Sample records for average oxygen uptake

  1. Prognostic value of the oxygen uptake efficiency slope and other exercise variables in patients with coronary artery disease.

    PubMed

    Coeckelberghs, Ellen; Buys, Roselien; Goetschalckx, Kaatje; Cornelissen, Véronique A; Vanhees, Luc

    2016-02-01

    Peak exercise capacity is an independent predictor for mortality in patients with coronary artery disease. However, sometimes cardiopulmonary exercise tests are stopped prematurely. Therefore, submaximal exercise measures such as the oxygen uptake efficiency slope have been introduced. The aim of this study was to assess the prognostic value of the oxygen uptake efficiency slope and other exercise parameters, in patients with coronary artery disease. Between 2000 and 2011, 1409 patients with coronary artery disease (age 60.7 ± 9.9 years; 1205 males) underwent cardiopulmonary exercise tests. A maximal effort was not reached in 161 (11.5%) patients. The oxygen uptake efficiency slope was calculated and information on mortality was obtained. Cox proportional hazards regression analyses were used to assess the relation of oxygen uptake efficiency slope and other gas exchange variables with all-cause and cardiovascular mortality. Receiver operating characteristic curve analyses was performed to define optimal cut-off values. During an average follow-up of 7.45 ± 3.20 years (range 0.16-13.95 years), 158 patients died, among which 68 patients for cardiovascular reasons. The oxygen uptake efficiency slope was related to all-cause (hazard ratio: 0.568, p < 0.001) and cardiovascular (hazard ratio: 0.461, p < 0.001) mortality. When significant covariates were entered in the analysis, oxygen uptake efficiency slope remained related to mortality (p < 0.05). When other submaximal exercise parameters were added to the model, oxygen uptake efficiency slope and minute ventilation/carbon dioxide production slope also remained significantly related to mortality. The oxygen uptake efficiency slope is an independent predictor for all-cause and cardiovascular mortality in patients with coronary artery disease, irrespective of a truly maximal effort during cardiopulmonary exercise tests. Furthermore, the oxygen uptake efficiency slope provides prognostic information, complementary to the minute ventilation/carbon dioxide production slope and peak exercise capacity. © The European Society of Cardiology 2015.

  2. Alcohol consumption and cardiorespiratory fitness in five population-based studies.

    PubMed

    Baumeister, Sebastian E; Finger, Jonas D; Gläser, Sven; Dörr, Marcus; Markus, Marcello Rp; Ewert, Ralf; Felix, Stephan B; Grabe, Hans-Jörgen; Bahls, Martin; Mensink, Gert Bm; Völzke, Henry; Piontek, Katharina; Leitzmann, Michael F

    2018-01-01

    Background Poor cardiorespiratory fitness is a risk factor for cardiovascular morbidity. Alcohol consumption contributes substantially to the burden of disease, but its association with cardiorespiratory fitness is not well described. We examined associations between average alcohol consumption, heavy episodic drinking and cardiorespiratory fitness. Design The design of this study was as a cross-sectional population-based random sample. Methods We analysed data from five independent population-based studies (Study of Health in Pomerania (2008-2012); German Health Interview and Examination Survey (2008-2011); US National Health and Nutrition Examination Survey (NHANES) 1999-2000; NHANES 2001-2002; NHANES 2003-2004) including 7358 men and women aged 20-85 years, free of lung disease or asthma. Cardiorespiratory fitness, quantified by peak oxygen uptake, was assessed using exercise testing. Information regarding average alcohol consumption (ethanol in grams per day (g/d)) and heavy episodic drinking (5+ or 6+ drinks/occasion) was obtained from self-reports. Fractional polynomial regression models were used to determine the best-fitting dose-response relationship. Results Average alcohol consumption displayed an inverted U-type relation with peak oxygen uptake ( p-value<0.0001), after adjustment for age, sex, education, smoking and physical activity. Compared to individuals consuming 10 g/d (moderate consumption), current abstainers and individuals consuming 50 and 60 g/d had significantly lower peak oxygen uptake values (ml/kg/min) (β coefficients = -1.90, β = -0.06, β = -0.31, respectively). Heavy episodic drinking was not associated with peak oxygen uptake. Conclusions Across multiple adult population-based samples, moderate drinkers displayed better fitness than current abstainers and individuals with higher average alcohol consumption.

  3. All puffed out: do pufferfish hold their breath while inflated?

    PubMed Central

    McGee, Georgia Evelyn; Clark, Timothy Darren

    2014-01-01

    The inflation response of pufferfishes is one of the most iconic predator defence strategies in nature. Current dogma suggests that pufferfish inflation represents a breath-holding response, whereby gill oxygen uptake ceases for the duration of inflation and cutaneous respiration increases to compensate. Here, we show that the black-saddled pufferfish (Canthigaster valentini) has an excellent capacity for oxygen uptake while inflated, with uptake rates increasing to five-times that of resting levels. Moreover, we show that this species has negligible capacity for cutaneous respiration, concluding that the gills are the primary site of oxygen uptake while inflated. Despite this, post-deflation recovery of aerobic metabolism took an average of 5.6 h, suggesting a contribution of anaerobic metabolism during pre-inflation activity and during the act of ingesting water to achieve inflation. PMID:25472941

  4. Physiological responses and air consumption during simulated firefighting tasks in a subway system.

    PubMed

    Williams-Bell, F Michael; Boisseau, Geoff; McGill, John; Kostiuk, Andrew; Hughson, Richard L

    2010-10-01

    Professional firefighters (33 men, 3 women), ranging in age from 30 to 53 years, participated in a simulation of a subway system search and rescue while breathing from their self-contained breathing apparatus (SCBA). We tested the hypothesis that during this task, established by expert firefighters to be of moderate intensity, the rate of air consumption would exceed the capacity of a nominal 30-min cylinder. Oxygen uptake, carbon dioxide output, and air consumption were measured with a portable breath-by-breath gas exchange analysis system, which was fully integrated with the expired port of the SCBA. The task involved descending a flight of stairs, walking, performing a search and rescue, retreat walking, then ascending a single flight of stairs to a safe exit. This scenario required between 9:56 and 13:24 min:s (mean, 12:10 ± 1:10 min:s) to complete, with an average oxygen uptake of 24.3 ± 4.5 mL kg(-1) min(-1) (47 ± 10 % peak oxygen uptake) and heart rate of 76% ± 7% of maximum. The highest energy requirement was during the final single-flight stair climb (30.4 ± 5.4 mL kg(-1) min(-1)). The average respiratory exchange ratio (carbon dioxide output/oxygen uptake) throughout the scenario was 0.95 ± 0.08, indicating a high carbon dioxide output for a relatively moderate average energy requirement. Air consumption from the nominal "30-min" cylinder averaged 51% (range, 26%-68%); however, extrapolation of these rates of consumption suggested that the low-air alarm, signalling that only 25% of the air remains, would have occurred as early as 11 min for an individual with the highest rate of air consumption, and at 16 min for the group average. These data suggest that even the moderate physical demands of walking combined with search and rescue while wearing full protective gear and breathing through the SCBA impose considerable physiological strain on professional firefighters. As well, the rate of air consumption in these tasks classed as moderate, compared with high-rise firefighting, would have depleted the air supply well before the nominal time used to describe the cylinders.

  5. VO2 Off Transient Kinetics in Extreme Intensity Swimming.

    PubMed

    Sousa, Ana; Figueiredo, Pedro; Keskinen, Kari L; Rodríguez, Ferran A; Machado, Leandro; Vilas-Boas, João P; Fernandes, Ricardo J

    2011-01-01

    Inconsistencies about dynamic asymmetry between the on- and off- transient responses in oxygen uptake are found in the literature. Therefore, the purpose of this study was to characterize the oxygen uptake off-transient kinetics during a maximal 200-m front crawl effort, as examining the degree to which the on/off regularity of the oxygen uptake kinetics response was preserved. Eight high level male swimmers performed a 200-m front crawl at maximal speed during which oxygen uptake was directly measured through breath-by-breath oxymetry (averaged every 5 s). This apparatus was connected to the swimmer by a low hydrodynamic resistance respiratory snorkel and valve system. The on- and off-transient phases were symmetrical in shape (mirror image) once they were adequately fitted by a single-exponential regression models, and no slow component for the oxygen uptake response was developed. Mean (± SD) peak oxygen uptake was 69.0 (± 6.3) mL·kg(-1)·min(-1), significantly correlated with time constant of the off- transient period (r = 0.76, p < 0.05) but not with any of the other oxygen off-transient kinetic parameters studied. A direct relationship between time constant of the off-transient period and mean swimming speed of the 200-m (r = 0.77, p < 0.05), and with the amplitude of the fast component of the effort period (r = 0.72, p < 0.05) were observed. The mean amplitude and time constant of the off-transient period values were significantly greater than the respective on- transient. In conclusion, although an asymmetry between the on- and off kinetic parameters was verified, both the 200-m effort and the respectively recovery period were better characterized by a single exponential regression model. Key pointsThe VO2 slow component was not observed in the recovery period of swimming extreme efforts;The on and off transient periods were better fitted by a single exponential function, and so, these effort and recovery periods of swimming extreme efforts are symmetrical;The rate of VO2 decline during the recovery period may be due to not only the magnitude of oxygen debt but also the VO2peak obtained during the effort period.

  6. Potential impact of Chironomus plumosus larvae on hypolimnetic oxygen in the central basin of Lake Erie

    USGS Publications Warehouse

    Soster, Frederick M.; Matisoff, Gerald; Schloesser, Donald W.; Edwards, William J.

    2015-01-01

    Previous studies have indicated that burrow-irrigating infauna can increase sediment oxygen demand (SOD) and impact hypolimnetic oxygen in stratified lakes. We conducted laboratory microcosm experiments and computer simulations with larvae of the burrowing benthic midge Chironomus plumosus to quantify burrow oxygen uptake rates and subsequent contribution to sediment oxygen demand in central Lake Erie. Burrow oxygen uptake and water flow velocities through burrows were measured using oxygen microelectrodes and hot film anemometry, respectively. Burrow oxygen consumption averaged 2.66 × 10− 10 (SE = ± 7.82 × 10− 11) mol O2/burrow/s at 24 °C and 9.64 × 10− 10 (SE = ± 4.86 × 10− 10) mol O2/burrow/s at 15 °C. In sealed microcosm experiments, larvae increased SOD 500% at 24 °C (density = 1508/m2) and 375% at 15 °C (density = 864/m2). To further evaluate effects of densities of C. plumosus burrows on SOD we developed a 3-D transport reaction model of the process. Using experimental data and chironomid abundance data in faunal surveys in 2009 and 2010, we estimated that bioirrigation by a population of 140 larvae/m2 could account for between 2.54 × 10− 11 mol/L/s (model results) and 5.58 × 10− 11 mol/L/s (experimental results) of the average 4.22 × 10− 11 mol/L/s oxygen depletion rate between 1970 and 2003, which could have accounted for 60–132% of the oxygen decline. At present, it appears that the population density of this species may be an important factor in development of hypoxic or anoxic conditions in central Lake Erie.

  7. 21 CFR 868.1730 - Oxygen uptake computer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oxygen uptake computer. 868.1730 Section 868.1730...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1730 Oxygen uptake computer. (a) Identification. An oxygen uptake computer is a device intended to compute the amount of oxygen consumed by a...

  8. 21 CFR 868.1730 - Oxygen uptake computer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Oxygen uptake computer. 868.1730 Section 868.1730...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1730 Oxygen uptake computer. (a) Identification. An oxygen uptake computer is a device intended to compute the amount of oxygen consumed by a...

  9. 21 CFR 868.1730 - Oxygen uptake computer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Oxygen uptake computer. 868.1730 Section 868.1730...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1730 Oxygen uptake computer. (a) Identification. An oxygen uptake computer is a device intended to compute the amount of oxygen consumed by a...

  10. 21 CFR 868.1730 - Oxygen uptake computer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Oxygen uptake computer. 868.1730 Section 868.1730...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1730 Oxygen uptake computer. (a) Identification. An oxygen uptake computer is a device intended to compute the amount of oxygen consumed by a...

  11. 21 CFR 868.1730 - Oxygen uptake computer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Oxygen uptake computer. 868.1730 Section 868.1730...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1730 Oxygen uptake computer. (a) Identification. An oxygen uptake computer is a device intended to compute the amount of oxygen consumed by a...

  12. The interrelationship between muscle oxygenation, muscle activation, and pulmonary oxygen uptake to incremental ramp exercise: influence of aerobic fitness.

    PubMed

    Boone, Jan; Barstow, Thomas J; Celie, Bert; Prieur, Fabrice; Bourgois, Jan

    2016-01-01

    We investigated whether muscle and ventilatory responses to incremental ramp exercise would be influenced by aerobic fitness status by means of a cross-sectional study with a large subject population. Sixty-four male students (age: 21.2 ± 3.2 years) with a heterogeneous peak oxygen uptake (51.9 ± 6.3 mL·min(-1)·kg(-1), range 39.7-66.2 mL·min(-1)·kg(-1)) performed an incremental ramp cycle test (20-35 W·min(-1)) to exhaustion. Breath-by-breath gas exchange was recorded, and muscle activation and oxygenation were measured with surface electromyography and near-infrared spectroscopy, respectively. The integrated electromyography (iEMG), mean power frequency (MPF), deoxygenated [hemoglobin and myoglobin] (deoxy[Hb+Mb]), and total[Hb+Mb] responses were set out as functions of work rate and fitted with a double linear function. The respiratory compensation point (RCP) was compared and correlated with the breakpoints (BPs) (as percentage of peak oxygen uptake) in muscle activation and oxygenation. The BP in total[Hb+Mb] (83.2% ± 3.0% peak oxygen uptake) preceded (P < 0.001) the BP in iEMG (86.7% ± 4.0% peak oxygen uptake) and MPF (86.3% ± 4.1% peak oxygen uptake), which in turn preceded (P < 0.01) the BP in deoxy[Hb+Mb] (88.2% ± 4.5% peak oxygen uptake) and RCP (87.4% ± 4.5% peak oxygen uptake). Furthermore, the peak oxygen uptake was significantly (P < 0.001) positively correlated to the BPs and RCP, indicating that the BPs in total[Hb+Mb] (r = 0.66; P < 0.001), deoxy[Hb+Mb] (r = 0.76; P < 0.001), iEMG (r = 0.61; P < 0.001), MPF (r = 0.63; P < 0.001), and RCP (r = 0.75; P < 0.001) occurred at a higher percentage of peak oxygen uptake in subjects with a higher peak oxygen uptake. In this study a close relationship between muscle oxygenation, activation, and pulmonary oxygen uptake was found, occurring in a cascade of events. In subjects with a higher aerobic fitness level this cascade occurred at a higher relative intensity.

  13. The effects of intensity on V̇O2 kinetics during incremental free swimming.

    PubMed

    de Jesus, Kelly; Sousa, Ana; de Jesus, Karla; Ribeiro, João; Machado, Leandro; Rodríguez, Ferran; Keskinen, Kari; Vilas-Boas, João Paulo; Fernandes, Ricardo J

    2015-09-01

    Swimming and training are carried out with wide variability in distances and intensities. However, oxygen uptake kinetics for the intensities seen in swimming has not been reported. The purpose of this study was to assess and compare the oxygen uptake kinetics throughout low-moderate to severe intensities during incremental swimming exercise. We hypothesized that the oxygen uptake kinetic parameters would be affected by swimming intensity. Twenty male trained swimmers completed an incremental protocol of seven 200-m crawl swims to exhaustion (0.05 m·s(-1) increments and 30-s intervals). Oxygen uptake was continuously measured by a portable gas analyzer connected to a respiratory snorkel and valve system. Oxygen uptake kinetics was assessed using a double exponential regression model that yielded both fast and slow components of the response of oxygen uptake to exercise. From low-moderate to severe swimming intensities changes occurred for the first and second oxygen uptake amplitudes (P ≤ 0.04), time constants (P = 0.01), and time delays (P ≤ 0.02). At the heavy and severe intensities, a notable oxygen uptake slow component (>255 mL·min(-1)) occurred in all swimmers. Oxygen uptake kinetics whilst swimming at different intensities offers relevant information regarding cardiorespiratory and metabolic stress that might be useful for appropriate performance diagnosis and training prescription.

  14. Sex differences in performance-matched marathon runners.

    PubMed

    Helgerud, J; Ingjer, F; Strømme, S B

    1990-01-01

    Six male and six female runners were chosen on the basis of age (20-30 years) and their performance over the marathon distance (mean time = 199.4, SEM 2.3 min for men and 201.8, SEM 1.8 min for women). The purpose was to find possible sex differences in maximal aerobic power (VO2max), anaerobic threshold, running economy, degree and utilization of VO2max (when running a marathon) and amount of training. The results showed that performance-matched male and female marathon runners had approximately the same VO2max (about 60 ml.kg-1.min-1). For both sexes the anaerobic threshold was reached at an exercise intensity of about 83% of VO2max, or 88%-90% of maximal heart rate. The females' running economy was poorer, i.e. their oxygen uptake during running at a standard submaximal speed was higher (P less than 0.05). The heart rate, respiratory exchange ratio and blood lactate concentration also confirmed that a given running speed resulted in higher physiological strain for the females. The percentage utilization of VO2max at the average marathon running speed was somewhat higher for the females, but the difference was not significant. For both sexes the oxygen uptake at average speed was 93%-94% of the oxygen uptake corresponding to the anaerobic threshold. Answers to a questionnaire showed that the females' training programme over the last 2 months prior to running the actual marathon comprised almost twice as many kilometers of running per week compared to the males (60 and 33 km, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Age-related changes in oxygen and nutrient uptake by hindquarters in newborn pigs during cold-induced shivering.

    PubMed

    Lossec, G; Lebreton, Y; Hulin, J C; Fillaut, M; Herpin, P

    1998-11-01

    Newborn pigs rely essentially on shivering thermogenesis in the cold. In order to understand the rapid postnatal enhancement of thermogenic capacities in piglets, the oxygen and nutrient uptake of hindquarters was measured in vivo in 1- (n = 6) and 5-day-old (n = 6) animals at thermal neutrality and during cold exposure. The hindquarters were considered to represent a skeletal muscle compartment. Indirect calorimetry and arterio-venous techniques were used. The cold challenge (23 C at 1 day old and 15 C at 5 days old for 90 min) induced a similar increase (+90 %) in regulatory heat production at both ages. Hindquarters blood flow was higher at 5 days than 1 day old at thermal neutrality (26 +/- 3 vs. 17 +/- 1 ml min-1 (100 g hindquarters)-1) and its increase in the cold was much more marked (+65 % at 5 days old vs. +25 % at 1 day old). Oxygen extraction by the hindquarters rose from 30-35 % at thermal neutrality to 65-70 % in the cold at both ages. The calculated contribution of skeletal muscle to total oxygen consumption averaged 34-40 % at thermal neutrality and 50-64 % in the cold and skeletal muscle was the major contributor to regulatory thermogenesis. Based on hindquarters glucose uptake and lactate release, carbohydrate appeared to be an important fuel for shivering. However, net uptake of fatty acids increased progressively during cold exposure at 5 days old. The enhancement in muscular blood supply and fatty acid utilization during shivering is probably related to the postnatal improvement in the thermoregulatory response of the piglet.

  16. Coupling of methylmercury uptake with respiration and water pumping in freshwater tilapia Oreochromis niloticus.

    PubMed

    Wang, Rui; Wong, Ming-Hung; Wang, Wen-Xiong

    2011-09-01

    The relationships among the uptake of toxic methylmercury (MeHg) and two important fish physiological processes-respiration and water pumping--in the Nile tilapia (Oreochromis niloticus) were explored in the present study. Coupled radiotracer and respirometric techniques were applied to measure simultaneously the uptake rates of MeHg, water, and oxygen under various environmental conditions (temperature, dissolved oxygen level, and water flow). A higher temperature enhanced MeHg influx and the oxygen consumption rate but had no effect on the water uptake, indicating the influence of metabolism on MeHg uptake. The fish showed a high tolerance to hypoxia, and the oxygen consumption rate was not affected until the dissolved oxygen concentration decreased to extremely low levels (below 1 mg/L). The MeHg and water uptake rates increased simultaneously as the dissolved oxygen level decreased, suggesting the coupling of water flux and MeHg uptake. The influence of fish swimming performance on MeHg uptake was also investigated for the first time. Rapidly swimming fish showed significantly higher uptake rates of MeHg, water, and oxygen, confirming the coupling relationships among respiration, water pumping, and metal uptake. Moreover, these results support that MeHg uptake is a rate-limiting process involving energy. Our study demonstrates the importance of physiological processes in understanding mercury bioaccumulation in fluctuating aquatic environments. Copyright © 2011 SETAC.

  17. OXYGEN UPTAKE BEFORE AND AFTER THE ONSET OF CLAUDICATION DURING A 6-MINUTE WALK TEST

    PubMed Central

    Gardner, Andrew W.; Ritti-Dias, Raphael M.; Stoner, Julie A.; Montgomery, Polly S.; Khurana, Aman; Blevins, Steve M.

    2011-01-01

    Purposes To compare oxygen uptake before and after the onset of claudication in subjects with peripheral artery disease (PAD) during a 6-minute walk test, and to identify predictors of the change in oxygen uptake following the onset of claudication pain Methods Fifty subjects with PAD were studied, in which 33 experienced claudication (Pain Group) during a 6-minute walk test, and 17 were pain-free during this test (Pain-Free Group). Oxygen uptake and ambulatory cadence were primary outcomes obtained during the 6-minute walk test. Results The Pain Group experienced onset of claudication pain at 179 ± 45 meters (mean ± standard deviation) and continued to walk to achieve a 6-minute walk distance of 393 ± 74 meters, which was similar (p = 0.74) to the Pain-Free Group (401 ± 76 meters). Oxygen uptake increased (p < 0.0001) after the onset of pain in the Pain Group, and this change was greater (p = 0.025) than the increase in oxygen uptake from the second to fifth minute of walking in the Pain-Free Group. Furthermore, ambulatory cadence decreased after the onset of pain in the Pain Group (p = 0.0003). The change in oxygen uptake was associated with metabolic syndrome (p = 0.0023), 6-minute walk distance (p = 0.0037), age, (p = 0.0041), and the oxygen uptake during the second minute of the test (p = 0.012). Conclusion Claudication increases oxygen uptake of self-paced, over-ground ambulation despite a decrease in cadence. The pain-mediated increase in oxygen uptake was blunted in subjects with metabolic syndrome, suggesting that they have an impaired ability to increase oxygen uptake during ambulation. The clinical significance is that claudication increases metabolic cost of ambulation, thereby increasing the relative intensity of exercise and reducing the tolerance to sustain ambulation. PMID:21890308

  18. Heart Rate and Oxygen Uptake Kinetics in Type 2 Diabetes Patients - A Pilot Study on the Influence of Cardiovascular Medication on Regulatory Processes.

    PubMed

    Koschate, Jessica; Drescher, Uwe; Baum, Klaus; Brinkmann, Christian; Schiffer, Thorsten; Latsch, Joachim; Brixius, Klara; Hoffmann, Uwe

    2017-05-01

    The aim of this pilot study was to investigate whether there are differences in heart rate and oxygen uptake kinetics in type 2 diabetes patients, considering their cardiovascular medication. It was hypothesized that cardiovascular medication would affect heart rate and oxygen uptake kinetics and that this could be detected using a standardized exercise test. 18 subjects were tested for maximal oxygen uptake. Kinetics were measured in a single test session with standardized, randomized moderate-intensity work rate changes. Time series analysis was used to estimate kinetics. Greater maxima in cross-correlation functions indicate faster kinetics. 6 patients did not take any cardiovascular medication, 6 subjects took peripherally acting medication and 6 patients were treated with centrally acting medication. Maximum oxygen uptake was not significantly different between groups. Significant main effects were identified regarding differences in muscular oxygen uptake kinetics and heart rate kinetics. Muscular oxygen uptake kinetics were significantly faster than heart rate kinetics in the group with no cardiovascular medication (maximum in cross-correlation function of muscular oxygen uptake vs. heart rate; 0.32±0.08 vs. 0.25±0.06; p=0.001) and in the group taking peripherally acting medication (0.34±0.05 vs. 0.28±0.05; p=0.009) but not in the patients taking centrally acting medication (0.28±0.05 vs. 0.30±0.07; n.s.). It can be concluded that regulatory processes for the achievement of a similar maximal oxygen uptake are different between the groups. The used standardized test provided plausible results for heart rate and oxygen uptake kinetics in a single measurement session in this patient group. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction

    PubMed Central

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-01-01

    Background Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Methods Older adults with HF and reduced ejection fraction (n = 25, age 75 ± 7 years) were compared to 25 healthy age- and gender-matched controls. Assessments included a maximal treadmill test for peak oxygen uptake (VO2peak), oxygen uptake kinetics at onset of and on recovery from a submaximal treadmill test, functional mobility testing [Get Up and Go (GUG), Comfortable Gait Speed (CGS), Unipedal Stance (US)], and self-reported physical activity (PA). Results Compared to controls, HF had worse performance on GUG, CGS, and US, greater delays in submaximal oxygen uptake kinetics, and lower PA. In controls, VO2peak was more strongly associated with functional mobility and PA than submaximal oxygen uptake kinetics. In HF patients, submaximal oxygen uptake kinetics were similarly associated with GUG and CGS as VO2peak, but weakly associated with PA. Conclusions Based on their mobility performance, older HF patients with reduced ejection fraction are at risk for adverse functional outcomes. In this population, submaximal oxygen uptake measures may be equivalent to VO2 peak in predicting functional mobility, and in addition to being more feasible, may provide better insight into how aerobic function relates to mobility in older adults with HF. PMID:27594875

  20. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction.

    PubMed

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-07-01

    Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Older adults with HF and reduced ejection fraction (n = 25, age 75 ± 7 years) were compared to 25 healthy age- and gender-matched controls. Assessments included a maximal treadmill test for peak oxygen uptake (VO2peak), oxygen uptake kinetics at onset of and on recovery from a submaximal treadmill test, functional mobility testing [Get Up and Go (GUG), Comfortable Gait Speed (CGS), Unipedal Stance (US)], and self-reported physical activity (PA). Compared to controls, HF had worse performance on GUG, CGS, and US, greater delays in submaximal oxygen uptake kinetics, and lower PA. In controls, VO2peak was more strongly associated with functional mobility and PA than submaximal oxygen uptake kinetics. In HF patients, submaximal oxygen uptake kinetics were similarly associated with GUG and CGS as VO2peak, but weakly associated with PA. Based on their mobility performance, older HF patients with reduced ejection fraction are at risk for adverse functional outcomes. In this population, submaximal oxygen uptake measures may be equivalent to VO2 peak in predicting functional mobility, and in addition to being more feasible, may provide better insight into how aerobic function relates to mobility in older adults with HF.

  1. Balancing the competing requirements of air-breathing and display behaviour during male-male interactions in Siamese fighting fish Betta splendens.

    PubMed

    Alton, Lesley A; Portugal, Steven J; White, Craig R

    2013-02-01

    Air-breathing fish of the Anabantoidei group meet their metabolic requirements for oxygen through both aerial and aquatic gas exchange. Siamese fighting fish Betta splendens are anabantoids that frequently engage in aggressive male-male interactions which cause significant increases in metabolic rate and oxygen requirements. These interactions involve opercular flaring behaviour that is thought to limit aquatic oxygen uptake, and combines with the increase in metabolic rate to cause an increase in air-breathing behaviour. Air-breathing events interrupt display behaviour and increase risk of predation, raising the question of how Siamese fighting fish manage their oxygen requirements during agonistic encounters. Using open-flow respirometry, we measured rate of oxygen consumption in displaying fish to determine if males increase oxygen uptake per breath to minimise visits to the surface, or increase their reliance on aquatic oxygen uptake. We found that the increased oxygen requirements of Siamese fighting fish during display behaviour were met by increased oxygen uptake from the air with no significant changes in aquatic oxygen uptake. The increased aerial oxygen uptake was achieved almost entirely by an increase in air-breathing frequency. We conclude that limitations imposed by the reduced gill surface area of air-breathing fish restrict the ability of Siamese fighting fish to increase aquatic uptake, and limitations of the air-breathing organ of anabantoids largely restrict their capacity to increase oxygen uptake per breath. The resulting need to increase surfacing frequency during metabolically demanding agonistic encounters has presumably contributed to the evolution of the stereotyped surfacing behaviour seen during male-male interactions, during which one of the fish will lead the other to the surface, and each will take a breath of air. Copyright © 2012. Published by Elsevier Inc.

  2. Is the 6-minute walk test a reliable substitute for peak oxygen uptake in patients with dilated cardiomyopathy?

    PubMed

    Zugck, C; Krüger, C; Dürr, S; Gerber, S H; Haunstetter, A; Hornig, K; Kübler, W; Haass, M

    2000-04-01

    The 6-min walk test may serve as a more simple clinical tool to assess functional capacity in congestive heart failure than determination of peak oxygen uptake by cardiopulmonary exercise testing. The purpose of the study was to prospectively examine whether the distance ambulated during a 6-min walk test (i) correlates with peak oxygen uptake, (ii) allows peak oxygen uptake to be predicted, and (iii) provides prognostic information similar to peak oxygen uptake in patients with dilated cardiomyopathy and left ventricular ejection fraction < or = 35%. In 113 patients (age: 54+/-12 years, NYHA: 2.2+/-0.8) with dilated cardiomyopathy (left ventricular ejection fraction 19+/-7%) a 6-min walk test and cardiopulmonary exercise testing were performed. The 6-min walk test and peak oxygen uptake were closely correlated at the initial visit (r=0.68, n=113), as well as after 263+/-114 (r=0.71, n=28) and 381+/-170 days (r=0.74, n=14). During serial exercise testing the 6-min walk test allowed peak oxygen uptake to be reliably predicted (r=0.76 between calculated and real peak oxygen uptake). After 528+/-234 days, 42 patients were hospitalized due to worsening heart failure and/or died from cardiovascular causes. Compared to clinically stable patients, these 42 patients walked a shorter distance (423+/-104 vs 501+/-95 m, P<0.001) and had a lower peak oxygen uptake (12.7+/-4.0 vs 17.4 + 5.6 ml x min(-1) x kg(-1), P<0.001). By univariate analysis the 6-min walk test outperformed other prognostic parameters such as left ventricular ejection fraction, cardiac index and plasma norepinephrine concentration and conferred a prognostic power similar to peak oxygen uptake. This predictive value could be further improved in a multivariate model, by combining the 6-min walk test with independent variables, such as left ventricular ejection fraction or cardiac index. The 6-min walk test correlated with peak oxygen uptake when tested serially over the course of the disease. Although both tests define two distinct domains of functional capacity, the 6-min walk test provides prognostic information very similar to peak oxygen uptake in congestive heart failure patients with dilated cardiomyopathy.

  3. Oxygen consumption of elite distance runners on an anti-gravity treadmill®.

    PubMed

    McNeill, David K P; Kline, John R; de Heer, Hendrick D; Coast, J Richard

    2015-06-01

    Lower body positive pressure (LBPP), or 'anti-gravity' treadmills® have become increasingly popular among elite distance runners. However, to date, few studies have assessed the effect of body weight support (BWS) on the metabolic cost of running among elite runners. This study evaluated how BWS influenced the relationship between velocity and metabolic cost among 6 elite male distance runners. Participants ran three- 16 minute tests consisting of 4 stages of 4 minutes at 8, 7, 6 and 5 min·mile(-1) pace (3.35, 3.84, 4.47 and 5.36 m·s(-1)), while maintaining an aerobic effort (Respiratory Exchange Ratio ≤1.00). One test was run on a regular treadmill, one on an anti-gravity treadmill with 40% BWS and one with 20% BWS being provided. Expired gas data were collected and regression equations used to determine and compare slopes. Significant decreases in oxygen uptake (V̇O2) were found with each increase in BWS (p < 0.001). At 20% BWS, the average decrease in net VO2 was greater than proportional (34%), while at 40% BWS, the average net reduction in VO2 was close to proportional (38%). Across velocities, the slope of the relationship between VO2 and velocity (ΔV̇O2/Δv) was steeper with less support. The slopes at both the 20% and 40% BWS conditions were similar, especially when compared to the regular treadmill. Variability in VO2 between athletes was much greater on the LBPP treadmill and was greater with increased levels of BWS. In this study we evaluated the effect of body weight support on V̇O2 among elite distance runners. We have shown that oxygen uptake decreased with support, but not in direct proportion to that support. Further, because of the high variability in oxygen uptake between athletes on the LBPP treadmill, prediction equations may not be reliable and other indicators (heart rate, perceived exertion or directly measured oxygen uptake) should be used to guide training intensity when training on the LBPP treadmill. Key pointsWith increasing amounts of body weight-support (BWS), the slope of the relationship between velocity and oxygen consumption (ΔVO2/Δv) decreases significantly. This means the change in oxygen consumption (VO2) is significantly smaller over a given change in velocity at higher amounts of BWS.There is a non-linear decrease in VO2 with increasing BWS. As such, with each increment in the amount of BWS provided, the reduction in VO2 becomes increasingly smaller.This paper provides first of its kind data on the effects of BWS on the cost of running among highly trained, elite runners. The outcomes of this study are in line with previous findings among non-elite runners.

  4. The contribution of water soluble and water insoluble organic fractions to oxygen uptake rate during high rate composting.

    PubMed

    Giuliana, D'Imporzano; Fabrizio, Adani

    2007-02-01

    This study aims to establish the contribution of the water soluble and water insoluble organic fractions to total oxygen uptake rate during high rate composting process of a mixture of organic fraction of municipal solid waste and lignocellulosic material. This mixture was composted using a 20 l self-heating pilot scale composter for 250 h. The composter was fully equipped to record both the biomass-temperature and oxygen uptake rate. Representative compost samples were taken at 0, 70, 100, 110, 160, and 250 h from starting time. Compost samples were fractionated in water soluble and water insoluble fractions. The water soluble fraction was then fractionated in hydrophilic, hydrophobic, and neutral hydrophobic fractions. Each fraction was then studied using quantitative (total organic carbon) and qualitative analysis (diffuse reflectance infrared spectroscopy and biodegradability test). Oxygen uptake rates were high during the initial stages of the process due to rapid degradation of the soluble degradable organic fraction (hydrophilic plus hydrophobic fractions). Once this fraction was depleted, polymer hydrolysis accounted for most of the oxygen uptake rate. Finally, oxygen uptake rate could be modeled using a two term kinetic. The first term provides the oxygen uptake rate resulting from the microbial growth kinetic type on easily available, no-limiting substrate (soluble fraction), while the second term considers the oxygen uptake rate caused by the degradation of substrate produced by polymer hydrolysis.

  5. Effects of Hemopure on maximal oxygen uptake and endurance performance in healthy humans.

    PubMed

    Ashenden, M J; Schumacher, Y O; Sharpe, K; Varlet-Marie, E; Audran, M

    2007-05-01

    Haemoglobin-based oxygen carriers (HBOCs) such as Hemopure are touted as a tenable substitute for red blood cells and therefore potential doping agents, although the mechanisms of oxygen transport of HBOCs are incompletely understood. We investigated whether infusion of Hemopure increased maximal oxygen uptake (V.O 2max) and endurance performance in healthy subjects. Twelve male subjects performed two 4-minute submaximal exercise bouts equivalent to 60 % and 75 % of V.O (2max) on a cycle ergometer, followed by a ramped incremental protocol to elicit V.O (2max). A crossover design tested the effect of infusing either 30 g (6 subjects) or 45 g (6 subjects) of Hemopure versus a placebo. Under our study conditions, Hemopure did not increase V.O (2max) nor endurance performance. However, the infusion of Hemopure caused a decrease in heart rate of approximately 10 bpm (p=0.009) and an average increase in mean ( approximately 7 mmHg) and diastolic blood pressure ( approximately 8 mmHg) (p=0.046) at submaximal and maximal exercise intensities. Infusion of Hemopure did not bestow the same physiological advantages generally associated with infusion of red blood cells. It is conceivable that under exercise conditions, the hypertensive effects of Hemopure counter the performance-enhancing effect of improved blood oxygen carrying capacity.

  6. Peak oxygen uptake in a sprint interval testing protocol vs. maximal oxygen uptake in an incremental testing protocol and their relationship with cross-country mountain biking performance.

    PubMed

    Hebisz, Rafał; Hebisz, Paulina; Zatoń, Marek; Michalik, Kamil

    2017-04-01

    In the literature, the exercise capacity of cyclists is typically assessed using incremental and endurance exercise tests. The aim of the present study was to confirm whether peak oxygen uptake (V̇O 2peak ) attained in a sprint interval testing protocol correlates with cycling performance, and whether it corresponds to maximal oxygen uptake (V̇O 2max ) determined by an incremental testing protocol. A sample of 28 trained mountain bike cyclists executed 3 performance tests: (i) incremental testing protocol (ITP) in which the participant cycled to volitional exhaustion, (ii) sprint interval testing protocol (SITP) composed of four 30 s maximal intensity cycling bouts interspersed with 90 s recovery periods, (iii) competition in a simulated mountain biking race. Oxygen uptake, pulmonary ventilation, work, and power output were measured during the ITP and SITP with postexercise blood lactate and hydrogen ion concentrations collected. Race times were recorded. No significant inter-individual differences were observed in regards to any of the ITP-associated variables. However, 9 individuals presented significantly increased oxygen uptake, pulmonary ventilation, and work output in the SITP compared with the remaining cyclists. In addition, in this group of 9 cyclists, oxygen uptake in SITP was significantly higher than in ITP. After the simulated race, this group of 9 cyclists achieved significantly better competition times (99.5 ± 5.2 min) than the other cyclists (110.5 ± 6.7 min). We conclude that mountain bike cyclists who demonstrate higher peak oxygen uptake in a sprint interval testing protocol than maximal oxygen uptake attained in an incremental testing protocol demonstrate superior competitive performance.

  7. The Effects of Capillary Transit Time Heterogeneity (CTH) on the Cerebral Uptake of Glucose and Glucose Analogs: Application to FDG and Comparison to Oxygen Uptake

    PubMed Central

    Angleys, Hugo; Jespersen, Sune N.; Østergaard, Leif

    2016-01-01

    Glucose is the brain's principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc) is coupled with its oxygen consumption (CMRO2) remains unclear. Measurements of the brain's oxygen-glucose index OGI = CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF) delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC) to arrive at CMRglc. Capillary transit time heterogeneity (CTH), which is believed to change during functional activation and in some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor non-oxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMRglc during functional activation by as much as 50%. PMID:27790110

  8. Thromboxane plays a role in postprandial jejunal oxygen uptake and capillary exchange.

    PubMed

    Alemayehu, A; Chou, C C

    1990-09-01

    The effects of a thromboxane A2 (TxA2)-endoperoxide receptor antagonist, SQ 29548, on jejunal blood flow, oxygen uptake, and capillary filtration coefficient (Kfc) were determined in anesthetized dogs under resting conditions and during the presence of predigested food in the jejunal lumen in three series of experiments. In series 1, 2.0 micrograms intra-arterial administration of SQ 29548 was found to abolish completely the vasoconstrictor action of graded doses (0.05-2.0 micrograms) of intra-arterial injection of a TxA2-endoperoxide analogue, U44069. SQ 29548 (2.0 micrograms ia) per se did not significantly alter resting jejunal blood flow, oxygen uptake, capillary pressure, or Kfc. Before SQ 29548, placement of food plus bile into the jejunal lumen increased blood flow +42 +/- 9%, oxygen uptake +28 +/- 7%, and Kfc +24 +/- 6%. After SQ 29548, the food placement increased blood flow +37 +/- 8%, oxygen uptake +52 +/- 11%, and Kfc +63 +/- 20%. The food-induced increases in oxygen uptake and Kfc after SQ 29548 were significantly greater than those induced before the blocking of TxA2-endoperoxide receptors by SQ 29548. Our study indicates that endogenous thromboxane does not play a role in regulating jejunal blood flow, capillary filtration, and oxygen uptake under resting conditions. However, it plays a role in limiting the food-induced increases in jejunal oxygen uptake and capillary exchange capacity without influencing the food-induced hyperemia.

  9. Within-session responses to high-intensity interval training in spinal cord injury.

    PubMed

    Astorino, Todd Anthony; Thum, Jacob S

    2018-02-01

    Completion of high-intensity interval training (HIIT) increases maximal oxygen uptake and health status, yet its feasibility in persons with spinal cord injury is unknown. To compare changes in cardiorespiratory and metabolic variables between two interval training regimes and moderate intensity exercise. Nine adults with spinal cord injury (duration = 6.8 ± 6.2 year) initially underwent determination of peak oxygen uptake. During subsequent sessions, they completed moderate intensity exercise, HIIT, or sprint interval training. Oxygen uptake, heart rate, and blood lactate concentration were measured. Oxygen uptake and heart rate increased (p < 0.05) during both interval training sessions and were similar (p > 0.05) to moderate intensity exercise. Peak oxygen uptake and heart rate were higher (p < 0.05) with HIIT (90% peak oxygen uptake and 99% peak heart rate) and sprint interval training (80% peak oxygen uptake and 96% peak heart rate) versus moderate intensity exercise. Despite a higher intensity and peak cardiorespiratory strain, all participants preferred interval training versus moderate exercise. Examining long-term efficacy and feasibility of interval training in this population is merited, considering that exercise intensity is recognized as the most important variable factor of exercise programming to optimize maximal oxygen uptake. Implications for Rehabilitation Spinal cord injury (SCI) reduces locomotion which impairs voluntary physical activity, typically resulting in a reduction in peak oxygen uptake and enhanced chronic disease risk. In various able-bodied populations, completion of high-intensity interval training (HIIT) has been consistently reported to improve cardiorespiratory fitness and other health-related outcomes, although its efficacy in persons with SCI is poorly understood. Data from this study in 9 men and women with SCI show similar changes in oxygen uptake and heart in response to HIIT compared to a prolonged bout of aerobic exercise, although peak values were higher in response to HIIT. Due to the higher peak metabolic strain induced by HIIT as well as universal preference for this modality versus aerobic exercise as reported in this study, further work testing utility of HIIT in this population is merited.

  10. Metabolic Cost of Experimental Exercises

    NASA Technical Reports Server (NTRS)

    Webb, James T.; Gernhardt, Michael L.

    2009-01-01

    Although the type and duration of activity during decompression was well documented, the metabolic cost of 1665 subject-exposures with 8 activity profiles from 17 altitude decompression sickness (DCS) protocols at Brooks City-Base, TX from 1983-2005 was not determined. Female and male human volunteers (30 planned, 4 completed) performed activity profiles matching those 8 activity profiles at ground level with continuous monitoring of metabolic cost. A Cosmed K4b2 Cardio Pulmonary Exercise Testing device was used to measure oxygen uptake (VO2) during the profiles. The results show levels of metabolic cost to the females for the profiles tested varied from 4.3 to 25.5 ml/kg/min and from 3.0 to 12.0 ml/kg/min to the males. The increase in VO2 from seated rest to the most strenuous of the 8 activity profiles was 3.6-fold for the females and 2.8-fold for the males. These preliminary data on 4 subjects indicate close agreement of oxygen uptake for activity performed during many subject-exposures as published earlier. The relatively low average oxygen uptake required to perform the most strenuous activity may imply the need for adjustment of modeling efforts using metabolic cost as a risk factor. Better definition of metabolic cost during exposure to altitude, a critical factor in DCS risk, may allow refinement of DCS prediction models.

  11. VO2 kinetics of constant-load exercise following bed-rest-induced deconditioning

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Goldwater, D. J.; Sandler, H.

    1984-01-01

    Previous studies have shown that the oxygen uptake kinetics during exercise and recovery may be changed by alterations in work intensity, prior exercise, muscle group involvement, ambient conditions, posture, disease state, and level of physical conditioning. However, the effects of detraining on oxygen uptake kinetics have not been determined. The present investigation has the objective to determine the effects of deconditioning following seven days of continuous head-down bed rest on changes in steady-state oxygen uptake, O2 deficit, and recovery oxygen uptake during the performance of constant-load exercise. The obtained results may provide support for previous proposals that submaximal oxygen uptake was significantly reduced following bed rest. The major finding was that bed-rest deconditioning resulted in a reduction of total O2 transport/utilization capacity during the transient phase of upright but not supine exercise.

  12. Modeling the relationship between fluorodeoxyglucose uptake and tumor radioresistance as a function of the tumor microenvironment.

    PubMed

    Jeong, Jeho; Deasy, Joseph O

    2014-01-01

    High fluorodeoxyglucose positron emission tomography (FDG-PET) uptake in tumors has often been correlated with increasing local failure and shorter overall survival, but the radiobiological mechanisms of this uptake are unclear. We explore the relationship between FDG-PET uptake and tumor radioresistance using a mechanistic model that considers cellular status as a function of microenvironmental conditions, including proliferating cells with access to oxygen and glucose, metabolically active cells with access to glucose but not oxygen, and severely hypoxic cells that are starving. However, it is unclear what the precise uptake levels of glucose should be for cells that receive oxygen and glucose versus cells that only receive glucose. Different potential FDG uptake profiles, as a function of the microenvironment, were simulated. Predicted tumor doses for 50% control (TD50) in 2 Gy fractions were estimated for each assumed uptake profile and for various possible cell mixtures. The results support the hypothesis of an increased avidity of FDG for cells in the intermediate stress state (those receiving glucose but not oxygen) compared to well-oxygenated (and proliferating) cells.

  13. Blood flow and oxygen uptake during exercise

    NASA Technical Reports Server (NTRS)

    Mitchell, J. W.; Stolwijk, J. A. J.; Nadel, E. R.

    1973-01-01

    A model is developed for predicting oxygen uptake, muscle blood flow, and blood chemistry changes under exercise conditions. In this model, the working muscle mass system is analyzed. The conservation of matter principle is applied to the oxygen in a unit mass of working muscle under transient exercise conditions. This principle is used to relate the inflow of oxygen carried with the blood to the outflow carried with blood, the rate of change of oxygen stored in the muscle myoglobin, and the uptake by the muscle. Standard blood chemistry relations are incorporated to evaluate venous levels of oxygen, pH, and carbon dioxide.

  14. Oxygen Consumption of Elite Distance Runners on an Anti-Gravity Treadmill®

    PubMed Central

    McNeill, David K.P.; Kline, John R.; de Heer, Hendrick D.; Coast, J. Richard

    2015-01-01

    Lower body positive pressure (LBPP), or ‘anti-gravity’ treadmills® have become increasingly popular among elite distance runners. However, to date, few studies have assessed the effect of body weight support (BWS) on the metabolic cost of running among elite runners. This study evaluated how BWS influenced the relationship between velocity and metabolic cost among 6 elite male distance runners. Participants ran three- 16 minute tests consisting of 4 stages of 4 minutes at 8, 7, 6 and 5 min·mile−1 pace (3.35, 3.84, 4.47 and 5.36 m·s−1), while maintaining an aerobic effort (Respiratory Exchange Ratio ≤1.00). One test was run on a regular treadmill, one on an anti-gravity treadmill with 40% BWS and one with 20% BWS being provided. Expired gas data were collected and regression equations used to determine and compare slopes. Significant decreases in oxygen uptake (V̇O2) were found with each increase in BWS (p < 0.001). At 20% BWS, the average decrease in net VO2 was greater than proportional (34%), while at 40% BWS, the average net reduction in VO2 was close to proportional (38%). Across velocities, the slope of the relationship between VO2 and velocity (ΔV̇O2/Δv) was steeper with less support. The slopes at both the 20% and 40% BWS conditions were similar, especially when compared to the regular treadmill. Variability in VO2 between athletes was much greater on the LBPP treadmill and was greater with increased levels of BWS. In this study we evaluated the effect of body weight support on V̇O2 among elite distance runners. We have shown that oxygen uptake decreased with support, but not in direct proportion to that support. Further, because of the high variability in oxygen uptake between athletes on the LBPP treadmill, prediction equations may not be reliable and other indicators (heart rate, perceived exertion or directly measured oxygen uptake) should be used to guide training intensity when training on the LBPP treadmill. Key points With increasing amounts of body weight-support (BWS), the slope of the relationship between velocity and oxygen consumption (ΔVO2/Δv) decreases significantly. This means the change in oxygen consumption (VO2) is significantly smaller over a given change in velocity at higher amounts of BWS. There is a non-linear decrease in VO2 with increasing BWS. As such, with each increment in the amount of BWS provided, the reduction in VO2 becomes increasingly smaller. This paper provides first of its kind data on the effects of BWS on the cost of running among highly trained, elite runners. The outcomes of this study are in line with previous findings among non-elite runners. PMID:25983582

  15. Direct oxygen uptake from air by novel glycogen accumulating organism dominated biofilm minimizes excess sludge production.

    PubMed

    Hossain, Md Iqbal; Paparini, Andrea; Cord-Ruwisch, Ralf

    2018-05-29

    The cost associated with treatment and disposal of excess sludge produced is one of the greatest operational expenses in wastewater treatment plants. In this study, we quantify and explain greatly reduced excess sludge production in the novel glycogen accumulating organism (GAO) dominated drained biofilm system previously shown to be capable of extremely energy efficient removal of organic carbon (biological oxygen demand or BOD) from wastewater. The average excess sludge production rate was 0.05 g VSS g -1 BOD (acetate) removed, which is about 9-times lower than that of comparative studies using the same acetate based synthetic wastewater. The substantially lower sludge yield was attributed to a number of features such as the high oxygen consumption facilitated by direct oxygen uptake from air, high biomass content (21.41 g VSS L -1 of reactor), the predominance of the GAO (Candidatus competibacter) with a low growth yield and the overwhelming presence of the predatory protozoa (Tetramitus) in the biofilm. Overall, the combination of low-energy requirement for air supply (no compressed air supply) and the low excess sludge production rate, could make this novel "GAO drained biofilm" process one of the most economical ways of biological organic carbon removal from wastewater. Copyright © 2018. Published by Elsevier B.V.

  16. Optimum aerobic volume control based on continuous in-line oxygen uptake monitoring.

    PubMed

    Svardal, K; Lindtner, S; Winkler, S

    2003-01-01

    Dynamic adaptation of the aerated volume to changing load conditions is essential to maximise the nitrogen removal performance and to minimise energy consumption. A control strategy is presented which provides optimum aerobic volume control (OAV-control concept) based on continuous in-line oxygen uptake monitoring. For ammonium concentrations below 1 mg/l the oxygen uptake rate shows a strong and almost linear dependency on the ammonium concentration. Therefore, the oxygen uptake rate is an ideal indicator for the nitrification performance in activated sludge systems. The OAV-control concept provides dynamic variation of the minimum aerobic volume required for complete nitrification and therefore maximises the denitrification performance. In-line oxygen uptake monitoring is carried out by controlling the oxygen concentration in a continuous aerated zone of the aeration tank and measuring the total air flow to the aeration tank. The total air flow to the aeration tank is directly proportional to the current oxygen uptake rate and can therefore be used as an indicator for the required aerobic volume. The instrumentation requirements for installation of the OAV-control are relatively low, oxygen sensors in the aeration tank and an on-line air flow measurement are needed. This enables individual control of aeration tanks operated in parallel at low investment costs. The OAV-control concept is installed at the WWTP Linz-Asten (1 Mio PE) and shows very good results. Full scale results are presented.

  17. Influence of protein ingestion on human splanchnic and whole-body oxygen consumption, blood flow, and blood temperature.

    PubMed

    Brundin, T; Wahren, J

    1994-05-01

    Splanchnic and whole-body oxygen uptake, blood flow, and blood temperature were studied in 10 healthy subjects before and during 2 hours after oral ingestion of 900 kJ of fish protein. Indirect calorimetry and catheter techniques were used, including blood thermometry in arterial, pulmonary arterial, and hepatic venous blood. After the meal, pulmonary oxygen uptake increased from a basal value of 272 +/- 11 to 332 +/- 23 mL/min. During the first postprandial hour, splanchnic oxygen uptake increased from 62 +/- 5 to 93 +/- 9 mL/min (+50%, P < .05), thereby accounting for 62% +/- 17% of the simultaneous increase in whole-body oxygen consumption. During the second postprandial hour, splanchnic oxygen uptake increased no further, whereas in the extrasplanchnic tissues the oxygen consumption increased, now accounting for the entire simultaneous increase in pulmonary oxygen uptake. Cardiac output increased from basal 6.4 +/- 0.4 to 7.5 +/- 0.5 L/min. Splanchnic blood flow changed little while the arteriohepatic venous oxygen difference increased from 46 +/- 3 to 54 +/- 4 mL/L. Arterial and hepatic venous blood temperatures increased by almost 0.3 degrees C, reflecting a considerable accumulation of heat, indicating a conversion into a positive thermal balance. It is concluded that after protein ingestion, (1) oxygen uptake increases mainly in the splanchnic organs during the first hour, and thereafter exclusively in the extrasplanchnic tissues; (2) the blood flow increases mainly in extrasplanchnic tissues; and (3) the blood temperature increases almost linearly, indicating an upward adjustment of the temperature setpoint in the central thermosensors.

  18. A metabolic simulator for unmanned testing of breathing apparatuses in hyperbaric conditions.

    PubMed

    Frånberg, Oskar; Loncar, Mario; Larsson, Åke; Ornhagen, Hans; Gennser, Mikael

    2014-11-01

    A major part of testing of rebreather apparatuses for underwater diving focuses on the oxygen dosage system. A metabolic simulator for testing breathing apparatuses was built and evaluated. Oxygen consumption was achieved through catalytic combustion of propene. With an admixture of carbon dioxide in the propene fuel, the system allowed the respiratory exchange ratio to be set freely within human variability and also made it possible to increase test pressures above the condensation pressure of propene. The system was tested by breathing ambient air in a pressure chamber with oxygen uptake (Vo₂) ranging from 1-4 L · min(-1), tidal volume (VT) from 1-3 L, breathing frequency (f) of 20 and 25 breaths/min, and chamber pressures from 100 to 670 kPa. The measured end-tidal oxygen concentration (Fo₂) was compared to calculated end-tidal Fo₂. The largest average difference in end-tidal Fo₂during atmospheric pressure conditions was 0.63%-points with a 0.28%-point average difference during the whole test. During hyperbaric conditions with pressures ranging from 100 to 670 kPa, the largest average difference in Fo₂was 1.68%-points seen during compression from 100 kPa to 400 kPa and the average difference in Fo₂during the whole test was 0.29%-points. In combination with a breathing simulator simulating tidal breathing, the system can be used for dynamic continuous testing of breathing equipment with changes in VT, f, Vo2, and pressure.

  19. Limitations of oxygen uptake and leg muscle activity during ascending evacuation in stairways.

    PubMed

    Halder, Amitava; Kuklane, Kalev; Gao, Chuansi; Miller, Michael; Delin, Mattias; Norén, Johan; Fridolf, Karl

    2018-01-01

    Stair ascending performance is critical during evacuation from buildings and underground infrastructures. Healthy subjects performed self-paced ascent in three settings: 13 floor building, 31 floor building, 33 m stationary subway escalator. To investigate leg muscle and cardiorespiratory capacities and how they constrain performance, oxygen uptake (VO 2 ), heart rate (HR) and ascending speed were measured in all three; electromyography (EMG) in the first two. The VO 2 and HR ranged from 89 to 96% of the maximum capacity reported in the literature. The average highest VO 2 and HR ranged from 39 to 41 mL·kg -1 ·min -1 and 162 to 174 b·min -1 , respectively. The subjects were able to sustain their initial preferred maximum pace for a short duration, while the average step rate was 92-95 steps·min -1 . In average, VO 2 reached relatively stable values at ≈37 mL·kg -1 ·min -1 . EMG amplitudes decreased significantly and frequencies were unchanged. Speed reductions indicate that climbing capacity declined in the process of fatigue development. In the two buildings, the reduction of muscle power allowed the subjects to extend their tolerance and complete ascents in the 48 m and 109 m high stairways in 2.9 and 7.8 min, respectively. Muscle activity interpretation squares were developed and proved advantageous to observe fatigue and recovery over time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. In vivo aerobic metabolism of the rainbow trout gut and the effects of an acute temperature increase and stress event.

    PubMed

    Brijs, Jeroen; Gräns, Albin; Hjelmstedt, Per; Sandblom, Erik; van Nuland, Nicole; Berg, Charlotte; Axelsson, Michael

    2018-05-24

    The fish gut is responsible for numerous potentially energetically costly processes, yet, little is known about its metabolism. Here, we provide the first in vivo measurements for aerobic metabolism of the gut in a teleost fish by measuring gut blood flow, as well as arterial and portal venous oxygen content. At 10°C, gut oxygen uptake rates were 4.3±0.5 ml O 2 h -1 kg -1 (∼11% of whole animal oxygen uptake). Following acute warming to 15°C, gut blood flow increased ∼3.4-fold and gut oxygen uptake rate increased ∼3.7-fold (16.0±3.3 ml O 2 h -1 kg -1 ), now representing ∼25% of whole animal oxygen uptake. Although gut blood flow decreased following an acute stress event at 15°C, gut oxygen uptake remained unchanged due to a ∼2-fold increase in oxygen extraction. The high metabolic thermal sensitivity of the gut discovered here could have important implications on the overall aerobic capacity and performance of fish and warrants further investigations. © 2018. Published by The Company of Biologists Ltd.

  1. Annual variation in condition, respiration and remineralisation of Mytilus edulis L. in the Sound, Denmark

    NASA Astrophysics Data System (ADS)

    Schlüter, L.; Josefsen, S. B.

    1994-12-01

    By means of monthly in situ incubations, variations in oxygen uptake, nutrient release and C/N-ratio were monitored during a period of 14 months of a mussel population ( Mytilus edulis L.) located on an exposed beach. A condition index calculated as weight/length3 showed that the condition of the mussels was highest in the spring. Specific oxygen uptake and nutrient release had separate maxima, with high oxygen uptake in the spring coinciding with a period of growth, and high nutrient release during summer when the temperature was highest. Oxygen uptake was significantly correlated with both the condition of the mussels and the temperature, while ammonium release was significantly correlated only with the temperature. Except in spring, the oxygen uptake, condition index and O/N-ratio were low, indicating a poor condition of the mussels. The mussels suffered from suboptimal conditions caused by inadequate food supply and failed to accumulate glycogen reserves essential for the development of mature gametes.

  2. Secondary aerosol formation promotes water uptake by organic-rich wildfire haze particles in equatorial Asia

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Hapsari Budisulistiorini, Sri; Miyakawa, Takuma; Komazaki, Yuichi; Kuwata, Mikinori

    2018-06-01

    The diameter growth factor (GF) of 100 nm haze particles at 85 % relative humidity (RH) and their chemical characteristics were simultaneously monitored at Singapore in October 2015 during a pervasive wildfire haze episode that was caused by peatland burning in Indonesia. Non-refractory submicron particles (NR-PM1) were dominated by organics (OA; approximating 77.1 % in total mass), whereas sulfate was the most abundant inorganic constituent (11.7 % on average). A statistical analysis of the organic mass spectra showed that most organics (36.0 % of NR-PM1 mass) were highly oxygenated. Diurnal variations of GF, number fractions of more hygroscopic mode particles, mass fractions of sulfate, and mass fractions of oxygenated organics (OOA) synchronized well, peaking during the day. The mean hygroscopicity parameter (κ) of the haze particles was 0.189 ± 0.087, and the mean κ values of organics were 0.157 ± 0.108 (κorg, bulk organics) and 0.266 ± 0.184 (κOOA, OOA), demonstrating the important roles of both sulfate and highly oxygenated organics in the hygroscopic growth of organics-dominated wildfire haze particles. κorg correlated with the water-soluble organic fraction insignificantly, but it positively correlated with f44 (fraction of the ion fragment at m/z 44 in total organics) (R = 0.70), implying the oxygenation degree of organics could be more critical for the water uptake of organic compounds. These results further suggest the importance of sulfate and secondary organic aerosol formation in promoting the hygroscopic growth of wildfire haze particles. Further detailed size-resolved as well as molecular-level chemical information about organics is necessary for the profound exploration of water uptake by wildfire haze particles in equatorial Asia.

  3. Respiratory and digestive responses of postprandial Dungeness crabs, Cancer magister, and blue crabs, Callinectes sapidus, during hyposaline exposure.

    PubMed

    Curtis, Daniel L; McGaw, Iain J

    2010-02-01

    Respiratory responses and gastric processing were examined during hyposaline exposure in two crab species of differing osmoregulatory ability. The efficient osmoregulator, Callinectes sapidus, displayed an immediate increase in oxygen uptake when exposed to low salinity in isolation. In contrast, the weak osmoregulator, Cancer magister, showed no change in oxygen uptake upon acute exposure (<6 h), but slight increases in oxygen uptake tended to occur over longer time scales (12-24 h). These changes were likely attributable to an increase in avoidance activity after 6 h hyposaline exposure. Following feeding in 100% SW, oxygen uptake doubled for both species and remained elevated for 15 h. When postprandial crabs were exposed to low salinities, C. sapidus were able to sum the demands of osmoregulation and digestion. Thus, gastric processes continued unabated in low salinity. Conversely, postprandial C. magister prioritized responses to low salinity over those of digestion, resulting in a decrease in oxygen uptake when exposed to low salinity. This decrease in oxygen uptake corresponded to a reduction in the rate of contraction of the pyloric stomach and a subsequent doubling of gastric evacuation time. The current study is one of the few to illustrate how summation or prioritization of competing physiological systems is manifested in digestive processes.

  4. Increased cardiac output elicits higher V̇O2max in response to self-paced exercise.

    PubMed

    Astorino, Todd Anthony; McMillan, David William; Edmunds, Ross Montgomery; Sanchez, Eduardo

    2015-03-01

    Recently, a self-paced protocol demonstrated higher maximal oxygen uptake versus the traditional ramp protocol. The primary aim of the current study was to further explore potential differences in maximal oxygen uptake between the ramp and self-paced protocols using simultaneous measurement of cardiac output. Active men and women of various fitness levels (N = 30, mean age = 26.0 ± 5.0 years) completed 3 graded exercise tests separated by a minimum of 48 h. Participants initially completed progressive ramp exercise to exhaustion to determine maximal oxygen uptake followed by a verification test to confirm maximal oxygen uptake attainment. Over the next 2 sessions, they performed a self-paced and an additional ramp protocol. During exercise, gas exchange data were obtained using indirect calorimetry, and thoracic impedance was utilized to estimate hemodynamic function (stroke volume and cardiac output). One-way ANOVA with repeated measures was used to determine differences in maximal oxygen uptake and cardiac output between ramp and self-paced testing. Results demonstrated lower (p < 0.001) maximal oxygen uptake via the ramp (47.2 ± 10.2 mL·kg(-1)·min(-1)) versus the self-paced (50.2 ± 9.6 mL·kg(-1)·min(-1)) protocol, with no interaction (p = 0.06) seen for fitness level. Maximal heart rate and cardiac output (p = 0.02) were higher in the self-paced protocol versus ramp exercise. In conclusion, data show that the traditional ramp protocol may underestimate maximal oxygen uptake compared with a newly developed self-paced protocol, with a greater cardiac output potentially responsible for this outcome.

  5. Energetics of Table Tennis and Table Tennis-Specific Exercise Testing.

    PubMed

    Zagatto, Alessandro Moura; Leite, Jorge Vieira de Mello; Papoti, Marcelo; Beneke, Ralph

    2016-11-01

    To test the hypotheses that the metabolic profile of table tennis is dominantly aerobic, anaerobic energy is related to the accumulated duration and intensity of rallies, and activity and metabolic profile are interrelated with the individual fitness profile determined via table tennis-specific tests. Eleven male experienced table tennis players (22 ± 3 y, 77.6 ± 18.9 kg, 177.1 ± 8.1 cm) underwent 2 simulated table tennis matches to analyze aerobic (W OXID ) energy, anaerobic glycolytic (W BLC ) energy, and phosphocreatine breakdown (W PCr ); a table tennis-specific graded exercise test to measure ventilatory threshold and peak oxygen uptake; and an exhaustive supramaximal table tennis effort to determine maximal accumulated deficit of oxygen. W OXID , W BLC , and W PCr corresponded to 96.5% ± 1.7%, 1.0% ± 0.7%, and 2.5% ± 1.4%, respectively. W OXID was interrelated with rally duration (r = .81) and number of shots per rally (r = .77), whereas match intensity was correlated with WPCr (r = .62) and maximal accumulated oxygen deficit (r = .58). The metabolic profile of table tennis is predominantly aerobic and interrelated with the individual fitness profile determined via table tennis-specific tests. Table tennis-specific ventilatory threshold determines the average oxygen uptake and overall W OXID , whereas table tennis-specific maximal accumulated oxygen deficit indicates the ability to use and sustain slightly higher blood lactate concentration and W BLC during the match.

  6. Oxygen uptake on-kinetics during six-minute walk test predicts short-term outcomes after off-pump coronary artery bypass surgery.

    PubMed

    Rocco, Isadora Salvador; Viceconte, Marcela; Pauletti, Hayanne Osiro; Matos-Garcia, Bruna Caroline; Marcondi, Natasha Oliveira; Bublitz, Caroline; Bolzan, Douglas William; Moreira, Rita Simone Lopes; Reis, Michel Silva; Hossne, Nelson Américo; Gomes, Walter José; Arena, Ross; Guizilini, Solange

    2017-12-26

    We aimed to investigate the ability of oxygen uptake kinetics to predict short-term outcomes after off-pump coronary artery bypass grafting. Fifty-two patients aged 60.9 ± 7.8 years waiting for off-pump coronary artery bypass surgery were evaluated. The 6-min walk test distance was performed pre-operatively, while simultaneously using a portable cardiopulmonary testing device. The transition of oxygen uptake kinetics from rest to exercise was recorded to calculate oxygen uptake kinetics fitting a monoexponential regression model. Oxygen uptake at steady state, constant time, and mean response time corrected by work rate were analysed. Short-term clinical outcomes were evaluated during the early post-operative of off-pump coronary artery bypass surgery. Multivariate analysis showed body mass index, surgery time, and mean response time corrected by work rate as independent predictors for short-term outcomes. The optimal mean response time corrected by work rate cut-off to estimate short-term clinical outcomes was 1.51 × 10 -3  min 2 /ml. Patients with slower mean response time corrected by work rate demonstrated higher rates of hypertension, diabetes, EuroSCOREII, left ventricular dysfunction, and impaired 6-min walk test parameters. The per cent-predicted distance threshold of 66% in the pre-operative was associated with delayed oxygen uptake kinetics. Pre-operative oxygen uptake kinetics during 6-min walk test predicts short-term clinical outcomes after off-pump coronary artery bypass surgery. From a clinically applicable perspective, a threshold of 66% of pre-operative predicted 6-min walk test distance indicated slower kinetics, which leads to longer intensive care unit and post-surgery hospital length of stay. Implications for rehabilitation Coronary artery bypass grafting is a treatment aimed to improve expectancy of life and prevent disability due to the disease progression; The use of pre-operative submaximal functional capacity test enabled the identification of patients with high risk of complications, where patients with delayed oxygen uptake kinetics exhibited worse short-term outcomes; Our findings suggest the importance of the rehabilitation in the pre-operative in order to "pre-habilitate" the patients to the surgical procedure; Faster oxygen uptake on-kinetics could be achieved by improving the oxidative capacity of muscles and cardiovascular conditioning through rehabilitation, adding better results following cardiac surgery.

  7. Maximal Oxygen Uptake, Sweating and Tolerance to Exercise in the Heat

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Castle, B. L.; Ruff, W. K.

    1972-01-01

    The physiological mechanisms that facilitate acute acclimation to heat have not been fully elucidated, but the result is the establishment of a more efficient cardiovascular system to increase heat dissipation via increased sweating that allows the acclimated man to function with a cooler internal environment and to extend his performance. Men in good physical condition with high maximal oxygen uptakes generally acclimate to heat more rapidly and retain it longer than men in poorer condition. Also, upon first exposure trained men tolerate exercise in the heat better than untrained men. Both resting in heat and physical training in a cool environment confer only partial acclimation when first exposed to work in the heat. These observations suggest separate additive stimuli of metabolic heat from exercise and environmental heat to increase sweating during the acclimation process. However, the necessity of utilizing physical exercise during acclimation has been questioned. Bradbury et al. (1964) have concluded exercise has no effect on the course of heat acclimation since increased sweating can be induced by merely heating resting subjects. Preliminary evidence suggests there is a direct relationship between the maximal oxygen uptake and the capacity to maintain thermal regulation, particularly through the control of sweating. Since increased sweating is an important mechanism for the development of heat acclimation, and fit men have high sweat rates, it follows that upon initial exposure to exercise in the heat, men with high maximal oxygen uptakes should exhibit less strain than men with lower maximal oxygen uptakes. The purpose of this study was: (1) to determine if men with higher maximal oxygen uptakes exhibit greater tolerance than men with lower oxygen uptakes during early exposure to exercise in the heat, and (2) to investigate further the mechanism of the relationship between sweating and maximal work capacity.

  8. Delivery Rate Affects Uptake of a Fluorescent Glucose Analog in Murine Metastatic Breast Cancer

    PubMed Central

    Rajaram, Narasimhan; Frees, Amy E.; Fontanella, Andrew N.; Zhong, Jim; Hansen, Katherine; Dewhirst, Mark W.; Ramanujam, Nirmala

    2013-01-01

    We demonstrate an optical strategy using intravital microscopy of dorsal skin flap window chamber models to image glucose uptake and vascular oxygenation in vivo. Glucose uptake was imaged using a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). SO2 was imaged using the differential absorption properties of oxygenated [HbO2] and deoxygenated hemoglobin [dHb]. This study was carried out on two sibling murine mammary adenocarcinoma lines, 4T1 and 4T07. 2-NBDG uptake in the 4T1 tumors was lowest when rates of delivery and clearance were lowest, indicating perfusion-limited uptake in poorly oxygenated tumor regions. For increasing rates of delivery that were still lower than the glucose consumption rate (as measured in vitro), both 2-NBDG uptake and the clearance rate from the tumor increased. When the rate of delivery of 2-NBDG exceeded the glucose consumption rate, 2-NBDG uptake decreased with any further increase in rate of delivery, but the clearance rate continued to increase. This inflection point was not observed in the 4T07 tumors due to an absence of low delivery rates close to the glucose consumption rate. In the 4T07 tumors, 2-NBDG uptake increased with increasing rates of delivery at low rates of clearance. Our results demonstrate that 2-NBDG uptake in tumors is influenced by the rates of delivery and clearance of the tracer. The rates of delivery and clearance are, in turn, dependent on vascular oxygenation of the tumors. Knowledge of the kinetics of tracer uptake as well as vascular oxygenation is essential to make an informed assessment of glucose demand of a tumor. PMID:24204635

  9. Toxicokinetics of PAHs in Hexagenia

    USGS Publications Warehouse

    Stehly, Guy R.; Landrum, Peter F.; Henry, Mary G.; Klemm, C.

    1990-01-01

    The clearance of oxygen from water is inversely and linearly related to the weight of the mayfly nymphs, but oxygen clearances were always much less than the uptake clearances of the PAHs. The high PAH uptake clearance compared to oxygen clearance implies a greater surface area or efficiency for PAH accumulation from water.

  10. The influence of tumor oxygenation on hypoxia imaging in murine squamous cell carcinoma using [64Cu]Cu-ATSM or [18F]Fluoromisonidazole positron emission tomography.

    PubMed

    Matsumoto, Ken-Ichiro; Szajek, Lawrence; Krishna, Murali C; Cook, John A; Seidel, Jurgen; Grimes, Kelly; Carson, Joann; Sowers, Anastasia L; English, Sean; Green, Michael V; Bacharach, Stephen L; Eckelman, William C; Mitchell, James B

    2007-04-01

    [64Cu]Cu(II)-ATSM (64Cu-ATSM) and [18F]-Fluoromisonidazole (18F-FMiso) tumor binding as assessed by positron emisson topography (PET) was used to determine the responsiveness of each probe to modulation in tumor oxygenation levels in the SCCVII tumor model. Animals bearing the SCCVII tumor were injected with 64Cu-ATSM or 18F-FMiso followed by dynamic small animal PET imaging. Animals were imaged with both agents using different inspired oxygen mixtures (air, 10% oxygen, carbogen) which modulated tumor hypoxia as independently assessed by the hypoxia marker pimonidazole. The extent of hypoxia in the SCCVII tumor as monitored by the pimonidazole hypoxia marker was found to be in the following order: 10% oxygen>air>carbogen. Tumor uptake of 64Cu-ATSM could not be changed if the tumor was oxygenated using carbogen inhalation 90 min post-injection suggesting irreversible cellular uptake of the 64Cu-ATSM complex. A small but significant paradoxical increase in 64Cu-ATSM tumor uptake was observed for animals breathing air or carbogen compared to 10% oxygen. There was a positive trend toward 18F-FMiso tumor uptake as a function of changing hypoxia levels in agreement with the pimonidazole data. 64Cu-ATSM tumor uptake was unable to predictably detect changes in varying amounts of hypoxia when oxygenation levels in SCCVII tumors were modulated. 18F-FMiso tumor uptake was more responsive to changing levels of hypoxia. While the mechanism of nitroimidazole binding to hypoxic cells has been extensively studied, the avid binding of Cu-ATSM to tumors may involve other mechanisms independent of hypoxia that warrant further study.

  11. A quantitative model for oxygen uptake and release in a family of hemeproteins.

    PubMed

    Bustamante, Juan P; Szretter, María E; Sued, Mariela; Martí, Marcelo A; Estrin, Darío A; Boechi, Leonardo

    2016-06-15

    Hemeproteins have many diverse functions that largely depend on the rate at which they uptake or release small ligands, like oxygen. These proteins have been extensively studied using either simulations or experiments, albeit only qualitatively and one or two proteins at a time. We present a physical-chemical model, which uses data obtained exclusively from computer simulations, to describe the uptake and release of oxygen in a family of hemeproteins, called truncated hemoglobins (trHbs). Through a rigorous statistical analysis we demonstrate that our model successfully recaptures all the reported experimental oxygen association and dissociation kinetic rate constants, thus allowing us to establish the key factors that determine the rates at which these hemeproteins uptake and release oxygen. We found that internal tunnels as well as the distal site water molecules control ligand uptake, whereas oxygen stabilization by distal site residues controls ligand release. Because these rates largely determine the functions of these hemeproteins, these approaches will also be important tools in characterizing the trHbs members with unknown functions. lboechi@ic.fcen.uba.ar Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Cerebral utilization of glucose, ketone bodies and oxygen in starving infant rats and the effect of intrauterine growth retardation.

    PubMed

    Dahlquist, G

    1976-10-01

    Cerebral arteriovenous differences of acetoacetate, D-beta-hydroxybutyrate, glucose, lactate and oxygen and brain DNA content was measured at 20 days of age in intrauterine growth retarded (IUGR) rats and normal littermates after 48 and 72 h of starvation. Cerebral blood flow (CBF) was measured with labeled microspheres in other comparable groups of IUGR and control rats. CBF was similar in IUGR and normal littermates (0.57+/-0.09 and 0.58+/-0.10 ml/min respectively). After 48 h of starvation, arterial glucose was significantly lower in IUGR than control animals but the arterial concentrations of ketone bodies were similar. After 48 h of starvation, cerebral arteriovenous difference of beta-hydroxybutyrate was significantly higher in control than IUGR rats also when expressed per mg brain DNA as was the fractional uptake of D-beta-hydroxybutyrate. After 72 h of starvation, arterial concentrations of ketone bodies were significantly lower in IUGR rats than controls but the fractional uptake of D-beta-hydroxybutyrate was increased compared to IUGR rats starved for 48 h. The average percentage of calculated total substrate uptake (mumol/min) accounted for by ketone bodies increased in control animals from 31.1% after 48 h of starvation to 41.0% after 72 h of starvation. In IUGR rats these percentage values were 26.5 and 25.7 respectively. After 72 h of starvation the fraction of total cerebral uptake of substrates accounted for by ketone bodies was significantly higher in control that IUGR rats. As total cerebral uptake of substrates was similar between IUGR and control animals it is concluded that IUGR rats are more dependent on glucose as a substrate for the brain during starvation.

  13. Spectrophotometric determination of H2O2-generating oxidases using oxyhemoglobin as oxygen donor and indicator.

    PubMed

    Bârzu, O; Dânşoreanu, M

    1980-01-01

    1. Spectrophotometric determination of oxygen uptake using oxyhemoglobin as oxygen donor and indicator was used for assay of H2O2-generating oxidases like monoamine oxidase and glucose oxidase. 2. In order to decompose H2O2 formed during the oxygen uptake, catalase and methanol (or ethanol) was added to the respiratory system. At pH values higher than 7.5 the oxydation of deoxygenated hemoglobin to methemoglobin was less than 3%. 2. Oxidases with low Km for oxygen can be assayed using the spectrophotometric method if suitable correction factors are introduced into the calculation of oxygen uptake. The correction factor represents the ratio of the rate of formation (or disappearance) of one of the reactants and the rate of oxyhemoglobin deoxygenation, measured under identical experimental conditions.

  14. Aerosol optical hygroscopicity measurements during the 2010 CARES Campaign

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.; Radney, J. G.; Lum, J.; Kolesar, K. R.; Cziczo, D. J.; Pekour, M. S.; Zhang, Q.; Setyan, A.; Zelenyuk, A.; Cappa, C. D.

    2014-12-01

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 CARES study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GF) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles, yielding κ = 0.1-0.15 and 0.9-1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.

  15. [Effects of Triton X-100 on the oxygen uptake rate of photosystem I particles treated at 70 degrees C].

    PubMed

    Chen, Wei; Yang, Zhen-Le; Li, Liang-Bi; Kuang, Ting-Yun

    2005-06-01

    The characteristics including oxygen uptake rates, fluorescence spectra and absorption spectra of photosystem I particles with or without Triton-X 100 treatment before or after the incubation at 70 degrees C for 10 min were compared. The oxygen uptake rates of photosystem I particles decreased after being incubated at 70 degrees C for 10 min, which could be recovered by the addition of Triton-X 100. Singlet oxygen was formed when the light-harvesting complex I was separated from the core complex of photosystem I, which resulted in high oxygen uptake rate. There was much difference in the fluorescence spectra of photosystem I particles between photosystem I particles treated with Triton-X 100 after the incubation at 70 degrees C for 10 min or not, which implies the ability of Triton-X 100 to promote the recovery of photosystem I particles after the incubation at 70 degrees C for 10 min.

  16. Oxidative processes in soybean and pea seeds: effect of light, temperature, and water content

    NASA Technical Reports Server (NTRS)

    Vertucci, C. W.; Leopold, A. C.

    1987-01-01

    Oxidative processes are probable determinants of longevity of seeds in storage. Measurements of actual oxygen uptake rates were made for soybean and pea seeds as a comparison of short and long lived seeds when light, temperature, and moisture contents were varied. In both peas and soybeans, the oxygen uptake was depressed at low temperatures (<16 degrees C) and low water contents (< 0.25 gram H2O per gram dry weight). Apparent activation energies under these conditions are very high, while apparent activation energies of seeds at higher water contents and at temperatures greater than 22 degrees C are much less. Light enhances the level of oxygen uptake in pea, but reduces the level of oxygen uptake in soybean. The complexities of the interactions of oxygen uptake with environmental conditions in soybean compared to pea suggest that oxidative processes occur in soybean at low water contents, but are essentially absent in pea. It is suggested that the additional oxidative processes in soybean with moisture contents between 0.10 and 0.24 gram per gram may contribute to the poorer longevity of soybean seed compared to pea seed.

  17. Evaluation of Maximal Oxygen Uptake and Submaximal Estimates of VO2max Before, During, and After Long Duration International Space Station Missions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Evaluation of Maximal Oxygen Uptake and Submaximal Estimates of VO2max Before, During, and After Long Duration International Space Station Missions (VO2max) will document changes in maximum oxygen uptake for crewmembers onboard the International Space Station (ISS) on long-duration missions, greater than 90 days. This investigation will establish the characteristics of VO2max during flight and assess the validity of the current methods of tracking aerobic capacity change during and following the ISS missions.

  18. Impact of beta-blockers on cardiopulmonary exercise testing in patients with advanced liver disease.

    PubMed

    Wallen, M P; Hall, A; Dias, K A; Ramos, J S; Keating, S E; Woodward, A J; Skinner, T L; Macdonald, G A; Arena, R; Coombes, J S

    2017-10-01

    Patients with advanced liver disease may develop portal hypertension that can result in variceal haemorrhage. Beta-blockers reduce portal pressure and minimise haemorrhage risk. These medications may attenuate measures of cardiopulmonary performance, such as the ventilatory threshold and peak oxygen uptake measured via cardiopulmonary exercise testing. To determine the effect of beta-blockers on cardiopulmonary exercise testing variables in patients with advanced liver disease. This was a cross-sectional analysis of 72 participants who completed a cardiopulmonary exercise test before liver transplantation. All participants remained on their usual beta-blocker dose and timing prior to the test. Variables measured during cardiopulmonary exercise testing included the ventilatory threshold, peak oxygen uptake, heart rate, oxygen pulse, the oxygen uptake efficiency slope and the ventilatory equivalents for carbon dioxide slope. Participants taking beta-blockers (n = 28) had a lower ventilatory threshold (P <.01) and peak oxygen uptake (P = .02), compared to participants not taking beta-blockers. After adjusting for age, the model of end-stage liver-disease score, liver-disease aetiology, presence of refractory ascites and ventilatory threshold remained significantly lower in the beta-blocker group (P = .04). The oxygen uptake efficiency slope was not impacted by beta-blocker use. Ventilatory threshold is reduced in patients with advanced liver disease taking beta-blockers compared to those not taking the medication. This may incorrectly risk stratify patients on beta-blockers and has implications for patient management before and after liver transplantation. The oxygen uptake efficiency slope was not influenced by beta-blockers and may therefore be a better measure of cardiopulmonary performance in this patient population. © 2017 John Wiley & Sons Ltd.

  19. Oxygen Uptake. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Wooley, John F.

    Biological waste treatment in the activated sludge process is based on the ability of microorganisms to use dissolved oxygen in breaking down soluble organic substances. The oxygen uptake test is a means of measuring the respiration rate of microorganisms in this process. Designed for individuals who have completed National Pollutant Discharge…

  20. An Inexpensive Electrode and Cell for Measurement of Oxygen Uptake in Chemical and Biochemical Systems.

    ERIC Educational Resources Information Center

    Brunet, Juan E.; And Others

    1983-01-01

    The continuous measurement of oxygen consumption in an enzymatic reaction is a frequent experimental fact and extremely important in the enzymatic activity of oxygenase. An electrochemical system, based on a polarographic method, has been developed to monitor the oxygen uptake. The system developed and electrode used are described. (JN)

  1. Cardiorespiratory deconditioning with static and dynamic leg exercise during bed rest

    NASA Technical Reports Server (NTRS)

    Stremel, R. W.; Convertino, V. A.; Bernauer, E. M.; Greenleaf, J. E.

    1976-01-01

    Results are presented for an experimental study designed to compare the effects of heavy static and dynamic exercise training during 14 days of bed rest on the cardiorespiratory responses to submaximal and maximal exercise performed by seven healthy men aged 19-22 yr. The parameters measured were submaximal and maximal oxygen uptake, minute ventilation, heart rate, and plasma volume. The results indicate that exercise alone during bed rest reduces but does not eliminate the reduction in maximal oxygen uptake. An additional positive hydrostatic effect is therefore necessary to restore maximal oxygen uptake to ambulatory control levels. The greater protective effect of static exercise on maximal oxygen uptake is probably due to a greater hydrostatic component from the isometric muscular contraction. Neither the static nor the dynamic exercise training regimes are found to minimize the changes in all the variables studied, thereby suggesting a combination of static and dynamic exercises.

  2. Effect of salinity on oxygen consumption in fishes: a review.

    PubMed

    Ern, R; Huong, D T T; Cong, N V; Bayley, M; Wang, T

    2014-04-01

    The effect of salinity on resting oxygen uptake was measured in the perch Perca fluviatilis and available information on oxygen uptake in teleost species at a variety of salinities was reviewed. Trans-epithelial ion transport against a concentration gradient requires energy and exposure to salinities osmotically different from the body fluids therefore imposes an energetic demand that is expected to be lowest in brackish water compared to fresh and sea water. Across species, there is no clear trend between oxygen uptake and salinity, and estimates of cost of osmotic and ionic regulation vary from a few per cent to >30% of standard metabolism. © 2014 The Fisheries Society of the British Isles.

  3. Microrespirometer chamber for determinations of viability in cell and organ cultures.

    PubMed Central

    Gabridge, M G

    1976-01-01

    The effects of chemical, physical, and infectious cytotoxic agents on primary and cultured cells were evaluated by measurements of oxygen uptake for various time periods. A newly developed respirometer used a Clark oxygen electrode in a 1.0-ml chamber, with provisions for constant mixing and for temperature control of both the sample and electrode chambers. The device was unique because the electrode and instrumentation were provided by a clinical blood-gas analyzer. Oxygen uptake by blank controls was negligible, whereas cells and tissue consumed oxygen at rates of approximately 1 to 5 mul/h in a dose- and temperature-dependent fashion. Cyanide, heat, and freeze-thaw lysis reduced the oxygen uptake to less than 0.6 mul/mg per h. Infection of trachea organ cultures with Mycoplasma pneumoniae significantly reduced relative ciliary activity, tetrazolium reduction capacity, and oxygen consumption in a coordinated fashion. Images PMID:985826

  4. Blood flow regulation and oxygen uptake during high-intensity forearm exercise.

    PubMed

    Nyberg, S K; Berg, O K; Helgerud, J; Wang, E

    2017-04-01

    The vascular strain is very high during heavy handgrip exercise, but the intensity and kinetics to reach peak blood flow, and peak oxygen uptake, are uncertain. We included 9 young (25 ± 2 yr) healthy males to evaluate blood flow and oxygen uptake responses during continuous dynamic handgrip exercise with increasing intensity. Blood flow was measured using Doppler-ultrasound, and venous blood was drawn from a deep forearm vein to determine arteriovenous oxygen difference (a-vO 2diff ) during 6-min bouts of 60, 80, and 100% of maximal work rate (WR max ), respectively. Blood flow and oxygen uptake increased ( P < 0.05) from 60%WR max [557 ± 177(SD) ml/min; 56.0 ± 21.6 ml/min] to 80%WR max (679 ± 190 ml/min; 70.6 ± 24.8 ml/min), but no change was seen from 80%WR max to 100%WR max Blood velocity (49.5 ± 11.5 to 58.1 ± 11.6 cm/s) and brachial diameter (0.49 ± 0.05 to 0.50 ± 0.06 cm) showed concomitant increases ( P < 0.05) with blood flow from 60% to 80%WR max, whereas no differences were observed in a-vO 2diff Shear rate also increased ( P < 0.05) from 60% (822 ± 196 s -1 ) to 80% (951 ± 234 s -1 ) of WR max The mean response time (MRT) was slower ( P < 0.05) for blood flow (60%WR max 50 ± 22 s; 80%WR max 51 ± 20 s; 100%WR max 51 ± 23 s) than a-vO 2diff (60%WR max 29 ± 9 s; 80%WR max 29 ± 5 s; 100%WR max 20 ± 5 s), but not different from oxygen uptake (60%WR max 44 ± 25 s; 80%WR max 43 ± 14 s; 100%WR max 41 ± 32 s). No differences were observed in MRT for blood flow or oxygen uptake with increased exercise intensity. In conclusion, when approaching maximal intensity, oxygen uptake appeared to reach a critical level at ~80% of WR max and be regulated by blood flow. This implies that high, but not maximal, exercise intensity may be an optimal stimulus for shear stress-induced small muscle mass training adaptations. NEW & NOTEWORTHY This study evaluated blood flow regulation and oxygen uptake during small muscle mass forearm exercise with high to maximal intensity. Despite utilizing only a fraction of cardiac output, blood flow reached a plateau at 80% of maximal work rate and regulated peak oxygen uptake. Furthermore, the results revealed that muscle contractions dictated bulk oxygen delivery and yielded three times higher peak blood flow in the relaxation phase compared with mean values. Copyright © 2017 the American Physiological Society.

