By focusing on single-cell trajectories from simulations, we investigated the dependence of the chemotactic drift velocity on attractant concentration in an exponential gradient. While maxima of the average drift velocity can be interpreted within analytical linear-response theory of chemotaxis in shallow gradients, limits in drift due to steep gradients and finite number of receptor-methylation sites for adaptation go beyond perturbation theory. For instance, we found a surprising pinning of the cells to the concentration in the gradient at which cells run out of methylation sites. To validate the positions of maximal drift, we recorded single-cell trajectories in carefully designed chemical gradients using microfluidics.

  9. Measurement of the concentration of radon gas in the Toirano's caves (Liguria).

    PubMed

    Bruzzone, Diego; Bussallino, Massimo; Castello, Gianrico; Maggiolo, Stefano; Rossi, Daniela

    2006-01-01

    The radioactive gas radon, intermediate term of the decay series of uranium and thorium, is the main contamination source of underground places and may be a risk for high concentration and long exposure time. European and Italian law requires radon concentration to be measured in workplaces and, if the "action level" of 500 Bq/m3 is reached, proper actions must be made in order to decrease the dose commitment. Considering natural showcaves or artificial cavities open to public, the exposition of the visitors is frequently small, due to the short residence time, but accompanying people, remaining underground for long time, may be subject to appreciable dose and the radon concentration should therefore be monitored. The high humidity in natural caves may impair the use of some measuring devices. Therefore, different detection methods were compared (ZnS scintillation counters, E-PERM electret ionisation chambers, cellulose nitrate alpha-track dosimeters) to select the best procedure for long-term investigation. The LR-115 (Kodak) alpha-track dosimeters were insensitive to humidity and permitted to monitor a great number of places at the same time. Measurements have been carried out in the speleological and archaeological site of the Toirano's Caves (Savona, Liguria, Italy) and several points were monitored for two years. Radon concentration strongly depends on the site and changes during the year, due to the difference between internal and external temperature. The maximum dose commitment during the visitors tour, considering the average yearly value of radon concentration, was found to be between 1.5 and 4 microSv. It was found that no risk exists for visitors, but the evaluation of the dose absorbed by the guides and their classification according to the radiation protection law requires a complete monitoring of the average yearly concentration of radon and of the total time spent by each worker into the cave.

  10. First Report on a Randomized Investigation of Antimicrobial Resistance in Fecal Indicator Bacteria from Livestock, Poultry, and Humans in Tanzania.

    PubMed

    Katakweba, Abdul A S; Muhairwa, Amandus P; Lupindu, Athumani M; Damborg, Peter; Rosenkrantz, Jesper T; Minga, Uswege M; Mtambo, Madundo M A; Olsen, John E

    2018-04-01

    This study provides an estimate of antimicrobial resistance in intestinal indicator bacteria from humans (n = 97) and food animals (n = 388) in Tanzania. More than 70% of all fecal samples contained tetracycline (TE), sulfamethoxazole (STX), and ampicillin (AMP)-resistant coliforms, while cefotaxime (CTX)-resistant coliforms were observed in 40% of all samples. The average Log 10 colony forming units/g of CTX-resistant coliforms in samples from humans were 2.20. Of 390 Escherichia coli tested, 66.4% were resistant to TE, 54.9% to STX, 54.9% to streptomycin, and 36.4% to CTX. Isolates were commonly (65.1%) multiresistant. All CTX-resistant isolates contained bla CTX-M gene type. AMP- and vancomycin-resistant enterococci were rare, and the average concentrations in positive samples were low (log 10 0.9 and 0.4, respectively). A low-to-moderate resistance (2.1-15%) was detected in 240 enterococci isolates to the drugs tested, except for rifampicin resistance (75.2% of isolates). The average number of sulII gene copies varied between Log 10 5.37 and 5.68 with no significant difference between sample source, while cattle had significantly higher number of tetW genes than humans. These findings, based on randomly obtained samples, will be instrumental in designing antimicrobial resistance (AMR) intervention strategies for Tanzania.

  11. [Simulation study of air quality health index in 5 cities in China: 2013-2015].

    PubMed

    Wang, W T; Sun, Q H; Qin, J; Li, T T; Shi, X M

    2017-03-10

    Objective: To construct the air quality health index (AQHI) by inclusion of air pollutants PM(2.5) and O(3) in Guangzhou, Shanghai, Xi' an, Beijing, Shenyang, and explore scientificity and feasibility of its application in China. Methods: The daily average concentrations of PM(2.5) and O(3) in air, and daily average mortality from 2013 to 2015 in the 5 cities in China, the exposure-response coefficients of PM(2.5) and O(3) and total mortality from Meta studies in China were used to construct local AQHI. The health risk levels of air pollution in the 5 cities were calculated and compared with the characteristics of single pollutant concentrationof PM(2.5) or O(3). Results: In the 5 cities, the average concentration of PM(2.5) was highest in Beijing (82 μg/m(3)) and lowest in Guangzhou (46 μg/m(3)). And the average concentration of O(3) was highest in Shanghai (72 μg/m(3)) and lowest in Xi' an (45 μg/m(3)). In all the cities, the average concentration of PM(2.5) was highest in winter and lowest in summer. In summer, the average concentration of O(3) was lowest. But the health risk level of AQHI showed that the 5 cities had higher frequency of low or medium risk averagely. And Beijing had the highest frequency of high risk in summer (5.69%). Xi' an had the highest frequency of extremely high risk in winter (1.63%). Conclusions: In this study, AQHI could be constructed by using air PM(2.5) and O(3) concentration data which can be obtained in many areas in China. The application of this index is scientific and feasible in China.

  12. Respiratory hospitalizations in association with fine PM and its components in New York State.

    PubMed

    Jones, Rena R; Hogrefe, Christian; Fitzgerald, Edward F; Hwang, Syni-An; Özkaynak, Halûk; Garcia, Valerie C; Lin, Shao

    2015-05-01

    Despite observed geographic and temporal variation in particulate matter (PM)-related health morbidities, only a small number of epidemiologic studies have evaluated the relation between PM2.5 chemical constituents and respiratory disease. Most assessments are limited by inadequate spatial and temporal resolution of ambient PM measurements and/or by their approaches to examine the role of specific PM components on health outcomes. In a case-crossover analysis using daily average ambient PM2.5 total mass and species estimates derived from the Community Multiscale Air Quality (CMAQ) model and available observations, we examined the association between the chemical components of PM (including elemental and organic carbon, sulfate, nitrate, ammonium, and other remaining) and respiratory hospitalizations in New York State. We evaluated relationships between levels (low, medium, high) of PM constituent mass fractions, and assessed modification of the PM2.5-hospitalization association via models stratified by mass fractions of both primary and secondary PM components. In our results, average daily PM2.5 concentrations in New York State were generally lower than the 24-hr average National Ambient Air Quality Standard (NAAQS). Year-round analyses showed statistically significant positive associations between respiratory hospitalizations and PM2.5 total mass, sulfate, nitrate, and ammonium concentrations at multiple exposure lags (0.5-2.0% per interquartile range [IQR] increase). Primarily in the summer months, the greatest associations with respiratory hospitalizations were observed per IQR increase in the secondary species sulfate and ammonium concentrations at lags of 1-4 days (1.0-2.0%). Although there were subtle differences in associations observed between mass fraction tertiles, there was no strong evidence to support modification of the PM2.5-respiratory disease association by a particular constituent. We conclude that ambient concentrations of PM2.5 and secondary aerosols including sulfate, ammonium, and nitrate were positively associated with respiratory hospitalizations, although patterns varied by season. Exposure to specific fine PM constituents is a plausible risk factor for respiratory hospitalization in New York State. The association between ambient concentrations of PM2.5 components has been evaluated in only a small number of epidemiologic studies with refined spatial and temporal scale data. In New York State, fine PM and several of its constituents, including sulfate, ammonium, and nitrate, were positively associated with respiratory hospitalizations. Results suggest that PM species relationships and their influence on respiratory endpoints are complex and season dependent. Additional work is needed to better understand the relative toxicity of PM species, and to further explore the role of co-pollutant relationships and exposure prediction error on observed PM-respiratory disease associations.

  13. Inter-seasonal and spatial distribution of ground-level greenhouse gases (CO2, CH4, N2O) over Nagpur in India and their management roadmap.

    PubMed

    Majumdar, Deepanjan; Rao, Padma; Maske, Nilam

    2017-03-01

    Ground-level concentrations of carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) were monitored over three seasons, i.e., post-monsoon (September-October), winter (January-February), and summer (May-June) for 1 year during 2013-2014 in Nagpur City in India. The selected gases had moderate to high variation both spatially (residential, commercial, traffic intersections, residential cum commercial sites) and temporally (at 7:00, 13:00, 18:00, and 23:00 hours in all three seasons). Concentrations of gases were randomly distributed diurnally over city in all seasons, and there was no specific increasing or decreasing trend with time in a day. Average CO 2 and N 2 O concentrations in winter were higher over post-monsoon and summer while CH 4 had highest average concentration in summer. Observed concentrations of CO 2 were predominantly above global average of 400 ppmv while N 2 O and CH 4 concentrations frequently dropped down below global average of 327 ppbv and 1.8 ppmv, respectively. Two-tailed Student's t test indicated that post-monsoon CO 2 concentrations were statistically different from summer but not so from winter, while difference between summer and winter concentrations was statistically significant (P < 0.05). CH 4 concentrations in all seasons were statistically at par to each other. In case of N 2 O, concentrations in post-monsoon were statistically different from summer but not so from winter, while difference between summer and winter concentrations was statistically significant (P < 0.05). Average ground-level concentrations of the gases calculated for three seasons together were higher in commercial areas. Environmental management priorities vis a vis greenhouse gas emissions in the city are also discussed.

  14. An Estimate of North Atlantic Basin Tropical Cyclone Activity for 2008

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2008-01-01

    The statistics of North Atlantic basin tropical cyclones for the interval 1945-2007 are examined and estimates are given for the frequencies of occurrence of the number of tropical cyclones, number of hurricanes, number of major hurricanes, number of category 4/5 hurricanes, and number of U.S. land-falling hurricanes for the 2008 hurricane season. Also examined are the variations of peak wind speed, average peak wind speed per storm, lowest pressure, average lowest pressure per storm, recurrence rate and duration of extreme events (El Nino and La Nina), the variation of 10-yr moving averages of parametric first differences, and the association of decadal averages of frequencies of occurrence of North Atlantic basin tropical cyclones against decadal averages of Armagh Observatory, Northern Ireland, annual mean temperature (found to be extremely important for number of tropical cyclones and number of hurricanes). Because the 2008 hurricane season seems destined to be one that is non-El Nino-related and is a post-1995 season, estimates of the frequencies of occurrence for the various subsets of storms should be above long-term averages.