  5. Energy system contributions in middle-distance running events.

    PubMed

    Hill, D W

    1999-06-01

    The aim of this study was to estimate the energy contributions in middle-distance running events for male and female university athletes. The oxygen uptake (VO2) response during high-speed running was measured directly during exhaustive treadmill tests. Muscle mass was estimated using anthropometry. Each athlete completed an average of three races over 400 m, 800 m or 1500 m. Five minutes after each race, they provided a blood sample for determination of blood lactate concentration. For each race, energy cost, which was expressed as oxygen equivalents, was calculated as the sum of the aerobic and anaerobic components. The aerobic contribution was calculated as the sum of oxygen stores (2.3 ml O2.kg body mass-1) and total VO2 (based on the VO2 response to treadmill running). The anaerobic contribution was calculated as the sum of the energy available from phosphocreatine stores (37 ml O2.kg muscle mass-1) and the energy from glycolysis (3.0 ml O2.kg body mass-1 per mmol.l-1 increase in blood lactate concentration). For the women, the anaerobic energy contributions for the 400 m, 800 m and 1500 m averaged 62%, 33% and 17%, respectively. For the men, the anaerobic contributions averaged 63%, 39% and 20%, respectively. This information will help coaches and sport scientists to design and implement individualized training programmes.

  6. Influence of simulated weightlessness on maximal oxygen uptake of untrained rats

    NASA Technical Reports Server (NTRS)

    Overton, J. Michael; Tipton, Charles M.

    1987-01-01

    The purpose of this study was to determine the effect of hindlimb suspension on maximal oxygen uptake of rodents. Male Sprague-Dawley rats were assigned to head-down (HD) suspension, horizontal (HOZ) suspension, or cage (C) control for 6-9 days. Rats were tested for maximal oxygen uptake before and after surgical instrumentation (Doppler flow probes, carotid and jugular cannulae), and after suspension. Body weight was significantly decreased after suspension in both HD and HOZ groups, but was significantly increased in the C group. Absolute maximal O2 uptake (ml/min) was not different in the C group. However, because of their increased weight, relative maximal O2 uptake (ml/min per kg) was significantly reduced. In contrast, both relative and absolute maximal O2 uptake were significantly lower, following suspension, for the HD and HOZ groups. These preliminary results support the use of hindlimb suspension as an effective model to study the mechanism(s) of cardiovascular deconditioning.

  7. Estimating the effect of burrowing shrimp on deep-sea sediment community oxygen consumption.

    PubMed

    Leduc, Daniel; Pilditch, Conrad A

    2017-01-01

    Sediment community oxygen consumption (SCOC) is a proxy for organic matter processing and thus provides a useful proxy of benthic ecosystem function. Oxygen uptake in deep-sea sediments is mainly driven by bacteria, and the direct contribution of benthic macro- and mega-infauna respiration is thought to be relatively modest. However, the main contribution of infaunal organisms to benthic respiration, particularly large burrowing organisms, is likely to be indirect and mainly driven by processes such as feeding and bioturbation that stimulate bacterial metabolism and promote the chemical oxidation of reduced solutes. Here, we estimate the direct and indirect contributions of burrowing shrimp ( Eucalastacus cf. torbeni ) to sediment community oxygen consumption based on incubations of sediment cores from 490 m depth on the continental slope of New Zealand. Results indicate that the presence of one shrimp in the sediment is responsible for an oxygen uptake rate of about 40 µmol d -1 , only 1% of which is estimated to be due to shrimp respiration. We estimate that the presence of ten burrowing shrimp m -2 of seabed would lead to an oxygen uptake comparable to current estimates of macro-infaunal community respiration on Chatham Rise based on allometric equations, and would increase total sediment community oxygen uptake by 14% compared to sediment without shrimp. Our findings suggest that oxygen consumption mediated by burrowing shrimp may be substantial in continental slope ecosystems.

  8. CONTINUOUS, AUTOMATED AND SIMULTANEOUS MEASUREMENT OF OXYGEN UPTAKE AND CARBON DIOXIDE EVOLUTION IN BIOLOGICAL SYSTEMS

    EPA Science Inventory

    Commercial respirometers are capable of continuously and automatically measuring oxygen uptake in bioreactors. A method for continuously and automatically measuring carbon dioxide evolution can be retrofitted to commercial respirometers. Continuous and automatic measurements of...

  9. Effectiveness of Resistance Circuit-Based Training for Maximum Oxygen Uptake and Upper-Body One-Repetition Maximum Improvements: A Systematic Review and Meta-Analysis.

    PubMed

    Muñoz-Martínez, Francisco Antonio; Rubio-Arias, Jacobo Á; Ramos-Campo, Domingo Jesús; Alcaraz, Pedro E

    2017-12-01

    It is well known that concurrent increases in both maximal strength and aerobic capacity are associated with improvements in sports performance as well as overall health. One of the most popular training methods used for achieving these objectives is resistance circuit-based training. The objective of the present systematic review with a meta-analysis was to evaluate published studies that have investigated the effects of resistance circuit-based training on maximum oxygen uptake and one-repetition maximum of the upper-body strength (bench press exercise) in healthy adults. The following electronic databases were searched from January to June 2016: PubMed, Web of Science and Cochrane. Studies were included if they met the following criteria: (1) examined healthy adults aged between 18 and 65 years; (2) met the characteristics of resistance circuit-based training; and (3) analysed the outcome variables of maximum oxygen uptake using a gas analyser and/or one-repetition maximum bench press. Of the 100 articles found from the database search and after all duplicates were removed, eight articles were analysed for maximum oxygen uptake. Of 118 healthy adults who performed resistance circuit-based training, maximum oxygen uptake was evaluated before and after the training programme. Additionally, from the 308 articles found for one-repetition maximum, eight articles were analysed. The bench press one-repetition maximum load, of 237 healthy adults who performed resistance circuit-based training, was evaluated before and after the training programme. Significant increases in maximum oxygen uptake and one-repetition maximum bench press were observed following resistance circuit-based training. Additionally, significant differences in maximum oxygen uptake and one-repetition maximum bench press were found between the resistance circuit-based training and control groups. The meta-analysis showed that resistance circuit-based training, independent of the protocol used in the studies, is effective in increasing maximum oxygen uptake and one-repetition maximum bench press in healthy adults. However, its effect appears to be larger depending on the population and training characteristics. For large effects in maximum oxygen uptake, the programme should include ~14-30 sessions for ~6-12 weeks, with each session lasting at least ~20-30 min, at intensities between ~60 and 90% one-repetition maximum. For large effects in one-repetition maximum bench press, the data indicate that intensity should be ~30-60% one-repetition maximum, with sessions lasting at least ~22.5-60 min. However, the lower participant's baseline fitness level may explain the lighter optimal loads used in the circuit training studies where greater strength gains were reported.

  10. Cardiorespiratory performance during prolonged swimming tests with salmonids: a perspective on temperature effects and potential analytical pitfalls.

    PubMed

    Farrell, A P

    2007-11-29

    A prolonged swimming trial is the most common approach in studying steady-state changes in oxygen uptake, cardiac output and tissue oxygen extraction as a function of swimming speed in salmonids. The data generated by these sorts of studies are used here to support the idea that a maximum oxygen uptake is reached during a critical swimming speed test. Maximum oxygen uptake has a temperature optimum. Potential explanations are advanced to explain why maximum aerobic performance falls off at high temperature. The valuable information provided by critical swimming tests can be confounded by non-steady-state swimming behaviours, which typically occur with increasing frequency as salmonids approach fatigue. Two major concerns are noted. Foremost, measurements of oxygen uptake during swimming can considerably underestimate the true cost of transport near critical swimming speed, apparently in a temperature-dependent manner. Second, based on a comparison with voluntary swimming ascents in a raceway, forced swimming trials in a swim tunnel respirometer may underestimate critical swimming speed, possibly because fish in a swim tunnel respirometer are unable to sustain a ground speed.

  11. Dynamics and Thermochemistry of Oxygen Uptake by a Mixed Ce-Pr Oxide

    NASA Astrophysics Data System (ADS)

    Sinev, M. Yu.; Fattakhova, Z. T.; Bychkov, V. Yu.; Lomonosov, V. I.; Gordienko, Yu. A.

    2018-03-01

    The dynamics of oxygen uptake by mixed Ce0.55Pr0.45O2-x oxide is studied in a pulsed oxygen supply mode using in situ high-temperature heat flow differential scanning calorimetry. It is stated that the oxidation proceeds in two regimes: a fast one at the beginning of the oxidation process, and a slow one, which is controlled by the diffusion of oxygen through the bulk of the solid at the later stages of the process. Analysis of the shape of calorimetric profiles reveals some processes, accompanied by heat release, that occur in the sample in the absence of oxygen in the gas phase. These could be due to both the redistribution of consumed oxygen in the oxide lattice and the lattice relaxation associated with the transformation of phases with different arrangements of oxygen vacancies in them. The heat effect (which diminishes from 60 to 40 kJ/mol in the course of oxygen uptake) associated with the oxidation of the reduced form of mixed Ce-Pr oxide, corresponds to the oxidation of praseodymium ions from (3+) to (4+).

  12. High energy deficit in an ultraendurance athlete in a 24-hour ultracycling race

    PubMed Central

    Rodríguez, Ferran A.; Iglesias, Xavier; Benítez, Adolfo; Marina, Míchel; Padullés, Josep M.; Torrado, Priscila; Vázquez, Jairo; Knechtle, Beat

    2012-01-01

    This case study examined the nutritional behavior and energy balance in an official finisher of a 24-hour ultracycling race. The food and beverages consumed by the cyclist were continuously weighed and recorded to estimate intake of energy, macronutrients, sodium, and caffeine. In addition, during the race, heart rate was continuously monitored. Energy expenditure was assessed using a heart rate–oxygen uptake regression equation obtained previously from a laboratory test. The athlete (39 years, 175.6 cm, 84.2 kg, maximum oxygen uptake, 64 mL/kg/min) cycled during 22 h 22 min, in which he completed 557.3 km with 8760 m of altitude at an average speed of 25.1 km/h. The average heart rate was 131 beats/min. Carbohydrates were the main macronutrient intake (1102 g, 13.1 g/kg); however, intake was below current recommendations. The consumption of protein and fat was 86 g and 91 g, respectively. He ingested 20.7 L (862 mL/h) of fluids, with sport drinks the main fluid used for hydration. Sodium concentration in relation to total fluid intake was 34.0 mmol/L. Caffeine consumption over the race was 231 mg (2.7 mg/kg). During the race, he expended 15,533 kcal. Total energy intake was 5571 kcal, with 4058 (73%) and 1513 (27%) kcal derived from solids and fluids, respectively. The energy balance resulted in an energy deficit of 9915 kcal. PMID:22481841

  13. Quadriceps oxygenation during isometric exercise in sailing.

    PubMed

    Vogiatzis, I; Tzineris, D; Athanasopoulos, D; Georgiadou, O; Geladas, N

    2008-01-01

    The aim of the present study was to investigate why blood lactate after prolonged quadriceps contraction during hiking is only marginally increased. Eight sailors performed five 3-min hiking bouts interspersed with 5-s recovery periods. Whole body oxygen uptake, heart rate and lactate were recorded, along with continuous-wave near-infrared spectroscopy measures of quadriceps oxygenation. The time for 50% re-oxygenation was also assessed as an indication of the degree of localized oxygen delivery stress. Hiking elicited a significant (p = 0.001) increase in mean (+/- SD) heart rate (124 +/- 10 beats . min (-1)) which was accompanied by a disproportionately low oxygen uptake (12 +/- 2 ml.kg(-1).min(-1)). Lactate was significantly (p = 0.001) increased throughout hiking manoeuvres, though post-exercise it remained low (3.2 +/- 0.9 mmol.l(-1)). During the hiking bouts mean quadriceps oxygenation was significantly (p = 0.001) reduced compared to baseline (by 33 +/- 5%), indicating an imbalance between muscle oxygen accessibility and oxygen demand. During rest intervals quadriceps oxygenation was partially restored. After the end of the final bout the time for 50 % re-oxygenation was only 8 +/- 2 s, whereas recovery of quadriceps oxygenation and oxygen uptake was completed within 3 min. We conclude that the observed low lactate could be attributed to the small oxygen and energy deficits during hiking as the muscles' oxygen accessibility is presumably partially restored during the brief rest intervals.

  14. Vertical migration of aggregated aerobic and anaerobic ammonium oxidizers enhances oxygen uptake in a stagnant water layer.

    PubMed

    Vlaeminck, Siegfried E; Dierick, Katleen; Boon, Nico; Verstraete, Willy

    2007-07-01

    Ammonium can be removed as dinitrogen gas by cooperating aerobic and anaerobic ammonium-oxidizing bacteria (AerAOB and AnAOB). The goal of this study was to verify putative mutual benefits for aggregated AerAOB and AnAOB in a stagnant freshwater environment. In an ammonium fed water column, the biological oxygen consumption rate was, on average, 76 kg O(2) ha(-1) day(-1). As the oxygen transfer rate of an abiotic control column was only 17 kg O(2) ha(-1) day(-1), biomass activity enhanced the oxygen transfer. Increasing the AnAOB gas production increased the oxygen consumption rate with more than 50% as a result of enhanced vertical movement of the biomass. The coupled decrease in dissolved oxygen concentration increased the diffusional oxygen transfer from the atmosphere in the water. Physically preventing the biomass from rising to the upper water layer instantaneously decreased oxygen and ammonium consumption and even led to the occurrence of some sulfate reduction. Floating of the biomass was further confirmed to be beneficial, as this allowed for the development of a higher AerAOB and AnAOB activity, compared to settled biomass. Overall, the results support mutual benefits for aggregated AerAOB and AnAOB, derived from the biomass uplifting effect of AnAOB gas production.

  15. A comparison of methods to estimate anaerobic capacity: Accumulated oxygen deficit and W' during constant and all-out work-rate profiles.

    PubMed

    Muniz-Pumares, Daniel; Pedlar, Charles; Godfrey, Richard; Glaister, Mark

    2017-12-01

    This study investigated (i) whether the accumulated oxygen deficit (AOD) and curvature constant of the power-duration relationship (W') are different during constant work-rate to exhaustion (CWR) and 3-min all-out (3MT) tests and (ii) the relationship between AOD and W' during CWR and 3MT. Twenty-one male cyclists (age: 40 ± 6 years; maximal oxygen uptake [V̇O 2max ]: 58 ± 7 ml · kg -1 · min -1 ) completed preliminary tests to determine the V̇O 2 -power output relationship and V̇O 2max . Subsequently, AOD and W' were determined as the difference between oxygen demand and oxygen uptake and work completed above critical power, respectively, in CWR and 3MT. There were no differences between tests for duration, work, or average power output (P ≥ 0.05). AOD was greater in the CWR test (4.18 ± 0.95 vs. 3.68 ± 0.98 L; P = 0.004), whereas W' was greater in 3MT (9.55 ± 4.00 vs. 11.37 ± 3.84 kJ; P = 0.010). AOD and W' were significantly correlated in both CWR (P < 0.001, r = 0.654) and 3MT (P < 0.001, r = 0.654). In conclusion, despite positive correlations between AOD and W' in CWR and 3MT, between-test differences in the magnitude of AOD and W', suggest that both measures have different underpinning mechanisms.

  16. Gaseous oxygen uptake in porous media at different moisture contents and airflow velocities.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G; Kalluri, Prasad N V

    2009-06-01

    The presence and distribution of water in the pore space is a critical factor for flow and transport of gases through unsaturated porous media. The water content also affects the biological activity necessary for treatment of polluted gas streams in biofilters. In this research, microbial activity and quantity of inactive volume in a porous medium as a function of moisture content and gas flow rate were investigated. Yard waste compost was used as a test medium, and oxygen uptake rate measurements were used to quantify microbial activity and effective active compost volume using batch and column flow-through systems. Compost water contents were varied from air-dry to field capacity and gas flows ranged from 0.2 to 2 L x min(-1). The results showed that overall microbial activity and the relative fraction of active compost medium volume increased with airflow velocity for all levels of water content up to a certain flow rate above which the oxygen uptake rate assumed a constant value independent of gas flow. The actual value of the maximum oxygen uptake rate was controlled by the water content. The oxygen uptake rate also increased with increasing water content and reached a maximum between 42 and 48% volumetric water content, above which it decreased, again likely because of formation of inactive zones in the compost medium. Overall, maximum possible oxygen uptake rate as a function of gas flow rate across all water contents and gas flows could be approximated by a linear expression. The relative fraction of active volume also increased with gas flow rate and reached approximately 80% for the highest gas flows used.

  17. The role of exercise testing in heart failure.

    PubMed

    Swedberg, K; Gundersen, T

    1993-01-01

    The objectives of exercise testing in congestive heart failure (CHF) may be summarized as follows: (a) detect impaired cardiac performance, (b) grade severity of cardiac failure and classify functional capability, and (c) assess effects of interventions. Several different methods are available to make these assessments, and we have to ask ourselves how well exercise testing achieves these objectives. It has to be kept in mind that the power generated by the exercising muscles is dependent on the oxygen delivery to the skeletal muscles. Oxygen uptake is the result of an integrated performance of the lungs, heart, and peripheral circulation. In patients, as well as in normal subjects, oxygen uptake is related to hemodynamic indices such as cardiac output, stroke volume, or exercise duration when a stepwise regulated maximal exercise protocol is used. However, there are major differences in the concept of a true maximum in normal subjects versus heart failure patients. Fit-normal subjects will achieve a real maximal oxygen uptake, whereas patients may stop testing before a maximum is reached because of symptoms such as dyspnea or leg fatigue. Therefore, it is better if the actual oxygen uptake can be measured. "Peak" rather than true maximal oxygen uptake has been suggested for the classification of the severity of heart failure. Peripheral factors modify the cardiac output through such factors as vascular resistance, organ function, and hormonal release. Maximal exercise will stress the cardiovascular system to a point where the weakest chain will impose a limiting effect.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Determinants of maximal oxygen uptake (VO2 max) in fire fighter testing.

    PubMed

    Vandersmissen, G J M; Verhoogen, R A J R; Van Cauwenbergh, A F M; Godderis, L

    2014-07-01

    The aim of this study was to evaluate current daily practice of aerobic capacity testing in Belgian fire fighters. The impact of personal and test-related parameters on the outcome has been evaluated. Maximal oxygen uptake (VO2 max) results of 605 male fire fighters gathered between 1999 and 2010 were analysed. The maximal cardio respiratory exercise tests were performed at 22 different centres using different types of tests (tread mill or bicycle), different exercise protocols and measuring equipment. Mean VO2 max was 43.3 (SD = 9.8) ml/kg.min. Besides waist circumference and age, the type of test, the degree of performance of the test and the test centre were statistically significant determinants of maximal oxygen uptake. Test-related parameters have to be taken into account when interpreting and comparing maximal oxygen uptake tests of fire fighters. It highlights the need for standardization of aerobic capacity testing in the medical evaluation of fire fighters. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  19. Fluid-electrolyte shifts and maximal oxygen uptake in man at simulated altitude /2,287 m/

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Adams, W. C.; Juhos, L.

    1978-01-01

    Experiments were conducted on six trained distance runners (21-23 yr) subjected to an eight-day dietary control at sea level, followed by an eight-day stay in an altitude chamber (2287-m altitude) and a four-day recovery at sea level. Fluid and electrolyte shifts during exercise at altitude were evaluated to gain insight into the mechanism of reduction in working capacity. The results are discussed in terms of resting fluid volumes and blood constituents, maximal exercise variables, and maximal exercise fluid-electrolyte shifts. Since there are no significant changes in fluid balance or resting plasma volume (PV) at altitude, it is concluded that neither these nor the excessive PV shifts with exercise contribute to the reduction in maximal oxygen uptake at altitude. During altitude exposure the percent loss in PV is found to follow the percent reduction in maximal oxygen uptake; however, on the first day of recovery the percent change in PV remains depressed while maximal oxygen uptake returns to control levels.

  20. Nonoxidative Glucose Consumption during Focal Physiologic Neural Activity

    NASA Astrophysics Data System (ADS)

    Fox, Peter T.; Raichle, Marcus E.; Mintun, Mark A.; Dence, Carmen

    1988-07-01

    Brain glucose uptake, oxygen metabolism, and blood flow in humans were measured with positron emission tomography, and a resting-state molar ratio of oxygen to glucose consumption of 4.1:1 was obtained. Physiological neural activity, however, increased glucose uptake and blood flow much more (51 and 50 percent, respectively) than oxygen consumption (5 percent) and produced a molar ratio for the increases of 0.4:1. Transient increases in neural activity cause a tissue uptake of glucose in excess of that consumed by oxidative metabolism, acutely consume much less energy than previously believed, and regulate local blood flow for purposes other than oxidative metabolism.

  1. Parmitano in Columbus module during Oxygen Uptake measurement session

    NASA Image and Video Library

    2013-10-02

    ISS037-E-004950 (2 Oct. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 37 flight engineer, performs an oxygen uptake measurement session in the Columbus laboratory of the International Space Station. He is wearing a Pulmonary Function System (PFS) face mask during the session.

  2. Estimation of physical work load by statistical analysis of the heart rate in a conveyor-belt worker.

    PubMed

    Kontosic, I; Vukelić, M; Pancić, M; Kunisek, J

    1994-12-01

    Physical work load was estimated in a female conveyor-belt worker in a bottling plant. Estimation was based on continuous measurement and on calculation of average heart rate values in three-minute and one-hour periods and during the total measuring period. The thermal component of the heart rate was calculated by means of the corrected effective temperature, for the one-hour periods. The average heart rate at rest was also determined. The work component of the heart rate was calculated by subtraction of the resting heart rate and the heart rate measured at 50 W, using a regression equation. The average estimated gross energy expenditure during the work was 9.6 +/- 1.3 kJ/min corresponding to the category of light industrial work. The average estimated oxygen uptake was 0.42 +/- 0.06 L/min. The average performed mechanical work was 12.2 +/- 4.2 W, i.e. the energy expenditure was 8.3 +/- 1.5%.

  3. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.; Radney, J. G.; Lum, J.; Kolesar, K. R.; Cziczo, D. J.; Pekour, M. S.; Zhang, Q.; Setyan, A.; Zelenyuk, A.; Cappa, C. D.

    2015-04-01

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined here as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1-0.15 and 0.9-1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.

  4. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    DOE PAGES

    Atkinson, D. B.; Radney, J. G.; Lum, J.; ...

    2015-04-17

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined heremore » as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Furthermore, analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.« less

  5. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, D. B.; Radney, J. G.; Lum, J.

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GFs) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles (defined heremore » as particles with aerodynamic diameters between 1 and 2.5 microns), yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA κ values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea-salt-containing particles in this size range. Furthermore, analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.« less

  6. Alterations in Strength and Maximal Oxygen Uptake Consequent to Nautilus Circuit Weight Training.

    ERIC Educational Resources Information Center

    Messier, Stephen P.; Dill, Mary Elizabeth

    1985-01-01

    The study compared the effects on muscular strength and maximal oxygen uptake of a Nautilus circuit weight training program, a free weight strength training program, and a running program. Nautilus circuit weight training appears to be equally effective for a training period of short duration. (MT)

  7. Maximum Oxygen Uptake Determination in Insulin-Dependent Diabetes Mellitus.

    ERIC Educational Resources Information Center

    Fremion, Amy S.; And Others

    1987-01-01

    A study of 10 children with insulin-dependent diabetes mellitus performing a maximum-effort cycling test indicated blood glucose levels did not change appreciably during test, while maximal oxygen uptake was substandard for their age groups. Findings suggest patients in fair to poor metabolic control can tolerate stress testing without…

  8. Relationship between oxygen cost of walking and level of walking disability after stroke: An experimental study.

    PubMed

    Polese, Janaine C; Ada, Louise; Teixeira-Salmela, Luci F

    2018-01-01

    Since physical inactivity is the major risk factor for recurrent stroke, it is important to understand how level of disability impacts oxygen uptake by people after stroke. This study investigated the nature of the relationship between level of disability and oxygen cost in people with chronic stroke. Level of walking disability was measured as comfortable walking speed using the 10-m Walk Test reported in m/s with 55 ambulatory people 2 years after stroke. Oxygen cost was measured during 3 walking tasks: overground walking at comfortable speed, overground walking at fast speed, and stair walking at comfortable speed. Oxygen cost was calculated from oxygen uptake divided by distance covered during walking and reported in ml∙kg -1 ∙m -1 . The relationship between level of walking disability and oxygen cost was curvilinear for all 3 walking tasks. One quadratic model accounted for 81% (95% CI [74, 88]) of the variance in oxygen cost during the 3 walking tasks: [Formula: see text] DISCUSSION: The oxygen cost of walking was related the level of walking disability in people with chronic stroke, such that the more disabled the individual, the higher the oxygen cost of walking; with oxygen cost rising sharply as disability became severe. An equation that relates oxygen cost during different walking tasks according to the level of walking disability allows clinicians to determine oxygen cost indirectly without the difficulty of measuring oxygen uptake directly. Copyright © 2017 John Wiley & Sons, Ltd.

  9. The Physiological Capacity of the World’s Highest Ranked Female Cross-country Skiers

    PubMed Central

    SANDBAKK, ØYVIND; HEGGE, ANN MAGDALEN; LOSNEGARD, THOMAS; SKATTEBO, ØYVIND; TØNNESSEN, ESPEN; HOLMBERG, HANS-CHRISTER

    2016-01-01

    ABSTRACT Purpose The objective of this study is to compare the physiological capacity and training characteristics of the world’s six highest ranked female cross-country skiers (world class (WC)) with those of six competitors of national class (NC). Methods Immediately before the start of the competition season, all skiers performed three 5-min submaximal stages of roller skiing on a treadmill for measurement of oxygen cost, as well as a 3-min self-paced performance test using both the double poling (DP) and diagonal stride (DIA) techniques. During the 3-min performance tests, the total distance covered, peak oxygen uptake (V˙O2peak), and accumulated oxygen deficit were determined. Each skier documented the intensity and mode of their training during the preceding 6 months in a diary. Results There were no differences between the groups with respect to oxygen cost or gross efficiency at the submaximal speeds. The WC skiers covered 6%–7% longer distances during the 3-min tests and exhibited average V˙O2peak values of ∼70 and ∼65 mL·min−1·kg−1 with DIA and DP, respectively, which were 10% and 7% higher than the NC skiers (all P < 0.05). However, the accumulated oxygen deficit did not differ between groups. From May to October, the WC skiers trained a total of 532 ± 73 h (270 ± 26 sessions) versus 411 ± 62 h (240 ± 27 sessions) for the NC skiers. In addition, the WC skiers performed 26% more low-intensity and almost twice as much moderate-intensity endurance and speed training (all P < 0.05). Conclusions This study highlights the importance of a high oxygen uptake and the ability to use this while performing the different skiing techniques on varying terrains for female cross-country skiers to win international races. In addition, the training data documented here provide benchmark values for female endurance athletes aiming for medals. PMID:26741124

  10. Peripheral circulatory responses in vivo from regional brachial biceps and lumbar muscles in healthy men and women during pushing and pulling exercise.

    PubMed

    Maikala, Rammohan V; Bhambhani, Yagesh N

    2007-06-01

    Although women have been performing increasingly more manual labor in the workplace in the past 2 decades, their physiological responses and gender-based differences in muscle microvascularity during occupational activities have not yet been extensively documented. This study assessed gender differences and tissue heterogeneity in peripheral circulatory responses from 2 muscle groups during pushing and pulling exercise until volitional exhaustion. In healthy men and women, near-infrared spectroscopy was used to determine peripheral responses, oxygenation, and blood volume simultaneously from the right biceps brachii and lumbar erector spinae. Pulmonary oxygen uptake was assessed using a metabolic measurement cart. Although the 11 men who participated in the study demonstrated greater pulmonary oxygen uptake and power output at volitional exhaustion, their peak peripheral responses for both muscles were similar to those of the 11 women participating. In both sexes, oxygenations trends decreased in both muscles with an increase in workload. However, whereas blood volume increased in the biceps, it decreased in the lumbar muscle in both sexes. At 20% to 60% levels of peak pulmonary oxygen uptake, the percent change in peripheral bicep responses was greater for men than for women (P < 0.05). In contrast, women demonstrated greater change in lumbar muscle oxygenation compared with men at 40% to 60% of peak pulmonary oxygen uptake (P < 0.05). Similar peripheral responses for biceps and lumbar muscles at the point of volitional exhaustion suggest that gender differences in pulmonary oxygen uptake are independent of oxygen extraction or delivery across the muscle groups monitored. However, at submaximal levels of exercise, the peripheral changes in each muscle were gender dependent. Although biceps and lumbar muscles are 2 discrete muscle groups, based on the heterogeneity found in the blood volume trends it is likely that oxygen supply and demand are regulated by muscle location and muscle fiber characteristics. Overall, gender-based assessment of occupational activities should incorporate both pulmonary and peripheral circulatory responses to understand each sex's performance effectiveness.

  11. Oxygen permeability of hydrogel contact lenses with organosilicon moieties.

    PubMed

    Compañ, V; Andrio, A; López-Alemany, A; Riande, E; Refojo, M F

    2002-07-01

    Oxygen transport through two extended wear (day and night) hydrogel contact lenses that contain organosilicon moieties (balafilcon A and lotrafilcon A) was studied in the hydrate (hydrogel) and dry (xerogel) states. The water uptake increased the oxygen permeability [(Dk)app] and transmissibility [Dk/L(av)] coefficients of the dry materials by about 70%. The (Dk)app for the hydrated lenses was determined following the so-called stack procedure. The values obtained were 107 +/- 4 barrer for balafilcon A and 141 +/- 5 barrer for lotrafilcon A, about 5-10 times larger than those previously reported for conventional (without organosilicon moieties) extended wear hydrogels contact lenses. The Dk/L(av) for -3.00 diopter lenses (harmonic average thickness, L(av) = 75 +/- 2 microm for lotrafilcon, and 85 +/- 2 microm for balafilcon) was 123 +/- 6 barrer/cm for balafilcon A and 183 +/- 8 barrer/cm for lotralicon A. The minimum oxygen transmissibility 87 barrer/cm stipulated by Holden and Mertz to avoid corneal edema with extended wear contact can be easily achieved with lotrafilcon and balafilcon lenses of diverse dioptric powers if the central and peripheral thickness of the lenses are kept below the critical level of oxygen transmissibility.

  12. Taking their breath away: metabolic responses to low-oxygen levels in anchialine shrimps (Crustacea: Atyidae and Alpheidae).

    PubMed

    Havird, Justin C; Vaught, Rebecca C; Weeks, Jeffrey R; Fujita, Yoshihisa; Hidaka, Michio; Santos, Scott R; Henry, Raymond P

    2014-12-01

    Crustaceans generally act as oxy-regulators, maintaining constant oxygen uptake as oxygen partial pressures decrease, but when a critical low level is reached, ventilation and aerobic metabolism shut down. Cave-adapted animals, including crustaceans, often show a reduced metabolic rate possibly owing in part to the hypoxic nature of such environments. However, metabolic rates have not been thoroughly explored in crustaceans from anchialine habitats (coastal ponds and caves), which can experience variable oxygenic regimes. Here, an atypical oxy-conforming pattern of oxygen uptake is reported in the Hawaiian anchialine atyid Halocaridina rubra, along with other unusual metabolic characteristics. Ventilatory rates are near-maximal in normoxia and did not increase appreciably as PO₂ declined, resulting in a decline in VO₂ during progressive hypoxia. Halocaridina rubra maintained in anoxic waters survived for seven days (the duration of the experiment) with no measureable oxygen uptake, suggesting a reliance on anaerobic metabolism. Supporting this, lactate dehydrogenase activity was high, even in normoxia, and oxygen debts were quickly repaid by an unusually extreme increase in oxygen uptake upon exposure to normoxia. In contrast, four related anchialine shrimp species from the Ryukyu Islands, Japan, exhibited physiological properties consistent with previously studied crustaceans. The unusual respiratory patterns found in H. rubra are discussed in the context of a trade-off in gill morphology for osmoregulatory ion transport vs. diffusion of respiratory gasses. Future focus on anchialine species may offer novel insight into the diversity of metabolic responses to hypoxia and other physiological challenges experienced by crustaceans. Published by Elsevier Inc.

  13. Quantification of the oxygen uptake rate in a dissolved oxygen controlled oscillating jet-driven microbioreactor.

    PubMed

    Kirk, Timothy V; Marques, Marco Pc; Radhakrishnan, Anand N Pallipurath; Szita, Nicolas

    2016-03-01

    Microbioreactors have emerged as a new tool for early bioprocess development. The technology has advanced rapidly in the last decade and obtaining real-time quantitative data of process variables is nowadays state of the art. In addition, control over process variables has also been achieved. The aim of this study was to build a microbioreactor capable of controlling dissolved oxygen (DO) concentrations and to determine oxygen uptake rate in real time. An oscillating jet driven, membrane-aerated microbioreactor was developed without comprising any moving parts. Mixing times of ∼7 s, and k L a values of ∼170 h -1 were achieved. DO control was achieved by varying the duty cycle of a solenoid microvalve, which changed the gas mixture in the reactor incubator chamber. The microbioreactor supported Saccharomyces cerevisiae growth over 30 h and cell densities of 6.7 g dcw L -1 . Oxygen uptake rates of ∼34 mmol L -1 h -1 were achieved. The results highlight the potential of DO-controlled microbioreactors to obtain real-time information on oxygen uptake rate, and by extension on cellular metabolism for a variety of cell types over a broad range of processing conditions. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  14. Oxygen regulates amino acid turnover and carbohydrate uptake during the preimplantation period of mouse embryo development.

    PubMed

    Wale, Petra L; Gardner, David K

    2012-07-01

    Oxygen is a powerful regulator of preimplantation embryo development, affecting gene expression, the proteome, and energy metabolism. Even a transient exposure to atmospheric oxygen can have a negative impact on embryo development, which is greatest prior to compaction, and subsequent postcompaction culture at low oxygen cannot alleviate this damage. In spite of this evidence, the majority of human in vitro fertilization is still performed at atmospheric oxygen. One of the physiological parameters shown to be affected by the relative oxygen concentration, carbohydrate metabolism, is linked to the ability of the mammalian embryo to develop in culture and remain viable after transfer. The aim of this study was, therefore, to determine the effect of oxygen concentration on the ability of mouse embryos to utilize both amino acids and carbohydrates both before and after compaction. Metabolomic and fluorometric analysis of embryo culture media revealed that when embryos were exposed to atmospheric oxygen during the cleavage stages, they exhibited significantly greater amino acid utilization and pyruvate uptake than when cultured under 5% oxygen. In contrast, postcompaction embryos cultured in atmospheric oxygen showed significantly lower mean amino acid utilization and glucose uptake. These metabolic changes correlated with developmental compromise because embryos grown in atmospheric oxygen at all stages showed significantly lower blastocyst formation and proliferation. These findings confirm the need to consider both embryo development and metabolism in establishing optimal human embryo growth conditions and prognostic markers of viability, and further highlight the impact of oxygen on such vital parameters.

  15. Relationship between oxygen concentration, respiration and filtration rate in blue mussel Mytilus edulis

    NASA Astrophysics Data System (ADS)

    Tang, Baojun; Riisgård, Hans Ulrik

    2018-03-01

    The large water-pumping and particle-capturing gills of the filter-feeding blue mussel Mytilus edulis are oversized for respiratory purposes. Consequently, the oxygen uptake rate of the mussel has been suggested to be rather insensitive to decreasing oxygen concentrations in the ambient water, since the diffusion rate of oxygen from water flowing through the mussel determines oxygen uptake. We tested this hypothesis by measuring the oxygen uptake in mussels exposed to various oxygen concentrations. These concentrations were established via N2-bubbling of the water in a respiration chamber with mussels fed algal cells to stimulate fully opening of the valves. It was found that mussels exposed to oxygen concentrations decreasing from 9 to 2 mg O2/L resulted in a slow but significant reduction in the respiration rate, while the filtration rate remained high and constant. Thus, a decrease of oxygen concentration by 78% only resulted in a 25% decrease in respiration rate. However, at oxygen concentrations below 2 mg O2/L M. edulis responded by gradually closing its valves, resulting in a rapid decrease of filtration rate, concurrent with a rapid reduction of respiration rate. These observations indicated that M. edulis is no longer able to maintain its normal aerobic metabolism at oxygen concentration below 2 mg O2/L, and there seems to be an energy-saving mechanism in bivalve molluscs to strongly reduce their activity when exposed to low oxygen conditions.

  16. Effects of upper-body sprint-interval training on strength and endurance capacities in female cross-country skiers

    PubMed Central

    Vandbakk, Kristine; Welde, Boye; Kruken, Andrea Hovstein; Baumgart, Julia; Ettema, Gertjan; Karlsen, Trine; Sandbakk, Øyvind

    2017-01-01

    This study compared the effects of adding upper-body sprint-intervals or continuous double poling endurance training to the normal training on maximal upper-body strength and endurance capacity in female cross-country skiers. In total, 17 female skiers (age: 18.1±0.8yr, body mass: 60±7 kg, maximal oxygen uptake (VO2max): 3.30±0.37 L.min-1) performed an 8-week training intervention. Here, either two weekly sessions of six to eight 30-s maximal upper-body double poling sprint-intervals (SIG, n = 8) or 45–75 min of continuous low-to-moderate intensity double poling on roller skis (CG, n = 9) were added to their training. Before and after the intervention, the participants were tested for physiological and kinematical responses during submaximal and maximal diagonal and double poling treadmill roller skiing. Additionally, we measured maximal upper-body strength (1RM) and average power at 40% 1RM in a poling-specific strength exercise. SIG improved absolute VO2max in diagonal skiing more than CG (8% vs 2%, p<0.05), and showed a tendency towards higher body-mass normalized VO2max (7% vs 2%, p = 0.07). Both groups had an overall improvement in double poling peak oxygen uptake (10% vs 6% for SIG and CG) (both p<0.01), but no group-difference was observed. SIG improved 1RM strength more than CG (18% vs 10%, p<0.05), while there was a tendency for difference in average power at 40% 1RM (20% vs 14%, p = 0.06). Oxygen cost and kinematics (cycle length and rate) in double poling and diagonal remained unchanged in both groups. In conclusion, our study demonstrates that adding upper-body sprint-interval training is more effective than continuous endurance training in improving upper-body maximal strength and VO2max. PMID:28241030

  17. Maximal oxygen uptake, anaerobic threshold and running economy in women and men with similar performances level in marathons.

    PubMed

    Helgerud, J

    1994-01-01

    Sex differences in running economy (gross oxygen cost of running, CR), maximal oxygen uptake (VO2max), anaerobic threshold (Th(an)), percentage utilization of aerobic power (% VO2max), and Th(an) during running were investigated. There were six men and six women aged 20-30 years with a performance time of 2 h 40 min over the marathon distance. The VO2max, Th(an), and CR were measured during controlled running on a treadmill at 1 degree and 3 degrees gradient. From each subject's recorded time of running in the marathon, the average speed (vM) was calculated and maintained during the treadmill running for 11 min. The VO2max was inversely related to body mass (mb), there were no sex differences, and the mean values of the reduced exponent were 0.65 for women and 0.81 for men. These results indicate that for running the unit ml.kg-0.75.min-1 is convenient when comparing individuals with different mb. The VO2max was about 10% (23 ml.kg-0.75.min-1) higher in the men than in the women. The women had on the average 10-12 ml.kg-0.75.min-1 lower VO2 than the men when running at comparable velocities. Disregarding sex, the mean value of CR was 0.211 (SEM 0.005) ml.kg-1.m-1 (resting included), and was independent of treadmill speed. No sex differences in Th(an) expressed as % VO2max or percentage maximal heart rate were found, but Th(an) expressed as VO2 in ml.kg-0.75.min-1 was significantly higher in the men compared to the women. The percentage utilization of fcmax and concentration of blood lactate at vM was higher for the female runners.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Energy requirements of tire pulling.

    PubMed

    Fredriksen, Per M; Mamen, Asgeir

    2017-10-01

    We have investigated the effect using walking poles and pulling tires at 4 and 6 km·h-1 (1.11 and 1.67 m·s-1) speeds on oxygen uptake (V̇O2) and heart rate. Eleven subjects, 6 males, with a mean (SD) age of 25.2 (6.9) years participated in field tests involving walking without poles, walking with poles and tire pulling with poles. Increasing the load caused the largest increases in energy demand, more than 4 MET. Speed increase also caused substantial energy increase, approximately 4 MET. Increasing the inclination only modestly increased the oxygen uptake, approximately 2 MET. In both level walking and uphill walking, using poles marginally increased oxygen uptake compared to working without poles. Pulling one tire (12.5 kg) required an oxygen uptake of 27 (4) mL·kg-1·min-1 at 4 km·h-1 and 0% inclination. Adding one more tire (6 kg) drove the oxygen uptake further up to 39 (4) mL·kg-1·min-1. This is close to the requirement of level running at 10.5 km·h-1. Pulling both tires at 6 km·h-1 and 5% inclination required a V̇O2 of 54 (6) mL·kg-1·min-1, equal to running uphill at 5% inclination and 12.5 km·h-1 speed. Heart rate rose comparably with oxygen uptake. At 4 km·h-1 and 0% inclination the increase was 29 bpm, from 134 (21) to 163 (22) bpm when going from pulling one tire to two tires. In the hardest exercise, 6 km·h-1 and 5% inclination, heart rate reached 174 (14) bpm. The study showed that tire pulling even at slow speeds has an energy requirement that is so large that the activity may be feasible as endurance training.

  19. Gymnasium-based unsupervised exercise maintains benefits in oxygen uptake kinetics obtained following supervised training in type 2 diabetes.

    PubMed

    Macananey, Oscar; O'Shea, Donal; Warmington, Stuart A; Green, Simon; Egaña, Mikel

    2012-08-01

    Supervised exercise (SE) in patients with type 2 diabetes improves oxygen uptake kinetics at the onset of exercise. Maintenance of these improvements, however, has not been examined when supervision is removed. We explored if potential improvements in oxygen uptake kinetics following a 12-week SE that combined aerobic and resistance training were maintained after a subsequent 12-week unsupervised exercise (UE). The involvement of cardiac output (CO) in these improvements was also tested. Nineteen volunteers with type 2 diabetes were recruited. Oxygen uptake kinetics and CO (inert gas rebreathing) responses to constant-load cycling at 50% ventilatory threshold (V(T)), 80% V(T), and mid-point between V(T) and peak workload (50% Δ) were examined at baseline (on 2 occasions) and following each 12-week training period. Participants decided to exercise at a local gymnasium during the UE. Thirteen subjects completed all the interventions. The time constant of phase 2 of oxygen uptake was significantly faster (p < 0.05) post-SE and post-UE compared with baseline at 50% V(T) (17.3 ± 10.7 s and 17.5 ± 5.9 s vs. 29.9 ± 10.7 s), 80% V(T) (18.9 ± 4.7 and 20.9 ± 8.4 vs. 34.3 ± 12.7s), and 50% Δ (20.4 ± 8.2 s and 20.2 ± 6.0 s vs. 27.6 ± 3.7 s). SE also induced faster heart rate kinetics at all 3 intensities and a larger increase in CO at 30 s in relation to 240 s at 80% V(T); and these responses were maintained post-UE. Unsupervised exercise maintained benefits in oxygen uptake kinetics obtained during a supervised exercise in subjects with diabetes, and these benefits were associated with a faster dynamic response of heart rate after training.

  20. Influence of taekwondo as security martial arts training on anaerobic threshold, cardiorespiratory fitness, and blood lactate recovery.

    PubMed

    Kim, Dae-Young; Seo, Byoung-Do; Choi, Pan-Am

    2014-04-01

    [Purpose] This study was conducted to determine the influence of Taekwondo as security martial arts training on anaerobic threshold, cardiorespiratory fitness, and blood lactate recovery. [Subjects and Methods] Fourteen healthy university students were recruited and divided into an exercise group and a control group (n = 7 in each group). The subjects who participated in the experiment were subjected to an exercise loading test in which anaerobic threshold, value of ventilation, oxygen uptake, maximal oxygen uptake, heart rate, and maximal values of ventilation / heart rate were measured during the exercise, immediately after maximum exercise loading, and at 1, 3, 5, 10, and 15 min of recovery. [Results] At the anaerobic threshold time point, the exercise group showed a significantly longer time to reach anaerobic threshold. The exercise group showed significantly higher values for the time to reach VO2max, maximal values of ventilation, maximal oxygen uptake and maximal values of ventilation / heart rate. Significant changes were observed in the value of ventilation volumes at the 1- and 5-min recovery time points within the exercise group; oxygen uptake and maximal oxygen uptake were significantly different at the 5- and 10-min time points; heart rate was significantly different at the 1- and 3-min time points; and maximal values of ventilation / heart rate was significantly different at the 5-min time point. The exercise group showed significant decreases in blood lactate levels at the 15- and 30-min recovery time points. [Conclusion] The study results revealed that Taekwondo as a security martial arts training increases the maximal oxygen uptake and anaerobic threshold and accelerates an individual's recovery to the normal state of cardiorespiratory fitness and blood lactate level. These results are expected to contribute to the execution of more effective security services in emergencies in which violence can occur.

  1. [Effects of carbon sources, temperature and electron acceptors on biological phosphorus removal].

    PubMed

    Han, Yun; Xu, Song; Dong, Tao; Wang, Bin-Fan; Wang, Xian-Yao; Peng, Dang-Cong

    2015-02-01

    Effects of carbon sources, temperature and electron acceptors on phosphorus uptake and release were investigated in a pilot-scale oxidation ditch. Phosphorus uptake and release rates were measured with different carbon sources (domestic sewage, sodium acetate, glucose) at 25 degrees C. The results showed that the minimum phosphorus uptake and release rates of glucose were 5.12 mg x (g x h)(-1) and 6.43 mg x (g x h)(-1), respectively, and those of domestic sewage are similar to those of sodium acetate. Phosphorus uptake and release rates increased with the increase of temperature (12, 16, 20 and 25 degrees C) using sodium acetate as carbon sources. Anoxic phosphorus uptake rate decreased with added COD. Electron acceptors (oxygen, nitrate, nitrite) had significant effects on phosphorus uptake rate and their order was in accordance with oxygen > nitrate > nitrite. The mass ratio of anoxic P uptake and N consumption (P(uptake)/N (consumption)) of nitrate and nitrite were 0.96 and 0.65, respectively.

  2. The influence of different space-related physiological variations on exercise capacity determined by oxygen uptake kinetics.

    PubMed

    Stegemann, J

    1992-07-01

    Oxygen uptake kinetics, following defined variations of work load changes allow to estimate the contribution of aerob and anaerob energy supply which is the base for determining work capacity. Under the aspect of long duration missions with application of adequate dosed countermeasures, a reliable estimate of the astronaut's work capacity is important to adjust the necessary inflight training. Since the kinetics of oxygen uptake originate in the working muscle group itself, while measurements are performed at the mouth, various influences within the oxygen transport system might disturb the determinations. There are not only detraining effects but also well-known other influences, such as blood- and fluid shifts induced by weightlessness. They might have an impact on the circulatory system. Some of these factors have been simulated by immersion, blood donation, and changing of the body position.

  3. The influence of different space-related physiological variations on exercise capacity determined by oxygen uptake kinetics

    NASA Astrophysics Data System (ADS)

    Stegemann, J.

    Oxygen uptake kinetics, following defined variations of work load changes allow to estimate the contribution of aerob and anaerob energy supply which is the base for determining work capacity. Under the aspect of long duration missions with application of adequate dosed countermeasures, a reliable estimate of the astronaut's work capacity is important to adjust the necessary inflight training. Since the kinetics of oxygen uptake originate in the working muscle group itself, while measurements are performed at the mouth, various influences within the oxygen transport system might disturb the determinations. There are not only detraining effects but also well-known other influences, such as blood- and fluid shifts induced by weightlessness. They might have an impact on the circulatory system. Some of these factors have been simulated by immersion, blood donation, and changing of the body position.

  4. Glossosoma nigrior (Trichoptera: Glossosomatidae) respiration in moving fluid.

    PubMed

    Morris, Mark W L; Hondzo, Miki

    2013-08-15

    Laboratory measurements of dissolved oxygen (DO) uptake by Glossosoma nigrior Banks were conducted in a sealed, recirculating flume under variable fluid flow velocities. Measurements were performed in similar water temperatures, DO concentrations and fluid flow velocities to field conditions in the stream where the larvae were obtained. Total oxygen uptake by both cased larvae and corresponding cases without larvae were quantified. An increased fluid flow velocity corresponded to an increased larval DO uptake rate. Oxygen uptake by the larval cases alone was not as sensitive to changes in the Peclet (Pe) number, the dimensionless ratio of advective to diffusive DO transport, as uptake by larvae themselves. The flux of DO to larvae and their cases was up to seven times larger in a moving fluid in comparison to non-moving fluid conditions in the proximity of larvae for 087, larvae typically remained in their cases. This indicates that oxygen delivery to the larvae at low Pe is insufficient to satisfy the respiratory demands of cased larvae.

  5. Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage.

    PubMed

    Wang, Xiaoxia; Wang, Shuying; Xue, Tonglai; Li, Baikun; Dai, Xian; Peng, Yongzhen

    2015-06-15

    A novel simultaneous nitrification denitrification and phosphorous removal-sequencing batch reactor (SNDPR-SBR) enriched with PAOs (phosphorus accumulating organisms), DPAOs (denitrifying PAOs), and GAOs (glycogen accumulating organisms) at the ratio of 2:1:1 was developed to achieve the simultaneous nutrient and carbon removal treating domestic wastewater with low carbon/nitrogen ratio (≤3.5). The SNDPR system was operated for 120 days at extended anaerobic stage (3 h) and short aerobic stage at low oxygen concentration (2.5 h) with short sludge retention time (SRT) of 10.9 d and hydraulic retention time (HRT) of 14.6 h. The results showed that at the stable operating stage, the average effluent chemical oxygen demand (COD) and PO4(3-)-P concentrations were 47.2 and 0.2 mg L(-1), respectively, the total nitrogen (TN) removal efficiency was 77.7%, and the SND efficiency reached 49.3%. Extended anaerobic stage strengthened the intracellular carbon (mainly poly-β-hydroxybutyrate, PHB) storage, efficiently utilized the organic substances in wastewater, and provided sufficient carbon sources for denitrification and phosphorus uptake without external carbon addition. Short aerobic stage at low oxygen concentration (dissolved oxygen (DO): 1 ± 0.3 mg L(-1)) achieved a concurrence of nitrification, endogenous denitrification, denitrifying and aerobic phosphorus uptake, and saved about 65% energy consumption for aeration. Microbial community analysis demonstrated that P removal was mainly performed by aerobic PAOs while N removal was mainly carried out by denitrifying GAOs (DGAOs), even though DPAOs were also participated in both N and P removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effects of oxygen supply on the biodegradation rate in oil hydrocarbons contaminated soil

    NASA Astrophysics Data System (ADS)

    Zawierucha, I.; Malina, G.

    2011-04-01

    Respirometry studies using the 10-chamber Micro-Oxymax respirometer (Columbus, Ohio) were conducted to determine the effect of biostimulation (by diverse ways of O2 supply) on enhancing biodegradation in soils contaminated with oil hydrocarbons. Soil was collected from a former military airport in Kluczewo, Poland. Oxygen was supplied by means of aerated water, aqueous solutions of H2O2 and KMnO4. The biodegradation was evaluated on the basis of O2 uptake and CO2 production. The O2 consumption and CO2 production rates during hydrocarbons biodegradation were estimated from the slopes of cumulative curve linear regressions. The pertinent intrinsic and enhanced biodegradation rates were calculated on the basis of mass balance equation and O2 uptake and CO2 production rates. The biodegradation rates of 5-7 times higher as compared to a control were observed when the aqueous solution of KMnO4 in concentration of 20 g L-1 was applied. Permanganate is known to readily oxidize alkene carbon - carbon double bonds; so it can be successfully applied in remediation technology for soils contaminated with oil hydrocarbons. While hydrocarbons are not completely mineralized by permanganate oxidation reactions, their structure is altered by polar functional groups providing vast improvements in aqueous solubility and availability for biodegradation. The 3% aqueous solution of H2O2 caused significant improvement of the biodegradation rates as compared to a control (on average about 260%). Aerobic biodegradation of hydrocarbons can benefit from the presence of oxygen released during H2O2 decomposition. Adding of aerated water resulted in an increase of biodegradation rates (about 114 - 229%) as compared to a control. The aerated water can both be the source of oxygen for microorganisms and determine the transport of substrate to bacteria cells.

  7. Reverse Engineering of Oxygen Transport in the Lung: Adaptation to Changing Demands and Resources through Space-Filling Networks

    PubMed Central

    Hou, Chen; Gheorghiu, Stefan; Huxley, Virginia H.; Pfeifer, Peter

    2010-01-01

    The space-filling fractal network in the human lung creates a remarkable distribution system for gas exchange. Landmark studies have illuminated how the fractal network guarantees minimum energy dissipation, slows air down with minimum hardware, maximizes the gas- exchange surface area, and creates respiratory flexibility between rest and exercise. In this paper, we investigate how the fractal architecture affects oxygen transport and exchange under varying physiological conditions, with respect to performance metrics not previously studied. We present a renormalization treatment of the diffusion-reaction equation which describes how oxygen concentrations drop in the airways as oxygen crosses the alveolar membrane system. The treatment predicts oxygen currents across the lung at different levels of exercise which agree with measured values within a few percent. The results exhibit wide-ranging adaptation to changing process parameters, including maximum oxygen uptake rate at minimum alveolar membrane permeability, the ability to rapidly switch from a low oxygen uptake rate at rest to high rates at exercise, and the ability to maintain a constant oxygen uptake rate in the event of a change in permeability or surface area. We show that alternative, less than space-filling architectures perform sub-optimally and that optimal performance of the space-filling architecture results from a competition between underexploration and overexploration of the surface by oxygen molecules. PMID:20865052

  8. Contribution of aerial hyphae of Aspergillus oryzae to respiration in a model solid-state fermentation system.

    PubMed

    Rahardjo, Yovita S P; Weber, Frans J; le Comte, E Paul; Tramper, Johannes; Rinzema, Arjen

    2002-06-05

    Oxygen transfer is for two reasons a major concern in scale-up and process control in industrial application of aerobic fungal solid-state fermentation (SSF): 1) heat production is proportional to oxygen uptake and it is well known that heat removal is one of the main problems in scaled-up fermenters, and 2) oxygen supply to the mycelium on the surface of or inside the substrate particles may be hampered by diffusion limitation. This article gives the first experimental evidence that aerial hyphae are important for fungal respiration in SSF. In cultures of A. oryzae on a wheat-flour model substrate, aerial hyphae contributed up to 75% of the oxygen uptake rate by the fungus. This is due to the fact that A. oryzae forms very abundant aerial mycelium and diffusion of oxygen in the gas-filled pores of the aerial hyphae layer is rapid. It means that diffusion limitation in the densely packed mycelium layer that is formed closer to the substrate surface and that has liquid-filled pores is much less important for A. oryzae than was previously reported for R. oligosporus and C. minitans. It also means that the overall oxygen uptake rate for A. oryzae is much higher than the oxygen uptake rate that can be predicted in the densely packed mycelium layer for R. oligosporus and C. minitans. This would imply that cooling problems become more pronounced. Therefore, it is very important to clarify the physiological role of aerial hyphae in SSF. Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 539-544, 2002.

  9. Assessment by near-infrared spectroscopy of the consumption of oxygen provoked by the human body weight in the vastus medialis muscle

    NASA Astrophysics Data System (ADS)

    Verdaguer-Codina, Joan

    1996-12-01

    This study has been focused to find the importance of the consumption of oxygen for a muscle that works supporting the weight of the human body. The oxygen uptake at rest level is a data know, but by near-IR spectroscopy can be assessed the oxygen uptake used for a muscle. The energy required by the human body is partially used to produce the energy that help to move the human structure. The oxygen required by the muscles to produce the energy to support the human body has been defined as weight oxygen consumption. The purpose of this study was to assess by near-IR spectroscopy the amount of relative oxygenation/deoxygenation that a muscle requires at rest level and a middle-term rest level.

  10. Baroreflex responses and LBNP tolerance following exercise training

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Thompson, C. A.; Eckberg, D. L.; Fritsch, J. M.; Mack, G. W.; Nadel, E. R.

    1990-01-01

    The hypothesis that endurance exercise training designed to increase aerobic capacity results in reduced orthostatic tolerance due to alterations of blood-pressure controlling mechanisms was reexamined using a specially designed training in which tolerance to orthostasis and the primary mechanisms associated with the blood-pressure control could be measured before and after the increase in aerobic capacity. Results demonstrate that maximal oxygen uptake can be significantly elevated in individuals of average fit without reducing lower body negative pressure tolerance. The exercise training was found to cause a resting bradycardia, which had no effect on the cardiac vagal reflex response.

  11. Oxygen delivery does not limit thermal tolerance in a tropical eurythermal crustacean.

    PubMed

    Ern, Rasmus; Huong, Do Thi Thanh; Phuong, Nguyen Thanh; Wang, Tobias; Bayley, Mark

    2014-03-01

    In aquatic environments, rising water temperatures reduce water oxygen content while increasing oxygen demand, leading several authors to propose cardiorespiratory oxygen transport capacity as the main determinant of aquatic animal fitness. It has also been argued that tropical species, compared with temperate species, live very close to their upper thermal limit and hence are vulnerable to even small elevations in temperature. Little, however, is known about physiological responses to high temperatures in tropical species. Here we report that the tropical giant freshwater shrimp (Macrobrachium rosenbergii) maintains normal growth when challenged by a temperature rise of 6°C above the present day average (from 27°C to 33°C). Further, by measuring heart rate, gill ventilation rate, resting and maximum oxygen uptake, and hemolymph lactate, we show that oxygen transport capacity is maintained up to the critical maximum temperature around 41°C. In M. rosenbergii heart rate and gill ventilation rate increases exponentially until immediately below critical temperatures and at 38°C animals still retained more than 76% of aerobic scope measured at 30°C, and there was no indication of anaerobic metabolism at the high temperatures. Our study shows that the oxygen transport capacity is maintained at high temperatures, and that other mechanisms, such as protein dysfunction, are responsible for the loss of ecological performance at elevated temperatures.

  12. Acute administration of high doses of taurine does not substantially improve high-intensity running performance and the effect on maximal accumulated oxygen deficit is unclear.

    PubMed

    Milioni, Fabio; Malta, Elvis de Souza; Rocha, Leandro George Spinola do Amaral; Mesquita, Camila Angélica Asahi; de Freitas, Ellen Cristini; Zagatto, Alessandro Moura

    2016-05-01

    The aim of the present study was to investigate the effects of acute administration of taurine overload on time to exhaustion (TTE) of high-intensity running performance and alternative maximal accumulated oxygen deficit (MAODALT). The study design was a randomized, placebo-controlled, crossover design. Seventeen healthy male volunteers (age: 25 ± 6 years; maximal oxygen uptake: 50.5 ± 7.6 mL·kg(-1)·min(-1)) performed an incremental treadmill-running test until voluntary exhaustion to determine maximal oxygen uptake and exercise intensity at maximal oxygen uptake. Subsequently, participants completed randomly 2 bouts of supramaximal treadmill-running at 110% exercise intensity at maximal oxygen uptake until exhaustion (placebo (6 g dextrose) or taurine (6 g) supplementation), separated by 1 week. MAODALT was determined using a single supramaximal effort by summating the contribution of the phosphagen and glycolytic pathways. When comparing the results of the supramaximal trials (i.e., placebo and taurine conditions) no differences were observed for high-intensity running TTE (237.70 ± 66.00 and 277.30 ± 40.64 s; p = 0.44) and MAODALT (55.77 ± 8.22 and 55.06 ± 7.89 mL·kg(-1); p = 0.61), which seem to indicate trivial and unclear differences using the magnitude-based inferences approach, respectively. In conclusion, acute 6 g taurine supplementation before exercise did not substantially improve high-intensity running performance and showed an unclear effect on MAODALT.

  13. Direct measurements of the light dependence of gross photosynthesis and oxygen consumption in the ocean

    NASA Astrophysics Data System (ADS)

    Bailleul, B.; Park, J.; Brown, C. M.; Bidle, K. D.; Lee, S.; Falkowski, P. G.

    2016-02-01

    For decades, a lack of understanding of how respiration is influenced by light has been stymying our ability to quantitatively analyze how phytoplankton allocate carbon in situ and the biological mechanisms that participate to the fate of blooms. Using membrane inlet mass spectrometry (MIMS), the light dependencies of gross photosynthesis and oxygen uptake rates were measured during the bloom demises of two prymnesiophytes, in two open ocean regions. In the North Atlantic, dominated by Emiliania huxleyi, respiration was independent of irradiance and was higher than the gross photosynthetic rate at all irradiances. In the Amundsen Sea (Antarctica), dominated by Phaeocystis antarctica, the situation was very different. Dark respiration was one order of magnitude lower than the maximal gross photosynthetic rate. ut the oxygen uptake rate increased by 10 fold at surface irradiances, where it becomes higher than gross photosynthesis. Our results suggest that the light dependence of oxygen uptake in P. antarctica has two sources: one is independent of photosynthesis, and is possibly associated with the photo-reduction of O2 mediated by dissolved organic matter; the second reflects the activity of an oxidase fueled in the light with photosynthetic electron flow. Interestingly, these dramatic light-dependent changes in oxygen uptake were not reproduced in nutrient-replete P. antarctica cultures, in the laboratory. Our measurements highlight the importance of improving our understanding of oxygen consuming reactions in the euphotic zone, which is critical to investigating the physiology of phytoplankton and tracing the fate of phytoplankton blooms.

  14. Cytotoxicity and cellular uptake of different sized gold nanoparticles in ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Kumar, Dhiraj; Mutreja, Isha; Chitcholtan, Kenny; Sykes, Peter

    2017-11-01

    Nanomedicine has advanced the biomedical field with the availability of multifunctional nanoparticles (NPs) systems that can target a disease site enabling drug delivery and helping to monitor the disease. In this paper, we synthesised the gold nanoparticles (AuNPs) with an average size 18, 40, 60 and 80 nm, and studied the effect of nanoparticles size, concentration and incubation time on ovarian cancer cells namely, OVCAR5, OVCAR8, and SKOV3. The size measured by transmission electron microscopy images was slightly smaller than the hydrodynamic diameter; measured size by ImageJ as 14.55, 38.13, 56.88 and 78.56 nm. The cellular uptake was significantly controlled by the AuNPs size, concentration, and the cell type. The nanoparticles uptake increased with increasing concentration, and 18 and 80 nm AuNPs showed higher uptake ranging from 1.3 to 5.4 μg depending upon the concentration and cell type. The AuNPs were associated with a temporary reduction in metabolic activity, but metabolic activity remained more than 60% for all sample types; NPs significantly affected the cell proliferation activity in first 12 h. The increase in nanoparticle size and concentration induced the production of reactive oxygen species in 24 h.

  15. Effects of combined high intensity arm and leg training on performance and cardio-respiratory measures.

    PubMed

    Zinner, Christoph; Sperlich, Billy; Born, Dennis-Peter; Michels, Guido

    2017-01-01

    The purpose of this study was to investigate the effects of combined arm and leg high-intensity low-volume interval training (HIITarm+leg) on maximal oxygen uptake, myocardial measures (i.e. stroke volume, cardiac output, ejection fraction), Tissue Oxygenation Index (TOI) of the vastus lateralis and triceps brachii, as well as power output in comparison to leg HIIT (HIITleg) only. The 20 healthy, male and female volunteers completed six sessions of either HIITleg on a cycle ergometer or HIITarm+leg on an arm and leg cycle ergometer. During pre- and post-testing, the volunteers completed a submaximal and incremental test to exhaustion on a cycle ergometer. Magnitude based interference revealed likely to very likely beneficial effects for HIITarm+leg compared to HIITleg in maximal oxygen uptake, cardiac measures as well peak power output. The TOI following HIITarm+leg demonstrated likely to very likely increased oxygenation in the triceps brachii or the vastus lateralis when compared to HIITleg. The results suggest that six sessions of HIITarm+leg may likely to very likely improve maximal oxygen uptake, some inotropy-related cardiac measures with improved tissue oxygenation of the triceps brachii and vastus lateralis muscles resulting in greater leg peak power output.

  16. Prediction of Maximum Oxygen Uptake Using Both Exercise and Non-Exercise Data

    ERIC Educational Resources Information Center

    George, James D.; Paul, Samantha L.; Hyde, Annette; Bradshaw, Danielle I.; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.

    2009-01-01

    This study sought to develop a regression model to predict maximal oxygen uptake (VO[subscript 2max]) based on submaximal treadmill exercise (EX) and non-exercise (N-EX) data involving 116 participants, ages 18-65 years. The EX data included the participants' self-selected treadmill speed (at a level grade) when exercise heart rate first reached…

  17. Oxygen Saturation Surrounding Deep Water Formation Events in the Labrador Sea From Argo-O2 Data

    NASA Astrophysics Data System (ADS)

    Wolf, Mitchell K.; Hamme, Roberta C.; Gilbert, Denis; Yashayaev, Igor; Thierry, Virginie

    2018-04-01

    Deep water formation supplies oxygen-rich water to the deep sea, spreading throughout the ocean by means of the global thermohaline circulation. Models suggest that dissolved gases in newly formed deep water do not come to equilibrium with the atmosphere. However, direct measurements during wintertime convection are scarce, and the controls over the extent of these disequilibria are poorly quantified. Here we show that, when convection reached deeper than 800 m, oxygen in the Labrador Sea was consistently undersaturated at -6.1% to -7.6% at the end of convection. Deeper convection resulted in greater undersaturation, while convection ending later in the year resulted in values closer to equilibrium, from which we produce a predictive relationship. We use dissolved oxygen data from six profiling Argo floats in the Labrador Sea between 2003 and 2016, allowing direct observations of wintertime convection. Three of the six optode oxygen sensors displayed substantial average in situ drift of -3.03 μmol O2 kg-1 yr-1 (-0.94% O2 yr-1), which we corrected to stable deepwater oxygen values from repeat ship surveys. Observations of low oxygen intrusions during restratification and a simple mixing calculation demonstrate that lateral processes act to lower the oxygen inventory of the central Labrador Sea. This suggests that the Labrador Sea is a net sink for atmospheric oxygen, but uncertainties in parameterizing gas exchange limit our ability to quantify the net uptake. Our results constrain the oxygen concentration of newly formed Labrador Sea Water and allow more precise estimates of oxygen utilization and nutrient regeneration in this water mass.

  18. Whole-body pre-cooling does not alter human muscle metabolism during sub-maximal exercise in the heat.

    PubMed

    Booth, J; Wilsmore, B R; Macdonald, A D; Zeyl, A; Mcghee, S; Calvert, D; Marino, F E; Storlien, L H; Taylor, N A

    2001-06-01

    Muscle metabolism was investigated in seven men during two 35 min cycling trials at 60% peak oxygen uptake, at 35 degrees C and 50% relative humidity. On one occasion, exercise was preceded by whole-body cooling achieved by immersion in water during a reduction in temperature from 29 to 24 degrees C, and, for the other trial, by immersion in water at a thermoneutral temperature (control, 34.8 degrees C). Pre-cooling did not alter oxygen uptake during exercise (P > 0.05), whilst the change in cardiac frequency and body mass both tended to be lower following pre-cooling (0.05 < P < 0.10). When averaged over the exercise period, muscle and oesophageal temperatures after pre-cooling were reduced by 1.5 and 0.6 degrees C respectively, compared with control (P < 0.05). Pre-cooling had a limited effect on muscle metabolism, with no differences between the two conditions in muscle glycogen, triglyceride, adenosine triphosphate, creatine phosphate, creatine or lactate contents at rest, or following exercise. These data indicate that whole-body pre-cooling does not alter muscle metabolism during submaximal exercise in the heat. It is more likely that thermoregulatory and cardiovascular strain are reduced, through lower muscle and core temperatures.

  19. Aeration control strategies to stimulate simultaneous nitrification-denitrification via nitrite during the formation of aerobic granular sludge.

    PubMed

    Dobbeleers, Thomas; D'aes, Jolien; Miele, Solange; Caluwé, Michel; Akkermans, Veerle; Daens, Dominique; Geuens, Luc; Dries, Jan

    2017-09-01

    In this study, a sequencing batch reactor (SBR), treating synthetic wastewater (COD/N = 5), was operated in two stages. During stage I, an aeration control strategy based on oxygen uptake rate (OUR) was applied, to accomplish nitrogen removal via nitrite >80%. In stage II, the development of aerobic granular sludge (AGS) was examined while two aeration control strategies (OUR and pH slope) maintained the nitrite pathway and optimized the simultaneous nitrification-denitrification (SND) performance. Stimulation of slow-growing organisms, (denitrifying) polyphosphate-accumulating organisms (D)PAO and (denitrifying) glycogen-accumulating organisms (D)GAO leads to full granulation (at day 200, SVI 10  = 47.0 mL/g and SVI 30  = 43.1 mL/g). The average biological nutrient removal efficiencies, for nitrogen and phosphorus, were 94.6 and 83.7%, respectively. Furthermore, the benefits of an increased dissolved oxygen concentration (1.0-2.0 mg O 2 /L) were shown as biomass concentrations increased with approximately 2 g/L, and specific ammonium removal rate and phosphorus uptake rate increased with 33 and 44%, respectively. It was shown that the combination of both aeration phase-length control strategies provided an innovative method to achieve SND via nitrite in AGS.

  20. Modeling and analysis of the effect of training on V O2 kinetics and anaerobic capacity.

    PubMed

    Stirling, J R; Zakynthinaki, M S; Billat, V

    2008-07-01

    In this paper, we present an application of a number of tools and concepts for modeling and analyzing raw, unaveraged, and unedited breath-by-breath oxygen uptake data. A method for calculating anaerobic capacity is used together with a model, in the form of a set of coupled nonlinear ordinary differential equations to make predictions of the VO(2) kinetics, the time to achieve a percentage of a certain constant oxygen demand, and the time limit to exhaustion at intensities other than those in which we have data. Speeded oxygen kinetics and increased time limit to exhaustion are also investigated using the eigenvalues of the fixed points of our model. We also use a way of analyzing the oxygen uptake kinetics using a plot of V O(2)(t) vs V O(2)(t) which allows one to observe both the fixed point solutions and also the presence of speeded oxygen kinetics following training. A method of plotting the eigenvalue versus oxygen demand is also used which allows one to observe where the maximum amplitude of the so-called slow component will be and also how training has changed the oxygen uptake kinetics by changing the strength of the attracting fixed point for a particular demand.

  1. A strategy to determine operating parameters in tissue engineering hollow fiber bioreactors

    PubMed Central

    Shipley, RJ; Davidson, AJ; Chan, K; Chaudhuri, JB; Waters, SL; Ellis, MJ

    2011-01-01

    The development of tissue engineering hollow fiber bioreactors (HFB) requires the optimal design of the geometry and operation parameters of the system. This article provides a strategy for specifying operating conditions for the system based on mathematical models of oxygen delivery to the cell population. Analytical and numerical solutions of these models are developed based on Michaelis–Menten kinetics. Depending on the minimum oxygen concentration required to culture a functional cell population, together with the oxygen uptake kinetics, the strategy dictates the model needed to describe mass transport so that the operating conditions can be defined. If cmin ≫ Km we capture oxygen uptake using zero-order kinetics and proceed analytically. This enables operating equations to be developed that allow the user to choose the medium flow rate, lumen length, and ECS depth to provide a prescribed value of cmin. When , we use numerical techniques to solve full Michaelis–Menten kinetics and present operating data for the bioreactor. The strategy presented utilizes both analytical and numerical approaches and can be applied to any cell type with known oxygen transport properties and uptake kinetics. PMID:21370228

  2. Rapid adaptation of activated sludge bacteria into a glycogen accumulating biofilm enabling anaerobic BOD uptake.

    PubMed

    Hossain, Md Iqbal; Paparini, Andrea; Cord-Ruwisch, Ralf

    2017-03-01

    Glycogen accumulating organisms (GAO) are known to allow anaerobic uptake of biological oxygen demand (BOD) in activated sludge wastewater treatment systems. In this study, we report a rapid transition of suspended activated sludge biomass to a GAO dominated biofilm by selective enrichment using sequences of anaerobic loading followed by aerobic exposure of the biofilm to air. The study showed that within eight weeks, a fully operational, GAO dominated biofilm had developed, enabling complete anaerobic BOD uptake at a rate of 256mg/L/h. The oxygen uptake by the biofilm directly from the atmosphere had been calculated to provide significant energy savings. This study suggests that wastewater treatment plant operators can convert activated sludge systems readily into a "passive aeration" biofilm that avoids costly oxygen transfer to bulk wastewater solution. The described energy efficient BOD removal system provides an opportunity to be coupled with novel nitrogen removal processes such as anammox. Copyright © 2016. Published by Elsevier Ltd.

  3. Body acceleration distribution and O2 uptake in humans during running and jumping

    NASA Technical Reports Server (NTRS)

    Bhattacharya, A.; Mccutcheon, E. P.; Shvartz, E.; Greenleaf, J. E.

    1980-01-01

    The distribution of body acceleration and associated oxygen uptake and heart rate responses are investigated in treadmill running and trampoline jumping. Accelerations in the +Gz direction were measured at the lateral ankle, lumbosacral region and forehead of eight young men during level treadmill walking and running at four speeds and trampoline jumping at four heights, together with corresponding oxygen uptake and heart rate. With increasing treadmill speed, peak acceleration at the ankle is found always to exceed that at the back and forehead, and acceleration profiles with higher frequency components than those observed during jumping are observed. Acceleration levels are found to be more uniformly distributed with increasing height in jumping, although comparable oxygen uptake and heat rates are obtained. Results indicate that the magnitude of the biomechanical stimuli is greater in trampoline jumping than in running, which finding could be of use in the design of procedures to avert deconditioning in persons exposed to weightlessness.

  4. Maximal oxygen uptake is proportional to muscle fiber oxidative capacity, from chronic heart failure patients to professional cyclists.

    PubMed

    van der Zwaard, Stephan; de Ruiter, C Jo; Noordhof, Dionne A; Sterrenburg, Renske; Bloemers, Frank W; de Koning, Jos J; Jaspers, Richard T; van der Laarse, Willem J

    2016-09-01

    V̇o2 max during whole body exercise is presumably constrained by oxygen delivery to mitochondria rather than by mitochondria's ability to consume oxygen. Humans and animals have been reported to exploit only 60-80% of their mitochondrial oxidative capacity at maximal oxygen uptake (V̇o2 max). However, ex vivo quantification of mitochondrial overcapacity is complicated by isolation or permeabilization procedures. An alternative method for estimating mitochondrial oxidative capacity is via enzyme histochemical quantification of succinate dehydrogenase (SDH) activity. We determined to what extent V̇o2 max attained during cycling exercise differs from mitochondrial oxidative capacity predicted from SDH activity of vastus lateralis muscle in chronic heart failure patients, healthy controls, and cyclists. V̇o2 max was assessed in 20 healthy subjects and 28 cyclists, and SDH activity was determined from biopsy cryosections of vastus lateralis using quantitative histochemistry. Similar data from our laboratory of 14 chronic heart failure patients and 6 controls were included. Mitochondrial oxidative capacity was predicted from SDH activity using estimated skeletal muscle mass and the relationship between ex vivo fiber V̇o2 max and SDH activity of isolated single muscle fibers and myocardial trabecula under hyperoxic conditions. Mitochondrial oxidative capacity predicted from SDH activity was related (r(2) = 0.89, P < 0.001) to V̇o2 max measured during cycling in subjects with V̇o2 max ranging from 9.8 to 79.0 ml·kg(-1)·min(-1) V̇o2 max measured during cycling was on average 90 ± 14% of mitochondrial oxidative capacity. We conclude that human V̇o2 max is related to mitochondrial oxidative capacity predicted from skeletal muscle SDH activity. Mitochondrial oxidative capacity is likely marginally limited by oxygen supply to mitochondria. Copyright © 2016 the American Physiological Society.

  5. Hydrologic and geochemical effects on oxygen uptake in bottom sediments of an effluent-dominated river

    USGS Publications Warehouse

    McMahon, P.B.; Tindall, J.A.; Collins, J.A.; Lull, K.J.; Nuttle, J.R.

    1995-01-01

    More than 95% of the water in the South Platte River downstream from the largest wastewater treatment plant serving the metropolitan Denver, Colorado, area consists of treated effluent during some periods of low flow. Fluctuations in effluent-discharge rates caused daily changes in river stage that promoted exchange of water between the river and bottom sediments. Groundwater discharge measurements indicated fluxes of water across the sediment-water interface as high as 18 m3 s−1 km−1. Laboratory experiments indicated that downward movement of surface water through bottom sediments at velocities comparable to those measured in the field (median rate ≈0.005 cm s−1) substantially increased dissolved oxygen uptake rates in bottom sediments (maximum rate 212 ± 10 μmol O2 L−1 h−1) compared with rates obtained when no vertical advective flux was generated (maximum rate 25 ± 8.8 μmol O2 L−1 h−1). Additions of dissolved ammonium to surface waters generally increased dissolved oxygen uptake rates relative to rates measured in experiments without ammonium. However, the magnitude of the advective flux through bottom sediments had a greater effect on dissolved oxygen uptake rates than did the availability of ammonium. Results from this study indicated that efforts to improve dissolved oxygen dynamics in effluent-dominated rivers might include stabilizing daily fluctuations in river stage.

  6. Running energetics in the pronghorn antelope.

    PubMed

    Lindstedt, S L; Hokanson, J F; Wells, D J; Swain, S D; Hoppeler, H; Navarro, V

    1991-10-24

    The pronghorn antelope (Antilocapra americana) has an alleged top speed of 100 km h-1, second only to the cheetah (Acionyx jubatus) among land vertebrates, a possible response to predation in the exposed habitat of the North American prairie. Unlike cheetahs, however, pronghorn antelope are distance runners rather than sprinters, and can run 11 km in 10 min, an average speed of 65 km h-1. We measured maximum oxygen uptake in pronghorn antelope to distinguish between two potential explanations for this ability: either they have evolved a uniquely high muscular efficiency (low cost of transport) or they can supply oxygen to the muscles at unusually high levels. Because the cost of transport (energy per unit distance covered per unit body mass) varies as a predictable function of body mass among terrestrial vertebrates, we can calculate the predicted cost to maintain speeds of 65 and 100 km h-1 in an average 32-kg animal. The resulting range of predicted values, 3.2-5.1 ml O2 kg-1 s-1, far surpasses the predicted maximum aerobic capacity of a 32-kg mammal (1.5 ml O2 kg-1 s-1). We conclude that their performance is achieved by an extraordinary capacity to consume and process enough oxygen to support a predicted running speed greater than 20 ms-1 (70 km h-1), attained without unique respiratory-system structures.

  7. Preserved arterial flow secures hepatic oxygenation during haemorrhage in the pig

    PubMed Central

    Rasmussen, Allan; Skak, Claus; Kristensen, Michael; Ott, Peter; Kirkegaard, Preben; Secher, Niels H

    1999-01-01

    This study examined the extent of liver perfusion and its oxygenation during progressive haemorrhage. We examined hepatic arterial flow and hepatic oxygenation following the reduced portal flow during haemorrhage in 18 pigs. The hepatic surface oxygenation was assessed by near-infrared spectroscopy and the hepatic metabolism of oxygen, lactate and catecholamines determined the adequacy of the hepatic flow. Stepwise haemorrhage until circulatory collapse resulted in proportional reductions in cardiac output and in arterial, central venous and pulmonary wedge pressures. While heart rate increased, pulmonary arterial pressure remained stable. In addition, renal blood flow decreased, renal vascular resistance increased and there was elevated noradrenaline spill-over. Further, renal surface oxygenation was lowered from the onset of haemorrhage. Similarly, the portal blood flow was reduced in response to haemorrhage, and, as for the renal flow, the reduced splanchnic blood flow was associated with an elevated noradrenaline spill-over. In contrast, hepatic arterial blood flow was only slightly reduced by haemorrhage, and surface oxygenation did not change. The hepatic oxygen uptake was maintained until the blood loss represented more than 30 % of the estimated blood volume. At 30 % reduced blood volume, hepatic catecholamine uptake was reduced, and the lactate uptake approached zero. Subsequent reduction of cardiac output and portal blood flow elicited a selective dilatation of the hepatic arterial vascular bed. Due to this dilatation liver blood flow and hepatic cell oxygenation and metabolism were preserved prior to circulatory collapse. PMID:10087351

  8. Reversible uptake of molecular oxygen by heteroligand Co(II)-L-α-amino acid-imidazole systems: equilibrium models at full mass balance.

    PubMed

    Pająk, Marek; Woźniczka, Magdalena; Vogt, Andrzej; Kufelnicki, Aleksander

    2017-09-19

    The paper examines Co(II)-amino acid-imidazole systems (where amino acid = L-α-amino acid: alanine, asparagine, histidine) which, when in aqueous solutions, activate and reversibly take up dioxygen, while maintaining the structural scheme of the heme group (imidazole as axial ligand and O 2 uptake at the sixth, trans position) thus imitating natural respiratory pigments such as myoglobin and hemoglobin. The oxygenated reaction shows higher reversibility than for Co(II)-amac systems with analogous amino acids without imidazole. Unlike previous investigations of the heteroligand Co(II)-amino acid-imidazole systems, the present study accurately calculates all equilibrium forms present in solution and determines the [Formula: see text]equilibrium constants without using any simplified approximations. The equilibrium concentrations of Co(II), amino acid, imidazole and the formed complex species were calculated using constant data obtained for analogous systems under oxygen-free conditions. Pehametric and volumetric (oxygenation) studies allowed the stoichiometry of O 2 uptake reaction and coordination mode of the central ion in the forming oxygen adduct to be determined. The values of dioxygen uptake equilibrium constants [Formula: see text] were evaluated by applying the full mass balance equations. Investigations of oxygenation of the Co(II)-amino acid-imidazole systems indicated that dioxygen uptake proceeds along with a rise in pH to 9-10. The percentage of reversibility noted after acidification of the solution to the initial pH ranged within ca 30-60% for alanine, 40-70% for asparagine and 50-90% for histidine, with a rising tendency along with the increasing share of amino acid in the Co(II): amino acid: imidazole ratio. Calculations of the share of the free Co(II) ion as well as of the particular complex species existing in solution beside the oxygen adduct (regarding dioxygen bound both reversibly and irreversibly) indicated quite significant values for the systems with alanine and asparagine-in those cases the of oxygenation reaction is right shifted to a relatively lower extent. The experimental results indicate that the "active" complex, able to take up dioxygen, is a heteroligand CoL 2 L'complex, where L = amac (an amino acid with a non-protonated amine group) while L' = Himid, with the N1 nitrogen protonated within the entire pH range under study. Moreover, the corresponding log  [Formula: see text] value at various initial total Co(II), amino acid and imidazole concentrations was found to be constant within the limits of error, which confirms those results. The highest log [Formula: see text] value, 14.9, occurs for the histidine system; in comparison, asparagine is 7.8 and alanine is 9.7. This high value is most likely due to the participation of the additional effective N3 donor of the imidazole side group of histidine. The Co(II)-amac-Himid systems formed by using a [Co(imid) 2 ] n polymer as starting material demonstrate that the reversible uptake of molecular oxygen occurs by forming dimeric μ-peroxy adducts. The essential impact on the electron structure of the dioxygen bridge, and therefore, on the reversibility of O 2 uptake, is due to the imidazole group at axial position (trans towards O 2 ). However, the results of reversibility measurements of O 2 uptake, unequivocally indicate a much higher effectiveness of dioxygenation than in systems in which the oxygen adducts are formed in equilibrium mixtures during titration of solutions containing Co(II) ions, the amino acid and imidazole, separately.

  9. Increased temperature tolerance of the air-breathing Asian swamp eel Monopterus albus after high-temperature acclimation is not explained by improved cardiorespiratory performance.

    PubMed

    Lefevre, S; Findorf, I; Bayley, M; Huong, D T T; Wang, T

    2016-01-01

    This study investigated the hypothesis that in the Asian swamp eel Monopterus albus, an air-breathing fish from south-east Asia that uses the buccopharyngeal cavity for oxygen uptake, the upper critical temperature (TU) is increased by acclimation to higher temperature, and that the increased TU is associated with improved cardiovascular and respiratory function. Monopterus albus were therefore acclimated to 27° C (current average) and 32° C (current maximum temperature as well as projected average within 100-200 years), and both the effect of acclimation and acute temperature increments on cardiovascular and respiratory functions were investigated. Two weeks of heat acclimation increased upper tolerated temperature (TU ) by 2° C from 36·9 ± 0·1° C to 38·9 ± 0·1° C (mean ± s.e.). Oxygen uptake (M˙O2) increased with acclimation temperature, accommodated by increases in both aerial and aquatic respiration. Overall, M˙O2 from air (M˙O2a ) was predominant, representing 85% in 27° C acclimated fish and 80% in 32° C acclimated fish. M˙O2 increased with acute increments in temperature and this increase was entirely accommodated by an increase in air-breathing frequency and M˙O2a . Monopterus albus failed to upregulate stroke volume; rather, cardiac output was maintained through increased heart rate with rising temperature. Overall, acclimation of M. albus to 32° C did not improve its cardiovascular and respiratory performance at higher temperatures, and cardiovascular adaptations, therefore, do not appear to contribute to the observed increase in TU. © 2015 The Fisheries Society of the British Isles.

  10. Central Cardiovascular Responses of Quadriplegic Subjects to Arm Exercise at Varying Levels of Oxygen Uptake.

    ERIC Educational Resources Information Center

    Figoni, Stephen F.

    The purpose of this study was to assess selected central cardiovascular functions of spinal cord injured, quadriplegic subjects at varying levels of oxygen uptake (VO sub 2). Subjects included 11 untrained, male college students with C5, C6, or C7 complete quadriplegia and 11 able-bodied reference subjects. Exercise was performed on a Monark cycle…

  11. Fitting a single-phase model to the post-exercise changes in heart rate and oxygen uptake.

    PubMed

    Stupnicki, R; Gabryś, T; Szmatlan-Gabryś, U; Tomaszewski, P

    2010-01-01

    The kinetics of post-exercise heart rate (HR) and oxygen consumption (EPOC) was studied in 10 elite cyclists subjected to four laboratory cycle ergometer maximal exercises lasting 30, 90, 180 or 360 s. Heart rate and oxygen uptake (VO2) were recorded over a period of 6 min after the exercise. By applying the logit transformation to the recorded variables and relating them to the decimal logarithm of the recovery time, uniform single-phase courses of changes were shown for both variables in all subjects and exercises. This enabled computing half-recovery times (t(1/2)) for both variables. Half-time for VO2 negatively correlated with square root of exercise duration (within-subject r = -0.629, p < 0.001), the total post-exercise oxygen uptake till t(1/2) was thus constant irrespectively of exercise intensity. The method is simple and enables reliable comparisons of various modes of exercise with respect to the rate of recovery.