  15. Long-term Medicaid excess payments from alleged price manipulation of generic lorazepam.

    PubMed

    Bian, Boyang; Gorevski, Elizabeth; Kelton, Christina M L; Guo, Jeff J; Martin Boone, Jill E

    2012-09-01

    Cost savings from the use of generic drugs versus brand-name drugs are well known. Both private and public prescription drug plans encourage the use of generic drugs through a variety of mechanisms. The magnitude of cost savings for a given generic drug is dependent on the degree to which the generic market is competitive. Should the competitive structure become compromised, higher prices and reduced cost savings may result. An alleged conspiracy between Mylan Laboratories and its active-ingredient suppliers in 1997 was associated with an increase in seller concentration in the generic lorazepam market. The Federal Trade Commission (FTC) alleged that Mylan raised costs to consumers by $120 million because of price increases for generic lorazepam from March through December 1998 and for generic clorazepate from January through December 1998. In November 2002, a settlement with Mylan was approved by the FTC, and a federal district court required Mylan to pay $147 million, including $28.2 million to state agencies including Medicaid. To (a) describe the seller concentration in the national Medicaid generic lorazepam market over a 19-year period from January 1991 through December 2009, (b) estimate the excess payments for generic lorazepam by Medicaid between 1998 and 2009, and (c) investigate potentially increased utilization and prices of 2 substitute pharmaceuticals: branded lorazepam (Ativan) and generic alprazolam (another widely used intermediate-acting benzodiazepine). Using Medicaid State Drug Utilization Data from the Centers for Medicare Medicaid Services, we calculated the 4-firm concentration ratio (CR₄) and the Herfindahl-Hirschman Index (HHI) for the Medicaid generic lorazepam market, along with pre-rebate reimbursement for pharmacy claims, number of claims (utilization), and average pre-rebate reimbursement per claim (average "price") for generic lorazepam, from 1991 through 2009. Medicaid's excess payments were estimated under 2 different assumptions regarding what the average generic lorazepam price would have been in the absence of the alleged conspiracy. To find counterfactual prices, the average per-claim reimbursement for lorazepam for the 4 quarters prior to the alleged conspiracy, $6.80, was inflated using (a) the quarterly change in the average per-claim reimbursement for generic alprazolam and (b) the Consumer Price Index (CPI) for all urban consumers, all goods. Potential impact of the alleged conspiracy on the branded lorazepam and generic alprazolam markets was investigated. The average pre-rebate reimbursements per claim for generic lorazepam were $10.25, $23.12, and $8.48 in 1991, 1998, and 2009, respectively. For the same 3 years, CR₄ = 52.80, 76.02, and 86.74, while HHI = 905.71, 2,166.25, and 2,233.36. Medicaid's excess payments from 1998-2009 were estimated at approximately $625-$657 million. The data also suggest the possibility of small impacts on the utilization of branded lorazepam and the price of generic alprazolam. Prior to the alleged conspiracy in 1997, average pre-rebate reimbursement per claim for generic lorazepam was declining, while seller concentration was rising. After a jump in average payment per claim in the years immediately following the alleged conspiracy, prices have gradually returned to their pre-1998 levels. However, the generic lorazepam market was more concentrated in 2009 than prior to the alleged conspiracy. Copyright © 2012, Academy of Managed Care Pharmacy. All rights reserved.

  16. A combined experimental and numerical study on upper airway dosimetry of inhaled nanoparticles from an electrical discharge machine shop.

    PubMed

    Tian, Lin; Shang, Yidan; Chen, Rui; Bai, Ru; Chen, Chunying; Inthavong, Kiao; Tu, Jiyuan

    2017-07-12

    Exposure to nanoparticles in the workplace is a health concern to occupational workers with increased risk of developing respiratory, cardiovascular, and neurological disorders. Based on animal inhalation study and human lung tumor risk extrapolation, current authoritative recommendations on exposure limits are either on total mass or number concentrations. Effects of particle size distribution and the implication to regional airway dosages are not elaborated. Real time production of particle concentration and size distribution in the range from 5.52 to 98.2 nm were recorded in a wire-cut electrical discharge machine shop (WEDM) during a typical working day. Under the realistic exposure condition, human inhalation simulations were performed in a physiologically realistic nasal and upper airway replica. The combined experimental and numerical study is the first to establish a realistic exposure condition, and under which, detailed dose metric studies can be performed. In addition to mass concentration guided exposure limit, inhalation risks to nano-pollutant were reexamined accounting for the actual particle size distribution and deposition statistics. Detailed dosimetries of the inhaled nano-pollutants in human nasal and upper airways with respect to particle number, mass and surface area were discussed, and empirical equations were developed. An astonishing enhancement of human airway dosages were detected by current combined experimental and numerical study in the WEDM machine shop. Up to 33 folds in mass, 27 folds in surface area and 8 folds in number dosages were detected during working hours in comparison to the background dosimetry measured at midnight. The real time particle concentration measurement showed substantial emission of nano-pollutants by WEDM machining activity, and the combined experimental and numerical study provided extraordinary details on human inhalation dosimetry. It was found out that human inhalation dosimetry was extremely sensitive to real time particle concentration and size distribution. Averaged particle concentration over 24-h period will inevitably misrepresent the sensible information critical for realistic inhalation risk assessment. Particle size distribution carries very important information in determining human airway dosimetry. A pure number or mass concentration recommendation on the exposure limit at workplace is insufficient. A particle size distribution, together with the deposition equations, is critical to recognize the actual exposure risks. In addition, human airway dosimetry in number, mass and surface area varies significantly. A complete inhalation risk assessment requires the knowledge of toxicity mechanisms in response to each individual metric. Further improvements in these areas are needed.

  17. Effects of inlet flow field conditions on the performance of centrifugal compressor diffusers: Part 1 -- Discrete-passage diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filipenco, V.G.; Deniz, S.; Johnston, J.M.

    2000-01-01

    This is Part 1 of a two-part paper considering the performance of radial diffusers for use in a high-performance centrifugal compressor. Part 1 reports on discrete-passage diffusers, while Part 2 describes a test of a straight-channel diffuser designed for equivalent duty. Two builds of discrete-passage diffuser were tested, with 30 and 38 separate passages. Both the 30 and 38 passage diffusers investigated showed comparable range of unstalled operation and similar level of overall diffuser pressure recovery. The paper concentrates on the influence of inlet flow conditions on the pressure recovery and operating range of radial diffusers for centrifugal compressor stages.more » The flow conditions examined include diffuser inlet Mach number, flow angle, blockage, and axial flow nonuniformity. The investigation was carried out in a specially built test facility, designed to provide a controlled inlet flow field to the test diffusers. The facility can provide a wide range of diffuser inlet velocity profile distortion and skew with Mach numbers up to unity and flow angles of 63 to 75 deg from the radical direction. The consequences of different averaging methods for the inlet total pressure distributions, which are needed in the definition of diffuser pressure recovery coefficient for nonuniform diffuser inlet conditions, were also assessed. The overall diffuser pressure recovery coefficient, based on suitably averaged inlet total pressure, was found to correlate well with the momentum-averaged flow angle into the diffuser. It is shown that the generally accepted sensitivity of diffuser pressure recovery performance to inlet flow distortion and boundary layer blockage can be largely attributed to inappropriate quantification of the average dynamic pressure at diffuser inlet. Use of an inlet dynamic pressure based on availability or mass-averaging in combination with definition of inlet flow angle based on mass average of the radial and tangential velocity at diffuser inlet removes this sensitivity.« less

  18. Measurement and estimated health risks of semivolatile organic compounds (PCBs, PAHs, pesticides, and phthalates) in ambient air at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, G.W.; Cooper, A.T.; Blanton, M.L.

    1997-09-01

    Air samples for polychlorinated biphenyls (PCBs), chlorinated pesticides, phthalate plasticizers, and polycyclic aromatic hydrocarbons (PAHs) were collected at three Hanford Site locations (300-Area South Gate, southeast of 200-East Area, and a background location near Rattlesnake Springs). Samples were collected using high-volume air samplers equipped with a glass fiber filter and polyurethane foam plug sampling train. Target compounds were extracted from the sampling trains and analyzed using capillary gas chromatography with either electron capture detection or mass selective detection. Twenty of the 28 PCB congeners analyzed were found above the detection limits, with 8 of the congeners accounting for over 80%more » of the average PCB concentrations. The average sum of all individual PCB congeners ranged from 500-740 pg/m{sup 3}, with little apparent difference between the sampling locations. Twenty of the 25 pesticides analyzed were found above the detection limits, with endosulfan I, endosulfan II, and methoxychlor having the highest average concentrations. With the exception of the endosulfans, all other average pesticide concentrations were below 100 pg/m{sup 3}. There was little apparent difference between the air concentrations of pesticides measured at each location. Sixteen of the 18 PAHs analyzed were found above the detection limit. Phenanthrene, fluoranthene, pyrene, fluorene, chrysene, benzo(b)fluoranthene, and naphthalene were the only PAHs with average concentrations above 100 pg/m{sup 3}. Overall, the 300 Area had higher average PAH concentrations compared to the 200-East Area and the background location at Rattlesnake Springs; however, the air concentrations at the 300-Area also are influenced by sources on the Hanford Site and from nearby communities.« less

  19. Seasonal and Spatial Variations of Indoor Pollen in a Hospital

    PubMed Central

    Tormo-Molina, Rafael; Gonzalo-Garijo, Ángela; Silva-Palacios, Inmaculada; Fernández-Rodríguez, Santiago

    2009-01-01

    The airborne indoor pollen in a hospital of Badajoz (Spain) was monitored over two years using a personal Burkard sampler. The air was sampled in four places indoors—one closed room and one open ward on each of the ground and the third floors—and one place outdoors at the entrance to the hospital. The results were compared with data from a continuous volumetric sampler. While 32 pollen types were identified, nearly 75% of the total counts were represented by just five of them. These were: Quercus, Cupressaceae, Poaceae, Olea, and Plantago. The average indoor concentration was 25.2 grains/m3, and the average indoor/outdoor ratio was 0.27. A strong seasonal pattern was found, with the highest levels in spring and winter, and the indoor concentrations were correlated with the outdoor one. Indoor air movement led to great homogeneity in the airborne pollen presence: the indoor results were not influenced by whether or not the room was isolated, the floor level, or the number of people in or transiting the site during sampling. The presence of ornamental vegetation in the area surrounding the building affected the indoor counts directly as sources of the pollen. PMID:20049254

  20. Aerosol Properties Observed in the Subtropical North Pacific Boundary Layer

    NASA Astrophysics Data System (ADS)

    Royalty, T. M.; Phillips, B. N.; Dawson, K. W.; Reed, R.; Meskhidze, N.; Petters, M. D.

    2017-09-01

    The impact of anthropogenic aerosol on climate forcing remains uncertain largely due to inadequate representation of natural aerosols in climate models. The marine boundary layer (MBL) might serve as a model location to study natural aerosol processes. Yet source and sink mechanisms controlling the MBL aerosol number, size distribution, chemical composition, and hygroscopic properties remain poorly constrained. Here aerosol size distribution and water uptake measurements were made aboard the R/V Hi'ialakai from 27 June to 3 July 2016 in the subtropical North Pacific Ocean. Size distributions were predominantly bimodal with an average integrated number concentration of 197 ± 98 cm-3. Hygroscopic growth factors were measured using the tandem differential mobility analyzer technique for dry 48, 96, and 144 nm particles. Mode kappa values for these were 0.57 ± 0.12, 0.51 ± 0.09, and 0.52 ± 0.08, respectively. To better understand remote MBL aerosol sources, a new algorithm was developed which decomposes hygroscopicity distributions into three classes: carbon-containing particles, sulfate-like particles, and sodium-containing particles. Results from this algorithm showed low and steady sodium-containing particle concentrations while the sulfate-like and carbon-containing particle concentrations varied during the cruise. According to the classification scheme, carbon-containing particles contributed at least 3-7%, sulfate-like particles contributed at most 77-88% and sodium-containing particles at least contributed 9-16% to the total aerosol number concentration. Size distribution and hygroscopicity data, in conjunction with air mass back trajectory analysis, suggested that the aerosol budget in the subtropical North Pacific MBL may be controlled by aerosol entrainment from the free troposphere.

  1. Contribution of indoor-generated particles to residential exposure

    NASA Astrophysics Data System (ADS)

    Isaxon, C.; Gudmundsson, A.; Nordin, E. Z.; Lönnblad, L.; Dahl, A.; Wieslander, G.; Bohgard, M.; Wierzbicka, A.

    2015-04-01

    The majority of airborne particles in residences, when expressed as number concentrations, are generated by the residents themselves, through combustion/thermal related activities. These particles have a considerably smaller diameter than 2.5 μm and, due to the combination of their small size, chemical composition (e.g. soot) and intermittently very high concentrations, should be regarded as having potential to cause adverse health effects. In this study, time resolved airborne particle measurements were conducted for seven consecutive days in 22 randomly selected homes in the urban area of Lund in southern Sweden. The main purpose of the study was to analyze the influence of human activities on the concentration of particles in indoor air. Focus was on number concentrations of particles with diameters <300 nm generated by indoor activities, and how these contribute to the integrated daily residential exposure. Correlations between these particles and soot mass concentration in total dust were also investigated. It was found that candle burning and activities related to cooking (using a frying pan, oven, toaster, and their combinations) were the major particle sources. The frequency of occurrence of a given concentration indoors and outdoors was compared for ultrafine particles. Indoor data was sorted into non-occupancy and occupancy time, and the occupancy time was further divided into non-activity and activity influenced time. It was found that high levels (above 104 cm-3) indoors mainly occur during active periods of occupancy, while the concentration during non-activity influenced time differs very little from non-occupancy time. Total integrated daily residential exposure of ultrafine particles was calculated for 22 homes, the contribution from known activities was 66%, from unknown activities 20%, and from background/non-activity 14%. The collected data also allowed for estimates of particle source strengths for specific activities, and for some activities it was possible to estimate correlations between the number concentration of ultrafine particles and the mass concentration of soot in total dust in 10 homes. Particle source strengths (for 7 specific activities) ranged from 1.6·1012 to 4.5·1012 min-1. The correlation between ultrafine particles and mass concentration of soot in total dust varied between 0.37 and 0.85, with an average of 0.56 (Pearson correlation coefficient). This study clearly shows that due to the importance of indoor sources, residential exposure to ultrafine particles cannot be characterized by ambient measurements alone.

  2. A modeling study of the impact of urban trees on ozone

    Treesearch

    David J. Nowak; Kevin L. Civerolo; S. Trivikrama Rao; Gopal Sistla; Christopher J. Luley; Daniel E. Crane

    2000-01-01

    Modeling the effects of increased urban tree cover on ozone concentrations (July 13-15, 1995) from Washington, DC, to central Massachusetts reveals that urban trees generally reduce ozone concentrations in cities, but tend to increase average ozone concentrations in the overall modeling domain. During the daytime, average ozone reductions in urban areas (1 ppb) were...

  3. 40 CFR Table 5 to Subpart Sssss of... - Initial Compliance With Emission Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... continuous process unit that is subject to the THC emission concentration limit listed in item 2.a., 3.a., 4, or 5 of Table 1 to this subpart The average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen The 3-hour block average THC emission concentration measured during the performance...

  4. 40 CFR Table 5 to Subpart Sssss of... - Initial Compliance With Emission Limits

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... continuous process unit that is subject to the THC emission concentration limit listed in item 2.a., 3.a., 4, or 5 of Table 1 to this subpart The average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen The 3-hour block average THC emission concentration measured during the performance...

  5. 40 CFR Table 5 to Subpart Sssss of... - Initial Compliance With Emission Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... continuous process unit that is subject to the THC emission concentration limit listed in item 2.a., 3.a., 4, or 5 of Table 1 to this subpart The average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen The 3-hour block average THC emission concentration measured during the performance...

  6. 40 CFR Table 5 to Subpart Sssss of... - Initial Compliance With Emission Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... continuous process unit that is subject to the THC emission concentration limit listed in item 2.a., 3.a., 4, or 5 of Table 1 to this subpart The average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen The 3-hour block average THC emission concentration measured during the performance...

  7. 40 CFR Table 5 to Subpart Sssss of... - Initial Compliance With Emission Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... continuous process unit that is subject to the THC emission concentration limit listed in item 2.a., 3.a., 4, or 5 of Table 1 to this subpart The average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen The 3-hour block average THC emission concentration measured during the performance...

  8. Use of spatiotemporal characteristics of ambient PM2.5 in rural South India to infer local versus regional contributions.

    PubMed

    Kumar, M Kishore; Sreekanth, V; Salmon, Maëlle; Tonne, Cathryn; Marshall, Julian D

    2018-08-01

    This study uses spatiotemporal patterns in ambient concentrations to infer the contribution of regional versus local sources. We collected 12 months of monitoring data for outdoor fine particulate matter (PM 2.5 ) in rural southern India. Rural India includes more than one-tenth of the global population and annually accounts for around half a million air pollution deaths, yet little is known about the relative contribution of local sources to outdoor air pollution. We measured 1-min averaged outdoor PM 2.5 concentrations during June 2015-May 2016 in three villages, which varied in population size, socioeconomic status, and type and usage of domestic fuel. The daily geometric-mean PM 2.5 concentration was ∼30 μg m -3 (geometric standard deviation: ∼1.5). Concentrations exceeded the Indian National Ambient Air Quality standards (60 μg m -3 ) during 2-5% of observation days. Average concentrations were ∼25 μg m -3 higher during winter than during monsoon and ∼8 μg m -3 higher during morning hours than the diurnal average. A moving average subtraction method based on 1-min average PM 2.5 concentrations indicated that local contributions (e.g., nearby biomass combustion, brick kilns) were greater in the most populated village, and that overall the majority of ambient PM 2.5 in our study was regional, implying that local air pollution control strategies alone may have limited influence on local ambient concentrations. We compared the relatively new moving average subtraction method against a more established approach. Both methods broadly agree on the relative contribution of local sources across the three sites. The moving average subtraction method has broad applicability across locations. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Determination of concentration factors for Cs-137 and Ra-226 in the mullet species Chelon labrosus (Mugilidae) from the South Adriatic Sea.

    PubMed

    Antovic, Ivanka; Antovic, Nevenka M

    2011-07-01

    Concentration factors for Cs-137 and Ra-226 transfer from seawater, and dried sediment or mud with detritus, have been determined for whole, fresh weight, Chelon labrosus individuals and selected organs. Cesium was detected in 5 of 22 fish individuals, and its activity ranged from 1.0 to 1.6 Bq kg(-1). Radium was detected in all fish, and ranged from 0.4 to 2.1 Bq kg(-1), with an arithmetic mean of 1.0 Bq kg(-1). In regards to fish organs, cesium activity concentration was highest in muscles (maximum - 3.7 Bq kg(-1)), while radium was highest in skeletons (maximum - 25 Bq kg(-1)). Among cesium concentration factors, those for muscles were the highest (from seawater - an average of 47, from sediment - an average of 3.3, from mud with detritus - an average of 0.8). Radium concentration factors were the highest for skeleton (from seawater - an average of 130, from sediment - an average of 1.8, from mud with detritus - an average of 1.5). Additionally, annual intake of cesium and radium by human adults consuming muscles of this fish species has been estimated to provide, in aggregate, an effective dose of about 4.1 μSv y(-1). 2011 Elsevier Ltd. All rights reserved.

  10. Constraining Regolith Production on a Hillslope Over Long Timescales: Interpreting In Situ 10Be Concentrations on an Evolving Landscape

    NASA Astrophysics Data System (ADS)

    Foster, M. A.; Anderson, R. S.; Duehnforth, M.; Kelly, P. J.