  12. Oxygen uptake and local Po2 profiles in submerged larvae of phaeoxantha klugii (Coleoptera: Cicindelidae), as well as their metabolic rate in air.

    PubMed

    Zerm, M; Zinkler, D; Adis, J

    2004-01-01

    We studied whether oxygen uptake from the surrounding water might enhance survival in submerged third instar larvae of Phaeoxantha klugii, a tiger beetle from the central Amazonian floodplains. Local oxygen partial pressures (Po(2)) were measured with microcoaxial needle electrodes close to larvae submerged in initially air-saturated still water. The Po(2) profiles showed that the larvae exploit oxygen from the aquatic medium. Metabolism in the air of more or less resting larvae was determined by measuring the rate of CO(2) production (sV dot co2) with an infrared gas analyzer at 29 degrees C. The sV dot co2 was around 1.8 mu L g(-1) min(-1), equivalent to an oxygen consumption rate (sV dot o2) of 1.8-2.6 mu L g(-1) min(-1). Oxygen consumption (V dot o2) of individually submerged larvae measured in closed respiration chambers at 19-10.3 kPa Po(2) (initially air saturated, 29 degrees C) ranged between 0.05 and 0.2 mu L min(-1) and was not correlated with body mass. The sV dot o2 ranged between 0.1 and 0.4 mu L min(-1), that is, 4%-22% of the metabolic rate measured in air. Mean V dot o2 decreased with declining Po(2); however, some individuals showed contrary patterns. V dot o2 was additionally measured in dormant larvae, in larvae submerged for 1-2 d in open water or for 30-49 d within sediment, as well as in larvae exposed to anoxia before the measurements. The range of V dot o2 was similar in all groups, indicating that the larvae exploit oxygen from the water whenever available. Similar V dot o2 across the whole range of body mass investigated (0.31-0.76 g) suggests that oxygen uptake occurs by spiracular uptake. Assuming that larvae survive for some time at rates comparable to depressed metabolic rates reported for other insect species, it can be concluded that oxygen uptake from water can sustain aerobic metabolism even under quite severe hypoxia. It might therefore play an important role for survival during inundation periods.

  13. The influence of exercise duration at VO2 max on the off-transient pulmonary oxygen uptake phase during high intensity running activity.

    PubMed

    Billat, V L; Hamard, L; Koralsztein, J P

    2002-12-01

    The purpose of this study was to examine the influence of time run at maximal oxygen uptake (VO2 max) on the off-transient pulmonary oxygen uptake phase after supra-lactate threshold runs. We hypothesised: 1) that among the velocities eliciting VO2 max there is a velocity threshold from which there is a slow component in the VO2-off transient, and 2) that at this velocity the longer the duration of this time at VO2 max (associated with an accumulated oxygen kinetics since VO2 can not overlap VO2 max), the longer is the off-transient phase of oxygen uptake kinetics. Nine long-distance runners performed five maximal tests on a synthetic track (400 m) while breathing through the COSMED K4b2 portable, telemetric metabolic analyser: i) an incremental test which determined VO2 max, the minimal velocity associated with VO2 max (vVO2 max) and the velocity at the lactate threshold (vLT), ii) and in a random order, four supra-lactate threshold runs performed until exhaustion at vLT + 25, 50, 75 and 100% of the difference between vLT and vVO2 max (vdelta25, vdelta50, vdelta75, vdelta100). At vdelta25, vdelta50 (= 91.0 +/- 0.9% vVO2 max) and vdelta75, an asymmetry was found between the VO2 on (double exponential) and off-transient (mono exponential) phases. Only at vdelta75 there was at positive relationship between the time run at VO2 max (%tlimtot) and the VO2 recovery time constant (Z = 1.8, P = 0.05). In conclusion, this study showed that among the velocities eliciting VO2 max, vdelta75 is the velocity at which the longer the duration of the time at VO2 max, the longer is the off-transient phase of oxygen uptake kinetics. It may be possible that at vdelta50 there is not an accumulated oxygen deficit during the plateau of VO2 at VO2 max and that the duration of the time at VO2 max during the exhaustive runs at vdelta100, could be too short to induce an accumulating oxygen deficit affecting the oxygen recovery.

  14. Maximal and submaximal oxygen uptakes and blood lactate levels in elite male middle- and long-distance runners.

    PubMed

    Svedenhag, J; Sjödin, B

    1984-10-01

    Physiological characteristics of elite runners from different racing events were studied. Twenty-seven middle- and long-distance runners and two 400-m runners belonging to the Swedish national team in track and field were divided, according to their distance preferences, into six groups from 400 m up to the marathon. The maximal oxygen uptake (VO2 max, ml X kg-1 X min-1) on the treadmill was higher the longer the main distance except for the marathon runners (e.g., 800-1500-m group, 72.1; 5000-10,000-m group, 78.7 ml X kg-1 X min-1). Running economy evaluated from oxygen uptake measurements at 15 km/h (VO2 15) and 20 km/h (VO2 20) did not differ significantly between the groups even though VO2 15 tended to be lower in the long-distance runners. The running velocity corresponding to a blood lactate concentration of 4 mmol/l (vHla 4.0) differed markedly between the groups with the highest value (5.61 m/s) in the 5000-10,000-m group. The oxygen uptake (VO2) at vHla 4.0 in percentage of VO2 max did not differ significantly between the groups. The blood lactate concentration after exhaustion (VO2 max test) was lower in the long-distance runners. In summary, the present study demonstrates differences in physiological characteristics of elite runners specializing in different racing events. The two single (but certainly inter-related) variables in which this was most clearly seen were the maximal oxygen uptake (ml X kg-1 X min-1) and the running velocity corresponding to a blood lactate concentration of 4 mmol/l.

  15. Faster heart rate and muscular oxygen uptake kinetics in type 2 diabetes patients following endurance training.

    PubMed

    Koschate, Jessica; Drescher, Uwe; Brinkmann, Christian; Baum, Klaus; Schiffer, Thorsten; Latsch, Joachim; Brixius, Klara; Hoffmann, Uwe

    2016-11-01

    Cardiorespiratory kinetics were analyzed in type 2 diabetes patients before and after a 12-week endurance exercise-training intervention. It was hypothesized that muscular oxygen uptake and heart rate (HR) kinetics would be faster after the training intervention and that this would be detectable using a standardized work rate protocol with pseudo-random binary sequences. The cardiorespiratory kinetics of 13 male sedentary, middle-aged, overweight type 2 diabetes patients (age, 60 ± 8 years; body mass index, 33 ± 4 kg·m -2 ) were tested before and after the 12-week exercise intervention. Subjects performed endurance training 3 times a week on nonconsecutive days. Pseudo-random binary sequences exercise protocols in combination with time series analysis were used to estimate kinetics. Greater maxima in cross-correlation functions (CCF max ) represent faster kinetics of the respective parameter. CCF max of muscular oxygen uptake (pre-training: 0.31 ± 0.03; post-training: 0.37 ± 0.1, P = 0.024) and CCF max of HR (pre-training: 0.25 ± 0.04; post-training: 0.29 ± 0.06, P = 0.007) as well as peak oxygen uptake (pre-training: 24.4 ± 4.7 mL·kg -1 ·min -1 ; post-training: 29.3 ± 6.5 mL·kg -1 ·min -1 , P = 0.004) increased significantly over the course of the exercise intervention. In conclusion, kinetic responses to changing work rates in the moderate-intensity range are similar to metabolic demands occurring in everyday habitual activities. Moderate endurance training accelerated the kinetic responses of HR and muscular oxygen uptake. Furthermore, the applicability of the used method to detect these accelerations was demonstrated.

  16. Counter-Gradient Variation in Respiratory Performance of Coral Reef Fishes at Elevated Temperatures

    PubMed Central

    Gardiner, Naomi M.; Munday, Philip L.; Nilsson, Göran E.

    2010-01-01

    The response of species to global warming depends on how different populations are affected by increasing temperature throughout the species' geographic range. Local adaptation to thermal gradients could cause populations in different parts of the range to respond differently. In aquatic systems, keeping pace with increased oxygen demand is the key parameter affecting species' response to higher temperatures. Therefore, respiratory performance is expected to vary between populations at different latitudes because they experience different thermal environments. We tested for geographical variation in respiratory performance of tropical marine fishes by comparing thermal effects on resting and maximum rates of oxygen uptake for six species of coral reef fish at two locations on the Great Barrier Reef (GBR), Australia. The two locations, Heron Island and Lizard Island, are separated by approximately 1200 km along a latitudinal gradient. We found strong counter-gradient variation in aerobic scope between locations in four species from two families (Pomacentridae and Apogonidae). High-latitude populations (Heron Island, southern GBR) performed significantly better than low-latitude populations (Lizard Island, northern GBR) at temperatures up to 5°C above average summer surface-water temperature. The other two species showed no difference in aerobic scope between locations. Latitudinal variation in aerobic scope was primarily driven by up to 80% higher maximum rates of oxygen uptake in the higher latitude populations. Our findings suggest that compensatory mechanisms in high-latitude populations enhance their performance at extreme temperatures, and consequently, that high-latitude populations of reef fishes will be less impacted by ocean warming than will low-latitude populations. PMID:20949020

  17. Condition of larval (furcilia VI) and one year old juvenile Euphausia superba during the winter-spring transition in East Antarctica

    NASA Astrophysics Data System (ADS)

    Virtue, Patti; Meyer, Bettina; Freier, Ulrich; Nichols, Peter D.; Jia, Zhongnan; King, Rob; Virtue, Jacob; Swadling, Kerrie M.; Meiners, Klaus M.; Kawaguchi, So

    2016-09-01

    Antarctic krill, Euphausia superba, is an important species in the Southern Ocean ecosystem. Information on krill condition during winter and early spring is slowly evolving with our enhanced ability to sample at this time of year. However, because of the limited spatial and temporal data, our understanding of fundamental biological parameters for krill during winter is limited. Our study assessed the condition of larval (furcilia VI) and one year old juvenile krill collected in East Antarctica (115°E-130°E and 64°S-66°S) from September to October 2012. Krill condition was assessed using morphometric, elemental and biochemical body composition, growth rates, oxygen uptake and lipid content and composition. Diet was assessed using fatty acid biomarkers analysed in the krill. The growth rate of larvae was 0.0038 mm day with an inter-moult period of 14 days. The average oxygen uptake of juvenile krill was 0.30±0.02 μl oxygen consumed per mg dry weight per hour. Although protein was not significantly different amongst the krill analysed, the lipid content of krill was highly variable ranging from 9% to 27% dry weight in juveniles and from 4% to 13% dry weight in larvae. Specific algal biomarkers, fatty acids ratios, levels of both long-chain (≥C20) monounsaturated fatty acids and bacterial fatty acids found in krill were indicative of the mixed nature of dietary sources and the opportunistic feeding capability of larval and juvenile krill at the end of winter.

  18. Dispersible oxygen microsensors map oxygen gradients in three-dimensional cell cultures.

    PubMed

    Lesher-Pérez, Sasha Cai; Kim, Ge-Ah; Kuo, Chuan-Hsien; Leung, Brendan M; Mong, Sanda; Kojima, Taisuke; Moraes, Christopher; Thouless, M D; Luker, Gary D; Takayama, Shuichi

    2017-09-26

    Phase fluorimetry, unlike the more commonly used intensity-based measurement, is not affected by differences in light paths from culture vessels or by optical attenuation through dense 3D cell cultures and hydrogels thereby minimizing dependence on signal intensity for accurate measurements. This work describes the use of phase fluorimetry on oxygen-sensor microbeads to perform oxygen measurements in different microtissue culture environments. In one example, cell spheroids were observed to deplete oxygen from the cell-culture medium filling the bottom of conventional microwells within minutes, whereas oxygen concentrations remained close to ambient levels for several days in hanging-drop cultures. By dispersing multiple oxygen microsensors in cell-laden hydrogels, we also mapped cell-generated oxygen gradients. The spatial oxygen mapping was sufficiently precise to enable the use of computational models of oxygen diffusion and uptake to give estimates of the cellular oxygen uptake rate and the half-saturation constant. The results show the importance of integrated design and analysis of 3D cell cultures from both biomaterial and oxygen supply aspects. While this paper specifically tests spheroids and cell-laden gel cultures, the described methods should be useful for measuring pericellular oxygen concentrations in a variety of biomaterials and culture formats.

  19. Role of hemoglobin and capillarization for oxygen delivery and extraction in muscular exercise.

    PubMed

    Saltin, B; Kiens, B; Savard, G; Pedersen, P K

    1986-01-01

    Through the years the role of the various links in the transport of oxygen in the human body has been discussed extensively, and especially whether one of these links could be singled out as limiting oxygen uptake during exercise. In his thesis work Lars Hermansen dealt with several of these variables related to oxygen transport and uptake. Two of these were the hemoglobin concentration of the blood (Hb) and skeletal muscle capillarization. These are the focus of this article. It can be demonstrated that variation in arterial oxygen content due to different Hb concentrations is fully compensated for at the level of the muscle, i.e. the amount of oxygen delivered to contracting muscles is adjusted by a variation in the blood flow so that it is the same regardless of Hb concentration in the range of 118-172 g X l-1. At the systemic level, with a large fraction of the muscle exercising, this causes an increase in submaximal heart rate and a lowering in maximal oxygen uptake in people with low as compared to normal or high Hb concentration. The primary significance of an enlarged capillary network in the muscle does not appear to be for accommodating a larger flow, but rather to allow for a long enough mean transit time and large enough surface area for optimal exchange of gases, substrates and metabolites.

  20. Impact of oxygen status on 10B-BPA uptake into human glioblastoma cells, referring to significance in boron neutron capture therapy

    PubMed Central

    Wada, Yuki; Hirose, Katsumi; Harada, Takaomi; Sato, Mariko; Watanabe, Tsubasa; Anbai, Akira; Hashimoto, Manabu; Takai, Yoshihiro

    2018-01-01

    Abstract Boron neutron capture therapy (BNCT) can potentially deliver high linear energy transfer particles to tumor cells without causing severe damage to surrounding normal tissue, and may thus be beneficial for cases with characteristics of infiltrative growth, which need a wider irradiation field, such as glioblastoma multiforme. Hypoxia is an important factor contributing to resistance to anticancer therapies such as radiotherapy and chemotherapy. In this study, we investigated the impact of oxygen status on 10B uptake in glioblastoma cells in vitro in order to evaluate the potential impact of local hypoxia on BNCT. T98G and A172 glioblastoma cells were used in the present study, and we examined the influence of oxygen concentration on cell viability, mRNA expression of L-amino acid transporter 1 (LAT1), and the uptake amount of 10B-BPA. T98G and A172 glioblastoma cells became quiescent after 72 h under 1% hypoxia but remained viable. Uptake of 10B-BPA, which is one of the agents for BNCT in clinical use, decreased linearly as oxygen levels were reduced from 20% through to 10%, 3% and 1%. Hypoxia with <10% O2 significantly decreased mRNA expression of LAT1 in both cell lines, indicating that reduced uptake of 10B-BPA in glioblastoma in hypoxic conditions may be due to reduced expression of this important transporter protein. Hypoxia inhibits 10B-BPA uptake in glioblastoma cells in a linear fashion, meaning that approaches to overcoming local tumor hypoxia may be an effective method of improving the success of BNCT treatment. PMID:29315429

  1. Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.

    PubMed

    Shayeganfar, Farzaneh; Shahsavari, Rouzbeh

    2016-12-20

    Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.

  2. Influence of aquatic training on the motor performance of patients with haemophilic arthropathy.

    PubMed

    Vallejo, L; Pardo, A; Gomis, M; Gallach, J E; Pérez, S; Querol, F

    2010-01-01

    Thirteen patients with haemophilia A took part in this study voluntarily. They underwent an aquatic training programme over a 9-week period (27 sessions; three sessions per week; 1 h per session). Their motor performance was assessed by the following cardio-respiratory and mechanical variables before and after the training programme: oxygen uptake (VO(2), mL min(-1)), relative oxygen uptake (rel VO(2), mL min(-1).kg(-1)), carbon dioxide (CO(2), mL min(-1)), respiratory quotient (R), heart rate (bpm) and the distance covered in 12 min (the Cooper test, m). Nine patients successfully completed the intervention and measurement protocols without bleeding or other adverse events. After the proposed training programme, significant differences between the pre-test and post-test were observed. Patients' aerobic capacity increased considerably, and their oxygen uptake improved by 51.51% (P < 0.05), while their relative oxygen uptake went up by 37.73% (P < 0.05). Their mechanical capacity also increased considerably (14.68%, P < 0.01). Our results suggest that 27 specially designed aquatic training sessions for our patients with haemophilia A had a positive effect on their motor performance and considerably improved their aerobic and mechanical capacity without causing adverse effects.

  3. Protein synthesis and specific dynamic action in crustaceans: effects of temperature.

    PubMed

    Whiteley, N M; Robertson, R F; Meagor, J; El Haj, A J; Taylor, E W

    2001-03-01

    Temperature influences the specific dynamic action (SDA), or rise in oxygen uptake rate after feeding, in eurythermal and stenothermal crustaceans by changing the timing and the magnitude of the response. Intra-specific studies on the eurythermal crab, Carcinus maenas, show that a reduction in acclimation temperature is associated with a decrease in SDA magnitude, resulting from an increase in SDA duration but a decrease in peak factorial scope (the factorial rise in peak SDA over prefeeding values). Inter-specific feeding studies on stenothermal polar isopods revealed marked differences in SDA response between the Antarctic species, Glyptonotus antarcticus and the Arctic species, Saduria entomon. Compared to S. entomon held at 4 and 13 degrees C, the SDA response in G. antarcticus held at 1 degrees C was characterised by a lower absolute oxygen uptake rate at peak SDA and an extended SDA duration. At peak SDA, whole animal rates of protein synthesis increased in proportion to the postprandial increase in oxygen uptake rate in the Antarctic and the Arctic species. Rates of oxygen uptake plotted against whole animal rates of protein synthesis gave similar relationships in both isopod species, indicating similar costs of protein synthesis after a meal, despite their differences in SDA response and thermal habitat.

  4. Evaluation of acute effect of light-emitting diode (LED) phototherapy on muscle deoxygenation and pulmonary oxygen uptake kinetics in patients with diabetes mellitus: study protocol for a randomized controlled trial.

    PubMed

    Francisco, Cristina de Oliveira; Beltrame, Thomas; Ferraresi, Cleber; Parizotto, Nivaldo Antonio; Bagnato, Vanderlei Salvador; Borghi Silva, Audrey; Benze, Benedito Galvão; Porta, Alberto; Catai, Aparecida Maria

    2015-12-15

    Type 2 diabetes mellitus (DM) is responsible for a significant reduction in the quality of life due to its negative impact on functional capacity. Cardiopulmonary fitness impairment in DM patients has been associated with limited tissue oxygenation. Phototherapy is widely utilized to treat several disorders due to expected light-tissue interaction. This type of therapy may help to improve muscular oxygenation, thereby increasing aerobic fitness and functional capacity. This study is a randomized, double-blind, placebo-controlled crossover trial approved by the Ethics Committee of the Federal University of São Carlos and registered at ClinicalTrials.gov. Four separate tests will be performed to evaluate the acute effect of phototherapy. All participants will receive both interventions in random order: light-emitting diode therapy (LEDT) and placebo, with a minimum 14-day interval between sessions (washout period). Immediately after the intervention, participants will perform moderate constant workload cycling exercise corresponding to 80 % of the pulmonary oxygen uptake [Formula: see text] during the gas exchange threshold (GET). LEDT will be administered with a multidiode cluster probe (50 GaAIA LEDs, 850 ηm, 75 mW each diode, and 3 J per point) before each exercise session. Pulmonary oxygen uptake, muscle oxygenation, heart rate, and arterial pressure will be measured using a computerized metabolic cart, a near-infrared spectrometer, an electrocardiogram, and a photoplethysmography system, respectively. The main objective of this study is to evaluate the acute effects of muscular pre-conditioning using LED phototherapy on pulmonary oxygen uptake, muscle oxygenation, heart rate, and arterial pressure dynamics during dynamic moderate exercise. We hypothesize that phototherapy may be beneficial to optimize aerobic fitness in the DM population. Data will be published after the study is completed. Registered at ClinicalTrials.gov under trial number NCT01889784 (date of registration 5 June 2013).

  5. [Mechanism of the decrease in basal metabolism during adaptation to hypoxia].

    PubMed

    Meerson, F Z; Bogomolov, A F

    1978-09-01

    Oxygen uptake fell by 40% in rat adaptation to the periodic action of hypoxia under conditions of pressure chamber. This phenomenon did not disappear in animals in the state of profound anesthesia, and, consequently, was independent of adaptation changes of the cortical regulation of the animal motor activity. A cut of oxygen uptake by half persisted with the action of cold, noradrenaline, and 2,4-dinitrophenol, uncoupling oxidation and phosphorylation, on the organism. Thus, economic expenditure of oxygen in hypoxia adaptation could not be fully explained by increase of oxydation and phosphorylation conjugation.

  6. Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement

    PubMed Central

    Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon

    2016-01-01

    Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS’s optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust’s coarse particle size and bulking effect. PMID:26954138

  7. Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement.

    PubMed

    Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon

    2016-05-01

    Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.

  8. Comparative analysis of nitrite uptake and hemoglobin-nitrite reactions in erythrocytes: sorting out uptake mechanisms and oxygenation dependencies.

    PubMed

    Jensen, Frank B; Rohde, Sabina

    2010-04-01

    Nitrite uptake into red blood cells (RBCs) precedes its intracellular reactions with hemoglobin (Hb) that forms nitric oxide (NO) during hypoxia. We investigated the uptake of nitrite and its reactions with Hb at different oxygen saturations (So(2)), using RBCs with (carp and rabbit) and without (hagfish and lamprey) anion exchanger-1 (AE1) in the membrane, with the aim to unravel the mechanisms and oxygenation dependencies of nitrite transport. Added nitrite rapidly diffused into the RBCs until equilibrium. The distribution ratio of nitrite across the membrane agreed with that expected from HNO(2) diffusion and AE1-mediated facilitated NO(2)(-) diffusion. Participation of HNO(2) diffusion was emphasized by rapid transmembrane nitrite equilibration also in the natural AE1 knockouts. Following the equilibration, nitrite was consumed by reacting with Hb, which created a continued inward diffusion controlled by intracellular reaction rates. Changes in nitrite uptake with So(2), pH, or species were accordingly explained by corresponding changes in reaction rates. In carp, nitrite uptake rates increased linearly with decreasing So(2) over the entire So(2) range. In rabbit, nitrite uptake rates were highest at intermediate So(2), producing a bell-shaped relationship with So(2). Nitrite consumption increased approximately 10-fold with a 1 unit decrease in pH, as expected from the involvement of protons in the reactions with Hb. The reaction of nitrite with deoxyhemoglobin was favored over that with oxyhemoglobin at intermediate So(2). We propose a model for RBC nitrite uptake that involves both HNO(2) diffusion and AE1-mediated transport and that explains both the present and previous (sometimes puzzling) results.

  9. Brain oxygen utilization is unchanged by hypoglycemia in normal humans: lactate, alanine, and leucine uptake are not sufficient to offset energy deficit.

    PubMed

    Lubow, Jeffrey M; Piñón, Ivan G; Avogaro, Angelo; Cobelli, Claudio; Treeson, David M; Mandeville, Katherine A; Toffolo, Gianna; Boyle, Patrick J

    2006-01-01

    During hypoglycemia, substrates other than glucose have been suggested to serve as alternate neural fuels. We evaluated brain uptake of endogenously produced lactate, alanine, and leucine at euglycemia and during insulin-induced hypoglycemia in 17 normal subjects. Cross-brain arteriovenous differences for plasma glucose, lactate, alanine, leucine, and oxygen content were quantitated. Cerebral blood flow (CBF) was measured by Fick methodology using N(2)O as the dilution indicator gas. Substrate uptake was measured as the product of CBF and the arteriovenous concentration difference. As arterial glucose concentration fell, cerebral oxygen utilization and CBF remained unchanged. Brain glucose uptake (BGU) decreased from 36.3+/-2.6 to 26.6+/-2.1 micromol.100 g of brain(-1).min(-1) (P<0.001), equivalent to a drop in ATP of 291 micromol.100 g(-1).min(-1). Arterial lactate rose (P<0.001), whereas arterial alanine and leucine fell (P<0.009 and P<0.001, respectively). Brain lactate uptake (BLU) increased from a net release of -1.8+/- 0.6 to a net uptake of 2.5+/-1.2 micromol.100 g(-1).min(-1) (P<0.001), equivalent to an increase in ATP of 74 micromol.100 g(-1).min(-1). Brain leucine uptake decreased from 7.1+/-1.2 to 2.5 +/- 0.5 micromol.100 g(-1).min(-1) (P<0.001), and brain alanine uptake trended downward (P<0.08). We conclude that the ATP generated from the physiological increase in BLU during hypoglycemia accounts for no more than 25% of the brain glucose energy deficit.

  10. Measuring Steady-State Oxygen Uptake during the 6-Min Walk Test in Adults with Cerebral Palsy: Feasibility and Construct Validity

    ERIC Educational Resources Information Center

    Maltais, Desiree B.; Robitaille, Nancy-Michelle; Dumas, Francine; Boucher, Normand; Richards, Carol L.

    2012-01-01

    This study evaluated the feasibility of measuring steady-state oxygen uptake (V[Combining Dot Above]O[subscript 2]) during the 6-min walk test (6MWT) in adults with cerebral palsy (CP) who walk without support and whether there is construct validity for net 6MWT V[Combining Dot Above]O[subscript 2] as a measure of their walking ability.…

  11. Loss of Brain Aerobic Glycolysis in Normal Human Aging.

    PubMed

    Goyal, Manu S; Vlassenko, Andrei G; Blazey, Tyler M; Su, Yi; Couture, Lars E; Durbin, Tony J; Bateman, Randall J; Benzinger, Tammie L-S; Morris, John C; Raichle, Marcus E

    2017-08-01

    The normal aging human brain experiences global decreases in metabolism, but whether this affects the topography of brain metabolism is unknown. Here we describe PET-based measurements of brain glucose uptake, oxygen utilization, and blood flow in cognitively normal adults from 20 to 82 years of age. Age-related decreases in brain glucose uptake exceed that of oxygen use, resulting in loss of brain aerobic glycolysis (AG). Whereas the topographies of total brain glucose uptake, oxygen utilization, and blood flow remain largely stable with age, brain AG topography changes significantly. Brain regions with high AG in young adults show the greatest change, as do regions with prolonged developmental transcriptional features (i.e., neoteny). The normal aging human brain thus undergoes characteristic metabolic changes, largely driven by global loss and topographic changes in brain AG. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Walking efficiency before and after total hip replacement.

    PubMed

    Brown, M; Hislop, H J; Waters, R L; Porell, D

    1980-10-01

    The energy cost of walking and gait characteristics of patients with hip disease were studied to determine changes in walking efficiency following total hip replacement. Twenty-nine patients, 24 with unilateral hip disease and 5 with bilateral hip disease, were tested preoperatively and at various times postoperatively. Oxygen uptake was measured by a modified Douglas bag procedure. The temporal and distance characteristics of gait were measured with contact closing heel switches. Results showed postoperative increases in velocity, cadence, and stride length in patients with unilateral disease and with bilateral disease with bilateral replacement. After surgery, energy cost tended toward more normal levels, but the subjects were not within normal limits for oxygen uptake per minute, oxygen uptake per distance walked, or percent of predicted maximum aerobic capacity. Comparison of energy expenditure data with temporal and distance factors of gait indicated that all subjects became more physiologically efficient after hip replacement.

  13. Oxygen uptake kinetics of constant-load work - Upright vs. supine exercise

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Goldwater, D. J.; Sandler, H.

    1984-01-01

    Supine and upright positions were used in a comparitive study of the effects of constant load exercise on oxygen uptake (VO2), O2 deficit, steady-state VO2 and VO2 following recovery from constant load work. Ten male subjects (36-40 yr.) performed one submaximal exercise test in the supine and one test in the upright position consisting of 5 min rest and 5 min cycle ergometer exercise at 700 kg/min followed by ten minutes of recovery. It is found that the significant difference in VO2 kinetics during exercise in the upright compared to supine position resulted from changes in oxygen transport and utilization mechanisms rather than changes in mechanical efficiency. To the extent that data measured in the supine position can be used to estimate physiological responses to zero gravity, it is suggested that limitation of systemic O2 consumption may be the result of slow rates of oxygen uptake during transient periods of muscular work. Significant reductions in the rate of steady-state VO2 attainment at submaximal work intensities may produce an onset of muscle fatigue and exhaustion.

  14. Hydrogen Peroxide-Dependent Uptake of Iodine by Marine Flavobacteriaceae Bacterium Strain C-21▿

    PubMed Central

    Amachi, Seigo; Kimura, Koh; Muramatsu, Yasuyuki; Shinoyama, Hirofumi; Fujii, Takaaki

    2007-01-01

    The cells of the marine bacterium strain C-21, which is phylogenetically closely related to Arenibacter troitsensis, accumulate iodine in the presence of glucose and iodide (I−). In this study, the detailed mechanism of iodine uptake by C-21 was determined using a radioactive iodide tracer, 125I−. In addition to glucose, oxygen and calcium ions were also required for the uptake of iodine. The uptake was not inhibited or was only partially inhibited by various metabolic inhibitors, whereas reducing agents and catalase strongly inhibited the uptake. When exogenous glucose oxidase was added to the cell suspension, enhanced uptake of iodine was observed. The uptake occurred even in the absence of glucose and oxygen if hydrogen peroxide was added to the cell suspension. Significant activity of glucose oxidase was found in the crude extracts of C-21, and it was located mainly in the membrane fraction. These findings indicate that hydrogen peroxide produced by glucose oxidase plays a key role in the uptake of iodine. Furthermore, enzymatic oxidation of iodide strongly stimulated iodine uptake in the absence of glucose. Based on these results, the mechanism was considered to consist of oxidation of iodide to hypoiodous acid by hydrogen peroxide, followed by passive translocation of this uncharged iodine species across the cell membrane. Interestingly, such a mechanism of iodine uptake is similar to that observed in iodine-accumulating marine algae. PMID:17933915

  15. Case-Based Learning of Blood Oxygen Transport

    ERIC Educational Resources Information Center

    Cliff, William H.

    2006-01-01

    A case study about carbon monoxide poisoning was used help students gain a greater understanding of the physiology of oxygen transport by the blood. A review of student answers to the case questions showed that students can use the oxygen-hemoglobin dissociation curve to make meaningful determinations of oxygen uptake and delivery. However, the…

  16. The relation between tilt table and acceleration-tolerance and their dependence on stature and physical fitness

    NASA Technical Reports Server (NTRS)

    Klein, K. E.; Backhausen, F.; Bruner, H.; Eichhorn, J.; Jovy, D.; Schotte, J.; Vogt, L.; Wegman, H. M.

    1980-01-01

    A group of 12 highly trained athletes and a group of 12untrained students were subjected to passive changes of position on a tilt table and positive accelerations in a centrifuge. During a 20 min tilt, including two additional respiratory maneuvers, the number of faints and average cardiovascular responses did not differ significantly between the groups. During linear increase of acceleration, the average blackout level was almost identical in both groups. Statistically significant coefficients of product-moment correlation for various relations were obtained. The coefficient of multiple determination computed for the dependence of acceleration tolerance on heart-eye distance and systolic blood pressure at rest allows the explanation of almost 50% of the variation of acceleration tolerance. The maximum oxygen uptake showed the expected significant correlation to the heart rate at rest, but not the acceleration tolerance, or to the cardiovascular responses to tilting.

  17. Computer program for calculation of oxygen uptake

    NASA Technical Reports Server (NTRS)

    Castle, B. L.; Castle, G.; Greenleaf, J. E.

    1979-01-01

    A description and operational precedures are presented for a computer program, written in Super Basic, that calculates oxygen uptake, carbon dioxide production, and related ventilation parameters. Program features include: (1) the option of entering slope and intercept values of calibration curves for the O2 and CO2 and analyzers; (2) calculation of expired water vapor pressure; and (3) the option of entering inspured O2 and CO2 concentrations. The program is easily adaptable for programmable laboratory calculators.

  18. Measuring oxygen uptake in fishes with bimodal respiration.

    PubMed

    Lefevre, S; Bayley, M; McKenzie, D J

    2016-01-01

    Respirometry is a robust method for measurement of oxygen uptake as a proxy for metabolic rate in fishes, and how species with bimodal respiration might meet their demands from water v. air has interested researchers for over a century. The challenges of measuring oxygen uptake from both water and air, preferably simultaneously, have been addressed in a variety of ways, which are briefly reviewed. These methods are not well-suited for the long-term measurements necessary to be certain of obtaining undisturbed patterns of respiratory partitioning, for example, to estimate traits such as standard metabolic rate. Such measurements require automated intermittent-closed respirometry that, for bimodal fishes, has only recently been developed. This paper describes two approaches in enough detail to be replicated by the interested researcher. These methods are for static respirometry. Measuring oxygen uptake by bimodal fishes during exercise poses specific challenges, which are described to aid the reader in designing experiments. The respiratory physiology and behaviour of air-breathing fishes is very complex and can easily be influenced by experimental conditions, and some general considerations are listed to facilitate the design of experiments. Air breathing is believed to have evolved in response to aquatic hypoxia and, probably, associated hypercapnia. The review ends by considering what realistic hypercapnia is, how hypercapnic tropical waters can become and how this might influence bimodal animals' gas exchange. © 2015 The Fisheries Society of the British Isles.

  19. Cell line-dependent differences in uptake and retention of the hypoxia-selective nuclear imaging agent Cu-ATSM.

    PubMed

    Burgman, Paul; O'Donoghue, Joseph A; Lewis, Jason S; Welch, Michael J; Humm, John L; Ling, C Clifton

    2005-08-01

    Cu-diacetyl-bis(N(4)-methylthiosemicarbazone) [Cu-ATSM] is a potential marker for tumor hypoxia that has been under evaluation for clinical use. In this study, we examined the mechanisms underlying the uptake of (64)Cu in cells incubated with (64)Cu-ATSM. The in vitro uptake of (64)Cu was determined as a function of oxygenation conditions and incubation time with (64)Cu-ATSM using four and two tumor cell lines of human origin and rodent origin, respectively. Additionally, the rate of (64)Cu efflux and Cu-ATSM metabolism was determined. (64)Cu accumulation is rapid during the first 0.5-1 h of incubation. It is highest in anoxic cells but is also significant in normoxic cells. After this initial period, the level of intracellular (64)Cu varies depending on the cell line and the oxygenation conditions and, in some circumstances, may decrease. During the first 0.5-1 h, the ratio of (64)Cu levels between anoxic and normoxic cells is approximately 2:10 and that between hypoxic (0.5% O(2)) and normoxic cells is approximately 1:2.5, depending on the cell line. These ratios generally decrease at longer times. The (64)Cu-ATSM compound was found to be metabolized during incubation in a manner dependent on oxygenation conditions. Within 2 h under anoxic conditions, (64)Cu-ATSM could no longer be detected, although 60-90% of the amount of (64)Cu added as (64)Cu-ATSM was present in the medium. Non-ATSM (64)Cu was taken up by the cells, albeit at a much slower rate. Efflux rates of (64)Cu were found to be cell line dependent and appeared to be inversely correlated with the final (64)Cu uptake levels under anoxic conditions. The uptake and retention of (64)Cu and their relation to oxygenation conditions were found to be cell line dependent. Given the complexities in the oxygen dependence and cell line-dependent kinetics of uptake and retention of Cu following exposure to Cu-ATSM, the clinical utility of this compound may be disease site specific.

  20. Optimal villi density for maximal oxygen uptake in the human placenta.

    PubMed

    Serov, A S; Salafia, C M; Brownbill, P; Grebenkov, D S; Filoche, M

    2015-01-07

    We present a stream-tube model of oxygen exchange inside a human placenta functional unit (a placentone). The effect of villi density on oxygen transfer efficiency is assessed by numerically solving the diffusion-convection equation in a 2D+1D geometry for a wide range of villi densities. For each set of physiological parameters, we observe the existence of an optimal villi density providing a maximal oxygen uptake as a trade-off between the incoming oxygen flow and the absorbing villus surface. The predicted optimal villi density 0.47±0.06 is compatible to previous experimental measurements. Several other ways to experimentally validate the model are also proposed. The proposed stream-tube model can serve as a basis for analyzing the efficiency of human placentas, detecting possible pathologies and diagnosing placental health risks for newborns by using routine histology sections collected after birth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Benthic Oxygen Uptake in the Arctic Ocean Margins - A Case Study at the Deep-Sea Observatory HAUSGARTEN (Fram Strait)

    PubMed Central

    Cathalot, Cecile; Rabouille, Christophe; Sauter, Eberhard; Schewe, Ingo; Soltwedel, Thomas

    2015-01-01

    The past decades have seen remarkable changes in the Arctic, a hotspot for climate change. Nevertheless, impacts of such changes on the biogeochemical cycles and Arctic marine ecosystems are still largely unknown. During cruises to the deep-sea observatory HAUSGARTEN in July 2007 and 2008, we investigated the biogeochemical recycling of organic matter in Arctic margin sediments by performing shipboard measurements of oxygen profiles, bacterial activities and biogenic sediment compounds (pigment, protein, organic carbon, and phospholipid contents). Additional in situ oxygen profiles were performed at two sites. This study aims at characterizing benthic mineralization activity along local bathymetric and latitudinal transects. The spatial coverage of this study is unique since it focuses on the transition from shelf to Deep Ocean, and from close to the ice edge to more open waters. Biogeochemical recycling across the continental margin showed a classical bathymetric pattern with overall low fluxes except for the deepest station located in the Molloy Hole (5500 m), a seafloor depression acting as an organic matter depot center. A gradient in benthic mineralization rates arises along the latitudinal transect with clearly higher values at the southern stations (average diffusive oxygen uptake of 0.49 ± 0.18 mmol O2 m-2 d-1) compared to the northern sites (0.22 ± 0.09 mmol O2 m-2 d-1). The benthic mineralization activity at the HAUSGARTEN observatory thus increases southward and appears to reflect the amount of organic matter reaching the seafloor rather than its lability. Although organic matter content and potential bacterial activity clearly follow this gradient, sediment pigments and phospholipids exhibit no increase with latitude whereas satellite images of surface ocean chlorophyll a indicate local seasonal patterns of primary production. Our results suggest that predicted increases in primary production in the Arctic Ocean could induce a larger export of more refractory organic matter due to the longer production season and the extension of the ice-free zone. PMID:26465885

  2. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise.

    PubMed

    Ražanskas, Petras; Verikas, Antanas; Olsson, Charlotte; Viberg, Per-Arne

    2015-08-19

    This article presents a study of the relationship between electromyographic (EMG) signals from vastus lateralis, rectus femoris, biceps femoris and semitendinosus muscles, collected during fatiguing cycling exercises, and other physiological measurements, such as blood lactate concentration and oxygen consumption. In contrast to the usual practice of picking one particular characteristic of the signal, e.g., the median or mean frequency, multiple variables were used to obtain a thorough characterization of EMG signals in the spectral domain. Based on these variables, linear and non-linear (random forest) models were built to predict blood lactate concentration and oxygen consumption. The results showed that mean and median frequencies are sub-optimal choices for predicting these physiological quantities in dynamic exercises, as they did not exhibit significant changes over the course of our protocol and only weakly correlated with blood lactate concentration or oxygen uptake. Instead, the root mean square of the original signal and backward difference, as well as parameters describing the tails of the EMG power distribution were the most important variables for these models. Coefficients of determination ranging from R(2) = 0:77 to R(2) = 0:98 (for blood lactate) and from R(2) = 0:81 to R(2) = 0:97 (for oxygen uptake) were obtained when using random forest regressors.

  3. Aerobic Interval vs. Continuous Training in Patients with Coronary Artery Disease or Heart Failure: An Updated Systematic Review and Meta-Analysis with a Focus on Secondary Outcomes.

    PubMed

    Pattyn, Nele; Beulque, Randy; Cornelissen, Véronique

    2018-05-01

    In a previous meta-analysis including nine trials comparing aerobic interval training with aerobic continuous training in patients with coronary artery disease, we found a significant difference in peak oxygen uptake favoring aerobic interval training. The objective of this study was to (1) update the original meta-analysis focussing on peak oxygen uptake and (2) evaluate the effect on secondary outcomes. We conducted a systematic review with a meta-analysis by searching PubMed and SPORTDiscus databases up to March 2017. We included randomized trials comparing aerobic interval training and aerobic continuous training in patients with coronary artery disease or chronic heart failure. The primary outcome was change in peak oxygen uptake. Secondary outcomes included cardiorespiratory parameters, cardiovascular risk factors, cardiac and vascular function, and quality of life. Twenty-four papers were identified (n = 1080; mean age 60.7 ± 10.7 years). Aerobic interval training resulted in a higher increase in peak oxygen uptake compared with aerobic continuous training in all patients (1.40 mL/kg/min; p < 0.001), and in the subgroups of patients with coronary artery disease (1.25 mL/kg/min; p = 0.001) and patients with chronic heart failure with reduced ejection fraction (1.46 mL/kg/min; p = 0.03). Moreover, a larger increase of the first ventilatory threshold and peak heart rate was observed after aerobic interval training in all patients. Other cardiorespiratory parameters, cardiovascular risk factors, and quality of life were equally affected. This meta-analysis adds further evidence to the clinically significant larger increase in peak oxygen uptake following aerobic interval training vs. aerobic continuous training in patients with coronary artery disease and chronic heart failure. More well-designed randomized controlled trials are needed to establish the safety of aerobic interval training and the sustainability of the training response over longer periods.

  4. An emerging role for gasotransmitters in the control of breathing and ionic regulation in fish.

    PubMed

    Perry, Steve; Kumai, Y; Porteus, C S; Tzaneva, V; Kwong, R W M

    2016-02-01

    Three gases comprising nitric oxide, carbon monoxide and hydrogen sulphide, collectively are termed gasotransmitters. The gasotransmitters control several physiological functions in fish by acting as intracellular signaling molecules. Hydrogen sulphide, first implicated in vasomotor control in fish, plays a critical role in oxygen chemoreception owing to its production and downstream effects within the oxygen chemosensory cells, the neuroepithelial cells. Indeed, there is emerging evidence that hydrogen sulphide may contribute to oxygen sensing in both fish and mammals by promoting membrane depolarization of the chemosensory cells. Unlike hydrogen sulphide which stimulates breathing in zebrafish, carbon monoxide inhibits ventilation in goldfish and zebrafish whereas nitric oxide stimulates breathing in zebrafish larvae while inhibiting breathing in adults. Gasotransmitters also modulate ionic uptake in zebrafish. Though nothing is known about the role of CO, reduced activities of branchial Na(+)/K(+)-ATPase and H(+)-ATPase activities in the presence of NO donors suggest an inhibitory role of NO in fish osmoregulation. Hydrogen sulphide inhibits Na(+) uptake in zebrafish larvae and contributes to lowering Na(+) uptake capacity in fish acclimated to Na(+)-enriched water whereas it stimulates Ca(2+) uptake in larvae exposed to Ca(2+)-poor water.

  5. Simultaneous quantum yield measurements of carbon uptake and oxygen evolution in microalgal cultures

    PubMed Central

    Gholami, Pardis; Kline, David I.; DuPont, Christopher L.; Dickson, Andrew G.; Mendola, Dominick; Martz, Todd; Allen, Andrew E.; Mitchell, B. Greg

    2018-01-01

    The photosynthetic quantum yield (Φ), defined as carbon fixed or oxygen evolved per unit of light absorbed, is a fundamental but rarely determined biophysical parameter. A method to estimate Φ for both net carbon uptake and net oxygen evolution simultaneously can provide important insights into energy and mass fluxes. Here we present details for a novel system that allows quantification of carbon fluxes using pH oscillation and simultaneous oxygen fluxes by integration with a membrane inlet mass spectrometer. The pHOS system was validated using Phaeodactylum tricornutum cultured with continuous illumination of 110 μmole quanta m-2 s-1 at 25°C. Furthermore, simultaneous measurements of carbon and oxygen flux using the pHOS-MIMS and photon flux based on spectral absorption were carried out to explore the kinetics of Φ in P. tricornutum during its acclimation from low to high light (110 to 750 μmole quanta m-2 s-1). Comparing results at 0 and 24 hours, we observed strong decreases in cellular chlorophyll a (0.58 to 0.21 pg cell-1), Fv/Fm (0.71 to 0.59) and maximum ΦCO2 (0.019 to 0.004) and ΦO2 (0.028 to 0.007), confirming the transition toward high light acclimation. The Φ time-series indicated a non-synchronized acclimation response between carbon uptake and oxygen evolution, which has been previously inferred based on transcriptomic changes for a similar experimental design with the same diatom that lacked physiological data. The integrated pHOS-MIMS system can provide simultaneous carbon and oxygen measurements accurately, and at the time-resolution required to resolve high-resolution carbon and oxygen physiological dynamics. PMID:29920568

  6. Plasma /Na+/, /Ca++/, and volume shifts and thermoregulation during exercise in man

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Convertino, V. A.; Stremel, R. W.; Bernauer, E. M.; Adams, W. C.; Vignau, S. R.; Brock, P. J.

    1977-01-01

    Graded-exercise experiments are conducted on six trained male runners (19-23 yr) subjected to ergometer exercise in a program consisting of 30-min resting control period, 60 min of rest or exercise at work loads that resulted in a maximal oxygen uptake equivalent to 6% (resting), 23%, 43%, and 62% of maximal oxygen uptake, followed by 30 min of recovery. The parameters measured and discussed are rectal temperature (T-re), skin temperatures at different spots, maximal oxygen uptake, plasma volume (PV), and various plasma electrolyte and protein concentrations. The objectives are to determine whether the increased T-re during progressively greater work loads are related to plasma sodium ion and calcium ion concentrations, as well as to evaluate the influence of PV shifts on the electrolyte and osmotic concentrations. The results suggest that the shift (loss) in PV accounts for the increases in the plasma constituent concentrations that result in significant correlations with T-re.

  7. Bulk chlorine uptake by polyamide active layers of thin-film composite membranes upon exposure to free chlorine-kinetics, mechanisms, and modeling.

    PubMed

    Powell, Joshua; Luh, Jeanne; Coronell, Orlando

    2014-01-01

    We studied the volume-averaged chlorine (Cl) uptake into the bulk region of the aromatic polyamide active layer of a reverse osmosis membrane upon exposure to free chlorine. Volume-averaged measurements were obtained using Rutherford backscattering spectrometry with samples prepared at a range of free chlorine concentrations, exposure times, and mixing, rinsing, and pH conditions. Our volume-averaged measurements complement previous studies that have quantified Cl uptake at the active layer surface (top ≈ 7 nm) and advance the mechanistic understanding of Cl uptake by aromatic polyamide active layers. Our results show that surface Cl uptake is representative of and underestimates volume-averaged Cl uptake under acidic conditions and alkaline conditions, respectively. Our results also support that (i) under acidic conditions, N-chlorination followed by Orton rearrangement is the dominant Cl uptake mechanism with N-chlorination as the rate-limiting step; (ii) under alkaline conditions, N-chlorination and dechlorination of N-chlorinated amide links by hydroxyl ion are the two dominant processes; and (iii) under neutral pH conditions, the rates of N-chlorination and Orton rearrangement are comparable. We propose a kinetic model that satisfactorily describes Cl uptake under acidic and alkaline conditions, with the largest discrepancies between model and experiment occurring under alkaline conditions at relatively high chlorine exposures.

  8. The oxygen uptake slow component at submaximal intensities in breaststroke swimming

    PubMed Central

    Oliveira, Diogo R.; Gonçalves, Lio F.; Reis, António M.; Fernandes, Ricardo J.; Garrido, Nuno D.

    2016-01-01

    Abstract The present work proposed to study the oxygen uptake slow component (VO2 SC) of breaststroke swimmers at four different intensities of submaximal exercise, via mathematical modeling of a multi-exponential function. The slow component (SC) was also assessed with two different fixed interval methods and the three methods were compared. Twelve male swimmers performed a test comprising four submaximal 300 m bouts at different intensities where all expired gases were collected breath by breath. Multi-exponential modeling showed values above 450 ml·min−1 of the SC in the two last bouts of exercise (those with intensities above the lactate threshold). A significant effect of the method that was used to calculate the VO2 SC was revealed. Higher mean values were observed when using mathematical modeling compared with the fixed interval 3rd min method (F=7.111; p=0.012; η2=0.587); furthermore, differences were detected among the two fixed interval methods. No significant relationship was found between the SC determined by any method and the blood lactate measured at each of the four exercise intensities. In addition, no significant association between the SC and peak oxygen uptake was found. It was concluded that in trained breaststroke swimmers, the presence of the VO2 SC may be observed at intensities above that corresponding to the 3.5 mM-1 threshold. Moreover, mathematical modeling of the oxygen uptake on-kinetics tended to show a higher slow component as compared to fixed interval methods. PMID:28149379

  9. Anaerobic and Aerobic Performance of Elite Female and Male Snowboarders

    PubMed Central

    Żebrowska, Aleksandra; Żyła, Dorota; Kania, Damian; Langfort, Józef

    2012-01-01

    The physiological adaptation to training is specific to the muscle activity, dominant energy system involved, muscle groups trained, as well as intensity and volume of training. Despite increasing popularity of snowboarding only little scientific data is available on the physiological characteristics of female and male competitive snowboarders. Therefore, the purpose of this study was to compare the aerobic capacity and maximal anaerobic power of elite Polish snowboarders with untrained subjects. Ten snowboarders and ten aged matched students of Physical Education performed two exercise tests. First, a 30-second Wingate test was conducted and next, a cycle ergometer exercise test with graded intensity. In the first test, peak anaerobic power, the total work, relative peak power and relative mean power were measured. During the second test, relative maximal oxygen uptake and lactate threshold were evaluated. There were no significant differences in absolute and relative maximal oxygen uptake between snowboarders and the control group. Mean maximal oxygen uptake and lactate threshold were significantly higher in men than in women. Significant differences were found between trained men and women regarding maximal power and relative maximal power. The elite snowboarders demonstrated a high level of anaerobic power. The level of relative peak power in trained women correlated negatively with maximal oxygen uptake. In conclusion, our results seem to indicate that the demanding competition program of elite snowboarders provides a significant training stimulus mainly for anaerobic power with minor changes in anaerobic performance. PMID:23487498

  10. Oxygen Uptake Efficiency Plateau Best Predicts Early Death in Heart Failure

    PubMed Central

    Hansen, James E.; Stringer, William W.

    2012-01-01

    Background: The responses of oxygen uptake efficiency (ie, oxygen uptake/ventilation = V˙o2/V˙e) and its highest plateau (OUEP) during incremental cardiopulmonary exercise testing (CPET) in patients with chronic left heart failure (HF) have not been previously reported. We planned to test the hypothesis that OUEP during CPET is the best single predictor of early death in HF. Methods: We evaluated OUEP, slope of V˙o2 to log(V˙e) (oxygen uptake efficiency slope), oscillatory breathing, and all usual resting and CPET measurements in 508 patients with low-ejection-fraction (< 35%) HF. Each had further evaluations at other sites, including cardiac catheterization. Outcomes were 6-month all-reason mortality and morbidity (death or > 24 h cardiac hospitalization). Statistical analyses included area under curve of receiver operating characteristics, ORs, univariate and multivariate Cox regression, and Kaplan-Meier plots. Results: OUEP, which requires only moderate exercise, was often reduced in patients with HF. A low % predicted OUEP was the single best predictor of mortality (P < .0001), with an OR of 13.0 (P < .001). When combined with oscillatory breathing, the OR increased to 56.3, superior to all other resting or exercise parameters or combinations of parameters. Other statistical analyses and morbidity analysis confirmed those findings. Conclusions: OUEP is often reduced in patients with HF. Low % predicted OUEP (< 65% predicted) is the single best predictor of early death, better than any other CPET or other cardiovascular measurement. Paired with oscillatory breathing, it is even more powerful. PMID:22030802

  11. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems.

    PubMed

    Blok, Chris; Jackson, Brian E; Guo, Xianfeng; de Visser, Pieter H B; Marcelis, Leo F M

    2017-01-01

    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15-17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent cultivation in the DeepFlow negatively compared to substrate-based propagation. Water-based propagation resulted in frequent transient discolorations after transplanting in all cultivation systems, indicating a factor, other than irrigation supply of water, nutrients, and oxygen, influencing plant uptake. Plant uptake rates for water, nutrients, and oxygen are offered as a more fundamental way to compare and improve growing systems.

  12. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems

    PubMed Central

    Blok, Chris; Jackson, Brian E.; Guo, Xianfeng; de Visser, Pieter H. B.; Marcelis, Leo F. M.

    2017-01-01

    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15–17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent cultivation in the DeepFlow negatively compared to substrate-based propagation. Water-based propagation resulted in frequent transient discolorations after transplanting in all cultivation systems, indicating a factor, other than irrigation supply of water, nutrients, and oxygen, influencing plant uptake. Plant uptake rates for water, nutrients, and oxygen are offered as a more fundamental way to compare and improve growing systems. PMID:28443129

  13. Roles of sulfuric acid in elemental mercury removal by activated carbon and sulfur-impregnated activated carbon.

    PubMed

    Morris, Eric A; Kirk, Donald W; Jia, Charles Q; Morita, Kazuki

    2012-07-17

    This work addresses the discrepancy in the literature regarding the effects of sulfuric acid (H(2)SO(4)) on elemental Hg uptake by activated carbon (AC). H(2)SO(4) in AC substantially increased Hg uptake by absorption particularly in the presence of oxygen. Hg uptake increased with acid amount and temperature exceeding 500 mg-Hg/g-AC after 3 days at 200 °C with AC treated with 20% H(2)SO(4). In the absence of other strong oxidizers, oxygen was able to oxidize Hg. Upon oxidation, Hg was more readily soluble in the acid, greatly enhancing its uptake by acid-treated AC. Without O(2), S(VI) in H(2)SO(4) was able to oxidize Hg, thus making it soluble in H(2)SO(4). Consequently, the presence of a bulk H(2)SO(4) phase within AC pores resulted in an orders of magnitude increase in Hg uptake capacity. However, the bulk H(2)SO(4) phase lowered the AC pore volume and could block the access to the active surface sites and potentially hinder Hg uptake kinetics. AC treated with SO(2) at 700 °C exhibited a much faster rate of Hg uptake attributed to sulfur functional groups enhancing adsorption kinetics. SO(2)-treated carbon maintained its fast uptake kinetics even after impregnation by 20% H(2)SO(4).

  14. GEDAE-LaB: A Free Software to Calculate the Energy System Contributions during Exercise

    PubMed Central

    Bertuzzi, Rômulo; Melegati, Jorge; Bueno, Salomão; Ghiarone, Thaysa; Pasqua, Leonardo A.; Gáspari, Arthur Fernandes; Lima-Silva, Adriano E.; Goldman, Alfredo

    2016-01-01

    Purpose The aim of the current study is to describe the functionality of free software developed for energy system contributions and energy expenditure calculation during exercise, namely GEDAE-LaB. Methods Eleven participants performed the following tests: 1) a maximal cycling incremental test to measure the ventilatory threshold and maximal oxygen uptake (V˙O2max); 2) a cycling workload constant test at moderate domain (90% ventilatory threshold); 3) a cycling workload constant test at severe domain (110% V˙O2max). Oxygen uptake and plasma lactate were measured during the tests. The contributions of the aerobic (AMET), anaerobic lactic (LAMET), and anaerobic alactic (ALMET) systems were calculated based on the oxygen uptake during exercise, the oxygen energy equivalents provided by lactate accumulation, and the fast component of excess post-exercise oxygen consumption, respectively. In order to assess the intra-investigator variation, four different investigators performed the analyses independently using GEDAE-LaB. A direct comparison with commercial software was also provided. Results All subjects completed 10 min of exercise at moderate domain, while the time to exhaustion at severe domain was 144 ± 65 s. The AMET, LAMET, and ALMET contributions during moderate domain were about 93, 2, and 5%, respectively. The AMET, LAMET, and ALMET contributions during severe domain were about 66, 21, and 13%, respectively. No statistical differences were found between the energy system contributions and energy expenditure obtained by GEDAE-LaB and commercial software for both moderate and severe domains (P > 0.05). The ICC revealed that these estimates were highly reliable among the four investigators for both moderate and severe domains (all ICC ≥ 0.94). Conclusion These findings suggest that GEDAE-LaB is a free software easily comprehended by users minimally familiarized with adopted procedures for calculations of energetic profile using oxygen uptake and lactate accumulation during exercise. By providing availability of the software and its source code we hope to facilitate future related research. PMID:26727499

  15. GEDAE-LaB: A Free Software to Calculate the Energy System Contributions during Exercise.

    PubMed

    Bertuzzi, Rômulo; Melegati, Jorge; Bueno, Salomão; Ghiarone, Thaysa; Pasqua, Leonardo A; Gáspari, Arthur Fernandes; Lima-Silva, Adriano E; Goldman, Alfredo

    2016-01-01

    The aim of the current study is to describe the functionality of free software developed for energy system contributions and energy expenditure calculation during exercise, namely GEDAE-LaB. Eleven participants performed the following tests: 1) a maximal cycling incremental test to measure the ventilatory threshold and maximal oxygen uptake (V̇O2max); 2) a cycling workload constant test at moderate domain (90% ventilatory threshold); 3) a cycling workload constant test at severe domain (110% V̇O2max). Oxygen uptake and plasma lactate were measured during the tests. The contributions of the aerobic (AMET), anaerobic lactic (LAMET), and anaerobic alactic (ALMET) systems were calculated based on the oxygen uptake during exercise, the oxygen energy equivalents provided by lactate accumulation, and the fast component of excess post-exercise oxygen consumption, respectively. In order to assess the intra-investigator variation, four different investigators performed the analyses independently using GEDAE-LaB. A direct comparison with commercial software was also provided. All subjects completed 10 min of exercise at moderate domain, while the time to exhaustion at severe domain was 144 ± 65 s. The AMET, LAMET, and ALMET contributions during moderate domain were about 93, 2, and 5%, respectively. The AMET, LAMET, and ALMET contributions during severe domain were about 66, 21, and 13%, respectively. No statistical differences were found between the energy system contributions and energy expenditure obtained by GEDAE-LaB and commercial software for both moderate and severe domains (P > 0.05). The ICC revealed that these estimates were highly reliable among the four investigators for both moderate and severe domains (all ICC ≥ 0.94). These findings suggest that GEDAE-LaB is a free software easily comprehended by users minimally familiarized with adopted procedures for calculations of energetic profile using oxygen uptake and lactate accumulation during exercise. By providing availability of the software and its source code we hope to facilitate future related research.

  16. Health status and physical fitness of mines rescue brigadesmen.

    PubMed

    Tomaskova, Hana; Jirak, Zdenek; Lvoncik, Samuel; Buzga, Marek; Zavadilova, Vladislava; Trlicova, Michaela

    2015-01-01

    The aim of the study was to assess health status of regular and part-time mines rescue brigadesmen. A group of 685 mines rescue brigadesmen was examined within the preventive testing - a basic internal, biochemistry and anthropometric examination, physical fitness testing. The average age of the subjects was 41.96±7.18 years, the average exposure in mining was 20±8.1 years, out of that 11.95±7.85 years as mines rescue brigadesmen. Elevated levels of total serum cholesterol (T-CH) and low-density lipoprotein cholesterol (LDL-CH) were found in over 1/2 of the subjects. Systolic hypertension (systolic blood pressure (SBP) ≥ 140 mm Hg) was confirmed in 34%, overweight (body mass index (BMI) ≥ 25) in 62.3% and obesity (BMI ≥ 30) in 20.4% of the examined mines rescue brigadesmen. The metabolic syndrome was found in 15.2% of persons. The highest physical fitness was found in mines rescue brigadesmen and the lowest in mine officers. Limit values of maximum oxygen uptake (VO2 max/kg) determined by the management of the mine rescue station were not reached by every 3rd of all mines rescue brigadesmen. Compared with the control group of the Czech and Slovak population, the rescuers are taller, have greater BMI, higher percentage of body fat in all age categories and proportionally to that they achieve a higher maximum minute oxygen uptake; however, in relative values per kg of body weight their physical fitness is practically the same as that of the controls. The prevalence of risk factors of cardiovascular diseases and VO2 max/kg in the group of the mines rescue brigadesmen is comparable with that in the general untrained Czech population. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  17. Performance of a pilot demonstration-scale hybrid constructed wetland system for on-site treatment of polluted urban river water in Northwestern China.

    PubMed

    Zheng, Yucong; Wang, Xiaochang C; Dzakpasu, Mawuli; Ge, Yuan; Zhao, Yaqian; Xiong, Jiaqing

    2016-01-01

    Hybrid constructed wetland (HCW) systems have been used to treat various wastewaters across the world. However, large-scale applications of HCWs are scarce, particularly for on-site improvement of the water quality of highly polluted urban rivers in semi-arid regions. In this study, a large pilot-scale HCW system was constructed to improve the water quality of the Zaohe River in Xi'an, China. With a total area of about 8000 m(2), the pilot HCW system, composed of different configurations of surface and subsurface flow wetlands, was operated for 2 years at an average inflow volume rate of 362 m(3)/day. Local Phragmites australis and Typha orientalis from the riverbank were planted in the HCW system. Findings indicate a higher treatment efficiency for organics and suspended solids than nutrients. The inflow concentrations of 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (TN), NH3-N, and total phosphorus (TP) were 125.6, 350.9, 334.2, 38.5, 27.2, and 3.9 mg/L, respectively. Average removal efficiencies of 94.4, 74.5, 92.0, 56.3, 57.5, and 69.2%, respectively, were recorded. However, the pollutant removal rates were highly seasonal especially for nitrogen. Higher removals were recorded for all pollutants in the autumn while significantly lower removals were recorded in the winter. Plant uptake and assimilation accounted for circa 19-29 and 16-23% of the TN and TP removal, respectively. Moreover, P. australis demonstrated a higher nutrient uptake ability and competitive potential. Overall, the high efficiency of the pilot HCW for improving the water quality of such a highly polluted urban river provided practical evidence of the applicability of the HCW technology for protecting urban water environments.

  18. Maximum Oxygen Uptake During Long-Duration Space Flight: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Moore, A. D., Jr.; Evetts, S. N.; Feiveson, A.H.; Lee, S. M. C.; McCleary, F. A.; Platts, S. H.; Ploutz-Snyder, L.

    2010-01-01

    INTRODUCTION: Maximum oxygen uptake (VO2max) is maintained during space flight lasting <15 d, but has not been measured during long-duration missions. This abstract describes pre-flight and in-flight preliminary findings from the International Space Station (ISS) VO2max experiment. METHODS: Seven astronauts (4 M, 3 F: 47 +/- 5 yr, 174 +/- 7 cm, 74.1 +/- 14.7 kg [mean +/- SD]) performed cycle exercise tests to volitional maximum approx.45 d before flight and tests were scheduled every 30 d during flight beginning on flight day (FD) 14. Tests consisted of three 5-min stages designed to elicit 25%, 50%, and 75% of preflight VO2max, followed by 25 W/min increases. VO2 and heart rate (HR) were measured using the ISS Portable Pulmonary Function System (PPFS) (Damec, Odense, DK). Unfortunately the PPFS did not arrive at the ISS in time to support early test sessions for 3 crewmembers. Descriptive statistics are presented for pre-flight vs. late-flight (FD 147 +/- 33 d) comparisons for all subjects (n=7); and pre-flight, early (FD 18 +/- 3) and late-flight (FD 156 +/- 5) data are presented for subjects (n=4) who completed all of these test sessions. RESULTS: When all subjects are considered, average VO2max decreased from pre- to late in-flight (2.98 +/- 0.85 vs. 2.57 +/- 0.50 L/min) while maximum HR late-flight seemed unchanged (178 +/- 9 vs. 175 +/- 8 beats/min). Similarly, for subjects who completed pre-, early, and late flight measurements (n=4), mean VO2max declined from 3.19 +/- 0.75 L/min preflight to 2.43 +/- 0.43 and 2.62 +/- 0.38 L/min early and late-flight, respectively. Maximum HR was 183 +/- 8, 174 +/- 8, and 179 +/- 6 beats/min pre-, early- and late-flight. DISCUSSION: Average VO2max declined during flight and did not appreciably recover as flight duration increased; however much inter-subject variation occurred in these changes.

  19. Preclinical Positron Emission Tomographic Imaging of Acute Hyperoxia Therapy of Chronic Hypoxia during Pregnancy.

    PubMed

    Zheleznyak, Alexander; Garbow, Joel R; Neeman, Michal; Lapi, Suzanne E

    2015-01-01

    The goal of this work was to study the efficacy of the positron emission tomography (PET) tracers 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and 64Cu-diacetyl-bis(N4-methylthiosemicarbazone) ([64Cu]ATSM) and in monitoring placental and fetal functional response to acute hyperoxia in late-term pregnant mice subjected to experimentally induced chronic hypoxia. E15 mice were maintained at 12% inspired oxygen for 72 hours and then imaged during oxygen inhalation with either [18F]FDG to monitor nutrient transport or 64Cu-ATSM to establish the presence of hypoxia. Computed tomography (CT) with contrast allowed clear visualization of both placentas and fetuses. The average ratio of fetal to placental [18F]FDG uptake was 0.45 ± 0.1 for the hypoxic animals and 0.55 ± 0.1 for the normoxic animals, demonstrating a significant decrease (p = .0002) in placental function in dams exposed to chronic hypoxic conditions. Hypoxic placentas and fetuses retained more 64Cu-ATSM compared to normoxic placentas and fetuses. Herein we report first-in-mouse PET imaging of fetuses employing both tracers [18F]FDG (metabolism) and 64Cu-ATSM (hypoxia). [18F]FDG PET/CT imaging allowed clear visualization of placental-fetal structures and supported quantification of tracer uptake, making this a sensitive tool for monitoring placental function in preclinical rodent models. These measurements illustrate the potentially irreversible damage generated by chronic exposure to hypoxia, which cannot be corrected by acute exposure to hyperoxia.

  20. Relationship between weight of rescuer and quality of chest compression during cardiopulmonary resuscitation

    PubMed Central

    2014-01-01

    Background According to the guidelines for cardiopulmonary resuscitation (CPR), the rotation time for chest compression should be about 2 min. The quality of chest compressions is related to the physical fitness of the rescuer, but this was not considered when determining rotation time. The present study aimed to clarify associations between body weight and the quality of chest compression and physical fatigue during CPR performed by 18 registered nurses (10 male and 8 female) assigned to light and heavy groups according to the average weight for each sex in Japan. Methods Five-minute chest compressions were then performed on a manikin that was placed on the floor. Measurement parameters were compression depth, heart rate, oxygen uptake, integrated electromyography signals, and rating of perceived exertion. Compression depth was evaluated according to the ratio (%) of adequate compressions (at least 5 cm deep). Results The ratio of adequate compressions decreased significantly over time in the light group. Values for heart rate, oxygen uptake, muscle activity defined as integrated electromyography signals, and rating of perceived exertion were significantly higher for the light group than for the heavy group. Conclusion Chest compression caused increased fatigue among the light group, which consequently resulted in a gradual fall in the quality of chest compression. These results suggested that individuals with a lower body weight should rotate at 1-min intervals to maintain high quality CPR and thus improve the survival rates and neurological outcomes of victims of cardiac arrest. PMID:24957919

  1. Criterion-related validity of perceived exertion scales in healthy children: a systematic review and meta-analysis.

    PubMed

    Rodríguez, Iván; Zambrano, Lysien; Manterola, Carlos

    2016-04-01

    Physiological parameters used to measure exercise intensity are oxygen uptake and heart rate. However, perceived exertion (PE) is a scale that has also been frequently applied. The objective of this study is to establish the criterion-related validity of PE scales in children during an incremental exercise test. Seven electronic databases were used. Studies aimed at assessing criterion-related validity of PE scales in healthy children during an incremental exercise test were included. Correlation coefficients were transformed into z-values and assessed in a meta-analysis by means of a fixed effects model if I2 was below 50% or a random effects model, if it was above 50%. wenty-five articles that studied 1418 children (boys: 49.2%) met the inclusion criteria. Children's average age was 10.5 years old. Exercise modalities included bike, running and stepping exercises. The weighted correlation coefficient was 0.835 (95% confidence interval: 0.762-0.887) and 0.874 (95% confidence interval: 0.794-0.924) for heart rate and oxygen uptake as reference criteria. The production paradigm and scales that had not been adapted to children showed the lowest measurement performance (p < 0.05). Measuring PE could be valid in healthy children during an incremental exercise test. Child-specific rating scales showed a better performance than those that had not been adapted to this population. Further studies with better methodological quality should be conducted in order to confirm these results. Sociedad Argentina de Pediatría.

  2. Human Physiological Responses to Cycle Ergometer Leg Exercise During +Gz Acceleration

    NASA Technical Reports Server (NTRS)

    Chou, J. L.; Stad, N. J.; Barnes, P. R.; Leftheriotis, G. P. N.; Arndt, N. F.; Simonson, S.; Greenleaf, J. E.

    1998-01-01

    Spaceflight and bed-rest deconditioning decrease maximal oxygen uptake (aerobic power), strength, endurance capacity, and orthostatic tolerance. In addition to extensive use of muscular exercise conditioning as a countermeasure for the reduction in aerobic power (VO(sub 2max)), stimuli from some form of +Gz acceleration conditioning may be necessary to attenuate the orthostatic intolerance component of this deconditioning. Hypothesis: There will be no significant difference in the physiological responses (oxygen uptake, heart rate, ventilation, or respiratory exchange ratio) during supine exercise with moderate +Gz acceleration.

  3. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Van Hoek, Pim; Aristidou, Aristos; Rush, Brian J.

    2016-08-30

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  4. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Van Hoek, Pim [Minnetonka, MN; Aristidou, Aristos [Maple Grove, MN; Rush, Brian [Minneapolis, MN

    2011-05-10

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  5. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Hoek, Van; Pim, Aristidou [Minnetonka, MN; Aristos, Rush [Maple Grove, MN; Brian, [Minneapolis, MN

    2007-06-19

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  6. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Van Hoek, Pim; Aristidou, Aristos; Rush, Brian

    2014-09-09

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  7. Effects of Ultraviolet Radiation on the Oxygen Uptake Rate of the Rabbit Cornea

    DTIC Science & Technology

    1989-07-01

    typical of a noncoherent source Optometrist, Ph.D. exposure. IV Effects on Corneal Oxygen Uptake-Lattimore 117 AvxAtl,-blity Codes 1- -il and/or , "t i...romator entrance slit by the housing optics . A 10 reciprocity (i.e., the biologic effects or endpoints cm quartz-enclosed water chamber was placed be...remove the infrared radiation. The exit optical taneous output at 350.7 and 356.4 nm (3:1 ratio), beam was focused by a quartz lens with a beam size

  8. Oceanic Uptake of Oxygen During Deep Convection Events Through Diffusive and Bubble-Mediated Gas Exchange

    NASA Astrophysics Data System (ADS)

    Sun, Daoxun; Ito, Takamitsu; Bracco, Annalisa

    2017-10-01

    The concentration of dissolved oxygen (O2) plays fundamental roles in diverse chemical and biological processes throughout the oceans. The balance between the physical supply and the biological consumption controls the O2 level of the interior ocean, and the O2 supply to the deep waters can only occur through deep convection in the polar oceans. We develop a theoretical framework describing the oceanic O2 uptake during open-ocean deep convection events and test it against a suite of numerical sensitivity experiments. Our framework allows for two predictions, confirmed by the numerical simulations. First, both the duration and the intensity of the wintertime cooling contribute to the total O2 uptake for a given buoyancy loss. Stronger cooling leads to deeper convection and the oxygenation can reach down to deeper depths. Longer duration of the cooling period increases the total amount of O2 uptake over the convective season. Second, the bubble-mediated influx of O2 tends to weaken the diffusive influx by shifting the air-sea disequilibrium of O2 toward supersaturation. The degree of compensation between the diffusive and bubble-mediated gas exchange depends on the dimensionless number measuring the relative strength of oceanic vertical mixing and the gas transfer velocity. Strong convective mixing, which may occur under strong cooling, reduces the degree of compensation so that the two components of gas exchange together drive exceptionally strong oceanic O2 uptake.

  9. A Course in... Biochemical Engineering.

    ERIC Educational Resources Information Center

    Ng, Terry K-L.; And Others

    1988-01-01

    Describes a chemical engineering course for senior undergraduates and first year graduate students in biochemical engineering. Discusses five experiments used in the course: aseptic techniques, dissolved oxygen measurement, oxygen uptake by yeast, continuous sterilization, and cultivation of microorganisms. (MVL)

  10. Electrochemistry suggests proton access from the exit site to the binuclear center in Paracoccus denitrificans cytochrome c oxidase pathway variants.

    PubMed

    Meyer, Thomas; Melin, Frédéric; Richter, Oliver-M H; Ludwig, Bernd; Kannt, Aimo; Müller, Hanne; Michel, Hartmut; Hellwig, Petra

    2015-02-27

    Two different pathways through which protons access cytochrome c oxidase operate during oxygen reduction from the mitochondrial matrix, or the bacterial cytoplasm. Here, we use electrocatalytic current measurements to follow oxygen reduction coupled to proton uptake in cytochrome c oxidase isolated from Paracoccus denitrificans. Wild type enzyme and site-specific variants with defects in both proton uptake pathways (K354M, D124N and K354M/D124N) were immobilized on gold nanoparticles, and oxygen reduction was probed electrochemically in the presence of varying concentrations of Zn(2+) ions, which are known to inhibit both the entry and the exit proton pathways in the enzyme. Our data suggest that under these conditions substrate protons gain access to the oxygen reduction site via the exit pathway. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Morphological and physiological studies on Indian national kabaddi players.

    PubMed Central

    Dey, S K; Khanna, G L; Batra, M

    1993-01-01

    Twenty-five national kabaddi players (Asiad gold medalists 1990), mean age 27.91 years, who attended a national camp at the Sports Authority of India, Bangalore before the Beijing Asian Games in 1990, were investigated for their physical characteristics, body fat, lean body mass (LBM) and somatotype. The physiological characteristics assessed included back strength, maximum oxygen uptake capacity and anaerobic capacity (oxygen debt) and related cardiorespiratory parameters (oxygen pulse, breathing equivalent, maximum pulmonary ventilation, maximum heart rate). Body fat was calculated from skinfold thicknesses taken at four different sites, using Harpenden skinfold calipers. An exercise test (graded protocol) was performed on a bicycle ergometer (ER-900) using a computerized EOS Sprint (Jaeger, West Germany). The mean(s.d.) percentage body fat (17.56(3.48)) of kabaddi players was found to be higher than normal sedentary people. Their physique was found to be endomorphic mesomorph (3.8-5.2-1.7). Mean(s.d.) back strength, maximum oxygen uptake capacity (VO2max) and oxygen debt were found to be 162.6(18.08) kg, 42.6(4.91) ml kg-1 min-1 and 5.02(1.29) litre respectively. Physical characteristics, percentage body fat, somatotype, maximum oxygen uptake capacity and anaerobic capacity (oxygen debt) and other cardiorespiratory parameters were compared with other national counterparts. Present data are comparable with data for judo, wrestling and weightlifting. Since no such study has been conducted on international counterparts, these data could not be compared. These data may act as a guideline in the selection of future kabaddi players and to attain the physiological status comparable to the present gold medalists. Images Figure 4 Figure 5 p242-a PMID:8130960

  12. Using Argo-O2 data to examine the impact of deep-water formation events on oxygen uptake in the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Wolf, M. K.; Hamme, R. C.; Gilbert, D.; Yashayaev, I.

    2016-02-01

    Deep-water formation allows the deep ocean to communicate with the atmosphere, facilitating exchanges of heat as well as important gases such as CO2 and oxygen. The Labrador Sea is the most studied location of deep convection in the North Atlantic Ocean and a strong contributor to the global thermohaline circulation. Since there are no internal sources of oxygen below the euphotic zone, deep-water formation is vital for oxygen transport to the deep ocean. Recent studies document large interannual variability in the strength and depth of convection in the Labrador Sea, from mixed layers of 100m to greater than 1000m. A weakening of this deep convection starves the deep ocean of oxygen, disrupting crucial deep sea biological processes, as well as reducing oceanic CO2 uptake and ocean circulation. We used data from the extensive Argo float network to examine these deep-water formation events in the Labrador Sea. The oxygen optodes onboard many Argo floats suffer from biases whose amplitude must be determined; therefore we investigated and applied various optode calibration methods. Using calibrated vertical profiles of oxygen, temperature, and salinity, we observed the timing, magnitude, and location of deep convection, restratification, and spring phytoplankton blooms. In addition, we used surface oxygen values along with NCEP wind speeds to calculate the air-sea oxygen flux using a range of air-sea gas exchange parameterizations. We then compared this oxygen flux to the rate of change of the measured oxygen inventory. Where the inventory and flux did not agree, we identified other oceanic processes such as biological activity or lateral advection of water masses occurring, or advection of the float itself into a new area. The large role that horizontal advection of water or the float has on oxygen uptake and cycling leads us to conclude that this data cannot be easily interpreted as a 1-D system. Oxygen exchanges with the atmosphere at a faster rate than CO2, is more affected by bubble injection, and reacts differently to temperature change. Oxygen is also produced and consumed by photosynthesis and respiration respectively at a specific ratio to CO2. These properties enable us to use oxygen as a separate constraint from carbon to determine the effect these various processes have on gas cycling, and the global ocean circulation.

  13. ESCA Study of Poly (Vinylidene Fluoride) Tetrafluoroethylene - Ethylene Copolymer and Polyethylene Exposed to Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Cormia, Robert D.

    1989-01-01

    The ESCA (electron spectroscopy for chemical analysis) spectra of films of poly(vinylidene fluoride) (PVDF), tetrafluoroethylene-ethylene copolymer (TFE/ET) and polyethylene (PE) exposed to atomic oxygen (O(P-3)), in or out of the glow of a radio-frequency O2 plasma, were compared. ESCA spectra of PE films exposed to (O(P-3)) in low Earth orbit (LEO) on the STS-8 Space Shuttle were also examined. Apart from O(P-3)-induced surface recession (etching), the various polymer films exhibited surface oxidation, which proceeded towards equilibrium saturation oxygen levels. The maximum surface oxygen uptakes for in-glow or out-of-glow exposures were in the order: PE greater than TFE/ET greater than PVDF; for PE itself, the oxygen uptakes were in the order: in glow greater than out of glow greater than LEO. Given prior ESCA data on poly(vinyl fluoride) and polytetrafluoroethylene films exposed to O(P-3), the extent of surface oxidation is seen to decrease regularly with increase in fluorine substitution in a family of ethylene-type polymers. (Keywords: ESCA; poly(vinylidene fluoride); tetrafluoroethylene ethylene copolymer; polyethylene; atomic oxygen; radio-frequency oxygen plasma; low Earth orbit)

  14. Linear and non-linear contributions to oxygen transport and utilization during moderate random exercise in humans.

    PubMed

    Beltrame, T; Hughson, R L

    2017-05-01

    What is the central question of this study? The pulmonary oxygen uptake (pV̇O2) data used to study the muscle aerobic system dynamics during moderate-exercise transitions is classically described as a mono-exponential function controlled by a complex interaction of the oxygen delivery-utilization balance. This elevated complexity complicates the acquisition of relevant information regarding aerobic system dynamics based on pV̇O2 data during a varying exercise stimulus. What is the main finding and its importance? The elevated complexity of pV̇O2 dynamics is a consequence of a multiple-order interaction between muscle oxygen uptake and circulatory distortion. Our findings challenge the use of a first-order function to study the influences of the oxygen delivery-utilization balance over the pV̇O2 dynamics. The assumption of aerobic system linearity implies that the pulmonary oxygen uptake (pV̇O2) dynamics during exercise transitions present a first-order characteristic. The main objective of this study was to test the linearity of the oxygen delivery-utilization balance during random moderate exercise. The cardiac output (Q̇) and deoxygenated haemoglobin concentration ([HHb]) were measured to infer the central and local O 2 availability, respectively. Thirteen healthy men performed two consecutive pseudorandom binary sequence cycling exercises followed by an incremental protocol. The system input and the outputs pV̇O2, [HHb] and Q̇ were submitted to frequency-domain analysis. The linearity of the variables was tested by computing the ability of the response at a specific frequency to predict the response at another frequency. The predictability levels were assessed by the coefficient of determination. In a first-order system, a participant who presents faster dynamics at a specific frequency should also present faster dynamics at any other frequency. All experimentally obtained variables (pV̇O2, [HHb] and Q̇) presented a certainly degree of non-linearity. The local O 2 availability, evaluated by the ratio pV̇O2/[HHb], presented the most irregular behaviour. The overall [HHb] kinetics were faster than pV̇O2 and Q̇ kinetics. In conclusion, the oxygen delivery-utilization balance behaved as a non-linear phenomenon. Therefore, the elevated complexity of the pulmonary oxygen uptake dynamics is governed by a complex multiple-order interaction between the oxygen delivery and utilization systems. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  15. Controlled exercise effects on chromium excretion of trained and untrained runners consuming a constant diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R.A.; Bryden, N.A.; Polansky, M.M.

    1986-03-05

    To determine if degree of training effects urinary Cr losses, Cr excretion of 8 adult trained and 5 untrained runners was determined on rest days and following exercise at 90% of maximal oxygen uptake on a treadmill to exhaustion with 30 second exercise and 30 second rest periods. Subjects were fed a constant daily diet containing 9 ..mu..g of Cr per 1000 calories to minimize changes due to diet. Maximal oxygen consumption of the trained runners was in the good or above range based upon their age and that of the untrained runners was average or below. While consuming themore » control diet, basal urinary Cr excretion of subjects who exercise regularly was significantly lower than that of the sedentary control subjects, 0.09 +/- 0.01 and 0.21 +/- 0.03 ..mu..g/day (mean +/- SEM), respectively. Daily urinary Cr excretion of trained subjects was significantly higher on the day of a single exercise bout at 90% of maximal oxygen consumption compared to nonexercise days, 0.12 +/- 0.02 and 0.09 +/- 0.01 ..mu..g/day, respectively. Urinary Cr excretion of 5 untrained subjects was not altered following controlled exercise. These data demonstrate that basal urinary Cr excretion and excretion in response to exercise are related to maximal oxygen consumption and therefore degree of fitness.« less

  16. Influence of low oxygen tensions and sorption to sediment black carbon on biodegradation of pyrene.

    PubMed

    Ortega-Calvo, José-Julio; Gschwend, Philip M

    2010-07-01

    Sorption to sediment black carbon (BC) may limit the aerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in resuspension events and intact sediment beds. We examined this hypothesis experimentally under conditions that were realistic in terms of oxygen concentrations and BC content. A new method, based on synchronous fluorescence observations of (14)C-pyrene, was developed for continuously measuring the uptake of dissolved pyrene by Mycobacterium gilvum VM552, a representative degrader of PAHs. The effect of oxygen and pyrene concentrations on pyrene uptake followed Michaelis-Menten kinetics, resulting in a dissolved oxygen half-saturation constant (K(om)) of 14.1 microM and a dissolved pyrene half-saturation constant (K(pm)) of 6 nM. The fluorescence of (14)C-pyrene in air-saturated suspensions of sediments and induced cells followed time courses that reflected simultaneous desorption and biodegradation of pyrene, ultimately causing a quasi-steady-state concentration of dissolved pyrene balancing desorptive inputs and biodegradation removals. The increasing concentrations of (14)CO(2) in these suspensions, as determined with liquid scintillation, evidenced the strong impact of sorption to BC-rich sediments on the biodegradation rate. Using the best-fit parameter values, we integrated oxygen and sorption effects and showed that oxygen tensions far below saturation levels in water are sufficient to enable significant decreases in the steady-state concentrations of aqueous-phase pyrene. These findings may be relevant for bioaccumulation scenarios that consider the effect of sediment resuspension events on exposure to water column and sediment pore water, as well as the direct uptake of PAHs from sediments.

  17. Low oxygen tension enhances endothelial fate of human pluripotent stem cells.

    PubMed

    Kusuma, Sravanti; Peijnenburg, Elizabeth; Patel, Parth; Gerecht, Sharon

    2014-04-01

    A critical regulator of the developing or regenerating vasculature is low oxygen tension. Precise elucidation of the role of low oxygen environments on endothelial commitment from human pluripotent stem cells necessitates controlled in vitro differentiation environments. We used a feeder-free, 2-dimensional differentiation system in which we could monitor accurately dissolved oxygen levels during human pluripotent stem cell differentiation toward early vascular cells (EVCs). We found that oxygen uptake rate of differentiating human pluripotent stem cells is lower in 5% O2 compared with atmospheric conditions. EVCs differentiated in 5% O2 had an increased vascular endothelial cadherin expression with clusters of vascular endothelial cadherin+ cells surrounded by platelet-derived growth factor β+ cells. When we assessed the temporal effects of low oxygen differentiation environments, we determined that low oxygen environments during the early stages of EVC differentiation enhance endothelial lineage commitment. EVCs differentiated in 5% O2 exhibited an increased expression of vascular endothelial cadherin and CD31 along with their localization to the membrane, enhanced lectin binding and acetylated low-density lipoprotein uptake, rapid cord-like structure formation, and increased expression of arterial endothelial cell markers. Inhibition of reactive oxygen species generation during the early stages of differentiation abrogated the endothelial inductive effects of the low oxygen environments. Low oxygen tension during early stages of EVC derivation induces endothelial commitment and maturation through the accumulation of reactive oxygen species, highlighting the importance of regulating oxygen tensions during human pluripotent stem cell-vascular differentiation.

  18. Identification of an iron permease, cFTR1, in cyanobacteria involved in the iron reduction/re-oxidation uptake pathway.

    PubMed

    Xu, Ning; Qiu, Guo-Wei; Lou, Wen-Jing; Li, Zheng-Ke; Jiang, Hai-Bo; Price, Neil M; Qiu, Bao-Sheng

    2016-12-01

    Cyanobacteria are globally important primary producers and abundant in many iron-limited aquatic environments. The ways in which they take up iron are largely unknown, but reduction of Fe 3+ is an important step in the process. Here we report a special iron permease in Synechocystis, cFTR1, that is required for Fe 3+ uptake following Fe 2+ re-oxidation. The expression of cFTR1 is induced by iron starvation, and a mutant lacking the gene is abnormally sensitive to iron starvation. The cFTR1 protein localizes to the plasma membrane and contains the iron-binding motif "REXXE". Point-directed mutagenesis of the REXXE motif results in a sensitivity to Fe-deficiency. Measurements of iron ( 55 Fe) uptake rate show that cFTR1 takes up Fe 3+ rather than Fe 2+ . The function of cFTR1 in Synechocystis could be genetically complemented by the iron permease, Ftr1p, of Saccharomyces cerevisiae, that is known to transport Fe 3+ produced by the oxidation of Fe 2+ via a multicopper oxidase. Unlike yeast Ftr1p, cyanobacterial cFTR1 probably obtains Fe 3+ primarily from the oxidation of Fe 2+ by oxygen. Growth assays show that the cFTR1 is required during oxygenic, photoautotrophic growth but not when oxygen production is inhibited during photoheterotrophic growth. In cyanobacteria, iron reduction/re-oxidation uptake pathway may represent their adaptation to oxygenated environments. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Simultaneous phosphorus uptake and denitrification by EBPR-r biofilm under aerobic conditions: effect of dissolved oxygen.