    2011-12-01

    In situ produced 10Be cosmogenic radionuclide (CRN) concentrations provide geomorphologists with a quantitative tool to calculate regolith production rates in a variety of landscapes. However, the power of CRN dating is limited by the care with which these hard-earned numbers are interpreted. As rock is exhumed through the weathered zone, it accumulates in situ produced CRNs. Most studies assume a steady-state condition to calculate regolith production rates from 10Be concentrations obtained from rock at the base of mobile regolith; ignoring decay, the regolith production rate becomes simply Poe-H/z*/[10Be]. Although the balance of regolith production and the spatial pattern of divergence required to maintain steady regolith thickness is valid in some landscapes, steady-state is unlikely on hillslopes where time scales for generating soils are longer than climatic cycles. We report in situ 10Be concentrations to calculate production rates for mobile regolith in 8 soil pits along north- and south-facing slopes in Gordon Gulch, an intensively studied catchment in the Boulder Creek CZO. Gordon Gulch hillslopes exhibit variable regolith and saprolite thicknesses over gneissic and granitic parent rock; mean regolith thickness is 0.65 m. Local denudation rates in nearby catchments are 25 ± 8 m/Ma (Dethier and Lazarus, 2006). The mean residence time of mobile regolith in Gordon Gulch catchment is therefore 20-45 ka; less than half of this time is spent in Holocene climatic conditions. Although Gordon Gulch presently has mean annual temperature (MAT) ~4°C, it was likely at least 6°C cooler during the Last Glacial Maximum, meaning that periglacial conditions likely dominated. We therefore anticipate that parent rock could be more rapidly damaged by increased frost-cracking, and regolith transport be enhanced by increased frost-heave; thus steady-state conditions cannot be assumed over this timescale. To develop strategies for interpretation of 10Be, we employ a 1D numerical hillslope model in which regolith thickness and 10Be concentration are tracked at all hillslope positions. 10Be concentration in rock immediately subjacent to the regolith is updated both by decay and by production at a rate governed by the instantaneous regolith thickness (e.g. Riggins et al., 2011). Vertically averaged 10Be concentration in the regolith is updated by vertically averaged production rate, decay, addition from rock released at the base of the regolith, and advection of regolith. The resulting field of 10Be in bedrock at the regolith interface, from which one deduces long term average regolith production rates, varies both in time and in space. Our model indicates that regolith thickness fluctuates by tens of percent from the average condition over the timescale of glacial-interglacial cycles. The resulting shifts in 10Be concentrations at the base of regolith are of similar magnitude, with greater shifts of 10Be concentrations in regolith. We will employ this model tuned to the Gordon Gulch sites to interpret measured 10Be concentrations.

  11. Assessing the role of anthropogenic and biogenic sources on PM1 over southern West Africa using aircraft measurements

    NASA Astrophysics Data System (ADS)

    Brito, Joel; Freney, Evelyn; Dominutti, Pamela; Borbon, Agnes; Haslett, Sophie L.; Batenburg, Anneke M.; Colomb, Aurelie; Dupuy, Regis; Denjean, Cyrielle; Burnet, Frederic; Bourriane, Thierry; Deroubaix, Adrien; Sellegri, Karine; Borrmann, Stephan; Coe, Hugh; Flamant, Cyrille; Knippertz, Peter; Schwarzenboeck, Alfons

    2018-01-01

    As part of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project, an airborne campaign was designed to measure a large range of atmospheric constituents, focusing on the effect of anthropogenic emissions on regional climate. The presented study details results of the French ATR42 research aircraft, which aimed to characterize gas-phase, aerosol and cloud properties in the region during the field campaign carried out in June/July 2016 in combination with the German Falcon 20 and the British Twin Otter aircraft. The aircraft flight paths covered large areas of Benin, Togo, Ghana and Côte d'Ivoire, focusing on emissions from large urban conurbations such as Abidjan, Accra and Lomé, as well as remote continental areas and the Gulf of Guinea. This paper focuses on aerosol particle measurements within the boundary layer (< 2000 m), in particular their sources and chemical composition in view of the complex mix of both biogenic and anthropogenic emissions, based on measurements from a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) and ancillary instrumentation. Background concentrations (i.e. outside urban plumes) observed from the ATR42 indicate a fairly polluted region during the time of the campaign, with average concentrations of carbon monoxide of 131 ppb, ozone of 32 ppb, and aerosol particle number concentration ( > 15 nm) of 735 cm-3 stp. Regarding submicron aerosol composition (considering non-refractory species and black carbon, BC), organic aerosol (OA) is the most abundant species contributing 53 %, followed by SO4 (27 %), NH4 (11 %), BC (6 %), NO3 (2 %) and minor contribution of Cl (< 0.5 %). Average background PM1 in the region was 5.9 µg m-3 stp. During measurements of urban pollution plumes, mainly focusing on the outflow of Abidjan, Accra and Lomé, pollutants are significantly enhanced (e.g. average concentration of CO of 176 ppb, and aerosol particle number concentration of 6500 cm-3 stp), as well as PM1 concentration (11.9 µg m-3 stp). Two classes of organic aerosols were estimated based on C-ToF-AMS: particulate organic nitrates (pONs) and isoprene epoxydiols secondary organic aerosols (IEPOX-SOA). Both classes are usually associated with the formation of particulate matter through complex interactions of anthropogenic and biogenic sources. During DACCIWA, pONs have a fairly small contribution to OA (around 5 %) and are more associated with long-range transport from central Africa than local formation. Conversely, IEPOX-SOA provides a significant contribution to OA (around 24 and 28 % under background and in-plume conditions). Furthermore, the fractional contribution of IEPOX-SOA is largely unaffected by changes in the aerosol composition (particularly the SO4 concentration), which suggests that IEPOX-SOA concentration is mainly driven by pre-existing aerosol surface, instead of aerosol chemical properties. At times of large in-plume SO4 enhancements (above 5 µg m-3), the fractional contribution of IEPOX-SOA to OA increases above 50 %, suggesting only then a change in the IEPOX-SOA-controlling mechanism. It is important to note that IEPOX-SOA constitutes a lower limit to the contribution of biogenic OA, given that other processes (e.g. non-IEPOX isoprene, monoterpene SOA) are likely in the region. Given the significant contribution to aerosol concentration, it is crucial that such complex biogenic-anthropogenic interactions are taken into account in both present-day and future scenario models of this fast-changing, highly sensitive region.

  12. Survey on air pollution and cardiopulmonary mortality in shiraz from 2011 to 2012: an analytical-descriptive study.

    PubMed

    Dehghani, Mansooreh; Anushiravani, Amir; Hashemi, Hassan; Shamsedini, Narges

    2014-06-01

    Expanding cities with rapid economic development has resulted in increased energy consumption leading to numerous environmental problems for their residents. The aim of this study was to investigate the correlation between air pollution and mortality rate due to cardiovascular and respiratory diseases in Shiraz. This is an analytical cross-sectional study in which the correlation between major air pollutants (including carbon monoxide [CO], sulfur dioxide [SO2], nitrogen dioxide [NO2] and particle matter with a diameter of less than 10 μ [PM10]) and climatic parameters (temperature and relative humidity) with the number of those whom expired from cardiopulmonary disease in Shiraz from March 2011 to January 2012 was investigated. Data regarding the concentration of air pollutants were determined by Shiraz Environmental Organization. Information about climatic parameters was collected from the database of Iran's Meteorological Organization. The number of those expired from cardiopulmonary disease in Shiraz were provided by the Department of Health, Shiraz University of Medical Sciences. We used non-parametric correlation test to analyze the relationship between these parameters. The results demonstrated that in all the recorded data, the average monthly pollutants standard index (PSI) values of PM10 were higher than standard limits, while the average monthly PSI value of NO2 were lower than standard. There was no significant relationship between the number of those expired from cardiopulmonary disease and the air pollutant (P > 0.05). Air pollution can aggravate chronic cardiopulmonary disease. In the current study, one of the most important air pollutants in Shiraz was the PM10 component. Mechanical processes, such as wind blowing from neighboring countries, is the most important parameter increasing PM10 in Shiraz to alarming conditions. The average monthly variation in PSI values of air pollutants such as NO2, CO, and SO2 were lower than standard limits. Moreover, there was no significant correlation between the average monthly variation in PSI of NO2, CO, PM10, and SO2 and the number of those expired from cardiopulmonary disease in Shiraz.

  13. A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Wang, Dingqu; Zhu, Rong; Yang, Wenming; Jiang, Peng

    2017-04-22

    Counting and sizing of polydisperse airborne nanoparticles have attracted most attentions owing to increasing widespread presence of airborne engineered nanoparticles or ultrafine particles. Here we report a miniature aerosol sensor to detect particle size distribution of polydisperse ultrafine particles based on ion diffusion charging and electrical detection. The aerosol sensor comprises a couple of planar electrodes printed on two circuit boards assembled in parallel, where charging, precipitation and measurement sections are integrated into one chip, which can detect aerosol particle size in of 30-500 nm, number concentration in range of 5 × 10²-10⁷ /cm³. The average relative errors of the measured aerosol number concentration and the particle size are estimated to be 12.2% and 13.5% respectively. A novel measurement scheme is proposed to actualize a real-time detection of polydisperse particles by successively modulating the measurement voltage and deducing the particle size distribution through a smart data fusion algorithm. The effectiveness of the aerosol sensor is experimentally demonstrated via measurements of polystyrene latex (PSL) aerosol and nucleic acid aerosol, as well as sodium chloride aerosol particles.

  14. Numerical investigation of the heat transfer of a ferrofluid inside a tube in the presence of a non-uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Hariri, Saman; Mokhtari, Mojtaba; Gerdroodbary, M. Barzegar; Fallah, Keivan

    2017-02-01

    In this article, a three-dimensional numerical investigation is performed to study the effect of a magnetic field on a ferrofluid inside a tube. This study comprehensively analyzes the influence of a non-uniform magnetic field in the heat transfer of a tube while a ferrofluid (water with 0.86 vol% nanoparticles (Fe3O4) is let flow. The SIMPLEC algorithm is used for obtaining the flow and heat transfer inside the tube. The influence of various parameters, such as concentration of nanoparticles, intensity of the magnetic field, wire distance and Reynolds number, on the heat transfer is investigated. According to the obtained results, the presence of a non-uniform magnetic field significantly increases the Nusselt number (more than 300%) inside the tube. Also, the magnetic field induced by the parallel wire affects the average velocity of the ferrofluid and forms two strong eddies in the tube. Our findings show that the diffusion also raises as the concentration of the nanoparticle is increased.

  15. SiO2 nanofluid planar jet impingement cooling on a convex heated plate

    NASA Astrophysics Data System (ADS)

    Asghari Lafmajani, Neda; Ebrahimi Bidhendi, Mahsa; Ashjaee, Mehdi

    2016-12-01

    The main objective of this paper is to investigate the heat transfer coefficient of a planar jet of SiO2 nanofluid that impinges vertically on the middle of a convex heated plate for cooling purposes. The planar jet issues from a rectangular slot nozzle. The convex aluminum plate has a thickness, width and length of 0.2, 40 and 130 mm, respectively, and is bent with a radius of 200 mm. A constant heat-flux condition is employed. 7 nm SiO2 particles are added to water to prepare the nanofluid with 0.1, 1 and 2 % (ml SiO2/ml H2O) concentrations. The tests are also performed at different Reynolds numbers from 1803 to 2782. Results indicate that adding the SiO2 nanoparticles can effectively increase both local and average heat transfer coefficients up to 39.37 and 32.78 %, respectively. These positive effects often are more pronounced with increasing Reynolds numbers. This enhancement increases with ascending the concentration of nanofluid, especially from 0.1 to 1 %.

  16. Exposure to carbon monoxide, fine particle mass, and ultrafine particle number in Jakarta, Indonesia: effect of commute mode.

    PubMed

    Both, Adam F; Westerdahl, Dane; Fruin, Scott; Haryanto, Budi; Marshall, Julian D

    2013-01-15

    We measured real-time exposure to PM(2.5), ultrafine PM (particle number) and carbon monoxide (CO) for commuting workers school children, and traffic police, in Jakarta, Indonesia. In total, we measured exposures for 36 individuals covering 93 days. Commuters in private cars experienced mean (st dev) exposures of 22 (9.4) ppm CO, 91 (38) μg/m(3)PM(2.5), and 290 (150)×10(3) particles cm(-3). Mean concentrations were higher in public transport than in private cars for PM(2.5) (difference in means: 22%) and particle counts (54%), but not CO, likely reflecting in-vehicle particle losses in private cars owing to air-conditioning. However, average commute times were longer for private car commuters than public transport commuters (in our sample, 24% longer: 3.0 vs. 2.3 h per day). Commute and traffic-related exposures experienced by Jakarta residents are among the highest in the world, owing to high on-road concentrations and multi-hour commutes. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Wang, Dingqu; Zhu, Rong; Yang, Wenming; Jiang, Peng

    2017-01-01

    Counting and sizing of polydisperse airborne nanoparticles have attracted most attentions owing to increasing widespread presence of airborne engineered nanoparticles or ultrafine particles. Here we report a miniature aerosol sensor to detect particle size distribution of polydisperse ultrafine particles based on ion diffusion charging and electrical detection. The aerosol sensor comprises a couple of planar electrodes printed on two circuit boards assembled in parallel, where charging, precipitation and measurement sections are integrated into one chip, which can detect aerosol particle size in of 30–500 nm, number concentration in range of 5 × 102–5 × 107 /cm3. The average relative errors of the measured aerosol number concentration and the particle size are estimated to be 12.2% and 13.5% respectively. A novel measurement scheme is proposed to actualize a real-time detection of polydisperse particles by successively modulating the measurement voltage and deducing the particle size distribution through a smart data fusion algorithm. The effectiveness of the aerosol sensor is experimentally demonstrated via measurements of polystyrene latex (PSL) aerosol and nucleic acid aerosol, as well as sodium chloride aerosol particles. PMID:28441740

  18. Relationships of outdoor and indoor ultrafine particles at residences downwind of a major international border crossing in Buffalo, NY.

    PubMed

    McAuley, T R; Fisher, R; Zhou, X; Jaques, P A; Ferro, A R

    2010-08-01

    During winter 2006, indoor and outdoor ultrafine particle (UFP) size distribution measurements for particles with diameters from 5.6 to 165 nm were taken at five homes in a neighborhood directly adjacent to the Peace Bridge Complex (PBC), a major international border crossing connecting Buffalo, New York to Fort Erie, Ontario. Monitoring with 1-s time resolution was conducted for several hours at each home. Participants were instructed to keep all external windows and doors closed and to refrain from cooking, smoking, or other activity that may result in elevating the indoor UFP number concentration. Although the construction and age for the homes were similar, indoor-to-outdoor comparisons indicate that particle infiltration rates varied substantially. Overall, particle concentrations indoors were lower and less variable than particle concentrations outdoors, with average indoor-outdoor ratios ranging from 0.1 to 0.5 (mean 0.34) for particles between 5.6 and 165 nm in diameter. With no indoor sources, the average indoor-outdoor ratios were lowest (0.2) for 20-nm particles, higher (0.3) for particles <10 nm, and highest (0.5) for particles 70-165 nm. This study provides insight into the penetration of UFP into homes and the resulting change in particle size distributions as particles move indoors near a major diesel traffic source. Although people spend most of their time in their homes, exposure estimates for epidemiological studies are generally determined using ambient concentrations. The findings of this study will contribute to improved size-resolved UFP exposure estimates for near roadway exposure assessments and epidemiological studies.

  19. Temporal evolution of ultrafine particles and of alveolar deposited surface area from main indoor combustion and non-combustion sources in a model room.

    PubMed

    Manigrasso, Maurizio; Vitali, Matteo; Protano, Carmela; Avino, Pasquale

    2017-11-15

    Aerosol number size distributions, PM mass concentrations, alveolar deposited surface areas (ADSAs) and VOC concentrations were measured in a model room when aerosol was emitted by sources frequently encountered in indoor environments. Both combustion and non-combustion sources were considered. The most intense aerosol emission occurred when combustion sources were active (as high as 4.1×10 7 particlescm -3 for two meat grilling sessions; the first with exhaust ventilation, the second without). An intense spike generation of nucleation particles occurred when appliances equipped with brush electric motors were operating (as high as 10 6 particlescm -3 on switching on an electric drill). Average UFP increments over the background value were highest for electric appliances (5-12%) and lowest for combustion sources (as low as -24% for tobacco cigarette smoke). In contrast, average increments in ADSA were highest for combustion sources (as high as 3.2×10 3 μm 2 cm -3 for meat grilling without exhaust ventilation) and lowest for electric appliances (20-90μm 2 cm -3 ). The health relevance of such particles is associated to their ability to penetrate cellular structures and elicit inflammatory effects mediated through oxidative stress in a way dependent on their surface area. The highest VOC concentrations were measured (PID probe) for cigarette smoke (8ppm) and spray air freshener (10ppm). The highest PM mass concentration (PM 1 ) was measured for citronella candle burning (as high as 7.6mgm -3 ). Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Occurrence of aflatoxin M1 in human milk samples in Vojvodina, Serbia: Estimation of average daily intake by babies.

    PubMed

    Radonić, Jelena R; Kocić Tanackov, Sunčica D; Mihajlović, Ivana J; Grujić, Zorica S; Vojinović Miloradov, Mirjana B; Škrinjar, Marija M; Turk Sekulić, Maja M

    2017-01-02

    The objectives of the study were to determine the aflatoxin M1 content in human milk samples in Vojvodina, Serbia, and to assess the risk of infants' exposure to aflatoxins food contamination. The growth of Aspergillus flavus and production of aflatoxin B1 in corn samples resulted in higher concentrations of AFM1 in milk and dairy products in 2013, indicating higher concentrations of AFM1 in human milk samples in 2013 and 2014 in Serbia. A total number of 60 samples of human milk (colostrum and breast milk collected 4-8 months after delivery) were analyzed for the presence of AFM1 using the Enzyme Linked Immunosorbent Assay method. The estimated daily intake of AFM1 through breastfeeding was calculated for the colostrum samples using an average intake of 60 mL/kg body weight (b.w.)/day on the third day of lactation. All breast milk collected 4-8 months after delivery and 36.4% of colostrum samples were contaminated with AFM1. The greatest percentage of contaminated colostrum (85%) and all samples of breast milk collected 4-8 months after delivery had AFM1 concentration above maximum allowable concentration according to the Regulation on health safety of dietetic products. The mean daily intake of AFM1 in colostrum was 2.65 ng/kg bw/day. Results of our study indicate the high risk of infants' exposure, who are at the early stage of development and vulnerable to toxic contaminants.

  1. Responses of meiofauna and nematode communities to crude oil contamination in a laboratory microcosm experiment

    NASA Astrophysics Data System (ADS)

    Kang, Teawook; Oh, Je Hyeok; Hong, Jae-Sang; Kim, Dongsung

    2016-09-01

    We examined the effects of crude oil contamination on community assemblages of meiofauna and nematodes after exposure to total petroleum hydrocarbons in the laboratory. We administered a seawater solution that had been contaminated with total petroleum hydrocarbons to seven treatment groups at different concentrations, while the control group received uncontaminated filtered seawater. The average density of total meiofauna in the experimental microcosms diluted with 0.5%, 1%, 2%, and 4% contaminated seawater was higher than the density in the control. The average density of total meiofauna in the 8%, 15%, and 20% microcosms was lower than the density in the control. The density of nematodes was similar to that of the total meiofauna. Cluster analysis divided the microcosms into group 1 (control, 0.5%, 1%, 2%, and 4% microcosms) and group 2 (8%, 15%, and 20% microcosms). However, SIMPROF analysis showed no significant difference between the two groups ( p > 0.05). Bolbolaimus spp. (37.1%) were dominant among the nematodes. Cluster analysis showed similar results for nematode and meiofaunal communities. The total meiofaunal density, nematode density, and number of Bolbolaimus spp. individuals were significantly negatively associated with the concentration of total petroleum hydrocarbons (Spearman correlation coefficients, p < 0.05). Within the nematodes, epistrate feeders (group 2A: 46%) were the most abundant trophic group. Among the treatment groups, the abundance of group 2A increased in low-concentration microcosms and decreased in high-concentration microcosms. Thus, our findings provide information on the effects of oil pollution on meiofauna in the intertidal zones of sandy beaches.