    PubMed

    Wong, Pan Yu; Ginige, Maneesha P; Kaksonen, Anna H; Cord-Ruwisch, Ralf; Sutton, David C; Cheng, Ka Yu

    2015-01-01

    A biofilm process, termed enhanced biological phosphorus removal and recovery (EBPR-r), was recently developed as a post-denitrification approach to facilitate phosphorus (P) recovery from wastewater. Although simultaneous P uptake and denitrification was achieved despite substantial intrusion of dissolved oxygen (DO >6 mg/L), to what extent DO affects the process was unclear. Hence, in this study a series of batch experiments was conducted to assess the activity of the biofilm under various DO concentrations. The biofilm was first allowed to store acetate (as internal storage) under anaerobic conditions, and was then subjected to various conditions for P uptake (DO: 0-8 mg/L; nitrate: 10 mg-N/L; phosphate: 8 mg-P/L). The results suggest that even at a saturating DO concentration (8 mg/L), the biofilm could take up P and denitrify efficiently (0.70 mmol e(-)/g total solids*h). However, such aerobic denitrification activity was reduced when the biofilm structure was physically disturbed, suggesting that this phenomenon was a consequence of the presence of oxygen gradient across the biofilm. We conclude that when a biofilm system is used, EBPR-r can be effectively operated as a post-denitrification process, even when oxygen intrusion occurs.

  20. An in silico analysis of oxygen uptake of a mild COPD patient during rest and exercise using a portable oxygen concentrator

    PubMed Central

    Katz, Ira; Pichelin, Marine; Montesantos, Spyridon; Kang, Min-Yeong; Sapoval, Bernard; Zhu, Kaixian; Thevenin, Charles-Philippe; McCoy, Robert; Martin, Andrew R; Caillibotte, Georges

    2016-01-01

    Oxygen treatment based on intermittent-flow devices with pulse delivery modes available from portable oxygen concentrators (POCs) depends on the characteristics of the delivered pulse such as volume, pulse width (the time of the pulse to be delivered), and pulse delay (the time for the pulse to be initiated from the start of inhalation) as well as a patient’s breathing characteristics, disease state, and respiratory morphology. This article presents a physiological-based analysis of the performance, in terms of blood oxygenation, of a commercial POC at different settings using an in silico model of a COPD patient at rest and during exercise. The analysis encompasses experimental measurements of pulse volume, width, and time delay of the POC at three different settings and two breathing rates related to rest and exercise. These experimental data of device performance are inputs to a physiological-based model of oxygen uptake that takes into account the real dynamic nature of gas exchange to illustrate how device- and patient-specific factors can affect patient oxygenation. This type of physiological analysis that considers the true effectiveness of oxygen transfer to the blood, as opposed to delivery to the nose (or mouth), can be instructive in applying therapies and designing new devices. PMID:27729783

  1. Influence of Prolonged Spaceflight on Heart Rate and Oxygen Uptake Kinetics

    NASA Astrophysics Data System (ADS)

    Hoffmann, U.; Moore, A.; Drescher, U.

    2013-02-01

    During prolonged spaceflight, physical training is used to minimize cardiovascular deconditioning. Measurement of the kinetics of cardiorespiratory parameters, in particular the kinetic analysis of heart rate, respiratory and muscular oxygen uptake, provides useful information with regard to the efficiency and regulation of the cardiorespiratory system. Practically, oxygen uptake kinetics can only be measured at the lung site (V’O2 resp). The dynamics of V’O2 resp, however, is not identical with the dynamics at the site of interest: skeletal muscle. Eight Astronauts were tested pre- and post-flight using pseudo random binary workload changes between 30 and 80 W. Their kinetic responses of heart rate, respiratory as well as muscular V’O2 kinetics were estimated by using time-series analysis. Statistical analysis revealed that the kinetic responses of respiratory as well as muscular V’O2 kinetics are slowed post-flight than pre-flight. Heart rate seems not to be influenced following flight. The influence of other factors (e. g. astronauts’ exercise training) may impact these parameters and is an area for future studies.

  2. Nanocrystalline diamond protects Zr cladding surface against oxygen and hydrogen uptake: Nuclear fuel durability enhancement.

    PubMed

    Škarohlíd, Jan; Ashcheulov, Petr; Škoda, Radek; Taylor, Andrew; Čtvrtlík, Radim; Tomáštík, Jan; Fendrych, František; Kopeček, Jaromír; Cháb, Vladimír; Cichoň, Stanislav; Sajdl, Petr; Macák, Jan; Xu, Peng; Partezana, Jonna M; Lorinčík, Jan; Prehradná, Jana; Steinbrück, Martin; Kratochvílová, Irena

    2017-07-25

    In this work, we demonstrate and describe an effective method of protecting zirconium fuel cladding against oxygen and hydrogen uptake at both accident and working temperatures in water-cooled nuclear reactor environments. Zr alloy samples were coated with nanocrystalline diamond (NCD) layers of different thicknesses, grown in a microwave plasma chemical vapor deposition apparatus. In addition to showing that such an NCD layer prevents the Zr alloy from directly interacting with water, we show that carbon released from the NCD film enters the underlying Zr material and changes its properties, such that uptake of oxygen and hydrogen is significantly decreased. After 100-170 days of exposure to hot water at 360 °C, the oxidation of the NCD-coated Zr plates was typically decreased by 40%. Protective NCD layers may prolong the lifetime of nuclear cladding and consequently enhance nuclear fuel burnup. NCD may also serve as a passive element for nuclear safety. NCD-coated ZIRLO claddings have been selected as a candidate for Accident Tolerant Fuel in commercially operated reactors in 2020.

  3. The effects of temperature and salinity on 17-α-ethynylestradiol uptake and its relationship to oxygen consumption in the model euryhaline teleost (Fundulus heteroclitus).

    PubMed

    Blewett, Tamzin; MacLatchy, Deborah L; Wood, Chris M

    2013-02-01

    The synthetic estrogen 17-α-ethynylestradiol (EE2), a component of birth control and hormone replacement therapy, is discharged into the environment via wastewater treatment plant (WWTP) effluents. The present study employed radiolabeled EE2 to examine impacts of temperature and salinity on EE2 uptake in male killifish (Fundulus heteroclitus). Fish were exposed to a nominal concentration of 100ng/L EE2 for 2h. The rate of EE2 uptake was constant over the 2h period. Oxygen consumption rates (MO(2)), whole body uptake rates, and tissue-specific EE2 distribution were determined. In killifish acclimated to 18°C at 16ppt (50% sea water), MO(2) and EE2 uptake were both lower after 24h exposure to 10°C and 4°C, and increased after 24h exposure to 26°C. Transfer to fresh water (FW) for 24h lowered EE2 uptake rate, and long-term acclimation to fresh water reduced it by 70%. Both long-term acclimation to 100% sea water (32ppt) and a 24h transfer to 100% sea water also reduced EE2 uptake rate by 50% relative to 16ppt. Tissue-specific accumulation of EE2 was highest (40-60% of the total) in the liver plus gall bladder across all exposures, and the vast majority of this was in the bile at 2h, regardless of temperature or salinity. The carcass was the next highest accumulator (30-40%), followed by the gut (10-20%) with only small amounts in gill and spleen. Killifish chronically exposed (15 days) to 100ng/L EE2 displayed no difference in EE2 uptake rate or tissue-specific distribution. Drinking rate, measured with radiolabeled polyethylene glycol-4000, was about 25 times greater in 16ppt-acclimated killifish relative to FW-acclimated animals. However, drinking accounted for less than 30% of gut accumulation, and therefore a negligible percentage of whole body EE2 uptake rates. In general, there were strong positive relationships between EE2 uptake rates and MO(2), suggesting similar uptake pathways of these lipophilic molecules across the gills. These data will be useful in developing a predictive model of how key environmental parameter variations (salinity, temperature, dissolved oxygen) affect EE2 uptake in estuarine fish, to determine optimal timing and location of WWTP discharges. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Breathe Plant Breathe: A Study of CO2 conversion in plants

    NASA Astrophysics Data System (ADS)

    Weiss, M.

    2016-12-01

    Some of the research that I have found is that plants with green oxygen produce the most oxygen.Green oxygen is the Some examples of plants like this are spouts (such as the sweet pea, buckwheat, and sunflower.) Some of the other plants are the snake plant and the areca plant. These three plants are most commonly used in households to produce more oxygen when needed. Looking at a few more websites I saw that the plants do not produce oxygen at night because they have no light to transfer within photosynthesis. Some other information that I got was that plants with thick leaves or have a lot of leaves on them produce more oxygen. Some examples of this are the peace lily and the bamboo palm. Since these plants have thick and big leaves they have more photosynthesis cells and can produce more oxygen. In conclusion, my hypothesis was supported. The plant that converted the most CO2 was the pothos. I learned that if you need house plants to help create oxygen, one of the best ones would be a pothos because of its fast conversion rate. As a result the plant that converted the most carbon dioxide into oxygen was the pothos. With an average start of 5259.6, and average finish of 1463, and an average change of 3796.6 The Fern had an: average change of: 5205, average start of: 6564.6, and an average finish of: 1500 The Aloe had an: average change of: 4409.2, average start of: 7707.6, and an average finish of: 3298.4 And the Panda had an: average change of: 4821.8 average start of: 6971.2, and an average finish of:2149

  5. Uptake of Light Elements in Thin Metallic Films

    NASA Astrophysics Data System (ADS)

    Markwitz, Andreas; Waldschmidt, Mathias

    Ion beam analysis was used to investigate the influence of substrate temperature on the inclusion of impurities during the deposition process of thin metallic single and double layers. Thin layers of gold and aluminium were deposited at different temperatures onto thin copper layers evaporated on silicon wafer substrates. The uptake of oxygen in the layers was measured using the highly sensitive non-resonant reaction 16O(d,p)170O at 920 keV. Nuclear reaction analysis was also used to probe for carbon and nitrogen with a limit of detection better than 20 ppm. Hydrogen depth profiles were measured using elastic recoil detection on the nanometer scale. Rutherford backscattering spectroscopy was used to determine the depth profiles of the metallic layers and to study diffusion processes. The combined ion beam analyses revealed an uptake of oxygen in the layers depending on the different metallic cap layers and the deposition temperature. Lowest oxygen values were measured for the Au/Cu layers, whereas the highest amount of oxygen was measured in Al/Cu layers deposited at 300°C. It was also found that with single copper layers produced at various temperatures, oxygen contamination occurred during the evaporation process and not afterwards, for example, as a consequence of the storage of the films under normal conditions for several days. Hydrogen, carbon, and nitrogen were found as impurities in the single and double layered metallic films, a finding that is in agreement with the measured oxidation behaviour of the metallic films.

  6. Quantification of root water uptake in soil using X-ray computed tomography and image-based modelling.

    PubMed

    Daly, Keith R; Tracy, Saoirse R; Crout, Neil M J; Mairhofer, Stefan; Pridmore, Tony P; Mooney, Sacha J; Roose, Tiina

    2018-01-01

    Spatially averaged models of root-soil interactions are often used to calculate plant water uptake. Using a combination of X-ray computed tomography (CT) and image-based modelling, we tested the accuracy of this spatial averaging by directly calculating plant water uptake for young wheat plants in two soil types. The root system was imaged using X-ray CT at 2, 4, 6, 8 and 12 d after transplanting. The roots were segmented using semi-automated root tracking for speed and reproducibility. The segmented geometries were converted to a mesh suitable for the numerical solution of Richards' equation. Richards' equation was parameterized using existing pore scale studies of soil hydraulic properties in the rhizosphere of wheat plants. Image-based modelling allows the spatial distribution of water around the root to be visualized and the fluxes into the root to be calculated. By comparing the results obtained through image-based modelling to spatially averaged models, the impact of root architecture and geometry in water uptake was quantified. We observed that the spatially averaged models performed well in comparison to the image-based models with <2% difference in uptake. However, the spatial averaging loses important information regarding the spatial distribution of water near the root system. © 2017 John Wiley & Sons Ltd.

  7. Skeletal muscle fatigue precedes the slow component of oxygen uptake kinetics during exercise in humans.

    PubMed

    Cannon, Daniel T; White, Ailish C; Andriano, Melina F; Kolkhorst, Fred W; Rossiter, Harry B

    2011-02-01

    The mechanisms determining exercise intolerance are poorly understood. A reduction in work efficiency in the form of an additional energy cost and oxygen requirement occurs during high-intensity exercise and contributes to exercise limitation. Muscle fatigue and subsequent recruitment of poorly efficient muscle fibres has been proposed to mediate this decline. These data demonstrate in humans, that muscle fatigue, generated in the initial minutes of exercise, is correlated with the increasing energy demands of high-intensity exercise. Surprisingly, however, while muscle fatigue reached a plateau, oxygen uptake continued to increase throughout 8 min of exercise. This suggests that additional recruitment of inefficient muscle fibres may not be the sole mechanism contributing to the decline in work efficiency during high-intensity exercise.

  8. Functional significance of cardiac reinnervation in heart transplant recipients.

    PubMed

    Schwaiblmair, M; von Scheidt, W; Uberfuhr, P; Ziegler, S; Schwaiger, M; Reichart, B; Vogelmeier, C

    1999-09-01

    There is accumulating evidence of structural sympathetic reinnervation after human cardiac transplantation. However, the functional significance of reinnervation in terms of exercise capacity has not been established as yet; we therefore investigated the influence of reinnervation on cardiopulmonary exercise testing. After orthotopic heart transplantation 35 patients (mean age, 49.1 +/- 8.4 years) underwent positron emission tomography with scintigraphically measured uptake of C11-hydroxyephedrine (HED), lung function testing, and cardiopulmonary exercise testing. Two groups were defined based on scintigraphic findings, indicating a denervated group (n = 15) with a HED uptake of 5.45%/min and a reinnervated group (n = 20) with a HED uptake of 10.59%/min. The two study groups did not show significant differences with regard to anthropometric data, number of rejection episodes, preoperative hemodynamics, and postoperative lung function data. The reinnervated group had a significant longer time interval from transplantation (1625 +/- 1069 versus 800 +/- 1316 days, p < .05). In transplant recipients with reinnervation, heart rate at maximum exercise (137 +/- 15 versus 120 +/- 20 beats/min, p = .012), peak oxygen uptake (21.0 +/- 4 versus 16.1 +/- 5 mL/min/kg, p = .006), peak oxygen pulse (12.4 +/- 2.9 versus 10.2 +/- 2.7 mL/min/beat, p = .031), and anaerobic threshold (11.2 +/- 1.8 versus 9.5 +/- 2.1 mL/min, p = .046) were significantly increased in comparison to denervated transplant recipients. Additionally, a decreased functional dead space ventilation (0.24 +/- 0.05 versus 0.30 +/- 0.05, p = .004) was observed in the reinnervated group. Our study results support the hypothesis that partial sympathetic reinnervation after cardiac transplantation is of functional significance. Sympathetic reinnervation enables an increased peak oxygen uptake. This is most probably due to partial restoration of the chronotropic and inotropic competence of the heart as well as an improved oxygen delivery to the exercising muscles and a reduced ventilation-perfusion mismatching.

  9. Heat-Wave Effects on Oxygen, Nutrients, and Phytoplankton Can Alter Global Warming Potential of Gases Emitted from a Small Shallow Lake.

    PubMed

    Bartosiewicz, Maciej; Laurion, Isabelle; Clayer, François; Maranger, Roxane

    2016-06-21

    Increasing air temperatures may result in stronger lake stratification, potentially altering nutrient and biogenic gas cycling. We assessed the impact of climate forcing by comparing the influence of stratification on oxygen, nutrients, and global-warming potential (GWP) of greenhouse gases (the sum of CH4, CO2, and N2O in CO2 equivalents) emitted from a shallow productive lake during an average versus a heat-wave year. Strong stratification during the heat wave was accompanied by an algal bloom and chemically enhanced carbon uptake. Solar energy trapped at the surface created a colder, isolated hypolimnion, resulting in lower ebullition and overall lower GWP during the hotter-than-average year. Furthermore, the dominant CH4 emission pathway shifted from ebullition to diffusion, with CH4 being produced at surprisingly high rates from sediments (1.2-4.1 mmol m(-2) d(-1)). Accumulated gases trapped in the hypolimnion during the heat wave resulted in a peak efflux to the atmosphere during fall overturn when 70% of total emissions were released, with littoral zones acting as a hot spot. The impact of climate warming on the GWP of shallow lakes is a more complex interplay of phytoplankton dynamics, emission pathways, thermal structure, and chemical conditions, as well as seasonal and spatial variability, than previously reported.

  10. Laser irradiation of mouse spermatozoa enhances in-vitro fertilization and Ca2+ uptake via reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Cohen, Natalie; Lubart, Rachel; Rubinstein, Sara; Breitbart, Haim

    1996-11-01

    630 nm He-Ne laser irradiation was found to have a profound influence on Ca2+ uptake in mouse spermatozoa and the fertilizing potential of these cells. Laser irradiation affected mainly the mitochondrial Ca2+ transport mechanisms. Furthermore, the effect of light was found to be Ca2+-dependent. We demonstrate that reactive oxygen species (ROS) are involved in the cascade of biochemical events evoked by laser irradiation. A causal association between laser irradiation, ROS generation, and sperm function was indicated by studies with ROS scavengers, superoxide dismutase (SOD) and catalase, and exogenous hydrogen peroxide. SOD treatment resulted in increased Ca2+ uptake and in enhanced fertilization rate. Catalase treatment impaired the light-induced stimulation in Ca2+ uptake and fertilization rate. Exogenous hydrogen peroxide was found to enhance Ca2+ uptake in mouse spermatozoa and the fertilizing capability of these cells in a dose-dependent manner. These results suggest that the effect of 630 nm He-Ne laser irradiation is mediated through the generation of hydrogen peroxide by the spermatozoa and that this effect plays a significant role in the augmentation of the sperm cells' capability to fertilize metaphase II-arrested eggs in-vitro.

  11. Excess Iodide Induces an Acute Inhibition of the Sodium/Iodide Symporter in Thyroid Male Rat Cells by Increasing Reactive Oxygen Species

    PubMed Central

    Arriagada, Alejandro A.; Albornoz, Eduardo; Opazo, Ma. Cecilia; Becerra, Alvaro; Vidal, Gonzalo; Fardella, Carlos; Michea, Luis; Carrasco, Nancy; Simon, Felipe; Elorza, Alvaro A.; Bueno, Susan M.; Kalergis, Alexis M.

    2015-01-01

    Na+/I− symporter (NIS) mediates iodide (I−) uptake in the thyroid gland, the first and rate-limiting step in the biosynthesis of the thyroid hormones. The expression and function of NIS in thyroid cells is mainly regulated by TSH and by the intracellular concentration of I−. High doses of I− for 1 or 2 days inhibit the synthesis of thyroid hormones, a process known as the Wolff-Chaikoff effect. The cellular mechanisms responsible for this physiological response are mediated in part by the inhibition of I− uptake through a reduction of NIS expression. Here we show that inhibition of I− uptake occurs as early as 2 hours or 5 hours after exposure to excess I− in FRTL-5 cells and the rat thyroid gland, respectively. Inhibition of I− uptake was not due to reduced NIS expression or altered localization in thyroid cells. We observed that incubation of FRTL-5 cells with excess I− for 2 hours increased H2O2 generation. Furthermore, the inhibitory effect of excess I− on NIS-mediated I− transport could be recapitulated by H2O2 and reverted by reactive derived oxygen species scavengers. The data shown here support the notion that excess I− inhibits NIS at the cell surface at early times by means of a posttranslational mechanism that involves reactive derived oxygen species. PMID:25594695

  12. Mineralisation assays of some organic resources of aquatic systems.

    PubMed

    Bitar, A L; Bianchini, Júnior I

    2002-11-01

    Assays were carried out to evaluate the consumption of dissolved oxygen resulting from mineralisation processes in resources usually found in aquatic systems. They were also aimed at estimating the oxygen uptake rate of each investigated process. Experiments were conducted using substrates from 3 different places. A fixed amount of substrate was added to 5 litres of water from Lagoa do Infernão that was previously filtered with glass wool. After adding the substrates the bottles were aired and the amount of dissolved oxygen and the temperature were monitored for 55 days. The occurrence of anaerobic processes was avoided by reoxygenating the bottles. The experimental results were fitted to a first order kinetics model, from which the consumption of dissolved oxygen owing to mineralisation processes was obtained. The amount of oxygen uptake from the mineralisation processes appeared in the following decreasing order: Wolffia sp., Cabomba sp., Lemna sp., DOM (Dissolved Organic Matter), Salvinia sp., Scirpus cubensis, stem, Eichhornia azurea, sediment and humic compounds. The deoxygenation rates (day-1) were: 0.267 (humic compounds), 0.230 (Lemna sp.), 0.199 (E. azurea), 0.166 (S. cubensis), 0.132 (sediment), 0.126 (DOM), 0.093 (Cabomba sp.), 0.091 (stem), 0.079 (Salvinia sp. and Wolffia sp.). From these results, 2 groups of resources could be identified: the first one consists of detritus with higher amounts of labile (ready to use) compounds, which show a higher global oxygen uptake during the mineralisation process; the second one consists mainly of resources that show refracting characteristics. However, when the consumption rates are analysed it is noted that the mineralised parts of the refracting substrates can be easier to process than the labile fractions of the less refracting resources.

  13. Sevoflurane protects rat mixed cerebrocortical neuronal-glial cell cultures against transient oxygen-glucose deprivation: involvement of glutamate uptake and reactive oxygen species.

    PubMed

    Canas, Paula T; Velly, Lionel J; Labrande, Christelle N; Guillet, Benjamin A; Sautou-Miranda, Valérie; Masmejean, Frédérique M; Nieoullon, André L; Gouin, François M; Bruder, Nicolas J; Pisano, Pascale S

    2006-11-01

    The purpose of this study was to clarify the role of glutamate and reactive oxygen species in sevoflurane-mediated neuroprotection on an in vitro model of ischemia-reoxygenation. Mature mixed cerebrocortical neuronal-glial cell cultures, treated or not with increasing concentrations of sevoflurane, were exposed to 90 min combined oxygen-glucose deprivation (OGD) in an anaerobic chamber followed by reoxygenation. Cell death was quantified by lactate dehydrogenase release into the media and cell viability by reduction of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium by mitochondrial succinate dehydrogenase. Extracellular concentrations of glutamate and glutamate uptake were assessed at the end of the ischemic injury by high-performance liquid chromatography and incorporation of L-[H]glutamate into cells, respectively. Free radical generation in cells was assessed 6 h after OGD during the reoxygenation period using 2',7'-dichlorofluorescin diacetate, which reacts with intracellular radicals to be converted to its fluorescent product, 2',7'-dichlorofluorescin, in cell cytosol. Twenty-four hours after OGD, sevoflurane, in a concentration-dependent manner, significantly reduced lactate dehydrogenase release and increased cell viability. At the end of OGD, sevoflurane was able to reduce the OGD-induced decrease in glutamate uptake. This effect was impaired in the presence of threo-3-methyl glutamate, a specific inhibitor of the glial transporter GLT1. Sevoflurane counteracted the increase in extracellular level of glutamate during OGD and the generation of reactive oxygen species during reoxygenation. Sevoflurane had a neuroprotective effect in this in vitro model of ischemia-reoxygenation. This beneficial effect may be explained, at least in part, by sevoflurane-induced antiexcitotoxic properties during OGD, probably depending on GLT1, and by sevoflurane-induced decrease of reactive oxygen species generation during reoxygenation.

  14. Measurement in a marine environment using low cost sensors of temperature and dissolved oxygen

    USGS Publications Warehouse

    Godshall, F.A.; Cory, R.L.; Phinney, D.E.

    1974-01-01

    Continuous records of physical parameters of the marine environment are difficult as well as expensive to obtain. This paper describes preliminary results of an investigative program with the purpose of developing low cost time integrating measurement and averaging devices for water temperature and dissolved oxygen. Measurements were made in an estuarine area of the Chesapeake Bay over two week periods. With chemical thermometers average water temperature for the two week period was found to be equal to average water temperature measured with thermocouples plus or minus 1.0 C. The slow diffusion of oxygen through the semipermiable sides of plastic bottles permitted the use of water filled bottles to obtain averaged oxygen measurements. Oxygen measurements for two week averaging times using 500 ml polyethylene bottles were found to vary from conventionally measured and averaged dissolved oxygen by about 1.8 mg/l. ?? 1974 Estuarine Research Federation.

  15. [TRANSPORT OF OXYGEN DURING GEOMETRICAL RECONSTRUCTION OF THE LEFT VENTRICLE IN CONJUNCTION WITH CORONARY ARTERY BYPASS GRAFTING AND USING OF HIGH THORACIC EPIDURAL ANESTHESIA AS A MAJOR COMPONENT OF GENERAL ANAESTHESIA].

    PubMed

    Zatevahina, M V; Farzutdinov, A F; Rahimov, A A; Makrushin, I M; Kvachantiradze, G Y

    2015-01-01

    The purpose of the study is to examine the perioperative dynamics of strategic blood oxygen transport indicators: delivery (DO2), consumption (VO2), the coefficient of oxygen uptake (CUO2) and their composition, as well as the dynamics of blood lactate indicators in patients with ischaemic heart disease (IHD) who underwent surgery under cardiopulmonary bypass with high thoracic epidural anaesthesia (HTEA) as the main component of anesthesia. Research was conducted in 30 patients with a critical degree of operational risk, during the correction of post-infarction heart aneurysmn using the V. Dor method in combination with coronary artery bypass grafting. The strategic blood oxygen transport indicators (delivery, consumption and the oxygen uptake coefficient) showed a statistically significant decrease compared to the physiological norm and to the initial data at two points of the research: the intubation of the trachea and during cardiopulmonary bypass. The system components of oxygen were influenced at problematic stages by the dynamics of SvO2 (increase), AVD (decrease), hemodilution withe fall of the HIb- in the process of JR in the persence of superficial hypothermia. The maintenance of optimal CA in the context of HTEA, combined with a balanced volemic load and a minimized cardiotonic support ensured the stabilisation of strategic blood oxygen transport indicators aithe postperfusion stage and during the immediate postoperative period The article is dedicated to the study of strategic blood oxygen transport indicators and their components during the operation of geometric reconstruc-tion of the left ventricle combined with coronary artery-bypass using cardiopulmonary bypass and with high thoracic epidural anesthesia as the main component of general anaesthesia. The analysis has covered the stagewise delivery dynamics, consumption and the oxygen uptake coefficient at II stages of the operation and of the immediate postoperative period. The study has ident (fled the causes qf reduced oxygen transport during the preperfu- sion and postperfusion periods, under IR and during the immediate postoperative period. Values of CA, SvO2, AVD, Hb, hemnodilution, T qf the body in oxygen transport indicator dynamics have been proven. A way of maintaining oxygen transport indicators close to the physiological norm in the immediate postoperative period has been justified.

  16. Relationship between volition, physical activity and weight loss maintenance: Study rationale, design, methods and baseline characteristics.

    PubMed

    Dandanell, Sune; Elbe, Anne-Marie; Pfister, Gertrud; Elsborg, Peter; W Helge, Jørn

    2017-05-01

    To investigate the relationship between volition, physical activity and weight loss maintenance. We recruited 84 sedentary (maximal oxygen uptake: 25 ± 5 ml/min), overweight and obese (Body mass index (BMI) 38 ± 7 m/h 2 , fat 44 ± 7 %) women ( n = 55) and men ( n = 29) for an interdisciplinary prospective study with follow-up. The change in lifestyle and weight loss is promoted via a 3-month intensive lifestyle intervention at a private health school. The intervention consists of supervised training (1-3 hours/day), a healthy hypo-caloric diet (-500 to -700 kCal/day) and education in healthy lifestyle in classes/groups. The participants' body weight and composition (Dual Energy X-ray absorptiometry), volitional skills (questionnaire), physical activity level (heart rate accelerometer/questionnaire) and maximal oxygen uptake (indirect calorimetry) are to be monitored before, after, and 3 and 12 months after the intervention. At the 12-month follow-up, three different groups will be established: Clinical weight loss maintenance (> 10% weight loss from baseline), moderate weight loss maintenance (1-10% weight loss) and no weight loss (or weight regain). A linear mixed model analysis will be used to compare levels of volitional skills, physical activity and maximal oxygen uptake over time, between the three groups. Correlational analyses will be used to investigate possible associations between volition, maximal oxygen uptake, physical activity level and weight loss maintenance. If specific volitional skills are identified as predictors of adherence to physical activity and success in clinical weight loss maintenance, these can be trained in future intensive lifestyle interventions in order to optimize the success rate.

  17. Noninvasive Screening for Pulmonary Hypertension by Exercise Testing in Congenital Heart Disease.

    PubMed

    Müller, Jan; Heck, Pinar Bambul; Ewert, Peter; Hager, Alfred

    2017-05-01

    Patients with congenital heart disease and native or palliated conditions are at risk to develop pulmonary hypertension (PH) in later life. Screening for PH is currently performed by regular echocardiographic follow-up, which appears to be difficult in several congenital conditions. This study evaluated the screening for PH in congenital heart disease by cardiopulmonary exercise testing (CPET). We analyzed our database including all patients with congenital heart disease referred for CPET in our institution from June 2001 to September 2013 and identified 683 patients who had an accompanied heart catheterization less than 6 month after CPET. Those 130 patients with proven PH were compared with the other 563 patients with congenital heart disease but without PH. Peak oxygen uptake was the most discriminative variable, showing two thresholds at 16.3 mL/min per kg and 25.2 mL/min per kg. The highest specificity of 95% for PH was found in patients with a peak oxygen uptake of 16.3 mL/min per kg or less and a breathing reserve of 37.4% or less. In patients with a peak oxygen uptake exceeding 16.3 mL/min per kg, there was a high specificity of 86.3% but a low sensitivity of 53.1%. With 25.2 mL/min per kg as the threshold, the sensitivity for PH was only 10.0%. Detection of PH in patients with congenital heart disease by CPET is difficult because of many falsely positive tests. However, a peak oxygen uptake higher than 25.2 mL/min per kg makes the diagnosis of PH unlikely. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Preliminary Evidence for Adipocytokine Signals in Skeletal Muscle Glucose Uptake.

    PubMed

    Kudoh, Akihiro; Satoh, Hiroaki; Hirai, Hiroyuki; Watanabe, Tsuyoshi; Shimabukuro, Michio

    2018-01-01

    The cross talk between the adipose tissue and insulin target tissues is a key mechanism for obesity-associated insulin resistance. However, the precise role of the interaction between the skeletal muscle and adipose tissue for insulin signaling and glucose uptake is questionable. L6 myocytes were co-cultured with or without 3T3-L1 adipocytes (~5 × 10 3 cells/cm 2 ) up to 24 h. Glucose uptake was evaluated by 2-[ 3 H] deoxyglucose uptake assay. Levels of mRNA expression of Glut1 and Glut4 and mitochondrial enzymes were analyzed by quantitative real-time reverse transcription polymerase chain reaction. Levels of Glut1 and Glut4 protein and phosphorylation of Akt (Ser473 and Thr308) were analyzed by immunoblotting. Study 1: co-culture with 3T3-L1 adipocytes increased glucose uptake in dose- and time-dependent manner in L6 myocytes under insulin-untreated conditions. When co-cultured with 3T3-L1 cells, reactive oxygen species production and levels of Glut1 mRNA and protein were increased in L6 cells, while these changes were abrogated and the glucose uptake partially inhibited by antioxidant treatment. Study 2: co-culture with 3T3-L1 adipocytes suppressed insulin-stimulated glucose uptake in L6 myocytes. Insulin-induced Akt phosphorylation at Ser473 decreased, which was proportional to 3T3-L1 density. Antioxidant treatment partially reversed this effect. Interactions between skeletal muscle and adipose tissues are important for glucose uptake under insulin-untreated or -treated condition through oxygen stress mechanism.

  19. Lipid accumulation in smooth muscle cells under LDL loading is independent of LDL receptor pathway and enhanced by hypoxic conditions.

    PubMed

    Wada, Youichiro; Sugiyama, Akira; Yamamoto, Takashi; Naito, Makoto; Noguchi, Noriko; Yokoyama, Shinji; Tsujita, Maki; Kawabe, Yoshiki; Kobayashi, Mika; Izumi, Akashi; Kohro, Takahide; Tanaka, Toshiya; Taniguchi, Hirokazu; Koyama, Hidenori; Hirano, Ken-ichi; Yamashita, Shizuya; Matsuzawa, Yuji; Niki, Etsuo; Hamakubo, Takao; Kodama, Tatsuhiko

    2002-10-01

    The effect of a variety of hypoxic conditions on lipid accumulation in smooth muscle cells (SMCs) was studied in an arterial wall coculture and monocultivation model. Low density lipoprotein (LDL) was loaded under various levels of oxygen tension. Oil red O staining of rabbit and human SMCs revealed that lipid accumulation was greater under lower oxygen tension. Cholesterol esters were shown to accumulate in an oxygen tension-dependent manner by high-performance liquid chromatographic analysis. Autoradiograms using radiolabeled LDL indicated that LDL uptake was more pronounced under hypoxia. This result holds in the case of LDL receptor-deficient rabbit SMCs. However, cholesterol biosynthesis and cellular cholesterol release were unaffected by oxygen tension. Hypoxia significantly increases LDL uptake and enhances lipid accumulation in arterial SMCs, exclusive of LDL receptor activity. Although the molecular mechanism is not clear, the model is useful for studying lipid accumulation in arterial wall cells and the difficult-to-elucidate events in the initial stage of atherogenesis.

  20. Significant Contributions of Isoprene to Summertime Secondary Organic Aerosol in Eastern United States.

    PubMed

    Ying, Qi; Li, Jingyi; Kota, Sri Harsha

    2015-07-07

    A modified SAPRC-11 (S11) photochemical mechanism with more detailed treatment of isoprene oxidation chemistry and additional secondary organic aerosol (SOA) formation through surface-controlled reactive uptake of dicarbonyls, isoprene epoxydiol and methacrylic acid epoxide was incorporated in the Community Multiscale Air Quality Model (CMAQ) to quantitatively determine contributions of isoprene to summertime ambient SOA concentrations in the eastern United States. The modified model utilizes a precursor-origin resolved approach to determine secondary glyoxal and methylglyoxal produced by oxidation of isoprene and other major volatile organic compounds (VOCs). Predicted OC concentrations show good agreement with field measurements without significant bias (MFB ∼ 0.07 and MFE ∼ 0.50), and predicted SOA reproduces observed day-to-day and diurnal variation of Oxygenated Organic Aerosol (OOA) determined by an aerosol mass spectrometer (AMS) at two locations in Houston, Texas. On average, isoprene SOA accounts for 55.5% of total predicted near-surface SOA in the eastern U.S., followed by aromatic compounds (13.2%), sesquiterpenes (13.0%) and monoterpenes (10.9%). Aerosol surface uptake of isoprene-generated glyoxal, methylglyoxal and epoxydiol accounts for approximately 83% of total isoprene SOA or more than 45% of total SOA. A domain wide reduction of NOx emissions by 40% leads to a slight decrease of domain average SOA by 3.6% and isoprene SOA by approximately 2.6%. Although most of the isoprene SOA component concentrations are decreased, SOA from isoprene epoxydiol is increased by ∼16%.

  1. The Effect of Training in Minimalist Running Shoes on Running Economy

    PubMed Central

    Ridge, Sarah T.; Standifird, Tyler; Rivera, Jessica; Johnson, A. Wayne; Mitchell, Ulrike; Hunter, Iain

    2015-01-01

    The purpose of this study was to examine the effect of minimalist running shoes on oxygen uptake during running before and after a 10-week transition from traditional to minimalist running shoes. Twenty-five recreational runners (no previous experience in minimalist running shoes) participated in submaximal VO2 testing at a self-selected pace while wearing traditional and minimalist running shoes. Ten of the 25 runners gradually transitioned to minimalist running shoes over 10 weeks (experimental group), while the other 15 maintained their typical training regimen (control group). All participants repeated submaximal VO2 testing at the end of 10 weeks. Testing included a 3 minute warm-up, 3 minutes of running in the first pair of shoes, and 3 minutes of running in the second pair of shoes. Shoe order was randomized. Average oxygen uptake was calculated during the last minute of running in each condition. The average change from pre- to post-training for the control group during testing in traditional and minimalist shoes was an improvement of 3.1 ± 15.2% and 2.8 ± 16.2%, respectively. The average change from pre- to post-training for the experimental group during testing in traditional and minimalist shoes was an improvement of 8.4 ± 7.2% and 10.4 ± 6.9%, respectively. Data were analyzed using a 2-way repeated measures ANOVA. There were no significant interaction effects, but the overall improvement in running economy across time (6.15%) was significant (p = 0.015). Running in minimalist running shoes improves running economy in experienced, traditionally shod runners, but not significantly more than when running in traditional running shoes. Improvement in running economy in both groups, regardless of shoe type, may have been due to compliance with training over the 10-week study period and/or familiarity with testing procedures. Key points Running in minimalist footwear did not result in a change in running economy compared to running in traditional footwear prior to 10 weeks of training. Both groups (control and experimental) showed an improvement in running economy in both types of shoes after 10 weeks of training. After transitioning to minimalist running shoes, running economy was not significantly different while running in traditional or minimalist footwear. PMID:26336352

  2. The Effect of Training in Minimalist Running Shoes on Running Economy.

    PubMed

    Ridge, Sarah T; Standifird, Tyler; Rivera, Jessica; Johnson, A Wayne; Mitchell, Ulrike; Hunter, Iain

    2015-09-01

    The purpose of this study was to examine the effect of minimalist running shoes on oxygen uptake during running before and after a 10-week transition from traditional to minimalist running shoes. Twenty-five recreational runners (no previous experience in minimalist running shoes) participated in submaximal VO2 testing at a self-selected pace while wearing traditional and minimalist running shoes. Ten of the 25 runners gradually transitioned to minimalist running shoes over 10 weeks (experimental group), while the other 15 maintained their typical training regimen (control group). All participants repeated submaximal VO2 testing at the end of 10 weeks. Testing included a 3 minute warm-up, 3 minutes of running in the first pair of shoes, and 3 minutes of running in the second pair of shoes. Shoe order was randomized. Average oxygen uptake was calculated during the last minute of running in each condition. The average change from pre- to post-training for the control group during testing in traditional and minimalist shoes was an improvement of 3.1 ± 15.2% and 2.8 ± 16.2%, respectively. The average change from pre- to post-training for the experimental group during testing in traditional and minimalist shoes was an improvement of 8.4 ± 7.2% and 10.4 ± 6.9%, respectively. Data were analyzed using a 2-way repeated measures ANOVA. There were no significant interaction effects, but the overall improvement in running economy across time (6.15%) was significant (p = 0.015). Running in minimalist running shoes improves running economy in experienced, traditionally shod runners, but not significantly more than when running in traditional running shoes. Improvement in running economy in both groups, regardless of shoe type, may have been due to compliance with training over the 10-week study period and/or familiarity with testing procedures. Key pointsRunning in minimalist footwear did not result in a change in running economy compared to running in traditional footwear prior to 10 weeks of training.Both groups (control and experimental) showed an improvement in running economy in both types of shoes after 10 weeks of training.After transitioning to minimalist running shoes, running economy was not significantly different while running in traditional or minimalist footwear.

  3. Physiological Interpretation of the Slope during an Isokinetic Fatigue Test.

    PubMed

    Bosquet, L; Gouadec, K; Berryman, N; Duclos, C; Gremeaux, V; Croisier, J-L

    2015-07-01

    To assess the relationship between selected measures (the slope and average performance) obtained during a high intensity isokinetic fatigue test of the knee (FAT) and relevant measures of anaerobic and aerobic capacities. 20 well-trained cyclists performed 3 randomly ordered sessions involving a FAT consisting in 30 reciprocal maximal concentric contractions of knee flexors and extensors at 180°.s(-1), a maximal continuous graded exercise test (GXT), and a Wingate anaerobic test (WAnT). The slope calculated from peak torque (PT) and total work (TW) of knee extensors was highly associated to maximal PT (r=-0.86) and maximal TW (r=-0.87) measured during FAT, and moderately associated to peak power output measured during the WAnT (r=-0.64 to -0.71). Average PT and average TW were highly associated to maximal PT (r=0.93) and maximal TW (r=0.96), to mean power output measured during WAnT (r=0.83-0.90) and moderately associated to maximal oxygen uptake (0.58-0.67). In conclusion, the slope is mainly determined by maximal anaerobic power, while average performance is a composite measure depending on both aerobic and anaerobic energy systems according to proportions that are determined by the duration of the test. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Thermal adaptiveness of plumage color in screech owls

    USGS Publications Warehouse

    Mosher, James A.; Henny, Charles J.

    1976-01-01

    Clinal variation in the relative proportions of red and gray plum- age phases in Screech Owls (Otus asio) was analyzed by Owen (1963) and Marshall (1967). This variation was well known prior to Owen's work, but was misinterpreted (Baird, et al. 1874, Hasbrouck 1893, Allen 1893).]Laurel VanCamp and Charles Henny (MS) have 30 years of data on a northern Ohio Screech Owl population. They observed an over- winter decline (from about 25% to 15%) in the proportion of red phase birds in the winter of 1951-52. This decline was correlated with a severe winter of above normal snowfall and below average temperatures. They examined banding and recovery data and found overwinter survival of red and gray birds to be the same except for this one severe winter when 44% more red phase birds were lost than grays (VanCamp and Henny MS). Differential mortality was reported by Gullion and Marshall (1968) for red and gray phase Ruffed Grouse (Bonasa umbellus) where snow conditions for roosting is apparently the critical factor for grouse overwinter survival and is related to predation. Snow- roosting has not, to our knowledge, been observed in Screech Owls. VanCamp and Henny (MS) discuss the observations of Ruffed Grouse and Screech Owls and suggest that possible thermoregulatory differences between red and gray phase birds could account for differential overwinter survival.Our objective was to test for differences between color phase in oxygen uptake at several ambient temperatures. We hypothesized that oxygen uptake would be greater by red phase birds, especially at lower temperatures.

  5. Metabolic and mechanical aspects of foot landing type, forefoot and rearfoot strike, in human running.

    PubMed

    Ardigò, L P; Lafortuna, C; Minetti, A E; Mognoni, P; Saibene, F

    1995-09-01

    The study was undertaken to assess the metabolic and the mechanical aspects of two different foot strike patterns in running, i.e. forefoot and rearfoot striking (FFS and RFS), and to understand whether there is some advantage for a runner to use one or the other of the two landing styles. Eight subjects performed two series of runs (FFS and RFS) on a treadmill at an average speed of 2.50, 2.78, 3.06, 3.33, 3.61, 3.89, 4.17 m s-1. Step frequency, oxygen uptake, mechanical work, and its two components, external and internal, were measured. No differences were found for step frequency, mechanical internal work per unit time and oxygen uptake, while external and total mechanical work per unit time were significantly higher, 7-12%, for FFS. The higher external work was the result of an increase of the work performed against both gravitational and inertial forces. As the energy expenditure was the same it has been speculated that a higher storage and release of energy takes place in the elastic structures of the lower leg with FFS. In a different series of experiments on six subjects contact time, time of deceleration and time of acceleration were measured by means of a video camera while running on the treadmill at 2.50, 3.33 and 4.17 m s-1, both FFS and RFS. Time of deceleration is similar for FFS and RFS, but contact time and time of acceleration are shorter, respectively 12 and 25%, for FFS.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Dynamic water exercise in individuals with late poliomyelitis.

    PubMed

    Willén, C; Sunnerhagen, K S; Grimby, G

    2001-01-01

    To evaluate the specific effects of general dynamic water exercise in individuals with late effects of poliomyelitis. Before-after tests. A university hospital department. Twenty-eight individuals with late effects of polio, 15 assigned to the training group (TG) and 13 to the control group (CG). The TG completed a 40-minute general fitness training session in warm water twice weekly. Assessment instruments included the bicycle ergometer test, isokinetic muscle strength, a 30-meter walk indoors, Berg balance scale, a pain drawing, a visual analog scale, the Physical Activity Scale for the Elderly, and the Nottingham Health Profile (NHP). Peak load, peak work load, peak oxygen uptake, peak heart rate (HR), muscle function in knee extensors and flexors, and pain dimension of the NHP. The average training period was 5 months; compliance was 75% (range, 55-98). No negative effects were seen. The exercise did not influence the peak work load, peak oxygen uptake, or muscle function in knee extensors compared with the controls. However, a decreased HR at the same individual work load was seen, as well as a significantly lower distress in the dimension pain of the NHP. Qualitative aspects such as increased well-being, pain relief, and increased physical fitness were reported. A program of nonswimming dynamic exercises in heated water has a positive impact on individuals with late effects of polio, with a decreased HR at exercise, less pain, and a subjective positive experience. The program was well tolerated (no adverse effects were reported) and can be recommended for this group of individuals.

  7. Carbon mineralization in Laptev and East Siberian sea shelf and slope sediment

    NASA Astrophysics Data System (ADS)

    Brüchert, Volker; Bröder, Lisa; Sawicka, Joanna E.; Tesi, Tommaso; Joye, Samantha P.; Sun, Xiaole; Semiletov, Igor P.; Samarkin, Vladimir A.

    2018-01-01

    The Siberian Arctic Sea shelf and slope is a key region for the degradation of terrestrial organic material transported from the organic-carbon-rich permafrost regions of Siberia. We report on sediment carbon mineralization rates based on O2 microelectrode profiling; intact sediment core incubations; 35S-sulfate tracer experiments; pore-water dissolved inorganic carbon (DIC); δ13CDIC; and iron, manganese, and ammonium concentrations from 20 shelf and slope stations. This data set provides a spatial overview of sediment carbon mineralization rates and pathways over large parts of the outer Laptev and East Siberian Arctic shelf and slope and allows us to assess degradation rates and efficiency of carbon burial in these sediments. Rates of oxygen uptake and iron and manganese reduction were comparable to temperate shelf and slope environments, but bacterial sulfate reduction rates were comparatively low. In the topmost 50 cm of sediment, aerobic carbon mineralization dominated degradation and comprised on average 84 % of the depth-integrated carbon mineralization. Oxygen uptake rates and anaerobic carbon mineralization rates were higher in the eastern East Siberian Sea shelf compared to the Laptev Sea shelf. DIC / NH4+ ratios in pore waters and the stable carbon isotope composition of remineralized DIC indicated that the degraded organic matter on the Siberian shelf and slope was a mixture of marine and terrestrial organic matter. Based on dual end-member calculations, the terrestrial organic carbon contribution varied between 32 and 36 %, with a higher contribution in the Laptev Sea than in the East Siberian Sea. Extrapolation of the measured degradation rates using isotope end-member apportionment over the outer shelf of the Laptev and East Siberian seas suggests that about 16 Tg C yr-1 is respired in the outer shelf seafloor sediment. Of the organic matter buried below the oxygen penetration depth, between 0.6 and 1.3 Tg C yr-1 is degraded by anaerobic processes, with a terrestrial organic carbon contribution ranging between 0.3 and 0.5 Tg yr-1.

  8. Impaired systemic oxygen extraction in treated exercise pulmonary hypertension: a new engine in an old car?

    PubMed

    Faria-Urbina, Mariana; Oliveira, Rudolf K F; Segrera, Sergio A; Lawler, Laurie; Waxman, Aaron B; Systrom, David M

    2018-01-01

    Ambrisentan in 22 patients with pulmonary hypertension diagnosed during exercise (ePH) improved pulmonary hemodynamics; however, there was only a trend toward increased maximum oxygen uptake (VO 2 max) secondary to decreased maximum exercise systemic oxygen extraction (Ca-vO 2 ). We speculate that improved pulmonary hemodynamics at maximum exercise "unmasked" a pre-existing skeletal muscle abnormality.

  9. Prediction of maximal oxygen uptake by bioelectrical impedance analysis in overweight adolescents.

    PubMed

    Roberts, M D; Drinkard, B; Ranzenhofer, L M; Salaita, C G; Sebring, N G; Brady, S M; Pinchbeck, C; Hoehl, J; Yanoff, L B; Savastano, D M; Han, J C; Yanovski, J A

    2009-09-01

    Maximal oxygen uptake (VO(2max)), the gold standard for measurement of cardiorespiratory fitness, is frequently difficult to assess in overweight individuals due to physical limitations. Reactance and resistance measures obtained from bioelectrical impedance analysis (BIA) have been suggested as easily obtainable predictors of cardiorespiratory fitness, but the accuracy with which ht(2)/Z can predict VO(2max) has not previously been examined in overweight adolescents. The impedance index was used as a predictor of VO(2max) in 87 overweight girls and 47 overweight boys ages 12 to 17 with mean BMI of 38.6 + or - 7.3 and 42.5 + or - 8.2 in girls and boys respectively. The Bland Altman procedure assessed agreement between predicted and actual VO(2max). Predicted VO(2max) was significantly correlated with measured VO(2max) (r(2)=0.48, P<0.0001). Using the Bland Altman procedure, there was significant magnitude bias (r(2)=0.10; P<0.002). The limits of agreement for predicted relative to actual VO(2max) were -589 to 574 mL O(2)/min. The impedance index was highly correlated with VO(2max) in overweight adolescents. However, using BIA data to predict maximal oxygen uptake over-predicted VO(2max) at low levels of oxygen consumption and under-predicted VO(2max) at high levels of oxygen consumption. This magnitude bias, along with the large limits of agreement of BIA-derived predicted VO(2max), limit its usefulness in the clinical setting for overweight adolescents.

  10. 40 CFR 503.31 - Special definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 503.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS... microorganisms in the absence of air. (c) Density of microorganisms is the number of microorganisms per unit mass...) Specific oxygen uptake rate (SOUR) is the mass of oxygen consumed per unit time per unit mass of total...

  11. Evaluation of oxidation behavior of γ-irradiated EPDM/PP compounds

    NASA Astrophysics Data System (ADS)

    Zaharescu, T.; Jipa, S.; Setnescu, R.; Setnescu, T.

    2007-12-01

    The oxidation effect of irradiation on ethylene-propylene diene terpolymer/polypropylene blends is presented. The polymer samples consisting of both materials under various ratios (20:80, 40:60, 60:40 and 80:20) were exposed to γ-irradiation ( 137Cs). The irradiation effects were assessed by two methods: oxygen uptake and IR spectroscopy (1720 cm -1 and 3350 cm -1, the characteristic bands for carbonyl and hydroxyl groups, respectively). The carbonyl and hydroxyl indexes were calculated for all formulations. From oxygen uptake investigation the kinetic parameters for thermal oxidation of irradiated samples were calculated. The contribution of each component to the progress of degradation is discussed.

  12. Exercise physiology in heart failure and preserved ejection fraction.

    PubMed

    Haykowsky, Mark J; Kitzman, Dalane W

    2014-07-01

    Recent advances in the pathophysiology of exercise intolerance in patients with heart failure with preserved ejection fraction (HFPEF) suggest that noncardiac peripheral factors contribute to the reduced peak V(o2) (peak exercise oxygen uptake) and to its improvement after endurance exercise training. A greater understanding of the peripheral skeletal muscle vascular adaptations that occur with physical conditioning may allow for tailored exercise rehabilitation programs. The identification of specific mechanisms that improve whole body and peripheral skeletal muscle oxygen uptake could establish potential therapeutic targets for medical therapies and a means to follow therapeutic response. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Genetic variants of uncoupling proteins-2 and -3 in relation to maximal oxygen uptake in different sports.

    PubMed

    Holdys, Joanna; Gronek, Piotr; Kryściak, Jakub; Stanisławski, Daniel

    2013-01-01

    Uncoupling proteins 2 and 3 (UCP2 and UCP3) as mitochondrial electron transporters are involved in regulation of ATP production and energy dissipation as heat. Energy efficiency plays an important role in physical performance, especially in aerobic fitness. The aim of this study was to examine the association between maximal oxygen uptake and genetic variants of the UCP2 and UCP3 genes. The studies were carried out in a group of 154 men and 85 women, professional athletes representing various sports and fitness levels and students of the University of Physical Education in Poznań. Physiological and molecular procedures were used, i.e. direct measurement of maximum oxygen uptake (VO₂max) and analysis of an insertion/deletion (I/D) polymorphism in the 3'untranslated region of exon 8 of the UCP2 gene and a C>T substitution in exon 5 (Y210Y) of the UCP3 gene. No statistically significant associations were found, only certain trends. Insertion allele (I) of the I/D UCP2 and the T allele of the UCP3 gene were favourable in obtaining higher VO₂max level and might be considered as endurance-related alleles.

  14. The role of necrosis, acute hypoxia and chronic hypoxia in 18F-FMISO PET image contrast: a computational modelling study

    NASA Astrophysics Data System (ADS)

    Warren, Daniel R.; Partridge, Mike

    2016-12-01

    Positron emission tomography (PET) using 18F-fluoromisonidazole (FMISO) is a promising technique for imaging tumour hypoxia, and a potential target for radiotherapy dose-painting. However, the relationship between FMISO uptake and oxygen partial pressure ({{P}{{\\text{O}2}}} ) is yet to be quantified fully. Tissue oxygenation varies over distances much smaller than clinical PET resolution (<100 μm versus  ˜4 mm), and cyclic variations in tumour perfusion have been observed on timescales shorter than typical FMISO PET studies (˜20 min versus a few hours). Furthermore, tracer uptake may be decreased in voxels containing some degree of necrosis. This work develops a computational model of FMISO uptake in millimetre-scale tumour regions. Coupled partial differential equations govern the evolution of oxygen and FMISO distributions, and a dynamic vascular source map represents temporal variations in perfusion. Local FMISO binding capacity is modulated by the necrotic fraction. Outputs include spatiotemporal maps of {{P}{{\\text{O}2}}} and tracer accumulation, enabling calculation of tissue-to-blood ratios (TBRs) and time-activity curves (TACs) as a function of mean tissue oxygenation. The model is characterised using experimental data, finding half-maximal FMISO binding at local {{P}{{\\text{O}2}}} of 1.4 mmHg (95% CI: 0.3-2.6 mmHg) and half-maximal necrosis at 1.2 mmHg (0.1-4.9 mmHg). Simulations predict a non-linear non-monotonic relationship between FMISO activity (4 hr post-injection) and mean tissue {{P}{{\\text{O}2}}} : tracer uptake rises sharply from negligible levels in avascular tissue, peaking at  ˜5 mmHg and declining towards blood activity in well-oxygenated conditions. Greater temporal variation in perfusion increases peak TBRs (range 2.20-5.27) as a result of smaller predicted necrotic fraction, rather than fundamental differences in FMISO accumulation under acute hypoxia. Identical late FMISO uptake can occur in regions with differing {{P}{{\\text{O}2}}} and necrotic fraction, but simulated TACs indicate that additional early-phase information may allow discrimination of hypoxic and necrotic signals. We conclude that a robust approach to FMISO interpretation (and dose-painting prescription) is likely to be based on dynamic PET analysis.

  15. The role of necrosis, acute hypoxia and chronic hypoxia in 18F-FMISO PET image contrast: a computational modelling study.

    PubMed

    Warren, Daniel R; Partridge, Mike

    2016-12-21

    Positron emission tomography (PET) using 18 F-fluoromisonidazole (FMISO) is a promising technique for imaging tumour hypoxia, and a potential target for radiotherapy dose-painting. However, the relationship between FMISO uptake and oxygen partial pressure ([Formula: see text]) is yet to be quantified fully. Tissue oxygenation varies over distances much smaller than clinical PET resolution (<100 μm versus  ∼4 mm), and cyclic variations in tumour perfusion have been observed on timescales shorter than typical FMISO PET studies (∼20 min versus a few hours). Furthermore, tracer uptake may be decreased in voxels containing some degree of necrosis. This work develops a computational model of FMISO uptake in millimetre-scale tumour regions. Coupled partial differential equations govern the evolution of oxygen and FMISO distributions, and a dynamic vascular source map represents temporal variations in perfusion. Local FMISO binding capacity is modulated by the necrotic fraction. Outputs include spatiotemporal maps of [Formula: see text] and tracer accumulation, enabling calculation of tissue-to-blood ratios (TBRs) and time-activity curves (TACs) as a function of mean tissue oxygenation. The model is characterised using experimental data, finding half-maximal FMISO binding at local [Formula: see text] of 1.4 mmHg (95% CI: 0.3-2.6 mmHg) and half-maximal necrosis at 1.2 mmHg (0.1-4.9 mmHg). Simulations predict a non-linear non-monotonic relationship between FMISO activity (4 hr post-injection) and mean tissue [Formula: see text] : tracer uptake rises sharply from negligible levels in avascular tissue, peaking at  ∼5 mmHg and declining towards blood activity in well-oxygenated conditions. Greater temporal variation in perfusion increases peak TBRs (range 2.20-5.27) as a result of smaller predicted necrotic fraction, rather than fundamental differences in FMISO accumulation under acute hypoxia. Identical late FMISO uptake can occur in regions with differing [Formula: see text] and necrotic fraction, but simulated TACs indicate that additional early-phase information may allow discrimination of hypoxic and necrotic signals. We conclude that a robust approach to FMISO interpretation (and dose-painting prescription) is likely to be based on dynamic PET analysis.

  16. Retinal oxygen saturation evaluation by multi-spectral fundus imaging

    NASA Astrophysics Data System (ADS)

    Khoobehi, Bahram; Ning, Jinfeng; Puissegur, Elise; Bordeaux, Kimberly; Balasubramanian, Madhusudhanan; Beach, James

    2007-03-01

    Purpose: To develop a multi-spectral method to measure oxygen saturation of the retina in the human eye. Methods: Five Cynomolgus monkeys with normal eyes were anesthetized with intramuscular ketamine/xylazine and intravenous pentobarbital. Multi-spectral fundus imaging was performed in five monkeys with a commercial fundus camera equipped with a liquid crystal tuned filter in the illumination light path and a 16-bit digital camera. Recording parameters were controlled with software written specifically for the application. Seven images at successively longer oxygen-sensing wavelengths were recorded within 4 seconds. Individual images for each wavelength were captured in less than 100 msec of flash illumination. Slightly misaligned images of separate wavelengths due to slight eye motion were registered and corrected by translational and rotational image registration prior to analysis. Numerical values of relative oxygen saturation of retinal arteries and veins and the underlying tissue in between the artery/vein pairs were evaluated by an algorithm previously described, but which is now corrected for blood volume from averaged pixels (n > 1000). Color saturation maps were constructed by applying the algorithm at each image pixel using a Matlab script. Results: Both the numerical values of relative oxygen saturation and the saturation maps correspond to the physiological condition, that is, in a normal retina, the artery is more saturated than the tissue and the tissue is more saturated than the vein. With the multi-spectral fundus camera and proper registration of the multi-wavelength images, we were able to determine oxygen saturation in the primate retinal structures on a tolerable time scale which is applicable to human subjects. Conclusions: Seven wavelength multi-spectral imagery can be used to measure oxygen saturation in retinal artery, vein, and tissue (microcirculation). This technique is safe and can be used to monitor oxygen uptake in humans. This work is original and is not under consideration for publication elsewhere.

  17. Heart rate, rate-pressure product, and oxygen uptake during four sexual activities.

    PubMed

    Bohlen, J G; Held, J P; Sanderson, M O; Patterson, R P

    1984-09-01

    Heart rate, rate-pressure product, and VO2 were measured in ten healthy men during four specified sexual activities: coitus with husband on top, coitus with wife on top, noncoital stimulation of husband by wife, and self-stimulation by husband. Foreplay generated slight, but statistically significant, increases above resting baseline in cardiac and metabolic variables. From stimulation through orgasm, average effort was modest for relatively short spans. Maximum exercise values occurred during the brief spans of orgasm, then returned quickly to near baseline levels. The two noncoital activities required lower expenditures than the two coital positions, with man-on-top coitus rating the highest. Large variations among subjects and among activities discourage use of a general equivalent activity for comparison, such as "two flights of stairs," to represent "sexual activity."

  18. At-Sea Test and Evaluation Of Oxygen (O2) Analyzers.

    DTIC Science & Technology

    1981-04-01

    Paramagnetic Oxygen Analyzer 2-6 2.4 Thermomagnetic Oxygen Analyzer Sensor 2-8 2.5 Cell Voltage versus Oxygen Concentration at 2-11 Various Cell ...of flue gas out of the stack across the cell and back into the stack. In-situ units place the cell directly in the flue gas path in the uptake. ) The...repetitive failurc of a cell heater temperature control circuit and a control cabinet electron- ic malfunction. Of the five (5) units that remained in

  19. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region.

    PubMed

    Hany, Thomas F; Gharehpapagh, Esmaiel; Kamel, Ehab M; Buck, Alfred; Himms-Hagen, Jean; von Schulthess, Gustav K

    2002-10-01

    Increased symmetrical fluorine-18 fluorodeoxyglucose (FDG) uptake in the cervical and thoracic spine region is well known and has been attributed to muscular uptake. The purpose of this study was to re-evaluate this FDG uptake pattern by means of co-registered positron emission tomography (PET) and computed tomography (CT) imaging, which allowed exact localisation of this uptake. Between April and November 2001, 638 consecutive patients referred for PET/CT were imaged on an in-line PET/CT system (GEMS). This system combines an advanced GE PET scanner and a multirow-detector computer tomograph (Lightspeed, GEMS). The examination included PET with FDG and one CT acquisition with 80 mA. For CT, the following parameters were used: 140 kV, 80 mA, reconstructed slice thickness 5 mm, scan length 867 mm, AT 22.5 s. CT data were used for attenuation correction as well as image co-registration. Image analysis was performed on an Entegra work-station (ELGEMS). All patients with symmetrical uptake within the neck, thorax and shoulder regions were selected and the exact localisation of uptake determined (muscle, bone, fatty tissue or articulation). In 17 of the 638 patients (2.5%), increased, symmetrical FDG uptake in the shoulder region in a typical pattern was found. If extensive, this pattern included FDG activity comparable to brain activity in the lower cervical spine, the shoulder region and the upper thoracic spine in the costovertebral region. A less extensive pattern only involved intermediate FDG uptake in the lower cervical spine and shoulder region or in the shoulder region alone. In seven female patients (average 32.3 years), the extensive uptake pattern was seen. The average body mass index (BMI) was 19.0 (range 16.8-23.4). In the other ten patients (two male, eight female, average age 37.1 years), the average BMI was 22.7 (18.7-27.7). In all patients, the soft tissue uptake was clearly localised within the fatty tissue of the shoulders as demonstrated by PET/CT co-registration. The uptake in the region of the thoracic spine was localised in the region of the costovertebral joints. Symmetrical FDG uptake in the shoulder, neck and thoracic spine region is probably related to uptake in adipose tissue, especially in underweight patients. Hypothetically, this FDG uptake could represent activated brown adipose tissue during increased sympathetic nerve system (SNS) activity due to cold stress.

  20. Diurnal Variations in Maximal Oxygen Uptake.

    ERIC Educational Resources Information Center

    McClellan, Powell D.

    A study attempted to determine if diurnal (daily cyclical) variations were present during maximal exercise. The subjects' (30 female undergraduate physical education majors) oxygen consumption and heart rates were monitored while they walked on a treadmill on which the grade was raised every minute. Each subject was tested for maximal oxygen…

  1. Lrp5 Has a Wnt-Independent Role in Glucose Uptake and Growth for Mammary Epithelial Cells

    PubMed Central

    Chin, Emily N.; Martin, Joshua A.; Kim, Soyoung; Fakhraldeen, Saja A.

    2015-01-01

    Lrp5 is typically described as a Wnt signaling receptor, albeit a less effective Wnt signaling receptor than the better-studied sister isoform, Lrp6. Here we show that Lrp5 is only a minor player in the response to Wnt3a-type ligands in mammary epithelial cells; instead, Lrp5 is required for glucose uptake, and glucose uptake regulates the growth rate of mammary epithelial cells in culture. Thus, a loss of Lrp5 leads to profound growth suppression, whether growth is induced by serum or by specific growth factors, and this inhibition is not due to a loss of Wnt signaling. Depletion of Lrp5 decreases glucose uptake, lactate secretion, and oxygen consumption rates; inhibition of glucose consumption phenocopies the loss of Lrp5 function. Both Lrp5 knockdown and low external glucose induce mitochondrial stress, as revealed by the accumulation of reactive oxygen species (ROS) and the activation of the ROS-sensitive checkpoint, p38α. In contrast, loss of function of Lrp6 reduces Wnt responsiveness but has little impact on growth. This highlights the distinct functions of these two Lrp receptors and an important Wnt ligand-independent role of Lrp5 in glucose uptake in mammary epithelial cells. PMID:26711269

  2. Exercise modality effect on oxygen uptake off-transient kinetics at maximal oxygen uptake intensity.

    PubMed

    Sousa, Ana; Rodríguez, Ferran A; Machado, Leandro; Vilas-Boas, J Paulo; Fernandes, Ricardo J

    2015-06-01

    What is the central question of this study? Do the mechanical differences between swimming, rowing, running and cycling have a potential effect on the oxygen uptake (V̇O2) off-kinetics after an exercise sustained until exhaustion at 100% of maximal oxygen uptake (V̇O2max) intensity? What is the main finding and its importance? The mechanical differences between exercise modes had a potential effect and contributed to distinct amplitude of the fast component (higher in running compared with cycling) and time constant (higher in swimming compared with rowing and cycling) in the V̇O2 off-kinetic patterns at 100% of V̇O2max intensity. This suggests that swimmers, unlike rowers and cyclists, would benefit more from a longer duration of training intervals after each set of exercise performed at V̇O2max intensity. The kinetics of oxygen uptake (V̇O2) during recovery (off-transient kinetics) for different exercise modes is largely unexplored, hampering the prescription of training and recovery to enhance performance. The purpose of this study was to compare the V̇O2 off-transient kinetics response between swimmers, rowers, runners and cyclists during their specific mode of exercise at 100% of maximal oxygen uptake (V̇O2max) intensity and to examine the on-off symmetry. Groups of swimmers, rowers, runners and cyclists (n = 8 per group) performed (i) an incremental exercise protocol to assess the velocity or power associated with V̇O2max (vV̇O2max or wV̇O2max, respectively) and (ii) a square-wave exercise transition from rest to vV̇O2max/vV̇O2maxwV̇O2maxwV̇O2max until volitional exhaustion. Pulmonary exchange parameters were measured using a telemetric portable gas analyser (K4b(2) ; Cosmed, Rome, Italy), and the on- and off-transient kinetics were analysed through a double-exponential approach. For all exercise modes, both transient periods were symmetrical in shape once they had both been adequately fitted by a double-exponential model. However, differences were found in the off-kinetic parameters between exercise modes; the amplitude of the fast component of the V̇O2 off-response was higher in running compared with cycling (48 ± 5 and 36 ± 7 ml kg(-1) min(-1) , respectively; P < 0.001), and the time constant of the same phase was higher in swimming compared with rowing and cycling (63 ± 5, 56 ± 5 and 55 ± 3 s, respectively; P < 0.001). Although both phases were well described by a double-exponential model, the differences between exercise modes had a potential effect and contributed to distinct V̇O2 off-transient kinetic patterns at 100% of V̇O2max intensity. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  3. Hypoxic Response of Tumor Tissues in a Microfluidic Environment

    NASA Astrophysics Data System (ADS)

    Morshed, Adnan; Dutta, Prashanta

    2017-11-01

    Inside a tumor tissue, cells growing further away from the blood vessel often suffer from low oxygen levels known as hypoxia. Cancer cells have shown prolonged survival in hostile hypoxic conditions by sharply changing the cellular metabolism. In this work, different stages of growth of the tumor tissue and the oxygen transport across the tissue are investigated. The tissue was modeled as a contiguous block of cells inside a microfluidic environment with nutrient transport through advection and diffusion. While oxygen uptake inside the tissue is through diffusion, ascorbate transport from the extracellular medium is addressed by a concentration dependent uptake model. By varying the experimentally observed oxygen consumption rate, different types of cancer cells and their normoxic and hypoxic stages were studied. Even when the oxygen supply in the channel is maintained at normoxic levels, our results show the onset of hypoxia within minutes inside the cellblock. Interestingly, modeled cell blocks with and without a structured basal layer showed less than 5% variation in hypoxic response in chronic hypoxia. Results also indicate that the balance of cell survival and growth are affected by the flow rate of nutrients and the oxygen consumption rate. This work was supported in part by the National Science Foundation under Grant No. DMS 1317671.

  4. Real‐time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device

    PubMed Central

    Super, Alexandre; Jaccard, Nicolas; Cardoso Marques, Marco Paulo; Macown, Rhys Jarred; Griffin, Lewis Donald; Veraitch, Farlan Singh

    2016-01-01

    Abstract Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real‐time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time‐course data for bulk and peri‐cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non‐invasive and label‐free approach. Additionally, we confirmed non‐invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell−1 s−1, and 5 and 35 amol cell−1 s−1 were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non‐invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell‐based therapies. PMID:27214658

  5. The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat

    NASA Technical Reports Server (NTRS)

    Jorgensen, B. B.; Des Marais, D. J.

    1990-01-01

    Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sediment-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate and well-defined surface structure. Diffusion through the DBL constituted an important rate limitation to the oxygen uptake of the sediment. The mean effective DBL thickness decreased from 0.59 to 0.16 mm as the flow velocity of the overlying water was increased from 0.3 to 7.7 cm s-1 (measured 1 cm above the mat). The oxygen uptake rate concurrently increased from 3.9 to 9.4 nmol cm-2 min-1. The effects of surface roughness and topography on the thickness and distribution of the DBL were studied by three-dimensional mapping of the sediment-water interface and the upper DBL boundary at 0.1-mm spatial resolution. The DBL boundary followed mat structures that had characteristic dimensions > 1/2 DBL thickness but the DBL had a dampened relief relative to the mat. The effective surface area of the sediment-water interface and of the upper DBL boundary were 31 and 14% larger, respectively, than a flat plane. Surface topography thereby increased the oxygen flux across the sediment-water interface by 49% relative to a one-dimensional diffusion flux calculated from the vertical oxygen microgradients.

  6. The response of the tidepool sculpin, Oligocottus maculosus, to hypoxia in laboratory, mesocosm and field environments.

    PubMed

    Sloman, Katherine A; Mandic, Milica; Todgham, Anne E; Fangue, Nann A; Subrt, Peter; Richards, Jeffrey G

    2008-03-01

    Animals living in the intertidal zone experience regular, predictable fluctuations in physical parameters including temperature, oxygen and salinity and rely on behavioural, physiological and biochemical mechanisms to cope with environmental variation. In the present study, behavioural strategies induced by aquatic hypoxia (e.g. emergence) were performed at similar oxygen tensions across laboratory, mesocosm and field environments; the number of individuals performing these behaviours at any one time was similar in mesocosms and the field. The use of aquatic surface respiration (ASR) was more plastic than emergence behaviour, occurring at a lower oxygen tension in juveniles than adults and being influenced by the addition of alarm substance. Oxygen uptake was lower in air than in water in adults but, in contrast, oxygen uptake was not influenced by the respiratory medium in juveniles. In the laboratory, 72 h of forced emergence did not affect whole body concentrations of lactate but when ASR and emergence were prevented within mesocosm environments there was a significant elevation of lactate. The present study highlights the benefits of transcending traditional laboratory/field boundaries allowing the responses of laboratory-held animals to environmental fluctuation to be integrated with how these animals perform in their natural environment.

  7. Pathophysiologic study of chronic infarcts with I-123 isopropyl iodo-amphetamine (IMP): the importance of periinfarct area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raynaud, C.; Rancurel, G.; Samson, Y.

    1987-01-01

    Seventeen chronic cerebral infarcts were investigated by a highly sensitive, dedicated brain single photon emission computerized tomography system using /sup 123/I-isopropyl iodoamphetamine (IMP) and /sup 133/Xe. IMP uptake was measured 10 minutes, 2 hours, and 5 hours after injection, and regional cerebral blood flow was measured with 133Xe. In 4 cases a positron emission tomography system was used to measure the rCBF and the regional metabolic rate of oxygen with C15O2 and 15O2. The results obtained allowed us to identify 2 abnormal zones. One, the central area, was characterized by a severe decrease in IMP uptake and rCBF averaging 34%more » and 46% respectively and by a hypodense image on the x-ray computerized tomography scan. The second, the periinfarct or ''peripheral area'' was characterized by a moderate decrease in IMP uptake and regional cerebral blood flow averaging 13 and 19% respectively; this area extended around the central area and had a normal density on computerized tomography scan. The IMP hypofixation of the peripheral area observed at the 10th minute tended to disappear at the 5th hour. The volume of this area was often found to be quite large, covering more than 30% of a hemisphere whereas the central area did not exceed 25%. Volume appeared to be correlated with the neurological status of the patient. The nature of the peripheral area is not established with certainty. It may be caused by deafferentation of areas not directly affected by the ischemic insult and/or selective ischemic neuronal loss. The results stress the important role played by the peripheral area, which may be useful in establishing the prognosis and evaluating the efficacy of therapy in individual stroke cases.« less

  8. A Comparative Study of the Hypoxia PET Tracers [{sup 18}F]HX4, [{sup 18}F]FAZA, and [{sup 18}F]FMISO in a Preclinical Tumor Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeters, Sarah G.J.A., E-mail: sarah.peeters@maastrichtuniversity.nl; Zegers, Catharina M.L.; Lieuwes, Natasja G.

    Purpose: Several individual clinical and preclinical studies have shown the possibility of evaluating tumor hypoxia by using noninvasive positron emission tomography (PET). The current study compared 3 hypoxia PET tracers frequently used in the clinic, [{sup 18}F]FMISO, [{sup 18}F]FAZA, and [{sup 18}F]HX4, in a preclinical tumor model. Tracer uptake was evaluated for the optimal time point for imaging, tumor-to-blood ratios (TBR), spatial reproducibility, and sensitivity to oxygen modification. Methods and Materials: PET/computed tomography (CT) images of rhabdomyosarcoma R1-bearing WAG/Rij rats were acquired at multiple time points post injection (p.i.) with one of the hypoxia tracers. TBR values were calculated, andmore » reproducibility was investigated by voxel-to-voxel analysis, represented as correlation coefficients (R) or Dice similarity coefficient of the high-uptake volume. Tumor oxygen modifications were induced by exposure to either carbogen/nicotinamide treatment or 7% oxygen breathing. Results: TBR was stabilized and maximal at 2 hours p.i. for [{sup 18}F]FAZA (4.0 ± 0.5) and at 3 hours p.i. for [{sup 18}F]HX4 (7.2 ± 0.7), whereas [{sup 18}F]FMISO showed a constant increasing TBR (9.0 ± 0.8 at 6 hours p.i.). High spatial reproducibility was observed by voxel-to-voxel comparisons and Dice similarity coefficient calculations on the 30% highest uptake volume for both [{sup 18}F]FMISO (R = 0.86; Dice coefficient = 0.76) and [{sup 18}F]HX4 (R = 0.76; Dice coefficient = 0.70), whereas [{sup 18}F]FAZA was less reproducible (R = 0.52; Dice coefficient = 0.49). Modifying the hypoxic fraction resulted in enhanced mean standardized uptake values for both [{sup 18}F]HX4 and [{sup 18}F]FAZA upon 7% oxygen breathing. Only [{sup 18}F]FMISO uptake was found to be reversible upon exposure to nicotinamide and carbogen. Conclusions: This study indicates that each tracer has its own strengths and, depending on the question to be answered, a different tracer can be put forward.« less

  9. Changes in sevoflurane plasma concentration with delivery through the oxygenator during on-pump cardiac surgery.

    PubMed

    Nitzschke, R; Wilgusch, J; Kersten, J F; Trepte, C J; Haas, S A; Reuter, D A; Goetz, A E; Goepfert, M S

    2013-06-01

    It is unclear what factors affect the uptake of sevoflurane administered through the membrane oxygenator during cardiopulmonary bypass (CPB) and whether this can be monitored via the oxygenator exhaust gas. Stable delivery of sevoflurane was administered to 30 elective cardiac surgery patients at 1.8 vol% (inspiratory) via the anaesthetic circuit and ventilator. During CPB, sevoflurane was administered in the oxygenator fresh gas supply (Compactflo Evolution™; Sorin Group, Milano, Italy). Sevoflurane plasma concentration (SPC) was measured using gas chromatography. Changes were correlated with bispectral index (BIS), patient temperature, haematocrit, plasma albumin concentration, oxygenator fresh gas flow, and the sevoflurane concentration in the oxygenator exhaust at predefined time points. The mean SPC pre-bypass was 54.9 µg ml(-1) [95% confidence interval (CI): 50.6-59.1]. SPC decreased to 43.2 µg ml(-1) (95% CI: 40.3-46.1; P<0.001) after initiation of CPB, and was lower still during rewarming and weaning from bypass, 39.4 µg ml(-1) (95% CI: 36.6-42.3; P<0.001). BIS did not exceed a value of 55. SPCs were higher during hypothermia (P<0.001) and with an increase in oxygenator fresh gas flow (P=0.015), and lower with haemodilution (P=0.027). No correlation was found between SPC and the concentration of sevoflurane in the oxygenator exhaust gas (r=-0.04; 95% CI: -0.18 to 0.09; P=0.53). The uptake of sevoflurane delivered via the membrane oxygenator during CPB seems to be affected by hypothermia, haemodilution, and changes in the oxygenator fresh gas supply flow. Measuring the concentration of sevoflurane in the exhaust from the oxygenator is not useful for monitoring sevoflurane administration during bypass.

  10. Critical soil conditions for oxygen stress to plant roots: Substituting the Feddes-function by a process-based model

    NASA Astrophysics Data System (ADS)

    Bartholomeus, Ruud P.; Witte, Jan-Philip M.; van Bodegom, Peter M.; van Dam, Jos C.; Aerts, Rien

    2008-10-01

    SummaryEffects of insufficient soil aeration on the functioning of plants form an important field of research. A well-known and frequently used utility to express oxygen stress experienced by plants is the Feddes-function. This function reduces root water uptake linearly between two constant pressure heads, representing threshold values for minimum and maximum oxygen deficiency. However, the correctness of this expression has never been evaluated and constant critical values for oxygen stress are likely to be inappropriate. On theoretical grounds it is expected that oxygen stress depends on various abiotic and biotic factors. In this paper, we propose a fundamentally different approach to assess oxygen stress: we built a plant physiological and soil physical process-based model to calculate the minimum gas filled porosity of the soil ( ϕgas_min) at which oxygen stress occurs. First, we calculated the minimum oxygen concentration in the gas phase of the soil needed to sustain the roots through (micro-scale) diffusion with just enough oxygen to respire. Subsequently, ϕgas_min that corresponds to this minimum oxygen concentration was calculated from diffusion from the atmosphere through the soil (macro-scale). We analyzed the validity of constant critical values to represent oxygen stress in terms of ϕgas_min, based on model simulations in which we distinguished different soil types and in which we varied temperature, organic matter content, soil depth and plant characteristics. Furthermore, in order to compare our model results with the Feddes-function, we linked root oxygen stress to root water uptake (through the sink term variable F, which is the ratio of actual and potential uptake). The simulations showed that ϕgas_min is especially sensitive to soil temperature, plant characteristics (root dry weight and maintenance respiration coefficient) and soil depth but hardly to soil organic matter content. Moreover, ϕgas_min varied considerably between soil types and was larger in sandy soils than in clayey soils. We demonstrated that F of the Feddes-function indeed decreases approximately linearly, but that actual oxygen stress already starts at drier conditions than according to the Feddes-function. How much drier is depended on the factors indicated above. Thus, the Feddes-function might cause large errors in the prediction of transpiration reduction and growth reduction through oxygen stress. We made our method easily accessible to others by implementing it in SWAP, a user-friendly soil water model that is coupled to plant growth. Since constant values for ϕgas_min in plant and hydrological modeling appeared to be inappropriate, an integrated approach, including both physiological and physical processes, should be used instead. Therefore, we advocate using our method in all situations where oxygen stress could occur.

  11. The effect of exercise training on biventricular myocardial strain in heart failure with preserved ejection fraction.

    PubMed

    Angadi, Siddhartha S; Jarrett, Catherine L; Sherif, Moustafa; Gaesser, Glenn A; Mookadam, Farouk

    2017-08-01

    High-intensity interval training (HIIT) improves peak oxygen uptake and left ventricular diastology in patients with heart failure with preserved ejection fraction (HFpEF). However, its effects on myocardial strain in HFpEF remain unknown. We explored the effects of HIIT and moderate-intensity aerobic continuous training (MI-ACT) on left and right ventricular strain parameters in patients with HFpEF. Furthermore, we explored their relationship with peak oxygen uptake (VO 2peak ). Fifteen patients with HFpEF (age = 70 ± 8.3 years) were randomized to either: (i) HIIT (4 × 4 min, 85-90% peak heart rate, interspersed with 3 min of active recovery; n = 9) or (ii) MI-ACT (30 min at 70% peak heart rate; n = 6). Patients were trained 3 days/week for 4 weeks and underwent VO 2peak testing and 2D echocardiography at baseline and after completion of the 12 sessions of supervised exercise training. Left ventricular (LV) and right ventricular (RV) average global peak systolic longitudinal strain (GLS) and peak systolic longitudinal strain rate (GSR) were quantified. Paired t-tests were used to examine within-group differences and unpaired t-tests used for between-group differences (α = 0.05). Right ventricular average global peak systolic longitudinal strain improved significantly in the HIIT group after training (pre = -18.4 ± 3.2%, post = -21.4 ± 1.7%; P = 0.02) while RV-GSR, LV-GLS, and LV-GSR did not (P > 0.2). No significant improvements were observed following MI-ACT. No significant between-group differences were observed for any strain measure. ΔLV-GLS and ΔRV-GLS were modestly correlated with ΔVO 2peak (r = -0.48 and r = -0.45; P = 0.1, respectively). In patients with HFpEF, 4 weeks of HIIT significantly improved RV-GLS. © 2017 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.

  12. Temporal dissociation between muscle and pulmonary oxygen uptake kinetics: influences of perfusion dynamics and arteriovenous oxygen concentration differences in muscles and lungs.

    PubMed

    Drescher, U; Koschate, J; Thieschäfer, L; Schneider, S; Hoffmann, U

    2018-06-22

    The aim of the study was to test whether or not the arteriovenous oxygen concentration difference (avDO 2 ) kinetics at the pulmonary (avDO 2 pulm) and muscle (avDO 2 musc) levels is significantly different during dynamic exercise. A re-analysis involving six publications dealing with kinetic analysis was utilized with an overall sample size of 69 participants. All studies comprised an identical pseudorandom binary sequence work rate (WR) protocol-WR changes between 30 and 80 W-to analyze the kinetic responses of pulmonary ([Formula: see text]) and muscle ([Formula: see text]) oxygen uptake kinetics as well as those of avDO 2 pulm and avDO 2 musc. A significant difference between [Formula: see text] (0.395 ± 0.079) and [Formula: see text] kinetics (0.330 ± 0.078) was observed (p < 0.001), where the variables showed a significant relationship (r SP  = 0.744, p < 0.001). There were no significant differences between avDO 2 musc (0.446 ± 0.077) and avDO 2 pulm kinetics (0.451 ± 0.075), which are highly correlated (r = 0.929, p < 0.001). It is suggested that neither avDO 2 pulm nor avDO 2 musc kinetic responses seem to be responsible for the differences between estimated [Formula: see text] and measured [Formula: see text] kinetics. Obviously, the conflation of avDO 2 and perfusion ([Formula: see text] ) at different points in time and at different physiological levels drive potential differences in [Formula: see text] and [Formula: see text] kinetics. Therefore, [Formula: see text] should, in general, be considered whenever oxygen uptake kinetics are analyzed or discussed.

  13. Enhanced Heme Function and Mitochondrial Respiration Promote the Progression of Lung Cancer Cells

    PubMed Central

    Alam, Md Maksudul; Shah, Ajit; Cao, Thai M.; Sullivan, Laura A.; Brekken, Rolf; Zhang, Li

    2013-01-01

    Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer biology and therapeutics. PMID:23704904

  14. Fish embryos on land: terrestrial embryo deposition lowers oxygen uptake without altering growth or survival in the amphibious fish Kryptolebias marmoratus.

    PubMed

    Wells, Michael W; Turko, Andy J; Wright, Patricia A

    2015-10-01

    Few teleost fishes incubate embryos out of water, but the oxygen-rich terrestrial environment could provide advantages for early growth and development. We tested the hypothesis that embryonic oxygen uptake is limited in aquatic environments relative to air using the self-fertilizing amphibious mangrove rivulus, Kryptolebias marmoratus, which typically inhabits hypoxic, water-filled crab burrows. We found that adult mangrove rivulus released twice as many embryos in terrestrial versus aquatic environments and that air-reared embryos had accelerated developmental rates. Surprisingly, air-reared embryos consumed 44% less oxygen and possessed larger yolk reserves, but attained the same mass, length and chorion thickness. Water-reared embryos moved their opercula ∼2.5 more times per minute compared with air-reared embryos at 7 days post-release, which probably contributed to the higher rates of oxygen uptake and yolk utilization we observed. Genetically identical air- and water-reared embryos from the same parent were raised to maturity, but the embryonic environment did not affect growth, reproduction or emersion ability in adults. Therefore, although aspects of early development were plastic, these early differences were not sustained into adulthood. Kryptolebias marmoratus embryos hatched out of water when exposed to aerial hypoxia. We conclude that exposure to a terrestrial environment reduces the energetic costs of development partly by reducing the necessity of embryonic movements to dispel stagnant boundary layers. Terrestrial incubation of young would be especially beneficial to amphibious fishes that occupy aquatic habitats of poor water quality, assuming low terrestrial predation and desiccation risks. © 2015. Published by The Company of Biologists Ltd.

  15. Oxygen in the Southern Ocean From Argo Floats: Determination of Processes Driving Air-Sea Fluxes

    NASA Astrophysics Data System (ADS)

    Bushinsky, Seth M.; Gray, Alison R.; Johnson, Kenneth S.; Sarmiento, Jorge L.

    2017-11-01

    The Southern Ocean is of outsized significance to the global oxygen and carbon cycles with relatively poor measurement coverage due to harsh winters and seasonal ice cover. In this study, we use recent advances in the parameterization of air-sea oxygen fluxes to analyze 9 years of oxygen data from a recalibrated Argo oxygen data set and from air-calibrated oxygen floats deployed as part of the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project. From this combined data set of 150 floats, we find a total Southern Ocean oxygen sink of -183 ± 80 Tmol yr-1 (positive to the atmosphere), greater than prior estimates. The uptake occurs primarily in the Polar-Frontal Antarctic Zone (PAZ, -94 ± 30 Tmol O2 yr-1) and Seasonal Ice Zone (SIZ, -111 ± 9.3 Tmol O2 yr-1). This flux is driven by wintertime ventilation, with a large portion of the flux in the SIZ passing through regions with fractional sea ice. The Subtropical Zone (STZ) is seasonally driven by thermal fluxes and exhibits a net outgassing of 47 ± 29 Tmol O2 yr-1 that is likely driven by biological production. The Subantarctic Zone (SAZ) uptake is -25 ± 12 Tmol O2 yr-1. Total oxygen fluxes were separated into a thermal and nonthermal component. The nonthermal flux is correlated with net primary production and mixed layer depth in the STZ, SAZ, and PAZ, but not in the SIZ where seasonal sea ice slows the air-sea gas flux response to the entrainment of deep, low-oxygen waters.

  16. Caffeine inhibition of aflatoxin synthesis: probable site of action.

    PubMed Central

    Buchanan, R L; Lewis, D F

    1984-01-01

    Aflatoxin production by pregrown cultures of Aspergillus parasiticus was completely inhibited by incorporation of 2 mg of caffeine per ml into the medium. This was accompanied by a decrease in glucose utilization and an inhibition of oxygen uptake and carbon dioxide evolution. Enzyme analyses indicated no significant differences in specific activities on glucose-6-phosphate dehydrogenase, mannitol dehydrogenase, phosphofructokinase, fructose 1,6-diphosphatase, pyruvate kinase, or malate dehydrogenase. Glucose uptake kinetics indicated a linear dose-related inhibition of glucose uptake. It appears likely that caffeine inhibits aflatoxin synthesis by restricting the uptake of carbohydrates which are ultimately used by the mold to synthesize this family of mycotoxins. PMID:6331311

  17. Prediction of Maximum Oxygen Consumption from Walking, Jogging, or Running.

    ERIC Educational Resources Information Center

    Larsen, Gary E.; George, James D.; Alexander, Jeffrey L.; Fellingham, Gilbert W.; Aldana, Steve G.; Parcell, Allen C.

    2002-01-01

    Developed a cardiorespiratory endurance test that retained the inherent advantages of submaximal testing while eliminating reliance on heart rate measurement in predicting maximum oxygen uptake (VO2max). College students completed three exercise tests. The 1.5-mile endurance test predicted VO2max from submaximal exercise without requiring heart…

  18. Physically driven Patchy O2 Changes in the North Atlantic Ocean simulated by the CMIP5 Earth System Models

    NASA Astrophysics Data System (ADS)

    Tagklis, Filippos; Bracco, Annalisa; Ito, Takamitsu

    2017-04-01

    Centennial trends of oxygen in the upper 700 m of the North Atlantic Ocean are investigated in Earth System Models (ESMs) included in the Coupled Model Intercomparison Project Phase 5. The focus is on the subpolar region, which is key for the oceanic uptake of oxygen and carbon dioxide. Historical simulations covering the twentieth century and projections for the twenty-first century under the Representative Concentration Pathway 8.5 scenario are investigated. Although the representation of convective activity differs among the models in space and strength, and most models have a cold bias south of Greenland resulting from a poor representation of the pathway of the North Atlantic Current, the observed climatological distribution of dissolved O2 averaged for the recent past period (1975-2005) is generally well captured. By the end of the 21st century, all models predict an increase in depth-integrated temperature of 2-3oC, a consequent solubility decrease, a weakening of the vertical mass transport, a decrease in nutrient supply into the euphotic layer, and a spatially variable change in apparent oxygen utilization (AOU). Despite an overall tendency of the North Atlantic to lose oxygen by the end of twenty-first century, patchy regions of O2 increase are observed in a subset of models. This regional resistance to deoxygenation is explained by the weakening of the North Atlantic Current that causes a regional solubility increase exceeding the effect of increasing stratification. Our results imply that potential shifts in the North Atlantic Current play a crucial role in the future projection of the regional oxygen concentration in the warming climate.

  19. Middle cerebral artery blood velocity and cerebral blood flow and O2 uptake during dynamic exercise.

    PubMed

    Madsen, P L; Sperling, B K; Warming, T; Schmidt, J F; Secher, N H; Wildschiødtz, G; Holm, S; Lassen, N A

    1993-01-01

    Results obtained by the 133Xe clearance method with external detectors and by transcranial Doppler sonography (TCD) suggest that dynamic exercise causes an increase of global average cerebral blood flow (CBF). These data are contradicted by earlier data obtained during less-well-defined conditions. To investigate this controversy, we applied the Kety-Schmidt technique to measure the global average levels of CBF and cerebral metabolic rate of oxygen (CMRO2) during rest and dynamic exercise. Simultaneously with the determination of CBF and CMRO2, we used TCD to determine mean maximal flow velocity in the middle cerebral artery (MCA Vmean). For values of CBF and MCA Vmean a correction for an observed small drop in arterial PCO2 was carried out. Baseline values for global CBF and CMRO2 were 50.7 and 3.63 ml.100 g-1.min-1, respectively. The same values were found during dynamic exercise, whereas a 22% (P < 0.0001) increase in MCA Vmean was observed. Hence, the exercise-induced increase in MCA Vmean is not a reflection of a proportional increase in CBF.

  20. Min-By-Min Respiratory Exchange and Oxygen Uptake Kinetics During Steady-State Exercise in Subjects of High and Low Max VO2

    ERIC Educational Resources Information Center

    Weltman, Arthur; Katch, Victor

    1976-01-01

    No statistically meaningful differences in steady-state vo2 uptake for high and low max vo2 groups was indicated in this study, but a clear tendency was observed for the high max vo2 group to reach the steady-state at a faster rate. (MB)

  1. Use of Mechanistic Modeling to Assess Interindividual Variability and Interspecies Differences in Active Uptake in Human and Rat Hepatocytes

    PubMed Central

    Ménochet, Karelle; Kenworthy, Kathryn E.; Houston, J. Brian

    2012-01-01

    Interindividual variability in activity of uptake transporters is evident in vivo, yet limited data exist in vitro, confounding in vitro-in vivo extrapolation. The uptake kinetics of seven organic anion-transporting polypeptide substrates was investigated over a concentration range in plated cryopreserved human hepatocytes. Active uptake clearance (CLactive, u), bidirectional passive diffusion (Pdiff), intracellular binding, and metabolism were estimated for bosentan, pitavastatin, pravastatin, repaglinide, rosuvastatin, telmisartan, and valsartan in HU4122 donor using a mechanistic two-compartment model in Matlab. Full uptake kinetics of rosuvastatin and repaglinide were also characterized in two additional donors, whereas for the remaining drugs CLactive, u was estimated at a single concentration. The unbound affinity constant (Km, u) and Pdiff values were consistent across donors, whereas Vmax was on average up to 2.8-fold greater in donor HU4122. Consistency in Km, u values allowed extrapolation of single concentration uptake activity data and assessment of interindividual variability in CLactive across donors. The maximal contribution of active transport to total uptake differed among donors, for example, 85 to 96% and 68 to 87% for rosuvastatin and repaglinide, respectively; however, in all cases the active process was the major contributor. In vitro-in vivo extrapolation indicated a general underprediction of hepatic intrinsic clearance, an average empirical scaling factor of 17.1 was estimated on the basis of seven drugs investigated in three hepatocyte donors, and donor-specific differences in empirical factors are discussed. Uptake Km, u and CLactive, u were on average 4.3- and 7.1-fold lower in human hepatocytes compared with our previously published rat data. A strategy for the use of rat uptake data to facilitate the experimental design in human hepatocytes is discussed. PMID:22665271

  2. Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures.

    PubMed

    Jurado-Oller, Jose Luis; Dubini, Alexandra; Galván, Aurora; Fernández, Emilio; González-Ballester, David

    2015-01-01

    Currently, hydrogen fuel is derived mainly from fossil fuels, but there is an increasing interest in clean and sustainable technologies for hydrogen production. In this context, the ability of some photosynthetic microorganisms, particularly cyanobacteria and microalgae, to produce hydrogen is a promising alternative for renewable, clean-energy production. Among a diverse array of photosynthetic microorganisms able to produce hydrogen, the green algae Chlamydomonas reinhardtii is the model organism widely used to study hydrogen production. Despite the well-known fact that acetate-containing medium enhances hydrogen production in this algae, little is known about the precise role of acetate during this process. We have examined several physiological aspects related to acetate assimilation in the context of hydrogen production metabolism. Measurements of oxygen and CO2 levels, acetate uptake, and cell growth were performed under different light conditions, and oxygenic regimes. We show that oxygen and light intensity levels control acetate assimilation and modulate hydrogen production. We also demonstrate that the determination of the contribution of the PSII-dependent hydrogen production pathway in mixotrophic cultures, using the photosynthetic inhibitor DCMU, can lead to dissimilar results when used under various oxygenic regimes. The level of inhibition of DCMU in hydrogen production under low light seems to be linked to the acetate uptake rates. Moreover, we highlight the importance of releasing the hydrogen partial pressure to avoid an inherent inhibitory factor on the hydrogen production. Low levels of oxygen allow for low acetate uptake rates, and paradoxically, lead to efficient and sustained production of hydrogen. Our data suggest that acetate plays an important role in the hydrogen production process, during non-stressed conditions, other than establishing anaerobiosis, and independent of starch accumulation. Potential metabolic pathways involved in hydrogen production in mixotrophic cultures are discussed. Mixotrophic nutrient-replete cultures under low light are shown to be an alternative for the simultaneous production of hydrogen and biomass.

  3. Specific physiological and biomechanical performance in elite, sub-elite and in non-elite male team handball players.

    PubMed

    Wagner, Herbert; Fuchs, Philip X; von Duvillard, Serge P

    2018-01-01

    Team handball is a dynamic sport game that is played professionally in numerous countries. However, knowledge about training and competition is based mostly on practical experience due to limited scientific studies. Consequently, the aims of our study were to compare specific physiological and biomechanical performance in elite, sub-elite and in non-elite male team handball players. Thirty-six elite, sub-elite and non-elite male team handball players performed a game based performance test, upper-body and lower-body strength tests, 30-m sprint test, counter movement jump test and an incremental treadmill running test. Significant differences (P<0.05) were found for the peak oxygen uptake, heart rate, offense and defense time, jump height and ball velocity during the jump throw in the game based performance test, maximal oxygen uptake in the incremental treadmill running test as well as in maximal leg strength and leg explosive strength in the isometric strength test. Elite male players have an enhanced specific agility, a better throwing performance, a higher team handball specific oxygen uptake and higher leg strength compared to sub-elite and non-elite players. Based on these results we recommend that training in team handball should focus on game based training methods to improve performance in specific agility, endurance and technique.

  4. Evaluation of exercise capacity after severe stroke using robotics-assisted treadmill exercise: a proof-of-concept study.

    PubMed

    Stoller, O; de Bruin, E D; Schindelholz, M; Schuster, C; de Bie, R A; Hunt, K J

    2013-01-01

    Robotics-assisted treadmill exercise (RATE) with focus on motor recovery has become popular in early post-stroke rehabilitation but low endurance for exercise is highly prevalent in these individuals. This study aimed to develop an exercise testing method using robotics-assisted treadmill exercise to evaluate aerobic capacity after severe stroke. Constant load testing (CLT) based on body weight support (BWS) control, and incremental exercise testing (IET) based on guidance force (GF) control were implemented during RATE. Analyses focussed on step change, step response kinetics, and peak performance parameters of oxygen uptake. Three subjects with severe motor impairment 16-23 days post-stroke were included. CLT yielded reasonable step change values in oxygen uptake, whereas response kinetics of oxygen uptake showed low goodness of fit. Peak performance parameters were not obtained during IET. Exercise testing in post-stroke individuals with severe motor impairments using a BWS control strategy for CLT is deemed feasible and safe. Our approach yielded reasonable results regarding cardiovascular performance parameters. IET based on GF control does not provoke peak cardiovascular performance due to uncoordinated walking patterns. GF control needs further development to optimally demand active participation during RATE. The findings warrant further research regarding the evaluation of exercise capacity after severe stroke.

  5. A 4-Week Intervention Involving Mobile-Based Daily 6-Minute Micro-Sessions of Functional High-Intensity Circuit Training Improves Strength and Quality of Life, but Not Cardio-Respiratory Fitness of Young Untrained Adults.

    PubMed

    Sperlich, Billy; Hahn, Lea-Sofie; Edel, Antonia; Behr, Tino; Helmprobst, Julian; Leppich, Robert; Wallmann-Sperlich, Birgit; Holmberg, Hans-Christer

    2018-01-01

    The present study was designed to assess the psycho-physiological responses of physically untrained individuals to mobile-based multi-stimulating, circuit-like, multiple-joint conditioning (Circuit HIIT ) performed either once (1xCircuit HIIT ) or twice (2xCircuit HIIT ) daily for 4 weeks. In this single-center, two-arm randomized, controlled study, 24 men and women (age: 25 ± 5 years) first received no training instructions for 4 weeks and then performed 4 weeks of either 1xCircuit HIIT or 2xCircuit HIIT (5 men and 7 women in each group) daily. The 1xCircuit HIIT and 2xCircuit HIIT participants carried out 90.7 and 85.7% of all planned training sessions, respectively, with average heart rates during the 6-min sessions of 74.3 and 70.8% of maximal heart rate. Body, fat and fat-free mass, and metabolic rate at rest did not differ between the groups or between time-points of measurement. Heart rate while running at 6 km⋅h -1 declined after the intervention in both groups. Submaximal and peak oxygen uptake, the respiratory exchange ratio and heart rate recovery were not altered by either intervention. The maximal numbers of push-ups, leg-levers, burpees, 45°-one-legged squats and 30-s skipping, as well as perception of general health improved in both groups. Our 1xCircuit HIIT or 2xCircuit HIIT interventions improved certain parameters of functional strength and certain dimensions of quality of life in young untrained individuals. However, they were not sufficient to enhance cardio-respiratory fitness, in particular peak oxygen uptake.

  6. Relationship between percentages of heart rate reserve and oxygen uptake reserve during cycling and running: a validation study.

    PubMed

    Guimarães, Giovanna C; Farinatti, Paulo T V; Midgley, Adrian W; Vasconcellos, Fabrício; Vigário, Patrícia; Cunha, Felipe A

    2017-06-22

    The present study investigated the relationship between percentages of heart rate reserve (%HRR) and oxygen uptake reserve (%VO2R) during a cardiopulmonary exercise test (CPET) and discrete bouts of isocaloric cycling and treadmill running. Thirty men visited the laboratory three times for anthropometrical and resting VO2 assessments, and perform cycling and running CPETs. Ten men visited the laboratory twice more to investigate the validity of the %HRR-%VO2R relationships during isocaloric bouts of cycling and running at 75% VO2R with energy expenditures of 400 kcals. The %HRR was significantly higher than the %VO2R during both CPETs at all exercise intensities (P < 0.001). During isocaloric exercise bouts, mean %HRR-%VO2R differences of 6.5% and 7.0% were observed for cycling and running, respectively (P = 0.007 to P < 0.001). The %HRR and %VO2R increased over time (P < 0.001), the rate of which was influenced by exercise modality (P < 0.001). On average, heart rate was 5 (P = 0.007) and 8 (P < 0.001) beats·min higher than predicted from the second energy expenditure quartile for cycling and running, respectively; however, observed VO2 was lower than predicted during all quartiles for cycling, and the first quartile for running. Consequently, time to achieve the target energy expenditure was greater than predicted (P < 0.01). In conclusion, the %HRR-%VO2R relationship observed during CPET data did not accurately transpose to prolonged isocaloric bouts of cycling and running. Additionally, power outputs and speeds defined by the ACSM equations for cycling and running, respectively, overestimated VO2 and energy expenditure.

  7. Peak leg muscle power, peak VO2 and its correlates with physical activity in 57 to 70-year-old women.

    PubMed

    Boussuge, P-Y; Rance, M; Bedu, M; Duche, P; Praagh, E Van

    2006-01-01

    The two aims of this study were first to measure short-term muscle power (STMP) by means of a cycling force-velocity test (cycling peak power: CPP) and a vertical jump test (jumping peak performance: JPP) and second, to examine the relationships between physical activity (PA) level, peak oxygen uptake (peak VO2) and STMP in healthy elderly women. Twenty-three independent community-dwelling elderly women (mean age: 64+/-4.4) performed on separate days, a peak oxygen uptake test on cycle ergometer, a cycling force-velocity test and a vertical jump test. A questionnaire (QUANTAP) was used to assess lifespan exercise habits. Four indices expressed in kJ day(-1) kg(-1) were calculated. Two indices represented average past PA level: 1/quantity of habitual physical activity (QHPA), 2/quantity of sports activities (QSA). Two indices represented the actual PA level: 3/actual quantity of habitual physical activity (AQHPA), 4/actual quantity of sports activities (AQSA). CPP (6.3+/-1.2 W kg(-1)) was closely correlated to JPP (14.8+/-3.4 cm) (r=0.80, P<0.001). AQHPA and AQSA were only positively associated with peak VO2 (ml min(-1) kg(-1)) (r=0.49; r=0.50, P<0.05, respectively). Past PA level was not related to fitness measurements. Results show that in this population: (1) jumping peak performance was closely related to CPP measured in the laboratory; (2) the cardio-respiratory fitness was related to the actual habitual physical activity level; (3) only age and anthropometric variables explained the actual performances in multivariate analysis.

  8. Can previously sedentary females use the feeling scale to regulate exercise intensity in a gym environment? an observational study.

    PubMed

    Hamlyn-Williams, Charlotte C; Tempest, Gavin; Coombs, Sarah; Parfitt, Gaynor

    2015-01-01

    Recent research suggests that the Feeling Scale (FS) can be used as a method of exercise intensity regulation to maintain a positive affective response during exercise. However, research to date has been carried out in laboratories and is not representative of natural exercise environments. The purpose of this study was to evaluate whether sedentary women can self-regulate their exercise intensity using the FS to experience positive affective responses in a gym environment using their own choice of exercise mode; cycling or treadmill. Fourteen females (24.9 years ± 5.2; height 166.7 ± 5.7 cm; mass 66.3 ± 13.4 kg; BMI 24.1 ± 5.5)) completed a submaximal exercise test and each individual's ventilatory threshold ([Formula: see text]) was identified. Following this, three 20 min gym-based exercise trials, either on a bike or treadmill were performed at an intensity that was self-selected and perceived to correspond to the FS value of +3 (good). Oxygen uptake, heart rate (HR) and ratings of perceived exertion (RPE) were measured during exercise at the participants chosen intensity. Results indicated that on average participants worked close to their [Formula: see text] and increased their exercise intensity during the 20-min session. Participants worked physiologically harder during cycling exercise. Consistency of oxygen uptake, HR and RPE across the exercise trials was high. The data indicate that previously sedentary women can use the FS in an ecological setting to regulate their exercise intensity and that regulating intensity to feel 'good' should lead to individuals exercising at an intensity that would result in cardiovascular gains if maintained.

  9. Model development and verification for mass transport to Escherichia coli cells in a turbulent flow

    NASA Astrophysics Data System (ADS)

    Hondzo, Miki; Al-Homoud, Amer

    2007-08-01

    Theoretical studies imply that fluid motion does not significantly increase the molecular diffusive mass flux toward and away from microscopic organisms. This study presents experimental and theoretical evidence that small-scale turbulence modulates enhanced mass transport to Escherichia coli cells in a turbulent flow. Using the technique of inner region and outer region expansions, a model for dissolved oxygen and glucose uptake by E. coli was developed. The mass transport to the E. coli was modeled by the Sherwood (Sh)-Péclet (Pe) number relationship with redefined characteristic length and velocity scales. The model Sh = (1 + Pe1/2 + Pe) agreed with the laboratory measurements well. The Péclet number that quantifies the role and function of small-scale turbulence on E. coli metabolism is defined by Pe = (?) where Ezz is the root mean square of fluid extension in the direction of local vorticity, ηK is the Kolmogorov length scale, Lc is the length scale of E. coli, and D is the molecular diffusion coefficient. An alternative formulation for the redefined Pe is given by Pe = (?) where ? = 0.5(ɛν)1/4 is the Kolmogorov velocity averaged over the Kolmogorov length scale, ɛ is dissipation of turbulent kinetic energy, and ν is the kinematic viscosity of fluid. The dissipation of turbulent kinetic energy was estimated directly from measured velocity gradients and was within the reported range in engineered and natural aquatic ecosytems. The specific growth of E. coli was up to 5 times larger in a turbulent flow in comparison to the still water controls. Dissolved oxygen and glucose uptake were enhanced with increased ɛ in the turbulent flow.

  10. Plyometric exercise combined with high-intensity interval training improves metabolic abnormalities in young obese females more so than interval training alone.

    PubMed

    Racil, Ghazi; Zouhal, Hassane; Elmontassar, Wassim; Ben Abderrahmane, Abderraouf; De Sousa, Maysa Vieira; Chamari, Karim; Amri, Mohamed; Coquart, Jeremy B

    2016-01-01

    The aim of this study was to compare the effects of 12 weeks of high-intensity interval training (HIIT) with the effects of 12 weeks of plyometric exercise combined with HIIT (P+HIIT) on anthropometric, biochemical, and physical fitness data in young obese females. Sixty-eight participants (age, 16.6 ± 1.3 y; body mass, 82.8 ± 5.0 kg; body fat, 39.4% ± 3.3%; body mass index z score, 2.9 ± 0.4) were assigned to 1 of 3 groups: HIIT (2 blocks per session of 6-8 bouts of 30-s runs at 100% velocity at peak oxygen uptake, with 30-s active recovery between bouts at 50%velocity at peak oxygen uptake (n = 23)); P+HIIT (2 blocks per session of 3 different 15-s plyometric exercises with 15-s passive recoveries, totaling 2 min for each plyometric exercise + the same HIIT program (n = 26)); or control (no exercise (n = 19)). Anthropometric (body mass, body mass index z score, body fat, lean body mass, and waist circumference), biochemical (plasma glucose, insulin, leptin and adiponectin concentrations, leptin/adiponectin ratio, and homeostasis model assessment of insulin resistance (HOMA-IR)), physical fitness (peak oxygen uptake, velocity at peak oxygen uptake, squat jump, and countermovement jump performances), and energy intake data were collected. Both training programs improved the anthropometric, biochemical, and physical fitness variables. However, the P+HIIT program induced greater improvements than did the HIIT program in lean body mass (+3.0% ± 1.7%), plasma glucose and leptin concentrations (-11.0% ± 4.7% and -23.8% ± 5.8%, respectively), plasma leptin/adiponectin ratio (-40.9% ± 10.9%), HOMA-IR (-37.3% ± 6.2%), and squat jump performance (22.2% ± 7.5%). Taken together, these findings suggest that adding plyometric exercises to a HIIT program may be more beneficial than HIIT alone in obese female adolescents.

  11. Negative impacts of elevated nitrate on physiological performance are not exacerbated by low pH.

    PubMed

    Gomez Isaza, Daniel F; Cramp, Rebecca L; Franklin, Craig E

    2018-05-15

    Multiple environmental stressors, including nutrient effluents (i.e. nitrates [NO 3 - ]) and altered pH regimes, influence the persistence of freshwater species in anthropogenically disturbed habitats. Independently, nitrate and low pH affect energy allocation by increasing maintenance costs and disrupting oxygen uptake, which ultimately results in impacts upon whole animal performance. However, the interaction between these two stressors has not been characterised. To address this, the effects of nitrate and pH and their interaction on aerobic scope and physiological performance were investigated in the blueclaw crayfish, Cherax destructor. Crayfish were exposed to a 2 × 3 factorial combination, with two pH levels (pH 5.0 and 7.0) and three nitrate concentrations (0, 50 and 100 mg L -1 NO 3 - ). Crayfish were exposed to experimental conditions for 65 days and growth and survival were monitored. Aerobic scope (i.e. maximal - standard oxygen uptake) was measured at six time points (1, 3, 5, 7, 14, and 21 days) during exposure to experimental treatments. Crayfish performance was assessed after 28 days, by measuring chelae strength and whole animal activity capacity via the righting response. Survival was reduced in crayfish exposed to pH 5.0, but there was no exacerbation of this effect by exposure to high nitrate levels. Aerobic scope was compromised by the interaction between low pH and nitrate and resulted in prolonged elevations of standard oxygen uptake rates. Exposure to nitrate alone affected aerobic scope, causing a 59% reduction in maximum oxygen uptake. Reduced aerobic capacity translated to reduced chelae strength and righting capacity. Together, these data show that low pH and elevated nitrate levels reduce aerobic scope and translate to poorer performance in C. destructor, which may have the potential to affect organismal fitness in disturbed habitats. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Effects of macro- and micronutrients on exercise-induced hepcidin response in highly trained endurance athletes.

    PubMed

    Dahlquist, Dylan T; Stellingwerff, Trent; Dieter, Brad P; McKenzie, Donald C; Koehle, Michael S

    2017-10-01

    Iron deficiency has ergolytic effects on athletic performance. Exercise-induced inflammation impedes iron absorption in the digestive tract by upregulating the expression of the iron regulatory protein, hepcidin. Limited research indicates the potential of specific macro- and micronutrients on blunting exercise-induced hepcidin. Therefore, we investigated the effects of postexercise supplementation with protein and carbohydrate (CHO) and vitamins D 3 and K 2 on the postexercise hepcidin response. Ten highly trained male cyclists (age: 26.9 ± 6.4 years; maximal oxygen uptake: 67.4 ± 4.4 mL·kg -1 ·min -1 completed 4 cycling sessions in a randomized, placebo-controlled, single-blinded, triple-crossover study. Experimental days consisted of an 8-min warm-up at 50% power output at maximal oxygen uptake, followed by 8 × 3-min intervals at 85% power output at maximal oxygen uptake with 1.5 min at 60% power output at maximal oxygen uptake between each interval. Blood samples were collected pre- and postexercise, and at 3 h postexercise. Three different drinks consisting of CHO (75 g) and protein (25 g) with (VPRO) or without (PRO) vitamins D 3 (5000 IU) and K 2 (1000 μg), or a zero-calorie control drink (PLA) were consumed immediately after the postexercise blood sample. Results showed that the postexercise drinks had no significant (p ≥ 0.05) effect on any biomarker measured. There was a significant (p < 0.05) increase in hepcidin and interleukin-6 following intense cycling intervals in the participants. Hepcidin increased significantly (p < 0.05) from baseline (nmol·L -1 : 9.94 ± 8.93, 14.18 ± 14.90, 10.44 ± 14.62) to 3 h postexercise (nmol·L -1 : 22.27 ± 13.41, 25.44 ± 11.91, 22.57 ± 15.57) in VPRO, PRO, and PLA, respectively. Contrary to our hypothesis, the drink compositions used did not blunt the postexercise hepcidin response in highly trained athletes.

  13. Response time of mitochondrial oxygen consumption following stepwise changes in cardiac energy demand.

    PubMed

    van Beek, J H; Westerhof, N

    1990-01-01

    We determined the speed with which mitochondrial oxygen consumption and therefore the mitochondrial ATP-synthesis adapted to changes in metabolic demand in the rabbit heart. This was done by measuring the oxygen uptake of the whole heart during a stepwise change in heart rate and correcting for the time taken by diffusion and by convective transport in the blood vessels. Data for the correction for transport time were obtained from the response of venous oxygen concentration to a stepwise change of arterial oxygen concentration. The time constant of the response of mitochondrial oxygen consumption to a step change in heart rate was found to be 4-8 s.

  14. Dynamic regulation of erythropoiesis: A computer model of general applicability

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1979-01-01

    A mathematical model for the control of erythropoiesis was developed based on the balance between oxygen supply and demand at a renal oxygen detector which controls erythropoietin release and red cell production. Feedback regulation of tissue oxygen tension is accomplished by adjustments of hemoglobin levels resulting from the output of a renal-bone marrow controller. Special consideration was given to the determinants of tissue oxygenation including evaluation of the influence of blood flow, capillary diffusivity, oxygen uptake and oxygen-hemoglobin affinity. A theoretical analysis of the overall control system is presented. Computer simulations of altitude hypoxia, red cell infusion hyperoxia, and homolytic anemia demonstrate validity of the model for general human application in health and disease.

  15. Real-time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device.

    PubMed

    Super, Alexandre; Jaccard, Nicolas; Cardoso Marques, Marco Paulo; Macown, Rhys Jarred; Griffin, Lewis Donald; Veraitch, Farlan Singh; Szita, Nicolas

    2016-09-01

    Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real-time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time-course data for bulk and peri-cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non-invasive and label-free approach. Additionally, we confirmed non-invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell(-1) s(-1) , and 5 and 35 amol cell(-1) s(-1) were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non-invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell-based therapies. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Role of macrofauna on benthic oxygen consumption in sandy sediments of a high-energy tidal beach

    NASA Astrophysics Data System (ADS)

    Charbonnier, Céline; Lavesque, Nicolas; Anschutz, Pierre; Bachelet, Guy; Lecroart, Pascal

    2016-06-01

    Sandy beaches exposed to tide and waves are characterized by low abundance and diversity of benthic macrofauna, because of high-energy conditions. This is the reason why there are few studies on benthic communities living in such highly dynamic environments. It has been shown recently that tidal sandy beaches may act as biogeochemical reactors. Marine organic matter that is supplied in the sand during each flood tide is efficiently mineralized through aerobic respiration. In order to quantify the role of macrofauna in the whole beach benthic respiration, we studied the macrofauna and the pore water oxygen content of an exposed sandy beach (Truc Vert, SW of France) during four seasons in 2011. The results showed that macrofauna was characterised by a low number of species of specialized organisms such as the crustaceans Eurydice naylori and Gastrosaccus spp. and the polychaetes Ophelia bicornis and Scolelepis squamata. The distribution and abundance of macrofauna were clearly affected by exposure degree and emersion time. The combined monitoring of benthic macrofauna and pore waters chemistry allowed us to estimate (1) the macrofauna oxygen uptake, calculated with a standard allometric relationship using biomass data, and (2) the total benthic oxygen uptake, calculated from the oxygen deficit measured in pore waters. This revealed that benthic macrofauna respiration represented a variable but low (<10%) contribution to the total benthic oxygen consumption. This suggests that oxygen was mainly consumed by microbial respiration.

  17. Tungsten Speciation in Firing Range Soils

    DTIC Science & Technology

    2011-01-01

    R. A. A. Suurs, O . Oenema , and W. H. van Riemsdijk. 2004. Phosphorus availability for plant uptake in a phosphorus enriched noncalcareous sandy soil...heteroatom (most commonly P5+, Si4+, or B3+), M is the addenda atom (most common are molybdenum and tungsten), and O represents oxygen. The structure self...coordination to four oxygen atoms. The EXAFS spectrum of tungstate is dominated by os- cillations attributed to tungsten-oxygen (W- O ) bonding (Fig. 4), and to

  18. Influence of stroke volume and exercise tolerance on peak oxygen pulse in patients with and without beta-adrenergic receptor blockers in patients with heart disease.

    PubMed

    Murata, Makoto; Adachi, Hitoshi; Oshima, Shigeru; Kurabayashi, Masahiko

    2017-01-01

    In a given individual, a consistent relationship exists between oxygen uptake (V˙O 2 ) and heart rate (HR) during exercise. The quotient of V˙O 2 and HR (V˙O 2 /HR) is called the oxygen pulse (O 2 pulse), and its value is dependent on stroke volume (SV). However, it is difficult to believe that the O 2 pulse would indicate the SV when HR has been modified as with the use of beta-adrenergic receptor blockers (BB). Until now, the effect of BB on peak O 2 pulse has not been precisely studied. We tried to clarify the effect of BB on the relationship between O 2 pulse and SV. Of 699 consecutive heart disease subjects who performed cardiopulmonary exercise tests (CPX) from 2012 to 2014, we enrolled 430 subjects who had sinus rhythm and could perform CPX until exhaustion. One hundred and fifty-seven subjects were taking BB. SV was evaluated during CPX using impedance cardiography, and we compared the peak O 2 pulse with peak SV between patients without BB (Group A) and with BB (Group B). The HRs at rest and peak exercise in Group A were greater than those in Group B (74.4±13.0/min vs. 71.8±11.3/min, p<0.01, 134.9±21.7/min vs. 124.9±23.6/min, p<0.01, respectively). The regression line of the peak O 2 pulse against the peak SV was steeper in Group B than in Group A. When we divided the patients into two groups according to the average values of the peak SV and peak V˙O 2 , O 2 pulse/SV ratio in Group B above the average was greater than that in Group A, whereas it was similar in the two groups that were below average. We found that the increase in the O 2 pulse was disproportionately greater than the SV that was measured by impedance cardiography when a BB was used in patients with preserved SV and exercise tolerance. Copyright © 2016. Published by Elsevier Ltd.

  19. Exercise training promotes cardioprotection through oxygen-sparing action in high fat-fed mice.

    PubMed

    Lund, J; Hafstad, A D; Boardman, N T; Rossvoll, L; Rolim, N P; Ahmed, M S; Florholmen, G; Attramadal, H; Wisløff, U; Larsen, T S; Aasum, E

    2015-04-15

    Although exercise training has been demonstrated to have beneficial cardiovascular effects in diabetes, the effect of exercise training on hearts from obese/diabetic models is unclear. In the present study, mice were fed a high-fat diet, which led to obesity, reduced aerobic capacity, development of mild diastolic dysfunction, and impaired glucose tolerance. Following 8 wk on high-fat diet, mice were assigned to 5 weekly high-intensity interval training (HIT) sessions (10 × 4 min at 85-90% of maximum oxygen uptake) or remained sedentary for the next 10 constitutive weeks. HIT increased maximum oxygen uptake by 13%, reduced body weight by 16%, and improved systemic glucose homeostasis. Exercise training was found to normalize diastolic function, attenuate diet-induced changes in myocardial substrate utilization, and dampen cardiac reactive oxygen species content and fibrosis. These changes were accompanied by normalization of obesity-related impairment of mechanical efficiency due to a decrease in work-independent myocardial oxygen consumption. Finally, we found HIT to reduce infarct size by 47% in ex vivo hearts subjected to ischemia-reperfusion. This study therefore demonstrated for the first time that exercise training mediates cardioprotection following ischemia in diet-induced obese mice and that this was associated with oxygen-sparing effects. These findings highlight the importance of optimal myocardial energetics during ischemic stress. Copyright © 2015 the American Physiological Society.

  20. Gill remodelling during terrestrial acclimation reduces aquatic respiratory function of the amphibious fish Kryptolebias marmoratus.

    PubMed

    Turko, Andy J; Cooper, Chris A; Wright, Patricia A

    2012-11-15

    The skin-breathing amphibious fish Kryptolebias marmoratus experiences rapid environmental changes when moving between water- and air-breathing, but remodelling of respiratory morphology is slower (~1 week). We tested the hypotheses that (1) there is a trade-off in respiratory function of gills displaying aquatic versus terrestrial morphologies and (2) rapidly increased gill ventilation is a mechanism to compensate for reduced aquatic respiratory function. Gill surface area, which varied inversely to the height of the interlamellar cell mass, was increased by acclimating fish for 1 week to air or low ion water, or decreased by acclimating fish for 1 week to hypoxia (~20% dissolved oxygen saturation). Fish were subsequently challenged with acute hypoxia, and gill ventilation or oxygen uptake was measured. Fish with reduced gill surface area increased ventilation at higher dissolved oxygen levels, showed an increased critical partial pressure of oxygen and suffered impaired recovery compared with brackish water control fish. These results indicate that hyperventilation, a rapid compensatory mechanism, was only able to maintain oxygen uptake during moderate hypoxia in fish that had remodelled their gills for land. Thus, fish moving between aquatic and terrestrial habitats may benefit from cutaneously breathing oxygen-rich air, but upon return to water must compensate for a less efficient branchial morphology (mild hypoxia) or suffer impaired respiratory function (severe hypoxia).

  1. Mechanisms That Modulate Peripheral Oxygen Delivery during Exercise in Heart Failure.

    PubMed

    Kisaka, Tomohiko; Stringer, William W; Koike, Akira; Agostoni, Piergiuseppe; Wasserman, Karlman

    2017-07-01

    Oxygen uptake ([Formula: see text]o 2 ) measured at the mouth, which is equal to the cardiac output (CO) times the arterial-venous oxygen content difference [C(a-v)O 2 ], increases more than 10- to 20-fold in normal subjects during exercise. To achieve this substantial increase in oxygen uptake [[Formula: see text]o 2  = CO × C(a-v)O 2 ] both CO and the arterial-venous difference must simultaneously increase. Although this occurs in normal subjects, patients with heart failure cannot achieve significant increases in cardiac output and must rely primarily on changes in the arterial-venous difference to increase [Formula: see text]o 2 during exercise. Inadequate oxygen delivery to the tissue during exercise in heart failure results in tissue anaerobiosis, lactic acid accumulation, and reduction in exercise tolerance. H + is an important regulatory and feedback mechanism to facilitate additional oxygen delivery to the tissue (Bohr effect) and further aerobic production of ATP when tissue anaerobic metabolism increases the production of lactate (anaerobic threshold). This H + production in the muscle capillary promotes the continued unloading of oxygen (oxyhemoglobin desaturation) while maintaining the muscle capillary Po 2 (Fick principle) at a sufficient level to facilitate aerobic metabolism and overcome the diffusion barriers from capillary to mitochondria ("critical capillary Po 2 ," 15-20 mm Hg). This mechanism is especially important during exercise in heart failure where cardiac output increase is severely constrained. Several compensatory mechanisms facilitate peripheral oxygen delivery during exercise in both normal persons and patients with heart failure.

  2. Singlet oxygen in the coupled photochemical and biochemical oxidation of dissolved organic matter.

    PubMed

    Cory, Rose M; McNeill, Kristopher; Cotner, James P; Amado, Andre; Purcell, Jeremiah M; Marshall, Alan G

    2010-05-15

    Dissolved organic matter (DOM) is a significant (>700 Pg) global C pool. Transport of terrestrial DOM to the inland waters and coastal zones represents the largest flux of reduced C from land to water (215 Tg yr(-1)) (Meybeck, M. Am. J. Sci. 1983, 282, 401-450). Oxidation of DOM by interdependent photochemical and biochemical processes largely controls the fate of DOM entering surface waters. Reactive oxygen species (ROS) have been hypothesized to play a significant role in the photooxidation of DOM, because they may oxidize the fraction of DOM that is inaccessible to direct photochemical degradation by sunlight. We followed the effects of photochemically produced singlet oxygen ((1)O(2)) on DOM by mass spectrometry with (18)O-labeled oxygen, to understand how (1)O(2)-mediated transformations of DOM may lead to altered DOM bioavailability. The photochemical oxygen uptake by DOM attributed to (1)O(2) increased with DOM concentration, yet it remained a minority contributor to photochemical oxygen uptake even at very high DOM concentrations. When DOM samples were exposed to (1)O(2)-generating conditions (Rose Bengal and visible light), increases were observed in DOM constituents with higher oxygen content and release of H(2)O(2) was detected. Differential effects of H(2)O(2) and (1)O(2)-treated DOM showed that (1)O(2)-treated DOM led to slower bacterial growth rates relative to unmodified DOM. Results of this study suggested that the net effect of the reactions between singlet oxygen and DOM may be production of partially oxidized substrates with correspondingly lower potential biological energy yield.

  3. Organic and inorganic nitrogen uptake by 21 dominant tree species in temperate and tropical forests.

    PubMed

    Liu, Min; Li, Changcheng; Xu, Xingliang; Wanek, Wolfgang; Jiang, Ning; Wang, Huimin; Yang, Xiaodong

    2017-11-01

    Evidence shows that many tree species can take up organic nitrogen (N) in the form of free amino acids from soils, but few studies have been conducted to compare organic and inorganic N uptake patterns in temperate and tropical tree species in relation to mycorrhizal status and successional state. We labeled intact tree roots by brief 15N exposures using field hydroponic experiments in a temperate forest and a tropical forest in China. A total of 21 dominant tree species were investigated, 8 in the temperate forest and 13 in the tropical forest. All investigated tree species showed highest uptake rates for NH4+ (ammonium), followed by glycine and NO3- (nitrate). Uptake of NH4+ by temperate trees averaged 12.8 μg N g-1 dry weight (d.w.) root h-1, while those by tropical trees averaged 6.8 μg N g-1 d.w. root h-1. Glycine uptake rates averaged 3.1 μg N g-1 d.w. root h-1 for temperate trees and 2.4 μg N g-1 d.w. root h-1 for tropical trees. NO3- uptake was the lowest (averaging 0.8 μg N g-1 d.w. root h-1 for temperate trees and 1.2 μg N g-1 d.w. root h-1 for tropical trees). Uptake of NH4+ accounted for 76% of the total uptake of all three N forms in the temperate forest and 64% in the tropical forest. Temperate tree species had similar glycine uptake rates as tropical trees, with the contribution being slightly lower (20% in the temperate forest and 23% in the tropical forest). All tree species investigated in the temperate forest were ectomycorrhizal and all species but one in the tropical forest were arbuscular mycorrhizal (AM). Ectomycorrhizal trees showed significantly higher NH4+ and lower NO3- uptake rates than AM trees. Mycorrhizal colonization rates significantly affected uptake rates and contributions of NO3- or NH4+, but depended on forest types. We conclude that tree species in both temperate and tropical forests preferred to take up NH4+, with organic N as the second most important N source. These findings suggest that temperate and tropical forests demonstrate similar N uptake patterns although they differ in physiology of trees and soil biogeochemical processes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Energy cost of the Trondheim firefighter test for experienced firefighters.

    PubMed

    von Heimburg, Erna; Medbø, Jon Ingulf

    2013-01-01

    The aim of this study was to measure aerobic demands of fire fighting activities including exercise in the heat. Twenty-two experienced firefighters performed the Trondheim test simulating fire fighting tasks including work in the heat. Maximal oxygen uptake (VO2 max), heart rate (HR) and ventilation were recorded continuously. Data were compared with results obtained during a treadmill test during which the participants were dressed as smoke divers. The participants completed physical parts of the Trondheim test in ˜12 min (range: 7.5-17.4). Time to complete the test was closely related to the participant's VO2 max. HR of ˜170 beats/min and pulmonary ventilation of ˜100 L/min were higher than at lactate threshold (LT) during laboratory tests. VO2 averaged over the test's physical part was 35 ± 7 ml/min/kg, which was at the same or below the level corresponding to the participants' LT. Physically fit participants completed the test faster than less fit participants. Slower and physically less fit participants consumed more air and used more oxygen than faster and physically more fit participants. The Trondheim test is physically demanding; it distinguishes physically fit and less fit participants.

  5. Phytoplankton productivity, respiration, and nutrient uptake and regeneration in the Potomac River, August 1977 - August 1978

    USGS Publications Warehouse

    Cole, B.E.; Harmon, D.D.

    1981-01-01

    Rates of phytoplankton productivity, respiration, and nutrient uptake and regeneration are presented. These observations were made on the Potomac River estuary (POTE) during four cruises between August 1977 and August 1978. Four experimental methods were used: carbon uptake using carbon-14, carbon uptake and respiration by a pH method, productivity and respiration by the dissolved oxygen method, and nutrient (NH4+, NO3-, NO2-, PO4=, and SiO2=) uptake and regeneration by colorimetry. The experiments were made at sites representative of conditions in four principal reaches of the tidal Potomac River estuary: near the mouth, seaward of the summer nutrient and phytoplankton maximum, near the region of maximum phytoplankton standing stock , and near the maximum anthropogenic nutrient source. (USGS)

  6. Biological Oxygen Demand in Soils and Litters

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.; Smagina, M. V.; Sadovnikova, N. B.

    2018-03-01

    Biological oxygen demand (BOD) in mineral and organic horizons of soddy-podzolic soils in the forest-park belt of Moscow as an indicator of their microbial respiration and potential biodestruction function has been studied. The BOD of soil samples has been estimated with a portable electrochemical analyzer after incubation in closed flasks under optimum hydrothermal conditions. A universal gradation scale of this parameter from very low (<2 g O2/(m3 h)) to extremely high (>140 g O2/(m3 h)) has been proposed for mineral and organic horizons of soil. A physically substantiated model has been developed for the vertical distribution of BOD in the soil, which combines the diffusion transport of oxygen from the atmosphere and its biogenic uptake in the soil by the first-order reaction. An analytical solution of the model in the stationary state has been obtained; from it, the soil oxygen diffusivity and the kinetic constants of O2 uptake have been estimated, and the profile-integrated total BOD value has been calculated (0.4-1.8 g O2/(m2 h)), which is theoretically identical to the potential oxygen flux from the soil surface due to soil respiration. All model parameters reflect the recreation load on the soil cover by the decrease in their values against the control.

  7. Influence of powdered activated carbon addition on water quality, sludge properties, and microbial characteristics in the biological treatment of commingled industrial wastewater.

    PubMed

    Hu, Qing-Yuan; Li, Meng; Wang, Can; Ji, Min

    2015-09-15

    A powdered activated carbon-activated sludge (PAC-AS) system, a traditional activated sludge (AS) system, and a powdered activated carbon (PAC) system were operated to examine the insights into the influence of PAC addition on biological treatment. The average COD removal efficiencies of the PAC-AS system (39%) were nearly double that of the AS system (20%). Compared with the average efficiencies of the PAC system (7%), COD removal by biodegradation in the PAC-AS system was remarkably higher than that in the AS system. The analysis of the influence of PAC on water quality and sludge properties showed that PAC facilitated the removal of hydrophobic matter and metabolic acidic products, and also enhanced the biomass accumulation, sludge settleability, and specific oxygen uptake rate inside the biological system. The microbial community structures in the PAC-AS and AS systems were monitored. The results showed that the average well color development in the PAC-AS system was higher than that in the AS system. The utilization of various substrates by microorganisms in the two systems did not differ. The dissimilarity index was far less than one; thus, showing that the microbial community structures of the two systems were the same. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Gill structural change in response to turbidity has no effect on the oxygen uptake of a juvenile sparid fish.

    PubMed

    Cumming, H; Herbert, N A

    2016-01-01

    Turbidity as a result of increased suspended sediments in coastal waters is an environmental stress of worldwide concern. Recent research on fish suggests that detrimental changes to gill structure can occur in turbid waters, with speculation that these alterations diminish fitness variables, such as growth and development, by negatively impacting the O 2 uptake capacity (respiration) of fish. Specifically to address this unknown, the impact of turbid water on the gill structure, somatic growth rate and O 2 uptake rates of a juvenile sparid species ( Pagrus auratus ) was addressed following exposure to five different turbidity treatments (<10, 20, 40, 60 or 80 nephelometric turbidity units) for 30 days. Significant gill structural change was apparent with a progressive increase in turbidity and was quantified as a reduction in lamellar density, as well as an increase in basal hyperplasia, epithelial lifting and increased oxygen diffusion distance across the lamellae. The weight of control fish did not change throughout the experiment, but all fish exposed to turbid waters lost weight, and weight loss increased with nephelometric turbidity units, confirming that long-term turbidity exposure is detrimental to growth productivity. The growth of fish could be impacted in a variety of ways, but the specific hypothesis that structural alteration of the gills impairs O 2 uptake across the gills and limits growth fitness was not supported because there was no measurable difference in the standard metabolic rate, maximal metabolic rate, aerobic metabolic scope or critical oxygen saturation limit of fish measured in clear water after 30 days of exposure. Although impaired O 2 uptake as a result of structurally adjusted gills is unlikely to be the cause of poor fish growth, the exact mechanism by which growth productivity is affected in turbid conditions remains unclear and warrants further investigation.

  9. Gill structural change in response to turbidity has no effect on the oxygen uptake of a juvenile sparid fish

    PubMed Central

    Cumming, H.; Herbert, N. A.

    2016-01-01

    Turbidity as a result of increased suspended sediments in coastal waters is an environmental stress of worldwide concern. Recent research on fish suggests that detrimental changes to gill structure can occur in turbid waters, with speculation that these alterations diminish fitness variables, such as growth and development, by negatively impacting the O2 uptake capacity (respiration) of fish. Specifically to address this unknown, the impact of turbid water on the gill structure, somatic growth rate and O2 uptake rates of a juvenile sparid species (Pagrus auratus) was addressed following exposure to five different turbidity treatments (<10, 20, 40, 60 or 80 nephelometric turbidity units) for 30 days. Significant gill structural change was apparent with a progressive increase in turbidity and was quantified as a reduction in lamellar density, as well as an increase in basal hyperplasia, epithelial lifting and increased oxygen diffusion distance across the lamellae. The weight of control fish did not change throughout the experiment, but all fish exposed to turbid waters lost weight, and weight loss increased with nephelometric turbidity units, confirming that long-term turbidity exposure is detrimental to growth productivity. The growth of fish could be impacted in a variety of ways, but the specific hypothesis that structural alteration of the gills impairs O2 uptake across the gills and limits growth fitness was not supported because there was no measurable difference in the standard metabolic rate, maximal metabolic rate, aerobic metabolic scope or critical oxygen saturation limit of fish measured in clear water after 30 days of exposure. Although impaired O2 uptake as a result of structurally adjusted gills is unlikely to be the cause of poor fish growth, the exact mechanism by which growth productivity is affected in turbid conditions remains unclear and warrants further investigation. PMID:27766155

  10. Two-photon oxygen nanosensors based on a conjugated fluorescent polymer doped with platinum porphyrins.

    PubMed

    Wang, Xiao-Hui; Peng, Hong-Shang; Cheng, Kun; Liu, Xiao-Ming; Liu, Yuan-An; Yang, Wei

    2018-04-27

    Ratiometric fluorescent nanoparticles (NPs) under two-photon excitation are successfully developed for sensing dissolved oxygen. The NPs comprise the oxygen probe Pt(II)-porphyrins (PtTFPP) and fluorescent organic semiconducting polymer (PFO). PFO polymer acts as both a two-photon antenna and a reference dye, while PtTFPP absorbs the photonic energy transferred by the PFO under two-photon excitation at 740 nm to sense oxygen. The red fluorescence of PtTFPP is sensitive to oxygen with a quenching response of 88% from nitrogen saturation to oxygen saturation, and PFO gives oxygen-insensitive referenced blue fluorescence. The fluorescence quenching of the NPs against oxygen at two-photon excitation follows a linear Stern-Volmer behavior. The nanosensors exhibit low cytotoxic effects as well as effortless cellular uptake. When incorporated into cells, the ratio of the signals increases up to about 500% from oxygen-saturated to oxygen-free environment.

  11. A geographical and seasonal comparison of nitrogen uptake by phytoplankton in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Philibert, R.; Waldron, H.; Clark, D.

    2015-03-01

    The impact of light and nutrients (such as silicate and iron) availability on nitrogen uptake and primary production vary seasonally and regionally in the Southern Ocean. The seasonal cycle of nitrogen uptake by phytoplankton in the Southern Ocean is not fully resolved over an annual scale due to the lack of winter in situ measurements. In this study, nitrate and ammonium uptake rates were measured using 15N tracers during a winter cruise in July 2012 and a summer cruise in February-March 2013. The winter cruise consisted of two legs: leg 1 extended from Cape Town to the ice margin along the GoodHope line and leg 2 stretched from the ice margin to Marion Island. The summer cruise was mostly focused on the subantarctic zone of the Atlantic sector. In winter, nitrogen uptake rates were measured at 55 and 1% of the surface photosynthetically active radiation (sPAR). The summer uptake rates were measured at four light depths corresponding to 55, 30, 10 and 3% sPAR. The integrated nitrate uptake rates during the winter cruise ranged from 0.17 to 5.20 mmol N m-2 d-1 (average 1.14 mmol N m-2 d-1) while the ammonium uptake rates ranged from 0.60 to 32.86 mmol N m-2 d-1 (average 6.73 mmol N m-2 d-1). During the summer cruise, the mean-integrated nitrate uptake rate was 0.20 mmol N m-2 d-1 with a range between 0.10 and 0.38 mmol N m-2 d-1. The integrated ammonium uptake rate averaged 4.39 mmol N m-2 d-1 and ranged from 1.12 to 9.05 mmol N m-2 d-1. The factors controlling nitrogen uptake in winter and summer were investigated. During the winter cruise, it was found that the different nitrogen uptake regimes were not separated by the fronts of the Antarctic Circumpolar Current (ACC). Light (in terms of day length) and ammonium concentration had the most influence on the nitrogen uptake. In the summer, increases in the mixed layer depth (MLD) resulted in increased nitrogen uptake rates. This suggests that the increases in the MLD could be alleviating nutrient limitations experienced by the phytoplankton at the end of summer.

  12. Morphological respiratory diffusion capacity of the lungs of ball pythons (Python regius).

    PubMed

    Starck, J Matthias; Aupperle, Heike; Kiefer, Ingmar; Weimer, Isabel; Krautwald-Junghanns, Maria-Elisabeth; Pees, Michael

    2012-08-01

    This study aims at a functional and morphological characterization of the lung of a boid snake. In particular, we were interested to see if the python's lungs are designed with excess capacity as compared to resting and working oxygen demands. Therefore, the morphological respiratory diffusion capacity of ball pythons (Python regius) was examined following a stereological, hierarchically nested approach. The volume of the respiratory exchange tissue was determined using computed tomography. Tissue compartments were quantified using stereological methods on light microscopic images. The tissue diffusion barrier for oxygen transport was characterized and measured using transmission electron micrographs. We found a significant negative correlation between body mass and the volume of respiratory tissue; the lungs of larger snakes had relatively less respiratory tissue. Therefore, mass-specific respiratory tissue was calculated to exclude effects of body mass. The volume of the lung that contains parenchyma was 11.9±5.0mm(3)g(-1). The volume fraction, i.e., the actual pulmonary exchange tissue per lung parenchyma, was 63.22±7.3%; the total respiratory surface was, on average, 0.214±0.129m(2); it was significantly negatively correlated to body mass, with larger snakes having proportionally smaller respiratory surfaces. For the air-blood barrier, a harmonic mean of 0.78±0.05μm was found, with the epithelial layer representing the thickest part of the barrier. Based on these findings, a median diffusion capacity of the tissue barrier ( [Formula: see text] ) of 0.69±0.38ml O(2)min(-1)mmHg(-1) was calculated. Based on published values for blood oxygen concentration, a total oxygen uptake capacity of 61.16mlO(2)min(-1)kg(-1) can be assumed. This value exceeds the maximum demand for oxygen in ball pythons by a factor of 12. We conclude that healthy individuals of P. regius possess a considerable spare capacity for tissue oxygen exchange. Copyright © 2012 Elsevier GmbH. All rights reserved.

  13. Poor Aeration Curtails Slash Pine Root Growth and Nutrient Uptake

    Treesearch

    Eugene Shoulders

    1976-01-01

    Slash pine may absorb nutrients and water best in spring and early summer because soil moisture, soil aeration, and temperature are apparently optimum at this time. One-year-old slash pine seedlings maintained at a high oxygen level grew about 1% times as many roots as were produced at a low oxygen level. No other environmental conditions significantly influenced root...

  14. Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: adhesion, uptake, and toxicity.

    PubMed

    Zhao, Jian; Cao, Xuesong; Liu, Xiaoyu; Wang, Zhenyu; Zhang, Chenchen; White, Jason C; Xing, Baoshan

    2016-11-01

    The potential adverse effects of CuO nanoparticles (NPs) have increasingly attracted attention. Combining electron microscopic and toxicological investigations, we determined the adhesion, uptake, and toxicity of CuO NPs to eukaryotic alga Chlorella pyrenoidosa. CuO NPs were toxic to C. pyrenoidosa, with a 72 h EC50 of 45.7 mg/L. Scanning electron microscopy showed that CuO NPs were attached onto the surface of the algal cells and interacted with extracellular polymeric substances (EPS) excreted by the organisms. Transmission electron microscopy (TEM) showed that EPS layer of algae was thickened by nearly 4-fold after CuO NPs exposure, suggesting a possible protective mechanism. In spite of the thickening of EPS layer, CuO NPs were still internalized by endocytosis and were stored in algal vacuoles. TEM and electron diffraction analysis confirmed that the internalized CuO NPs were transformed to Cu2O NPs (d-spacing, ∼0.213 nm) with an average size approximately 5 nm. The toxicity investigation demonstrated that severe membrane damage was observed after attachment of CuO NPs with algae. Reactive oxygen species generation and mitochondrial depolarization were also noted upon exposure to CuO NPs. This work provides useful information on understanding the role of NPs-algae physical interactions in nanotoxicity.

  15. Cystine uptake through the cystine/glutamate antiporter xCT triggers glioblastoma cell death under glucose deprivation.

    PubMed

    Goji, Takeo; Takahara, Kazuhiko; Negishi, Manabu; Katoh, Hironori

    2017-12-01

    Oncogenic signaling in cancer cells alters glucose uptake and utilization to supply sufficient energy and biosynthetic intermediates for survival and sustained proliferation. Oncogenic signaling also prevents oxidative stress and cell death caused by increased production of reactive oxygen species. However, elevated glucose metabolism in cancer cells, especially in glioblastoma, results in the cells becoming sensitive to glucose deprivation ( i.e. in high glucose dependence), which rapidly induces cell death. However, the precise mechanism of this type of cell death remains unknown. Here, we report that glucose deprivation alone does not trigger glioblastoma cell death. We found that, for cell death to occur in glucose-deprived glioblastoma cells, cystine and glutamine also need to be present in culture media. We observed that cystine uptake through the cystine/glutamate antiporter xCT under glucose deprivation rapidly induces NADPH depletion, reactive oxygen species accumulation, and cell death. We conclude that although cystine uptake is crucial for production of antioxidant glutathione in cancer cells its transport through xCT also induces oxidative stress and cell death in glucose-deprived glioblastoma cells. Combining inhibitors targeting cancer-specific glucose metabolism with cystine and glutamine treatment may offer a therapeutic approach for glioblastoma tumors exhibiting high xCT expression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Effect of Changes in Transepithelial Transport on the Uptake of Sodium across the Outer Surface of the Frog Skin

    PubMed Central

    Biber, Thomas U. L.

    1971-01-01

    The unidirectional sodium, uptake at the outer surface of the frog skin was measured by the method described by Biber and Curran (8). With bathing solutions containing 6 mM NaCl there is a good correlation between sodium uptake and short-circuit current (SCC) measured simultaneously except that the average uptake is about 40% higher than the average SCC. The discrepancy between uptake and SCC increases approximately in proportion to an increase in sodium concentration of the bathing solutions. Amiloride inhibits the unidirectional sodium uptake by 21 and 69% at a sodium concentration of 115 and 6 mM, respectively. This indicates that amiloride acts on the entry step of sodium but additional effects cannot be excluded. The sodium, uptake is not affected by 10-4 M ouabain at a sodium concentration of 115 mM but is inhibited by 40% at a sodium concentration of 6 mM. Replacement of air by nitrogen leads to a 40% decrease of sodium uptake at a sodium concentration of 6 mM. The results support the view proposed previously (8) that the sodium uptake is made up of two components, a linear component which is, essentially, not involved in transepithelial movement of sodium and a saturating component which reflects changes in transepithelial transport. Amiloride, seems largely to affect the saturating component. PMID:5559619

  17. A Novel Anoxic Pathway for Urea and Cyanate in Marine Oxygen Deficient Zones Revealed by Combined Microbiological and Biogeochemical Tools

    NASA Astrophysics Data System (ADS)

    Widner, B.; Fuchsman, C. A.; Babbin, A. R.; Ji, Q.; Mulholland, M. R.

    2016-02-01

    Urea and cyanate are reduced nitrogen compounds that can serve as nitrogen and carbon sources for marine microbes, and cyanate forms from decomposition of urea. Some marine bacteria, including cyanobacteria, possess genes encoding an ABC-type cyanate transporter and an intracellular cyanate hydratase, and genes for urea uptake and assimilation are widespread. To investigate cyanate distribution and availability in the ocean, we recently developed a nanomolar cyanate assay specific to seawater. In an oxygenated water column, urea and cyanate concentrations are generally low in surface waters and exhibit a concentration maximum near the base of the euphotic zone likely due to production from organic matter degradation. Below the euphotic zone, urea and cyanate concentrations decrease, likely due to oxidation reactions. It has been suggested that simple organic nitrogen compounds may support anaerobic ammonium oxidation (anammox) in oxygen deficient zones (ODZs). We mapped urea and cyanate distributions and used stable isotope-labeled urea and cyanate to measure their potential support of anammox and their uptake within the Eastern Tropical North and South Pacific ODZs. We also employed metagenomic techniques to determine the abundance and distribution of genes for the uptake and assimilation of urea and cyanate. The combined data indicate that, in ODZs, urea is used primarily as a nitrogen source while cyanate is used as both a nitrogen source and to generate energy.

  18. The physiological and biomechanical differences between double poling and G3 skating in world class cross-country skiers.

    PubMed

    Sandbakk, Øyvind; Leirdal, Stig; Ettema, Gertjan

    2015-03-01

    The current study compared differences in cycle characteristics, energy expenditure and peak speed between double poling (DP) and G3 skating. Eight world class male sprint skiers performed a 5-min submaximal test at 16 km h(-1) and an incremental test to exhaustion at a 5% incline during treadmill roller skiing with two different techniques: DP where all propulsion comes from poling, and G3 skating where leg skating is added to each double poling movement. Video analyses determined cycle characteristics; respiratory parameters and blood lactate concentration determined the physiological responses. G3 skating resulted in 16% longer cycle lengths at 16% lower cycle rates, whereas oxygen uptake was independent of technique during submaximal roller skiing. The corresponding advantages for G3 skating during maximal roller skiing were reflected in 14% higher speed, 30% longer cycle length at 16% lower cycle rate and 11% higher peak oxygen uptake (all p < 0.05). Compared to DP approximately 14% higher speed was achieved when leg push-offs were added in G3 skating. This was done by major increases in cycle lengths at slightly lower cycle rates and a higher aerobic energy delivery. However, the oxygen uptake for a given submaximal speed was not affected by technique although higher cycle rate was used in DP.

  19. Effect of 400 ml blood loss on adaptation of certain functions of the organism to exercise.

    PubMed

    Markiewicz, K; Cholewa, M; Górski, L; Jaszczuk, J; Chmura, J; Bartniczak, Z

    1981-01-01

    Eighteen men aged 19-23 years, volunteer blood donors, donated 400 ml of blood. Twenty-four hours before donation, one hour and 24 hours after it they performed a 10-minute exercise on Monark cycle ergometer at workloads raising the heart rate to 170/min. During the exercise the oxygen uptake (VO2), carbon dioxide elimination (VCO2), respiratory quotient (RQ), oxygen uptake to maximal oxygen uptake ratio (VO2/VO2 max), heart rate (HR) and systolic and diastolic arterial blood pressure (Ps and Pd) were determined. The obtained results were compared with the values of haemoglobin concentration and erythrocyte count. One hour after blood donation raised values of HR and Pd were obtained (p less than 0.05) with decreased Ps (p less than 0.05) and VO2 (p less than 0.05). Twenty-four hours after blood loss these parameters were not different from the initial ones (p less than 0.05). Submaximal exercise performed 1 hour after blood loss produced a significantly greater increase of the heart rate than this exercise performed before blood loss. The values of VO2, VCO2, and VO2/VO2 max were slightly lower and those of RQ and HRXPs slightly higher than during control exercise (p less than 0.05). Exercise performed 24 hours after blood loss caused identical changes in these parameters as during control tests.

  20. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species.

    PubMed

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-02-10

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  1. Physiological effects of a new racing suit for elite cross country skiers.

    PubMed

    Sperlich, B; Holmberg, H C

    2011-12-01

    The aim of this paper was to investigate the influence of the new cross country racing suit, designed for the Olympic Winter Games in Vancouver 2010, on cardio-respiratory, thermoregulatory and perceptual responses. Six elite cross country skiers (29±6 years, peak oxygen uptake 73.2±6.9 mL·min-1·kg-1) performed two exercise bouts wearing either the 2009 or the 2010 racing suit. Bouts consisted of incremental testing on roller skis (12 km·h-1 at 5° inclination; 11 km·h-1 at 6° inclination and 12 km·h-1at 8° inclination for six minutes). During increasing intensities, significantly lower values were found for oxygen uptake, minute ventilation, RER and heart rate when wearing the new suit compared to the old one (P<0.05; effect sizes: 0.21-4.00). Core temperature was lower with the new suit during steps 2 and 3 (P<0.05, effect size: 1.22-1.27). Also, mean skin temperature was lower during the last increment (P<0.05, effect size: 0.87). The new 2010 racing suit, developed specifically for the Olympic Winter Games in Vancouver 2010, demonstrated lower values for oxygen uptake, minute ventilation, heart rate, skin and core temperature, ratings of thermal and sweat sensation when compared to the 2009 racing suit.

  2. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species

    PubMed Central

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-01-01

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)-capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters. PMID:28208642

  3. The Maximal Oxygen Uptake Verification Phase: a Light at the End of the Tunnel?

    PubMed

    Schaun, Gustavo Z

    2017-12-08

    Commonly performed during an incremental test to exhaustion, maximal oxygen uptake (V̇O 2max ) assessment has become a recurring practice in clinical and experimental settings. To validate the test, several criteria were proposed. In this context, the plateau in oxygen uptake (V̇O 2 ) is inconsistent in its frequency, reducing its usefulness as a robust method to determine "true" V̇O 2max . Moreover, secondary criteria previously suggested, such as expiratory exchange ratios or percentages of maximal heart rate, are highly dependent on protocol design and often are achieved at V̇O 2 percentages well below V̇O 2max . Thus, an alternative method termed verification phase was proposed. Currently, it is clear that the verification phase can be a practical and sensitive method to confirm V̇O 2max ; however, procedures to conduct it are not standardized across the literature and no previous research tried to summarize how it has been employed. Therefore, in this review the knowledge on the verification phase was updated, while suggestions on how it can be performed (e.g. intensity, duration, recovery) were provided according to population and protocol design. Future studies should focus to identify a verification protocol feasible for different populations and to compare square-wave and multistage verification phases. Additionally, studies assessing verification phases in different patient populations are still warranted.

  4. Growth, biomass allocation and nutrient use efficiency in Cladium jamaicense and Typha domingensis as affected by phosphorus and oxygen availability

    USGS Publications Warehouse

    Lorenzen, B.; Brix, H.; Mendelssohn, I.A.; McKee, K.L.; Miao, S.L.

    2001-01-01

    The effects of phosphorus (P) and oxygen availability on growth, biomass allocation and nutrient use efficiency in Cladium jamaicense Crantz and Typha domingensis Pers. were studied in a growth facility equipped with steady-state hydroponic rhizotrons. The treatments included four P concentrations (10, 40, 80 and 500 ??g I-1) and two oxygen concentration (8.0 and <0.5 mg O2 I-1) in the culture solutions. In Cladium, no clear relationship was found between P availability and growth rate (19-37 mg g-1 d-1), the above to below ground biomass ratio (A/B) (mean = 4.6), or nitrogen use efficiency (NUE) (mean = 72 g dry weight g-1 N). However, the ratio between root supported tissue (leaves, rhizomes and ramets) and root biomass (S/R) (5.6-8) increased with P availability. In contrast, the growth rate (48-89 mg g-1 d-1) and the biomass ratios A/B (2.4-6.1) and S/R (5.4-10.3) of Typha increased with P availability, while NUE (71-30 g dry weight g-1 N) decreased. The proportion of root laterals was similar in the two species, but Typha had thinner root laterals (diameter = 186 ??m) than Cladium (diameter = 438 ??m) indicating a larger root surface area in Typha. The two species had a similar P use efficiency (PUE) at 10 ??g PI-1 (mean = 1134 g dry weight g-1 P) and at 40 and 80 ??g PI-1 (mean = 482 dry weight g-1 P) but the N/P ratio indicated imbalances in nutrient uptake at a higher P concentration (40 ??g PI-1) in Typha than in Cladium (10 ??g PI-1). The two species had similar root specific P accumulation rate at the two lowest P levels, whereas Typha had 3-13-fold higher P uptake rates at the two highest P levels, indicating a higher nutrient uptake capacity in Typha. The experimental oxygen concentration in the rhizosphere had only limited effect on the growth of the two species and had little effect on biomass partitioning and nutrient use efficiency. The aerenchyma in these species was probably sufficient to maintain adequate root oxygenation under partially oxygen depleted conditions. Cladium had characteristics typical for plants from nutrient poor habitats, which included slow growth rate, low capacity for P uptake and relatively inflexible biomass partitioning in response to increased P availability. In contrast, Typha demonstrated a high degree of flexibility in growth, biomass partitioning, and nutrient accumulation to P availability, similar to species from nutrient rich habitats. Although the N/P ratio indicated that Typha was more nutrient stressed at the low P levels, Typha had a higher capacity for P uptake and was more competitive than Cladium at the applied P concentrations. ?? 2001 Elsevier Science B.V.

  5. Evolution of Air Breathing: Oxygen Homeostasis and the Transitions from Water to Land and Sky

    PubMed Central

    Hsia, Connie C. W.; Schmitz, Anke; Lambertz, Markus; Perry, Steven F.; Maina, John N.

    2014-01-01

    Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the “oxygen cascade”—step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated. PMID:23720333

  6. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky.

    PubMed

    Hsia, Connie C W; Schmitz, Anke; Lambertz, Markus; Perry, Steven F; Maina, John N

    2013-04-01

    Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the "oxygen cascade"-step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated.

  7. Correlation between the sorption of dissolved oxygen onto chitosan and its antimicrobial activity against Esherichia coli.

    PubMed

    Gylienė, Ona; Servienė, Elena; Vepštaitė, Iglė; Binkienė, Rima; Baranauskas, Mykolas; Lukša, Juliana

    2015-10-20

    The ability of chitosan to adsorb dissolved oxygen from solution depends on its physical shape and is related to the surface area. Depending on conditions chitosan is capable of adsorbing or releasing oxygen. Chitosan, modificated by the substances possessing antimicrobial activity, such as succinic acid, Pd(II) ions, metallic Pd or Ag, distinctly increases the ability to adsorb the dissolved oxygen. The additional treatment of chitosan with air oxygen or electrochemically produced oxygen also increases the uptake of dissolved oxygen by chitosan. A strong correlation between the amount of oxygen adsorbed onto chitosan and its antimicrobial activity against Esherichia coli has been observed. This finding suggests that one of the sources of antimicrobial activity of chitosan is the ability to sorb dissolved oxygen, along with other well-known factors such as physical state and chemical composition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Separation of β-amyloid binding and white matter uptake of 18F-flutemetamol using spectral analysis

    PubMed Central

    Heurling, Kerstin; Buckley, Christopher; Vandenberghe, Rik; Laere, Koen Van; Lubberink, Mark

    2015-01-01

    The kinetic components of the β-amyloid ligand 18F-flutemetamol binding in grey and white matter were investigated through spectral analysis, and a method developed for creation of parametric images separating grey and white matter uptake. Tracer uptake in grey and white matter and cerebellar cortex was analyzed through spectral analysis in six subjects, with (n=4) or without (n=2) apparent β-amyloid deposition, having undergone dynamic 18F-flutemetamol scanning with arterial blood sampling. The spectra were divided into three components: slow, intermediate and fast basis function rates. The contribution of each of the components to total volume of distribution (VT) was assessed for different tissue types. The slow component dominated in white matter (average 90%), had a higher contribution to grey matter VT in subjects with β-amyloid deposition (average 44%) than without (average 6%) and was absent in cerebellar cortex, attributing the slow component of 18F-flutemetamol uptake in grey matter to β-amyloid binding. Parametric images of voxel-based spectral analysis were created for VT, the slow component and images segmented based on the slow component contribution; confirming that grey matter and white matter uptake can be discriminated on voxel-level using a threshold for the contribution from the slow component to VT. PMID:26550542

  9. Physiological characteristics of an aging Olympic athlete.

    PubMed

    Nybo, Lars; Schmidt, Jakob F; Fritzdorf, Stephen; Nordsborg, Nikolai B

    2014-11-01

    To investigate the physiological basis of continued world-class performance of a world-class rower who won medals (three gold and two bronze) at five consecutive Olympic Games. From the age of 19 to 40 yr, maximal oxygen uptake (VO2 max), peak HR, blood lactate, and rowing ergometer performance were assessed annually. During the first years of his elite career (from age 19 to 24), VO2 max increased from 5.5 to approximately 5.9 L · min(-1) (78 mL · min(-1) · kg(-1)) and his average power during 6-min maximal rowing increased from 420 to approximately 460 W. Although his HRmax declined by approximately 20 bpm during the 20-yr period, maximal aerobic power, evaluated both as VO2 max and 6-min test performance, was maintained until the age of 40. Furthermore, peak lactate levels remained unchanged and average power outputs during 10-s, 60-s, and 60-min ergometer tests were all maintained at approximately 800 W, approximately 700 W, and approximately 350 W, respectively, indicating that he was able to preserve both aerobic and anaerobic exercise performances. Echocardiographic analyses revealed a left ventricular mass of 198 g and left ventricular end-diastolic diameter of 5.8 cm. This longitudinal case indicates that until the age of 40 yr, a steady increase in the oxygen pulse may have compensated for the significant decline in the maximal heart frequency. Furthermore, the maintenance of aerobic and anaerobic exercise capacities allowed this Olympic athlete to compete at the highest level for almost two decades.

  10. 40 CFR Table 7 to Subpart Sssss of... - Continuous Compliance with Emission Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen; OR the average THC... other than a thermal or catalytic oxidizer The average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen; OR the average THC performance reduction must equal or exceed 95 percent...

  11. 40 CFR Table 7 to Subpart Sssss of... - Continuous Compliance with Emission Limits

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen; OR the average THC... other than a thermal or catalytic oxidizer The average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen; OR the average THC performance reduction must equal or exceed 95 percent...

  12. 40 CFR Table 7 to Subpart Sssss of... - Continuous Compliance with Emission Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen; OR the average THC... other than a thermal or catalytic oxidizer The average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen; OR the average THC performance reduction must equal or exceed 95 percent...

  13. 40 CFR Table 7 to Subpart Sssss of... - Continuous Compliance with Emission Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen; OR the average THC... other than a thermal or catalytic oxidizer The average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen; OR the average THC performance reduction must equal or exceed 95 percent...

  14. 40 CFR Table 7 to Subpart Sssss of... - Continuous Compliance with Emission Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen; OR the average THC... other than a thermal or catalytic oxidizer The average THC concentration must not exceed 20 ppmvd, corrected to 18 percent oxygen; OR the average THC performance reduction must equal or exceed 95 percent...

  15. The importance of perivitelline fluid convection to oxygen uptake of Pseudophryne bibronii eggs.

    PubMed

    Mueller, Casey A; Seymour, Roger S

    2011-01-01

    The ciliated epithelium of amphibian embryos produces a current within the perivitelline fluid of the egg that is important in the convective transfer of oxygen to the embryo's surface. The effects of convection on oxygen uptake and the immediate oxygen environment of the embryo were investigated in Pseudophryne bibronii. Gelatin was injected into the eggs, setting the perivitelline fluid and preventing convective flow. Oxygen consumption rate (M(.)o₂) and the oxygen partial pressure (Po₂) of the perivitelline fluid were measured in eggs with and without this treatment. M(.)o₂ decreased in eggs without convection at Gosner stages 17-19 under normoxia. The lack of convection also shifted embryos from regulators to conformers as environmental Po₂ decreased. A strong Po₂ gradient formed within the eggs when convection was absent, demonstrating that the loss of convection is equivalent to decreasing the inner radius of the capsule, an important factor in gas exchange, by 25%. M(.)o₂ also declined in stage 26-27 embryos without cilia-driven convection, although not to the extent of younger stages, because of muscular movements and a greater skin surface area in direct contact with the inner capsule wall. This study demonstrates the importance of convective flow within the perivitelline fluid to gas exchange. Convection is especially important in the middle of embryonic development, when the perivitelline space has formed, creating a barrier to gas exchange, but the embryos have yet to develop muscular movements or have a large surface area exposed directly to the jelly capsule.

  16. Physiological correlates of symbiont migration during bleaching of two octocoral species.

    PubMed

    Netherton, Sarah E; Scheer, Daniele M; Morrison, Patrick R; Parrin, Austin P; Blackstone, Neil W

    2014-05-01

    Perturbed colonies of Phenganax parrini and Sarcothelia sp. exhibit migration of symbionts of Symbiodinium spp. into the stolons. Densitometry and visual inspection indicated that polyps bleached while stolons did not. When migration was triggered by temperature, light and confinement, colonies of Sarcothelia sp. decreased rates of oxygen formation in the light (due to the effects of perturbation on photosynthesis and respiration) and increased rates of oxygen uptake in the dark (due to the effects of perturbation on respiration alone). Colonies of P. parrini, by contrast, showed no significant changes in either aspect of oxygen metabolism. When migration was triggered by light and confinement, colonies of Sarcothelia sp. showed decreased rates of oxygen formation in the light and increased rates of oxygen uptake in the dark, while colonies of P. parrini maintained the former and increased the latter. During symbiont migration into their stolons, colonies of both species showed dramatic increases in reactive oxygen species (ROS), as visualized with a fluorescent probe, with stolons of Sarcothelia sp. exhibiting a nearly immediate increase of ROS. Differences in symbiont type may explain the greater sensitivity of colonies of Sarcothelia sp. Using fluorescent probes, direct measurements of migrating symbionts in the stolons of Sarcothelia sp. showed higher levels of reactive nitrogen species and lower levels of ROS than the surrounding host tissue. As measured by native fluorescence, levels of NAD(P)H in the stolons were unaffected by perturbation. Symbiont migration thus correlates with dramatic physiological changes and may serve as a marker for coral condition.

  17. Increased red cell 2,3-diphosphoglycerate levels in haemodialysis patients treated with erythropoietin.

    PubMed

    Horina, J H; Schwaberger, G; Brussee, H; Sauseng-Fellegger, G; Holzer, H; Krejs, G J

    1993-01-01

    The efficacy of recombinant human erythropoietin (rHuEpo) for the treatment of renal anaemia is well established. To assess the effect of rHuEpo treatment on physical performance we evaluated physical working capacity, oxygen uptake and red cell 2,3-diphosphoglycerate (DPG) values at rest and during and after exercise on a bicycle spiroergometer in eight chronically haemodialysed patients. Follow-up examination was carried out after a mean of 14 weeks (range 9-19 weeks), when mean haemoglobin had increased from 7.8 to a stable value of 13.0 g/dl in response to rHuEpo treatment (P < 0.001). Physical working capacity and oxygen uptake at the anaerobic threshold (4 mmol/l blood lactate concentration) increased from 68 +/- 12 to 80 +/- 16 watts and 0.95 +/- 0.14 to 1.10 +/- 0.20 l/min, respectively (P < 0.01). DPG, which determines oxygen affinity to haemoglobin in red cells, increased by 13% from 13.7 +/- 1.5 to 15.5 +/- 2.2 mumol/g Hb (P < 0.05). With maximal exercise mean DPG values significantly decreased to a much lower level without rHuEpo treatment than after correction of anaemia. Therefore rHuEpo treatment results both in better oxygen transport capacity and reduced intraerythrocytic oxygen affinity, which is followed by improved oxygen delivery to tissues per unit of haemoglobin. These effects may explain the improvement of exercise capacity observed in dialysis patients after rHuEpo treatment.

  18. Decreases in maximal oxygen uptake following long-duration spaceflight: Role of convective and diffusive O2 transport mechanisms.

    PubMed

    Ade, C J; Broxterman, R M; Moore, A D; Barstow, T J

    2017-04-01

    We have previously predicted that the decrease in maximal oxygen uptake (V̇o 2max ) that accompanies time in microgravity reflects decrements in both convective and diffusive O 2 transport to the mitochondria of the contracting myocytes. The aim of this investigation was therefore to quantify the relative changes in convective O 2 transport (Q̇o 2 ) and O 2 diffusing capacity (Do 2 ) following long-duration spaceflight. In nine astronauts, resting hemoglobin concentration ([Hb]), V̇o 2max , maximal cardiac output (Q̇ Tmax ), and differences in arterial and venous O 2 contents ([Formula: see text]-[Formula: see text]) were obtained retrospectively for International Space Station Increments 19-33 (April 2009-November 2012). Q̇o 2 and Do 2 were calculated from these variables via integration of Fick's Principle of Mass Conservation and Fick's Law of Diffusion. V̇o 2max significantly decreased from pre- to postflight (-53.9 ± 45.5%, P = 0.008). The significant decrease in Q̇ Tmax (-7.8 ± 9.1%, P = 0.05), despite an unchanged [Hb], resulted in a significantly decreased Q̇o 2 (-11.4 ± 10.5%, P = 0.02). Do 2 significantly decreased from pre- to postflight by -27.5 ± 24.5% ( P = 0.04), as did the peak [Formula: see text]-[Formula: see text] (-9.2 ± 7.5%, P = 0.007). With the use of linear regression analysis, changes in V̇o 2max were significantly correlated with changes in Do 2 ( R 2  = 0.47; P = 0.04). These data suggest that spaceflight decreases both convective and diffusive O 2 transport. These results have practical implications for future long-duration space missions and highlight the need to resolve the specific mechanisms underlying these spaceflight-induced changes along the O 2 transport pathway. NEW & NOTEWORTHY Long-duration spaceflight elicited a significant decrease in maximal oxygen uptake. Given the adverse physiological adaptations to microgravity along the O 2 transport pathway that have been reported, an integrative approach to the determinants of postflight maximal oxygen uptake is needed. We demonstrate that both convective and diffusive oxygen transport are decreased following ~6 mo International Space Station missions. Copyright © 2017 the American Physiological Society.

  19. Effect of physical training in cool and hot environments on +Gz acceleration tolerance in women

    NASA Technical Reports Server (NTRS)

    Brock, P. J.; Sciaraffa, D.; Greenleaf, J. E.

    1982-01-01

    Acceleration tolerance, plasma volume, and maximal oxygen uptake were measured in 15 healthy women before and after submaximal isotonic exercise training periods in cool and hot environments. The women were divided on the basis of age, maximal oxygen uptake, and +Gz tolerance into three groups: a group that exercised in heat (40.6 C), a group that exercised at a lower temperature (18.7 C), and a sedentary control group that functioned in the cool environment. There was no significant change in the +Gz tolerance in any group after training, and terminal heart rates were similar within each group. It is concluded that induction of moderate acclimation responses without increases in sweat rate or resting plasma volume has no influence on +Gz acceleration tolerance in women.

  20. Induced venous pooling and cardiorespiratory responses to exercise after bed rest

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Sandler, H.; Webb, P.; Annis, J. F.

    1982-01-01

    Venous pooling induced by a specially constructed garment is investigated as a possible means for reversing the reduction in maximal oxygen uptake regularly observed following bed rest. Experiments involved a 15-day period of bed rest during which four healthy male subjects, while remaining recumbent in bed, received daily 210-min venous pooling treatments from a reverse gradient garment supplying counterpressure to the torso. Results of exercise testing indicate that while maximal oxygen uptake endurance time and plasma volume were reduced and maximal heart rate increased after bed rest in the control group, those parameters remained essentially unchanged for the group undergoing venous pooling treatment. Results demonstrate the importance of fluid shifts and venous pooling within the cardiovascular system in addition to physical activity to the maintenance of cardiovascular conditioning.

  1. Switching the mode of metabolism in the yeast Saccharomyces cerevisiae

    PubMed Central

    Otterstedt, Karin; Larsson, Christer; Bill, Roslyn M; Ståhlberg, Anders; Boles, Eckhard; Hohmann, Stefan; Gustafsson, Lena

    2004-01-01

    The biochemistry of most metabolic pathways is conserved from bacteria to humans, although the control mechanisms are adapted to the needs of each cell type. Oxygen depletion commonly controls the switch from respiration to fermentation. However, Saccharomyces cerevisiae also controls that switch in response to the external glucose level. We have generated an S. cerevisiae strain in which glucose uptake is dependent on a chimeric hexose transporter mediating reduced sugar uptake. This strain shows a fully respiratory metabolism also at high glucose levels as seen for aerobic organisms, and switches to fermentation only when oxygen is lacking. These observations illustrate that manipulating a single step can alter the mode of metabolism. The novel yeast strain is an excellent tool to study the mechanisms underlying glucose-induced signal transduction. PMID:15071495

  2. Cardiovascular consequences of bed rest: effect on maximal oxygen uptake

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1997-01-01

    Maximal oxygen uptake (VO2max) is reduced in healthy individuals confined to bed rest, suggesting it is independent of any disease state. The magnitude of reduction in VO2max is dependent on duration of bed rest and the initial level of aerobic fitness (VO2max), but it appears to be independent of age or gender. Bed rest induces an elevated maximal heart rate which, in turn, is associated with decreased cardiac vagal tone, increased sympathetic catecholamine secretion, and greater cardiac beta-receptor sensitivity. Despite the elevation in heart rate, VO2max is reduced primarily from decreased maximal stroke volume and cardiac output. An elevated ejection fraction during exercise following bed rest suggests that the lower stroke volume is not caused by ventricular dysfunction but is primarily the result of decreased venous return associated with lower circulating blood volume, reduced central venous pressure, and higher venous compliance in the lower extremities. VO2max, stroke volume, and cardiac output are further compromised by exercise in the upright posture. The contribution of hypovolemia to reduced cardiac output during exercise following bed rest is supported by the close relationship between the relative magnitude (% delta) and time course of change in blood volume and VO2max during bed rest, and also by the fact that retention of plasma volume is associated with maintenance of VO2max after bed rest. Arteriovenous oxygen difference during maximal exercise is not altered by bed rest, suggesting that peripheral mechanisms may not contribute significantly to the decreased VO2max. However reduction in baseline and maximal muscle blood flow, red blood cell volume, and capillarization in working muscles represent peripheral mechanisms that may contribute to limited oxygen delivery and, subsequently, lowered VO2max. Thus, alterations in cardiac and vascular functions induced by prolonged confinement to bed rest contribute to diminution of maximal oxygen uptake and reserve capacity to perform physical work.

  3. Trans sodium crocetinate: functional neuroimaging studies in a hypoxic brain tumor.

    PubMed

    Sheehan, Jason P; Popp, Britney; Monteith, Stephen; Toulmin, Sushila; Tomlinson, Jennifer; Martin, Jessica; Cifarelli, Christopher P; Lee, Dae-Hee; Park, Deric M

    2011-10-01

    Intratumoral hypoxia is believed to be exhibited in high-grade gliomas. Trans sodium crocetinate (TSC) has been shown to increase oxygen diffusion to hypoxic tissues. In this research, the authors use oxygen-sensitive PET studies to evaluate the extent of hypoxia in vivo in a glioblastoma model and the effect of TSC on the baseline oxygenation of the tumor. The C6 glioma cells were stereotactically implanted in the right frontal region of rat brains. Formation of intracranial tumors was confirmed on MR imaging. Animals were injected with Copper(II) diacetyl-di(N4-methylthiosemicarbazone) (Cu-ATSM) and then either TSC or saline (6 rats each). Positron emission tomography imaging was performed, and relative uptake values were computed to determine oxygenation within the tumor and normal brain parenchyma. Additionally, TSC or saline was infused into the animals, and carbonic anhydrase 9 (CA9) and hypoxia-inducing factor-1α (HIF-1α) protein expression were measured 1 day afterward. On PET imaging, all glioblastoma tumors demonstrated a statistically significant decrease in uptake of Cu-ATSM compared with the contralateral cerebral hemisphere (p = 0.000002). The mean relative uptake value of the tumor was 3900 (range 2203-6836), and that of the contralateral brain tissue was 1017 (range 488-2304). The mean relative hypoxic tumor volume for the saline group and TSC group (6 rats each) was 1.01 ± 0.063 and 0.69 ± 0.062, respectively (mean ± SEM, p = 0.002). Infusion of TSC resulted in a 31% decrease in hypoxic volume. Immunoblot analysis revealed expression of HIF-1α and CA9 in all tumor specimens. Some glioblastomas exhibit hypoxia that is demonstrable on oxygen-specific PET imaging. It appears that TSC lessens intratumoral hypoxia on functional imaging. Further studies should explore relative hypoxia in glioblastoma and the potential therapeutic gains that can be achieved by lessening hypoxia during delivery of adjuvant treatment.