  2. Nitrogen dioxide exposures inside ice skating rinks.

    PubMed Central

    Brauer, M; Spengler, J D

    1994-01-01

    OBJECTIVES. The common operation of fuel-powered resurfacing equipment in enclosed ice skating rinks has the potential for producing high concentrations of carbon monoxide and nitrogen dioxide. Exposures to these gaseous combustion products may adversely affect the health of those inside the rink. Little information is available on pollutant concentrations under normal operating conditions. METHODS. One-week average nitrogen dioxide concentrations in 70 northeastern US rinks were measured with passive samplers during normal winter season conditions. RESULTS. The median nitrogen dioxide level inside rinks was 180 ppb, more than 10 times higher than the median outdoor concentration. One-week average nitrogen dioxide concentrations above 1000 ppb were measured in 10% of the rinks. CONCLUSIONS. Considering that short-term peak concentrations were likely to have reached two to five times the measured 1-week averages, our results suggest that nitrogen dioxide levels were well above short-term air quality guidelines and constitute a public health concern of considerable magnitude. PMID:8129060

  3. Alkyl nitrate formation from the reactions of C8-C14 n-alkanes with OH radicals in the presence of NO(x): measured yields with essential corrections for gas-wall partitioning.

    PubMed

    Yeh, Geoffrey K; Ziemann, Paul J

    2014-09-18

    In this study, C8-C14 n-alkanes were reacted with OH radicals in the presence of NO(x) in a Teflon film environmental chamber and isomer-specific yields of alkyl nitrates were determined using gas chromatography. Because results indicated significant losses of alkyl nitrates to chamber walls, gas-wall partitioning was investigated by monitoring the concentrations of a suite of synthesized alkyl nitrates added to the chamber. Gas-to-wall partitioning increased with increasing carbon number and with proximity of the nitrooxy group to the terminal carbon, with losses as high as 86%. The results were used to develop a structure-activity model to predict the effects of carbon number and isomer structure on gas-wall partitioning, which was used to correct the measured yields of alkyl nitrate isomers formed in chamber reactions. The resulting branching ratios for formation of secondary alkyl nitrates were similar for all isomers of a particular carbon number, and average values, which were almost identical to alkyl nitrate yields, were 0.219, 0.206, 0.254, 0.291, and 0.315 for reactions of n-octane, n-decane, n-dodecane, n-tridecane, and n-tetradecane, respectively. The increase in average branching ratios and alkyl nitrate yields with increasing carbon number to a plateau value of ∼0.30 at about C13-C14 is consistent with predictions of a previously developed model, indicating that the model is valid for alkane carbon numbers ≥C3.

  4. Particulate Matter Exposure in a Police Station Located near a Highway.

    PubMed

    Chen, Yu-Cheng; Hsu, Chin-Kai; Wang, Chia C; Tsai, Perng-Jy; Wang, Chun-Yuan; Chen, Mei-Ru; Lin, Ming-Yeng

    2015-11-13

    People living or working near roadways have experienced an increase in cardiovascular or respiratory diseases due to vehicle emissions. Very few studies have focused on the PM exposure of highway police officers, particularly for the number concentration and size distribution of ultrafine particles (UFP). This study evaluated exposure concentrations of particulate matter (PM) in the Sinying police station near a highway located in Tainan, Taiwan, under different traffic volumes, traffic types, and shift times. We focused on periods when the wind blew from the highway toward the police station and when the wind speed was greater than or equal to 0.5 m/s. PM2.5, UFP, and PM-PAHs concentrations in the police station and an upwind reference station were measured. Results indicate that PM2.5, UFP, and PM-PAHs concentrations in the police station can be on average 1.13, 2.17, and 5.81 times more than the upwind reference station concentrations, respectively. The highest exposure level for PM2.5 and UFP was observed during the 12:00 PM-4:00 PM shift while the highest PAHs concentration was found in the 4:00 AM-8:00 AM shift. Thus, special attention needs to be given to protect police officers from exposure to high PM concentration.

  5. Particulate Matter Exposure in a Police Station Located near a Highway

    PubMed Central

    Chen, Yu-Cheng; Hsu, Chin-Kai; Wang, Chia C.; Tsai, Perng-Jy; Wang, Chun-Yuan; Chen, Mei-Ru; Lin, Ming-Yeng

    2015-01-01

    People living or working near roadways have experienced an increase in cardiovascular or respiratory diseases due to vehicle emissions. Very few studies have focused on the PM exposure of highway police officers, particularly for the number concentration and size distribution of ultrafine particles (UFP). This study evaluated exposure concentrations of particulate matter (PM) in the Sinying police station near a highway located in Tainan, Taiwan, under different traffic volumes, traffic types, and shift times. We focused on periods when the wind blew from the highway toward the police station and when the wind speed was greater than or equal to 0.5 m/s. PM2.5, UFP, and PM-PAHs concentrations in the police station and an upwind reference station were measured. Results indicate that PM2.5, UFP, and PM-PAHs concentrations in the police station can be on average 1.13, 2.17, and 5.81 times more than the upwind reference station concentrations, respectively. The highest exposure level for PM2.5 and UFP was observed during the 12:00 PM–4:00 PM shift while the highest PAHs concentration was found in the 4:00 AM–8:00 AM shift. Thus, special attention needs to be given to protect police officers from exposure to high PM concentration. PMID:26580641

  6. Occurrence and distribution of fecal indicator bacteria, and physical and chemical indicators of water quality in streams receiving discharge from Dallas/Fort Worth International Airport and vicinity, North-Central Texas, 2008

    USGS Publications Warehouse

    Harwell, Glenn R.; Mobley, Craig A.

    2009-01-01

    This report, done by the U.S. Geological Survey in cooperation with Dallas/Fort Worth International (DFW) Airport in 2008, describes the occurrence and distribution of fecal indicator bacteria (fecal coliform and Escherichia [E.] coli), and the physical and chemical indicators of water quality (relative to Texas Surface Water Quality Standards), in streams receiving discharge from DFW Airport and vicinity. At sampling sites in the lower West Fork Trinity River watershed during low-flow conditions, geometric mean E. coli counts for five of the eight West Fork Trinity River watershed sampling sites exceeded the Texas Commission on Environmental Quality E. coli criterion, thus not fully supporting contact recreation. Two of the five sites with geometric means that exceeded the contact recreation criterion are airport discharge sites, which here means that the major fraction of discharge at those sites is from DFW Airport. At sampling sites in the Elm Fork Trinity River watershed during low-flow conditions, geometric mean E. coli counts exceeded the geometric mean contact recreation criterion for seven (four airport, three non-airport) of 13 sampling sites. Under low-flow conditions in the lower West Fork Trinity River watershed, E. coli counts for airport discharge sites were significantly different from (lower than) E. coli counts for non-airport sites. Under low-flow conditions in the Elm Fork Trinity River watershed, there was no significant difference between E. coli counts for airport sites and non-airport sites. During stormflow conditions, fecal indicator bacteria counts at the most downstream (integrator) sites in each watershed were considerably higher than counts at those two sites during low-flow conditions. When stormflow sample counts are included with low-flow sample counts to compute a geometric mean for each site, classification changes from fully supporting to not fully supporting contact recreation on the basis of the geometric mean contact recreation criterion. All water temperature measurements at sampling sites in the lower West Fork Trinity River watershed were less than the maximum criterion for water temperature for the lower West Fork Trinity segment. Of the measurements at sampling sites in the Elm Fork Trinity River watershed, 95 percent were less than the maximum criterion for water temperature for the Elm Fork Trinity River segment. All dissolved oxygen concentrations were greater than the minimum criterion for stream segments classified as exceptional aquatic life use. Nearly all pH measurements were within the pH criterion range for the classified segments in both watersheds, except for those at one airport site. For sampling sites in the lower West Fork Trinity River watershed, all annual average dissolved solids concentrations were less than the maximum criterion for the lower West Fork Trinity segment. For sampling sites in the Elm Fork Trinity River, nine of the 13 sites (six airport, three non-airport) had annual averages that exceeded the maximum criterion for that segment. For ammonia, 23 samples from 12 different sites had concentrations that exceeded the screening level for ammonia. Of these 12 sites, only one non-airport site had more than the required number of exceedances to indicate a screening level concern. Stormflow total suspended solids concentrations were significantly higher than low-flow concentrations at the two integrator sites. For sampling sites in the lower West Fork Trinity River watershed, all annual average chloride concentrations were less than the maximum annual average chloride concentration criterion for that segment. For the 13 sampling sites in the Elm Fork Trinity River watershed, one non-airport site had an annual average concentration that exceeded the maximum annual average chloride concentration criterion for that segment.

  7. Water quality characterization and mathematical modeling of dissolved oxygen in the East and West Ponds, Jamaica Bay Wildlife Refuge.

    PubMed

    Maillacheruvu, Krishnanand; Roy, D; Tanacredi, J

    2003-09-01

    The current study was undertaken to characterize the East and West Ponds and develop a mathematical model of the effects of nutrient and BOD loading on dissolved oxygen (DO) concentrations in these ponds. The model predicted that both ponds will recover adequately given the average expected range of nutrient and BOD loading due to waste from surface runoff and migratory birds. The predicted dissolved oxygen levels in both ponds were greater than 5.0 mg/L, and were supported by DO levels in the field which were typically above 5.0 mg/L during the period of this study. The model predicted a steady-state NBOD concentration of 12.0-14.0 mg/L in the East Pond, compared to an average measured value of 3.73 mg/L in 1994 and an average measured value of 12.51 mg/L in a 1996-97 study. The model predicted that the NBOD concentration in the West Pond would be under 3.0 mg/L compared to the average measured values of 7.50 mg/L in 1997, and 8.51 mg/L in 1994. The model predicted that phosphorus (as PO4(3-)) concentration in the East Pond will approach 4.2 mg/L in 4 months, compared to measured average value of 2.01 mg/L in a 1994 study. The model predicted that phosphorus concentration in the West Pond will approach 1.00 mg/L, compared to a measured average phosphorus (as PO4(3-)) concentration of 1.57 mg/L in a 1994 study.