  4. Estimating Oxygen Needs for Childhood Pneumonia in Developing Country Health Systems: A New Model for Expecting the Unexpected

    PubMed Central

    Bradley, Beverly D.; Howie, Stephen R. C.; Chan, Timothy C. Y.; Cheng, Yu-Ling

    2014-01-01

    Background Planning for the reliable and cost-effective supply of a health service commodity such as medical oxygen requires an understanding of the dynamic need or ‘demand’ for the commodity over time. In developing country health systems, however, collecting longitudinal clinical data for forecasting purposes is very difficult. Furthermore, approaches to estimating demand for supplies based on annual averages can underestimate demand some of the time by missing temporal variability. Methods A discrete event simulation model was developed to estimate variable demand for a health service commodity using the important example of medical oxygen for childhood pneumonia. The model is based on five key factors affecting oxygen demand: annual pneumonia admission rate, hypoxaemia prevalence, degree of seasonality, treatment duration, and oxygen flow rate. These parameters were varied over a wide range of values to generate simulation results for different settings. Total oxygen volume, peak patient load, and hours spent above average-based demand estimates were computed for both low and high seasons. Findings Oxygen demand estimates based on annual average values of demand factors can often severely underestimate actual demand. For scenarios with high hypoxaemia prevalence and degree of seasonality, demand can exceed average levels up to 68% of the time. Even for typical scenarios, demand may exceed three times the average level for several hours per day. Peak patient load is sensitive to hypoxaemia prevalence, whereas time spent at such peak loads is strongly influenced by degree of seasonality. Conclusion A theoretical study is presented whereby a simulation approach to estimating oxygen demand is used to better capture temporal variability compared to standard average-based approaches. This approach provides better grounds for health service planning, including decision-making around technologies for oxygen delivery. Beyond oxygen, this approach is widely applicable to other areas of resource and technology planning in developing country health systems. PMID:24587089

  5. Ultrastructural and some functional changes in tumor cells treated with stabilized iron oxide nanoparticles.

    PubMed

    Yurchenko, O V; Todor, I N; Khayetsky, I K; Tregubova, N A; Lukianova, N Yu; Chekhun, V F

    2010-12-01

    To study the ultrastructure and some functional indexes of tumor cells treated with stabilized iron nanoparticles in vitro. 3-[4,5dimethylthiazol-2-1]-2,5-diphenyltetrazolium bromide (MTT)-test, electron microscopy, polarography with applying of closed Clark's electrode. It was shown that cultivation of cells with stabilized Fe(3)O(4) leads to intracellular accumulation of ferromagnetic nanoparticles. The most active ferromagnetic uptake by cells has been observed after 24 and 48 h of incubation. The presence of ferromagnetic in cells led to altered mitochondrial structure that caused the decrease of oxygen uptake rate in the cells of all studied lines. Ferromagnetic released from the majority of cells via exocytosis or clasmacytosis after a certain period of time. The number of dead cells or cells with severe damage was moderate, so cytotoxic action of stabilized iron oxide nanoparticles was minimal toward the studied cell lines. the presence of ferromagnetic nanoparticles in culture medium led to alterations in mitochondria ultrastructural organization and decrease of oxygen uptake by mitochondria in sensitive and anticancer-drugs resistant cells.

  6. Role of reactive oxygen species in contraction-mediated glucose transport in mouse skeletal muscle

    PubMed Central

    Sandström, Marie E; Zhang, Shi-Jin; Bruton, Joseph; Silva, José P; Reid, Michael B; Westerblad, Håkan; Katz, Abram

    2006-01-01

    Exercise increases glucose transport into skeletal muscle via a pathway that is poorly understood. We investigated the role of endogenously produced reactive oxygen species (ROS) in contraction-mediated glucose transport. Repeated contractions increased 2-deoxyglucose (2-DG) uptake roughly threefold in isolated, mouse extensor digitorum longus (fast-twitch) muscle. N-Acetylcysteine (NAC), a non-specific antioxidant, inhibited contraction-mediated 2-DG uptake by ∼50% (P < 0.05 versus control values), but did not significantly affect basal 2-DG uptake or the uptake induced by insulin, hypoxia or 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR, which mimics AMP-mediated activation of AMP-activated protein kinase, AMPK). Ebselen, a glutathione peroxidase mimetic, also inhibited contraction-mediated 2-DG uptake (by almost 60%, P < 0.001 versus control values). Muscles from mice overexpressing Mn2+-dependent superoxide dismutase, which catalyses H2O2 production from superoxide anions, exhibited a ∼25% higher rate of contraction-mediated 2-DG uptake versus muscles from wild-type control mice (P < 0.05). Exogenous H2O2 induced oxidative stress, as judged by an increase in the [GSSG]/[GSH + GSSG] (reduced glutathione + oxidized glutathione) ratio to 2.5 times control values, and this increase was substantially blocked by NAC. Similarly, NAC significantly attenuated contraction-mediated oxidative stress as judged by measurements of glutathione status and the intracellular ROS level with the fluorescent indicator 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein (P < 0.05). Finally, contraction increased AMPK activity and phosphorylation ∼10-fold, and NAC blocked ∼50% of these changes. These data indicate that endogenously produced ROS, possibly H2O2 or its derivatives, play an important role in contraction-mediated activation of glucose transport in fast-twitch muscle. PMID:16777943

  7. Effects of continuous vs interval exercise training on oxygen uptake efficiency slope in patients with coronary artery disease.

    PubMed

    Prado, D M L; Rocco, E A; Silva, A G; Rocco, D F; Pacheco, M T; Silva, P F; Furlan, V

    2016-02-01

    The oxygen uptake efficiency slope (OUES) is a submaximal index incorporating cardiovascular, peripheral, and pulmonary factors that determine the ventilatory response to exercise. The purpose of this study was to evaluate the effects of continuous exercise training and interval exercise training on the OUES in patients with coronary artery disease. Thirty-five patients (59.3±1.8 years old; 28 men, 7 women) with coronary artery disease were randomly divided into two groups: continuous exercise training (n=18) and interval exercise training (n=17). All patients performed graded exercise tests with respiratory gas analysis before and 3 months after the exercise-training program to determine ventilatory anaerobic threshold (VAT), respiratory compensation point, and peak oxygen consumption (peak VO2). The OUES was assessed based on data from the second minute of exercise until exhaustion by calculating the slope of the linear relation between oxygen uptake and the logarithm of total ventilation. After the interventions, both groups showed increased aerobic fitness (P<0.05). In addition, both the continuous exercise and interval exercise training groups demonstrated an increase in OUES (P<0.05). Significant associations were observed in both groups: 1) continuous exercise training (OUES and peak VO2 r=0.57; OUES and VO2 VAT r=0.57); 2) interval exercise training (OUES and peak VO2 r=0.80; OUES and VO2 VAT r=0.67). Continuous and interval exercise training resulted in a similar increase in OUES among patients with coronary artery disease. These findings suggest that improvements in OUES among CAD patients after aerobic exercise training may be dependent on peripheral and central mechanisms.

  8. Oxygen uptake and blood metabolic responses to a 400-m run.

    PubMed

    Hanon, Christine; Lepretre, Pierre-Marie; Bishop, David; Thomas, Claire

    2010-05-01

    This study aimed to investigate the oxygen uptake and metabolic responses during a 400-m run reproducing the pacing strategy used in competition. A portable gas analyser was used to measure the oxygen uptake (VO2) of ten specifically trained runners racing on an outdoor track. The tests included (1) an incremental test to determine maximal VO2 (VO2max) and the velocity associated with VO2(max) (v - VO2max), (2) a maximal 400-m (400T) and 3) a 300-m running test (300T) reproducing the exact pacing pattern of the 400T. Blood lactate, bicarbonate concentrations [HCO3(-)], pH and arterial oxygen saturation were analysed at rest and 1, 4, 7, 10 min after the end of the 400 and 300T. The peak VO2 recorded during the 400T corresponded to 93.9 +/- 3.9% of VO2max and was reached at 24.4 +/- 3.2 s (192 +/- 22 m). A significant decrease in VO2 (P < 0.05) was observed in all subjects during the last 100 m, although the velocity did not decrease below v - VO2max. The VO2 in the last 5 s was correlated with the pH (r = 0.86, P < 0.0005) and [HCO3(-)] (r = 0.70, P < 0.05) measured at the end of 300T. Additionally, the velocity decrease observed in the last 100 m was inversely correlated with [HCO3(-)] and pH at 300T (r = -0.83, P < 0.001, r = -0.69, P < 0.05, respectively). These track running data demonstrate that acidosis at 300 m was related to both the VO2 response and the velocity decrease during the final 100 m of a 400-m run.

  9. Effect of elicitation on growth, respiration, and nutrient uptake of root and cell suspension cultures of Hyoscyamus muticus.

    PubMed

    Carvalho, Edgard B; Curtis, Wayne R

    2002-01-01

    The elicitation of Hyoscyamus muticus root and cell suspension cultures by fungal elicitor from Rhizoctonia solani causes dramatic changes in respiration, nutrient yields, and growth. Cells and mature root tissues have similar specific oxygen uptake rates (SOUR) before and after the onset of the elicitation process. Cell suspension SOUR were 11 and 18 micromol O2/g FW x h for non-elicited control and elicited cultures, respectively. Mature root SOUR were 11 and 24 micromol O2/g FW x h for control and elicited tissue, respectively. Tissue growth is significantly reduced upon the addition of elicitor to these cultures. Inorganic yield remains fairly constant, whereas yield on sugar is reduced from 0.532 to 0.352 g dry biomass per g sugar for roots and 0.614 to 0.440 g dry biomass per g sugar for cells. This reduction in yield results from increased energy requirements for the defense response. Growth reduction is reflected in a reduction in root meristem (tip) SOUR, which decreased from 189 to 70 micromol O2/g FW x h upon elicitation. Therefore, despite the increase in total respiration, the maximum local oxygen fluxes are reduced as a result of the reduction in metabolic activity at the meristem. This distribution of oxygen uptake throughout the mature tissue could reduce mass transfer requirements during elicited production. However, this was not found to be the case for sesquiterpene elicitation, where production of lubimin and solavetivone were found to increase linearly up to oxygen partial pressures of 40% O2 in air. SOUR is shown to similarly increase in both bubble column and tubular reactors despite severe mass transfer limitations, suggesting the possibility of metabolically induced increases in tissue convective transport during elicitation.

  10. Effects of Oxygen Supply During Training on Subjects With COPD Who Are Normoxemic at Rest and During Exercise: A Blinded Randomized Controlled Trial.

    PubMed

    Spielmanns, Marc; Fuchs-Bergsma, Chantal; Winkler, Aurelia; Fox, Gabriele; Krüger, Stefan; Baum, Klaus

    2015-04-01

    It is well established that physical training enhances functionality and quality of life in patients with COPD. However, little data exist concerning the effects of the usefulness of oxygen supply during exercise training for > 3 months in patients with COPD who are normoxemic at rest and during exercise. We hypothesized that oxygen supply during training sessions enables higher training intensity and thus optimizes training results in patients with COPD. In this blinded randomized controlled study, we carried out a 24-week training program with progressively increasing loads involving large muscle groups. In addition, we compared the influences of oxygen supplementation. Thirty-six subjects with moderate-to-severe COPD who were not dependent on long-term oxygen therapy trained under supervision for 24 weeks (3 times/week at 30 min/session). Subjects were randomized into 2 groups: oxygen supply via nasal cannula at a flow of 4 L/min and compressed air at the same flow throughout the training program. Lung function tests at rest (inspiratory vital capacity, FEV1, Tiffeneau index), cycle spiroergometry (peak ventilation, peak oxygen uptake, peak respiratory exchange rate, submaximal and peak lactic acid concentrations), 6-min walk tests, and quality-of-life assessments (Medical Outcomes Study 36-Item Short Form questionnaire) were conducted before and after 12 and 24 weeks. Independent of oxygen supplementation, statistically significant improvements occurred in quality of life, maximal tolerated load during cycling, peak oxygen uptake, and 6-min walk test after 12 weeks of training. Notably, there were no further improvements from 12 to 24 weeks despite progressively increased training loads. Endurance training 3 times/week resulted in significant improvements in quality of life and exercise capacity in subjects with moderate-to-severe COPD within the initial 12 weeks, followed by a stable period over the following 12 weeks with no further benefits of supplemental oxygen. Copyright © 2015 by Daedalus Enterprises.

  11. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants

    NASA Astrophysics Data System (ADS)

    Wallace, Malcolm W.; Hood, Ashleigh vS.; Shuster, Alice; Greig, Alan; Planavsky, Noah J.; Reed, Christopher P.

    2017-05-01

    There has been extensive debate about the history of Earth's oxygenation and the role that land plant evolution played in shaping Earth's ocean-atmosphere system. Here we use the rare earth element patterns in marine carbonates to monitor the structure of the marine redox landscape through the rise and diversification of animals and early land plants. In particular, we use the relative abundance of cerium (Ceanom), the only redox-sensitive rare earth element, in well-preserved marine cements and other marine precipitates to track seawater oxygen levels. Our results indicate that there was only a moderate increase in oceanic oxygenation during the Ediacaran (average Cryogenian Ceanom = 1.1, average Ediacaran Ceanom = 0.62), followed by a decrease in oxygen levels during the early Cambrian (average Cryogenian Ceanom = 0.90), with significant ocean anoxia persisting through the early and mid Paleozoic (average Early Cambrian-Early Devonian Ceanom = 0.84). It was not until the Late Devonian that oxygenation levels are comparable to the modern (average of all post-middle Devonian Ceanom = 0.55). Therefore, this work confirms growing evidence that the oxygenation of the Earth was neither unidirectional nor a simple two-stage process. Further, we provide evidence that it was not until the Late Devonian, when large land plants and forests first evolved, that oxygen levels reached those comparable to the modern world. This is recorded with the first modern-like negative Ceanom (values <0.6) occurring at around 380 Ma (Frasnian). This suggests that land plants, rather than animals, are the 'engineers' responsible for the modern fully oxygenated Earth system.

  12. Reversible Oxygenation of 2,4-Diaminobutanoic Acid-Co(II) Complexes

    PubMed Central

    Li, Hui; Yue, Fan; Wen, Hongmei

    2016-01-01

    This paper introduces the structural characterization and studies on reversible oxygenation behavior of a new oxygen carrier Co(II)-2,4-diaminobutanoic acid (DABA) complex in aqueous solution. The composition of the oxygenated complex was determined by gas volumetric method, molar ratio method, and mass spectrometry, and the formula of the oxygenated complex was determined to be [Co(DABA)2O2]. In aqueous solution, the complex can continuously uptake and release dioxygen and exhibit excellent reversibility of oxygenation and deoxygenation ability. This complex can maintain 50% of its original oxygenation capacity after 30 cycles in 24 h and retain 5% of the original oxygenation capacity after more than 260 cycles after 72 h. When a ligand analogue was linked to histidine (His), the new complex exhibited as excellent reversible oxygenation property as His-Co(II) complex. Insight into the relationship between structural detail and oxygenation properties will provide valuable suggestion for a new family of oxygen carriers. PMID:27648004

  13. Physiological responses to exergaming after spinal cord injury.

    PubMed

    Burns, Patricia; Kressler, Jochen; Nash, Mark S

    2012-01-01

    To investigate whether exergaming satisfies guideline-based intensity standards for exercise conditioning (40%/50% oxygen uptake reserve [VO2R] or heart rate reserve (HRR), or 64%/70% of peak heart rate [HRpeak]) in persons with paraplegia. Nine men and women (18-65 years old) with chronic paraplegia (T1-L1, AIS A-C) underwent intensity-graded arm cycle exercise (AE) to evaluate VO2peak and HRpeak. On 2 randomized nonconsecutive days, participants underwent graded exercise using a custom arm cycle ergometer that controls the video display of a Nintendo Gamecube (GameCycle; Three Rivers Holdings LLC, Mesa, AZ) or 15 minutes of incrementally wrist-weighted tennis gameplay against a televised opponent (XaviX Tennis System; SSD Co Ltd, Kusatsu, Japan). GameCycle exergaming (GCE) resistance settings ≥0.88 Nm evoked on average ≥50% VO2R. During XaviX Tennis System exergaming (XTSE) with wrist weights ≥2 lbs, average VO2 reached a plateau of ~40% VO2R. Measurements of HR were highly variable and reached average values ≥50% HRR during GCE at resistance settings ≥0.88 Nm. During XTSE, average HR did not reach threshold levels based on HRR for any wrist weight (20%-35% HRR). On average, intensity responses to GCE at resistance setting ≥0.88 Nm were sufficient to elicit exercise intensities needed to promote cardiorespiratory fitness in individuals with SCI. The ability of XTSE to elicit cardiorespiratory fitness benefits is most likely limited to individuals with very low fitness levels and may become subminimal with time if used as a conditioning stimulus.

  14. The Effects of a Ketogenic Diet on Exercise Metabolism and Physical Performance in Off-Road Cyclists

    PubMed Central

    Zajac, Adam; Poprzecki, Stanisław; Maszczyk, Adam; Czuba, Miłosz; Michalczyk, Małgorzata; Zydek, Grzegorz

    2014-01-01

    The main objective of this research was to determine the effects of a long-term ketogenic diet, rich in polyunsaturated fatty acids, on aerobic performance and exercise metabolism in off-road cyclists. Additionally, the effects of this diet on body mass and body composition were evaluated, as well as those that occurred in the lipid and lipoprotein profiles due to the dietary intervention. The research material included eight male subjects, aged 28.3 ± 3.9 years, with at least five years of training experience that competed in off-road cycling. Each cyclist performed a continuous exercise protocol on a cycloergometer with varied intensity, after a mixed and ketogenic diet in a crossover design. The ketogenic diet stimulated favorable changes in body mass and body composition, as well as in the lipid and lipoprotein profiles. Important findings of the present study include a significant increase in the relative values of maximal oxygen uptake (VO2max) and oxygen uptake at lactate threshold (VO2 LT) after the ketogenic diet, which can be explained by reductions in body mass and fat mass and/or the greater oxygen uptake necessary to obtain the same energy yield as on a mixed diet, due to increased fat oxidation or by enhanced sympathetic activation. The max work load and the work load at lactate threshold were significantly higher after the mixed diet. The values of the respiratory exchange ratio (RER) were significantly lower at rest and during particular stages of the exercise protocol following the ketogenic diet. The heart rate (HR) and oxygen uptake were significantly higher at rest and during the first three stages of exercise after the ketogenic diet, while the reverse was true during the last stage of the exercise protocol conducted with maximal intensity. Creatine kinase (CK) and lactate dehydrogenase (LDH) activity were significantly lower at rest and during particular stages of the 105-min exercise protocol following the low carbohydrate ketogenic diet. The alterations in insulin and cortisol concentrations due to the dietary intervention confirm the concept that the glucostatic mechanism controls the hormonal and metabolic responses to exercise. PMID:24979615

  15. The effects of a ketogenic diet on exercise metabolism and physical performance in off-road cyclists.

    PubMed

    Zajac, Adam; Poprzecki, Stanisław; Maszczyk, Adam; Czuba, Miłosz; Michalczyk, Małgorzata; Zydek, Grzegorz

    2014-06-27

    The main objective of this research was to determine the effects of a long-term ketogenic diet, rich in polyunsaturated fatty acids, on aerobic performance and exercise metabolism in off-road cyclists. Additionally, the effects of this diet on body mass and body composition were evaluated, as well as those that occurred in the lipid and lipoprotein profiles due to the dietary intervention. The research material included eight male subjects, aged 28.3 ± 3.9 years, with at least five years of training experience that competed in off-road cycling. Each cyclist performed a continuous exercise protocol on a cycloergometer with varied intensity, after a mixed and ketogenic diet in a crossover design. The ketogenic diet stimulated favorable changes in body mass and body composition, as well as in the lipid and lipoprotein profiles. Important findings of the present study include a significant increase in the relative values of maximal oxygen uptake (VO2max) and oxygen uptake at lactate threshold (VO2 LT) after the ketogenic diet, which can be explained by reductions in body mass and fat mass and/or the greater oxygen uptake necessary to obtain the same energy yield as on a mixed diet, due to increased fat oxidation or by enhanced sympathetic activation. The max work load and the work load at lactate threshold were significantly higher after the mixed diet. The values of the respiratory exchange ratio (RER) were significantly lower at rest and during particular stages of the exercise protocol following the ketogenic diet. The heart rate (HR) and oxygen uptake were significantly higher at rest and during the first three stages of exercise after the ketogenic diet, while the reverse was true during the last stage of the exercise protocol conducted with maximal intensity. Creatine kinase (CK) and lactate dehydrogenase (LDH) activity were significantly lower at rest and during particular stages of the 105-min exercise protocol following the low carbohydrate ketogenic diet. The alterations in insulin and cortisol concentrations due to the dietary intervention confirm the concept that the glucostatic mechanism controls the hormonal and metabolic responses to exercise.

  16. Model-based intensification of a fed-batch microbial process for the maximization of polyhydroxybutyrate (PHB) production rate.

    PubMed

    Penloglou, Giannis; Vasileiadou, Athina; Chatzidoukas, Christos; Kiparissides, Costas

    2017-08-01

    An integrated metabolic-polymerization-macroscopic model, describing the microbial production of polyhydroxybutyrate (PHB) in Azohydromonas lata bacteria, was developed and validated using a comprehensive series of experimental measurements. The model accounted for biomass growth, biopolymer accumulation, carbon and nitrogen sources utilization, oxygen mass transfer and uptake rates and average molecular weights of the accumulated PHB, produced under batch and fed-batch cultivation conditions. Model predictions were in excellent agreement with experimental measurements. The validated model was subsequently utilized to calculate optimal operating conditions and feeding policies for maximizing PHB productivity for desired PHB molecular properties. More specifically, two optimal fed-batch strategies were calculated and experimentally tested: (1) a nitrogen-limited fed-batch policy and (2) a nitrogen sufficient one. The calculated optimal operating policies resulted in a maximum PHB content (94% g/g) in the cultivated bacteria and a biopolymer productivity of 4.2 g/(l h), respectively. Moreover, it was demonstrated that different PHB grades with weight average molecular weights of up to 1513 kg/mol could be produced via the optimal selection of bioprocess operating conditions.

  17. Respiratory control in aquatic insects dictates their vulnerability to global warming

    PubMed Central

    Verberk, Wilco C. E. P.; Bilton, David T.

    2013-01-01

    Forecasting species responses to climatic warming requires knowledge of how temperature impacts may be exacerbated by other environmental stressors, hypoxia being a principal example in aquatic systems. Both stressors could interact directly as temperature affects both oxygen bioavailability and ectotherm oxygen demand. Insufficient oxygen has been shown to limit thermal tolerance in several aquatic ectotherms, although, the generality of this mechanism has been challenged for tracheated arthropods. Comparing species pairs spanning four different insect orders, we demonstrate that oxygen can indeed limit thermal tolerance in tracheates. Species that were poor at regulating oxygen uptake were consistently more vulnerable to the synergistic effects of warming and hypoxia, demonstrating the importance of respiratory control in setting thermal tolerance limits. PMID:23925834

  18. Respiratory control in aquatic insects dictates their vulnerability to global warming.

    PubMed

    Verberk, Wilco C E P; Bilton, David T

    2013-10-23

    Forecasting species responses to climatic warming requires knowledge of how temperature impacts may be exacerbated by other environmental stressors, hypoxia being a principal example in aquatic systems. Both stressors could interact directly as temperature affects both oxygen bioavailability and ectotherm oxygen demand. Insufficient oxygen has been shown to limit thermal tolerance in several aquatic ectotherms, although, the generality of this mechanism has been challenged for tracheated arthropods. Comparing species pairs spanning four different insect orders, we demonstrate that oxygen can indeed limit thermal tolerance in tracheates. Species that were poor at regulating oxygen uptake were consistently more vulnerable to the synergistic effects of warming and hypoxia, demonstrating the importance of respiratory control in setting thermal tolerance limits.

  19. Oxygen content tailored magnetic and electronic properties in cobaltite double perovskite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrell, Zach John; Enriquez, Erik M.; Chen, Aiping

    Oxygen content in transition metal oxides is one of the most important parameters to control for the desired physical properties. Recently, we have systematically studied the oxygen content and property relationship of the double perovskite PrBaCo 2O 5.5+δ (PBCO) thin films deposited on the LaAlO 3 substrates. The oxygen content in the films was varied by in-situ annealing in a nitrogen, oxygen, or ozone environment. Associated with the oxygen content, the out-of-plane lattice parameter progressively decreases with increasing oxygen content in the films. The saturated magnetization shows a drastic increase and resistivity is significantly reduced in the ozone annealed samples,more » indicating the strong coupling between physical properties and oxygen content. Furthermore, these results demonstrate that the magnetic properties of PBCO films are highly dependent on the oxygen contents, or the film with higher oxygen uptake has the largest magnetization.« less

  20. Oxygen content tailored magnetic and electronic properties in cobaltite double perovskite thin films

    DOE PAGES

    Harrell, Zach John; Enriquez, Erik M.; Chen, Aiping; ...

    2017-02-27

    Oxygen content in transition metal oxides is one of the most important parameters to control for the desired physical properties. Recently, we have systematically studied the oxygen content and property relationship of the double perovskite PrBaCo 2O 5.5+δ (PBCO) thin films deposited on the LaAlO 3 substrates. The oxygen content in the films was varied by in-situ annealing in a nitrogen, oxygen, or ozone environment. Associated with the oxygen content, the out-of-plane lattice parameter progressively decreases with increasing oxygen content in the films. The saturated magnetization shows a drastic increase and resistivity is significantly reduced in the ozone annealed samples,more » indicating the strong coupling between physical properties and oxygen content. Furthermore, these results demonstrate that the magnetic properties of PBCO films are highly dependent on the oxygen contents, or the film with higher oxygen uptake has the largest magnetization.« less

  1. A highly active ATP-insensitive K+ import pathway in plant mitochondria.

    PubMed

    Ruy, Fernando; Vercesi, Anibal E; Andrade, Paula B M; Bianconi, M Lucia; Chaimovich, Hernan; Kowaltowski, Alicia J

    2004-04-01

    We describe here a regulated and highly active K+ uptake pathway in potato (Solanum tuberosum), tomato (Lycopersicon esculentum), and maize (Zea mays) mitochondria. K+ transport was not inhibited by ATP, NADH, or thiol reagents, which regulate ATP-sensitive K+ channels previously described in plant and mammalian mitochondria. However, K+ uptake was completely prevented by quinine, a broad spectrum K+ channel inhibitor. Increased K+ uptake in plants leads to mitochondrial swelling, respiratory stimulation, heat release, and the prevention of reactive oxygen species formation. This newly described ATP-insensitive K+ import pathway is potentially involved in metabolism regulation and prevention of oxidative stress.

  2. Novel theranostic zinc phthalocyanine-phospholipid complex self-assembled nanoparticles for imaging-guided targeted photodynamic treatment with controllable ROS production and shape-assisted enhanced cellular uptake.

    PubMed

    Ma, Jinyuan; Li, Yang; Liu, Guihua; Li, Ai; Chen, Yilin; Zhou, Xinyi; Chen, Dengyue; Hou, Zhenqing; Zhu, Xuan

    2018-02-01

    The novel drug delivery system based on self-assembly of zinc phthalocyanine-soybean phosphatidylcholine (ZnPc-SPC) complex was developed by a co-solvent method followed by a nanoprecipitaion technique. DSPE-PEG-methotrexate (DSPE-PEG-MTX) was introduced on the surface of ZnPc-SPC self-assembled nanoparticles (ZS) to endow them with folate receptor-targeting property. NMR, XRD, FTIR, and UV-vis-NIR analysis demonstrated the weak molecular interaction between ZnPc and SPC. The ZS functionalized with DSPE-PEG-MTX (ZSPM) was successfully constructed with an average particle size of ∼170nm, a narrow size distribution, and could remain physiologically stable for at least 7days. In vitro cellular uptake and cytotoxicity studies demonstrated that ZSPM exhibited stronger cellular uptake efficacy and photodynamic cytotoxicity against HeLa and MCF-7 cells than ZS functionalized with DSPE-mPEG (ZSP) and free ZnPc. More importantly, ZSPM showed the enhanced accumulation effect at the tumor region compared with ZSP by the active-plus-passive targeting via enhanced permeability and retention (EPR) effect and folate receptor-mediated endocytosis. Furthermore, in vivo antitumor effect and histological analysis demonstrated the superior tumor growth inhibition effect of ZSPM. In addition, the needle-shape ZSP (ZSPN) exhibited better in vitro cellular uptake and in vivo tumor accumulation compared with ZSP due to the shape-assisted effect. Moreover, the interesting off-on switch effect of reactive oxygen species (ROS) production of ZnPc-SPC complex-based nanoparticles was discovered to achieve photodynamic treatment in a controllable way. These findings suggested that the ZnPc-SPC complex-based self-assembled nanoparticles could serve as a promising and effective formulation to achieve tumor-targeting fluorescence imaging and enhanced photodynamic treatment. Copyright © 2017. Published by Elsevier B.V.

  3. Comparison of phosphate uptake rates by the smallest plastidic and aplastidic protists in the North Atlantic subtropical gyre.

    PubMed

    Hartmann, Manuela; Grob, Carolina; Scanlan, David J; Martin, Adrian P; Burkill, Peter H; Zubkov, Mikhail V

    2011-11-01

    The smallest phototrophic protists (<3 μm) are important primary producers in oligotrophic subtropical gyres - the Earth's largest ecosystems. In order to elucidate how these protists meet their inorganic nutrient requirements, we compared the phosphate uptake rates of plastidic and aplastidic protists in the phosphate-depleted subtropical and tropical North Atlantic (4-29°N) using a combination of radiotracers and flow cytometric sorting on two Atlantic Meridional Transect cruises. Plastidic protists were divided into two groups according to their size (<2 and 2-3 μm). Both groups of plastidic protists showed higher phosphate uptake rates per cell than the aplastidic protists. Although the phosphate uptake rates of protist cells were on average seven times (P<0.001) higher than those of bacterioplankton, the biomass-specific phosphate uptake rates of protists were one fourth to one twentieth of an average bacterioplankton cell. The unsustainably low biomass-specific phosphate uptake by both plastidic and aplastidic protists suggests the existence of a common alternative means of phosphorus acquisition - predation on phosphorus-rich bacterioplankton cells. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. Cardiorespiratory collapse at high temperature in swimming adult sockeye salmon

    PubMed Central

    Eliason, Erika J.; Clark, Timothy D.; Hinch, Scott G.; Farrell, Anthony P.

    2013-01-01

    Elevated summer river temperatures are associated with high in-river mortality in adult sockeye salmon (Oncorhynchus nerka) during their once-in-a-lifetime spawning migration up the Fraser River (British Columbia, Canada). However, the mechanisms underlying the decrease in whole-animal performance and cardiorespiratory collapse above optimal temperatures for aerobic scope (Topt) remain elusive for aquatic ectotherms. This is in part because all the relevant cardiorespiratory variables have rarely been measured directly and simultaneously during exercise at supra-optimal temperatures. Using the oxygen- and capacity-limited thermal tolerance hypothesis as a framework, this study simultaneously and directly measured oxygen consumption rate (MO2), cardiac output , heart rate (fH), and cardiac stroke volume (Vs), as well as arterial and venous blood oxygen status in adult sockeye salmon swimming at temperatures that bracketed Topt to elucidate possible limitations in oxygen uptake into the blood or internal delivery through the oxygen cascade. Above Topt, the decline in MO2max and aerobic scope was best explained by a cardiac limitation, triggered by reduced scope for fH. The highest test temperatures were characterized by a negative scope for fH, dramatic decreases in maximal and maximal Vs, and cardiac dysrhythmias. In contrast, arterial blood oxygen content and partial pressure were almost insensitive to supra-optimal temperature, suggesting that oxygen delivery to and uptake by the gill were not a limiting factor. We propose that the high-temperature-induced en route mortality in migrating sockeye salmon may be at least partly attributed to physiological limitations in aerobic performance due to cardiac collapse via insufficient scope for fH. Furthermore, this improved mechanistic understanding of cardiorespiratory collapse at high temperature is likely to have broader application to other salmonids and perhaps other aquatic ectotherms. PMID:27293592

  5. Cardiorespiratory collapse at high temperature in swimming adult sockeye salmon.

    PubMed

    Eliason, Erika J; Clark, Timothy D; Hinch, Scott G; Farrell, Anthony P

    2013-01-01

    Elevated summer river temperatures are associated with high in-river mortality in adult sockeye salmon (Oncorhynchus nerka) during their once-in-a-lifetime spawning migration up the Fraser River (British Columbia, Canada). However, the mechanisms underlying the decrease in whole-animal performance and cardiorespiratory collapse above optimal temperatures for aerobic scope (T opt) remain elusive for aquatic ectotherms. This is in part because all the relevant cardiorespiratory variables have rarely been measured directly and simultaneously during exercise at supra-optimal temperatures. Using the oxygen- and capacity-limited thermal tolerance hypothesis as a framework, this study simultaneously and directly measured oxygen consumption rate (MO2), cardiac output [Formula: see text], heart rate (f H), and cardiac stroke volume (V s), as well as arterial and venous blood oxygen status in adult sockeye salmon swimming at temperatures that bracketed T opt to elucidate possible limitations in oxygen uptake into the blood or internal delivery through the oxygen cascade. Above T opt, the decline in MO2max and aerobic scope was best explained by a cardiac limitation, triggered by reduced scope for f H. The highest test temperatures were characterized by a negative scope for f H, dramatic decreases in maximal [Formula: see text] and maximal V s, and cardiac dysrhythmias. In contrast, arterial blood oxygen content and partial pressure were almost insensitive to supra-optimal temperature, suggesting that oxygen delivery to and uptake by the gill were not a limiting factor. We propose that the high-temperature-induced en route mortality in migrating sockeye salmon may be at least partly attributed to physiological limitations in aerobic performance due to cardiac collapse via insufficient scope for f H. Furthermore, this improved mechanistic understanding of cardiorespiratory collapse at high temperature is likely to have broader application to other salmonids and perhaps other aquatic ectotherms.

  6. Increase in nitrate uptake by soybean plants during interruption of the dark period with low intensity light

    NASA Technical Reports Server (NTRS)

    Raper, C. D. Jr; Vessey, J. K.; Henry, L. T.

    1991-01-01

    Diurnal patterns of net NO3- uptake by nonnodulated soybean [Glycine max (L.) Merr. cv. Ransom] plants growing in flowing hydroponic culture at 26 and 16 degrees C root temperatures were measured at hourly intervals during alternate days of a 12-day growth period. Ion chromatography was used to determine removal of NO3- from the culture solution. Day and night periods of 9 and 15 h were used during growth. The night period included two 6-h dark periods and an intervening 3-h period of night interruption by incandescent lamps to effect a long-day photoperiod and repress floral initiation. At both root temperatures, the average specific rates of NO3- uptake were twice as great during the night interruption period as during the day period; they were greater during the day period than during the dark periods; and they were greater during the dark period immediately following the day period than during the later dark period that followed the night interruption. While these average patterns were repetitious among days, measured rates of uptake varied hourly and included intervals of net efflux scattered through the day period and more frequently through the 2 dark periods. Root temperature did not affect the average daily specific rates of uptake or the qualitative relationships among day, dark and night interruption periods of the diurnal cycle.

  7. Gas adsorption capacity of wood pellets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazdanpanah, F.; Sokhansanj, Shahabaddine; Lim, C. Jim

    In this paper, temperature-programmed desorption (TPD) analysis was used to measure and analyze the adsorption of off-gases and oxygen by wood pellets during storage. Such information on how these gases interact with the material helps in the understanding of the purging/stripping behavior of off-gases to develop effective ventilation strategies for wood pellets. Steam-exploded pellets showed the lowest carbon dioxide (CO 2) uptake compared to the regular and torrefied pellets. The high CO 2 adsorption capacity of the torrefied pellets could be attributed to their porous structure and therefore greater available surface area. Quantifying the uptake of carbon monoxide by pelletsmore » was challenging due to chemical adsorption, which formed a strong bond between the material and carbon monoxide. The estimated energy of desorption for CO (97.8 kJ/mol) was very high relative to that for CO 2 (7.24 kJ/mol), demonstrating the mechanism of chemical adsorption and physical adsorption for CO and CO 2, respectively. As for oxygen, the strong bonds that formed between the material and oxygen verified the existence of chemical adsorption and formation of an intermediate material.« less

  8. [Respiration of wheat root cells under simultaneous inhibition of parts I and III of the electron transport chain of mitochondria by rotenone and antimycine A].

    PubMed

    Rakhmatullina, D F; Gordon, L Kh; Ogorodnikova, T I

    2005-01-01

    Respiration of excised roots of 5 day old wheat seedlings with blocked mitochondrial oxidation under simultaneous action of rotenone and antimycine A was studied. A reduced rate of oxygen uptake was observed within the first hour of root treatment inhibitors. However, after a 5 h exposure there was an increase in oxygen uptake, which was prevented by KCN but amplified by malate and ascorbate. The application of inhibitors caused a considerable increase in the respiratory coefficient (RC) up to 2.1, that suggests a significant CO2 release, when the initial sites of mitochondrial electron transport chain were inhibited. RC did not raise, when ascorbate was added in the presence of inhibitors. We assume that inhibition of mitochondrial oxidation at I and III sites of electron transport chain facilitates switching on the alternative paths of reductant translocation to oxygen. Participation of ATPases and redox system of plasma membrane in the response reactions of respiration directed to the restoration of ion, particularly, proton homeostasis in conditions of inhibited mitochondrial oxidation is discussed.

  9. Complexing Methylene Blue with Phosphorus Dendrimers to Increase Photodynamic Activity.

    PubMed

    Dabrzalska, Monika; Janaszewska, Anna; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara

    2017-02-23

    The efficiency of photodynamic therapy is limited mainly due to low selectivity, unfavorable biodistribution of photosensitizers, and long-lasting skin sensitivity to light. However, drug delivery systems based on nanoparticles may overcome the limitations mentioned above. Among others, dendrimers are particularly attractive as carriers, because of their globular architecture and high loading capacity. The goal of the study was to check whether an anionic phosphorus dendrimer is suitable as a carrier of a photosensitizer-methylene blue (MB). As a biological model, basal cell carcinoma cell lines were used. We checked the influence of the MB complexation on its singlet oxygen production ability using a commercial fluorescence probe. Next, cellular uptake, phototoxicity, reactive oxygen species (ROS) generation, and cell death were investigated. The MB-anionic dendrimer complex (MB-1an) was found to generate less singlet oxygen; however, the complex showed higher cellular uptake and phototoxicity against basal cell carcinoma cell lines, which was accompanied with enhanced ROS production. Owing to the obtained results, we conclude that the photodynamic activity of MB complexed with an anionic dendrimer is higher than free MB against basal cell carcinoma cell lines.

  10. Gas adsorption capacity of wood pellets

    DOE PAGES

    Yazdanpanah, F.; Sokhansanj, Shahabaddine; Lim, C. Jim; ...

    2016-02-03

    In this paper, temperature-programmed desorption (TPD) analysis was used to measure and analyze the adsorption of off-gases and oxygen by wood pellets during storage. Such information on how these gases interact with the material helps in the understanding of the purging/stripping behavior of off-gases to develop effective ventilation strategies for wood pellets. Steam-exploded pellets showed the lowest carbon dioxide (CO 2) uptake compared to the regular and torrefied pellets. The high CO 2 adsorption capacity of the torrefied pellets could be attributed to their porous structure and therefore greater available surface area. Quantifying the uptake of carbon monoxide by pelletsmore » was challenging due to chemical adsorption, which formed a strong bond between the material and carbon monoxide. The estimated energy of desorption for CO (97.8 kJ/mol) was very high relative to that for CO 2 (7.24 kJ/mol), demonstrating the mechanism of chemical adsorption and physical adsorption for CO and CO 2, respectively. As for oxygen, the strong bonds that formed between the material and oxygen verified the existence of chemical adsorption and formation of an intermediate material.« less

  11. In vitro and in vivo evaluations of a hydrophilic 64Cu-bis(thiosemicarbazonato)-glucose conjugate for hypoxia imaging.

    PubMed

    Bayly, Simon R; King, Robert C; Honess, Davina J; Barnard, Peter J; Betts, Helen M; Holland, Jason P; Hueting, Rebekka; Bonnitcha, Paul D; Dilworth, Jonathan R; Aigbirhio, Franklin I; Christlieb, Martin

    2008-11-01

    A water-soluble glucose conjugate of the hypoxia tracer 64Cu-diacetyl-bis(N4-methylthiosemicarbazone) (64Cu-ATSM) was synthesized and radiolabeled (64Cu-ATSE/A-G). Here we report our initial biological experiments with 64Cu-ATSE/A-G and compare the results with those obtained for 64Cu-ATSM and 18F-FDG. The uptake of 64Cu-ATSE/A-G and 64Cu-ATSM into HeLa cells in vitro was investigated at a range of dissolved oxygen concentrations representing normoxia, hypoxia, and anoxia. Small-animal PET with 64Cu-ATSE/A-G was performed in male BDIX rats implanted with P22 syngeneic carcinosarcomas. Images of 64Cu-ATSM and 18F-FDG were obtained in the same model for comparison. 64CuATSE/A-G showed oxygen concentration-dependent uptake in vitro and, under anoxic conditions, showed slightly lower levels of cellular uptake than 64Cu-ATSM; uptake levels under hypoxic conditions were also lower. Whereas the normoxic uptake of 64Cu-ATSM increased linearly over time, 64Cu-ATSE/A-G uptake remained at low levels over the entire time course. In the PET study, 64CuATSE/A-G showed good tumor uptake and a biodistribution pattern substantially different from that of each of the controls. In marked contrast to the findings for 64Cu-ATSM, renal clearance and accumulation in the bladder were observed. 64Cu-ATSE/A-G did not display the characteristic brain and heart uptake of 18F-FDG. The in vitro cell uptake studies demonstrated that 64Cu-ATSE/A-G retained hypoxia selectivity and had improved characteristics when compared with 64Cu-ATSM. The in vivo PET results indicated a difference in the excretion pathways, with a shift from primarily hepatointestinal for 64Cu-ATSM to partially renal with 64Cu-ATSE/A-G. This finding is consistent with the hydrophilic nature of the glucose conjugate. A comparison with 18F-FDG PET results revealed that 64Cu-ATSE/A-G was not a surrogate for glucose metabolism. We have demonstrated that our method for the modification of Cu-bis(thiosemicarbazonato) complexes allows their biodistribution to be modified without negating their hypoxia selectivity or tumor uptake properties.

  12. [Crabtree effect caused by ketoses in isolated rat hepatocytes].

    PubMed

    Martínez, P; Carrascosa, J M; Núñez de Castro, I

    1982-01-01

    Oxygen uptake and glycolytic activity were studied in hepatocytes isolated from fed rats. The addition of fructose or tagatose resulted in a 38% and 31% inhibition of cellular respiration respectively. The addition of 10 mM D-glyceraldehyde caused a slight Crabtree effect. Glucose, L-sorbose, or glycerol failed to modify oxygen consumption. Only incubation in the presence of fructose showed a high aerobic glycolysis measured by lactate production.

  13. Mechanisms underlying the protective effects of myricetin and quercetin following oxygen/glucose deprivation-induced cell swelling and the reduction in glutamate uptake in glial cells

    USDA-ARS?s Scientific Manuscript database

    C6 glial cells were exposed to oxygen-glucose deprivation (OGD) in cell culture for 5 hr and cell swelling was determined 90 min after the end of OGD. The OGD-induced increase in swelling was significantly blocked by the two flavonoids studied, quercetin and myricetin. The OGD-induced increase in ...

  14. The Effect of Size of Red Cells on the Kinetics of Their Oxygen Uptake

    PubMed Central

    Holland, R. A. B.; Forster, R. E.

    1966-01-01

    Using a double-beam stopped-flow apparatus estimations were made of the velocity constant for the initial uptake of oxygen by fully reduced erythrocytes (k'c). Mammalian cells were studied with volumes varying from 20 µ3 (goat) to 90 µ3 (man), as were bullfrog cells (680 µ3). Measurements were made under physiological conditions of pH, P CO2, and temperature. In man k'c was 80 mM -1 sec-1 and in other species smaller cells generally had a greater value for k'c than did the larger cells. In the goat it was 1.8 times as great as the human value; in the bullfrog it was only one-fifth as great. These differences could not be accounted for by interspecific differences in hemoglobin kinetics. The differences probably represent a true effect of size conferring some biological advantage on the species with the smaller cells. The cell membrane offered resistance to oxygen passage. Using the usual red cell model of an infinite sheet of reduced hemoglobin, membrane permeability appeared to differ among mammals. If, as is likely, the effective cell halfthickness differs among mammals, actual membrane permeability differences may be less. A method for measurement of oxygen saturation of dilute cell suspensions is also described. PMID:5943611

  15. A comparison of head motion and prefrontal haemodynamics during upright and recumbent cycling exercise.

    PubMed

    Tempest, Gavin D; Eston, Roger G; Parfitt, Gaynor

    2017-11-01

    The aim of this observational study was to compare head motion and prefrontal haemodynamics during exercise using three commercial cycling ergometers. Participants (n = 12) completed an incremental exercise test to exhaustion during upright, recumbent and semi-recumbent cycling. Head motion (using accelerometry), physiological data (oxygen uptake, end-tidal carbon dioxide [P ET CO 2 ] and heart rate) and changes in prefrontal haemodynamics (oxygenation, deoxygenation and blood volume using near infrared spectroscopy [NIRS]) were recorded. Despite no difference in oxygen uptake and heart rate, head motion was higher and P ET CO 2 was lower during upright cycling at maximal exercise (P<0·05). Analyses of covariance (covariates: head motion P>0·05; P ET CO 2 , P<0·01) revealed that prefrontal oxygenation was higher during semi-recumbent than recumbent cycling and deoxygenation and blood volume were higher during upright than recumbent and semi-recumbent cycling (respectively; P<0·05). This work highlights the robustness of the utility of NIRS to head motion and describes the potential postural effects upon the prefrontal haemodynamic response during upright and recumbent cycling exercise. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  16. Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles

    PubMed Central

    Coulter, Jonathan A; Jain, Suneil; Butterworth, Karl T; Taggart, Laura E; Dickson, Glenn R; McMahon, Stephen J; Hyland, Wendy B; Muir, Mark F; Trainor, Coleman; Hounsell, Alan R; O’Sullivan, Joe M; Schettino, Giuseppe; Currell, Fred J; Hirst, David G; Prise, Kevin M

    2012-01-01

    Background This follow-up study aims to determine the physical parameters which govern the differential radiosensitization capacity of two tumor cell lines and one immortalized normal cell line to 1.9 nm gold nanoparticles. In addition to comparing the uptake potential, localization, and cytotoxicity of 1.9 nm gold nanoparticles, the current study also draws on comparisons between nanoparticle size and total nanoparticle uptake based on previously published data. Methods We quantified gold nanoparticle uptake using atomic emission spectroscopy and imaged intracellular localization by transmission electron microscopy. Cell growth delay and clonogenic assays were used to determine cytotoxicity and radiosensitization potential, respectively. Mechanistic data were obtained by Western blot, flow cytometry, and assays for reactive oxygen species. Results Gold nanoparticle uptake was preferentially observed in tumor cells, resulting in an increased expression of cleaved caspase proteins and an accumulation of cells in sub G1 phase. Despite this, gold nanoparticle cytotoxicity remained low, with immortalized normal cells exhibiting an LD50 concentration approximately 14 times higher than tumor cells. The surviving fraction for gold nanoparticle-treated cells at 3 Gy compared with that of untreated control cells indicated a strong dependence on cell type in respect to radiosensitization potential. Conclusion Gold nanoparticles were most avidly endocytosed and localized within cytoplasmic vesicles during the first 6 hours of exposure. The lack of significant cytotoxicity in the absence of radiation, and the generation of gold nanoparticle-induced reactive oxygen species provide a potential mechanism for previously reported radiosensitization at megavoltage energies. PMID:22701316

  17. Running economy : the forgotten factor in elite performance.

    PubMed

    Foster, Carl; Lucia, Alejandro

    2007-01-01

    Running performance depends on maximal oxygen uptake (VO(2max)), the ability to sustain a high percentage of VO(2max) for an extended period of time and running economy. Running economy has been studied relatively less than the other factors. Running economy, measured as steady state oxygen uptake (VO(2)) at intensities below the ventilatory threshold is the standard method. Extrapolation to a common running speed (268 m/min) or as the VO(2) required to run a kilometer is the standard method of assessment. Individuals of East African origin may be systematically more economical, although a smaller body size and a thinner lower leg may be the primary factors. Strategies for improving running economy remain to be developed, although it appears that high intensity running may be a common element acting to improve economy.

  18. Exercise Training During +Gz Acceleration

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Chou, J. L.; Simonson, S. R.; Jackson, C. G. R.; Barnes, P. R.

    1999-01-01

    The overall purpose is to study the effect of passive (without exercise) and active (with exercise) +Gz (head-to-foot) acceleration training, using a short-arm (1.9m radius) centrifuge, on post- training maximal oxygen uptake (VO2 max, work capacity) and 70 deg head-up tilt (orthostatic) tolerance in ambulatory subjects to test the hypothesis that (a) both passive and active acceleration training will improve post-training tilt-tolerance, and (b) there will be no difference in tilt-tolerance between passive and active exercise acceleration training because increased hydrostatic and blood pressures, rather than increased muscular metabolism, will provide the major adaptive stimulus. The purpose of the pilot study was to test the hypothesis that there would be no significant difference in the metabolic responses (oxygen uptake, heart rate, pulmonary ventilation, or respiratory exchange ratio) during supine exercise with moderate +Gz acceleration.

  19. [Dynamics of oxygen uptake during a 100 m front crawl event, performed during competition ].

    PubMed

    Jalab, Chadi; Enea, Carina; Delpech, Nathalie; Bernard, Olivier

    2011-04-01

    The main purpose of this study is to estimate the dynamics of oxygen uptake (VO2) during a 100 m front crawl event, performed in competition conditions. Eleven trained swimmers participated in 2 separate sessions, in a 25 m swimming pool. Maximal oxygen uptake (VO2max) was determined during a 400 m maximal event. Swimmers also performed a 100 m front crawl in competition conditions, and then, 3 tests (25, 50, and 75 m) following the pacing strategy of the 100 m event. To be free of technical constraints, VO2 was not measured during the tests, but before and just at the end of each test with a 1 min breath-by-breath method. Each post-test VO2 measurement (after 25, 50, 75, and 100 m) allows us to reconstruct the VO2 kinetics of the 100 m performance. Our results differ from previous studies in that VO2 increases faster in the first half of the race (at 50 m, VO2 ≈ 94% VO2max), reaches VO2max at the 75 m mark; then a decrease in VO2 corresponding to 7% of VO2max appears during the last 25 m. These differences are supposed to be mainly the consequences of the adoption of technical elements and a pacing strategy similar to competition conditions. In the future, these observations may lead to different considerations of the bioenergetic contributions.

  20. Dynamics of oxygen and carbon dioxide in rhizospheres of Lobelia dortmanna - a planar optode study of belowground gas exchange between plants and sediment.

    PubMed

    Lenzewski, Nikola; Mueller, Peter; Meier, Robert Johannes; Liebsch, Gregor; Jensen, Kai; Koop-Jakobsen, Ketil

    2018-04-01

    Root-mediated CO 2 uptake, O 2 release and their effects on O 2 and CO 2 dynamics in the rhizosphere of Lobelia dortmanna were investigated. Novel planar optode technology, imaging CO 2 and O 2 distribution around single roots, provided insights into the spatiotemporal patterns of gas exchange between roots, sediment and microbial community. In light, O 2 release and CO 2 uptake were pronounced, resulting in a distinct oxygenated zone (radius: c. 3 mm) and a CO 2 -depleted zone (radius: c. 2 mm) around roots. Simultaneously, however, microbial CO 2 production was stimulated within a larger zone around the roots (radius: c. 10 mm). This gave rise to a distinct pattern with a CO 2 minimum at the root surface and a CO 2 maximum c. 2 mm away from the root. In darkness, CO 2 uptake ceased, and the CO 2 -depleted zone disappeared within 2 h. By contrast, the oxygenated root zone remained even after 8 h, but diminished markedly over time. A tight coupling between photosynthetic processes and the spatiotemporal dynamics of O 2 and CO 2 in the rhizosphere of Lobelia was demonstrated, and we suggest that O 2 -induced stimulation of the microbial community in the sediment increases the supply of inorganic carbon for photosynthesis by building up a CO 2 reservoir in the rhizosphere. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  1. The efficacy and safety of whole-body electromyostimulation in applying to human body: based from graded exercise test.

    PubMed

    Jee, Yong-Seok

    2018-02-01

    Recently, whole body-electromyostimulation (WB-EMS) has upgraded its functions and capabilities and has overcome limitations and inconveniences from past systems. Although the efficacy and safety of EMS have been examined in some studies, specific guidelines for applying WB-EMS are lacking. To determine the efficacy and safety of applying it in healthy men to improve cardiopulmonary and psychophysiological variables when applying WB-EMS. Sixty-four participants were randomly grouped into control group (without electrical stimuli) or WB-EMS group after a 6-week baseline period. The control group (n=33; female. 15; male, 18) wore the WB-EMS suit as much as the WB-EMS group (n=31; female, 15; male, 16). There were no abnormal changes in the cardiopulmonary variables (heart rate, systolic blood pressure [SBP], diastolic blood pressure, and oxygen uptake) during or after the graded exercise test (GXT) in both groups. There was a significant decrease in SBP and an increase of oxygen uptake from stages 3 to 5 of the GXT in the WB-EMS group. The psychophysiological factors for a WB-EMS group, which consisted of soreness, anxiety, fatigability, and sleeplessness were significantly decreased after the experiment. The application of WB-EMS in healthy young men did not negatively affect the cardiopulmonary and psychophysiological factors. Rather, the application of WB-EMS improved SBP and oxygen uptake in submaximal and maximal stages of GXT. This study also confirmed that 6 weeks of WB-EMS training can improve psychophysiological factors.

  2. Responsive measures to prehabilitation in patients undergoing bowel resection surgery.

    PubMed

    Kim, Do Jun; Mayo, Nancy E; Carli, Franco; Montgomery, David L; Zavorsky, Gerald S

    2009-02-01

    Surgical patients often show physiological and metabolic distress, muscle weakness, and long hospital stays. Physical conditioning might help recovery. We attempted to identify the most responsive measure of aerobic fitness from a four-week pre-surgical aerobic exercise program (prehabilitation) in patients undergoing major bowel resection. Twenty-one subjects randomized two to one (exercise: control) scheduled for colorectal surgery. Fourteen subjects [Body Mass Index (BMI) = 27 +/- 6 kg/m(2); maximal oxygen uptake (VO(2max)) = 22 +/- 10 ml/kg/min] underwent 3.8 +/- 1.2 weeks (27 +/- 8 sessions) of progressive, structured pre-surgical aerobic exercise training at 40 to 65% of heart rate reserve (%HRR). Peak power output was the only maximal measure that was responsive to training [26 +/- 27%, Effects Size (ES) = 0.24; Standardized Response Mean (SRM) = 1.05; p < 0.05]. For the submaximal measures, heart rate and oxygen uptake during submaximal exercise was most responsive to training (decrease by 13% +/- 15%, ES = -0.24; SRM = -0.57; and 7% +/- 6%, ES = -0.40; SRM -0.97; p < 0.05) at an exercise intensity of 76 +/- 47 W. There was no change to maximal or submaximal measures in the control group. The distance walked over six minutes improved in both groups (by approximately 30 m), but the effect size and t-statistic were higher in the exercise group. Heart rate and oxygen uptake during submaximal exercise, and peak power output are the most responsive measures to four weeks of prehabilitation in subjects with low initial fitness.

  3. Monolayer to MTS: using SEM, HIM, TEM and SERS to compare morphology, nanosensor uptake and redox potential in MCF7 cells

    NASA Astrophysics Data System (ADS)

    Jamieson, L. E.; Bell, A. P.; Harrison, D. J.; Campbell, C. J.

    2015-06-01

    Cellular redox potential is important for the control and regulation of a vast number of processes occurring in cells. When the fine redox potential balance within cells is disturbed it can have serious consequences such as the initiation or progression of disease. It is thought that a redox gradient develops in cancer tumours where the peripheral regions are well oxygenated and internal regions, further from vascular blood supply, become starved of oxygen and hypoxic. This makes treatment of these areas more challenging as, for example, radiotherapy relies on the presence of oxygen. Currently techniques for quantitative analysis of redox gradients are limited. Surface enhanced Raman scattering (SERS) nanosensors (NS) have been used to detect redox potential in a quantitative manner in monolayer cultured cells with many advantages over other techniques. This technique has considerable potential for use in multicellular tumour spheroids (MTS) - a three dimensional (3D) cell model which better mimics the tumour environment and gradients that develop. MTS are a more realistic model of the in vivo cellular morphology and environment and are becoming an increasingly popular in vitro model, replacing traditional monolayer culture. Imaging techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM) and helium ion microscopy (HIM) were used to investigate differences in morphology and NS uptake in monolayer culture compared to MTS. After confirming NS uptake, the first SERS measurements revealing quantitative information on redox potential in MTS were performed.

  4. The most economical cadence increases with increasing workload.

    PubMed

    Foss, Øivind; Hallén, Jostein

    2004-08-01

    Several studies have suggested that the most economical cadence in cycling increases with increasing workload. However, none of these studies have been able to demonstrate this relationship with experimental data. The purpose of this study was to test the hypothesis that the most economical cadence in elite cyclists increases with increasing workload and to explore the effect of cadence on performance. Six elite road cyclists performed submaximal and maximal tests at four different cadences (60, 80, 100 and 120 rpm) on separate days. Respiratory data was measured at 0, 50, 125, 200, 275 and 350 W during the submaximal test and at the end of the maximal test. The maximal test was carried out as an incremental test, conducted to reveal differences in maximal oxygen uptake and time to exhaustion (short-term performance) between cadences. The results showed that the lowest oxygen uptake, i.e. the best work economy, shifted from 60 rpm at 0 W to 80 rpm at 350 W ( P<0.05). No difference was found in maximal oxygen uptake among cadences ( P>0.05), while the best performance was attained at the same cadence that elicited the best work economy (80 rpm) at 350 W ( P<0.05). This study demonstrated that the most economical cadence increases with increasing workload in elite cyclists. It was further shown that work economy and performance are related during short efforts (approximately 5 min) over a wide range of cadences.

  5. Exercise intensities during a ballet lesson in female adolescents with different technical ability.

    PubMed

    Guidetti, L; Gallotta, M C; Emerenziani, G P; Baldari, C

    2007-09-01

    To investigate the exercise intensity during a typical grade five ballet lesson, thirty-nine dancers (13 - 16 yrs) were divided into three different technical proficiency groups: low level (n = 13), intermediate level (n = 14), and high level (n = 12). A progressively incremented treadmill test was administered to determine VO(2max), individual ventilatory threshold (IVT), and the individual anaerobic threshold (IAT). Oxygen uptake (VO(2)), heart rate (HR) and blood lactate (La) were then evaluated during a grade five ballet lesson. Oxygen uptake at IVT, IAT and maximal oxygen uptake were greater (p < 0.05) in the high-level dancers indicating a higher level of fitness. HR and %VO(2max) obtained during the various exercises of the ballet lesson were similar among groups. During the ballet lesson, low technical level dancers had more V.O (2) and La values above (p < 0.05) the IAT than the other groups. Correlation analysis revealed that the number of exercises performed above IAT was positively related to anthropometric characteristics (BMI, %FM; r = 0.36, p < 0.05; r = 0.46, p < 0.01), negatively related to fitness parameters (VO(2IVT), VO(2IAT), VO(2max); r between - 0.43 and - 0.69; p < 0.001) and to technical level (r = - 0.70; p < 0.001). The subjects classified as having low technical abilities had lower fitness levels and performed more exercises above IAT than the more skilled dancers.

  6. Examination of reptilian erythrocytes as models of the progenitor of mammalian red blood cells.

    PubMed

    Mauro, N A; Isaacks, R E

    1997-04-01

    Among the reptile species examined, only loggerhead turtle RBC with their high capacity of anaerobic metabolism and low oxygen uptake possess all the suitable metabolic characteristics as a model for transition from aerobic to anaerobic metabolism of mammalian erythrocytes (RBC). Neither the alligator RBC, which lack a significant level of anaerobic metabolism, nor the savannah monitor lizard RBC with their higher level of temperature-dependent aerobic metabolism, possess all the characteristics suitable as a model for the metabolic evolution of mammalian RBC. In the formation of this metabolic model, no phylogenetic relationships are implied or inferred. The metabolic similarity of loggerhead turtle RBC to mammalian RBC is further indicated by the high activity of the pentose phosphate (PPO4) pathway, as evidenced by the low thermal sensitivity of their oxygen uptake and by their low 14C6O2/14C1O2 ratios. By comparison, although the 14C6O2/14C1O2 ratios of both alligator and monitor lizard RBC are low as compared to loggerhead turtle RBC, only alligator RBC share with loggerhead turtle RBC a low thermal sensitivity of their oxygen uptake. A comparison of hemoglobin concentrations relative to hematocrit for loggerhead turtle, alligator and monitor lizard RBC indicates that RBC hemoglobin concentrations are approximately the same for each of these species. Apart from this similarity, RBC from these three species of reptiles were differentiated in this study with respect to their density and osmotic fragility.

  7. Initial Net CO2 Uptake Responses and Root Growth for a CAM Community Placed in a Closed Environment

    PubMed Central

    NOBEL, PARK S.; BOBICH, EDWARD G.

    2002-01-01

    To help understand carbon balance between shoots and developing roots, 41 bare‐root crassulacean acid metabolism (CAM) plants native to the Sonoran Desert were studied in a glass‐panelled sealable room at day/night air temperatures of 25/15 °C. Net CO2 uptake by the community of Agave schottii, Carnegia gigantea, Cylindropuntia versicolor, Ferocactus wislizenii and Opuntia engelmannii occurred 3 weeks after watering. At 4 weeks, the net CO2 uptake rate measured for south‐east‐facing younger parts of the shoots averaged 1·94 µmol m–2 s–1 at night, considerably higher than the community‐level nocturnal net CO2 uptake averaged over the total shoot surface, primarily reflecting the influences of surface orientation on radiation interception (predicted net CO2 uptake is twice as high for south‐east‐facing surfaces compared with all compass directions). Estimated growth plus maintenance respiration of the roots averaged 0·10 µmol m–2 s–1 over the 13‐week period, when the community had a net carbon gain from the atmosphere of 4 mol C while the structural C incorporated into the roots was 23 mol. Thus, these five CAM species diverted all net C uptake over the 13‐week period plus some existing shoot C to newly developing roots. Only after sufficient roots develop to support shoot water and nutrient requirements will the plant community have net above‐ground biomass gains. PMID:12466099

  8. Multifunctional Micelles Dually Responsive to Hypoxia and Singlet Oxygen: Enhanced Photodynamic Therapy via Interactively Triggered Photosensitizer Delivery.

    PubMed

    Li, Juanjuan; Meng, Xuan; Deng, Jian; Lu, Di; Zhang, Xin; Chen, Yanrui; Zhu, Jundong; Fan, Aiping; Ding, Dan; Kong, Deling; Wang, Zheng; Zhao, Yanjun

    2018-05-23

    Nanoparticulate antitumor photodynamic therapy (PDT) has been suffering from the limited dose accumulation in tumor. Herein, we report dually hypoxia- and singlet oxygen-responsive polymeric micelles to efficiently utilize the photosensitizer deposited in the disease site and hence facilely improve PDT's antitumor efficacy. Tailored methoxy poly(ethylene glycol)-azobenzene-poly(aspartic acid) copolymer conjugate with imidazole as the side chains was synthesized. The conjugate micelles (189 ± 19 nm) obtained by self-assembly could efficiently load a model photosensitizer, chlorin e6 (Ce6) with a loading of 4.1 ± 0.5% (w/w). The facilitated cellular uptake of micelles was achieved by the triggered azobenzene collapse that provoked poly(ethylene glycol) shedding; rapid Ce6 release was enabled by imidazole oxidation that induced micelle disassembly. In addition, the singlet oxygen-mediated cargo release not only addressed the limited diffusion range and short half-life of singlet oxygen but also decreased the oxygen level, which could in turn enhance internalization and increase the intracellular Ce6 concentration. The hypoxia-induced dePEGylation and singlet oxygen-triggered Ce6 release was demonstrated both in aqueous buffer and in Lewis lung carcinoma (LLC) cells. The cellular uptake study demonstrated that the dually responsive micelles could deliver significantly more Ce6 to the cells, which resulted in a substantially improved cytotoxicity. This concurred well with the superior in vivo antitumor ability of micelles in a LLC tumor-bearing mouse model. This study presented an intriguing nanoplatform to realize interactively triggered photosensitizer delivery and improved antitumor PDT efficacy.

  9. Detection of phosphohydrolytic enzyme activity through the oxygen isotope composition of dissolved phosphate

    NASA Astrophysics Data System (ADS)

    Colman, A. S.

    2016-02-01

    Phosphohydrolytic enzymes play an important role in phosphorus remineralization. As they release phosphate (Pi) from various organophosphorus compounds, these enzymes facilitate the transfer of oxygen atoms from water to the phosphoryl moieties. Most such enzymatic reactions impart a significant isotopic fractionation to the oxygen transferred. If this reaction occurs within a cell, then the resultant oxygen isotope signal is overprinted by continued recycling of the Pi. However, if this reaction occurs extracellularly, then the isotopic signal will be preserved until the Pi is transported back into a cell. Thus, the oxygen isotope composition of Pi (δ18Op) in an aquatic ecosystem can serve as a useful indicator of the mechanisms by which P is remineralized. We develop a time-dependent model illustrating the sensitivity of the δ18O of dissolved phosphate to various modes of P remineralization. The model is informed by cell lysis experiments that reveal the relative proportions of P­i that are directly liberated from cytosol vs. regenerated from co-liberated dissolved organic phosphorus compounds via extracellular hydrolysis. By incorporating both cellular uptake and release fluxes of P, we show that the degree of isotopic disequilibrium in an aquatic ecosystem can be a strong indicator of P remineralization mode. Apparent oxygen isotope equilibrium between Pi and water arises in this model as a steady-state scenario in which fractionation upon cellular uptake of Pi counterbalances the hydrolytic source flux of disequilibrated Pi. Low and high rates of extracellular phosphohydrolase activity are shown to produce steady-state δ18Op values that are respectively above or below thermodynamic equilibrium compositions.

  10. Heme, an Essential Nutrient from Dietary Proteins, Critically Impacts Diverse Physiological and Pathological Processes

    PubMed Central

    Hooda, Jagmohan; Shah, Ajit; Zhang, Li

    2014-01-01

    Heme constitutes 95% of functional iron in the human body, as well as two-thirds of the average person’s iron intake in developed countries. Hence, a wide range of epidemiological studies have focused on examining the association of dietary heme intake, mainly from red meat, with the risks of common diseases. High heme intake is associated with increased risk of several cancers, including colorectal cancer, pancreatic cancer and lung cancer. Likewise, the evidence for increased risks of type-2 diabetes and coronary heart disease associated with high heme intake is compelling. Furthermore, recent comparative metabolic and molecular studies of lung cancer cells showed that cancer cells require increased intracellular heme biosynthesis and uptake to meet the increased demand for oxygen-utilizing hemoproteins. Increased levels of hemoproteins in turn lead to intensified oxygen consumption and cellular energy generation, thereby fueling cancer cell progression. Together, both epidemiological and molecular studies support the idea that heme positively impacts cancer progression. However, it is also worth noting that heme deficiency can cause serious diseases in humans, such as anemia, porphyrias, and Alzheimer’s disease. This review attempts to summarize the latest literature in understanding the role of dietary heme intake and heme function in diverse diseases. PMID:24633395

  11. Investigation on evaluation criteria of backwashing effects for a pilot-scale BAF treating petrochemical wastewater.

    PubMed

    Fu, Liya; Wu, Changyong; Zhou, Yuexi; Zuo, Jiane; Ding, Yan

    2017-10-01

    Parameters for evaluation criteria of air-water backwashing effects of a pilot-scale biological aerated filter (BAF) treating petrochemical wastewater were investigated. The parameters included the suspended solids (SS) and specific oxygen uptake rate (SOUR) of the backwashing effluent, recovery of the BAF after backwashing, and the removal of the biomass/bioactivity attached on the filter media after backwashing. Results showed that the weight of the total sludge produced in the backwashing effluent increased with the increase in water-backwashing intensity, while the total SOUR of backwashing effluent rose notably with the increase of air-backwashing intensity. The optimal backwashing intensity of 14 L/(m 2 · s) for air and 4 L/(m 2 · s) for water were obtained. When the BAF was backwashed on this condition, the BAF recovered with high average removal of chemical oxygen demand (COD) and ammonia nitrogen [Formula: see text] of 14.3% and 50.3%, respectively. High amount of biomass removal at 15.8% and low level of bioactivity removal at 8.8% attached on the filter media were also found. Concentrations of the benzene, toluene, ethylbenzene and (o-, m-, p-) xylenes (BTEX) and phenol in the backwashed sludge were analyzed, showing that the backwashing was essential to remove some aromatic compounds adsorbed in the microorganisms.

  12. 40 CFR 63.1205 - What are the standards for hazardous waste burning lightweight aggregate kilns that are effective...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... rolling average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid... hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and (7) Particulate matter in... average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid and...

  13. 40 CFR 63.1205 - What are the standards for hazardous waste burning lightweight aggregate kilns that are effective...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... rolling average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid... hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and (7) Particulate matter in... average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid and...

  14. 40 CFR 63.1205 - What are the standards for hazardous waste burning lightweight aggregate kilns that are effective...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... rolling average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid... hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and (7) Particulate matter in... average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid and...

  15. The rate of cerebral utilization of glucose, ketone bodies, and oxygen: a comparative in vivo study of infant and adult rats.

    PubMed

    Dahlquist, G; Persson, B

    1976-11-01

    Cerebral blood flow (CBF) was measured by means of Celabeled microspheres in infant (20-day-old) and adult (3-month-old) rats, anesthetised with Na-5-ethyl-5-(1-methylpropyl)2-thiobarbituric acid. Cerebral arteriovenous differences of acetoacetate, D-beta-hydroxybutyrate, glucose, lactate, and oxygen and brain DNA content were determined in other groups of similarly treated infant and adult animals fed or starved for 48 or 72 hr. The mean CBF values of 0.48+/-0.04 and 0.62+/-0.07 ml/(g X min), +/- SEM, in infant and adult animals, respectively, were not significantly different. CBF was unaffected by starvation. At any given arterial concentration the cerebral arteriovenous difference of acetoacetate was significantly higher in infant than adult rats. The same was true for D-beta-hydroxybutyrate at arterial concentrations above 1 mmol/liter. There was an approximately linear relationship between arterial concentration of acetoacetate and its cerebral arteriovenous difference in both infant and adult rats. A similar relationship was found for D-beta-hydroxybutyrate only in infant animals. In the fed state, the cerebral uptake of glucose and ketone bodies (micromoles per (mg DNA X min)) was not different in infant and adult rats. During starvation, cerebral uptake of ketone bodies expressed as micromoles per (mg DNA X min) was higher in infant than adult rats, indicating a higher rate of utilization of ketone bodies per cell in these animals. For glucose, no such difference was found in either fed or starved groups (Table 3). The average percentage of the total cerebral uptake of substrates (micromoles per min) accounted for by ketone bodies increased in both infant and adult rats during starvation. This percentage value was clearly higher in infant than adult rats during starvation. After 72 hr of starvation the values were 38.8% and 15.2% in infant and adult rats, respectively (Fig. 3). Calculated cerebral metabolic rate for oxygen (CMRO2), assuming complete oxidation of glucose and ketone bodies and expressed as micromoles per (mg DNA X min), was similar in fed and starved rats of both age groups (Table 3), indicating that ketone bodies serve as an alternative substrate for glucose during starvation. Calculated CMRO2 for glucose plus ketone bodies was similar to the measured CMRO2 in adult rats both in the fed and the starved groups. For infant rats, calculated CMRO2 for glucose plus ketone bodies was higher than measured CMRO2, indicating that in this age group a portion of substrate was used for synthesis or storage rather than for complete oxidation.

  16. Regulation of iron transport systems in Enterobacteriaceae in response to oxygen and iron availability.

    PubMed

    Carpenter, Chandra; Payne, Shelley M

    2014-04-01

    Iron is an essential nutrient for most bacteria. Depending on the oxygen available in the surrounding environment, iron is found in two distinct forms: ferrous (Fe(II)) or ferric (Fe(III)). Bacteria utilize different transport systems for the uptake of the two different forms of iron. In oxic growth conditions, iron is found in its insoluble, ferric form, and in anoxic growth conditions iron is found in its soluble, ferrous form. Enterobacteriaceae have adapted to transporting the two forms of iron by utilizing the global, oxygen-sensing regulators, ArcA and Fnr to regulate iron transport genes in response to oxygen. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Oxygen-storage behavior and local structure in Ti-substituted YMnO3

    NASA Astrophysics Data System (ADS)

    Levin, I.; Krayzman, V.; Vanderah, T. A.; Tomczyk, M.; Wu, H.; Tucker, M. G.; Playford, H. Y.; Woicik, J. C.; Dennis, C. L.; Vilarinho, P. M.

    2017-02-01

    Hexagonal manganates RMnO3 (R=Y, Ho, Dy) have been recently shown to exhibit oxygen-storage capacities promising for three-way catalysts, air-separation, and related technologies. Here, we demonstrate that Ti substitution for Mn can be used to chemically tune the oxygen-breathing properties of these materials towards practical applications. Specifically, Y(Mn1-xTix)O3 solid solutions exhibit facile oxygen absorption/desorption via reversible Ti3+↔Ti4+ and Mn3+↔Mn4+ reactions already in ambient air at ≈400 °C and ≈250 °C, respectively. On cooling, the oxidation of both cations is accompanied by oxygen uptake yielding a formula YMn3+1-x-yMn4+yTi4+xO3+δ. The presence of Ti promotes the oxidation of Mn3+ to Mn4+, which is almost negligible for YMnO3 in air, thereby increasing the uptake of oxygen beyond that required for a given Ti4+ concentration. The reversibility of the redox reactions is limited by sluggish kinetics; however, the oxidation process continues, if slowly, even at room temperature. The extra oxygen atoms are accommodated by the large interstices within a triangular lattice formed by the [MnO5] trigonal bipyramids. According to bond distances from Rietveld refinements using the neutron diffraction data, the YMnO3 structure features under-bonded Mn and even more severely under-bonded oxygen atoms that form the trigonal bases of the [MnO5] bipyramids. The tensile bond strain around the 5-fold coordinated Mn site and the strong preference of Ti4+(and Mn4+) for higher coordination numbers likely provide driving forces for the oxidation reaction. Reverse Monte Carlo refinements of the local atomic displacements using neutron total scattering revealed how the excess oxygen atoms are accommodated in the structure by correlated local displacements of the host atoms. Large displacements of the under-bonded host oxygen atoms play a key part in this lattice-relaxation process, facilitating reversible exchange of significant amounts of oxygen with atmosphere.

  18. Oxygen-storage behavior and local structure in Ti-substituted YMnO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, I.; Krayzman, V.; Vanderah, T. A.

    Hexagonal manganates RMnO3 (R=Y, Ho, Dy) have been recently shown to exhibit oxygen-storage capacities promising for three-way catalysts, air-separation, and related technologies. Here, we demonstrate that Ti substitution for Mn can be used to chemically tune the oxygen-breathing properties of these materials towards practical applications. Specifically, Y(Mn1-xTix)O3 solid solutions exhibit facile oxygen absorption/desorption via reversible Ti3+↔Ti4+ and Mn3+↔Mn4+ reactions already in ambient air at ≈400 °C and ≈250 °C, respectively. On cooling, the oxidation of both cations is accompanied by oxygen uptake yielding a formula YMn3+1-x-yMn4+yTi4+xO3+δ. The presence of Ti promotes the oxidation of Mn3+ to Mn4+, which is almostmore » negligible for YMnO3 in air, thereby increasing the uptake of oxygen beyond that required for a given Ti4+ concentration. The reversibility of the redox reactions is limited by sluggish kinetics; however, the oxidation process continues, if slowly, even at room temperature. The extra oxygen atoms are accommodated by the large interstices within a triangular lattice formed by the [MnO5] trigonal bipyramids. According to bond distances from Rietveld refinements using the neutron diffraction data, the YMnO3 structure features under-bonded Mn and even more severely under-bonded oxygen atoms that form the trigonal bases of the [MnO5] bipyramids. The tensile bond strain around the 5-fold coordinated Mn site and the strong preference of Ti4+(and Mn4+) for higher coordination numbers likely provide driving forces for the oxidation reaction. Reverse Monte Carlo refinements of the local atomic displacements using neutron total scattering revealed how the excess oxygen atoms are accommodated in the structure by correlated local displacements of the host atoms. Large displacements of the under-bonded host oxygen atoms play a key part in this lattice-relaxation process, facilitating reversible exchange of significant amounts of oxygen with atmosphere.« less

  19. Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: New insights for chronic wound healing.

    PubMed

    Khadjavi, Amina; Magnetto, Chiara; Panariti, Alice; Argenziano, Monica; Gulino, Giulia Rossana; Rivolta, Ilaria; Cavalli, Roberta; Giribaldi, Giuliana; Guiot, Caterina; Prato, Mauro

    2015-08-01

    In chronic wounds, efficient epithelial tissue repair is hampered by hypoxia, and balances between the molecules involved in matrix turn-over such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are seriously impaired. Intriguingly, new oxygenating nanocarriers such as 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNs) might effectively target chronic wounds. To investigate hypoxia and chitosan-shelled OLN effects on MMP/TIMP production by human keratinocytes. HaCaT cells were treated for 24h with 10% v/v OLNs both in normoxia or hypoxia. Cytotoxicity and cell viability were measured through biochemical assays; cellular uptake by confocal microscopy; and MMP and TIMP production by enzyme-linked immunosorbent assay or gelatin zymography. Normoxic HaCaT cells constitutively released MMP-2, MMP-9, TIMP-1 and TIMP-2. Hypoxia strongly impaired MMP/TIMP balances by reducing MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. After cellular uptake by keratinocytes, nontoxic OLNs abrogated all hypoxia effects on MMP/TIMP secretion, restoring physiological balances. OLN abilities were specifically dependent on time-sustained oxygen diffusion from OLN core. Chitosan-shelled OLNs effectively counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human keratinocytes. Therefore, topical administration of exogenous oxygen, properly encapsulated in nanodroplet formulations, might be a promising adjuvant approach to promote healing processes in hypoxic wounds. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Determination of the relative uptake of ground vs. surface water by Populus deltoides during phytoremediation

    USGS Publications Warehouse

    Clinton, B.D.; Vose, J.M.; Vroblesky, D.A.; Harvey, G.J.

    2004-01-01

    The use of plants to remediate polluted groundwater is becoming an attractive alternative to more expensive traditional techniques. In order to adequately assess the effectiveness of the phytoremediation treatment, a clear understanding of water-use habits by the selected plant species is essential. We examined the relative uptake of surface water (i.e., precipitation) vs. groundwater by mature Populus deltoides by applying irrigation water at a rate equivalent to a 5-cm rain event. We used stable isotopes of hydrogen (D) and oxygen (18O) to identify groundwater and surface water (irrigation water) in the xylem sap water. Pretreatment isotopic ratios of both deuterium and 18O, ranked from heaviest to lightest, were irrigation water > groundwater > xylem sap. The discrepancy in preirrigation isotopic signatures between groundwater and xylem sap suggests that in the absence of a surface source of water (i.e., between rain events) there is an unknown amount of water being extracted from sources other than groundwater (i.e., soil surface water). We examined changes in volumetric soil water content (%), total hourly sapflux rates, and trichloroethene (TCE) concentrations. Following the irrigation treatment, volumetric soil water increased by 86% and sapflux increased by as much as 61%. Isotopic signatures of the xylem sap became substantially heavier following irrigation, suggesting that the applied irrigation water was quickly taken up by the plants. TCE concentrations in the xylem sap were diluted by an average of 21% following irrigation; however, dilution was low relative to the increase in sapflux. Our results show that water use by Populus deltoides is variable. Hence, studies addressing phytoremediation effectiveness must account for the relative proportion of surface vs. groundwater uptake.

  1. Planted floating bed performance in treatment of eutrophic river water.

    PubMed

    Bu, Faping; Xu, Xiaoyi

    2013-11-01

    The objective of the study was to treat eutrophic river water using floating beds and to identify ideal plant species for design of floating beds. Four parallel pilot-scale units were established and vegetated with Canna indica (U1), Accords calamus (U2), Cyperus alternifolius (U3), and Vetiveria zizanioides (U4), respectively, to treat eutrophic river water. The floating bed was made of polyethylene foam, and plants were vegetated on it. Results suggest that the floating bed is a viable alternative for treating eutrophic river water, especially for inhibiting algae growth. When the influent chemical oxygen demand (COD) varied from 6.53 to 18.45 mg/L, total nitrogen (TN) from 6.82 to 12.25 mg/L, total phosphorus (TP) from 0.65 to 1.64 mg/L, and Chla from 6.22 to 66.46 g/m(3), the removal of COD, TN, TP, and Chla was 15.3%-38.4%, 25.4%-48.4%, 16.1%-42.1%, and 29.9 %-88.1%, respectively. Ranked by removal performance, U1 was best, followed by U2, U3, and U4. In the floating bed, more than 60% TN and TP were removed by sedimentation; plant uptake was quantitatively of low importance with an average removal of 20.2% of TN and 29.4% of TP removed. The loss of TN (TP) was of the least importance. Compared with the other three, U1 exhibited better dissolved oxygen (DO) gradient distributions, higher DO levels, higher hydraulic efficiency, and a higher percentage of nutrient removal attributable to plant uptake; in addition, plant development and the volume of nutrient storage in the C. indica tissues outperformed the other three species. C. indica thus could be selected when designing floating beds for the Three Gorges Reservoir region of P. R. China.

  2. Benefits of skeletal-muscle exercise training in pulmonary arterial hypertension: The WHOLEi+12 trial.

    PubMed

    González-Saiz, Laura; Fiuza-Luces, Carmen; Sanchis-Gomar, Fabian; Santos-Lozano, Alejandro; Quezada-Loaiza, Carlos A; Flox-Camacho, Angela; Munguía-Izquierdo, Diego; Ara, Ignacio; Santalla, Alfredo; Morán, María; Sanz-Ayan, Paz; Escribano-Subías, Pilar; Lucia, Alejandro

    2017-03-15

    Pulmonary arterial hypertension is often associated with skeletal-muscle weakness. The purpose of this randomized controlled trial was to determine the effects of an 8-week intervention combining muscle resistance, aerobic and inspiratory pressure-load exercises on upper/lower-body muscle power and other functional variables in patients with this disease. Participants were allocated to a control (standard care) or intervention (exercise) group (n=20 each, 45±12 and 46±11years, 60% women and 10% patients with chronic thromboembolic pulmonary hypertension per group). The intervention included five, three and six supervised (inhospital) sessions/week of aerobic, resistance and inspiratory muscle training, respectively. The primary endpoint was peak muscle power during bench/leg press; secondary outcomes included N-terminal pro-brain natriuretic peptide levels, 6-min walking distance, five-repetition sit-to-stand test, maximal inspiratory pressure, cardiopulmonary exercise testing variables (e.g., peak oxygen uptake), health-related quality of life, physical activity levels, and safety. Adherence to training sessions averaged 94±0.5% (aerobic), 98±0.3% (resistance) and 91±1% (inspiratory training). Analysis of variance showed a significant interaction (group×time) effect for leg/bench press (P<0.001/P=0.002), with both tests showing an improvement in the exercise group (P<0.001) but not in controls (P>0.1). We found a significant interaction effect (P<0.001) for five-repetition sit-to-stand test, maximal inspiratory pressure and peak oxygen uptake (P<0.001), indicating a training-induced improvement. No major adverse event was noted due to exercise. An 8-week exercise intervention including aerobic, resistance and specific inspiratory muscle training is safe for patients with pulmonary arterial hypertension and yields significant improvements in muscle power and other functional variables. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Regulation of Acetate Utilization by Monocarboxylate Transporter 1 (MCT1) in Hepatocellular Carcinoma (HCC).

    PubMed

    Jeon, Jeong Yong; Lee, Misu; Whang, Sang Hyun; Kim, Jung-Whan; Cho, Arthur; Yun, Mijin

    2018-01-19

    Altered energy metabolism is a biochemical fingerprint of cancer cells. Hepatocellular carcinoma (HCC) shows reciprocal [18F]fluorodeoxyglucose (FDG) and [11C]acetate uptake, as revealed by positron emission tomography/computed tomography (PET/CT). Previous studies have focused on the role of FDG uptake in cancer cells. In this study, we evaluated the mechanism and roles of [11C]acetate uptake in human HCCs and cell lines. The expression of monocarboxylate transporters (MCTs) was assessed to determine the transporters of [11C]acetate uptake in HCC cell lines and human HCCs with different [11C]acetate uptake. Using two representative cell lines with widely different [11C]acetate uptake (HepG2 for high uptake and Hep3B for low uptake), changes in [11C]acetate uptake were measured after treatment with an MCT1 inhibitor or MCT1-targeted siRNA. To verify the roles of MCT1 in cells, oxygen consumption rate and the amount of lipid synthesis were measured. HepG2 cells with high [11C]acetate uptake showed higher MCT1 expression than other HCC cell lines with low [11C]acetate uptake. MCT1 expression was elevated in human HCCs with high [11C]acetate uptake compared to those with low [11C]acetate uptake. After blocking MCT1 with AR-C155858 or MCT1 knockdown, [11C]acetate uptake in HepG2 cells was significantly reduced. Additionally, inhibition of MCT1 suppressed mitochondrial oxidative phosphorylation, lipid synthesis, and cellular proliferation in HCC cells with high [11C]acetate uptake. MCT1 may be a new therapeutic target for acetate-dependent HCCs with high [11C]acetate uptake, which can be selected by [11C]acetate PET/CT imaging in clinical practice.

  4. Oxygen Uptake Responses to Submaximal Exercise Loads Do Not Change During Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Moore, Alan D., Jr.; Evetts, Simon N.; Feiveson, Alan H.; Lee, S. M. C.; McCleary, Frank A.; Platts, Steven H.; Ploutz-Snyder, Lori

    2011-01-01

    In previous publications we have reported that the heart rate (HR) responses to graded submaximal exercise tests are elevated during long-duration International Space Station (ISS) flights. Furthermore, the elevation in HR appears greater earlier, rather than later, during the missions. A potential confounder in the interpretation of HR results from graded exercise tests on ISS is that the cycle ergometer used (CEVIS) is vibration-isolated from the station structure. This feature causes the CEVIS assembly to sway slightly during its use and debriefing comments by some crewmembers indicate that there is a "learning curve" associated with CEVIS use. Therefore, one could not exclude the possibility that the elevated HRs experienced in the early stages of ISS missions were related to a lowered metabolic efficiency of CEVIS exercise that would raise the submaximal oxygen uptake (VO2) associated with graded exercise testing work rates.