  8. The impact of inland ships and recreational boats on measured NOx and ultrafine particle concentrations along the waterways

    NASA Astrophysics Data System (ADS)

    van der Zee, Saskia C.; Dijkema, Marieke B. A.; van der Laan, Jorrit; Hoek, Gerard

    2012-08-01

    In Amsterdam, many inhabitants reside in proximity to inland waters. The aim of this study was to assess the impact of passing inland ships and recreational boats, including touring boats, on the air quality near houses close to the water. A measurement campaign was performed at five sites in Amsterdam. Two sites were located along the inland waterways used by cargo ships and recreational boats. The other three sites were located along the canals in the historical city centre, used by touring boats and private recreational boats. At each site, measurements were performed at the waterside and at the facade of houses. Nitrogen oxides (NO and NO2) and ultrafine particles (particle number (PN) concentration), were measured continuously during one afternoon per site, while time and type of passing ships and road traffic was registered. Linear regression analysis was used to analyze the association between passing ships and concentration, adjusted for passing road traffic. There was substantial variation in the impact of passing ships on concentrations at each measuring site, as well as between sites. On average, cargo ships contributed 5 and 4 μg m-3 to NO and NO2, respectively, and 3000 particles cm-3 to PN concentration near houses during the sampling period. Peak concentrations were occasionally substantially higher. Emissions from touring boats had a small but significant impact on NO concentration near houses but not on NO2, with the exception of one site located near the edge of two canals, where boats use extra power to travel around the bent. At this site, touring boats contributed 5 μg m-3 to the local NO2 concentration. No consistent impact of touring boats on PN concentration was observed. Emissions from private recreational boats were not consistently associated with increased NOx or PN concentration. Road traffic intensity was low at the selected measurement sites. Nevertheless, a significant impact of passing diesel-operated delivery vans on house adjacent concentrations of both NOx and PN concentrations was found. On average, mopeds had a small but significant impact on PN concentration by 1100 particles cm-3 In conclusion, this study provides evidence that ship exhausts has an impact on air quality near houses along waterways.

  9. AIR POLLUTION INFLUENCES ON EXHALED NITRIC OXIDE AMONG PEOPLE WITH TYPE II DIABETES.

    PubMed

    Peng, Cheng; Luttmann-Gibson, Heike; Zanobetti, Antonella; Cohen, Allison; De Souza, Celine; Coull, Brent A; Horton, Edward S; Schwartz, Joel; Koutrakis, Petros; Gold, Diane R

    2016-04-01

    In a population with type 2 diabetes mellitus (T2DM), we examined associations of short-term air pollutant exposures with pulmonary inflammation, measured as fraction of exhaled pulmonary nitric oxide (FeNO). Sixty-nine Boston Metropolitan residents with T2DM completed up to 5 bi-weekly visits with 321 offline FeNO measurements. We measured ambient concentrations of particle mass, number and components at our stationary central site. Ambient concentrations of gaseous air pollutants were obtained from state monitors. We used linear models with fixed effects for participants, adjusting for 24-hour mean temperature, 24-hour mean water vapor pressure, season, and scrubbed room NO the day of the visit, to estimate associations between FeNO and interquartile range increases in exposure. Interquartile increases in the 6-hour averages of black carbon (BC) (0.5 μg/m 3 ) and particle number (PN) (1,000 particles/cm 3 ) were associated with increases in FeNO of 3.84% (95% CI 0.60% to 7.18%) and 9.86 % (95% CI 3.59% to 16.52%), respectively. We also found significant associations of increases in FeNO with increases in 24-hour moving averages of BC, PN and nitrogen oxides (NOx). Recent studies have focused on FeNO as a marker for eosinophilic pulmonary inflammation in asthmatic populations. This study adds support to the relevance of FeNO as a marker for pulmonary inflammation in diabetic populations, whose underlying chronic inflammatory status is likely to be related to innate immunity and proinflammatory adipokines.

  10. Reallocation in modal aerosol models: impacts on predicting aerosol radiative effects

    NASA Astrophysics Data System (ADS)

    Korhola, T.; Kokkola, H.; Korhonen, H.; Partanen, A.-I.; Laaksonen, A.; Lehtinen, K. E. J.; Romakkaniemi, S.

    2013-08-01

    In atmospheric modelling applications the aerosol particle size distribution is commonly represented by modal approach, in which particles in different size ranges are described with log-normal modes within predetermined size ranges. Such method includes numerical reallocation of particles from a mode to another for example during particle growth, leading to potentially artificial changes in the aerosol size distribution. In this study we analysed how this reallocation affects climatologically relevant parameters: cloud droplet number concentration, aerosol-cloud interaction coefficient and light extinction coefficient. We compared these parameters between a modal model with and without reallocation routines, and a high resolution sectional model that was considered as a reference model. We analysed the relative differences of the parameters in different experiments that were designed to cover a wide range of dynamic aerosol processes occurring in the atmosphere. According to our results, limiting the allowed size ranges of the modes and the following numerical remapping of the distribution by reallocation, leads on average to underestimation of cloud droplet number concentration (up to 100%) and overestimation of light extinction (up to 20%). The analysis of aerosol first indirect effect is more complicated as the ACI parameter can be either over- or underestimated by the reallocating model, depending on the conditions. However, for example in the case of atmospheric new particle formation events followed by rapid particle growth, the reallocation can cause around average 10% overestimation of the ACI parameter. Thus it is shown that the reallocation affects the ability of a model to estimate aerosol climate effects accurately, and this should be taken into account when using and developing aerosol models.

  11. Underground and ground-level particulate matter concentrations in an Italian metro system

    NASA Astrophysics Data System (ADS)

    Cartenì, Armando; Cascetta, Furio; Campana, Stefano

    2015-01-01

    All around the world, many studies and experimental results have assessed elevated concentrations of Particulate Matter (PM) in underground metro systems, with non-negligible implications for human health due to protracted exposure to fine particles. Starting from this consideration, an intensive particulate sampling campaign was carried out in January 2014 measuring the PM concentrations in the Naples (Italy) Metro Line 1, both at station platforms and inside trains. Naples Metro Line 1 is about 18 km long, with 17 stations (3 ground-level and 14 below-ground ones). Experimental results show that the average PM10 concentrations measured in the underground station platforms range between 172 and 262 μg/m3 whilst the average PM2.5 concentrations range between 45 and 60 μg/m3. By contrast, in ground-level stations no significant difference between stations platforms and urban environment measurements was observed. Furthermore, a direct correlation between trains passage and PM concentrations was observed, with an increase up to 42% above the average value. This correlation is possibly caused by the re-suspension of the particles due to the turbulence induced by trains. The main original finding was the real-time estimations of PM levels inside the trains travelling both in ground-level and underground sections of Line 1. The results show that high concentrations of both PM10 (average values between 58 μg/m3 and 138 μg/m3) and PM2.5 (average values between 18 μg/m3 and 36 μg/m3) were also measured inside trains. Furthermore, measurements show that windows left open on trains caused the increase in PM concentrations inside trains in the underground section, while in the ground-level section the clean air entering the trains produced an environmental "washing effect". Finally, it was estimated that every passenger spends on average about 70 min per day exposed to high levels of PM.

  12. An empirical investigation on thermal characteristics and pressure drop of Ag-oil nanofluid in concentric annular tube

    NASA Astrophysics Data System (ADS)

    Abbasian Arani, A. A.; Aberoumand, H.; Aberoumand, S.; Jafari Moghaddam, A.; Dastanian, M.

    2016-08-01

    In this work an experimental study on Silver-oil nanofluid was carried out in order to present the laminar convective heat transfer coefficient and friction factor in a concentric annulus with constant heat flux boundary condition. Silver-oil nanofluid prepared by Electrical Explosion of Wire technique with no nanoparticles agglomeration during nanofluid preparation process and experiments. The average sizes of particles were 20 nm. Nanofluids with various particle Volume fractions of 0.011, 0.044 and 0.171 vol% were employed. The nanofluid flowing between the tubes is heated by an electrical heating coil wrapped around it. The effects of different parameters such as flow Reynolds number, tube diameter ratio and nanofluid particle concentration on heat transfer coefficient are studied. Results show that, heat transfer coefficient increased by using nanofluid instead of pure oil. Maximum enhancement of heat transfer coefficient occurs in 0.171 vol%. In addition the results showed that, there are slight increases in pressure drop of nanofluid by increasing the nanoparticle concentration of nanofluid in compared to pure oil.

  13. Use of a watershed model to characterize the fate and transport of fluometuron, a soil-applied cotton herbicide, in surface water

    USGS Publications Warehouse

    Coupe, R.H.

    2007-01-01

    The Soil and Water Assessment Tool (SWAT) was used to characterize the fate and transport of fluometuron (a herbicide used on cotton) in the Bogue Phalia Basin in northwestern Mississippi, USA. SWAT is a basin-scale watershed model, able to simulate hydrological, chemical, and sediment transport processes. After adjustments to a few parameters (specifically the SURLAG variable, the runoff curve number, Manning's N for overland flow, soil available water capacity, and the base-flow alpha factor) the SWAT model fit the observed streamflow well (the Coefficient of Efficiency and R2 were greater than 60). The results from comparing observed fluometuron concentrations with simulated concentrations were reasonable. The simulated concentrations (which were daily averages) followed the pattern of observed concentrations (instantaneous values) closely, but could be off in magnitude at times. Further calibration might have improved the fit, but given the uncertainties in the input data, it was not clear that any improvement would be due to a better understanding of the input variables. ?? 2007 Taylor & Francis.

  14. Exposure assessment of JAVELIN missile combustion products

    NASA Astrophysics Data System (ADS)

    Lundy, Donald O.; Langford, Roland E.

    1994-02-01

    Characterization and analysis of combustion products resulting from firing the JAVELIN missile were performed. Of those combustion products analyzed, it was determined that airborne lead concentrations exceeded the OSHA PEL of 50 micrograms each time the missile was fired while in the enclosure. Since the OSHA PEL standard is based upon a continuous rather than a short-term exposures blood lead concentrations were sought to ascertain the relationship between a short duration airborne exposure and its physiological effect on the body. Blood lead levels were taken on 49 test subjects prior to various JAVELIN missile test firings. Of those 49, 21 were outfitted With personal sampling equipment to determine airborne concentrations at the Assistant Gunner and Gunner positions. Periodic blood sampling after a single exposure showed an average increase of 2.27 micrograms/dL for all test subjects. Recommendations were made to consider changes in the positioning of the enclosure inhabitants to minimize airborne lead concentrations, to limit the number of missiles fired (situation dependent), and replacement of the lead B-resorcyolate with a non-lead containing burn rate modifier for the launch motor.