  5. Assessment of physiological demand in kitesurfing.

    PubMed

    Vercruyssen, F; Blin, N; L'huillier, D; Brisswalter, J

    2009-01-01

    To evaluate the physiological demands of kitesurfing, ten elite subjects performed an incremental running test on a 400-m track and a 30-min on-water crossing trial during a light crosswind (LW, 12-15 knots). Oxygen uptake (V(O)(2)) was estimated from the heart rate (HR) recorded during the crossing trial using the individual HR-V(O)(2) relationship determined during the incremental test. Blood lactate concentration [La(b)] was measured at rest and 3 min after the exercise completion. Mean HR and estimated V(O)(2) values represented, respectively 80.6 +/- 7.5% of maximal heart rate and 69.8 +/- 11.7% of maximal oxygen uptake for board speeds ranging from 15 to 17 knots. Low values for [La(b)] were observed at the end of crossing trial (2.1 +/- 1.2 mmol l(-1). This first analysis of kitesurfing suggests that the energy demand is mainly sustained by aerobic metabolism during a LW condition.

  6. Plasma lactic dehydrogenase activities in men during bed rest with exercise training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Juhos, L. T.; Young, H. L.

    1985-01-01

    Peak oxygen uptake and the activity of lactic dehydrogenase (LDH-T) and its five isoenzymes were measured by spectrophotometer in seven men before, during, and after bed rest and exercise training. Exercise training consisted of isometric leg exercises of 250 kcal/hr for a period of one hour per day. It is found that LDH-T was reduced by 0.05 percent in all three regimens by day 10 of bed rest, and that the decrease occurred at different rates. The earliest reduction in LDH-T activity in the no-exercise regimen was associated with a decrease in peak oxygen uptake of 12.3 percent. It is concluded that isometric (aerobic) muscular strength training appear to maintain skeletal muscle integrity better during bed rest than isotonic exercise training. Reduced hydrostatic pressure during bed rest, however, ultimately counteracts the effects of both moderate isometric and isotonic exercise training, and may result in decreased LDH-T activity.

  7. Improvement in exercise capacity and delayed anaerobic metabolism induced by far-infrared-emitting garments in active healthy subjects: A pilot study.

    PubMed

    Mantegazza, Valentina; Contini, Mauro; Botti, Maurizia; Ferri, Ada; Dotti, Francesca; Berardi, Pierluigi; Agostoni, Piergiuseppe

    2018-01-01

    Background Far-infrared-emitting garments have several biological properties including the capability to increase blood perfusion in irradiated tissues. Design The aim of the study was to evaluate whether far-infrared radiation increases exercise capacity and delays anaerobic metabolism in healthy subjects. Methods With a double-blind, crossover protocol, a maximal cardiopulmonary exercise test was performed in 20 volunteers, wearing far-infrared or common sport clothes, identical in texture and colour. Results Comparing far-infrared with placebo garments, higher oxygen uptake at peak of exercise and longer endurance time were observed (peak oxygen uptake 38.0 ± 8.9 vs. 36.2 ± 8.5 ml/kg/min, endurance time 592 ± 85 vs. 570 ± 71 seconds; P < 0.01); the anaerobic threshold was significantly delayed (anaerobic threshold time 461 ± 93 vs. 417 ± 103 seconds) and anaerobic threshold oxygen uptake and anaerobic threshold oxygen pulse were significantly higher (25.3 ± 6.4 vs. 20.9 ± 5.4 ml/kg/min and 13.3 ± 3.8 vs. 12.4 ± 3.3 ml/beat, respectively). In 10 subjects the blood lactate concentration was measured every 2 minutes during exercise and at peak; lower values were observed with far-infrared fabrics compared to placebo from the eighth minute of exercise, reaching a significant difference at 10 minutes (3.6 ± 0.83 vs. 4.4 ± 0.96 mmol/l; P = 0.02). Conclusions In healthy subjects, exercising with a far-infrared outfit is associated with an improvement in exercise performance and a delay in anaerobic metabolism. In consideration of the acknowledged non-thermic properties of functionalised clothes, these effects could be mediated by an increase in oxygen peripheral delivery secondary to muscular vasodilation. These data suggest the need for testing far-infrared-emitting garments in patients with exercise limitation or in chronic cardiovascular and respiratory patients engaged in rehabilitation programmes.

  8. New insights on the regulation of the adenine nucleotide pool of erythrocytes in mouse models

    PubMed Central

    O’Brien, William G.; Ling, Han Shawn; Lee, Cheng Chi

    2017-01-01

    The observation that induced torpor in non-hibernating mammals could result from an increased AMP concentration in circulation led our investigation to reveal that the added AMP altered oxygen transport of erythrocytes. To further study the effect of AMP in regulation of erythrocyte function and systemic metabolism, we generated mouse models deficient in key erythrocyte enzymes in AMP metabolism. We have previously reported altered erythrocyte adenine nucleotide levels corresponding to altered oxygen saturation in mice deficient in both CD73 and AMPD3. Here we further investigate how these Ampd3-/-/Cd73-/- mice respond to the administered dose of AMP in comparison with the control models of single enzyme deficiency and wild type. We found that Ampd3-/-/Cd73-/- mice are more sensitive to AMP-induced hypometabolism than mice with a single enzyme deficiency, which are more sensitive than wild type. A dose-dependent rightward shift of erythrocyte p50 values in response to increasing amounts of extracellular AMP was observed. We provide further evidence for the direct uptake of AMP by erythrocytes that is insensitive to dipyridamole, a blocker for ENT1. The uptake of AMP by the erythrocytes remained linear at the highest concentration tested, 10mM. We also observed competitive inhibition of AMP uptake by ATP and ADP but not by the other nucleotides and metabolites tested. Importantly, our studies suggest that AMP uptake is associated with an erythrocyte ATP release that is partially sensitive to inhibition by TRO19622 and Ca++ ion. Taken together, our study suggests a novel mechanism by which erythrocytes recycle and maintain their adenine nucleotide pool through AMP uptake and ATP release. PMID:28746349

  9. New insights on the regulation of the adenine nucleotide pool of erythrocytes in mouse models.

    PubMed

    O'Brien, William G; Ling, Han Shawn; Zhao, Zhaoyang; Lee, Cheng Chi

    2017-01-01

    The observation that induced torpor in non-hibernating mammals could result from an increased AMP concentration in circulation led our investigation to reveal that the added AMP altered oxygen transport of erythrocytes. To further study the effect of AMP in regulation of erythrocyte function and systemic metabolism, we generated mouse models deficient in key erythrocyte enzymes in AMP metabolism. We have previously reported altered erythrocyte adenine nucleotide levels corresponding to altered oxygen saturation in mice deficient in both CD73 and AMPD3. Here we further investigate how these Ampd3-/-/Cd73-/- mice respond to the administered dose of AMP in comparison with the control models of single enzyme deficiency and wild type. We found that Ampd3-/-/Cd73-/- mice are more sensitive to AMP-induced hypometabolism than mice with a single enzyme deficiency, which are more sensitive than wild type. A dose-dependent rightward shift of erythrocyte p50 values in response to increasing amounts of extracellular AMP was observed. We provide further evidence for the direct uptake of AMP by erythrocytes that is insensitive to dipyridamole, a blocker for ENT1. The uptake of AMP by the erythrocytes remained linear at the highest concentration tested, 10mM. We also observed competitive inhibition of AMP uptake by ATP and ADP but not by the other nucleotides and metabolites tested. Importantly, our studies suggest that AMP uptake is associated with an erythrocyte ATP release that is partially sensitive to inhibition by TRO19622 and Ca++ ion. Taken together, our study suggests a novel mechanism by which erythrocytes recycle and maintain their adenine nucleotide pool through AMP uptake and ATP release.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calo, J.M.; Suuberg, E.M.; Hradil, G.

    This project is concerned with the study of the nature and behavior of ''active sites'' in char gasification. The research strategy involves use of model chars produced from the phenol-formaldehyde family of resins. These materials have been chosen since they have structural features similar to those in coals, but are much ''cleaner'' in that the concentration of potentially catalytic impurities can be maintained at low levels. It should be borne in mind that the objective of this work is to study non-catalytic gasification processes. In the previous quarterly report, we presented evidence that low temperature oxygen chemisorption does not providemore » a site-specific titration of active sites in chars; the uptake of oxygen by a cleaned char surface was unquestionably shown to be a function of temperature and oxygen partial pressure, and the importance of these variables differs from char to char. The fact that ''active surface area'' (ASA) determined by various arbitrary methods does seem to generally correlate with reactivity, seems to suggest that reactivities under various gasification and chemisorption conditions are correlated but that mechanisitic inferences cannot necessarily be drawn from such data. In the present report, we have extended the study of low temperature oxidation of chars, considering mass loss as well as oxygen uptake, since the two processes are essentially inseparable under a wide range of conditions. This work represents more than a simple attempt at trying to learn more about the oxygen chemisorption technique; rather it offers the opportunity to study the mechanism of oxygen attack on char under conditions that allow for better understanding of the fundamental processes. For these reasons, this work was performed in the pyrogasifier reactor (developed for CO/sub 2/ gasification reactivity studies), and complements the ongoing work in the TGA apparatus. 6 refs., 9 figs., 1 tab.« less

  11. A Role of Erythrocytes in Adenosine Monophosphate Initiation of Hypometabolism in Mammals*

    PubMed Central

    Daniels, Isadora Susan; Zhang, Jianfa; O'Brien, William G.; Tao, Zhenyin; Miki, Tomoko; Zhao, Zhaoyang; Blackburn, Michael R.; Lee, Cheng Chi

    2010-01-01

    Biochemical and mechanistic aspects into how various hypometabolic states are initiated in mammals are poorly understood. Here, we show how a state of hypometabolism is initiated by 5′-AMP uptake by erythrocytes. Wild type, ecto-5′-nucleotidase-deficient, and adenosine receptor-deficient mice undergo 5′-AMP-induced hypometabolism in a similar fashion. Injection of 5′-AMP leads to two distinct declining phases of oxygen consumption (VO2). The phase I response displays a rapid and steep decline in VO2 that is independent of body temperature (Tb) and ambient temperature (Ta). It is followed by a phase II decline that is linked to Tb and moderated by Ta. Altering the dosages of 5′-AMP from 0.25- to 2-fold does not change the phase I response. For mice, a Ta of 15 °C is effective for induction of DH with the appropriate dose of 5′-AMP. Erythrocyte uptake of 5′-AMP leads to utilization of ATP to synthesize ADP. This is accompanied by increased glucose but decreased lactate levels, suggesting that glycolysis has slowed. Reduction in glycolysis is known to stimulate erythrocytes to increase intracellular levels of 2,3-bisphosphoglycerate, a potent allosteric inhibitor of hemoglobin's affinity for oxygen. Our studies showed that both 2,3-bisphosphoglycerate and deoxyhemoglobin levels rose following 5′-AMP administration and is in parallel with the phase I decline in VO2. In summary, our investigations reveal that 5′-AMP mediated hypometabolism is probably triggered by reduced oxygen transport by erythrocytes initiated by uptake of 5′-AMP. PMID:20430891

  12. A role of erythrocytes in adenosine monophosphate initiation of hypometabolism in mammals.

    PubMed

    Daniels, Isadora Susan; Zhang, Jianfa; O'Brien, William G; Tao, Zhenyin; Miki, Tomoko; Zhao, Zhaoyang; Blackburn, Michael R; Lee, Cheng Chi

    2010-07-02

    Biochemical and mechanistic aspects into how various hypometabolic states are initiated in mammals are poorly understood. Here, we show how a state of hypometabolism is initiated by 5'-AMP uptake by erythrocytes. Wild type, ecto-5'-nucleotidase-deficient, and adenosine receptor-deficient mice undergo 5'-AMP-induced hypometabolism in a similar fashion. Injection of 5'-AMP leads to two distinct declining phases of oxygen consumption (VO(2)). The phase I response displays a rapid and steep decline in VO(2) that is independent of body temperature (T(b)) and ambient temperature (T(a)). It is followed by a phase II decline that is linked to T(b) and moderated by T(a). Altering the dosages of 5'-AMP from 0.25- to 2-fold does not change the phase I response. For mice, a T(a) of 15 degrees C is effective for induction of DH with the appropriate dose of 5'-AMP. Erythrocyte uptake of 5'-AMP leads to utilization of ATP to synthesize ADP. This is accompanied by increased glucose but decreased lactate levels, suggesting that glycolysis has slowed. Reduction in glycolysis is known to stimulate erythrocytes to increase intracellular levels of 2,3-bisphosphoglycerate, a potent allosteric inhibitor of hemoglobin's affinity for oxygen. Our studies showed that both 2,3-bisphosphoglycerate and deoxyhemoglobin levels rose following 5'-AMP administration and is in parallel with the phase I decline in VO(2). In summary, our investigations reveal that 5'-AMP mediated hypometabolism is probably triggered by reduced oxygen transport by erythrocytes initiated by uptake of 5'-AMP.

  13. Functional High-Intensity Circuit Training Improves Body Composition, Peak Oxygen Uptake, Strength, and Alters Certain Dimensions of Quality of Life in Overweight Women.

    PubMed

    Sperlich, Billy; Wallmann-Sperlich, Birgit; Zinner, Christoph; Von Stauffenberg, Valerie; Losert, Helena; Holmberg, Hans-Christer

    2017-01-01

    The effects of circuit-like functional high-intensity training (Circuit HIIT ) alone or in combination with high-volume low-intensity exercise (Circuit combined ) on selected cardio-respiratory and metabolic parameters, body composition, functional strength and the quality of life of overweight women were compared. In this single-center, two-armed randomized, controlled study, overweight women performed 9-weeks (3 sessions·wk -1 ) of either Circuit HIIT ( n = 11), or Circuit combined ( n = 8). Peak oxygen uptake and perception of physical pain were increased to a greater extent ( p < 0.05) by Circuit HIIT , whereas Circuit combined improved perception of general health more ( p < 0.05). Both interventions lowered body mass, body-mass-index, waist-to-hip ratio, fat mass, and enhanced fat-free mass; decreased ratings of perceived exertion during submaximal treadmill running; improved the numbers of push-ups, burpees, one-legged squats, and 30-s skipping performed, as well as the height of counter-movement jumps; and improved physical and social functioning, role of physical limitations, vitality, role of emotional limitations, and mental health to a similar extent (all p < 0.05). Either forms of these multi-stimulating, circuit-like, multiple-joint training can be employed to improve body composition, selected variables of functional strength, and certain dimensions of quality of life in overweight women. However, Circuit HIIT improves peak oxygen uptake to a greater extent, but with more perception of pain, whereas Circuit combined results in better perception of general health.

  14. Peak oxygen uptake and left ventricular ejection fraction, but not depressive symptoms, are associated with cognitive impairment in patients with chronic heart failure.

    PubMed

    Steinberg, Gerrit; Lossnitzer, Nicole; Schellberg, Dieter; Mueller-Tasch, Thomas; Krueger, Carsten; Haass, Markus; Ladwig, Karl Heinz; Herzog, Wolfgang; Juenger, Jana

    2011-01-01

    The aim of the present study was to assess cognitive impairment in patients with chronic heart failure (CHF) and its associations with depressive symptoms and somatic indicators of illness severity, which is a matter of controversy. Fifty-five patients with CHF (mean age 55.3 ± 7.8 years; 80% male; New York Heart Association functional class I-III) underwent assessment with an expanded neuropsychological test battery (eg, memory, complex attention, mental flexibility, psychomotor speed) to evaluate objective and subjective cognitive impairment. Depressive symptoms were assessed using the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (SCID) and a self-report inventory (Hospital Anxiety and Depression Scale [HADS]). A comprehensive clinical dataset, including left ventricular ejection fraction, peak oxygen uptake, and a 6-minute walk test, was obtained for all patients. Neuropsychological functioning revealed impairment in 56% of patients in at least one measure of our neuropsychological test battery. However, the Mini Mental State Examination (MMSE) could only detect cognitive impairment in 1.8% of all patients, 24% had HADS scores indicating depressive symptoms, and 11.1% met SCID criteria for a depressive disorder. No significant association was found between depressive symptoms and cognitive impairment. Left ventricular ejection fraction was related to subjective cognitive impairment, and peak oxygen uptake was related to objective cognitive impairment. Cognitive functioning was substantially reduced in patients with CHF and should therefore be diagnosed and treated in routine clinical practice. Caution is advised when the MMSE is used to identify cognitive impairment in patients with CHF.

  15. Importance of Non-invasive Right and Left Ventricular Variables on Exercise Capacity in Patients with Tetralogy of Fallot Hemodynamics.

    PubMed

    Meierhofer, Christian; Tavakkoli, Timon; Kühn, Andreas; Ulm, Kurt; Hager, Alfred; Müller, Jan; Martinoff, Stefan; Ewert, Peter; Stern, Heiko

    2017-12-01

    Good quality of life correlates with a good exercise capacity in daily life in patients with tetralogy of Fallot (ToF). Patients after correction of ToF usually develop residual defects such as pulmonary regurgitation or stenosis of variable severity. However, the importance of different hemodynamic parameters and their impact on exercise capacity is unclear. We investigated several hemodynamic parameters measured by cardiovascular magnetic resonance (CMR) and echocardiography and evaluated which parameter has the most pronounced effect on maximal exercise capacity determined by cardiopulmonary exercise testing (CPET). 132 patients with ToF-like hemodynamics were tested during routine follow-up with CMR, echocardiography and CPET. Right and left ventricular volume data, ventricular ejection fraction and pulmonary regurgitation were evaluated by CMR. Echocardiographic pressure gradients in the right ventricular outflow tract and through the tricuspid valve were measured. All data were classified and correlated with the results of CPET evaluations of these patients. The analysis was performed using the Random Forest model. In this way, we calculated the importance of the different hemodynamic variables related to the maximal oxygen uptake in CPET (VO 2 %predicted). Right ventricular pressure showed the most important influence on maximal oxygen uptake, whereas pulmonary regurgitation and right ventricular enddiastolic volume were not important hemodynamic variables to predict maximal oxygen uptake in CPET. Maximal exercise capacity was only very weakly influenced by right ventricular enddiastolic volume and not at all by pulmonary regurgitation in patients with ToF. The variable with the most pronounced influence was the right ventricular pressure.

  16. Functional High-Intensity Circuit Training Improves Body Composition, Peak Oxygen Uptake, Strength, and Alters Certain Dimensions of Quality of Life in Overweight Women

    PubMed Central

    Sperlich, Billy; Wallmann-Sperlich, Birgit; Zinner, Christoph; Von Stauffenberg, Valerie; Losert, Helena; Holmberg, Hans-Christer

    2017-01-01

    The effects of circuit-like functional high-intensity training (CircuitHIIT) alone or in combination with high-volume low-intensity exercise (Circuitcombined) on selected cardio-respiratory and metabolic parameters, body composition, functional strength and the quality of life of overweight women were compared. In this single-center, two-armed randomized, controlled study, overweight women performed 9-weeks (3 sessions·wk−1) of either CircuitHIIT (n = 11), or Circuitcombined (n = 8). Peak oxygen uptake and perception of physical pain were increased to a greater extent (p < 0.05) by CircuitHIIT, whereas Circuitcombined improved perception of general health more (p < 0.05). Both interventions lowered body mass, body-mass-index, waist-to-hip ratio, fat mass, and enhanced fat-free mass; decreased ratings of perceived exertion during submaximal treadmill running; improved the numbers of push-ups, burpees, one-legged squats, and 30-s skipping performed, as well as the height of counter-movement jumps; and improved physical and social functioning, role of physical limitations, vitality, role of emotional limitations, and mental health to a similar extent (all p < 0.05). Either forms of these multi-stimulating, circuit-like, multiple-joint training can be employed to improve body composition, selected variables of functional strength, and certain dimensions of quality of life in overweight women. However, CircuitHIIT improves peak oxygen uptake to a greater extent, but with more perception of pain, whereas Circuitcombined results in better perception of general health. PMID:28420999

  17. Preferential reduction of quadriceps over respiratory muscle strength and bulk after lung transplantation for cystic fibrosis.

    PubMed

    Pinet, C; Scillia, P; Cassart, M; Lamotte, M; Knoop, C; Mélot, C; Estenne, M

    2004-09-01

    In the absence of complications, recipients of lung transplants for cystic fibrosis have normal pulmonary function but the impact of the procedure on the strength and bulk of respiratory and limb muscles has not been studied. Twelve stable patients who had undergone lung transplantation for cystic fibrosis 48 months earlier (range 8-95) and 12 normal subjects matched for age, height, and sex were studied. The following parameters were measured: standard lung function, peak oxygen uptake by cycle ergometry, diaphragm surface area by computed tomographic (CT) scanning, diaphragm and abdominal muscle thickness by ultrasonography, twitch transdiaphragmatic and gastric pressures, quadriceps isokinetic strength, and quadriceps cross section by CT scanning, and lean body mass. Diaphragm mass was computed from diaphragm surface area and thickness. Twitch transdiaphragmatic and gastric pressures, diaphragm mass, and abdominal muscle thickness were similar in the two groups but quadriceps strength and cross section were decreased by nearly 30% in the patients. Patients had preserved quadriceps strength per unit cross section but reduced quadriceps cross section per unit lean body mass. The cumulative dose of corticosteroids was an independent predictor of quadriceps atrophy. Peak oxygen uptake showed positive correlations with quadriceps strength and cross section in the two groups, but peak oxygen uptake per unit quadriceps strength or cross section was reduced in the patient group. The diaphragm and abdominal muscles have preserved strength and bulk in patients transplanted for cystic fibrosis but the quadriceps is weak due to muscle atrophy. This atrophy is caused in part by corticosteroid therapy and correlates with the reduction in exercise capacity.

  18. Microoxic Niches within the Thylakoid Stroma of Air-Grown Chlamydomonas reinhardtii Protect [FeFe]-Hydrogenase and Support Hydrogen Production under Fully Aerobic Environment1[OPEN

    PubMed Central

    Liran, Oded; Milrad, Yuval; Eilenberg, Haviva; Weiner, Iddo

    2016-01-01

    Photosynthetic hydrogen production in the microalga Chlamydomonas reinhardtii is catalyzed by two [FeFe]-hydrogenase isoforms, HydA1 and HydA2, both irreversibly inactivated upon a few seconds exposure to atmospheric oxygen. Until recently, it was thought that hydrogenase is not active in air-grown microalgal cells. In contrast, we show that the entire pool of cellular [FeFe]-hydrogenase remains active in air-grown cells due to efficient scavenging of oxygen. Using membrane inlet mass spectrometry, 18O2 isotope, and various inhibitors, we were able to dissect the various oxygen uptake mechanisms. We found that both chlororespiration, catalyzed by plastid terminal oxidase, and Mehler reactions, catalyzed by photosystem I and Flavodiiron proteins, significantly contribute to oxygen uptake rate. This rate is considerably enhanced with increasing light, thus forming local anaerobic niches at the proximity of the stromal face of the thylakoid membrane. Furthermore, we found that in transition to high light, the hydrogen production rate is significantly enhanced for a short duration (100 s), thus indicating that [FeFe]-hydrogenase functions as an immediate sink for surplus electrons in aerobic as well as in anaerobic environments. In summary, we show that an anaerobic locality in the chloroplast preserves [FeFe]-hydrogenase activity and supports continuous hydrogen production in air-grown microalgal cells. PMID:27443604

  19. Effect of olive mill wastewaters on the oxygen consumption by activated sludge microorganisms: an acute toxicity test method.

    PubMed

    Paixão, S M; Anselmo, A M

    2002-01-01

    The test for inhibition of oxygen consumption by activated sludge (ISO 8192-1986 (E)) was evaluated as a tool for assessing, the acute toxicity of olive mill wastewaters (OMW). According to the ISO test, information generated by this method may be helpful in estimating the effect of a test material on bacterial communities in the aquatic environment, especially in aerobic biological treatment systems. However, the lack of standardized bioassay methodology for effluents imposed that the test conditions were modified and adapted. The experiments were conducted in the presence or absence of an easily biodegradable carbon source (glucose) with different contact times (20 min and 24 h). The results obtained showed a remarkable stimulatory effect of this effluent to the activated sludge microorganisms. In fact, the oxygen uptake rate values increase with increasing effluent concentrations and contact times up to 0.98 microl O(2) h(-1) mg(-1) dry weight for a 100% OMW sample, 24 h contact time, with blanks exhibiting an oxygen uptake rate of ca. 1/10 of this value (0.07-0.10). It seems that the application of the ISO test as an acute toxicity test for effluents should be reconsidered, with convenient adaptation for its utilization as a method of estimating the effect on bacterial communities present in aerobic biological treatment systems. Copyright 2002 John Wiley & Sons, Ltd.

  20. Effects of Systematic Variation in Size and Surface Coating of Silver Nanoparticles on Their In Vitro Toxicity to Macrophage RAW 264.7 Cells.

    PubMed

    Makama, Sunday; Kloet, Samantha K; Piella, Jordi; van den Berg, Hans; de Ruijter, Norbert C A; Puntes, Victor F; Rietjens, Ivonne M C M; van den Brink, Nico W

    2018-03-01

    In literature, varying and sometimes conflicting effects of physicochemical properties of nanoparticles (NPs) are reported on their uptake and effects in organisms. To address this, small- and medium-sized (20 and 50 nm) silver nanoparticles (AgNPs) with specified different surface coating/charges were synthesized and used to systematically assess effects of NP-properties on their uptake and effects in vitro. Silver nanoparticles were fully characterized for charge and size distribution in both water and test media. Macrophage cells (RAW 264.7) were exposed to these AgNPs at different concentrations (0-200 µg/ml). Uptake dynamics, cell viability, induction of tumor necrosis factor (TNF)-α, ATP production, and reactive oxygen species (ROS) generation were assessed. Microscopic imaging of living exposed cells showed rapid uptake and subcellular cytoplasmic accumulation of AgNPs. Exposure to the tested AgNPs resulted in reduced overall viability. Influence of both size and surface coating (charge) was demonstrated, with the 20-nm-sized AgNPs and bovine serum albumin (BSA)-coated (negatively charged) AgNPs being slightly more toxic. On specific mechanisms of toxicity (TNF-α and ROS production) however, the AgNPs differed to a larger extent. The highest induction of TNF-α was found in cells exposed to the negatively charged AgNP_BSA, both sizes (80× higher than control). Reactive oxygen species induction was only significant with the 20 nm positively charged AgNP_Chit.

  1. Activated Sludge.

    ERIC Educational Resources Information Center

    Saunders, F. Michael

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) activated sludge process; (2) process control; (3) oxygen uptake and transfer; (4) phosphorus removal; (5) nitrification; (6) industrial wastewater; and (7) aerobic digestion. A list of 136 references is also presented. (HM)

  2. Central Circulatory Adaptations to Physical Training

    ERIC Educational Resources Information Center

    Van Handel, Peter J.; And Others

    1976-01-01

    A ten-week jogging program for middle-aged people can reduce heart rate during the performance of tasks other than running; it appears that tissue adaptations for uptake and use of oxygen may influence the cardiovascular response to exercise. (JD)

  3. Updating the Skating Multistage Aerobic Test and Correction for V[Combining Dot Above]O2max Prediction Using a New Skating Economy Index in Elite Youth Ice Hockey Players.

    PubMed

    Allisse, Maxime; Bui, Hung Tien; Léger, Luc; Comtois, Alain-Steve; Leone, Mario

    2018-05-07

    Allisse, M, Bui, HT, Léger, L, Comtois, A-S, and Leone, M. Updating the skating multistage aerobic test and correction for V[Combining Dot Above]O2max prediction using a new skating economy index in elite youth ice hockey players. J Strength Cond Res XX(X): 000-000, 2018-A number of field tests, including the skating multistage aerobic test (SMAT), have been developed to predict V[Combining Dot Above]O2max in ice hockey players. The SMAT, like most field tests, assumes that participants who reach a given stage have the same oxygen uptake, which is not usually true. Thus, the objectives of this research are to update the V[Combining Dot Above]O2 values during the SMAT using a portable breath-by-breath metabolic analyzer and to propose a simple index of skating economy to improve the prediction of oxygen uptake. Twenty-six elite hockey players (age 15.8 ± 1.3 years) participated in this study. The oxygen uptake was assessed using a portable metabolic analyzer (K4b) during an on-ice maximal shuttle skate test. To develop an index of skating economy called the skating stride index (SSI), the number of skating strides was compiled for each stage of the test. The SMAT enabled the prediction of the V[Combining Dot Above]O2max (ml·kg·min) from the maximal velocity (m·s) and the SSI (skating strides·kg) using the following regression equation: V[Combining Dot Above]O2max = (14.94 × maximal velocity) + (3.68 × SSI) - 24.98 (r = 0.95, SEE = 1.92). This research allowed for the update of the oxygen uptake values of the SMAT and proposed a simple measure of skating efficiency for a more accurate evaluation of V[Combining Dot Above]O2max in elite youth hockey players. By comparing the highest and lowest observed SSI scores in our sample, it was noted that the V[Combining Dot Above]O2 values can vary by up to 5 ml·kg·min. Our results suggest that skating economy should be included in the prediction of V[Combining Dot Above]O2max to improve prediction accuracy.

  4. Sea-level haemoglobin concentration is associated with greater exercise capacity in Tibetan males at 4200 m.

    PubMed

    Wagner, P D; Simonson, T S; Wei, G; Wagner, H E; Wuren, T; Qin, G; Yan, M; Ge, R L

    2015-11-01

    What is the topic of this review? Recent developments link relatively lower hemoglobin concentration in Tibetans at high altitude to exercise capacity and components of oxygen transport. What advances does it highlight? Haemoglobin concentration (ranging from 15.2 to 22.9 g dl(-1) ) in Tibetan males was negatively associated with peak oxygen (O2 ) uptake per kilogram, cardiac output and muscle O2 diffusion conductance. Most variance in the peak O2 uptake per kilogram of Tibetan males was attributed to cardiac output, muscle diffusional conductance and arterial partial pressure of CO2 . The mechanisms underlying these differences in oxygen transport in Tibetans require additional analyses. Despite residence at >4000 m above sea level, many Tibetan highlanders, unlike Andean counterparts and lowlanders at altitude, exhibit haemoglobin concentration ([Hb]) within the typical sea-level range. Genetic adaptations in Tibetans are associated with this relatively low [Hb], yet the functional relevance of the lower [Hb] remains unknown. To address this, we examined each major step of the oxygen transport cascade [ventilation (VE), cardiac output (QT) and diffusional conductance in lung (DL) and muscle (DM)] in Tibetan males at maximal exercise on a cycle ergometer. Ranging from 15.2 to 22.9 g dl(-1) , [Hb] was negatively associated with peak O2 uptake per kilogram (r = -0.45, P < 0.05) and both cardiac output (QT/kg: r = -0.54, P < 0.02) and muscle O2 diffusion conductance (DM/kg: r = -0.44, P < 0.05) but not ventilation, arterial partial pressure of O2 or pulmonary diffusing capacity. Most variance in peak O2 uptake per kilogram was attributed to QT, DM and arterial partial pressure of CO2 (r(2)  = 0.90). In summary, lack of polycythaemia in Tibetans is associated with increased exercise capacity, which is explained by elevated cardiac, muscle and, to a small extent, ventilatory responses rather than pulmonary gas exchange. Whether lower [Hb] is the cause or result of these changes in O2 transport or is causally unrelated will require additional study. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  5. Uptake of phytodetritus by benthic foraminifera under oxygen depletion at the Indian margin (Arabian Sea)

    NASA Astrophysics Data System (ADS)

    Enge, A. J.; Witte, U.; Kucera, M.; Heinz, P.

    2014-04-01

    Benthic foraminifera in sediments on the Indian margin of the Arabian Sea, where the oxygen minimum zone (OMZ) impinges on the continental slope, are exposed to particularly severe levels of oxygen depletion. Food supply for the benthic community is high but delivered in distinct pulses during upwelling and water mixing events associated with summer and winter monsoon periods. In order to investigate the response by benthic foraminifera to such pulsed food delivery under oxygen concentrations of less than 0.1 mL L-1 (4.5 μmol L-1), an in situ isotope labeling experiment (13C, 15N) was performed on the western continental slope of India at 540 m water depth (OMZ core region). The assemblage of living foraminifera (>125 μm) in the uppermost centimeter at this depth is characterized by an unexpectedly high population density of 3982 individuals 10 cm-2 and a strong dominance by few calcareous species. For the experiment, we concentrated on the nine most abundant taxa, which constitute 93% of the entire foraminiferal population at 0-1 cm sediment depth. Increased concentrations of 13C and 15N in the cytoplasm indicate that all investigated taxa took up labeled phytodetritus during the 4 day experimental phase. In total, these nine species had assimilated 113.8 mg C m-2 (17.5% of the total added carbon). Uptake of nitrogen by the three most abundant taxa (Bolivina aff. B. dilatata, Cassidulina sp., Bulimina gibba) was 2.7 mg N m-2 (2% of the total added nitrogen). The response to the offered phytodetritus varied largely among foraminiferal species with Uvigerina schwageri being by far the most important species in short-term processing, whereas the most abundant taxa Bolivina aff. B. dilatata and Cassidulina sp. showed comparably low uptake of the offered food. We suggest the observed species-specific differences are related to species biomass and specific feeding preferences. In summary, the experiment in the OMZ core region shows rapid processing of fresh phytodetritus by foraminifera under almost anoxic conditions. The uptake of large amounts of organic matter by few species within four days suggests that foraminifera may play an important role in short-term carbon cycling in the OMZ core region on the Indian margin.

  6. Effects of a high-intensity intermittent training program on aerobic capacity and lipid profile in trained subjects

    PubMed Central

    Ouerghi, Nejmeddine; Khammassi, Marwa; Boukorraa, Sami; Feki, Moncef; Kaabachi, Naziha; Bouassida, Anissa

    2014-01-01

    Background Data regarding the effect of training on plasma lipids are controversial. Most studies have addressed continuous or long intermittent training programs. The present study evaluated the effect of short-short high-intensity intermittent training (HIIT) on aerobic capacity and plasma lipids in soccer players. Methods The study included 24 male subjects aged 21–26 years, divided into three groups: experimental group 1 (EG1, n=8) comprising soccer players who exercised in addition to regular short-short HIIT twice a week for 12 weeks; experimental group 2 (EG2, n=8) comprising soccer players who exercised in a regular football training program; and a control group (CG, n=8) comprising untrained subjects who did not practice regular physical activity. Maximal aerobic velocity and maximal oxygen uptake along with plasma lipids were measured before and after 6 weeks and 12 weeks of the respective training program. Results Compared with basal values, maximal oxygen uptake had significantly increased in EG1 (from 53.3±4.0 mL/min/kg to 54.8±3.0 mL/min/kg at 6 weeks [P<0.05] and to 57.0±3.2 mL/min/kg at 12 weeks [P<0.001]). Maximal oxygen uptake was increased only after 12 weeks in EG2 (from 52.8±2.7 mL/min/kg to 54.2±2.6 mL/min/kg, [P<0.05]), but remain unchanged in CG. After 12 weeks of training, maximal oxygen uptake was significantly higher in EG1 than in EG2 (P<0.05). During training, no significant changes in plasma lipids occurred. However, after 12 weeks, total and low-density lipoprotein cholesterol levels had decreased (by about 2%) in EG1 but increased in CG. High-density lipoprotein cholesterol levels increased in EG1 and EG2, but decreased in CG. Plasma triglycerides decreased by 8% in EG1 and increased by about 4% in CG. Conclusion Twelve weeks of short-short HIIT improves aerobic capacity. Although changes in the lipid profile were not significant after this training program, they may have a beneficial impact on health. PMID:25378960

  7. Relation of oxygen uptake to work rate in prepubertal healthy children - reference for VO2/W-slope and effect on cardiorespiratory fitness assessment.

    PubMed

    Tompuri, Tuomo; Lintu, Niina; Laitinen, Tomi; Lakka, Timo A

    2017-08-09

    Exercise testing by cycle ergometer allows to observe the interaction between oxygen uptake (VO 2 ) and workload (W), and VO 2 /W-slope can be used as a diagnostic tool. Respectively, peak oxygen uptake (VO 2 PEAK ) can be estimated by maximal workload. We aim to determine reference for VO 2 /W-slope among prepubertal children and define agreement between estimated and measured VO 2 PEAK . A total of 38 prepubertal children (20 girls) performed a maximal cycle ergometer test with respiratory gas analysis. VO 2 /W-slopes were computed using linear regression. Agreement analysis by Bland and Altman for estimated and measured VO 2 PEAK was carried out including limits of agreement (LA). Determinants for VO 2 /W-slopes and estimation bias were defined. VO2/W-slope was in both girls and boys ≥9·4 and did not change with exercise level, but the oxygen cost of exercise was higher among physically more active children. Estimated VO 2 PEAK had 6·4% coefficient of variation, and LA varied from 13% underestimation to 13% overestimation. Bias had a trend towards underestimation along lean mass proportional VO 2 PEAK . The primary determinant for estimation bias was VO2/W-slope (β = -0·65; P<0·001). The reference values for VO 2 /W-slope among healthy prepubertal children were similar to those published for adults and among adolescents. Estimated and measured VO 2 PEAK should not be considered to be interchangeable because of the variation in the relationship between VO 2 and W. On other hand, variation in the relationship between VO 2 and W enables that VO 2 /W-slope can be used as a diagnostic tool. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  8. Influence of CeO{sub 2} NPs on biological phosphorus removal and bacterial community shifts in a sequencing batch biofilm reactor with the differential effects of molecular oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yi; Wang, Chao

    2016-11-15

    The effects of CeO{sub 2} nanoparticles (CeO{sub 2} NPs) on a sequencing batch biofilm reactor (SBBR) with established biological phosphorus (P) removal were investigated from the processes of anaerobic P release and aerobic P uptake. At low concentration (0.1 mg/L), no significant impact was observed on total phosphorus (TP) removal after operating for 8 h. However, at a concentration of 20 mg/L, TP removal efficiency decreased from 83.68% to 55.88% and 16.76% when the CeO{sub 2} NPs were added at the beginning of the anaerobic and aerobic periods, respectively. Further studies illustrated that the inhibition of the specific P releasemore » rate was caused by the reversible states of Ce{sup 3+} and Ce{sup 4+}, which inhibited the activity of exopolyphosphatase (PPX) and transformation of poly-β-hydoxyalkanoates (PHA) and glycogen, as well as the uptake of volatile fatty acids (VFAs). The decrease in the specific P uptake rate was mainly attributed to the significantly suppressed energy generation and decreased abundance of Burkholderia caused by excess reactive oxygen species. The removal of chemical oxygen demand (COD) was not influenced by CeO{sub 2} NPs under aerobic conditions, due to the increased abundance of Acetobacter and Acidocella after exposure. The inhibitory effects of CeO{sub 2} NPs with molecular oxygen were reduced after anaerobic exposure due to the enhanced particle size and the presence of Ce{sup 3+}. - Highlights: • CeO{sub 2} NPs (20 mg/L) had a notable toxicity effect on P removal in SBBR system. • The deteriorated SPRR was caused by the inhibited key enzyme activity (PPX). • The decreased SPUR was caused by the bacterial community shifts. • Ce ions converting and excess ROS generation are related toxicity mechanisms.« less

  9. Comparison of oxygen transfer parameters and oxygen demands in bioreactors operated at low and high dissolved oxygen levels.

    PubMed

    Mines, Richard O; Callier, Matthew C; Drabek, Benjamin J; Butler, André J

    2017-03-21

    The proper design of aeration systems for bioreactors is critical since it can represent up to 50% of the operational and capital cost at water reclamation facilities. Transferring the actual amount of oxygen needed to meet the oxygen demand of the wastewater requires α- and β-factors, which are used for calculating the actual oxygen transfer rate (AOTR) under process conditions based on the standard oxygen transfer rate (SOTR). The SOTR is measured in tap water at 20°C, 1 atmospheric pressure, and 0 mg L -1 of dissolved oxygen (DO). In this investigation, two 11.4-L bench-scale completely mixed activated process (CMAS) reactors were operated at various solid retention times (SRTs) to ascertain the relationship between the α-factor and SRT, and between the β-factor and SRT. The second goal was to determine if actual oxygen uptake rates (AOURs) are equal to calculated oxygen uptake rates (COURs) based on mass balances. Each reactor was supplied with 0.84 L m -1 of air resulting in SOTRs of 14.3 and 11.5 g O 2 d -1 for Reactor 1 (R-1) and Reactor 2 (R-2), respectively. The estimated theoretical oxygen demands of the synthetic feed to R-1 and R-2 were 6.3 and 21.9 g O 2 d -1 , respectively. R-2 was primarily operated under a dissolved oxygen (DO) limitation and high nitrogen loading to determine if nitrification would be inhibited from a nitrite buildup and if this would impact the α-factor. Nitrite accumulated in R-2 at DO concentrations ranging from 0.50 to 7.35 mg L -1 and at free ammonia (FA) concentrations ranging from 1.34 to 7.19 mg L -1 . Nonsteady-state reaeration tests performed on the effluent from each reactor and on tap water indicated that the α-factor increased as SRT increased. A simple statistical analysis (paired t-test) between AOURs and COURs indicated that there was a statistically significant difference at 0.05 level of significance for both reactors. The ex situ BOD bottle method for estimating AOUR appears to be invalid in bioreactors operated at low DO concentrations (<1.0 mg L -1 ).

  10. Comparative amperometric study of uptake hydrogenase and hydrogen photoproduction activities between heterocystous cyanobacterium Anabaena cylindrica B629 and nonheterocystous cyanobacterium Oscillatoria sp. strain Miami BG7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumazawa, S.; Mitsui, A.

    Heterocystous filamentous cyanobacterium Anabaena cylindrica B629 and nonheterocystous filamentous cyanobacterium Oscillatoria sp. strain Miami BG7 were cultured in media with N/sub 2/ as the sole nitrogen source; and activities of oxygen-dependent hydrogen uptake, photohydrogen production photooxygen evolution, and respiration were compared amperometrically under the same or similar experimental conditions for both strains. Distinct differences in these activities were observed in both strains. The rates of hydrogen photoproduction and hydrogen accumulation were significantly higher in Oscillatoria sp. strain BG7 than in A. cylindrica B629 at every light intensity tested. The major reason for the difference was attributable to the fact thatmore » the heterocystous cyanobacterium had a high rate of oxygen-dependent hydrogen consumption activity and the nonheterocystous cyanobacterium did not. The activity of oxygen photoevolution and respiration also contributed to the difference. Oscillatoria sp. strain BG7 had lower O/sub 2/ evolution and higher respiration than did A. cylindrica B629. Thus, the effect of O/sub 2/ on hydrogen photoproduction was minimized in Oscillatoria sp. strain BG7. 32 references, 5 figures.« less

  11. Development, validity, and reliability of a ballet-specific aerobic fitness test.

    PubMed

    Twitchett, Emily; Nevill, Alan; Angioi, Manuela; Koutedakis, Yiannis; Wyon, Matthew

    2011-09-01

    The aim of this study was to develop and assess the reliability and validity of a multi-stage, ballet-specific aerobic fitness test to be used in a dance studio setting. The test consists of five stages, each four minutes long, that increase in intensity. It uses classical ballet movement of an intermediate-level of difficulty, thus emphasizing physiological demand rather than skill. The demand of each stage was determined by calculating the mean oxygen uptake during its final minute using a portable gas analyser. After an initial familiarization period, eight female subjects performed the test twice within seven days. The results showed significant differences in oxygen consumption between stages (p < 0.001), but not between trials. Pearson correlation co-efficients produced a very good linear relationship between trials (r = 0.998, p < 0.001). Bland-Altman reliability analysis revealed the 95% limits of agreement to be ± 6.2 ml·kg(-1)·min(-1), showing good agreement between trials. The oxygen uptake in our subjects equated positively to previous estimates for class and performance, confirming validity. It was concluded that the test is suitable for use among classical ballet dancers, with many possible applications.

  12. [Adaptive specific features of energy metabolism in fish ontogenesis].

    PubMed

    Ozerniuk, N D

    2011-01-01

    A review of data on the pattern of change of the intensity of oxygen consumption during early ontogenesis of different fish species (rainbow trout, loach, zebrafish, carp, and grass carp) is provided. It has a similar pattern: this index increases in the period of embryonic and larval development and, after passing of larvae to an active feeding, it begins to gradually decline. This dynamics is determined by specific features of an increase in the rate of oxygen uptake and body weight in the course of early stages of fish ontogenesis. For determining optimal temperature conditions of development, a method of total (for a definite stage of development) oxygen uptake was suggested, which makes it possible to determine minimal energy expenditures necessary for the process of a particular stage of embryogenesis to take place. Analysis of temperature dependence of kinetic properties of enzymes with reference to the Michaelis constant (Km) for lactate dehydrogenase demonstrated that minimal Km, corresponding to maximal enzyme-substrate affinity, for embryos of different fish species differs in correspondence with differences in temperature conditions of development of these species in nature. For embryos of one species developing at changing temperature conditions (salmonids), this index changes in accordance with a temperature drift in nature.

  13. Athero-inflammatory nanotherapeutics: Ferulic acid-based poly(anhydride-ester) nanoparticles attenuate foam cell formation by regulating macrophage lipogenesis and reactive oxygen species generation.

    PubMed

    Chmielowski, Rebecca A; Abdelhamid, Dalia S; Faig, Jonathan J; Petersen, Latrisha K; Gardner, Carol R; Uhrich, Kathryn E; Joseph, Laurie B; Moghe, Prabhas V

    2017-07-15

    Enhanced bioactive anti-oxidant formulations are critical for treatment of inflammatory diseases, such as atherosclerosis. A hallmark of early atherosclerosis is the uptake of oxidized low density lipoprotein (oxLDL) by macrophages, which results in foam cell and plaque formation in the arterial wall. The hypolipidemic, anti-inflammatory, and antioxidative properties of polyphenol compounds make them attractive targets for treatment of atherosclerosis. However, high concentrations of antioxidants can reverse their anti-atheroprotective properties and cause oxidative stress within the artery. Here, we designed a new class of nanoparticles with anti-oxidant polymer cores and shells comprised of scavenger receptor targeting amphiphilic macromolecules (AMs). Specifically, we designed ferulic acid-based poly(anhydride-ester) nanoparticles to counteract the uptake of high levels of oxLDL and regulate reactive oxygen species generation (ROS) in human monocyte derived macrophages (HMDMs). Compared to all compositions examined, nanoparticles with core ferulic acid-based polymers linked by diglycolic acid (PFAG) showed the greatest inhibition of oxLDL uptake. At high oxLDL concentrations, the ferulic acid diacids and polymer nanoparticles displayed similar oxLDL uptake. Treatment with the PFAG nanoparticles downregulated the expression of macrophage scavenger receptors, CD-36, MSR-1, and LOX-1 by about 20-50%, one of the causal factors for the decrease in oxLDL uptake. The PFAG nanoparticle lowered ROS production by HMDMs, which is important for maintaining macrophage growth and prevention of apoptosis. Based on these results, we propose that ferulic acid-based poly(anhydride ester) nanoparticles may offer an integrative strategy for the localized passivation of the early stages of the atheroinflammatory cascade in cardiovascular disease. Future development of anti-oxidant formulations for atherosclerosis applications is essential to deliver an efficacious dose while limiting localized concentrations of pro-oxidants. In this study, we illustrate the potential of degradable ferulic acid-based polymer nanoparticles to control macrophage foam cell formation by significantly reducing oxLDL uptake through downregulation of scavenger receptors, CD-36, MSR-1, and LOX-1. Another critical finding is the ability of the degradable ferulate-based polymer nanoparticles to lower macrophage reactive oxygen species (ROS) levels, a precursor to apoptosis and plaque escalation. The degradable ferulic acid-based polymer nanoparticles hold significant promise as a means to alter the treatment and progression of atherosclerosis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Mifepristone enhances insulin-stimulated Akt phosphorylation and glucose uptake in skeletal muscle cells.

    PubMed

    Bernal-Sore, Izela; Navarro-Marquez, Mario; Osorio-Fuentealba, César; Díaz-Castro, Francisco; Del Campo, Andrea; Donoso-Barraza, Camila; Porras, Omar; Lavandero, Sergio; Troncoso, Rodrigo

    2018-02-05

    Mifepristone is the only FDA-approved drug for glycaemia control in patients with Cushing's syndrome and type 2 diabetes. Mifepristone also has beneficial effects in animal models of diabetes and patients with antipsychotic treatment-induced obesity. However, the mechanisms through which Mifepristone produces its beneficial effects are not completely elucidated. To determine the effects of mifepristone on insulin-stimulated glucose uptake on a model of L6 rat-derived skeletal muscle cells. Mifepristone enhanced insulin-dependent glucose uptake, GLUT4 translocation to the plasma membrane and Akt Ser 473 phosphorylation in L6 myotubes. In addition, mifepristone reduced oxygen consumption and ATP levels and increased AMPK Thr 172 phosphorylation. The knockdown of AMPK prevented the effects of mifepristone on insulin response. Mifepristone enhanced insulin-stimulated glucose uptake through a mechanism that involves a decrease in mitochondrial function and AMPK activation in skeletal muscle cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The role of biological uptake in iron and manganese cycling in Lake Baikal

    USGS Publications Warehouse

    Granina, L.Z.; Callender, E.

    2006-01-01

    The role of biological uptake in the internal cycling of Fe and Mn in Lake Baikal was quantified. Biological uptake, sedimentation consisting of the biogenic and lithogenic fluxes, and remineralization have been evaluated. The results of calculations show that about 5-10% of Fe and Mn accumulated in the lake are annually taken up by biota. More than 80% of this amount is again recycled after remineralization of biological material. At this, the biogenic fluxes of Fe and Mn are 2-4 times less compared to lithogenic ones. Thus not only is oxidation of Fe and Mn within the water column highly enriched in the oxygen that results in settling of Fe and Mn oxides, but also intensive biological uptake of these elements contributes to their fast removal from internal cycling. However, essential remineralization makes this process of minor importance to Fe and Mn cycling in Lake Baikal. ?? Springer 2006.

  16. Aeration costs in stirred-tank and bubble column bioreactors

    DOE PAGES

    Humbird, D.; Davis, R.; McMillan, J. D.

    2017-08-10

    To overcome knowledge gaps in the economics of large-scale aeration for production of commodity products, Aspen Plus is used to simulate steady-state oxygen delivery in both stirred-tank and bubble column bioreactors, using published engineering correlations for oxygen mass transfer as a function of aeration rate and power input, coupled with new equipment cost estimates developed in Aspen Capital Cost Estimator and validated against vendor quotations. Here, these simulations describe the cost efficiency of oxygen delivery as a function of oxygen uptake rate and vessel size, and show that capital and operating costs for oxygen delivery drop considerably moving from standard-sizemore » (200 m 3) to world-class size (500 m 3) reactors, but only marginally in further scaling up to hypothetically large (1000 m 3) reactors. Finally, this analysis suggests bubble-column reactor systems can reduce overall costs for oxygen delivery by 10-20% relative to stirred tanks at low to moderate oxygen transfer rates up to 150 mmol/L-h.« less

  17. Aeration costs in stirred-tank and bubble column bioreactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humbird, D.; Davis, R.; McMillan, J. D.

    To overcome knowledge gaps in the economics of large-scale aeration for production of commodity products, Aspen Plus is used to simulate steady-state oxygen delivery in both stirred-tank and bubble column bioreactors, using published engineering correlations for oxygen mass transfer as a function of aeration rate and power input, coupled with new equipment cost estimates developed in Aspen Capital Cost Estimator and validated against vendor quotations. Here, these simulations describe the cost efficiency of oxygen delivery as a function of oxygen uptake rate and vessel size, and show that capital and operating costs for oxygen delivery drop considerably moving from standard-sizemore » (200 m 3) to world-class size (500 m 3) reactors, but only marginally in further scaling up to hypothetically large (1000 m 3) reactors. Finally, this analysis suggests bubble-column reactor systems can reduce overall costs for oxygen delivery by 10-20% relative to stirred tanks at low to moderate oxygen transfer rates up to 150 mmol/L-h.« less

  18. Enhancement of glucose uptake in skeletal muscle L6 cells and insulin secretion in pancreatic hamster-insulinoma-transfected cells by application of non-thermal plasma jet

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Kaushik, Nagendra K.; Park, Gyungsoon; Choi, Eun H.; Uhm, Han S.

    2013-11-01

    Type-II diabetes Mellitus is characterized by defects in insulin action on peripheral tissues, such as skeletal muscle, adipose tissue, and liver and pancreatic beta cells. Since the skeletal muscle accounts for approximately 75% of insulin-stimulated glucose-uptake in our body, impaired insulin secretion from defected beta cell plays a major role in the afflicted glucose homoeostasis. It was shown that the intracellular reactive oxygen species and nitric oxide level was increased by non-thermal-plasma treatment in ambient air. These increased intracellular reactive species may enhance glucose uptake and insulin secretion through the activation of intracellular calcium (Ca+) and cAMP production.

  19. Light metal decoration on nitrogen/sulfur codoped graphyne: An efficient strategy for designing hydrogen storage media

    NASA Astrophysics Data System (ADS)

    Mohajeri, Afshan; Shahsavar, Azin

    2018-07-01

    Nitrogen/sulfur dual doped carbon materials have attracted a great deal of interest due to their fascinating applications in lithium ion batteries, hydrogen storage, and oxygen reduction reactions. Here, the hydrogen storage capacity of NS dual-doped graphyne (GYNS) decorated with Li or Na is theoretically explored. The NS-codoping leads to greater charge transfer and stronger binding between the alkali metal and graphyne surface giving rise to enhanced hydrogen storage capacity. We showed that the NS-codoping increases the hydrogen storage capacities of Li-decorated and Na-decorated GY by almost 30% and 60%, respectively. At high NS concentration, the hydrogen uptake capacities can reach to 8.98 wt% and 9.34 wt% for double-side Li- decorated GYNS and Na-decorated GYNS. Moreover, the average adsorption energies per H2 are -0.27 eV for 2Li/GYNS(33.3%) and -0.26 eV for 2Na/GYNS(33.3%) which lie in desirable range for practical applications at ambient conditions.

  20. Cardiorespiratory dynamics: sensitivity of the on-transition to endurance-training status.

    PubMed

    Taylor, N A; Osborne, M A; Bube, T L; Stocks, J M

    1999-10-01

    This project investigated the sensitivity of oxygen uptake (VO(2)) dynamics to training-induced physiological changes, across a broad spectrum of endurance-training histories. Forty subjects participated: sedentary (n = 10), active healthy (n = 10), regular runners (n = 10), and competitive distance runners (n = 10). Subjects completed a cycle step-function protocol, to elicit a steady state at 60% maximal work rate. Breath-by-breath data were collected for VO(2) and cardiac frequency (f(c)), and modelled mathematically, and used to determine the average response times to attain 20%, 40%, 60%, 80% and 100% of the respective steady states. The between-group comparisons for both VO(2) and f(c) revealed significantly faster response times to 40%, 60%, 80% and 100% of the induced response, for the better trained subjects (P < 0.05). In general, this technique permitted differentiation between the VO(2) and f(c) response dynamics of non-elite subjects from a broad range of endurance-training histories, with differences becoming more pronounced as subjects approached the steady state.

  1. Fluid-electrolyte shifts and thermoregulation - Rest and work in heat with head cooling

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Van Beaumont, W.; Brock, P. J.; Montgomery, L. D.; Morse, J. T.; Shvartz, E.; Kravik, S.

    1980-01-01

    The effects of head cooling on thermoregulation and associated plasma fluid and electrolyte shifts during rest and submaximal exercise in the heat are investigated. Thermoregulatory responses and plasma volume were measured in four male subjects fitted with liquid-cooled neoprene headgear during 60 min of rest, 60 min of ergometer exercise at 45% maximal oxygen uptake and 30 min of recovery in the supine position at 40.1 C and 40% relative humidity. It is found that, compared to control responses, head cooling decreased thigh sweating and increased mean skin temperature at rest and attenuated increases in thigh sweating, heart rate, rectal temperature and ventilation during exercise. During recovery, cooling is observed to facilitate decreases in sweat rate, heart rate, rectal temperature and forearm blood flow and enhance the increase in average temperature. Cooling had no effect on plasma protein, osmotic or electrolyte shifts, and decreased plasma volume losses. The findings indicate the effectiveness of moderate head cooling for the improvement of human performance during exercise in heat.

  2. Variation in morphological and biochemical O3 injury attributes of mature Jeffrey pine within canopies and between microsites.

    PubMed

    Grulke, N E; Johnson, R; Monschein, S; Nikolova, P; Tausz, M

    2003-09-01

    Crown morphology and leaf tissue chemical and biochemical attributes associated with ozone (O3) injury were assessed in the lower, mid- and upper canopy of Jeffrey pine (Pinus jeffreyi Grev. & Balf.) growing in mesic and xeric microsites in Sequoia National Park, California. Microsites were designated mesic or xeric based on topography and bole growth in response to years of above-average precipitation. In mesic microsites, canopy response to O3 was characterized by thinner branches, earlier needle fall, less chlorotic leaf mottling, and lower foliar antioxidant capacity, especially of the aqueous fraction. In xeric microsites, canopy response to O3 was characterized by higher chlorotic leaf mottling, shorter needles, lower needle chlorophyll concentration, and greater foliar antioxidant capacity. Increased leaf chlorotic mottle in xeric microsites was related to drought stress and increased concurrent internal production of highly reactive oxygen species, and not necessarily to stomatal O3 uptake. Within-canopy position also influenced the expression of O3 injury in Jeffrey pine.

  3. Anaerobic threshold: review of the concept and directions for future research.

    PubMed

    Davis, J A

    1985-02-01

    Although the term anaerobic threshold was introduced 20 years ago, the concept that an exercise-induced lactic acidosis occurs at a particular oxygen uptake which varies among subjects is over 50 years old. The surge of new interest in the parameter relates to its strong relationship to prolonged exercise performance. The average marathon running speed has been shown to be closely related to the running speed at the anaerobic threshold. Numerous studies have shown that the parameter can be validly measured during incremental exercise from the gas exchange consequences of the increased carbon dioxide and hydrogen ion levels in blood resulting from bicarbonate buffering of lactic acid. Refinement of the noninvasive detection scheme has made the parameter attractive to investigators in preventative, rehabilitative, and occupational medicine and to researchers in the exercise sciences. Controversy exists regarding the specific cause for the onset of exercise-induced metabolic acidosis. As experimentation continues to unravel the mechanisms of lactate production and ventilatory control during exercise, the anaerobic threshold concept can be further evaluated.

  4. Physiological profiles of young boys training in ballet.

    PubMed Central

    Pekkarinen, H; Litmanen, H; Mahlamäki, S

    1989-01-01

    In order to evaluate physiological characteristics in young male ballet dancers, 27 boys (aged 9 to 16 years) who participated in a boys' dance course during the Kuopio Dance and Music Festival in June 1988 were studied. In general, the boys had started dancing at the age of 8.6 years and had been training for 4.1 years. They had, on average, three dancing sessions per week and the mean time spent on dancing was four hours per week. In the study, some anthropometric measurements were taken, the maximal oxygen uptake (VO2 max) was measured by a cycle ergometer test and the explosive strength and the mechanical power of lower extremities were evaluated by a jumping test. The results indicate that boys who train in ballet are in general moderately lean, have relatively small body size and a high degree of flexibility. The younger boys especially have only moderate aerobic power, but both explosive strength and mechanical power in leg muscles are good in ballet trained boys. PMID:2630002

  5. Simultaneous effective carbon and nitrogen removals and phosphorus recovery in an intermittently aerated membrane bioreactor integrated system

    PubMed Central

    Wang, Yun-Kun; Pan, Xin-Rong; Geng, Yi-Kun; Sheng, Guo-Ping

    2015-01-01

    Recovering nutrients, especially phosphate resource, from wastewater have attracted increasing interest recently. Herein, an intermittently aerated membrane bioreactor (MBR) with a mesh filter was developed for simultaneous chemical oxygen demand (COD), total nitrogen (TN) and phosphorous removal, followed by phosphorus recovery from the phosphorus-rich sludge. This integrated system showed enhanced performances in nitrification and denitrification and phosphorous removal without excess sludge discharged. The removal of COD, TN and total phosphorus (TP) in a modified MBR were averaged at 94.4 ± 2.5%, 94.2 ± 5.7% and 53.3 ± 29.7%, respectively. The removed TP was stored in biomass, and 68.7% of the stored phosphorous in the sludge could be recovered as concentrated phosphate solution with a concentration of phosphate above 350 mg/L. The sludge after phosphorus release could be returned back to the MBR for phosphorus uptake, and 83.8% of its capacity could be recovered. PMID:26541793

  6. Energy demands in competitive soccer.

    PubMed

    Bangsbo, J

    1994-01-01

    In elite outfield players, the average work rate during a soccer match, as estimated from variables such as heart rate, is approximately 70% of maximal oxygen uptake (VO2 max). This corresponds to an energy production of approximately 5700 kJ (1360 kcal) for a person weighing 75 kg with a VO2 max of 60 ml kg-1 min-1. Aerobic energy production appears to account for more than 90% of total energy consumption. Nevertheless, anaerobic energy production plays an essential role during soccer matches. During intensive exercise periods of a game, creatine phosphate, and to a lesser extent the stored adenosine triphosphate, are utilized. Both compounds are partly restored during a subsequent prolonged rest period. In blood samples taken after top-class soccer matches, the lactate concentration averages 3-9 mM, and individual values frequently exceed 10 mM during match-play. Furthermore, the adenosine diphosphate degradation products--ammonia/ammonium, hypoxanthine and uric acid--are elevated in the blood during soccer matches. Thus, the anaerobic energy systems are heavily taxes during periods of match-play. Glycogen in the working muscle seems to be the most important substrate for energy production during soccer matches. However, muscle triglycerides, blood free fatty acids and glucose are also used as substrates for oxidative metabolism in the muscles.

  7. Comparison of the Effects of Stable and Dynamic Furniture on Physical Activity and Learning in Children.

    PubMed

    Garcia, Jeanette M; Huang, Terry T; Trowbridge, Matthew; Weltman, Arthur; Sirard, John R

    2016-12-01

    We compared the effects of traditional (stable) and non-traditional (dynamic) school furniture on children's physical activity (PA), energy expenditure (EE), information retention, and math skills. Participants were 12 students (8.3 years, 58 % boys) in grades 1-5. Participants wore an Actigraph GT3X+ accelerometer (to assess PA), and an Oxycon Mobile indirect calorimetry device (to assess EE) for 40 min (20 min for each session). Each session consisted of a nutrition lecture, multiple choice questions related to the lecture, and grade-appropriate math problems. We used paired t tests to examine differences between the stable and dynamic furniture conditions. Average activity counts were significantly greater in the dynamic than the stable furniture condition (40.82 vs. 9.81, p < 0.05). We found no significant differences between conditions for average oxygen uptake (p = 0.34), percentage of nutrition questions (p = 0.5), or math problems (p = 0.93) answered correctly. Movement was significantly greater in the dynamic than the stable furniture condition, and did not impede information acquisition or concentration. Future studies should compare the long-term effects of traditional and dynamic furniture on health and academic outcomes in schools and other settings.

  8. Oxygen chemisorption and oxide formation on Ni silicide surfaces at room temperature

    NASA Astrophysics Data System (ADS)

    Valeri, S.; Del Pennino, U.; Lomellini, P.; Sassaroli, P.

    1984-10-01

    Auger spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) have been used in a comparative study of the room temperature oxidation of Ni silicides of increasing silicon content, from Ni3Si to NiSi2. The results were compared with those for the oxidation of pure Si and Ni. All suicide surfaces in the exposure range between 0.2 and 104 L follow two-step oxidation kinetics: the first step is characterized by an oxygen uptake rate higher than in the second one. Attention was focused on the oxygen induced modifications of metal and silicon AES and XPS spectra in silicides, which are indicative of changes in the local electronic structure and in the chemical bonding. In general oxygen bonds with silicon leaving the metal unaffected; however, at high exposures, characteristic feature of the Ni-oxygen bonds appear in the Ni(MVV) Auger line of the Ni-rich silicides. The presence of Ni atoms enhances considerably the Si oxidation process in silicides with respect to pure Si, in terms both of a higher Si oxidation state and a higher oxygen uptake; this enhancement is stronger in Ni-rich silicides than in Si-rich silicides. The oxygen induced contributions in the Si(LVV) Auger line show structures at 76 and 83 eV, and those in the Si 2p photoemission spectra show binding energy shifts between -1 and -3.8 eV; we conclude that the oxidation products are mainly silicon suboxides, like Si2O3 and SiO; only on Ni3 Si at 104 L, a significant contribution of SiO2 was found. The Ni catalytic effect on Si oxidation has been discussed in terms of the suicide heat of formation, of the breaking of the silicon sp3 configuration in silicides and of the metal atom dissociative effect on the O2 molecule.

  9. The Moral Obligation to Explore the Military Use of Performance-Enhancing Supplements and Drugs

    DTIC Science & Technology

    2017-06-01

    effects as well. Creatinine is a natural by-product of the consumption of creatine in the muscles during heavy exertion.131 Creatinine must then be...Basel: Karger Landes Systems, 1997), 9−18. 162 G. S. Hughes Jr. et al., “Hematologic Effects of a Novel Hemoglobin-Based Oxygen Carrier in Normal...like the regulation of blood pressure, neuroprotection, and maximum oxygen uptake.167 Moderate rHuEPO use has been shown to have beneficial effects

  10. Peer mentoring is associated with positive change in physical activity and aerobic fitness of grades 4, 5, and 6 students in the heart healthy kids program.

    PubMed

    Spencer, Rebecca A; Bower, Jenna; Kirk, Sara F L; Hancock Friesen, Camille

    2014-11-01

    Only 7% of Canadian children achieve activity recommendations, contributing to obesity and preventable disease. The Heart Healthy Kids (H2K) program was designed to test the relationship between peer mentoring, physical activity, and cardiovascular fitness. Participants from 10 schools (5 control, 5 intervention) were enrolled in the program. In control schools, H2K included a physical activity challenge and education sessions. Intervention schools included the addition of a peer-mentoring component. Physical activity was measured through daily pedometer recording. Cardiovascular fitness was evaluated using the PACER (Progressive Aerobic Cardiovascular Endurance Run) protocol to calculate maximal oxygen uptake (VO2 max). Participants included 808 children (average age 9.9 ± 1.0 years). Although control and intervention schools did not differ at baseline, participants with peer mentoring logged significantly more steps per school day, on average, than those in control schools (6,785 ± 3,011 vs. 5,630 ± 2,586; p < .001). Male participants logged significantly more steps per school day than female participants. A significant improvement in VO2 max was also noted in intervention schools, with an average increase of 1.72 ml/mg/min. H2K was associated with positive change in physical activity and cardiovascular fitness, suggesting that peer mentoring shows promise for application in health promotion interventions. © 2014 Society for Public Health Education.

  11. Topical hyperbaric oxygen and electrical stimulation: exploring potential synergy.

    PubMed

    Edsberg, Laura E; Brogan, Michael S; Jaynes, C David; Fries, Kristin

    2002-11-01

    Treatment of chronic wounds involves interventions ranging from dressings to surgery. Modalities gaining popularity in clinical settings include topical hyperbaric oxygen and electrical stimulation. A prospective, uncontrolled study was conducted to obtain preliminary observations and data about the effects of topical hyperbaric oxygen therapy and topical hyperbaric oxygen used with electrical stimulation on the healing of chronic wounds. All subjects were geriatric residents of long-term care facilities with Stage III or Stage IV pressure ulcers. Topical hyperbaric oxygen was applied daily to the wounds of eight subjects; three also received electrical stimulation. Initial wound size ranged from 87.75 cm2 to 7.04 cm2 with an average size of 30.1 +/- 28.5 (mean +/- sd) cm2. Healing times ranged from 8 to 49 weeks. After 4 weeks of treatment with topical hyperbaric oxygen, wound size decreased an average of 34.4% +/- 22.9%. Incidentally, the wounds of five of the eight subjects decreased more than 20%, for an average of 51.8% +/- 17.9%. No significant differences in healing were observed between patients receiving topical hyperbaric oxygen alone and those receiving topical hyperbaric oxygen/electrical stimulation. Preliminary data indicate that topical hyperbaric oxygen facilitates wound healing and full closure for pressure ulcers in patients with and without diabetes mellitus. A multicenter, prospective, randomized, double-blind controlled study is currently under way.

  12. Cell uptake, intracellular distribution, fate and reactive oxygen species generation of polymer brush engineered CeO2-x NPs

    NASA Astrophysics Data System (ADS)

    Qiu, Yuan; Rojas, Elena; Murray, Richard A.; Irigoyen, Joseba; Gregurec, Danijela; Castro-Hartmann, Pablo; Fledderman, Jana; Estrela-Lopis, Irina; Donath, Edwin; Moya, Sergio E.

    2015-04-01

    Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell endosomes and lysosomes after 24 h of incubation. They also show higher co-localisation with lipid bodies when compared to unmodified CeO2-x NPs. The brush coating does not prevent CeO2-x NPs from displaying antioxidant properties.Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell endosomes and lysosomes after 24 h of incubation. They also show higher co-localisation with lipid bodies when compared to unmodified CeO2-x NPs. The brush coating does not prevent CeO2-x NPs from displaying antioxidant properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00884k

  13. SBR treatment of tank truck cleaning wastewater: sludge characteristics, chemical and ecotoxicological effluent quality.

    PubMed

    Caluwé, Michel; Dobbeleers, Thomas; Daens, Dominique; Geuens, Luc; Blust, Ronny; Dries, Jan

    2017-08-02

    A lab-scale activated sludge sequencing batch reactor (SBR) was used to treat tank truck cleaning (TTC) wastewater with different operational strategies (identified as different stages). The first stage was an adaptation period for the seed sludge that originated from a continuous fed industrial plant treating TTC wastewater. The first stage was followed by a dynamic reactor operation based on the oxygen uptake rate (OUR). Thirdly, dynamic SBR control based on OUR treated a daily changing influent. Lastly, the reactor was operated with a gradually shortened fixed cycle. During operation, sludge settling evolved from nearly no settling to good settling sludge in 16 days. The sludge volume index improved from 200 to 70 mL gMLSS -1 in 16 days and remained stable during the whole reactor operation. The average soluble chemical oxygen demand (sCOD) removal varied from 87.0% to 91.3% in the different stages while significant differences in the food to mass ratio were observed, varying from 0.11 (stage I) to 0.37 kgCOD.(kgMLVSS day) -1 (stage III). Effluent toxicity measurements were performed with Aliivibrio fischeri, Daphnia magna and Pseudokirchneriella subcapitata. Low sensitivity of Aliivibrio was observed. A few samples were acutely toxic for Daphnia; 50% of the tested effluent samples showed an inhibition of 100% for Pseudokirchneriella.

  14. Effects of oxidation reduction potential in the bypass micro-aerobic sludge zone on sludge reduction for a modified oxic-settling-anaerobic process.

    PubMed

    Li, Kexun; Wang, Yi; Zhang, Zhongpin; Liu, Dongfang

    2014-01-01

    Batch experiments were conducted to determine the effect of oxidation reduction potential (ORP) on sludge reduction in a bypass micro-aerobic sludge reduction system. The system was composed of a modified oxic-settling-anaerobic process with a sludge holding tank in the sludge recycle loop. The ORPs in the micro-aerobic tanks were set at approximately +350, -90, -150, -200 and -250 mV, by varying the length of aeration time for the tanks. The results show that lower ORP result in greater sludge volume reduction, and the sludge production was reduced by 60% at the lowest ORP. In addition, low ORP caused extracellular polymer substances dissociation and slightly reduced sludge activity. Comparing the sludge backflow characteristics of the micro-aerobic tank's ORP controlled at -250 mV with that of +350 mV, the average soluble chemical oxygen (SCOD), TN and TP increased by 7, 0.4 and 2 times, median particle diameter decreased by 8.5 μm and the specific oxygen uptake rate (SOUR) decreased by 0.0043 milligram O2 per gram suspended solids per minute. For the effluent, SCOD and TN and TP fluctuated around 30, 8.7 and 0.66 mg/L, respectively. Therefore, the effective assignment of ORP in the micro-aerobic tank can remarkably reduce sludge volume and does not affect final effluent quality.

  15. Effect of hemoglobin polymerization on oxygen transport in hemoglobin solutions.

    PubMed

    Budhiraja, Vikas; Hellums, J David

    2002-09-01

    The effect of hemoglobin (Hb) polymerization on facilitated transport of oxygen in a bovine hemoglobin-based oxygen carrier was studied using a diffusion cell. In high oxygen tension gradient experiments (HOTG) at 37 degrees C the diffusion of dissolved oxygen in polymerized Hb samples was similar to that in unpolymerized Hb solutions during oxygen uptake. However, in the oxygen release experiments, the transport by diffusion of dissolved oxygen was augmented by diffusion of oxyhemoglobin over a range of oxygen saturations. The augmentation was up to 30% in the case of polymerized Hb and up to 100% in the case of unpolymerized Hb solution. In experiments performed at constant, low oxygen tension gradients in the range of physiological significance, the augmentation effect was less than that in the HOTG experiments. Oxygen transport in polymerized Hb samples was approximately the same as that in unpolymerized samples over a wide range of oxygen tensions. However, at oxygen tensions lower than 30 mm Hg, there were more significant augmentation effects in unpolymerized bovine Hb samples than in polymerized Hb. The results presented here are the first accurate, quantitative measurements of effective diffusion coefficients for oxygen transport in hemoglobin-based oxygen carriers of the type being evaluated to replace red cells in transfusions. In all cases the oxygen carrier was found to have higher effective oxygen diffusion coefficients than blood.

  16. Cationic Phosphorus Dendrimer Enhances Photodynamic Activity of Rose Bengal against Basal Cell Carcinoma Cell Lines.

    PubMed

    Dabrzalska, Monika; Janaszewska, Anna; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara

    2017-05-01

    In the last couple of decades, photodynamic therapy emerged as a useful tool in the treatment of basal cell carcinoma. However, it still meets limitations due to unfavorable properties of photosensitizers such as poor solubility or lack of selectivity. Dendrimers, polymers widely studied in biomedical field, may play a role as photosensitizer carriers and improve the efficacy of photodynamic treatment. Here, we describe the evaluation of an electrostatic complex of cationic phosphorus dendrimer and rose bengal in such aspects as singlet oxygen production, cellular uptake, and phototoxicity against three basal cell carcinoma cell lines. Rose bengal-cationic dendrimer complex in molar ratio 5:1 was compared to free rose bengal. Obtained results showed that the singlet oxygen production in aqueous medium was significantly higher for the complex than for free rose bengal. The cellular uptake of the complex was 2-7-fold higher compared to a free photosensitizer. Importantly, rose bengal, rose bengal-dendrimer complex, and dendrimer itself showed no dark toxicity against all three cell lines. Moreover, we observed that phototoxicity of the complex was remarkably enhanced presumably due to high cellular uptake. On the basis of the obtained results, we conclude that rose bengal-cationic dendrimer complex has a potential in photodynamic treatment of basal cell carcinoma.

  17. A study of water uptake by selected superdisintegrants from the sub-molecular to the particulate level.

    PubMed

    Barmpalexis, P; Syllignaki, P; Kachrimanis, K

    2018-06-01

    Water diffusion through the matrix of three superdisintegrants, namely sodium starch glycolate (SSG), croscarmellose sodium (cCMC-Na) and crospovidone (cPVP), was studied at the sub-molecular level using Attenuated Total Reflectance (ATR)-FTIR spectroscopy and molecular dynamics simulations, and the results were correlated to water uptake studies conducted at the particulate level using Parallel Exponential Kinetics (PEK) modeling in dynamic moisture sorption studies and optical microscopy. ATR-FTIR studies indicated that water diffuses inside cPVP by a single fast acting process, while in SSG and cCMC-Na, a slow and a fast process acting simultaneously, were identified. The same pattern regarding the rate of water uptake for all superdisintegrants was found also at the particulate level by PEK modeling. Moreover, molecular dynamics simulation helped elucidate the hydrogen bonding patterns formed between water-SSG and water-cCMC-Na, mainly via their carboxylic oxygen atoms and secondarily via their hydroxyl groups, while cPVP formed hydrogen bonds only through carbonyl oxygen. Finally, cPVP chains showed significant flexibility during hydration, while cCMC-Na and SSG chains retain their conformation to some extent, explaining the extensive swelling observed also at the particulate level by optical microscopy hydration studies.

  18. Growth of Ammonium Bisulfate Clusters by Adsorption of Oxygenated Organic Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DePalma, Joseph W.; Wang, Jian; Wexler, Anthony S.

    Quantum chemical calculations were employed to model the interactions of the [(NH 4 +) 4(HSO 4 -) 4] ammonium bisulfate cluster with one or more molecular products of monoterpene oxidation. A strong interaction was found between the bisulfate ion of the cluster and a carboxylic acid, aldehyde or ketone functionality of the organic molecule. Free energies of adsorption for carboxylic acids were in the -70 to -73 kJ/mol range, while those for aldehydes and ketones were in the -46 to -50 kJ/mol range. These values suggest that a small ambient ammonium bisulfate cluster, such as the [(NH 4 +) 4(SOmore » 4 -) 4] cluster, is able to adsorb an oxygenated organic molecule. Although adsorption of the first molecule is highly favorable, adsorption of subsequent molecules is not, suggesting that sustained uptake of organic molecules does not occur, and thus is not a pathway for continuing growth of the cluster. This result is consistent with ambient measurements showing that particles below ~1 nm grow slowly, while those above 1 nm grow at an increasing rate presumably due to a lower surface energy barrier enabling the uptake of organic molecules. This work provides insight into the molecular level interactions which affect sustained cluster growth by uptake of organic molecules.« less

  19. Growth of Ammonium Bisulfate Clusters by Adsorption of Oxygenated Organic Molecules

    DOE PAGES

    DePalma, Joseph W.; Wang, Jian; Wexler, Anthony S.; ...

    2015-10-21

    Quantum chemical calculations were employed to model the interactions of the [(NH 4 +) 4(HSO 4 -) 4] ammonium bisulfate cluster with one or more molecular products of monoterpene oxidation. A strong interaction was found between the bisulfate ion of the cluster and a carboxylic acid, aldehyde or ketone functionality of the organic molecule. Free energies of adsorption for carboxylic acids were in the -70 to -73 kJ/mol range, while those for aldehydes and ketones were in the -46 to -50 kJ/mol range. These values suggest that a small ambient ammonium bisulfate cluster, such as the [(NH 4 +) 4(SOmore » 4 -) 4] cluster, is able to adsorb an oxygenated organic molecule. Although adsorption of the first molecule is highly favorable, adsorption of subsequent molecules is not, suggesting that sustained uptake of organic molecules does not occur, and thus is not a pathway for continuing growth of the cluster. This result is consistent with ambient measurements showing that particles below ~1 nm grow slowly, while those above 1 nm grow at an increasing rate presumably due to a lower surface energy barrier enabling the uptake of organic molecules. This work provides insight into the molecular level interactions which affect sustained cluster growth by uptake of organic molecules.« less

  20. 14 CFR 23.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... discretion. (c) If first-aid oxygen equipment is installed, the minimum mass flow of oxygen to each user may... upon an average flow rate of 3 liters per minute per person for whom first-aid oxygen is required. (d...

  1. Dissociation Between Brown Adipose Tissue 18F-FDG Uptake and Thermogenesis in Uncoupling Protein 1-Deficient Mice.

    PubMed

    Hankir, Mohammed K; Kranz, Mathias; Keipert, Susanne; Weiner, Juliane; Andreasen, Sille G; Kern, Matthias; Patt, Marianne; Klöting, Nora; Heiker, John T; Brust, Peter; Hesse, Swen; Jastroch, Martin; Fenske, Wiebke K

    2017-07-01

    18 F-FDG PET imaging is routinely used to investigate brown adipose tissue (BAT) thermogenesis, which requires mitochondrial uncoupling protein 1 (UCP1). It remains uncertain, however, whether BAT 18 F-FDG uptake is a reliable surrogate measure of UCP1-mediated heat production. Methods: UCP1 knockout (KO) and wild-type (WT) mice housed at thermoneutrality were treated with the selective β3 adrenergic receptor agonist CL 316, 243 and underwent metabolic cage, infrared thermal imaging and 18 F-FDG PET/MRI experiments. Primary brown adipocytes were additionally examined for their bioenergetics by extracellular flux analysis as well as their uptake of 2-deoxy- 3 H-glucose. Results: In response to CL 316, 243 treatments, oxygen consumption, and BAT thermogenesis were diminished in UCP1 KO mice, but BAT 18 F-FDG uptake was fully retained. Isolated UCP1 KO brown adipocytes exhibited defective induction of uncoupled respiration whereas their glycolytic flux and 2-deoxy- 3 H-glucose uptake rates were largely unaffected. Conclusion: Adrenergic stimulation can increase BAT 18 F-FDG uptake independently of UCP1 thermogenic function. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  2. ESCA study of several fluorocarbon polymers exposed to atomic oxygen in low earth orbit or within or downstream from a radio-frequency oxygen plasma

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Wydeven, Theodore; Cormia, Robert D.

    1989-01-01

    The ESCA (electron spectroscopy for chemical analysis) spectra of films of Tedlar, tetrafluoroethylene-hexafluoropropylene copolymer (in the form of a Teflon FEP coating on Kapton H, i.e., Kapton F), and polytetrafluoroethylene (Teflon or Teflon TFE), exposed to atomic oxygen O(3P) either in LEO on the STS-8 Space Shuttle or within or downstream from a radio-frequency oxygen plasma, were compared. The major difference in surface chemistry of Tedlar induced by the various exposures to O(3P) was a much larger uptake of oxygen when etched either in or out of the glow of an O2 plasma than when etched in LEO. In contrast, Kapton F exhibited very little surface oxidation during any of the three different exposures to O(3P), while Teflon was scarcely oxidized.

  3. Children-Adult Comparisons of VO2 and HR Kinetics during Submaximum Exercise.

    ERIC Educational Resources Information Center

    Sady, Stanley P.; And Others

    1983-01-01

    Oxygen uptake and heart rate kinetics for submaximum exercise (bicycle riding) were compared in prepubescent boys and adult men. Resulting data suggest that children and adults do not differ significantly in cardiorespiratory adjustments during low-intensity exercise. (Authors/PP)

  4. Hydrologic flow paths control dissolved organic carbon fluxes and metabolism in an Alpine stream hyporheic zone

    NASA Astrophysics Data System (ADS)

    Battin, Tom J.

    1999-10-01

    The objective of the present paper was to link reach-scale streambed reactive uptake of dissolved organic carbon (DOC) and dissolved oxygen (DO) to subsurface flow paths in an alpine stream (Oberer Seebach (OSB)). The topography adjacent to the stream channel largely determined flow paths, with shallow hillslope groundwater flowing beneath the stream and entering the alluvial groundwater at the opposite bank. As computed from hydrometric data, OSB consistently lost stream water to groundwater with fluxes out of the stream averaging 943 ± 47 and 664 ± 45 L m-2 h-1 at low (Q < 600 L s-1) and high (Q > 600 L s-1) flow, respectively. Hydrometric segregation of streambed fluxes and physicochemical mixing analysis indicated that stream water was the major input component to the streambed with average contributions of 70-80% to the hyporheic zone (i.e., the subsurface zone where shallow groundwater and stream water mix). Surface water was also the major source of DOC with 0.512 ± 0.043 mg C m-2 h-1 to the streambed. The DOC flux from shallow riparian groundwater was lower (0.309 ± 0.071 mg C m-2 h-1) and peaked in autumn with 1.011 mg C m-2 h-1. I computed the relative proportion of downstream discharge through the streambed as the ratio of the downstream length (Ssw) a stream water parcel travels before entering the streambed to the downstream length (Shyp) a streambed water parcel travels before returning to the stream water. The relative streambed DOC retention efficiency, calculated as (input-output)/input of interstitial DOC, correlated with the proportion (Ssw/Shyp) of downstream discharge (r2 = 0.76, p = 0.006). Also, did the streambed metabolism (calculated as DO uptake from mass balance) decrease with low subsurface downstream routing, whereas elevated downstream discharge through the streambed stimulated DO uptake (r2 = 0.69, p = 0.019)? Despite the very short DOC turnover times (˜0.05 days, calculated as mean standing stock/annual input) within the streambed, the latter constitutes a net sink of DOC (˜14 mg C m-2 h-1). Along with high standing stocks of sediment associated particulate organic carbon, these results suggest microbial biofilms as the major retention and storage site of DOC in an alpine stream where large hydrologic exchange controls DOC fluxes.

  5. Effect of Exercise Training on Red Blood Cell Distribution Width as a Marker of Impaired Exercise Tolerance in Patients With Coronary Artery Disease.

    PubMed

    Nishiyama, Yasuhiro; Niiyama, Hiroshi; Harada, Haruhito; Katou, Atsushi; Yoshida, Noriko; Ikeda, Hisao

    2016-09-28

    Red blood cell distribution width (RDW) can predict mortality in cardiovascular disease. However, the underlying mechanisms of the beneficial prognostic marker remain unknown. The purpose of this study was to investigate whether the RDW is related to impaired exercise tolerance and exercise training (ET) effect on RDW in patients with coronary artery disease (CAD).Seventy-eight patients who underwent ET by supervised bicycle ergometer during 3 weeks served as the ET group whereas 30 patients who did not undergo ET were the control group. Exercise stress test with cardiopulmonary analysis was performed in the ET group. Peak oxygen uptake (from 14.1 ± 4.0 to 15.1 ± 3.8 mL/kg/minute, P < 0.05) significantly increased in the ET group. Although RDW and serum erythropoietin concentration (EP) before the observation period did not differ between the ET and control groups, RDW (from 44.4 ± 4.7 to 43.4 ± 3.8 fL, P < 0.01) and EP (from 27.9 ± 15.8 to 22.9 ± 8.2 mIU/mL, P < 0.005) significantly decreased in the ET group, however, these parameters did not change in the control group. In the ET group, RDW was negatively correlated with peak oxygen uptake (r = -0.55, P < 0.01) and the changes in RDW before and after ET were positively correlated with the changes in EP (r = 0.39, P < 0.005).Thus, ET increases exercise tolerance and decreases RDW in association with increased oxygen uptake in patients with CAD.