  15. Average of delta: a new quality control tool for clinical laboratories.

    PubMed

    Jones, Graham R D

    2016-01-01

    Average of normals is a tool used to control assay performance using the average of a series of results from patients' samples. Delta checking is a process of identifying errors in individual patient results by reviewing the difference from previous results of the same patient. This paper introduces a novel alternate approach, average of delta, which combines these concepts to use the average of a number of sequential delta values to identify changes in assay performance. Models for average of delta and average of normals were developed in a spreadsheet application. The model assessed the expected scatter of average of delta and average of normals functions and the effect of assay bias for different values of analytical imprecision and within- and between-subject biological variation and the number of samples included in the calculations. The final assessment was the number of patients' samples required to identify an added bias with 90% certainty. The model demonstrated that with larger numbers of delta values, the average of delta function was tighter (lower coefficient of variation). The optimal number of samples for bias detection with average of delta was likely to be between 5 and 20 for most settings and that average of delta outperformed average of normals when the within-subject biological variation was small relative to the between-subject variation. Average of delta provides a possible additional assay quality control tool which theoretical modelling predicts may be more valuable than average of normals for analytes where the group biological variation is wide compared with within-subject variation and where there is a high rate of repeat testing in the laboratory patient population. © The Author(s) 2015.

  16. Distribution and environmental impacts of heavy metals and radioactivity in sediment and seawater samples of the Marmara Sea.

    PubMed

    Otansev, Pelin; Taşkın, Halim; Başsarı, Asiye; Varinlioğlu, Ahmet

    2016-07-01

    In this study, the natural and anthropogenic radioactivity levels in the sediment samples collected from the Marmara Sea in Turkey were determined. The average activity concentrations (range) of (226)Ra, (238)U, (232)Th, (40)K and (137)Cs were found to be 23.8 (13.8-34.2) Bq kg(-1), 18.8 (6.4-25.9) Bq kg(-1), 23.02 (6.3-31.1) Bq kg(-1), 558.6 (378.8-693.6) Bq kg(-1) and 9.14 (4.8-16.3) Bq kg(-1), respectively. Our results showed that the average activity concentrations of (226)Ra, (238)U and (232)Th in the sediment samples were within the acceptable limits; whereas the average activity concentration of (40)K in the sediment samples was higher than the worldwide average concentration. The average radium equivalent activity, the average absorbed dose rate and the average external hazard index were calculated as 100.01 Bq kg(-1), 48.32 nGy h(-1) and 0.27, respectively. The average gross alpha and beta activity in the seawater samples were found to be 0.042 Bq L(-1) and 13.402 Bq L(-1), respectively. The gross alpha and beta activity concentrations increased with water depth in the same stations. The average heavy metal concentrations (range) in the sediment samples were 114.6 (21.6-201.7) μg g(-1) for Cr, 568.2 (190.8-1625.1) μg g(-1) for Mn, 39.3 (4.9-83.4) μg g(-1) for Cu, 85.5 (11.0-171.8) μg g(-1) for Zn, 32.9 (9.1-73.1) μg g(-1) for Pb and 49.1 (6.8-103.0) μg g(-1) for Ni. S5 station was heavily polluted by Cr, Cu, Ni and Pb. The results showed that heavy metal enrichment in sediments of the Marmara Sea was widespread. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Uranium and radium concentrations in plants growing on uranium mill tailings in South Dakota

    Treesearch

    Mark A. Rumble; Ardell J. Bjugstad

    1986-01-01

    Vegetation and soil samples were collected from a uranium mill tailings site and control sites in South Dakota. Uranium concentrations in soils from the mill tailings averaged 13.3 [micro]g g-1 compared to 5.1 [micro]g g-1 in soils from control sites. 226Ra concentrations in soils averaged 111.0 pCi g...

  18. Semen characterization and sperm storage in Cabot's Tragopan.

    PubMed

    Zhang, Y Y

    2006-05-01

    The semen quality of Cabot's Tragopan, the dependence of sperm yields on frequency of semen collection, and the duration of sperm storage in females were investigated. The results are as follows: 1) The average duration of the period in which Cabot's Tragopan can produce an ejaculate was about 70 d. The ejaculate volume ranged from 15 to 100 microL. The average concentration of the ejaculate was 2.31 x 10(9) mL(-1). There were 11.69 (+/- 0.77)% abnormal spermatozoa per ejaculate. Three of 11 males yielded more than 50 microL of semen per collection most of the time. 2) The ejaculate volumes, the concentration, the total number of sperm per ejaculate, and the daily sperm output were all markedly affected by the frequency of semen collection (P < 0.01). However, no significant difference was detected in characters between the 2 groups with relatively low collection frequency (P > 0.05) except the daily sperm output (P < 0.01). The highest frequency of semen collection did not yield more sperm. 3) The average duration of the period in which the female laid fertilized eggs after single insemination was 19.85 +/- 3.08 d (range 9 to 32 d, n = 7). This value was affected by the rhythm of egg laying and varied among individuals. All of the results will facilitate design of the optimal artificial insemination strategy and help to achieve the ultimate aim of ex situ conservation.

  19. Associations of PM2.5 and black carbon concentrations with traffic, idling, background pollution, and meteorology during school dismissals.

    PubMed

    Richmond-Bryant, J; Saganich, C; Bukiewicz, L; Kalin, R

    2009-05-01

    An air quality study was performed outside a cluster of schools in the East Harlem neighborhood of New York City. PM(2.5) and black carbon concentrations were monitored using real-time equipment with a one-minute averaging interval. Monitoring was performed at 1:45-3:30 PM during school days over the period October 31-November 17, 2006. The designated time period was chosen to capture vehicle emissions during end-of-day dismissals from the schools. During the monitoring period, minute-by-minute volume counts of idling and passing school buses, diesel trucks, and automobiles were obtained. These data were transcribed into time series of number of diesel vehicles idling, number of gasoline automobiles idling, number of diesel vehicles passing, and number of automobiles passing along the block adjacent to the school cluster. Multivariate regression models of the log-transform of PM(2.5) and black carbon (BC) concentrations in the East Harlem street canyon were developed using the observation data and data from the New York State Department of Environmental Conservation on meteorology and background PM(2.5). Analysis of variance was used to test the contribution of each covariate to variability in the log-transformed concentrations as a means to judge the relative contribution of each covariate. The models demonstrated that variability in background PM(2.5) contributes 80.9% of the variability in log[PM(2.5)] and 81.5% of the variability in log[BC]. Local traffic sources were demonstrated to contribute 5.8% of the variability in log[BC] and only 0.43% of the variability in log[PM(2.5)]. Diesel idling and passing were both significant contributors to variability in log[BC], while diesel passing was a significant contributor to log[PM(2.5)]. Automobile idling and passing did not contribute significant levels of variability to either concentration. The remainder of variability in each model was explained by temperature, along-canyon wind, and cross-canyon wind, which were all significant in the models.

  20. Concentrations of selected pharmaceuticals and antibiotics in south-central Pennsylvania waters, March through September 2006

    USGS Publications Warehouse

    Loper, Connie A.; Crawford, J. Kent; Otto, Kim L.; Manning, Rhonda L.; Meyer, Michael T.; Furlong, Edward T.

    2007-01-01

    This report presents environmental and quality-control data from analyses of 15 pharmaceutical and 31 antibiotic compounds in water samples from streams and wells in south-central Pennsylvania. The analyses are part of a study by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Environmental Protection (PADEP) to define concentrations of selected emerging contaminants in streams and well water in Pennsylvania. Sampling was conducted at 11 stream sites and at 6 wells in 9 counties of south-central Pennsylvania. Five of the streams received municipal wastewater and 6 of the streams received runoff from agricultural areas dominated by animal-feeding operations. For all 11 streams, samples were collected at locations upstream and downstream of the municipal effluents or animal-feeding operations. All six wells were in agricultural settings. A total of 120 environmental samples and 21 quality-control samples were analyzed for the study. Samples were collected at each site in March/April, May, July, and September 2006 to obtain information on changes in concentration that could be related to seasonal use of compounds.For streams, 13 pharmaceuticals and 11 antibiotics were detected at least 1 time. Detections included analytical results that were estimated or above the minimum reporting limits. Seventy-eight percent of all detections were analyzed in samples collected downstream from municipal-wastewater effluents. For streams receiving wastewater effluents, the pharmaceuticals caffeine and para-xanthine (a degradation product of caffeine) had the greatest concentrations, 4.75 μg/L (micrograms per liter) and 0.853 μg/L, respectively. Other pharmaceuticals and their respective maximum concentrations were carbamazepine (0.516 μg/L) and ibuprofen (0.277 μg/L). For streams receiving wastewater effluents, the antibiotic azithromycin had the greatest concentration (1.65 μg/L), followed by sulfamethoxazole (1.34 μg/L), ofloxacin (0.329 μg/L), and trimethoprim (0.256 μg/L).For streams receiving runoff from animal-feeding operations, the only pharmaceuticals detected were acetaminophen, caffeine, cotinine, diphenhydramine, and carbamazepine. The maximum concentration for pharmaceuticals was 0.053 μg/L. Three streams receiving runoff from animal-feeding operations had detections of one or more antibiotic compound--oxytetracycline, sulfadimethoxine, sulfamethoxazole, and tylosin. The maximum concentration for antibiotics was 0.157 μg/L. The average number of compounds (pharmaceuticals and antibiotics) detected in sites downstream from animal-feeding operations was three. The average number of compounds detected downstream from municipal-wastewater effluents was 13.For wells used to supply livestock, four compounds were detected--two pharmaceuticals (cotinine and diphenhydramine) and two antibiotics (tylosin and sulfamethoxazole). There were five detections in all the well samples. The maximum concentration detected in well water was for cotinine, estimated to be 0.024 μg/L.Seasonal occurrence of pharmaceutical and antibiotic compounds in stream water varied by compound and site type. At four stream sites, the same compounds were detected in all four seasonal samples. At other sites, pharmaceutical or antibiotic compounds were detected only one time in seasonal samples. Winter samples collected in streams receiving municipalwastewater effluent had the greatest number of compounds detected (21). Research analytical methods were used to determine concentrations for pharmaceuticals and antibiotics. To assist in evaluating the quality of the analyses, detailed information is presented on laboratory methodology and results from qualitycontrol samples. Quality-control data include results for nine blanks, nine duplicate environmental sample pairs, and three laboratory-spiked environmental samples as well as the recoveries of compounds in laboratory surrogates and laboratory reagent spikes.

Top