  6. Estimation of Energy Expenditure during Treadmill Exercise via Thermal Imaging.

    PubMed

    Jensen, Martin Møller; Poulsen, Mathias Krogh; Alldieck, Thiemo; Larsen, Ryan Godsk; Gade, Rikke; Moeslund, Thomas Baltzer; Franch, Jesper

    2016-12-01

    Noninvasive imaging of oxygen uptake may provide a useful tool for the quantification of energy expenditure during human locomotion. A novel thermal imaging method (optical flow) was validated against indirect calorimetry for the estimation of energy expenditure during human walking and running. Fourteen endurance-trained subjects completed a discontinuous incremental exercise test on a treadmill. Subjects performed 4-min intervals at 3, 5, and 7 km·h (walking) and at 8, 10, 12, 14, 16, and 18 km·h (running) with 30 s of rest between intervals. Heart rate, gas exchange, and mean accelerations of ankle, thigh, wrist, and hip were measured throughout the exercise test. A thermal camera (30 frames per second) was used to quantify optical flow, calculated as the movements of the limbs relative to the trunk (internal mechanical work) and vertical movement of the trunk (external vertical mechanical work). Heart rate, gross oxygen uptake (mL·kg·min) together with gross and net energy expenditure (J·kg·min) rose with increasing treadmill velocities, as did optical flow measurements and mean accelerations (g) of ankle, thigh, wrist, and hip. Oxygen uptake was linearly correlated with optical flow across all exercise intensities (R = 0.96, P < 0.0001; V˙O2 [mL·kg·min] = 7.35 + 9.85 × optical flow [arbitrary units]). Only 3-4 s of camera recording was required to estimate an optical flow value at each velocity. Optical flow measurements provide an accurate estimation of energy expenditure during horizontal walking and running. The technique offers a novel experimental method of estimating energy expenditure during human locomotion, without use of interfering equipment attached to the subject.

  7. Criterion-Related Validity of the Distance- and Time-Based Walk/Run Field Tests for Estimating Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis.

    PubMed

    Mayorga-Vega, Daniel; Bocanegra-Parrilla, Raúl; Ornelas, Martha; Viciana, Jesús

    2016-01-01

    The main purpose of the present meta-analysis was to examine the criterion-related validity of the distance- and time-based walk/run tests for estimating cardiorespiratory fitness among apparently healthy children and adults. Relevant studies were searched from seven electronic bibliographic databases up to August 2015 and through other sources. The Hunter-Schmidt's psychometric meta-analysis approach was conducted to estimate the population criterion-related validity of the following walk/run tests: 5,000 m, 3 miles, 2 miles, 3,000 m, 1.5 miles, 1 mile, 1,000 m, ½ mile, 600 m, 600 yd, ¼ mile, 15 min, 12 min, 9 min, and 6 min. From the 123 included studies, a total of 200 correlation values were analyzed. The overall results showed that the criterion-related validity of the walk/run tests for estimating maximum oxygen uptake ranged from low to moderate (rp = 0.42-0.79), with the 1.5 mile (rp = 0.79, 0.73-0.85) and 12 min walk/run tests (rp = 0.78, 0.72-0.83) having the higher criterion-related validity for distance- and time-based field tests, respectively. The present meta-analysis also showed that sex, age and maximum oxygen uptake level do not seem to affect the criterion-related validity of the walk/run tests. When the evaluation of an individual's maximum oxygen uptake attained during a laboratory test is not feasible, the 1.5 mile and 12 min walk/run tests represent useful alternatives for estimating cardiorespiratory fitness. As in the assessment with any physical fitness field test, evaluators must be aware that the performance score of the walk/run field tests is simply an estimation and not a direct measure of cardiorespiratory fitness.

  8. Routine and active metabolic rates of migrating adult wild sockeye salmon (Oncorhynchus nerka Walbaum) in seawater and freshwater.

    PubMed

    Wagner, G N; Kuchel, L J; Lotto, A; Patterson, D A; Shrimpton, J M; Hinch, S G; Farrell, A P

    2006-01-01

    We present the first data on the differences in routine and active metabolic rates for sexually maturing migratory adult sockeye salmon (Oncorhynchus nerka) that were intercepted in the ocean and then held in either seawater or freshwater. Routine and active oxygen uptake rates (MO2) were significantly higher (27%-72%) in seawater than in freshwater at all swimming speeds except those approaching critical swimming speed. During a 45-min recovery period, the declining postexercise oxygen uptake remained 58%-73% higher in seawater than in freshwater. When fish performed a second swim test, active metabolic rates again remained 28%-81% higher for fish in seawater except at the critical swimming speed. Despite their differences in metabolic rates, fish in both seawater and freshwater could repeat the swim test and reach a similar maximum oxygen uptake and critical swimming speed as in the first swim test, even without restoring routine metabolic rate between swim tests. Thus, elevated MO2 related to either being in seawater as opposed to freshwater or not being fully recovered from previous exhaustive exercise did not present itself as a metabolic loading that limited either critical swimming performance or maximum MO2. The basis for the difference in metabolic rates of migratory sockeye salmon held in seawater and freshwater is uncertain, but it could include differences in states of nutrition, reproduction, and restlessness, as well as ionic differences. Regardless, this study elucidates some of the metabolic costs involved during the migration of adult salmon from seawater to freshwater, which may have applications for fisheries conservation and management models of energy use.

  9. Early diagenesis in the sediments of the Congo deep-sea fan dominated by massive terrigenous deposits: Part III - Sulfate- and methane- based microbial processes

    NASA Astrophysics Data System (ADS)

    Pastor, L.; Toffin, L.; Decker, C.; Olu, K.; Cathalot, C.; Lesongeur, F.; Caprais, J.-C.; Bessette, S.; Brandily, C.; Taillefert, M.; Rabouille, C.

    2017-08-01

    Geochemical profiles (SO42-, H2S, CH4, δ13CH4) and phylogenetic diversity of Archaea and Bacteria from two oceanographic cruises dedicated to the lobes sediments of the Congo deep-sea fan are presented in this paper. In this area, organic-rich turbidites reach 5000 m and allow the establishment of patchy cold-seep-like habitats including microbial mats, reduced sediments, and vesicomyid bivalves assemblages. These bivalves live in endosymbiosis with sulfur-oxidizing bacteria and use sulfides to perform chemosynthesis. In these habitats, unlike classical abyssal sediments, anoxic processes are dominant. Total oxygen uptake fluxes and methane fluxes measured with benthic chambers are in the same range as those of active cold-seep environments, and oxygen is mainly used for reoxidation of reduced compounds, especially in bacterial mats and reduced sediments. High concentrations of methane and sulfate co-exist in the upper 20 cm of sediments, and evidence indicates that sulfate-reducing microorganisms and methanogens co-occur in the shallow layers of these sediments. Simultaneously, anaerobic oxidation of methane (AOM) with sulfate as the electron acceptor is evidenced by the presence of ANMEs (ANaerobic MEthanotroph). Dissolved sulfide produced through the reduction of sulfate is reoxidized through several pathways depending on the habitat. These pathways include vesicomyid bivalves uptake (adults or juveniles in the bacterial mats habitats), reoxidation by oxygen or iron phases within the reduced sediment, or reoxidation by microbial mats. Sulfide uptake rates by vesicomyids measured in sulfide-rich sea water (90±18 mmol S m-2 d-1) were similar to sulfide production rates obtained by modelling the sulfate profile with different bioirrigation constants, highlighting the major control of vesicomyids on sulfur cycle in their habitats.

  10. Determination of the exercise intensity that elicits maximal fat oxidation in individuals with obesity.

    PubMed

    Dandanell, Sune; Præst, Charlotte Boslev; Søndergård, Stine Dam; Skovborg, Camilla; Dela, Flemming; Larsen, Steen; Helge, Jørn Wulff

    2017-04-01

    Maximal fat oxidation (MFO) and the exercise intensity that elicits MFO (Fat Max ) are commonly determined by indirect calorimetry during graded exercise tests in both obese and normal-weight individuals. However, no protocol has been validated in individuals with obesity. Thus, the aims were to develop a graded exercise protocol for determination of Fat Max in individuals with obesity, and to test validity and inter-method reliability. Fat oxidation was assessed over a range of exercise intensities in 16 individuals (age: 28 (26-29) years; body mass index: 36 (35-38) kg·m -2 ; 95% confidence interval) on a cycle ergometer. The graded exercise protocol was validated against a short continuous exercise (SCE) protocol, in which Fat Max was determined from fat oxidation at rest and during 10 min of continuous exercise at 35%, 50%, and 65% of maximal oxygen uptake. Intraclass and Pearson correlation coefficients between the protocols were 0.75 and 0.72 and within-subject coefficient of variation (CV) was 5 (3-7)%. A Bland-Altman plot revealed a bias of -3% points of maximal oxygen uptake (limits of agreement: -12 to 7). A tendency towards a systematic difference (p = 0.06) was observed, where Fat Max occurred at 42 (40-44)% and 45 (43-47)% of maximal oxygen uptake with the graded and the SCE protocol, respectively. In conclusion, there was a high-excellent correlation and a low CV between the 2 protocols, suggesting that the graded exercise protocol has a high inter-method reliability. However, considerable intra-individual variation and a trend towards systematic difference between the protocols reveal that further optimization of the graded exercise protocol is needed to improve validity.

  11. Prescribing 6-weeks of running training using parameters from a self-paced maximal oxygen uptake protocol.

    PubMed

    Hogg, James S; Hopker, James G; Coakley, Sarah L; Mauger, Alexis R

    2018-05-01

    The self-paced maximal oxygen uptake test (SPV) may offer effective training prescription metrics for athletes. This study aimed to examine whether SPV-derived data could be used for training prescription. Twenty-four recreationally active male and female runners were randomly assigned between two training groups: (1) Standardised (STND) and (2) Self-Paced (S-P). Participants completed 4 running sessions a week using a global positioning system-enabled (GPS) watch: 2 × interval sessions; 1 × recovery run; and 1 × tempo run. STND had training prescribed via graded exercise test (GXT) data, whereas S-P had training prescribed via SPV data. In STND, intervals were prescribed as 6 × 60% of the time that velocity at [Formula: see text] ([Formula: see text]) could be maintained (T max ). In S-P, intervals were prescribed as 7 × 120 s at the mean velocity of rating of perceived exertion 20 ( v RPE20). Both groups used 1:2 work:recovery ratio. Maximal oxygen uptake ([Formula: see text]), [Formula: see text], T max, v RPE20, critical speed (CS), and lactate threshold (LT) were determined before and after the 6-week training. STND and S-P training significantly improved [Formula: see text] by 4 ± 8 and 6 ± 6%, CS by 7 ± 7 and 3 ± 3%; LT by 5 ± 4% and 7 ± 8%, respectively (all P < .05), with no differences observed between groups. Novel metrics obtained from the SPV can offer similar training prescription and improvement in [Formula: see text], CS and LT compared to training derived from a traditional GXT.

  12. Physiological effects of wearing graduated compression stockings during running.

    PubMed

    Ali, Ajmol; Creasy, Robert H; Edge, Johann A

    2010-08-01

    This study examined the effect of wearing different grades of graduated compression stockings (GCS) on physiological and perceptual measures during and following treadmill running in competitive runners. Nine males and one female performed three 40-min treadmill runs (80 +/- 5% maximal oxygen uptake) wearing either control (0 mmHg; CON), low (12-15 mmHg; LO-GCS), or high (23-32 mmHg; HI-GCS) grade GCS in a double-blind counterbalanced order. Oxygen uptake, heart rate and blood lactate were measured. Perceptual scales were used pre- and post-run to assess comfort, tightness and any pain associated with wearing GCS. Changes in muscle function, soreness and damage were determined pre-run, immediately after running and 24 and 48 h post-run by measuring creatine kinase and myoglobin, counter-movement jump height, perceived soreness diagrams, and pressure sensitivity. There were no significant differences between trials for oxygen uptake, heart rate or blood lactate during exercise. HI-GCS was perceived as tighter (P < 0.05) and more pain-inducing (P < 0.05) than the other interventions; CON and LO-GCS were rated more comfortable than HI-GCS (P < 0.05). Creatine kinase (P < 0.05), myoglobin (P < 0.05) and jump height (P < 0.05) were higher and pressure sensitivity was more pronounced (P < 0.05) immediately after running but not after 24 and 48 h. Only four participants reported muscle soreness during recovery from running and there were no differences in muscle function between trials. In conclusion, healthy runners wearing GCS did not experience any physiological benefits during or following treadmill running. However, athletes felt more comfortable wearing low-grade GCS whilst running.

  13. Assessing the biodegradability of terrestrially-derived organic matter in Scottish sea loch sediments

    NASA Astrophysics Data System (ADS)

    Loh, P. S.; Miller, A. E. J.; Reeves, A. D.; Harvey, S. M.; Overnell, J.

    2008-05-01

    Lignin oxidation products, oxygen uptake rates, molar organic carbon to nitrogen (OC/N) ratio (from bulk elemental analysis) and Rp values (from loss on ignition experiments, the ratio of the refractory to total organic matter, OM) were determined for sediments along transects of Loch Creran and Loch Etive. Lignin data indicated the importance of riverine inputs contributing to land-derived carbon in the lochs as total lignin (Λ, mg/100 mg organic carbon, OC) decreased from 0.69 to 0.45 and 0.70 to 0.29 from the head to outside of Loch Creran and Loch Etive, respectively. In addition, significant correlations of lignin content against total OM and OC (p<0.05) also suggested a distinct contribution of terrestrial OM to carbon pools in the lochs. The general trend of decreasing oxygen uptake rates from the head (20.8 mmole m-2 day-1) to mouth (9.4 mmole m-2 day-1) of Loch Creran indicates decomposition of OM. Biodegradability of the sedimentary OM was also characterized by the increase of Rp values from the head to mouth of the lochs: 0.40 to 0.80 in Loch Etive and 0.43 to 0.63 in Loch Creran. Furthermore, the molar OC/N ratio decreased from 11.2 to 6.4 in Loch Creran, and from 17.5 to 8.2 in Loch Etive. Derived rate constants for OM degradation were found to decrease from LC0 to LC1, and increase from RE5 to RE6. This work demonstrates that oxygen uptake rates, Rp values and molar OC/N ratio are able to serve as useful proxies to indicate the biodegradability of sedimentary OM.

  14. Effect of high-intensity training versus moderate training on peak oxygen uptake and chronotropic response in heart transplant recipients: a randomized crossover trial.

    PubMed

    Dall, C H; Snoer, M; Christensen, S; Monk-Hansen, T; Frederiksen, M; Gustafsson, F; Langberg, H; Prescott, E

    2014-10-01

    In heart transplant (HTx) recipients, there has been reluctance to recommend high-intensity interval training (HIIT) due to denervation and chronotropic impairment of the heart. We compared the effects of 12 weeks' HIIT versus continued moderate exercise (CON) on exercise capacity and chronotropic response in stable HTx recipients >12 months after transplantation in a randomized crossover trial. The study was completed by 16 HTx recipients (mean age 52 years, 75% males). Baseline peak oxygen uptake (VO2peak ) was 22.9 mL/kg/min. HIIT increased VO2peak by 4.9 ± 2.7 mL/min/kg (17%) and CON by 2.6 ± 2.2 mL/kg/min (10%) (significantly higher in HIIT; p < 0.001). During HIIT, systolic blood pressure decreased significantly (p = 0.037) with no significant change in CON (p = 0.241; between group difference p = 0.027). Peak heart rate (HRpeak ) increased significantly by 4.3 beats per minute (p = 0.014) after HIIT with no significant change in CON (p = 0.34; between group difference p = 0.027). Heart rate recovery (HRrecovery ) improved in both groups with a trend toward greater improvement after HIIT. The 5-month washout showed a significant loss of improvement. HIIT was well tolerated, had a superior effect on oxygen uptake, and led to an unexpected increase in HRpeak accompanied by a faster HRrecovery . This indicates that the benefits of HIIT are partly a result of improved chronotropic response. © Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.

  15. Peak oxygen uptake and left ventricular ejection fraction, but not depressive symptoms, are associated with cognitive impairment in patients with chronic heart failure

    PubMed Central

    Steinberg, Gerrit; Lossnitzer, Nicole; Schellberg, Dieter; Mueller-Tasch, Thomas; Krueger, Carsten; Haass, Markus; Ladwig, Karl Heinz; Herzog, Wolfgang; Juenger, Jana

    2011-01-01

    Background The aim of the present study was to assess cognitive impairment in patients with chronic heart failure (CHF) and its associations with depressive symptoms and somatic indicators of illness severity, which is a matter of controversy. Methods and results Fifty-five patients with CHF (mean age 55.3 ± 7.8 years; 80% male; New York Heart Association functional class I–III) underwent assessment with an expanded neuropsychological test battery (eg, memory, complex attention, mental flexibility, psychomotor speed) to evaluate objective and subjective cognitive impairment. Depressive symptoms were assessed using the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (SCID) and a self-report inventory (Hospital Anxiety and Depression Scale [HADS]). A comprehensive clinical dataset, including left ventricular ejection fraction, peak oxygen uptake, and a 6-minute walk test, was obtained for all patients. Neuropsychological functioning revealed impairment in 56% of patients in at least one measure of our neuropsychological test battery. However, the Mini Mental State Examination (MMSE) could only detect cognitive impairment in 1.8% of all patients, 24% had HADS scores indicating depressive symptoms, and 11.1% met SCID criteria for a depressive disorder. No significant association was found between depressive symptoms and cognitive impairment. Left ventricular ejection fraction was related to subjective cognitive impairment, and peak oxygen uptake was related to objective cognitive impairment. Conclusion Cognitive functioning was substantially reduced in patients with CHF and should therefore be diagnosed and treated in routine clinical practice. Caution is advised when the MMSE is used to identify cognitive impairment in patients with CHF. PMID:22267941

  16. Deceptive meaning of oxygen uptake measured at the anaerobic threshold in patients with systolic heart failure and atrial fibrillation.

    PubMed

    Magrì, Damiano; Agostoni, Piergiuseppe; Corrà, Ugo; Passino, Claudio; Scrutinio, Domenico; Perrone-Filardi, Pasquale; Correale, Michele; Cattadori, Gaia; Metra, Marco; Girola, Davide; Piepoli, Massimo F; Iorio, AnnaMaria; Emdin, Michele; Raimondo, Rosa; Re, Federica; Cicoira, Mariantonietta; Belardinelli, Romualdo; Guazzi, Marco; Limongelli, Giuseppe; Clemenza, Francesco; Parati, Gianfranco; Frigerio, Maria; Casenghi, Matteo; Scardovi, Angela B; Ferraironi, Alessandro; Di Lenarda, Andrea; Bussotti, Maurizio; Apostolo, Anna; Paolillo, Stefania; La Gioia, Rocco; Gargiulo, Paola; Palermo, Pietro; Minà, Chiara; Farina, Stefania; Battaia, Elisa; Maruotti, Antonello; Pacileo, Giuseppe; Contini, Mauro; Oliva, Fabrizio; Ricci, Roberto; Sinagra, Gianfranco

    2015-08-01

    Oxygen uptake at the anaerobic threshold (VO2AT), a submaximal exercise-derived variable, independent of patients' motivation, is a marker of outcome in heart failure (HF). However, previous evidence of VO2AT values paradoxically higher in HF patients with permanent atrial fibrillation (AF) than in those with sinus rhythm (SR) raised uncertainties. We tested the prognostic role of VO2AT in a large cohort of systolic HF patients, focusing on possible differences between SR and AF. Altogether 2976 HF patients (2578 with SR and 398 with AF) were prospectively followed. Besides a clinical examination, each patient underwent a maximal cardiopulmonary exercise test (CPET). The follow-up was analysed for up to 1500 days. Cardiovascular death or urgent cardiac transplantation occurred in 303 patients (250 (9.6%) patients with SR and 53 (13.3%) patients with AF, p = 0.023). In the entire population, multivariate analysis including peak oxygen uptake (VO2) showed a prognostic capacity (C-index) similar to that obtained including VO2AT (0.76 vs 0.72). Also, left ventricular ejection fraction, ventilation vs carbon dioxide production slope, β-blocker and digoxin therapy proved to be significant prognostic indexes. The receiver-operating characteristic (ROC) curves analysis showed that the best predictive VO2AT cut-off for the SR group was 11.7 ml/kg/min, while it was 12.8 ml/kg/min for the AF group. VO2AT, a submaximal CPET-derived parameter, is reliable for long-term cardiovascular mortality prognostication in stable systolic HF. However, different VO2AT cut-off values between SR and AF HF patients should be adopted. © The European Society of Cardiology 2014.

  17. Effect of +Gz Acceleration on the Oxygen Uptake-Excercise Load Relationship during Lower Extremity Ergometer Excercise

    NASA Technical Reports Server (NTRS)

    Jackson, Catherine G. R.

    1996-01-01

    Long term spaceflight and habitation of a space station and/or the moon require that astronauts be provided with sufficient environmental and physiological support so that they can not only function in microgravity but be returned to earth safely. As the duration of habitation in microgravity increase the effects of the concomitant deconditioning of body systems becomes a concern for added exercise in space and for reentry to Earth gravity. Many countermeasures have been proposed to maintain proper functioning of the body, but none have proved sufficient, especially when the cost of crew time spent in these activities is considered. The issue of appropriate countermeasures remains unresolved. Spaceflight deconditioning decreases tolerance to +Gz acceleration, head to foot, the direction which is experienced during reentry; the result is that the crew member is more prone to becoming pre-syncopal or syncopal, thus exacerbating the orthostatic intolerance. All ground-based research using microgravity analogues has produced this same lowered G tolerance. When intermittent exposure to +1 to +4 Gz acceleration training was used, some alleviation of orthosatic intolerance and negative physiological effects of deconditioning occurred. Exercise alone was not as effective; but the added G force was. The physiological responses to acceleration added to exercise training have not been clearly shown. We will test the hypothesis that there will be no difference in the exercise oxygen uptake-exercise load relationship with added +Gz acceleration. We wi also compare oxygen uptake during graded exercise-acceleration loads in the human-powered short arm centrifuge with those from normal supine exercise loads. The human-powered short arm centrifuge was built by NASA engineers at Ames Research Center.

  18. Dietary acid load and renal function have varying effects on blood acid-base status and exercise performance across age and sex.

    PubMed

    Hietavala, Enni-Maria; Stout, Jeffrey R; Frassetto, Lynda A; Puurtinen, Risto; Pitkänen, Hannu; Selänne, Harri; Suominen, Harri; Mero, Antti A

    2017-12-01

    Diet composition influences acid-base status of the body. This may become more relevant as renal functional capacity declines with aging. We examined the effects of low (LD) versus high dietary acid load (HD) on blood acid-base status and exercise performance. Participants included 22 adolescents, 33 young adults (YA), and 33 elderly (EL), who followed a 7-day LD and HD in a randomized order. At the end of both diet periods the subjects performed a cycle ergometer test (3 × 10 min at 35%, 55%, 75%, and (except EL) until exhaustion at 100% of maximal oxygen uptake). At the beginning of and after the diet periods, blood samples were collected at rest and after all workloads. Oxygen uptake, respiratory exchange ratio (RER), and heart rate (HR) were monitored during cycling. In YA and EL, bicarbonate (HCO 3 - ) and base excess (BE) decreased over the HD period, and HCO 3 - , BE, and pH were lower at rest after HD compared with LD. In YA and EL women, HCO 3 - and BE were lower at submaximal workloads after HD compared with LD. In YA women, the maximal workload was 19% shorter and maximal oxygen uptake, RER, and HR were lower after HD compared with LD. Our data uniquely suggests that better renal function is associated with higher availability of bases, which may diminish exercise-induced acidosis and improve maximal aerobic performance. Differences in glomerular filtration rate between the subject groups likely explains the larger effects of dietary acid load in the elderly compared with younger subjects and in women compared with men.

  19. Monitoring wheat mitochondrial compositional and respiratory changes using Fourier transform mid-infrared spectroscopy in response to agrochemical treatments

    NASA Astrophysics Data System (ADS)

    Pedersen, Matthew; Wegner, Casey; Phansak, Piyaporn; Sarath, Gautam; Gaussoin, Roch; Schlegel, Vicki

    2017-02-01

    Fungicides and plant growth regulators can impact plant growth outside of their effects on fungal pathogens. Although many of these chemicals are inhibitors of mitochondrial oxygen uptake, information remains limited as to whether they are able to modify other mitochondrial constituents. Fourier transform mid-infrared spectroscopy (FT-mIR) offers a high sample throughput method to comparatively and qualitatively evaluate the effects of exogenously added compounds on mitochondrial components. Therefore the objective of this study was to determine the ability of FT-mIR to detect effects mitochondrial fractions isolated from wheat (Triticum aestivum L.) seedlings in response to several agrochemical treatments, with an emphasis on fungicides. The accessed need was to develop FT-mIR analytical and statistical routines as an effective approach to differentiate spectra obtained from chemically-treated or untreated mitochondria. An NADH-dependent oxygen uptake approach was initially used as a comparative method to determine whether the fungicides (azoxystrobin, boscalid, cyazofamid, fluazinam, isopyrazam, and pyraclostrobin) and the plant growth regulator, (trinexapac-ethyl) reduced respiration inhibition on isolated mitochondria. Pyraclostrobin was the most effective inhibitor, whereas amisulbrom did not impact oxygen uptake. However, hierarchical clustering of FT-mIR spectra of isolated mitochondria treated with these different compounds separated into clades consistent with each of their expected mode of action. Analysis of the FT-mIR amide protein region indicated that amisulbrom and pyraclostrobin interacted with the isolated wheat mitochondria. Both chemicals were statistically different from the control signifying that respiration was indeed influenced by these treatments. Moreover, the entire FT-mIR region showed differences in various biological bands thereby providing additional information on mitochondria responses to agrochemicals, if so warranted.

  20. Exercise for Preventing Hospitalization and Readmission in Adults with Congestive Heart Failure.

    PubMed

    Aronow, Wilbert S; Shamliyan, Tatyana A

    2018-05-04

    We critically appraised all available evidence regarding exercise interventions for improving patient survival and reducing hospital admissions in adults with chronic heart failure (HF). We searched 4 databases up to April 2018 and graded the quality of evidence according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) working group approach. We reviewed 7 meta-analyses and the publications of 48 randomized, controlled trials (RCT). In HF with reduced ejection fraction, low-quality evidence suggests that exercise prevents all-cause hospitalizations (RR 0.77; 95% CI 0.63;0.93; 1328 patients in 15 RCTs) and hospitalizations due to HF (RR 0.57; 95% CI 0.37;0.88; 1073 patients in 13 RCTs) and improves quality of life (standardized mean difference [SMD] -0.37; 95% CI -0.60;-0.14; 1270 patients in 25 RCTs) but has no effect on mortality. In HF with preserved ejection fraction, low-quality evidence suggests that exercise improves peak oxygen uptake (mean difference [MD] 2.36; 95% CI 1.16;3.57; 171 patients in 3 RCTs) and quality of life (MD -4.65; 95% CI -8.46;-0.83; 203 patients in 4 RCTs). In patients after heart transplantation, low-quality evidence suggests that exercise improves peak oxygen uptake (SMD 0.68; 95% CI 0.43;0.93; 284 patients in 9 RCTs) but does not improve quality of life. In order to reduce hospitalization and improve quality of life for adults with HF and reduced ejection fraction, clinicians should recommend exercise interventions. For adults with HF and preserved ejection fraction and in those undergoing heart transplantation, clinicians may recommend exercise interventions in order to improve peak oxygen uptake.

  1. New Generalized Equation for Predicting Maximal Oxygen Uptake (from the Fitness Registry and the Importance of Exercise National Database).

    PubMed

    Kokkinos, Peter; Kaminsky, Leonard A; Arena, Ross; Zhang, Jiajia; Myers, Jonathan

    2017-08-15

    Impaired cardiorespiratory fitness (CRF) is closely linked to chronic illness and associated with adverse events. The American College of Sports Medicine (ACSM) regression equations (ACSM equations) developed to estimate oxygen uptake have known limitations leading to well-documented overestimation of CRF, especially at higher work rates. Thus, there is a need to explore alternative equations to more accurately predict CRF. We assessed maximal oxygen uptake (VO 2 max) obtained directly by open-circuit spirometry in 7,983 apparently healthy subjects who participated in the Fitness Registry and the Importance of Exercise National Database (FRIEND). We randomly sampled 70% of the participants from each of the following age categories: <40, 40 to 50, 50 to 70, and ≥70 and used the remaining 30% for validation. Multivariable linear regression analysis was applied to identify the most relevant variables and construct the best prediction model for VO 2 max. Treadmill speed and treadmill speed × grade were considered in the final model as predictors of measured VO 2 max and the following equation was generated: VO 2 max in ml O 2 /kg/min = speed (m/min) × (0.17 + fractional grade × 0.79) + 3.5. The FRIEND equation predicted VO 2 max with an overall error >4 times lower than the error associated with the traditional ACSM equations (5.1 ± 18.3% vs 21.4 ± 24.9%, respectively). Overestimation associated with the ACSM equation was accentuated when different protocols were considered separately. In conclusion, The FRIEND equation predicts VO 2 max more precisely than the traditional ACSM equations with an overall error >4 times lower than that associated with the ACSM equations. Published by Elsevier Inc.

  2. Functional structure of laminated microbial sediments from a supratidal sandy beach of the German Wadden Sea (St. Peter-Ording)

    NASA Astrophysics Data System (ADS)

    Bühring, Solveig I.; Kamp, Anja; Wörmer, Lars; Ho, Stephanie; Hinrichs, Kai-Uwe

    2014-01-01

    Hidden for the untrained eye through a thin layer of sand, laminated microbial sediments occur in supratidal beaches along the North Sea coast. The inhabiting microbial communities organize themselves in response to vertical gradients of light, oxygen or sulfur compounds. We performed a fine-scale investigation on the vertical zonation of the microbial communities using a lipid biomarker approach, and assessed the biogeochemical processes using a combination of microsensor measurements and a 13C-labeling experiment. Lipid biomarker fingerprinting showed the overarching importance of cyanobacteria and diatoms in these systems, and heterocyst glycolipids revealed the presence of diazotrophic cyanobacteria even in 9 to 20 mm depth. High abundance of ornithine lipids (OL) throughout the system may derive from sulfate reducing bacteria, while a characteristic OL profile between 5 and 8 mm may indicate presence of purple non-sulfur bacteria. The fate of 13C-labeled bicarbonate was followed by experimentally investigating the uptake into microbial lipids, revealing an overarching importance of cyanobacteria for carbon fixation. However, in deeper layers, uptake into purple sulfur bacteria was evident, and a close microbial coupling could be shown by uptake of label into lipids of sulfate reducing bacteria in the deepest layer. Microsensor measurements in sediment cores collected at a later time point revealed the same general pattern as the biomarker analysis and the labeling experiments. Oxygen and pH-microsensor profiles showed active photosynthesis in the top layer. The sulfide that diffuses from deeper down and decreases just below the layer of active oxygenic photosynthesis indicates the presence of sulfur bacteria, like anoxygenic phototrophs that use sulfide instead of water for photosynthesis.

  3. Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review.

    PubMed

    Ali, Shafaqat; Rizwan, Muhammad; Qayyum, Muhammad Farooq; Ok, Yong Sik; Ibrahim, Muhammad; Riaz, Muhammad; Arif, Muhammad Saleem; Hafeez, Farhan; Al-Wabel, Mohammad I; Shahzad, Ahmad Naeem

    2017-05-01

    Drought and salt stress negatively affect soil fertility and plant growth. Application of biochar, carbon-rich material developed from combustion of biomass under no or limited oxygen supply, ameliorates the negative effects of drought and salt stress on plants. The biochar application increased the plant growth, biomass, and yield under either drought and/or salt stress and also increased photosynthesis, nutrient uptake, and modified gas exchange characteristics in drought and salt-stressed plants. Under drought stress, biochar increased the water holding capacity of soil and improved the physical and biological properties of soils. Under salt stress, biochar decreased Na + uptake, while increased K + uptake by plants. Biochar-mediated increase in salt tolerance of plants is primarily associated with improvement in soil properties, thus increasing plant water status, reduction of Na + uptake, increasing uptake of minerals, and regulation of stomatal conductance and phytohormones. This review highlights both the potential of biochar in alleviating drought and salt stress in plants and future prospect of the role of biochar under drought and salt stress in plants.

  4. Facilitation of trace metal uptake in cells by inulin coating of metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Santillán-Urquiza, Esmeralda; Arteaga-Cardona, Fernando; Torres-Duarte, Cristina; Cole, Bryan; Wu, Bing; Méndez-Rojas, Miguel A.; Cherr, Gary N.

    2017-09-01

    Trace elements such as zinc and iron are essential for the proper function of biochemical processes, and their uptake and bioavailability are dependent on their chemical form. Supplementation of trace metals through nanostructured materials is a new field, but its application raises concerns regarding their toxicity. Here, we compared the intracellular zinc uptake of different sources of zinc: zinc sulfate, and ZnO and core-shell α-Fe2O3@ZnO nanoparticles, coated or uncoated with inulin, an edible and biocompatible polysaccharide. Using mussel haemocytes, a well-known model system to assess nanomaterial toxicity, we simultaneously assessed zinc accumulation and multiple cellular response endpoints. We found that intracellular zinc uptake was strongly enhanced by inulin coating, in comparison to the uncoated nanoparticles, while no significant effects on cell death, cell viability, mitochondrial membrane integrity, production of reactive oxygen species or lysosome abundance were observed at concentrations up to 20 ppm. Since no significant increments in toxicity were observed, the coated nanomaterials may be useful to increase in vivo zinc uptake for nutritional applications.

  5. An oil-based model of inhalation anesthetic uptake and elimination.

    PubMed

    Loughlin, P J; Bowes, W A; Westenskow, D R

    1989-08-01

    An oil-based model was developed as a physical simulation of inhalation anesthetic uptake and elimination. It provides an alternative to animal models in testing the performance of anesthesia equipment. A 7.5-1 water-filled manometer simulates pulmonary mechanics. Nitrogen and carbon dioxide flowing into the manometer simulate oxygen consumption and carbon dioxide production. Oil-filled chambers (180 ml and 900 ml) simulate the uptake and washout of halothane by the vessel-rich and muscle tissue groups. A 17.2-1 air-filled chamber simulates uptake by the lung group. Gas circulates through the chambers (3.7, 13.8, and 25 l/min) to simulate the transport of anesthetic to the tissues by the circulatory system. Results show that during induction and washout, the rate of rise in endtidal halothane fraction simulated by the model parallels that measured in patients. The model's end-tidal fraction changes correctly with changes in cardiac output and alveolar ventilation. The model has been used to test anesthetic controllers and to evaluate gas sensors, and should be useful in teaching principles underlying volatile anesthetic uptake.

  6. Nitrogen-removal performance and community structure of nitrifying bacteria under different aeration modes in an oxidation ditch.

    PubMed

    Guo, Chang-Zi; Fu, Wei; Chen, Xue-Mei; Peng, Dang-Cong; Jin, Peng-Kang

    2013-07-01

    Oxidation-ditch operation modes were simulated using sequencing batch reactors (SBRs) with alternate stirring and aerating. The nitrogen-removal efficiencies and nitrifying characteristics of two aeration modes, point aeration and step aeration, were investigated. Under the same air-supply capacity, oxygen dissolved more efficiently in the system with point aeration, forming a larger aerobic zone. The nitrifying effects were similar in point aeration and step aeration, where the average removal efficiencies of NH4(+) N were 98% and 96%, respectively. When the proportion of anoxic and oxic zones was 1, the average removal efficiencies of total nitrogen (TN) were 45% and 66% under point aeration and step aeration, respectively. Step aeration was more beneficial to both anoxic denitrification and simultaneous nitrification and denitrification (SND). The maximum specific ammonia-uptake rates (AUR) of point aeration and step aeration were 4.7 and 4.9 mg NH4(+)/(gMLVSS h), respectively, while the maximum specific nitrite-uptake rates (NUR) of the two systems were 7.4 and 5.3 mg NO2(-)-N/(gMLVSS h), respectively. The proportions of ammonia-oxidizing bacteria (AOB) to all bacteria were 5.1% under point aeration and 7.0% under step aeration, and the proportions of nitrite-oxidizing bacteria (NOB) reached 6.5% and 9.0% under point and step aeration, respectively. The dominant genera of AOB and NOB were Nitrosococcus and Nitrospira, which accounted for 90% and 91%, respectively, under point aeration, and the diversity of nitrifying bacteria was lower than under step aeration. Point aeration was selective of nitrifying bacteria. The abundance of NOB was greater than that of AOB in both of the operation modes, and complete transformation of NH4(+) N to NO3(-)-N was observed without NO2(-)-N accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Predicting Human Clearance of OATP substrates using Cynomolgus monkey: In vitro-in vivo scaling of hepatic uptake clearance.

    PubMed

    de Bruyn, Tom; Ufuk, Ayse; Cantrill, Carina; Kosa, Rachel E; Bi, Yi-An; Niosi, Mark; Modi, Sweta; Rodrigues, A David; Tremaine, Larry M; Varma, Manthena Vs; Galetin, Aleksandra; Houston, J Brian

    2018-05-02

    This work explores the utility of the cynomolgus monkey as a preclinical model to predict hepatic uptake clearance mediated by organic anion transporting polypeptide (OATP) transporters. Nine OATP substrates (rosuvastatin, pravastatin, repaglinide, fexofenadine, cerivastatin, telmisartan, pitavastatin, bosentan and valsartan) were investigated in plated cynomolgus monkey and human hepatocytes. Total uptake clearance and passive diffusion were measured in vitro from initial rates in the absence and presence of the OATP inhibitor rifamycin SV, respectively. Total uptake clearance values in plated hepatocytes ranged over three orders of magnitude in both species with a similar rank order and good agreement in the relative contribution of active transport to total uptake between cynomolgus monkey and human. In vivo hepatic clearance for these nine drugs was determined in cynomolgus monkey after intravenous dosing. Hepatic clearances showed a similar range to human parameters and good predictions from respective hepatocyte parameters (with 2.7 and 3.8-fold bias on average, respectively). The use of cross species empirical scaling factors (based on either dataset average or individual drug scaling factor from cynomolgus monkey data) improved prediction (less bias, better concordance) of human hepatic clearance from human hepatocyte data alone. In vitro intracellular binding in hepatocytes also correlated well between species. It is concluded that the minimal species differences observed for the current dataset between cynomolgus monkey and human hepatocyte uptake, both in vitro and in vivo, support future use of this preclinical model to delineate drug hepatic uptake and enable prediction of human in vivo intrinsic hepatic clearance. The American Society for Pharmacology and Experimental Therapeutics.

  8. Tensile properties of V-Cr-Ti alloys after exposure in helium and low-partial-pressure oxygen environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natesan, K.; Soppet, W.K.

    1997-04-01

    A test program is in progress to evaluate the effect of oxygen at low pO{sub 2} on the tensile properties of V-(4-5)wt% Cr-(4-5)wt% Ti alloys. Some of the tensile specimens were precharged with oxygen at low pO{sub 2} at 500{degrees}C and reannealed in vacuum at 500{degrees}C in environments with various pO{sub 2} levels and subsequently tensile tested at room temperature. The preliminary results indicate that both approaches are appropriate for evaluating the effect of oxygen uptake on the tensile properties of the alloys. The data showed that in the relatively short-time tests conducted thus far, the maximum engineering stress slightlymore » increased after oxygen exposure but the uniform and total elongation values exhibited significant decrease after exposure in oxygen-containing environments. The data for a specimen exposed to a helium environment were similar to those obtained in low pO{sub 2} environments.« less

  9. Computer-aided discovery of a metal-organic framework with superior oxygen uptake.

    PubMed

    Moghadam, Peyman Z; Islamoglu, Timur; Goswami, Subhadip; Exley, Jason; Fantham, Marcus; Kaminski, Clemens F; Snurr, Randall Q; Farha, Omar K; Fairen-Jimenez, David

    2018-04-11

    Current advances in materials science have resulted in the rapid emergence of thousands of functional adsorbent materials in recent years. This clearly creates multiple opportunities for their potential application, but it also creates the following challenge: how does one identify the most promising structures, among the thousands of possibilities, for a particular application? Here, we present a case of computer-aided material discovery, in which we complete the full cycle from computational screening of metal-organic framework materials for oxygen storage, to identification, synthesis and measurement of oxygen adsorption in the top-ranked structure. We introduce an interactive visualization concept to analyze over 1000 unique structure-property plots in five dimensions and delimit the relationships between structural properties and oxygen adsorption performance at different pressures for 2932 already-synthesized structures. We also report a world-record holding material for oxygen storage, UMCM-152, which delivers 22.5% more oxygen than the best known material to date, to the best of our knowledge.

  10. Comparison of the oxygen exchange between photosynthetic cell suspensions and detached leaves of Euphorbia characias L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrier, P.; Chagvardieff, P.; Tapie, P.

    1989-11-01

    Using a mass-spectrometric {sup 16}O{sub 2}/{sup 18}O{sub 2}-isotope technique, we compared the nature and the relative importance of oxygen exchange in photomixotrophic (PM) and photoautotrophic (PA) suspensions of Euphorbia characias L. with those in intact leaves of the same species. Young and mature leaves, dividing and nondividing cell suspensions were characterized in short-term experiments. On chlorophyll basis, the gross photosynthetic activities at CO{sub 2} saturating concentration of PA and PM suspensions varied little from those of leaves. On dry weight basis, gross photosynthesis of PA suspensions was equal to that of leaves because of their similar chlorophyll content. This wasmore » not the case in PM suspensions where gross photosynthesis was lower and largely varied during the growth cycle. The CO{sub 2} compensation point of PA cells was much higher than that of leaves. Oxygen uptakes were analyzed in terms of mitochondrial respiration, photorespiration and light stimulation of oxygen uptake (LSOU), often identified to Mehler-type reactions. In Pa and PM suspensions, mitochondrial respiration rates were higher than in leaves by a factor of 1.5 to 4.5. In PM suspensions, photorespiration and LSOU were observed only in nondividing cells. Photorespiration and LSOU rates were comparable in PA suspensions and leaves. Our results demonstrate that photorespiration of PA suspensions has not been affected by the 2% CO{sub 2} concentration imposed during 2 years of culture.« less

  11. Characterization of Cardiopulmonary Exercise Testing Variables in Patients with Endomyocardial Fibrosis after Endocardial Resection

    PubMed Central

    Sayegh, Ana Luiza C.; dos Santos, Marcelo R.; de Oliveira, Patricia; Fernandes, Fábio; Rondon, Eduardo; de Souza, Francis R.; Salemi, Vera M. C.; Alves, Maria Janieire de N. N.; Mady, Charles

    2017-01-01

    Background Endomyocardial fibrosis (EMF) is a rare disease, characterized by diastolic dysfunction which leads to reduced peak oxygen consumption (VO2). Cardiopulmonary exercise testing (CPET) has been proved to be a fundamental tool to identify central and peripheral alterations. However, most studies prioritize peak VO2 as the main variable, leaving aside other important CPET variables that can specify the severity of the disease and guide the clinical treatment. Objective The aim of this study was to evaluate central and peripheral limitations in symptomatic patients with EMF by different CPET variables. Methods Twenty-six EMF patients (functional class III, NYHA) were compared with 15 healthy subjects (HS). Functional capacity was evaluated using CPET and diastolic and systolic functions were evaluated by echocardiography. Results Age and gender were similar between EMF patients and HS. Left ventricular ejection fraction was normal in EMF patients, but decreased compared to HS. Peak heart rate, peak workload, peak VO2, peak oxygen (O2) pulse and peak pulmonary ventilation (VE) were decreased in EMF compared to HS. Also, EMF patients showed increased Δ heart rate /Δ oxygen uptake and Δ oxygen uptake /Δ work rate compared to HS. Conclusion Determination of the aerobic capacity by noninvasive respiratory gas exchange during incremental exercise provides additional information about the exercise tolerance in patients with EMF. The analysis of different CPET variables is necessary to help us understand more about the central and peripheral alterations cause by both diastolic dysfunction and restrictive pattern. PMID:29364349

  12. Influence of substrate surface loading on the kinetic behaviour of aerobic granules.

    PubMed

    Liu, Yu; Liu, Yong-Qiang; Wang, Zhi-Wu; Yang, Shu-Fang; Tay, Joo-Hwa

    2005-06-01

    In the aerobic granular sludge reactor, the substrate loading is related to the size of the aerobic granules cultivated. This study investigated the influence of substrate surface loading on the growth and substrate-utilization kinetics of aerobic granules. Results showed that microbial surface growth rate and surface biodegradation rate are fairly related to the substrate surface loading by the Monod-type equation. In this study, both the theoretical maximum growth yield and the Pirt maintenance coefficient were determined. It was found that the estimated theoretical maximum growth yield of aerobic granules was as low as 0.2 g biomass g(-1) chemical oxygen demand (COD) and 10-40% of input substrate-COD was consumed through the maintenance metabolism, while experimental results further showed that the unit oxygen uptake by aerobic granules was 0.68 g oxygen g(-1) COD, which was much higher than that reported in activated sludge processes. Based on the growth yield and unit oxygen uptake determined, an oxidative assimilation equation of acetate-fed aerobic granules was derived; and this was confirmed by respirometric tests. In aerobic granular culture, about 74% of the input substrate-carbon was converted to carbon dioxide. The growth yield of aerobic granules was three times lower than that of activated sludge. It is likely that high carbon dioxide production is the main cause of the low growth yield of aerobic granules, indicating a possible energy uncoupling in aerobic granular culture.

  13. Oxygen uptake efficiency slope and peak oxygen consumption predict prognosis in children with tetralogy of Fallot.

    PubMed

    Tsai, Yun-Jeng; Li, Min-Hui; Tsai, Wan-Jung; Tuan, Sheng-Hui; Liao, Tin-Yun; Lin, Ko-Long

    2016-07-01

    Oxygen uptake efficiency slope (OUES) and peak oxygen consumption (VO2peak) are exercise parameters that can predict cardiac morbidity in patients with numerous heart diseases. But the predictive value in patients with tetralogy of Fallot is still undetermined, especially in children. We evaluated the prognostic value of OUES and VO2peak in children with total repair of tetralogy of Fallot. Retrospective cohort study. Forty tetralogy of Fallot patients younger than 12 years old were recruited. They underwent a cardiopulmonary exercise test during the follow-up period after total repair surgery. The results of the cardiopulmonary exercise test were used to predict the cardiac related hospitalization in the following two years after the test. OUES normalized by body surface area (OUES/BSA) and the percentage of predicted VO2peak appeared to be predictive for two-year cardiac related hospitalization. Receiver operating characteristic curve analysis demonstrated that the best threshold value for OUES/BSA was 1.029 (area under the curve = 0.70, p = 0.03), and for VO2peak was 74% of age prediction (area under the curve = 0.72, p = 0.02). The aforementioned findings were confirmed by Kaplan-Meier plots and log-rank test. OUES/BSA and VO2peak are useful predictors of cardiac-related hospitalization in children with total repair of tetralogy of Fallot. © The European Society of Cardiology 2015.

  14. Survey of selected seaweeds for simultaneous photoproduction of hydrogen and oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenbaum, E.; Ramus, J.

    1983-03-01

    Then seaweed species were surveyed for simultaneous photoevolution of hydrogen and oxygen. In an attempt to induce hydrogenase activity (as measured by hydrogen photoproduction) the seaweeds were maintained under anaerobiosis in CO/sub 2/-free seawater for varying lengths of time. Although oxygen evolution was observed in every alga studied, hydrogen evolution was not observed. One conclusion of this research is that, in contrast to the microscopic algae, there is not a single example of a macroscopic alga for which the photoevolution of hydrogen has been observed, in spite of the fact that there are now at least nine macroscopic algal speciesmore » known for which hydrogenase activity has been reported (either by dark hydrogen evolution or light-activated hydrogen uptake). These results are in conflict with the conventional view that algal hydrogenase can catalyze a multiplicity of reactions, one of which is the photoproduction of molecular hydrogen. Two possible explanations for the lack of hydrogen photoproduction in macroscopic algae are presented. It is postulated that electron acceptors other than carbon dioxide can take up reducing equivalents from Photosystem I to the measurable exclusion of hydrogen photoproduction. Alternatively, the hydrogenase system in macroscopic algae may be primarily a hydrogen-uptake system with respect to light-activated reactions. A simple kinetic argument based on recent measurements of the photosynthetic turnover times of simultaneous light-activated hydrogen and oxygen production is presented that supports the second explanation. 25 references, 3 figures, 1 table.« less

  15. Linking Plant Water-Use Efficiency and Depth of Water Uptake to Field­-Level Productivity Under Surplus and Deficit Irrigation in Almond Orchards

    NASA Astrophysics Data System (ADS)

    Seely, T.; Shackel, K.; Silva, L. C. R.

    2016-12-01

    The impact of water stress on depth of water uptake, as well as water­-use efficiency (WUE) at the tree-level and field-level was examined in almond orchards under varying degrees of deficit and surplus irrigation treatments. Three different orchards, spanning a latitudinal gradient (35° to 39° N) were sampled during two growing seasons in the central valley of CA. The orchards encompass a range of climatic and edaphic conditions, providing an opportunity for comparisons of WUE and orchard yield under contrasting environmental conditions. In each orchard, the control treatment received 100% replacement of water lost to evapotranspiration (ET), while the surplus treatment received 110% and the deficit treatment received 70% replenishment of ET, the latter simulating conditions of water stress. Preliminary results based on the analysis of carbon isotope ratios (δ13C) in leaves throughout the 2015 and 2016 growing seasons, reveal a significant change in WUE in all three orchard sites, increasing up to 20% on average in the deficit irrigation treatment relative to controls. In contrast, trees growing under surplus irrigation had the lowest WUE across all orchard sites. The difference in WUE between surplus irrigated trees and control irrigated trees within each orchard was not always statistically significant. These physiological responses to levels of water availability were not reflected in field-level orchard productivity, which was highly variable across orchard sites and treatments. Additionally, analysis of oxygen (δ18O) and hydrogen (δ2H) isotope ratios of stem, leaf, and soil water has been undertaken to determine the effect of water stress on the depth of root water uptake. The hypothesis that almond trees can effectively acclimate to water stress through higher WUE and deeper root water uptake compared to well-watered trees will be tested. This multi-scale, ecohydrological study will elucidate the impacts of drought on almond orchards, one of the most water-intensive crops in California, as well as other tree­-dominated systems.

  16. Americium-241 uptake by Bahiagrass as influenced by soil type, lime, and organic matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyt, G.D.; Adriano, D.C.

    1979-07-01

    Availability of /sup 241/Am to bahiagrass (Paspalum notatum), a major forage crop in the southeastern US, was studied under greenhouse conditions using two soil types, two rates of lime, and four rates of organic matter. The plants were grown in pots until three clippings were obtained. Americium-241 concentrations in plant tissues from the unlimed Dothan (24% clay) soil were, on the average, approximately twice as high as those from unlimed Troup (10% clay) soil. Lime significantly reduced /sup 241/Am uptake from both soils. The americium concentration ratios (americium concentration in dry plant tissue/average americium concentration in dry soil) for limedmore » treatments were, in general, one order of magnitude lower than those for unlimed treatments. Organic matter, added to the soils as bermuda grass hay, somewhat reduced /sup 241/Am uptake, especially when added at high rates in unlimed soils. The effect of lime on uptake could be attributed to immobilization of americium ions external to the roots as a result of decreased solubility of this radionuclide and/or antagonistic effect of increased calcium ion concentration in the soil solution on americium ions. The effect of organic matter on uptake could be attributed to its fixing capacity for metals.« less

  17. Suppressing the cytotoxicity of CuO nanoparticles by uptake of curcumin/BSA particles

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Jiang, Pengfei; Chen, Ying; Luo, Peihua; Li, Guanqun; Zheng, Botuo; Chen, Wei; Mao, Zhengwei; Gao, Changyou

    2016-05-01

    The adverse effects of metal-based nanoparticles on human beings and the environment have received extensive attention recently. It is urgently required to develop a simple and effective method to suppress the toxicity of metal-based nanomaterials. In this study, a hydrophobic antioxidant and a chelation agent curcumin (CUR) were encapsulated into bovine serum albumin (BSA) particles by a simple co-precipitation method, and followed by glutaraldehyde cross-linking. The CUR/BSA particles had an average size of 300 nm in diameter with a negatively charged surface and sustained curcumin release properties. The cellular uptake and cytotoxicity of CUR/BSA particles were followed on A549 cells, HepG2 cells and RAW264.7 cells. The CUR/BSA particles had higher intracellular accumulation and lower cytotoxicity compared with the free curcumin at the same drug concentration. The CUR/BSA particles could suppress the cytotoxicity generated by CuO nanoparticles as a result of decrease of both the intracellular reactive oxygen species (ROS) level and Cu2+ concentration, while the free curcumin did not show any obvious detoxicating effect. The detoxicating effects of CUR/BSA particles were further studied in an intratracheal instillation model in vivo, demonstrating significant reduction of toxicity and inflammatory response in rat lungs induced by CuO nanoparticles. The concept-proving study demonstrates the potential of the CUR/BSA particles in suppressing cytotoxicity of metal-based nanomaterials, which is a paramount requirement for the safe application of nanotechnology.

  18. Enhanced muscular oxygen extraction in athletes exaggerates hypoxemia during exercise in hypoxia.

    PubMed

    Van Thienen, Ruud; Hespel, Peter

    2016-02-01

    High rate of muscular oxygen utilization facilitates the development of hypoxemia during exercise at altitude. Because endurance training stimulates oxygen extraction capacity, we investigated whether endurance athletes are at higher risk to developing hypoxemia and thereby acute mountain sickness symptoms during exercise at simulated high altitude. Elite athletes (ATL; n = 8) and fit controls (CON; n = 7) cycled for 20 min at 100 W (EX100W), as well as performed an incremental maximal oxygen consumption test (EXMAX) in normobaric hypoxia (0.107 inspired O2 fraction) or normoxia (0.209 inspired O2 fraction). Cardiorespiratory responses, arterial Po2 (PaO2), and oxygenation status in m. vastus lateralis [tissue oxygenation index (TOIM)] and frontal cortex (TOIC) by near-infrared spectroscopy, were measured. Muscle O2 uptake rate was estimated from change in oxyhemoglobin concentration during a 10-min arterial occlusion in m. gastrocnemius. Maximal oxygen consumption in normoxia was 70 ± 2 ml·min(-1·)kg(-1) in ATL vs. 43 ± 2 ml·min(-1·)kg(-1) in CON, and in hypoxia decreased more in ATL (-41%) than in CON (-25%, P < 0.05). Both in normoxia at PaO2 of ∼95 Torr, and in hypoxia at PaO2 of ∼35 Torr, muscle O2 uptake was twofold higher in ATL than in CON (0.12 vs. 0.06 ml·min(-1)·100 g(-1); P < 0.05). During EX100W in hypoxia, PaO2 dropped to lower (P < 0.05) values in ATL (27.6 ± 0.7 Torr) than in CON (33.5 ± 1.0 Torr). During EXMAX, but not during EX100W, TOIM was ∼15% lower in ATL than in CON (P < 0.05). TOIC was similar between the groups at any time. This study shows that maintenance of high muscular oxygen extraction rate at very low circulating PaO2 stimulates the development of hypoxemia during submaximal exercise in hypoxia in endurance-trained individuals. This effect may predispose to premature development of acute mountain sickness symptoms during exercise at altitude. Copyright © 2016 the American Physiological Society.

  19. Uptake of Small Organic Compounds by Sulfuric Acid Aerosols: Dissolution and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Michelsen, R. R.; Ashbourn, S. F. M.; Staton, S. J. R.

    2003-01-01

    To assess the role of oxygenated volatile organic compounds in the upper troposphere and lower stratosphere, the interactions of a series of small organic compounds with low-temperature aqueous sulfuric acid will be evaluated. The total amount of organic material which may be taken up from the gas phase by dissolution, surface layer formation, and reaction during the particle lifetime will be quantified. Our current results for acetaldehyde uptake on 40 - 80 wt% sulfuric acid solutions will be compared to those of methanol, formaldehyde, and acetone to investigate the relationships between chemical functionality and heterogeneous activity. Where possible, equilibrium uptake will be ascribed to component pathways (hydration, protonation, etc.) to facilitate evaluation of other species not yet studied in low temperature aqueous sulfuric acid.

  20. The effect and biological mechanism of granular sludge size on performance of autotrophic nitrogen removal system.

    PubMed

    Ya-Juan, Xing; Jun-Yuan, Ji; Ping, Zheng; Lan, Wang; Abbas, Ghulam; Zhang, Jiqiang; Ru, Wang; Zhan-Fei, He

    2018-05-31

    The autotrophic process for nitrogen removal has attracted worldwide attention in the field of wastewater treatment, and the performance of this process is greatly influenced by the size of granular sludge particles present in the system. In this work, the granular sludge was divided into three groups, i.e. large size (> 1.2 mm), medium size (0.6-1.2 mm) and small size (< 0.6 mm). The medium granular sludge was observed to dominate at high volumetric nitrogen loading rates, while offering strong support for good performance. Its indispensable contribution was found to originate from improved settling velocity (0.84 ± 0.10 cm/s), high SOUR-A (specific oxygen uptake rate for ammonia oxidizing bacteria, 25.93 mg O 2 /g MLVSS/h), low SOUR-N (specific oxygen uptake rate for nitrite oxidizing bacteria, 3.39 mg O 2 /g MLVSS/h), and a reasonable microbial spatial distribution.

  1. Changes in cardiopulmonary function in normal adults after the Rockport 1 mile walking test: a preliminary study.

    PubMed

    Kim, Kyoung; Lee, Hye-Young; Lee, Do-Youn; Nam, Chan-Woo

    2015-08-01

    [Purpose] The purpose of this study was to investigate the changes of cardiopulmonary function in normal adults after the Rockport 1 mile walking test. [Subjects and Methods] University students (13 males and 27 females) participated in this study. Before and after the Rockport 1 mile walking test, pulmonary function, respiratory pressure, and maximal oxygen uptake were measured. [Results] Significant improvements in forced vital capacity and maximal inspiratory pressure were observed after the Rockport 1 mile walking test in males, and significant improvements in forced vital capacity, forced expiratory volume at 1 s, maximal inspiratory pressure, and maximal expiratory pressure were observed after the Rockport 1 mile walking test in females. However, the maximal oxygen uptake was not significantly different. [Conclusion] Our findings indicate that the Rockport 1 mile walking test changes cardiopulmonary function in males and females, and that it may improve cardiopulmonary function in middle-aged and older adults and provide basic data on cardiopulmonary endurance.

  2. Changes in cardiopulmonary function in normal adults after the Rockport 1 mile walking test: a preliminary study

    PubMed Central

    Kim, Kyoung; Lee, Hye-Young; Lee, Do-Youn; Nam, Chan-Woo

    2015-01-01

    [Purpose] The purpose of this study was to investigate the changes of cardiopulmonary function in normal adults after the Rockport 1 mile walking test. [Subjects and Methods] University students (13 males and 27 females) participated in this study. Before and after the Rockport 1 mile walking test, pulmonary function, respiratory pressure, and maximal oxygen uptake were measured. [Results] Significant improvements in forced vital capacity and maximal inspiratory pressure were observed after the Rockport 1 mile walking test in males, and significant improvements in forced vital capacity, forced expiratory volume at 1 s, maximal inspiratory pressure, and maximal expiratory pressure were observed after the Rockport 1 mile walking test in females. However, the maximal oxygen uptake was not significantly different. [Conclusion] Our findings indicate that the Rockport 1 mile walking test changes cardiopulmonary function in males and females, and that it may improve cardiopulmonary function in middle-aged and older adults and provide basic data on cardiopulmonary endurance. PMID:26356048

  3. Growth determinations for unattached bacteria in a contaminated aquifer.

    USGS Publications Warehouse

    Harvey, R.W.; George, L.H.

    1987-01-01

    Growth rates of unattached bacteria in groundwater contaminated with treated sewage and collected at various distances from the source of contamination were estimated by using frequency of dividing cells and tritiated-thymidine uptake and compared with growth rates obtained with unsupplemented, closed-bottle incubations. Estimates of bacterial generation times [(In 2)/mu] along a 3-km-long transect in oxygen-depleted (0.1 to 0.7 mg of dissolved oxygen liter-1) groundwater ranged from 16 h at 0.26 km downgradient from an on-land, treated-sewage outfall to 139 h at 1.6 km and correlated with bacterial abundance (r2 = 0.88 at P less than 0.001). Partitioning of assimilated thymidine into nucleic acid generally decreased with distance from the contaminant source, and one population in heavily contaminated groundwater assimilated little thymidine during a 20-h incubation. Several assumptions commonly made when frequency of dividing cells and tritiated-thymidine uptake are used were not applicable to the groundwater samples.

  4. Cost of ventilation and effect of digestive state on the ventilatory response of the tegu lizard.

    PubMed

    Skovgaard, Nini; Wang, Tobias

    2004-07-12

    We performed simultaneous measurements of ventilation, oxygen uptake and carbon dioxide production in the South American lizard, Tupinambis merianae, equipped with a mask and maintained at 25 degrees C. Ventilation of resting animals was stimulated by progressive exposure to hypercapnia (2, 4 and 6%) or hypoxia (15, 10, 8 and 6%) in inspired gas mixture. This was carried out in both fasting and digesting animals. The ventilatory response to hypercapnia and hypoxia were affected by digestive state, with a more vigorous ventilatory response in digesting animals compared to fasting animals. Hypoxia doubled total ventilation while hypercapnia led to a four-fold increase in total ventilation both accomplished through an increase in tidal volume. Oxygen uptake remained constant during all hypercapnic exposures while there was an increase during hypoxia. Cost of ventilation was estimated to be 17% during hypoxia but less than 1% during hypercapnia. Our data indicate that ventilation can be greatly elevated at a small energetic cost.

  5. Deuterium uptake and sputtering of simultaneous lithiated, boronized, and oxidized carbon surfaces irradiated by low-energy deuterium

    NASA Astrophysics Data System (ADS)

    Domínguez-Gutiérrez, F. J.; Krstić, P. S.; Allain, J. P.; Bedoya, F.; Islam, M. M.; Lotfi, R.; van Duin, A. C. T.

    2018-05-01

    We study the effects of deuterium irradiation on D-uptake by simultaneously boronized, lithiated, oxidized, and deuterated carbon surfaces. We present analysis of the bonding chemistry of D for various concentrations of boron, lithium, oxygen, and deuterium on carbon surfaces using molecular dynamics with reactive force field potentials, which are here adapted to include the interaction of boron and lithium. We calculate D retention and sputtering yields of each constituent of the Li-C-B-O mixture and discuss the role of oxygen in these processes. The extent of the qualitative agreement between new experimental data for B-C-O-D obtained in this paper and computational data is provided. As in the case of the Li-C-O system, comparative studies where experimental and computational data complement each other (in this case on the B-Li-C-O system) provide deeper insights into the mechanisms behind the role that O plays in the retention of D, a relevant issue in fusion machines.

  6. CKM Gene G (Ncoi-) Allele Has a Positive Effect on Maximal Oxygen Uptake in Caucasian Women Practicing Sports Requiring Aerobic and Anaerobic Exercise Metabolism

    PubMed Central

    Gronek, Piotr; Holdys, Joanna; Kryściak, Jakub; Stanisławski, Daniel

    2013-01-01

    The search for genes with a positive influence on physical fitness is a difficult process. Physical fitness is a trait determined by multiple genes, and its genetic basis is then modified by numerous environmental factors. The present study examines the effects of the polymorphism of creatine kinase (CKM) gene on VO2max – a physiological index of aerobic capacity of high heritability. The study sample consisted of 154 men and 85 women, who were students of the University School of Physical Education in Poznań and athletes practicing various sports, including members of the Polish national team. The study revealed a positive effect of a rare G (NcoI−) allele of the CKM gene on maximal oxygen uptake in Caucasian women practicing sports requiring aerobic and anaerobic exercise metabolism. Also a tendency was noted in individuals with NcoI−/− (GG) and NcoI−/+ (GA) genotypes to reach higher VO2max levels. PMID:24511349

  7. Biomass characterization by dielectric monitoring of viability and oxygen uptake rate measurements in a novel membrane bioreactor.

    PubMed

    Shariati, Farshid Pajoum; Heran, Marc; Sarrafzadeh, Mohammad Hossein; Mehrnia, Mohammad Reza; Sarzana, Gabriele; Ghommidh, Charles; Grasmick, Alain

    2013-07-01

    The application of permittivity and oxygen uptake rate (OUR) as biological process control parameters in a wastewater treatment system was evaluated. Experiments were carried out in a novel airlift oxidation ditch membrane bioreactor under different organic loading rates (OLR). Permittivity as representative of activated sludge viability was measured by a capacitive on-line sensor. OUR was also measured as a representative for respirometric activity. Results showed that the biomass concentration increases with OLR and all biomass related measurements and simulators such as MLSS, permittivity, OUR, ASM1 and ASM3 almost follow the same increasing trends. The viability of biomass decreased when the OLR was reduced from 5 to 4 kg COD m(-3)d(-1). During decreasing of OLR, biomass related parameters generally decreased but not in a similar manner. Also, protein concentration in the system during OLR decreasing changed inversely with the activated sludge viability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Influence of colorant and film thickness on thermal aging characteristics of oxo-biodegradable plastic bags

    NASA Astrophysics Data System (ADS)

    Leuterio, Giselle Lou D.; Pajarito, Bryan B.; Domingo, Carla Marie C.; Lim, Anna Patricia G.

    2016-05-01

    Functional, lightweight, strong and cheap plastic bags incorporated with pro-oxidants undergo accelerated degradation under exposure to heat and oxygen. This work investigated the effect of colorant and film thickness on thermal aging characteristics of commercial oxo-biodegradable plastic bag films at 70 °C. Degradation is monitored through changes in infrared absorption, weight, and tensile properties of thermally aged films. The presence of carbonyl band in infrared spectrum after 672 h of thermal aging supports the degradation behavior of exposed films. Results show that incorporation of colorant and increasing thickness exhibit low maximum weight uptake. Titanium dioxide as white colorant in films lowers the susceptibility of films to oxygen uptake but enhances physical degradation. Higher amount of pro-oxidant loading also contributes to faster degradation. Opaque films are characterized by low tensile strength and high elastic modulus. Decreasing the thickness contributes to lower tensile strength of films. Thermally aged films with colorant and low thickness promote enhanced degradation.

  9. Physical fitness, menstrual cycle disorders and smoking habit in Croatian National Ballet and National Folk Dance Ensembles.

    PubMed

    Oreb, Goran; Ruzić, Lana; Matković, Branka; Misigoj-Duraković, Marjeta; Vlasić, Jadranka; Ciliga, Dubravka

    2006-06-01

    The study investigated differences in morphological, motor and functional abilities between folk and ballet dancers. The sample comprised 51 female subjects: Croatian National Ballet (N=30) and Croatian National Folk Ensemble "LADO" (N=21). The data regarding menstrual cycle, menarche, number of births and smoking habit were collected and the morphological, motor and functional abilities measured. Significant correlations between the amount of fat tissue and number of births were found in both groups. Folk dancers were as tall as ballet dancers but weighted more and had a larger body frame (p<0.001). Ballet dancers were more flexible but there were no differences in absolute maximal oxygen uptake (2.65 vs. 2.35 L/min, p=0.101). Still, as the ballet dancers weighted less, their relative maximal oxygen uptake was significantly higher (37.62 vs. 50.22 mL/kg/min, p<0.001). Also, a high number of 45% of smokers among professional ballet and professional folk dancers was found.

  10. Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river

    NASA Astrophysics Data System (ADS)

    Desmet, N. J. S.; Van Belleghem, S.; Seuntjens, P.; Bouma, T. J.; Buis, K.; Meire, P.

    When macrophytes are growing in the river, the vegetation induces substantial changes to the water quality. Some effects are the result of direct interactions, such as photosynthetic activity or nutrient uptake, whereas others may be attributed to indirect effects of the water plants on hydrodynamics and river processes. This research focused on the direct effect of macrophytes on oxygen dynamics and nutrient cycling. Discharge, macrophyte biomass density, basic water quality, dissolved oxygen and nutrient concentrations were in situ monitored throughout the year in a lowland river (Nete catchment, Belgium). In addition, various processes were investigated in more detail in multiple ex situ experiments. The field and aquaria measurement results clearly demonstrated that aquatic plants can exert considerable impact on dissolved oxygen dynamics in a lowland river. When the river was dominated by macrophytes, dissolved oxygen concentrations varied from 5 to 10 mg l -1. Considering nutrient retention, it was shown that the investigated in-stream macrophytes could take up dissolved inorganic nitrogen (DIN) from the water column at rates of 33-50 mg N kgdry matter-1 h. And DIN fluxes towards the vegetation were found to vary from 0.03 to 0.19 g N ha -1 h -1 in spring and summer. Compared to the measured changes in DIN load over the river stretch, it means that about 3-13% of the DIN retention could be attributed to direct nitrogen uptake from the water by macrophytes. Yet, the role of macrophytes in rivers should not be underrated as aquatic vegetation also exerts considerable indirect effects that may have a greater impact than the direct fixation of nutrients into the plant biomass.

  11. Process optimization involving critical evaluation of oxygen transfer, oxygen uptake and nitrogen limitation for enhanced biomass and lipid production by oleaginous yeast for biofuel application.

    PubMed

    Chopra, Jayita; Sen, Ramkrishna

    2018-04-20

    Lipid accumulation in oleaginous yeast is generally induced by nitrogen starvation, while oxygen saturation can influence biomass growth. Systematic shake flask studies that help in identifying the right nitrogen source and relate its uptake kinetics to lipid biosynthesis under varying oxygen saturation conditions are very essential for addressing the bioprocessing-related issues, which are envisaged to occur in the fermenter scale production. In the present study, lipid bioaccumulation by P. guilliermondii at varying C:N ratios and oxygen transfer conditions (assessed in terms of k L a) was investigated in shake flasks using a pre-optimized N-source and a two-stage inoculum formulated in a hybrid medium. A maximum lipid concentration of 10.8 ± 0.5 g L -1 was obtained in shake flask study at the optimal condition with an initial C:N and k L a of 60:1 and 0.6 min -1 , respectively, at a biomass specific growth rate of 0.11 h -1 . Translating these optimal shake flask conditions to a 3.7 L stirred tank reactor resulted in biomass and lipid concentrations of 16.74 ± 0.8 and 8 ± 0.4 g L -1 . The fatty acid methyl ester (FAME) profile of lipids obtained by gas chromatography was found to be suitable for biodiesel application. We strongly believe that the rationalistic approach-based design of experiments adopted in the study would help in achieving high cell density with improved lipid accumulation and also minimize the efforts towards process optimization during bioreactor level operations, consequently reducing the research and development-associated costs.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khadjavi, Amina; Magnetto, Chiara; Panariti, Alice

    Background: : In chronic wounds, efficient epithelial tissue repair is hampered by hypoxia, and balances between the molecules involved in matrix turn-over such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are seriously impaired. Intriguingly, new oxygenating nanocarriers such as 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNs) might effectively target chronic wounds. Objective: : To investigate hypoxia and chitosan-shelled OLN effects on MMP/TIMP production by human keratinocytes. Methods: : HaCaT cells were treated for 24 h with 10% v/v OLNs both in normoxia or hypoxia. Cytotoxicity and cell viability were measured through biochemical assays; cellular uptake by confocal microscopy; and MMPmore » and TIMP production by enzyme-linked immunosorbent assay or gelatin zymography. Results: : Normoxic HaCaT cells constitutively released MMP-2, MMP-9, TIMP-1 and TIMP-2. Hypoxia strongly impaired MMP/TIMP balances by reducing MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. After cellular uptake by keratinocytes, nontoxic OLNs abrogated all hypoxia effects on MMP/TIMP secretion, restoring physiological balances. OLN abilities were specifically dependent on time-sustained oxygen diffusion from OLN core. Conclusion: : Chitosan-shelled OLNs effectively counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human keratinocytes. Therefore, topical administration of exogenous oxygen, properly encapsulated in nanodroplet formulations, might be a promising adjuvant approach to promote healing processes in hypoxic wounds. - Highlights: • Hypoxia impairs MMP9/TIMP1 and MMP2/TIMP2 balances in HaCaT human keratinocytes. • Chitosan-shelled oxygen-loaded nanodroplets (OLNs) are internalised by HaCaT cells. • OLNs are not toxic to HaCaT cells. • OLNs effectively counteract hypoxia effects on MMP/TIMP balances in HaCaT cells. • OLNs appear as promising and cost-effective therapeutic tools for hypoxic wounds.« less

  13. The effect of exercise intensity and excess postexercise oxygen consumption on postprandial blood lipids in physically inactive men.

    PubMed

    Littlefield, Laurel A; Papadakis, Zacharias; Rogers, Katie M; Moncada-Jiménez, José; Taylor, J Kyle; Grandjean, Peter W

    2017-09-01

    Reductions in postprandial lipemia have been observed following aerobic exercise of sufficient energy expenditure. Increased excess postexercise oxygen consumption (EPOC) has been documented when comparing high- versus low-intensity exercise. The contribution of EPOC energy expenditure to alterations in postprandial lipemia has not been determined. The purpose of this study was to evaluate the effects of low- and high-intensity exercise on postprandial lipemia in healthy, sedentary, overweight and obese men (age, 43 ± 10 years; peak oxygen consumption, 31.1 ± 7.5 mL·kg -1 ·min -1 ; body mass index, 31.8 ± 4.5 kg/m 2 ) and to determine the contribution of EPOC to reductions in postprandial lipemia. Participants completed 4 conditions: nonexercise control, low-intensity exercise at 40%-50% oxygen uptake reserve (LI), high-intensity exercise at 70%-80% oxygen uptake reserve (HI), and HI plus EPOC re-feeding (HI+EERM), where the difference in EPOC energy expenditure between LI and HI was re-fed in the form of a sports nutrition bar (Premier Nutrition Corp., Emeryville, Calif., USA). Two hours following exercise participants ingested a high-fat (1010 kcals, 99 g sat fat) test meal. Blood samples were obtained before exercise, before the test meal, and at 2, 4, and 6 h postprandially. Triglyceride incremental area under the curve was significantly reduced following LI, HI, and HI+EERM when compared with nonexercise control (p < 0.05) with no differences between the exercise conditions (p > 0.05). In conclusions, prior LI and HI exercise equally attenuated postprandial triglyceride responses to the test meal. The extra energy expended during EPOC does not contribute significantly to exercise energy expenditure or to reductions in postprandial lipemia in overweight men.

  14. Effect of Georgetown Lake on the water quality of Clear Creek, Georgetown, Colorado, 1997-98

    USGS Publications Warehouse

    Cuffin, Sally M.; Chafin, Daniel T.

    2000-01-01

    Georgetown Lake is a recreational reservoir located in the upper Clear Creek Basin, a designated Superfund site because of extensive metal mining in the past. Metals concentrations in Clear Creek increase as the stream receives runoff from mining-affected areas. In 1997, the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, began a study to determine the effect of the reservoir on the transport of metals in Clear Creek. A bathymetric survey determined the capacity of the reservoir to be about 440 acre-feet of water, which remained constant during the study. Average water residence time in the reservoir is about 1?3 days during high flow. During low flow (10 cubic feet per second), average residence is about 22 days without ice cover and about 15 days with a 3-foot-thick ice cover. Sediment samples collected from the bottom of Georgetown Lake contained substantial concentrations of iron (average 25,500 milligrams per kilogram), aluminum (average 12,300 milligrams per kilogram), zinc (2,830 milligrams per kilogram), lead (618 milligrams per kilogram), manganese (548 milligrams per kilogram), and sulfide minerals (average 602 milligrams per kilogram as S). Sediment also contained abundant sulfate-reducing bacteria, indicating anoxic conditions. Algae and diatoms common to cold-water lakes were identified in sediment samples; one genus of algae is known to adapt to low-light conditions such as exist beneath ice cover. Vertical profiles of temperature, specific conductance, pH, and dissolved-oxygen concentrations were measured in the reservoir on July 28, 1997, when inflow to the reservoir was about 170 cubic feet per second and average residence time of water was about 1.3 days, and on February 13, 1998, when the reservoir was covered with about 3 feet of ice, inflow was about 15 cubic feet per second, and average residence time was about 12 days. The measurements on July 28, 1997, showed that the reservoir water was well mixed, although pH and dissolved oxygen concentrations were increased by photosynthesis near the bottom of the reservoir. Measurements on February 13, 1998, indicated thermal and chemical stratification with warmer water (about 4 degrees Celsius) beneath colder water and increases in pH and dissolved oxygen concentrations generally occurring near the top of the warmer layer. Concentrations of dissolved oxygen were saturated to oversaturated throughout the water column on both dates, although the concentrations were greater on February 13, 1998, because of colder temperature and photosynthesis. Median pH was about 0.5 unit higher on February 13, 1998, than on July 28, 1997, largely because the longer residence time on February 13, 1998, allowed greater cumulative effects of photosynthesis. Samples of inflow and outflow water were collected from August 1997 to August 1998. Dissolved cadmium and dissolved lead in inflow and outflow samples exceeded acute and chronic water-quality standards during some of the sampling period, whereas dissolved zinc exceeded both standards in inflow and outflow samples during the entire sampling period. Chromium, nickel, and silver were detected in a few samples at small concentrations. Arsenic, selenium, and thallium were not reported in any water samples. Georgetown Lake removes some metals from inflow water and releases others to outflow water. From August 1997 to August 1998, Georgetown Lake estimated outflow loads were about 21 percent less than the inflow load of cadmium and about 11 percent less than the inflow load of zinc. Estimated inflow loads were about 18 percent less than the outflow load of copper, about 13 percent less than the outflow load of iron, and about 27 percent less than the outflow load of manganese. Inflow and outflow loads of lead were essentially balanced. The outflow load of nitrite plus nitrate was about 14 percent less than the inflow load, probably because of plant uptake.

  15. Comparison of the uptake of polycyclic aromatic hydrocarbons and organochlorine pesticides by semipermeable membrane devices and caged fish (Carassius carassius) in Taihu Lake, China

    USGS Publications Warehouse

    Ke, R.; Xu, Y.; Huang, S.; Wang, Z.; Huckins, J.N.

    2007-01-01

    Uptake of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) by triolein-containing semipermeable membrane devices (SPMDs) and by crucian carp (Carassius carassius) was studied in Taihu Lake, a shallow, freshwater lake in China. Crucian carp and SPMDs were deployed side by side for 32 d. The first-order uptake rate constants of individual PAHs and OCPs for the two matrices were calculated and compared to relate the amounts of chemicals accumulated by the matrices to dissolved water concentrations. On a wet-weight basis, total concentrations of PAHs and OCPs in crucian carp fillets averaged 49.5 and 13.6 ng/g, respectively, after the 32-d exposure, whereas concentrations in whole SPMDs averaged 716.9 and 62.3 ng/g, respectively. The uptake rate constants of PAHs and OCPs by SPMDs averaged seven- and fivefold higher, respectively, than those for crucian carp; however, the patterns of uptake rate constants derived from test chemical concentrations in the crucian carp and SPMDs were similar. Although equilibrium was not reached for some PAHs and OCPs during the 32-d exposure period, a reasonably good correlation between the concentration factors (CFs) and octanol/water partition coefficient (K ow) values of PAHs and OCPs in SPMDs (r = 0.86, p < 0.001) was observed when potential sorption to dissolved organic carbon was taken into account. Similar efforts to correlate the CFs and Kow values of PAHs and OCPs in crucian carp (r = 0.75, p < 0.001) were less successful, likely because of PAH metabolism by finfish. Overall, the present results suggest that SPMDs may serve as a surrogate for contaminant monitoring with fish in freshwater lake environments. ?? 2007 SETAC.

  16. A randomized comparison of print and web communication on colorectal cancer screening.

    PubMed

    Weinberg, David S; Keenan, Eileen; Ruth, Karen; Devarajan, Karthik; Rodoletz, Michelle; Bieber, Eric J

    2013-01-28

    New methods to enhance colorectal cancer (CRC) screening rates are needed. The web offers novel possibilities to educate patients and to improve health behaviors, such as cancer screening. Evidence supports the efficacy of health communications that are targeted and tailored to improve the uptake of recommendations. We identified unscreened women at average risk for CRC from the scheduling databases of obstetrics and gynecology practices in 2 large health care systems. Participants consented to a randomized controlled trial that compared CRC screening uptake after receipt of CRC screening information delivered via the web or in print form. Participants could also be assigned to a control (usual care) group. Women in the interventional arms received tailored information in a high- or low-monitoring Cognitive Social Information Processing model-defined attentional style. The primary outcome was CRC screening participation at 4 months. A total of 904 women were randomized to the interventional or control group. At 4 months, CRC screening uptake was not significantly different in the web (12.2%), print (12.0%), or control (12.9%) group. Attentional style had no effect on screening uptake for any group. Some baseline participant factors were associated with greater screening, including higher income (P = .03), stage of change (P < .001), and physician recommendation to screen (P < .001). A web-based educational intervention was no more effective than a print-based one or control (no educational intervention) in increasing CRC screening rates in women at average risk of CRC. Risk messages tailored to attentional style had no effect on screening uptake. In average-risk populations, use of the Internet for health communication without additional enhancement is unlikely to improve screening participation. clinicaltrials.gov Identifier: NCT00459030.

  17. Distribution and dynamics of nitrogen and microbial plankton in southern Lake Michigan during spring transition 1999-2000

    NASA Astrophysics Data System (ADS)

    Gardner, Wayne S.; Lavrentyev, Peter J.; Cavaletto, Joann F.; McCarthy, Mark J.; Eadie, Brian J.; Johengen, Thomas H.; Cotner, James B.

    2004-03-01

    Ammonium and amino acid fluxes were examined as indicators of N and microbial food web dynamics in southern Lake Michigan during spring. Either 15NH4+ or a mixture of 15N-labelled amino acids (both at 4 μM N final concentration) was added to Lake Michigan water. Net fluxes were measured over 24 h under natural light and dark conditions using deck-top incubators and compared to microbial food web characteristics. Isotope dilution experiments showed similar light and dark NH4+ regeneration rates at lake (6 versus 5 nM N h-1) and river-influenced (20 versus 24 nM N h-1) sites. Ammonium uptake rates were similar to regeneration rates in dark bottles. Dark uptake (attributed mainly to bacteria) accounted for ˜70% of total uptake (bacteria plus phytoplankton) in the light at most lake sites but only ˜30% of total uptake at river-influenced sites in or near the St. Joseph River mouth (SJRM). Cluster analysis grouped stations having zero, average, or higher than average N-cycling rates. Discriminant analysis indicated that chlorophyll concentration, oligotrich ciliate biomass, and total P concentration could explain 66% of N-cycling rate variation on average. Heterotrophic bacterial N demand was about one third of the NH4+ regeneration rate. Results suggest that, with the exception of SJRM stations, bacterial uptake and protist grazing mediated much of the N dynamics during spring transition. Since NH4+ is more available to bacteria than NO3-, regenerated NH4+ may have a strong influence on spring, lake biochemical energetics by enhancing N-poor organic matter degradation in this NO3- -replete ecosystem.

  18. Oxygen uptake during mini trampoline exercise in normal-weight, endurance-trained adults and in overweight-obese, inactive adults: A proof-of-concept study.

    PubMed

    Höchsmann, Christoph; Rossmeissl, Anja; Baumann, Sandra; Infanger, Denis; Schmidt-Trucksäss, Arno

    2018-03-15

    To examine cardiorespiratory exertion during mini trampoline exercises of different intensities in both endurance-trained athletes and overweight-obese adults. Physically healthy participants (Group A: normal-weight, endurance-trained athletes; Group B: inactive, overweight-obese adults) participated in two measurement appointments and three training sessions in between appointments, in which participants familiarized themselves with the use of the mini trampoline and the execution of the exercises. The primary outcome was the ⩒O 2peak for each of the six mini trampoline exercises relative to the ⩒O 2peak as established during an all-out exercise test on a bike ergometer during the first measurement appointment. Secondary outcomes were average ⩒O 2 as well as maximum and average heart rate. The six mini trampoline exercises generated ⩒O 2peak values between 42% and 81% in the endurance-trained athletes and between 58% and 87% in the overweight-obese participants, both in relation to the bike ergometer ⩒O 2peak . Average ⩒O 2 values ranged from 35% to 69% (endurance-trained athletes) and from 48% to 71% (overweight-obese participants), depending on exercise. Average heart rate likewise lay in a range that can be categorized as moderate-to-vigorous aerobic exercise for both groups. A moderate-to-strong correlation (0.658 to 0.875, depending on exercise) between bike ergometer ⩒O 2peak and mini trampoline ⩒O 2peak was found for all six exercises. Mini trampoline exercise has the potential to produce training intensities that concur with established exercise guidelines. The exercise intensity is self-adjusting and allows for an effective and safe workout for different users with a wide range of fitness levels.

  19. Oxygen interaction with disordered and nanostructured Ag(001) surfaces

    NASA Astrophysics Data System (ADS)

    Vattuone, L.; Burghaus, U.; Savio, L.; Rocca, M.; Costantini, G.; Buatier de Mongeot, F.; Boragno, C.; Rusponi, S.; Valbusa, U.

    2001-08-01

    We investigated O2 adsorption on Ag(001) in the presence of defects induced by Ne+ sputtering at different crystal temperatures, corresponding to different surface morphologies recently identified by scanning tunneling microscopy. The gas-phase molecules were dosed with a supersonic molecular beam. The total sticking coefficient and the total uptake were measured with the retarded reflector method, while the adsorption products were characterized by high resolution electron energy loss spectroscopy. We find that, for the sputtered surfaces, both sticking probability and total O2 uptake decrease. Molecular adsorption takes place also for heavily damaged surfaces but, contrary to the flat surface case, dissociation occurs already at a crystal temperature, T, of 105 K. The internal vibrational frequency of the O2 admolecules indicates that two out of the three O2- moieties present on the flat Ag(001) surface are destabilized by the presence of defects. The dissociation probability depends on surface morphology and drops for sputtering temperatures larger than 350 K, i.e., when surface mobility prevails healing the defects. The latter, previously identified with kink sites, are saturated at large O2 doses. The vibrational frequency of the oxygen adatoms, produced by low temperature dissociation, indicates the formation of at least two different adatom moieties, which we tentatively assign to oxygen atoms at kinks and vacancies.

  20. Synthesis and in vitro phototoxicity of multifunctional Zn(II)meso-tetrakis(4-carboxyphenyl)porphyrin-coated gold nanoparticles assembled via axial coordination with imidazole ligands.

    PubMed

    Alea-Reyes, María E; Penon, Oriol; García Calavia, Paula; Marín, María J; Russell, David A; Pérez-García, Lluïsa

    2018-07-01

    Metalloporphyrins are extensively investigated for their ability to form reactive oxygen species and as potent photosensitisers for use in photodynamic therapy. However, their hydrophobicity generally causes solubility issues concerning in vivo delivery due to lack of distribution and low clearance from the body. Immobilising porphyrins on carriers, such as gold nanoparticles (GNP), can overcome some of these drawbacks. The mode of assembling the porphyrins to the carrier influences the properties of the resulting drug delivery systems. We describe the synthesis and characterisation of new porphyrin decorated water soluble GNP and we explore Zn-imidazole axial coordination as the mode of linking the porphyrin to the metallic core of the nanoparticles. Quantification of singlet oxygen production, toxicity in dark, cellular uptake by SK-BR-3 cells and phototoxicity have been assessed. Axial coordination limits the number of porphyrins on the gold surface, reduces the formation of aggregates, and diminishes metal exchange in the porphyrin, all of which contribute to enhance the efficiency of singlet oxygen generation from the immobilised porphyrin. In vitro experiments on SK-BR-3 cells reveal a fast uptake followed by more than 80% cell death after irradiation with low doses of light. Copyright © 2018 Elsevier Inc. All rights reserved.

Top